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Abstract

Mass of an object is essential information for many an industrial application. The

aquaculture industry estimates the fish’s weight by scaling a sample of fish out of

growing tanks. This process harms fish and reveals an inaccurate result. The research

found there is a high correlation between fish weight and its size in the image. This

study aims to use a convolution neural network (CNN) for estimating fish weight.

Firstly, according to our research, VGG19 or similar models were not tested to

solve this problem before. Therefore, with known distance we tested CNN models

VGG19 then compare its result with semantic segmentation models such as FC-

Densenet, where another study applied a semantic segmentation technique on a

smaller problem. To do this experiment, we used a fish dataset included 1275 images

of harvest Salamon fish and their mass. The VGG19-R archived the lowest mean

absolute percent error (MAPE), MAPE = 2.4%, and the FC-Densenet-R revealed

MAPE = 6.49%.

To stimulate fish in a tank, we took a picture of a Lego block with a stereo vision

camera in different positions to the camera. Then, we used the stereo data [right,

left, depth map] as input to the VGG19-R model to estimate the area of the object.

The model achieves MAPE= 2.37% for the testing dataset. The result shows that the

stereo vision camera could help to measure objects at different depths like fish inside

the tank, where the depth map information works as a re-scaling factor to object area

in the other inputs.
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Chapter 1

Introduction

The research study is about the deployment of a deep learning model capable of

estimating the mass of an object from its image by using stereo vision technique.

The technique explored in this research study does not require fixing the distance

between the camera and the object. As a research contribution ,I have studied and

develop a deep learning model that reads stereo data [right and left images, and

depth map] to estimate the area of the object in those images. Furthermore, the

depth information is embedded in the input image.

The weight of an object is important information for many applications. In this

study, we focus on the aquaculture industry. In recent years, the use of fish and its

subsidiary products has been risen. According to the research, fish products cover 16%

of the human diet around the world [37]. As per the official OECD statistics, Canada

is the fifteenth country in producing aquaculture products [28]. The aquaculture

industry’s Gross Value Added (GVA) increased by over 50% between 2007 and 2017

from $265 million to $572 million in Canada [1]. The aquaculture industry added over

14000 full-time jobs opportunity to the market in 2009 for the Canadian market [31].

The Canadian aquaculture farms produce a variety of fin-fish and shellfish products,

and the main fin-fish products are salmon, trout and steelhead [1].

Fish breeding in a farm setting involves monitoring. The monitoring process is

a routine task to protect fish from diseases and stress incidents [37]. In addition,

aquaculture helps to improve the quality of the products. There are two main phases

of monitoring: pre-harvest and post-harvest [37].

The pre-harvest monitoring involves studying fish behaviour as a group and as in-

dividuals inside the fish tank. This monitoring is essential for farmers because the fish

are sensitive to the environment and detecting small changes in fish behaviour could

prevent a significant loss [37]. Moreover, pre-harvest is vital to sales departments.

The information we get from monitoring helps marketing department to choose for

1
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the selling channels earlier, depending on the fish’s psychical features [37].

Post-harvest monitoring mainly assists in sorting the fish to different markets [37].

That depends on physical and intrinsic chemical attributes. Some of the physical

characteristics are shape, size, texture and colour [37]. The intrinsic chemicals are fat

and protein content, and blood spot [37]. They play a significant role in customers’

purchase decisions and show the quality of the product [37].

In the aquatic business, a farmer looks for several factors to determine the fish

behaviour as a group; For example eating activity, detecting the excess feeding, which

adds pollution to the water, and speed. Also, some other factors are under biological

studies, such as the leadership or merging groups, and mixing species [37]. There are

additional features, such as sex, length, width, skin colour and maturity, which are

considered crucial for enhancing the fish quality besides the weight of the fish. While

breeding, such features equip the farmers with the information to segregate the fish

by assigning them to different tanks. In addition, it gives a general view of the health

of the fish [19, 37].

The monitoring process is not an easy task. It is persistent, costly, time-consuming

and also adds stress to the fish. The farmer has to catch some fish to measure their

features such as length, width and mass. Generally, the procedure for fish catching

involves the use of the net. This whole procedure of fish catching puts a strain on

the well being of the specie albeit handled properly, which could either cause death

to the fish or reduces the quality of their meat. Further, the monitoring procedure is

only performed on a small group of fish, so it does not give a full picture of the fish

in the container [37].

As a result, an automated solution is proposed, in this research study, to improve

the monitoring process and help the aquaculture industry [19, 37]. The proposed

automated application must have the following three attributes. Firstly, it needs to

assist in reducing the cost of production by reducing human involvement. Secondly,

it should not add any stress to the fish. Finally, it should be cheap and reliable. The

best technology for enabling many monitoring tasks is computer vision [37].

Computer vision (CV) is one of the exciting subjects in machine learning. It is used

to solve the real-world problems by analyzing image data to obtaining information. As

an example of the application of CV is the use of AutoPilot in self-driving cars which
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was first brought out by Tesla [33]. Computer vision uses optical sensors (cameras),

which have become cheaper and more powerful over time. It does not harm the

fish. Those two reasons make computer vision the right technology for solving the

monitoring issues [37].

In the last decade, neural networks (NN) have been developing. We see applica-

tions using NN everywhere, starting from detecting objects in images to defeating a

human team in video games [7, 29, 33]. The reason for success is that NNs excel in

fitting complex data such as images or a text dataset. For image datasets, there is

a particular type of layer neural network called a convolutional layer [7]. The con-

volutional layer uses a convolutional filter to learn from the image abstract patterns.

By adding a series of layers, the model learns to detect a sophisticated pattern like

eyes or a full human face. In a modern application, of NN has many layers, and it is

called a deep learning model [7]. Chapter 2 of the thesis reviews some details about

machine learning, computer vision and deep learning.

The aquaculture farms have to monitor the fish and know the mass of fish in-

side the container tank. Our solution to automate the monitoring process is to use

computer vision with a deep learning model. The two-dimensions images has all the

information to detect if a specific object is in the image or not. But to estimate the

object size, we need to know the cameras parameters, and the distance between the

camera and the object. Because this distance affects the estimation of the physical

size of the object in the photo. The closer the object to the camera, the bigger the

image. Traditionally, we could use a known objects as reference measurement and it

should by the same image. Then by comparing another objects to it. For example,

we could put an object such as a ruler on the other side of the tank, but swimming

fish could cover it. Besides, water is not clear enough to show the ruler. Therefore,

we need a solution that can give the depth of objects in the image without any extra

information. Further, it should be cheap. The best fit for this problem is stereo

vision.

Stereo vision is a setup of two cameras that capture the same view from a different

point on the viewing plane [11, 32]. There is no limitation for the distance between

the two cameras but it affects the min and max depth that could be estimated from

the images [32]. The stereo vision captures two images, a right view and left view.
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From those images, we could calculate the depth map for each pixel from the disparity

map, which is the difference of matched pixels [11, 32].

In summary, we worked on two tasks in this study. First task, we developed a

deep learning models to estimate fish weight from known distance. That depending

on the correlation of the fish’s area in an image to its mass [37]. Therefore, in second

task is estimate an Lego block area with different depth from the camera using stereo

vision data. Where the depth information is re-scaling factor for the area of the block.

In this study, we are not claiming that we could estimate fish weight inside the

tank yet. That because many other problems need to solve first, such as clearness

of the images underwater and poor light conditions [37]. However, we are confident

that it could do a good job in case we had a chance to test it on stereo data of fish

underwater.

1.0.1 Related work

The fish’s weight is essential to fish farmers for improving the product’s quality.

Therefore, a lot of research are conducted to estimate the biomass of fish from images

[19, 37]. That is because the optical sensors are the best technology for this task.

First, it is easier to take pictures of the fish without applying any pressure on it.

Second, in the last three decades, the camera’s sensors are getting cheaper and more

reliable [37].

Estimating the mass from the length is a common approach. De Verdal et al.

noted in their sea bass fish study that there is a correlation r2 = 0.98 between the fish

features in the image (length, height, area, perimeter and volume) and the weight of

the fish [37]. Length-weight correlation used in some studies like Dios et al. Depending

on this correlation some studies like Dios et al. built a stereo vision system to select

the fish’s length manually to evaluate the mass of the fish depends on this equation

1.1, which is a relation to finding the weight from the length of the fish.

Powercurve : M = aLb (1.1)

Where a and b are the two coefficients and they depend on the water and fish feeding

[23]. Dios et al. get an error rate close to 5% for salamon fish [23]. Similarly,

Sancheze-Torres et al. estimate the fish length from contour area, then used the
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estimated length for estimating the Mass, by using 3rd degrees polynomials for both

of the functions as in the equation 1.2 [19].

L = f(C),M = g(L) (1.2)

where L is the length, C is area of the fish contour, M is estimated fish mass, and f()

and g() are polynomial functions [19]. Sancheze-Torres et al. report length estimation

with mean absolute percent error (MAPE) = 3.6% and MAPE = 11.2% for fish mass

estimation [19].

In another study, they applied three different mathematical models 1.1, 1.3 and

1.4 on datasets contains 120 measurements of Jade Perch fish.

Polunomial : M = a+ bs+ cL+ dH (1.3)

Liner : M = a+ bS (1.4)

Where S is the fish’s area in the image. H is the fish height. After testing the

models on 64 images. they found the equations 1.3 and 1.4 show the lowest error,

where MAPE = 5%. But equation 1.1 error is MAPE = 10%.

Konovalov et al. developed another mathematical model using S with a, and c,

which are coefficient parameters for food and species. MAPE value is 5% for the

Asian sea bass fish dataset [37, 19].

M = cS3/2, c = 0.17 (1.5)

M = aSb, a = 0.124, b = 1.55 (1.6)

Further, Konovalov et al. work on estimating the weight of the fish from images

by using a neural network and they apply the semantic segmentation model (LinkNet-

34). It can segment the fish in the image, then they use the output mask for estimating

the fish weight. They train the model using three datasets of Barra fish with a total

2445 images, and all the images scaled one mm-per-pixel. For estimating the fish

weight, they used the mathematical model equations 1.5 and 1.6. Konovalov et al.

used deep learning regression to use the output of the LinkNet-34 as input for the

unknown regression part. The results are presented in table [19].

Nonetheless, those models were built for estimating harvested fish where the fish

is not moving and the fish hold to get the right image. Plus, all of the image issues,
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Figure 1.1: Mass estimation models of Konovalov et al. from [19]

such as light or clearness, are taken care of by the researcher while taking the photos.

In a real situation, the fish are moving in the tank and images are not clear because

of the pollution in the water. Therefore, those models will not have the same result

[37]. They would be useless for pre-harvest monitoring applications.

In this study, we built an end-to-end convolution network for estimating the

biomass of the fish. With known distance, We tested VGG19 and FC-Densenet

for training the model. We used the fish dataset for training those models, and the

VGG19 models got MAPE 2.4% and FC-Densenet got 6.49% at the test dataset.

In further experiment, we worked to build a deep model that includes depth

preparation. It read data from a stereo vision camera to estimate the area of a object

at different depth. This was only done on a n example setting with Lego blocks as

a proof of concept since we did not have such data with fish. This model achieved

MAPE 2.37% for the testing dataset. This experiment is detailed in the chapter

three.



Chapter 2

Background

2.1 Computer vision

Computer vision (CV) is a sub-field of artificial intelligence, and more recently, a

sub-field of machine learning because of applications of machine learning techniques.

Computer vision is a studied field focusing on media data to solve real-world problems.

The goal of it is extracting useful information from images or videos, then use that

information to solve the problem [32].

There are two main challenges to make computer vision compatible with human

vision. Firstly, we do not have a full understanding of the human vision. Good

progress made to understand the human eye and the way information transferred

to the brain. However, there is much work that needs to do to know how the brain

processes this information [45, 4]. Secondly, the world is complex, and many variables

affect any vision system like light conditions or clearness. The accurate vision system

should be able to see and extract information in any condition and from an infinite

number of scenes [45, 4].

Regarding all the challenges, computer vision makes a good achieving in many

tasks like [45]:

• Optical character recognition (OCR).

• Machine inspection

• Retail (e.g. automated checkouts)

• 3D model building (photogrammetry)

• Medical imaging

• Automotive safety

• Match move (e.g. merging CGI with live actors in movies)

• Motion capture (mocap)

• Surveillance

7
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• Fingerprint recognition and biometrics

Recently, using deep learning technical makes a massive jump in solving many com-

puter vision tasks such as:

• Object Classification.

• Object Identification.

• Object Verification.

• Object Detection

• Object Landmark Detection.

• Object Segmentation.

• Object Recognition.

This progress leads to making autonomous vehicles real, and optimists predict the

autonomous vehicle will be reliable to replace human drivers by 2030 [21]. Medical

image analysis is another area that got improving in past years which to detect cancers

in early stages [4]. Moreover, recently the other CV technologies like virtual reality

(VR) and argument reality (AR) added to be part of our daily life. Now, most of

the phones work as VR or AR set for teaching or entertainment applications. For

example, PokemonGo, Anatomy 4D [2].

2.1.1 Stereo vision

The stereo vision is a system content two cameras or more for perceiving the depth

information. For example, a human’s vision system is a complicated stereo vision

system. Where the brain is handling all the processes [45].

The stereo vision is used applications like Robots, automobiles, virtual reality,

argument reality, and security cameras. Also, many other applications needs the

depth information. In this section, we are explaining how the stereo vision is used to

measure the depth from two images [25, 43].

Usually, the cameras of the stereo vision are separated horizontally to get two

different 2D images for the same view. The distance between the lenses of the cameras

is called the baseline. The cameras of the system should be identical, so they have

the same focal length, which is the length between the lens and reflected the image

on the sensor in the digital camera [15, 43].
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Figure 2.1: Stereo Vision components from [15]

As shown in figure 2.1, the stereo vision has several components: the centers of

lenses, baseline, which is the distance between the lenses, images’ planes, which are

the reflected image, and the focal length is the distance between the lens and the

reflected images’ centers.

2.1.2 Depth

Figure 2.2: Geometry Projection of stereo vision
from [24]
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In the diagram 2.2, there are two right angles triangles. Starting from blue tri-

angle, heads of this triangle are AL optical centers of the left camera, P point in the

world, and BL which the project of P on the Z from center of the left camera lens.

Let assume that X is the distance between the optical centers and the P in the real

world. The adjacent of AL is the distance of the 3D point P intersecting the lines

drawn from the optical centers. There is a smaller blue triangle, the heads of this one

are AL, L is the center of the left image planes, and PL is the P project on the image

plane. By applying triangles similarity between those triangles, we can find:

X

Z
=

XL

f
(2.1)

Similarly, the green triangle includes two triangles. The heads AR which is the optical

centers of the right camera, P point in the world, and BL which the project of P on

the Z from the center of the right camera lens. However, for the green triangle, the

distance between the optical centers and the P in the real world is equal to X − b,

where the b is the baseline of the stereo vision. Like the blue triangle, calculating the

similarity between the two green triangles is:

X − b

Z
=

XR

f
(2.2)

So, combining the equation 2.2 and 2.1 is equals:

Z =
bf

XL −XR

(2.3)

d = XL −XR (2.4)

Z =
bf

d
(2.5)

where:

1. Z is the depth

2. b is the length between the lens center.

3. F is the focal length (Which is equal in both cameras).

4. d is the disparity (the disparity).

So, by using the equation 2.5, we could generate the depth map for each pixel in the

disparity map [15].
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2.1.3 Camera calibration

In the pinhole camera model, taking pictures by a camera is the process of converting

a 3D image to a 2D image. The mathematical expression is this:

Wa = AP (2.6)

Where W is a scale factor, a is image point matrix
[
X Y 1

]
, A describes the world

points
[
X Y Z 1

]
, and P are the camera parameters [51].

P =

[
R

T

]
K (2.7)

K =

⎡
⎢⎢⎣
fx 0 0 0

s fy 0 0

cx cy 1 0

⎤
⎥⎥⎦ (2.8)

As in the figure 2.3, the camera has to type of parameters the extrinsic parameters and

Intrinsic parameters. The extrinsic parameters consist of translation T, and rotation

R. They describe the world coordinate to camera coordinate. In other words, the

extrinsic parameters define the relation between point P coordinate in the world’s

coordinate Pw and camera Pc coordinate.

The intrinsic parameters K, where (cx,cy) are the coordinate of optical center,

(fx,fy) is the scale factor, and s is the Skew coefficient of the image axes [51]. The

intrinsic parameters represent the geometric and optical characterize. And they aid

to convert images from 3D coordinate to 2D coordinate [51].

The Extrinsic Camera Matrix
[
R Y

]
is representing the camera position in the

world. This matrix is (4× 4) array to described the location of the camera and what

direction the camera is pointing. So, we can write the equation 2.6 in matrix form

as:

W

⎡
⎢⎢⎣
X

Y

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
fx 0 0

s fy 0

cx cy 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

⎤
⎥⎥⎦×

⎡
⎢⎢⎢⎢⎢⎣
X

Y

Z

1

⎤
⎥⎥⎥⎥⎥⎦ (2.9)

Multiplying 3×3 matrix with 3×4, the result will be 3×4. Then it will be multiplied

by 4× 1. The result will be a 3× 1 matrix [12, 40].
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Figure 2.3: Calibration Coordinate from [24]

The calibration is a method to retrieve the camera parameters from 2D images

of knowing 3D world parameters. Zhang, in his paper [51] develops a method to

estimate the camera parameters by taking several pictures for a known pattern like

a chessboard.

Zhang’s method is:

1. Capture a few images to know pattern image, with different orientation.

2. Recognize the feature points in the images.

3. Estimate the extrinsic parameters and the intrinsic parameters.

4. Improve all parameters, including lens distortion parameters, by minimizing the

difference between known image feature point values to estimated ones.

2.1.4 Disparity map

The disparity map is the difference between pairs of images for each pixel, and even

it is represented as a gray-scale image. The range of the values is in range [0-255].

255 is the closest possible to the camera because the closet object to the camera has

a higher disparity [15]. The 0 is mean the pixel is maximum depth from the camera

or un-calculated disparity for some algorithms.

Most of the stereo block match algorithms have the same four steps to generate

the disparity map [38].

1) Cost Initialization: This creates the 3D cost volume -The matching cost of each

pixel at different disparity levels- so the output is [X, Y, D].

2) Cost Aggregation: which aggregates the spatial cost for each pixel.
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(a) (b)

(c)

Figure 2.4: (a) is the left image, (b) is the right, and (c) is disparity map for both
images (a) and (b).
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3) Disparity Optimization: find the best disparity for each pixel.

4) Disparity Refinement: this step is to reprocess the disparity map to smooth

the output disparity map.

So, disparity map algorithms are consuming a lot of resources, because of these

steps calculated for each input image, which makes it hard to run an algorithm on

any machine without concessions on the accuracy of the output.

2.2 Machine learning

Machine learning is part of artificial intelligence. For understanding the machine

learning concept and why it is important. We need to compare it with classical

programming. To make a traditional program, you need to have two components, the

data and the rules, which are applied to the data to get the answers. That is working

if you know the rule (process).

In contrast, machine learning applications, we do not have rules. This because

the rules are complicated, or we do not know the right rules to achieve the answers

like finding relations between data has hundreds of features. Therefore, machine

learning algorithms use the data, and the answers to find the rules, then used the

rules to get answers for the new data [7].The machine learning algorithms have many

branches: supervised learning, unsupervised learning, semi-supervised learning, and

reinforcement learning.

Figure 2.5: Classical programming vs machine learning from [7] with some changing
.

In this study, we consider the supervised learning, unsupervised learning, and

semi-supervised learning that because they used for build depth estimation models.

The supervised learning is the most used case; it learns to map the input data (called
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features) to generate the target from knowing the target (also called annotation). The

annotation even a has been made by a human. For example, to build a model predicts

cat images, we will need to many photos half of them content cat and another half

not content cat, then annotated those images to 1 where the picture has a cat or 0

if not have a cat in the image. Therefore, the model will learn to return 1 when it

found a cat in the input image and 0 when it did not.

Alternatively, for some other type of problem, the developer does not annotate

the data, the labels generated with input, like stock market data, where the current

price is one of the input features, and the next price is the target. The supervised

learning approach used mostly for all machine learning problems. Such as image

classification, language translation, and object detection [7]. Support Vector Machine

(SVM), Random Forest, Naive Bayes, and many other algorithms are examples for

supervised learning algorithms.

In contrast to supervised learning, the unsupervised learning model learns to trans-

form input data into another exciting format. That is happening without using any

labelled data. Clustering, dimensionality reduction and association rule learning are

examples that need unsupervised learning to solve [7], K-means is one of the unsu-

pervised algorithms used for clustering problems.

Lastly, semi-supervised learning is a concept between supervised learning and

unsupervised learning. Where semi-supervised learning does not use labels to train

the model. Still, it used the input images as labels to train the model.

2.2.1 Deep learning

Deep learning is a series of multi neural network stock as a layer. This means that the

deep learning model is learning hierarchical representation, and the number of layers

is the deep of the model. We will first explain the concept of the neural network,

then focus on deep learning.

Neural network is one of the machine learning algorithms. It is like all ML algo-

rithm learning to find the most useful representing of the input data to get closer to

the expected output. But what makes NN different from the other ML’s algorithms

is the flexibility of how it represents the data. The operation could be a linear,

translation, or nonlinear.
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Figure 2.6: Sample deep learning model components [7] with some changeing.

The neural network contents N number of neural, where each neural takes one

input X and applies the f function (called activation function). For example, the

equation fi = XiWi + Bi used the linear activation function for the neural network.

Where W is a weight for i, and B is a bias. The output of the layer could be fi, which

used as input for another neural layer. Yet it could be Y =
∑

fi for regression, or

applied other activation function like a binary step.

Training deep learning has two phases. Firstly, the forward-propagation phase

is applying the activation function for each layer until calculating the predication

Y . Secondly, the back-propagation phase, where the optimizer works to adjust the

weight of NN layers, slightly depends on the learning rate. That operation is for

reducing the loss cost for after each iteration. The training process is repeating two

methods forward-propagation and back-propagation for many iterations until getting

the lowest loss value using all the training input data. Then the NN evaluated using

the forward-propagation phase on all the test input data.

The deep learning has been using in many domains of data images, text, or audio

for different types of problems like classification, prediction or regression. Moreover,

it trained to generate data or convert data, such as, put colour to the gray-scale

images, create music or text. Besides that, the deep learning pushes reinforcement

learning to a new level [7].

Now, a deep reinforcement learning model trained to drive cars without human

interaction. Also, the OpenAI team trained a model to play a video game called Dota
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2 and got to achieve a great result even the got to make five models contribute to

winning the game [7, 29].

2.2.2 Semantic segmentation

Semantic segmentation is one of technique used for image classification problems by

labelling each pixel in the image to one of the classes. The output from the semantic

segmentation model is an image that has input dimension, but each pixel the output

image has a colour corresponding to the object of that pixel. For example, in figure

2.7, where all pixels classified as people coloured in blue. But the cars in green. That

feature benefits to detect and allocate the object in a picture. Further, it helps to

know the size of the object in the image.

Figure 2.7: Semantic Segmentation annotation from [20] with some changing

Back to the example in figure 2.7, which it is from Coco dataset for the semantic

segmentation annotation (ground truth): The cars, motors, people, and traffic lights

highlighted in different colours [20]. However, the other part of the image will be

ignored or considered as a background class. So, the model trained to identify 4

categories in the picture.

This technique of classification is useful, and it has been used in many applications

like medical images classification, self-driving cars, and satellite image analysis. It

shows excellent results, especially regarding the medical images where the detected

object represents a small space, which makes other technique useless [8, 47, 17].
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Convolutional networks

The convolution network is a deep learning model that has several convolution layers.

The convolution layer has some matrices of nodes. By applying a convolution function

on the input data, the nodes’ weight learned to obtain different information from the

input data. Usually, the convolution network has content convolution layers followed

by a non-linear activation function, pooling layers, and batch normalization.

The NN is a hierarchical data representation, and that is very obvious in the

convolution network. The top convolution layer learns the low level of features like

edges, colours. Yet, by going deeper into the model, the feature starts to be more

complicated so that the layer activates. For example, if the model trained to detect

dogs’ faces. The earlier layer of that model activated by edges. The next layers

activated by a dog’s ears or eyes. Later, the layer activated by the all face area in the

input image [50]. That means earlier convolution layer content information about the

small region of the image. The deeper convolution layer contains information about

the larger area of the image [50].

Usually, by adding a more convolution layer, the number of channels (filters) will

be increasing, and each learned one of the features. For reducing the number of

parameters, the pooling layer added to the network where the pooling layer works as

down-sampling the filter size [7].

Figure 2.8: Encoder-Decoder Architecture from [17]

The difference between the standard classification model and semantic segmenta-

tion model is in the traditional classification models; after the convolution network,

the model end with spatial tensor. Therefore, we need to add a fully connected layer to
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map the spatial information and reduce the size of it to do predication. On the other

hand, for the semantic segmentation model, we need to retrain the low-resolution

spatial tensor, which content high-level information to generate the segment. For

that, we add a new convolutional layer and an up-sampling layer to increase the size

of the channel, those steps called Encoding and Decoding 2.8.

Generally, the semantic segmentation models are content two parts Encoder and

Decoder. The encoder works to encode the input feature from the images. Then the

decoder converts the learned features to regenerate the image has the same size of the

input each pixel has colour depends on the class of that pixel from the input image.

The encoder architecture could be any convolution networks; For example, VGG16/19,

ResNet, or MobileNet because of the idea of the encoder is extracting information

from image and compose it in smaller tensor [13, 41, 44]. Then the decoder has sev-

eral convolution layers and transposed convolutions layers (or deconvolution layer) to

rebuild the output.

One of the earlier semantic segmentation is the Fully Convolution Networks For

Semantic Segmentation. In that paper, they test three different known convolution

layer architectures [AlexNet, VGG16, and GoogleNet] as the encoder. Still, for the

decoder, they up-sample the output of the last Conv layer, and they found the shal-

lower layer has the information about the location of the class. Therefore, they merge

the output of the previous layer with deeper ones. That increases the accuracy of the

segmentation, as in Figure 2.9.

Figure 2.9: Fusing for FCN from [39]

Later in the SegNet, they build an encoder similar to VGG16, followed by the

corresponding decoder [17, 41]. They used the output of the Max-pooling layers
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(Pooling indices) merged with the previous convolution layer. U-net and DeconvNet

have similar architecture but with some differences [17, 39].

One of the resent state-of-art semantic segmentation models is FC-Densenet. This

model achieves a great result with a small number of parameters compared to other

architectures. FC-Densenet obtains 66.9 Mean IOU (MIOU) on the CamVid dataset

with 9.6 million parameters, but the closest model makes 66.1 MIOU with 140.8

million parameters for the same dataset [3, 48].

The main reason for that result is the use of the Densenet blocks, which gives three

benefits: 1) feature reuse; all the layers in each block can reuse the previous feature,

2) parameter efficiency; using a Dense block reduces the number of the parameter but

without reducing the effectiveness of the model, 3) implicit deep supervision; short

paths between all dense blocks perform deep supervision [48].

FC-Densenet model contents dense blocks in encoder and decoder. There are

shown sampling layers between the blocks in the encoder, then the up sampling layer

in the decoder. Before each down sampling layer, there is a residual connection from

the previous output. Also, there is a skip connection between each residual link

to equivalent tensor in the decoder [48]. The figure 2.10 shows the architecture of

FC-Densenet.

Figure 2.10: FC-Densenet from [48]
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Transfer learning

At the initial state, the convolution layers’ weights have random values. Weights

do not have any useful information at that time, but by training weights updated

to be meaningful. The training process usually needs a lot of time and resources.

Therefore, transfer learning is a proper way of saving time and data resources.

In the last section, we discussed convolution networks and how the firsts layers

learn low-level features, but the deeper layer absorbs the higher-level features. Those

low-level features are edges, colour, and some sample shapes. Although they are

essential because they appear in any images, using weighted layers trained on any

image dataset is better from the start of training the model from randoms weights.

There are two main benefits of using transfer learning. Firstly it is saving training

time because some of the layers do not need to train; they have the information they

need. Secondly, for some applications, it is hard to get enough images to train the

deep model from scratch. Transfer learning reduces the data amount, which required

for fitting the model and get better accuracy.

Technical speaking, we train the model on one of the big data set like ImageNet, or

COCO. After that, we retrain the model excepting the earlier layers’ weights, which

contains the low-level of information, then retrain the model by using our dataset

[35].

Image augmentation

The deep learning model requires many data sampling to train. In addition, data

needs to be labelled, and labelling images cost time and human resources besides

getting enough data. One of the solutions is using image augmentation. The image

augmentation is applying image processing to generate new images from the existing

ones.

Some of the image functions are a horizontal and vertical Shift, horizontal and

vertical flip, random rotation, random brightness augmentation, and random Zoom

augmentation. All those functions are great for generating new images from the same

dataset. That will supports model for better generalizing over the data and keep it

away from over-fitting on the training dataset. Regarding the semantic segmentation

model, the augmentation process should be applied to both input image and label by
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the same parameters (except brightness), or that will have a harmful effect over the

final result.

Nevertheless, image augmentation should be considered as hyper-parameters be-

cause as it helps to avoid over-fitting. Yet, it could cause under-fitting by adding

many new images. Where the number of the model’s parameters is not enough to fit

the generated data, therefore, the augmentation should be implemented as a hyper-

parameter to tuned to get the best fit for the model [7].

Figure 2.11 shows an examples of image augmentation functions [30].

(a) Original image

(b) Horizontal Flip (c) Vertical Flip (d) Shifted Image

(e) Increase Bright-
ness

(f) Decrease Bright-
ness

(g) Zoom-in

Figure 2.11: Examples for augmentation process, d shifted image by 100 PX on X
axis and 250 PX on Y axis

2.2.3 Estimated depth by deep leaning

Recently, many researchers started work on depth estimation by using deep learning

due to the importance of depth information for many active fields, such as driverless
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Figure 2.12: GC-Net model [18]

cars, drones, and any robots. Estimating depth using algorithms, as we explained

previously, is consuming a lot of resources, which is not available in robots like drones.

Also, some deep learning models achieve to estimate depth from one input image like

MonoDepth, which is excellent for use by devices that have one camera like phones,

or medical equipment [10].

In general, there are several types of models developed in the last year 2019,

over 45 new results submitted on the KITTI 2015 dataset to new models estimate

depth by using a different approach [9, 27]. KITTI 2015 dataset is benchmark data

for stereo vision challenge; the data took by stereo vision setup and a laser scanner

for generating the depth map. The dataset contents 200 images for training and

200 for testing [27].The main two categories are binocular vision (stereo vision), and

monocular vision.

GC-Net is one of the earlier models developed by a team from Skydio [18]. The

GC-Net is a stereo vision model. It takes a right and left image as input data and

output is the disparity map. It contains three parts of feature extraction, cost volume,

learning context. The feature extraction is content multi convolutional layers, and

they are shared weight between the two input images (right, and left).

The cost volume is the core of the model, where it works to generate 4D tensor

[width× height× (maxdisparity + 1)× featuresize]. It does that by concatenating

feature X from the left image with corresponding feature X from the right image

across each disparity level. The cost volume learns to match the features with probate

disparity value [18].

The next part in the model is the learning context, which contents the encoder and

decoder building 3D convolution layer to learn the feature representation from the

cost volume [Width, Height, Disparity]. The GC-Net model trained by the scene-flow
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Figure 2.13: Mono Depth model concept [46]

dataset. They used 35454 and tested 4370 images. Then, the team fine-tuned the

model’s parameters by retained on the KITTI dataset. Both of scene-flow and KITTI

have a stereo image with max disparity 192 [18]. The Skydio team found 2.87% error

on dataset KITTI 2015 for D1-all pixels [18].

Another innovative model is MonoDepth [10]. As we explained before, the dispar-

ity is the shifted value between the left and the right images. Godard et al. used this

idea to train a model that generates a disparity map from one single input, but both

of the images used for training the model without having labels [10]. As in the figure,

the model is trained to create left-to-right and right-to-left disparity maps. Then,

they used a Sampler to reconstruct the input images to used them for calculating the

training loss [10]. The loss function C is complex. It derived from different scaled

levels Cs, which is combination of three different loss functions.

C =
4∑

s=1

Cs (2.10)

C = αapCap + αdsCds + αlrClr (2.11)

Cap = C l
ap + Cr

ap (2.12)

Cds = C l
ds + Cr

ds (2.13)

Clr = C l
lr + Cr

lr (2.14)

Where C is the total loss cost, Cs is loss cost for each scale level. Cap is the

Appearance Matching Loss, which is the similarity difference between the input

image and reconstructed coloured image. Cds is Disparity Smoothness Loss; it
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enhanced the disparity output by calculating the L1 of the estimated disparity gra-

dient. Clr is Left-Right Disparity Consistency Loss; it measured to improve the

accuracy of disparity by reducing the difference between the left and right disparity

map. α are the weight for each loss function.

The MonoDepth model is an unsupervised learning model (Semi-Supervised learn-

ing), and they used stereo vision for training. It just needs the left image or both

images as input to predict the depth map. It achieves 23.8% for D1-all by using

monovision and 9.2% by stereovision.

Other teams from Nvidia works to improve the same model GC-net by using the

same loss function from MonoDepth [42, 10]. Their contribution summarized in three

points 1) They replace the Relu and batch normalization layers by ELU activation

function to make running and training model faster. 2) They add their novel layer

ML-Argmax instead of the softmax layer, which used initially with GC-net. Lastly,

they used this loss function, which could be used as supervised and unsupervised

learning by add or remove term lider from the equation 2.15 [42].

C = αapCap + αdsCds + αlrClr + αlidarClidar (2.15)

where Clidar is the difference between predicated disparity and ground truth disparity.

However, most of the depth estimation models are computationally demanding;

they need GPUs with a high amount of memory like a Titan X, or GTX 10XX. The

Nividia team’s model speed is 320 ms on Nividia Jetson TX2 and low resolution

[513× 161× 48], and this the height speed [42]. Therefore, Yan at el. works to build

model can be run on Nividia Jetson TX2 GPU, they achieve 97.3ms with resolution

[1242×375×192] [49]. AnyNet also inspired by GC-Net. Yet, Yan and his team made

three changes to makes their model run faster with good disparity estimation [49].

Firstly, the model uses the U-net model as feature extraction. The features have

used from three different levels (1/4, 1/8, 1/16). Secondly, to save resources and

reduce the estimation time, the model calculated the cost volume like GC-Net to

build the 3D convolution tensor from the smallest input image (1/16), then used

residual prediction for calculating disparity for next stages (2 & 3). Then to improve

the disparity, they used disparity regression 2.16 instead of ArgMin as an activation
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function for generating the disparity output [49].

D̂ij =
M∑
n=0

k × exp−Cijk∑
k′=0 M exp−Cijk′

(2.16)

where is the D is the output disparity of each level. k is the disparity level from 0

to max disparity M. C is the output cost between the two predicated disparity right

and left. The used L1 to measure the loss at each stage; the total losses is the loss

training [49].

We tried to use two of those models GC-Net and AnyNet, to test them on our

data. However, this is what not possible because those models need big data set

that has thousands of images such as the KITTI dataset or scene-flow for training

[9, 26]. Using transfer learning in this type of problems, because the stereo vision

setup affects the model results. Theoretically, the new dataset should be taken by the

similar cameras for focal length and the equal distance between the cameras (Base

Line).

2.2.4 Performance evaluation

There are many measurement scores; each one of them has specific features, and it

could use with one or more machine learning algorithms. In this study, we used some

of those measurements. For regression models, we used R2 and (mean absolute error)

MAE, and IOU for evaluating the semantic segmentation output.

The coefficient of determination (R2)

The R2 score is a statistical measure representing the proportion between two vari-

ances, the model’s prediction variance and variance of the data. R2’s value is between

0 and 1; For example, if the R2 value is 0.5 that approximately half of the model

predictions’ are close to the data variance. Mathematically, R2 is given by:

R2 = 1−

n∑
i=1

(Yi − Ŷi)
2

n∑
i=1

(Yi − Ȳ )2
(2.17)

Where the Yi is the true value, Ŷ is predicated value, and Ȳ is mean of the Y .
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Mean absolute error (MAE)

It measures the difference between the ground truth and the predication without

considering the direction of the difference. This the equation for calculating the

MAE:

MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (2.18)

Where the Yi is the true value, and Ŷ is predicated value.

Mean absolute percent error (MAPE)

MAPE measures the error between the prediction and real data but in percent term.

It is like mean absolute error; it calculates unsigned error, then it calculates the

percentage average.

MAPE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣
Yi

∗ 100 (2.19)

Where the Yi is the true value, Ŷ is predicated value, and Ȳ is mean of the Y .

Mean square error (MSE)

MSE measures the difference between the ground truth and the predication with-

out considering the direction of the difference. But because it uses square, maks it

sensitive to the outliers predication. The MSE defined by this equation:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2.20)

Where the Yi is the true value, and Ŷ is predicated value. as shown in the example

in table 2.1. The value of the MSE is 1.47, but MAE is 0.97.

Intersection over Union IOU

IOU is a measurement used for object detection model, which used a rounded box,

semantic segmentation, or instance segmentation. With semantic segmentation out-

put, most of the pixels classified as background; therefore, using accuracy score will

give misleading information about the efficiency of the model. But the IOU measure
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Error |Error| Error2

0.34 0.34 0.1156
-0.06 0.06 0.0036
-1.48 1.48 2.1904
-0.12 0.12 0.0144
-1.7 1.7 2.89
-2.12 2.12 4.4944
-1.65 1.65 2.7225
-0.13 0.13 0.0169
-1.07 1.07 1.1449
-1.06 1.06 1.1236

Mean 0.973 1.472

Table 2.1: Example of the difference between the MAE, and MSE

ratio of overlapping the presentation with ground truth over the union on them. The

equation calculates the IOU.

IOU =
Area of overlapping

Area of Union
(2.21)
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Experiments

3.1 Fish dataset

We had access to the dataset contained 1275 images of salmon fish divided into five

folders for different sampling days. Those fish were scaled after the harvested process.

Diagram 3.1 outlines the setup to take fish pictures. Besides the weight of the fish,

the dataset contains measurement information for 1208 fish of the total dataset.

The measurements in the dataset included, weight in kilogram and pound, greatest

depth (width) cm, body length (height) cm, points coordinate of the fish measurement

on the image(length points (P1, P2), width points(P3, P4)). Figure 3.1 shows an

example for one of the fish and measurement points.

(a) (b)

Figure 3.1: (a) Setup for taking fish images during harvest. (b) Length is (Green
point is P1, Red point is P2). Width is (Fuchsia is P3, Aqua is P4). Mass is 4.2 kg.

The distance between the camera and the table was not recorded. It is important

information because the depth affects the ration of mm in the real-world to a pixel.

For example, the length of fish in Figure 3.1 is 614 mm and 1202 pixels. The ratio

is 0.51, which means each pixel is equal to 0.51 mm in the real-world. However, we

can calculate the distance in each image from the information we provided with the

pictures.

29
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By knowing the object dimensions in an image, and the real-world and knowing

the camera’s features [sensor, focal length], we could calculate the distance between

the camera and that object by this Equation 3.1. Here d is the distance between the

camera and the object, fmm is the focal length of the camera. lmm is the length of the

fish in mm. ipixels is the width of the image in pixels; lpixels is the fish length in pixels.

And smm is the width of the camera’s sensor in mm. Depends on the metadata, which

saved in the images, the camera is Canon EOS 700D, and it has a 22.3 × 14.9 mm

sensor.

d =
fmm × lmm × ipixels

lpixels × smm

(3.1)

Figure 3.2 shows the distribution of the distance between the camera and the table

for each batch of images. The batches’ mean range between 79 and 86 cm. Except,

Batch 10’s average is equal to 64 cm. However, the last batch has 262 images, so it

is close to 20% from total dataset

Figure 3.2: Compare histogram Plot of distances for each batch in the dataset
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3.2 Estimating fish weight

This research study propose estimating the biomass of the fish from an image. With-

out fixing the distance between a camera and object. Therefore, we want to check

the possibility of using a convolution neural network to estimate the biomass of the

object by training two different models. We have conducted several experiments to

test different deep learning models; the first one is using standard convolution neural

networks, and another one is a semantic segmentation model.

3.2.1 Estimating fish weight with VGG19

in order to test using a convolution neural network for estimating the mass of fish

from an image. We used the fish dataset, which contents the fish on the wood plate

and the weight of each fish in the kg. For that purpose, we build a convolution

network model that can trained to predict the fish from the images. The model has

two parts, i.e. the feature extraction using VGG19 architecture. Then the regression

part; it contains several full connection neural networks for applying the None-linear

regression model [41].

Feature extraction

VGG19 is one of the legend deep learning models. It has been used in many image

classification applications since it was invented by the Visual Geometry Group (VGG)

from the University of Oxford in 2014 [41]. According to Google Scholar, over 30000

research papers cited the VGG19 paper [41].

The trick makes VGG19 useful in using two 3 × 3 convolution layers, which will

assist to cover a large area with a fewer number of parameters. As shown in figure 3.3

shows the area could the filters from two convolution layer cover it. To know the

difference, we can compare the parameter number of a convolution layer with kernel

size equal to 5× 5, with two convolution layer with kernel size equal to 3× 3. Using

one layer of 5 × 5 filters, the number of a parameter is 5 × 5 = 25, but using two

layers of 3× 3 filters, the number of parameters is 2× (3× 3) = 18; which means the

number of parameters to covering the same area reduced by 28% [41].

By reducing the number of parameters, we minimize the number of images required
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Figure 3.3: VGG19 filters covering area

to train the model with fewer parameters, the training process will be faster and

avoid over-fitting [41]. It shows an excellent result to use it as an extraction feature.

Therefore, we choose it as feature extraction for our regression model.

The VGG19 model has 16 convolutional layers; they divided into five blocks of

convolution layer and max-pooling layers. Each of the first two blocks has two con-

volution layers and ends with a max-pooling layer for reducing the size of the filters.

For other blocks, each block has four convolution layers followed by the max-pooling

layer [36, 41]. Before we start fitting the model, the VGG19 is loaded with ImageNet

weights for decreasing the time needs for training the model from random weight.

Regression part

The regression part depends on full connection layers (Dense Layer), however, the first

layer is the global average pooling layer for connecting 2 dimension layers with the full

connection layer. Usually, the flatten layer used to convert the output of 2 dimension

layers to the Dense layer, but we found this approach is adding many parameters for

the model. For this problem, our model VGG19 model output is [?, 8, 12, 512]; so,

by flatting this tensor we end with 49152 parameters than using the Dense layer has

512 nodes we end with total parameters equal to 45,264,705 parameters. Where the

input size is [ 256, 384, 3].

The regression model starts with the global avg pooling layer or the global max

pooling layer followed with three dense layers in this order of output nods [512,128,

64]. Each of those dense layers activated by Non-linear function Relu. The last layer

in this part are has a liner activation. Figure 3.4 shows our model architecture.
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Figure 3.4: VGG19 model with Regression output

Training the model

The first two convolutional layers were frozen before starting training the model, and

to get the most benefit of transform learning, which are the first block in the VGG19

model [41]. Freezing the layer means that the weight of the layers is not updated

during the training. But layers like max pooling do not have weights, so there is

not any point from freezing them; just the convolution layer can be trainable or not.

During the training and by fixing the weight of first two layers, the model keeps using

the low-level features which learned from ImageNet date like edges and colour [36].

Those features are common for all different scenarios, even when ImageNet does not
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(a) (b)

Figure 3.5: (a) The Loss Rate. (b) R2 score.

contain fish images.

The model is trained using the Adam optimizer with learning rate set to 1e-4 for

150 epochs and the loss function is the Mean Absolute Error (MAE). The learning

rate decreases by 6.67e-13 after each epoch. The dataset was divided into two parts,

i.e. a training set and a testing set with ratio 70% for the training dataset and 30% for

the testing dataset. The training set contains 891 images and 384 images for testing,

which took about 4 hours and 14 minutes using a 1080Ti GPU.

Three types of image augmentation were used (horizontal flip, vertical flip, and

shift image) with a probability of 20%. We chose those functions because those

processes do not change the scale of the fish in the image. But they are helping to

generate a new image to improve the generalization of the model over the location

of the fish in the picture. The images randomized for each epoch for supporting the

model for better generalizing and for avoiding stack in a local minimum.

Results

As evident from Figure 3.5, we can notice the loss value starts high close to 0.6; then,

it decreases with more training epochs for both training loss and validation loss. After

the epoch 35, we can see there is a difference between the training and validation loss

and that gap persists til the end of the training. We keep the best model’s weights at

a highs validation R2 score, which happened at epoch 126 with a rating of 0.88. That

point is shown on the chart as red point. As we found, there is a gap between the

two loss values, which usually show over-fitting. The behavior of the loss rate could

possibly be because of the over-fitting of the training dataset.
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Figure 3.6: The VGG19 Regression model results for both training and testing
dataset. For left, the Box plot and histogram plot to the right.

In order to generate the histogram plot, as shown in Figure 3.6, we calculate the

percent of the error between the estimated mass and the real mass for each image

that depends on Equation 3.2.

percent error = ((Ŷ ∗ 100)/Y )− 100 (3.2)

where Y is the real weight of the fish, and Ŷ is the estimated weigh. For example, if

the actual mass is 5 kg and the estimated 4.5 kg, that mean estimated mass is less

than the real mass by 10%.

Figure 3.6 shows two distributions. Both of them are fitted with a normal dis-

tribution, and the mean for the training dataset is 1.95% and 2.18% for the test

dataset’s distribution’s mean. That means the model is estimated more weights from

the actual weight for both training and testing datasets. However, the difference be-

tween both means is about 0.23%, with benefit to training dataset’s mean because

it is closer to zero the 0.23% equal 0.77 kg from the mean of the actual weight. But

the more significant difference between the distribution is the Standard Deviation

(STD), where the training dataset’s std is 3.12% but 4.41% for the testing dataset.

Also, the difference between them is not high; it is about 1.29. That means the train-

ing dataset’s estimated weights are more close to the mean from the testing dataset.
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Figure 3.7: Table of regression results of VGG19 model

So, the training dataset results and testing dataset results are mostly close. Also, one

of the points we can notice that in the training dataset that one of the images shows

a high percent error over 50%. Mostly this error happened because of the shifting

augmentation where some images have shifted, not on the center. And by applying

the shift function, a fish part of the fish will be out of an image and cause this error.

but to get a better view over how much of the data are under the distribution, we

used the box plot.

In the box plot, has two boxes, i.e. orange represents training dataset result, and

blue represents testing dataset result, as shown in figure 3.6. The space between the

minimum and maximum is covering 99.3% of the data. Which means over 99% of

the training is in range between 7% to -3%. However, testing’s results is in range

between 12% to -8%.

In general, the model gives a good result as a starting point for this study. There-

fore, we worked on examining the VGG19 model by changing the augmentation proba-

bility. Besides that, we checked if there is a difference between the global max-pooling

(GMP) and the global average pooling (GAP). There are three criteria for compar-

ing the results of the models. First, the means of estimating weight closer to zero.

Second, reduce the difference between the training dataset and the testing dataset.

Third, the box plot shows the percentage of samples to error, which helps to percent

error range for the majority of samples to compare between the models.

The results of the training models are shown in Figure 3.8. Further, both GAP and

GMP present a close result for all augmentation probability. However, by comparing

average error percent, we can see that the GMP layer results show the mean is closer

to zero for both training and testing datasets, with a small difference from the GAP

layer.

While comparing the outcomes of two approaches GAP and GMP, we choose to
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Figure 3.8: VGG19 model with Regression results

distinguish between them at 30% augmentation as an example. The average percent

error of the testing dataset for the GMP model is 1.44%, but it is 3.82% for the GAP

model. Nonetheless, the std for both model are very close. Std for the testing dataset

of GMP is 5.05%, and it is 5% for the same dataset of GAP.

Further, to check the difference between the training and the testing dataset re-

sults. However, the model GAP, the absolute difference between the means of the

training and testing dataset is 0, but for the Std is 1.28. On the other hand, the GMP

model shows 0.38 for the same average absolute difference and 1.42 for the difference

between the Std.

Moreover, comparing the results of those models in Figures 3.9 and 3.10. Figures

are shown the error of 99.3% of data, which explains the error range for the majority

of data. For GMP model is between -5% to 8%. Yet, the range for GAP is between

-2.5% to about 10.5%.

Another plot is 3.11c; we plotted it to investigate if there valid evidence about

which model reveals the best result for the fish dataset. The X-axis is the augmen-

tation level, and the Y-axis is the Mean Absolute Percent Error (MAPE) result for

the estimation output. From the plot, we can recognize that GMP model trained on

30% revels the smallest values. For the training dataset, MAPE is 2.6% and 3.4% for

the testing dataset.

By matching the tree criteria we put with the results, we can say that the model
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Figure 3.9: VGG19 G-AVG Box Plot

Figure 3.10: VGG19 G-Max Box Plot
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(a) Loss rate of GMP 30% (b) R2 score of GMP 30%

(c) MAPE

(d) VGG19-Regression model results’ table

Figure 3.11: VGG19-R results
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GMP with 30% augmentation fits most of those criteria. However, the results do not

show valid evidence that GMP model is better in all cases. Yet for this fish dataset

and after tuning the model, we got this result. Table 3.11d shows the results by

numbers for all the models.

the analyzing of the fish dataset reveals that each batch of images has a different

distance between the fish and the camera. Which means the distance or pixel size is

a necessary coefficient to estimate the mass. They could assist to reduce the error of

estimating the weight of the fish.

We added extra input to the VGG19-R model, where this input is taking the

distance directly to the regression part in the model. To train the model for scaling,

the estimated weight depends on the distance. Despite that, the result did not change

as much an anticipated. By comparing the best result of both models, we found that

MAPE decreased by 0.47 for the training dataset and 0.41 for the testing dataset.

In fish dataset section, we discussed the average distance for each batch of images.

Most of the batches have a close average, except for one batch. So, a small part of

the data has a different distance, which explains the slight improvement of adding

distance to the model’s input.

At the end, the model can estimate the weight of harvested salmon fish fairly well,

With the assumption, that the fish has the same scaling in all images. In other words,

the distance between the fish and the camera is identical for all photos. Besides that,

we found how the max-pooling and average-pooling sometimes give a different result

in some situations.

3.2.2 Estimating fish weight with semantic segmentation

The proposal for this experiment is building a model using semantic segmentation

classification to classify the salmon fish images and create black-white masks to be

like a filter for each pixel in the picture, close to Konovalov et al. approach [19]. Yet

we used a smaller semantic segmentation architecture from the one they used in their

paper. Lighter models could be run faster in case we need to use it with video data;

besides, it could run on embedded chips like Nivida Nano Jetson or Google Coral.

FC-Densenet is a useful model that shows excellent results with a few numbers

of parameters. The number of parameters is the main factor to know the amount
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Figure 3.12: Dense Block of our model

of memory that is needed to run the model [16]. The architecture of our model is

inherent from FC-Densenet has been tested on Crops image by Lottes et al. [22].

They created a stereo output model, where one of the output is for classifying a

three different class [Crops, weed, and soil]. The other branch is for representing

the location of plants’ stems in the image. The model is content to parts encoder

and decoder. It contents three dense blocks in each one. We chose this architecture

instead of the original one because it configured to fit a small dataset with a few

numbers of classes like our dataset [22].

First, we trained the model on the fish dataset, but it shows sensitivity regarding

the light and white colour. The reason is that there is a different light situation, and

the scale plate is different for some batches. Therefore, the model was modified to

increase the parameters to fit those data perfectly and improve the accuracy of the

model.

There are four blocks in our model, as opposed to the three proposed in the

original paper [22]. Every dense block starts with bottleneck for reducing the number

of input filters from F filters to 8; So, the filter size keeps as is, but the cut will be

on the dimension of the filters, that saves computation cost. This step is followed by

[BatchNormalization layer, Relu Activation layer, and Convolution layer], which they

produce four filters from the previous eight filters. Then the model concatenates the

block’s input with those four filters to make the input for another loop of the same

layers [BottelNeck, BatchNormalization layer, Relu Activation layer, and Convolution
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layer]. Those steps repeated four times. At the end of the block, all those four filters’

outputs were then concatenated in one tensor. The result of the concatenation is a

tensor has 16 filters, and this tensor is the output of the block. The diagram 3.12

shows the black structure of the dense block.

Figure 3.13: semantic segmentation model architecture

In the FC-Densenet paper, the number of features after the concatenate layer is

called the growth rate [14]. In our model, the growth rate is 16 features. Accordingly,

the encoder has four blocks, each one followed by concatenate, where it marge the

output of the block with block’s input, then the bottleneck layer and down-sample

layer. The encoder ends with the block Dense.

The repeating complexity inside each block and between the blocks gives three ad-

vantages: first, it encourages the reuse of features. Second, it decreases the vanishing-

gradient effect. Last, it reduces the number of parameters without decrease the model

performance [14, 16].

The decoder is the inverse operation of the encoder, where it replaces the down-

sample by the up-sample layer, and it does not have a bottleneck layer. Further, there

is a skip connection between the concatenate layer in the encoder and the decoder to

send information from the encoder to decoder for improve up-sample image [13, 22].

In the end, our model has about 72000 parameter. compared to the 11.5M parameter

of the original Linknet [5].

Training semantic segmentation model

A total of 296 images were used to train the model. In addition, we applied four

types of augmentation flip (vertical and horizontal), shifting, and brightness with a

probability of 50%. The brightness augmentation added for this model because the

full dataset had taken in different batches, and there is a different light situation for
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some of those batches. The brightness augmentation should support to generalize the

model over the light difference. Besides the augmentation, the images smoothed by

Gaussian blur function with mean = 0 and std = 1, and normalized to the range

[0,1]. The model takes image size as [384, 256].

In contrast to Konovalov et al., we used a coloured image instead of grayscale

images [19]. By looking at examples from their datasets, we can see that put on a

white plate does have any shape pattern, which makes an excellent contrast to show

the fish. The fish dataset we have, the salmon fish put on wood plat has a squares

pattern, which makes it hard for our model to learn by using the shape as the only

information.

The Adam optimizer is used to train the model with a learning rate equal to 10−3,

decay equal to 6.67e−7, and Intersection Over Union (IOU) loss function [34]. Because

of the limited data size, just 15% of the data is used 52 for testing. In Figure 3.15,

there are examples of testing and training images output, ground truth, and input

image. And in Figure 3.16 show the other example for images is not annotated.

Before going to discuss the next step, it is good to explain some points that we

noticed in the loss rate of the model Figure 3.14; we can see there are some peaks

in the validation loss rate before and after the best model point. Because of two

reasons. Firstly, the data set is small; it has 30 images for validation. Plus, we

applied the stochastic gradient descent method. Therefore, there are five batches for

each validation iterations after each training epoch. Secondly, the validation data set

shuffled for each iteration. That means there is a high probability for some images

which hard to train to be in one batch and shift the batches’ mean to high value.

However, those peaks are getting smaller with increased model training.

Another fact we noticed from the semantic segmentation output is for some of

the testing dataset’s images show sensitivity for the white colour. For example, the

predicted mask at the second-row in the left column has a small white spot. Also, two

of the images in 3.15 show a similar error in white colour from the balance’s plane.

Mostly, this comes from the white scales on the fish under the lateral line.

Nevertheless, those errors do not affect the result too much because it is a small

area added to the output mask. By looking at the testing dataset mean IOU score is

higher 98%. So, the noise in the label is less than 2%; the model will ignore them.



44

Figure 3.14: The loss rate for traning FC-Densenet model

The semantic segmentation model works as a feature extraction. It converts the

pixels’ of the fish in the input image to white, and the other pixels to black. Then,

we want to add a regression part to the model that can estimate the mass of the fish

from the size of the white area from the previous section.

Accordingly, the dense layers added to the model’s, similar to the VGG19-R model

in the last experiment. Then train this part to use the white area from the output

mask to estimate the fish’s weight. Strictly speaking, the fully connected layers should

train to find the relation between the number of white pixels in the mask and the

mass of the fish. That means it will train to fit the correlation between the fish’s area

in the image and the weight of it [37].

Regression part

It starts with the Lambda layer for rounding the ”Sigmoid” layer to create a Black/White

image by rounding the probability output to [0, and 1]. Then several Dense layers

added to the model with those numbers of nodes [ 512, 64, 16]. All those layers in

the regression part have a Relu activation function. The regression part that ends

with the Dense layer has one node with the linear activation function, which shows a

better results from the Relu function. It is used in the VGG19 model mostly because

of the input data differences.

One dropout layer added after the first dense layer for increasing the regularisa-

tion, which helps to avoid the over-fit the training dataset. The dropout layer does

regularisation by setting the weight to zero for some nodes, and this changes for each

epoch. The dropout regularisation reduces the weight of the nodes, which leads to
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(a) Training DataSet (b) Testing Dataset

Figure 3.15: Some examples of the Semantic Segmentation predication From the
annotated data

avoiding over-fitting.

Training model

In contrast to the last model, we froze all the layers of the semantic segmentation

layers and just used the output of the model as input to the regression part. For

training, we used 85% of the dataset and 15% for testing. We add augmentation to

the data with probability 35% and three different functions [vertical and horizontal

flip, and shift]. The learning rate is 0.01, with reducing equal to 5 ∗ 10−8 after each

epoch, and batch size equal to 32 images.

Figure 3.18 shows the loss of the training process for 250 epochs, yet we used a

checkpoint technique to save weights at a higher value for validation R2 score, this

also helps to avoid over-fitting. The best weight was achieved at epoch 207, with the

loss value equal to 0.2 for the training dataset and 0.24 for the testing dataset.
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Figure 3.16: Some other examples for model predication of data not annotated

Figure 3.17: The regression part of after the semantic segmentation model

Results

The result of the FC-Densenet-R is close to the VGG19-R model. As shown in Figure

3.19, over 99% of the data estimated mass in the range between -20% to 14% error

for the testing dataset, and -15% to 11% for the training dataset. But to compare

the out models to LinkeNet-34R model, we calculated the MAPE equation 2.19 [19].

The table 3.1 shows the result of our models VGG19-R and FC-Densenet-R; also, it

shows of LinkNet-34R. The VGG19-R reveals the best result compared to the other

models.

Moreover, we compare the results of both models VGG19-R and FC-Densenet-R,

that for understanding the difference between them. We plotted in Figure 3.20 the

estimated mass on the Y-axis and the real mass on X-axis. The plot shows the relation

between the actual weight and the estimated one, and the optimal solution should be
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(a) Loss rate (b) R2 score

Figure 3.18: Learning Rate and R2 Score of the FC-Densenet-Regression model of
50% Augmentation

Figure 3.19: The regression part of after the FC-Densenet-R model

Model R2 MAPE %
Dataset Training Testing Training Testing
VGG19-R 0.87 0.9 2.38 2.4
FC-Densenet-R 0.56 0.52 4.93 6.49
LinkNet-34R - - 4.27 4.2

Table 3.1: The results of the models [VGG19-R, FC-DenseBlocks, and LinkNet-34R].
[19]

like the red line in Plot 3.20. The blue group is a result of the FC-Denasent-R model,

and the orange group is for VGG19-R. The plot shows two main points. Firstly, both

of the models fit the distribution of the data, where the regression lines indicate a

positive relationship between the real and estimated weights. Secondly, the chart

shows most of the errors that come from the fish which have weights over 3.75 kg.

That error increased dramatically for weights over 4.5 kg.
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Figure 3.20: Plot for corolation between the estimated weight to real weight

3.3 Stereo model

3.3.1 Stereo dataset

In the previous experiments, we tested a different type of deep learning models for

estimating the fish mass from one input image. For both of the models, VGG19-R

and FC-Densenet-R show that the deep learning and computer vision methods could

help to predict the fish mass just from the image. However, the main problem is

to estimate fish weight inside the water tank. Where the fish is alive and moving;

besides, the distance of it from the camera will be changed.

Solving that problem using CNN required a dataset to use for training the model.

So, we need to have a camera that can work inside the water; those cameras are

usually expensive and beyond our budget, for this thesis. Also, there are other logistics

problems of taking a new dataset, like getting permission to take new images and the

risk of pollution of fish water. Therefore, for this study, we created a dataset that can

simulate fish inside the tank. Fish could be on different distances from the camera,

and they are in different directions.

In order to simulate a fish, we used plastic Lego blocks. As objects the Lego

blocks have different shapes and sizes. We change the location of the block from the

camera; In addition, we placed the objects at different angles of the camera. As a
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Figure 3.21: Two examples for the same shape, but it is in different locations and
directions.

consequence, the model needs more than an input image to use as a scaling factor. In

other worlds, we need to know the depth information to aid the model for re-scaling

the pixel size in depend on the depth.

Areacm2 Widthcm Heightcm
609 19 32
608 29 21
580 10 58
570 38 15
380 38 10
150 10 15

Table 3.2: The blocks dimensions

The stereo vision used to take the images for the dataset [right and left] to generate

the depth map (disparity map). The image were taken by using ZED Camera. The

ZED camera is a commercial stereo camera used for industrial applications. It can

create a disparity map, and from it, the ZED camera generates the depth estimation

map from stereo images for each pixel in the picture. Camera provides: right, left,

disparity map, and depth map.

Using the colour filter for the green colour to convert the images left and right to

mask pictures. Those masks are similar to the semantic segmentation mask in the pre-

vious experiment. The photos have five different areas in cm2[150, 380, 570V, 580H, 608, 609]
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Figure 3.22: The distribution of the depth between the stereo camera and the center
of the blocks.

Figure 3.23: Stereo model used three images as input.

and random distances. The figure shows the distribution of estimating depth by the

camera to the center of the blocks. The estimated depth is between about 1.2 M

to about 2 M. We shot 132 images (22 images for each area), they are enough for

training the model more details about it in the next section.

Figure 3.21 shows the two examples from the stereo dataset for the same block.

In the left images, the block rotated to the left, and it is far from the camera by 1800

cm. The right block turned in the right direction, and it is away from the camera by

1433 cm. However, the mask of the left block is smaller than the right block.

3.3.2 Model architecture

The first model we develop takes the images as inputs [right mask, left mask, and

depth image]. Figure 3.23 shows the model structure. There is a flatten layer, and
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the fully connected layer has 32 nodes after each input to convert the image from

two-dimension to one-dimension. Then, the fully connected layer (FC) will work as

an encoder to the image and comprise the data in just 32 nodes.

After that, we combined all the fully connected layers in one layer for processing

images’ data together in the next several layers. The regression part in this model

contents many layers [FC 256, dropout layer (0.4), FC 64, dropout layer (0.2), FC 32,

FC 1]; all the FC layers followed by the relu activation function layer. While we have

a small data set, and it is hard to add many augmentation functions without effect

the image scaling, adding the dropout layer for avoid over-fitting the training data.

Our assumption is the model’s regression layers should learn from the combined

input the correlation between the area of the object in the image and scaling it

depends on the depth. The learning rate is 5e− 05, and decay is 2e− 07, but for the

augmentation, we used the flipping and shifting with 50%, and for each batch, the

images randomized. And, the inputs normalized in the range [0-1].

The mean absolute percent error for training is 5.76%, 17.14% for the testing

dataset. This result shows the model mostly is remembering the training dataset

with learning any features. Even by trying to change model layers nodes number,

that does not improve the model’s result. That leads us to think for different way

can train the model and gives more efficient results.

VGG19-R shows a significant improvement in estimating the biomass of fish from

the images. However, providing the model with depth map will not be practical

because, unlike the fish’s dataset, the blocks have a small area in the photos and

located in multiple places in each image. Therefore, we concatenate the masks with

a depth map to generate a tensor with three dimensions [ left mask, right mask, and

depth map]. The left and the right mask train the model to focus on the block and

their area. It should be the output of the model, but the depth map should support

the model to re-scaling the output area depends on the depth.

Like the last experiment, we built the VGG19 model first and loaded the Ima-

genet’s weight before starting training the model. We froze the first two convolutional

layers to make the fitting process faster. Then we train the model on the stereo

dataset, with a learning rate equal to 3e-5, 100 epochs, eight images as batch size, the

input size is ( 640, 360, 3), augmentation probability 60% and 26 images for testing
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(a) Loss rate (b) R2 score

Figure 3.24: Learning Rate and R2 Score of the VGG19-Regression model on the
stereo dataset

and 106 images for training with 10% of them for validation. All the input images

normalized between [0,1].

As we expected, the model gives a result with MAPE error 1.8% for training and

2.37% for the testing dataset. The histogram plot in figure 3.25 shows the percent

error between the training and testing dataset. We can notice there are two peaks

in the training and testing dataset error. Plus, the box plot shows the range of the

training error is significantly bigger than the testing error.

Figure 3.25: Estimating area

Therefore, we analyze the model result depends on the area of the block. As is

shown in Figure 3.26, there are six different plots, one for each block. Starting from

area 150, the distribution for both training testing dataset is over zero, and the mean

is 2.37% for the training dataset and 4.45%. Differently, the area 380’s plot shows



53

Figure 3.26: Error percent for each area

that the training dataset has an average equal to -2.18%, but the testing dataset’s

mean 1.45%; Which implies some training dataset for this area estimated less than

expected, and some testing dataset images higher than real area.

However, looking at the other plot, they show a similar outcome. But the mean for

those disruptions is more closer to zero from the previous ones. Also, the difference

between the training dataset and the testing dataset is smaller. For example, the

mean for area 580 is -0.23% and -3.21% with this order training and testing. And for

area 608, they are -0.69% and 0.34%.

Moreover, we check if there is a relation between the object depth and estimated

error. Therefore, we plot Figure 3.27, where the X-axis is the absolute error, and the

Y-axis is the depth from the camera to the center of the block. As is shown in Figure

3.27, the regression line is horizontal, which means increasing the distance from the

camera is not growing the error of estimating the area.

Furthermore, we checked the effectiveness of the depth input. To know how much

the depth information assists the model. To do that, we trained the VGG19-R model
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Figure 3.27: Absolute error to Error Percent



55

with the same dataset but without the depth map. The model fed with right and

left masks. After training the model, the outcome of this training is 12% MAPE and

for testing 12.7% MAPE, which means the depth map help to improve the model

estimation area. Also, the model could not to learn estimate the area of the model

just from the mask images.

The model reveals good results with the stereo dataset; even this is just a concept

model, it could use for real problems like estimating biomass of fish under the water,

we wish to have real data like that to test the model.



Chapter 4

Conclusion

The research study was successfully conducted in developing a deep learning model

for estimating the biomass of harvested fish from images. We did this using two

different models, VGG19-R and the semantic segmentation model FC-Densenet-R.

The VGG19-R achieved a 2.4% MAPE in testing estimating weight and the model

FC-Densenet-R revealed a 6.5% MAPE for the testing dataset.

Moreover, we tested VGG19-R to read a stereo vision dataset where the input of

the model combined three grayscale images [right, left, depth]. This model estimates

the area of Lego blocks even when the blocks are at different distances from the

camera. The model achieved MAPE equal to 1.8% for training dataset and 2.4% for

the testing dataset.

The main motivation of this study is to solve one of the problems in the aquacul-

ture industry, which is monitoring fish weight inside the tank. Pre-harvest monitoring

is a costly and routine task. By using computer vision, the process can be made easier

without adding any pressure on the fish. It also reduces the cost of the method by

decrease human involving [37].

Furthermore, we reviewed stereo vision, which is one of the cheapest ways to

estimate a depth map. We discussed the concept of some models for generating the

depth map from stereo vision such as CG-Net, MonoDepth, and Anynet [10, 18,

42, 49]. Anynet for example can estimating the depth with less resources. That

makes it excellent to use on embedded chips [49]. In addition, unsupervised models

like MonoDepth could be a good approach for new applications, where it is hard to

get labeled depth dataset. Yet training those models needs a big dataset content

thousands of images. Also, they are sensitive to the stereo vision setup, which means

we cannot apply transfer learning to train the model on a new dataset. Except if the

new dataset has the same max disparity [9, 26, 49].

56
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4.0.1 Future work

This thesis investigated the conceptual use of deep networks and stereo cameras for

estimating the mass of a fish. In order to apply this to commercial aquaculture

operations, there are several more challenges to overcome: live fish, unclear images,

and large fish density.

As we tested, the depth information should assist the model in estimating the

weight of live fish. It is expensive to use the lidar device, and deep learning models

like MonoDepth could be a cheap replacement [10]. Deep learning models like this

need a big dataset of stereo images.

The second issue is unclear images. Recently, deep learning technology has been

used to improve nightlight images, where the images are unclear because of the poor

light situation or there is a high level of noise in the image. So, it will be useful to

test clearing images from the fish tank by using this type of deep learning model [6].

Last, there are many fish in one tank for more profit. This is a big issue and we

need to focus on one fish at a time. We need to also distinguish between the fish and

not read the weight of the same fish over and over again.
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