THERMOBAROMETRY OF ECLOGITE FROM THE NORDØYANE ULTRA-HIGH PRESSURE DOMAIN, WESTERN GNEISS REGION, NORWAY

BENJAMIN MYRER
Benjamin.Myrer@dal.ca

Department of Earth and Environmental Sciences, Dalhousie University, Halifax, NS

Sciences Honours
Defence 2020

Purpose and scope of study

- Analyze petrography of eclogites from Nordøyane
- Obtain EMP analyses from eclogite-facies minerals
- Use conventional and trace-element thermometry
- Construct an equilibrium phase diagram for a representative bulk composition
- Assess which thermobarometric methods are most robust for given mineral assemblage

Do the P-T conditions recorded in the eclogite bodies overlap with the UHP melting range for eclogites and their host rocks?

- Exposes Baltican
 Proterozoic basement gneisses
- Result of subduction of Baltican margin beneath Laurentia
 - Scandian phase of Caledonian Orogeny
 - Ca. 410 Ma
- Affected by ultra-high pressure (UHP) metamorphic conditions of ca. 800 °C, 30 kb
 - Corresponds to ca. 100 km depth
- Three UHP domains: Nordfjord /Stadlandet, Sorøyane, Nordøyane
 - All contain coesite-bearing eclogite

Regional geology of WGR

Geology of study area

- Eclogite sampled from Haramsøya and Flemsøya
- Dioritic gneiss and augen gneiss comprise majority of study areas
- Minor granodiorites with mafic enclaves
- Eclogite bodies range from massive to layered
 - Some display amphibolitefacies retrogression
- Evidence suggesting UHP conditions supported by discovery of coesite-bearing eclogite in Flemsøya

Photo by G. Chapman

Field relationship

Photos by G. Chapman

General methods

Petrography

Sample CB15-70 F.O.V 15 mm

General methods

Petrography

EMP and imaging

Conventional thermobarometry

General methods

Petrography

EMP and imaging

Conventional thermobarometry

Thermodynamic modelling

Conventional thermobarometry

- Reverse approach
- Assumes equilibrium compositions
- Produces P-T estimates using equations derived from experimental calibrations

Thermodynamic modelling

- Forward approach
- Based on internally consistent databases
- Predicts equilibrium phase assemblages for P-T ranges

Petrography

Retrograde

clinopyroxene₂ + amphibole + plagioclase symplectite

Garnet inclusions:

- omphacite
- rutile
- zircon
- apatite
- idioblastic biotite

Rare quartz, absent coesite, kyanite, phengite

rutile

orthopyroxene

Method 1A: conventional thermobarometry

- P and T dependent equilibria
- Minerals present mean heavy reliance on Fe-Mg exchange thermometry
 - Garnet-clinopyroxene (e.g. Krogh Ravna, 2000)
 - Garnet-biotite (e.g. Holdaway, 2000)
- Issues:
 - Unknown Fe³⁺ values
 - Mineral assemblages sensitive to retrograde exchange

Method 1B: trace-element thermometry

- Type of conventional thermometry based on calibrated reactions
- Zr-in-rutile thermometer (Tomkins et al. 2007)
- Exchange between Ti⁴⁺ and Zr⁴⁺ in rutile + zircon + quartz assemblages
- Less sensitive to issues such as retrograde exchange

Assuming Fe as Fe²⁺

Using calculated Fe³⁺/Fe²⁺

Zr-in-Rutile thermometry

P-T assessment

Method 2: equilibrium phase diagram

- Given bulk composition, program predicts mineral assemblage, modal proportions, mineral compositions
- Independent of conventional thermobarometry
- Theriak-Domino in family of programs such as THERMOCALC and Perplex
 - Differ in algorithm used, activity models, databases
- Results use TC55 database (Holland and Powell, 1998)
- Input: measured bulk composition of sample CB15-19

Method 2 equilibrium phase diagram (Theriak-Domino)

Predicted mole fractions

Predicted mole fractions

Predicted mole fractions

Predicted mole fractions with Zr-in-Rutile

Fluid-present melting

various melting curves of crustal compositions (Kessel et al. 2005, Patiño Douce 2005, Hermann & Spandler 2008, Auzanneau et al. 2010)

Conclusions

- Peak mineral assemblage comprises garnet + omphacite + biotite
 + rutile + orthopyroxene
- Fe-Mg exchange thermometry proved to be unreliable for P-T estimates
 - Two factors: Fe³⁺ and grain scale diffusion during retrogression
- Trace and minor element thermometers yielded T of 780-870 °C for 20-30 kb
- Thermodynamic modelling coupled with Zr-in-Rutile isopleths suggests P-T field of ca. 800-820 °C and ca. 23-32 kb
- T_{max} and P@T_{max} overlap with field where UHP melting is possible in presence of fluid
- Cannot conclude if UHP melting assisted exhumation
 - No independent P constraint
 - No evidence of in situ melting or fluid infiltration

Acknowledgments

Becky Jamieson

Luke Hilchie

Dan MacDonald

Djordje Grujic and Honours Peers

Department of Earth and Environmental Sciences

Thank you!

Modified from Butler et al (2015)