
PREDICTING THE OUTCOME OF KIDNEY TRANSPLANTS USING MACHINE 

LEARNING METHODS 

 

 

 

 

by 

 

 

 

 

Syed Asil Ali Naqvi 

 

 

 

Submitted in partial fulfilment of the requirements 

for the degree of Master of Computer Science 

 

 

at 

 

 

Dalhousie University 

Halifax, Nova Scotia 

April 2020 

 

 

 

 

 

 

 

© Copyright by Syed Asil Ali Naqvi, 2020 

 

 

  



i 
 

 Table of Contents 

List of Tables ..................................................................................................................... iii 

List of Figures .................................................................................................................... iv 

Abstract ................................................................................................................................v 

List of Abbreviations Used ................................................................................................ vi 

Acknowledgements ........................................................................................................... vii 

1. Introduction ..................................................................................................................1 

1.1. Motivation ............................................................................................................ 1 

1.2. Research Objectives ............................................................................................. 2 

1.3. Solution Approach................................................................................................ 2 

1.4. Contribution ......................................................................................................... 2 

1.5. Organization of the thesis ..................................................................................... 3 

2. Background and Related Works ...................................................................................4 

2.1. Survival Analysis ................................................................................................. 4 

2.1.1. Conventional Techniques in Survival Analysis ............................................ 5 

2.2. Machine Learning in Survival Analysis ............................................................... 7 

2.2.1. ML Regression Methods in Survival Analysis ............................................. 7 

2.2.2. ML Classification Methods in Survival Analysis ......................................... 8 

2.2.3. Class Imbalance .......................................................................................... 10 

2.2.4. Binary and Multiclass Approaches ............................................................. 11 

2.2.5. Feature Selection ......................................................................................... 12 

2.2.6. Supervised Machine Learning .................................................................... 18 

2.2.7. Performance Metrics ................................................................................... 20 

2.3. Summary ............................................................................................................ 21 

3. Methodology ...............................................................................................................23 

3.1. Data Preparation ................................................................................................. 24 

3.1.1. Data Cleaning.............................................................................................. 26 

3.1.2. Data Subsets with Overlapped Cohorts ...................................................... 26 

3.1.3. Data Subsets with Non-Overlapped Cohorts .............................................. 28 

3.1.4. Data as Multiclass Problem ........................................................................ 30 

3.1.5. Class Imbalance .......................................................................................... 31 

3.1.6. Categorical vs Continuous Features............................................................ 33 



ii 
 

3.2. Feature Engineering ........................................................................................... 33 

3.2.1. Paired Variables .......................................................................................... 34 

3.2.2. Cross Validated Recursive Feature Elimination ......................................... 35 

3.3. Classification Methods ....................................................................................... 35 

3.3.1. Logistic Regression ..................................................................................... 35 

3.3.2. Random Forest ............................................................................................ 36 

3.3.3. Adaptive Boosting ...................................................................................... 37 

3.3.4. Artificial Neural Network ........................................................................... 38 

3.3.5. Support Vector Machines ........................................................................... 39 

3.4. Performance and Evaluation Metrics ................................................................. 39 

3.4.1. Cross Validation.......................................................................................... 39 

3.4.2. Area Under ROC and F1 Scores ................................................................. 40 

3.5. Feature Importance Scores ................................................................................. 40 

4. Results and Discussion ...............................................................................................42 

4.1. Analysis of prediction models ............................................................................ 43 

4.1.1. Baseline Results .......................................................................................... 43 

4.1.2. Overlapped Cohorts .................................................................................... 49 

4.1.3. Non-Overlapped Cohorts ............................................................................ 58 

4.1.4. Multiclass Results ....................................................................................... 63 

4.2. Analysis of changing effects of features ............................................................ 66 

4.3. Discussion .......................................................................................................... 76 

5. Conclusion ..................................................................................................................80 

5.1. Summary ............................................................................................................ 80 

5.2. Limitations ......................................................................................................... 81 

5.3. Future Work ....................................................................................................... 81 

References ..........................................................................................................................83 

Appendix ............................................................................................................................93 

 

  



iii 
 

List of Tables 

Table 1 List of features ..................................................................................................... 25 

Table 2 Number of failed and survived transplants in three different cohorts before 

oversampling. .................................................................................................................... 28 

Table 3 Number of failed and survived transplants in non-overlapped cohorts before 

oversampling. .................................................................................................................... 29 

Table 4 Number of failed and survived transplants in three different cohorts after under 

sampling ............................................................................................................................ 31 

Table 5 Class distribution after oversampling .................................................................. 32 

Table 6 Parameters for Logistic Regression ..................................................................... 36 

Table 7 Parameters for Random Forest ............................................................................ 37 

Table 8 Parameters for AdaBoost ..................................................................................... 37 

Table 9 Parameters for Multilayer Perceptron .................................................................. 38 

Table 10 Parameters for Support Vector Classifier .......................................................... 39 

Table 11 Results of Cox Proportional Hazards Model ..................................................... 44 

Table 12 Logistic Regression Scores before Feature Selection ........................................ 49 

Table 13 Logistic Regression Scores after Feature Selection ........................................... 49 

Table 14 Overlapped Cohorts Baseline Cross Validation Scores ..................................... 51 

Table 15 Scores after oversampling the overlapped cohorts ............................................ 57 

Table 16 Preliminary results for non-overlapped cohorts ................................................. 58 

Table 17 Scores after feature selection for non-overlapped cohorts................................. 63 

Table 18 Class distribution in multiclass approach .......................................................... 64 

Table 19 Results for multiclass approach ......................................................................... 66 

Table 20 Categorical importance of features in three time-cohorts .................................. 69 

Table 21 Description of Dummy Variables ...................................................................... 93 

 

  



iv 
 

List of Figures 

Figure 1 An overview of the methodology ....................................................................... 23 

Figure 2 Probability of Survival by Cox Proportional Hazards Model ............................ 47 

Figure 3 1st cohort scores after recursive feature elimination .......................................... 54 

Figure 4 2nd cohort scores after recursive feature elimination......................................... 55 

Figure 5 3rd cohort scores after recursive feature elimination ......................................... 56 

Figure 6 Recursive Feature Elimination for 2nd Cohort .................................................. 61 

Figure 7 Recursive Feature Elimination for 3rd Cohort ................................................... 62 

Figure 8 Scores after Feature Selection for multiclass approach ...................................... 65 

Figure 9 Changing relevance of features based on overlapped time-cohorts ................... 67 

Figure 10 Changing relevance of features based on non-overlapped time-cohorts .......... 68 

Figure 11 Dummy feature importance scores based on overlapped cohorts .................... 71 

Figure 12 Dummy feature importance scores based on non-overlapped cohorts ............. 72 

Figure 13 Permutation feature scores based on non-overlapped cohorts ......................... 75 

Figure 14 Permutation feature scores for overlapped cohorts .......................................... 76 

 

  



v 
 

Abstract 

 

The prediction of the survival of kidney grafts is based on the procedure of matching kidney 

donors and recipients. Machine learning can be effectively used to analyze the appropriate 

donor-recipient attributes from a high-dimensional transplantation dataset in developing 

the prediction models. In this study, we analyzed 52827 deceased donor cases from year 

2000-2017 using a large dataset of kidney transplant recipients. In our approach, we 

divided the patients in 3 different time-cohorts— patients with graft failure in year 1, 

between years 2-5, and more than 5 years. The intent was to investigate the changes in the 

significance of patient attributes towards graft success across multiple time-periods. We 

applied machine learning approaches to predict the status of the graft as either failed or 

survived in three different time-cohorts; and to predict the risk of graft failure as either 

high, medium or low following a kidney transplant surgery. We experimented with 5 

classification algorithms (i.e. random forest, adaptive boosting, artificial neural network, 

logistic regression and support vector machine). In addition to developing the prediction 

models, we also analyzed the changes in the significance of the features over the study. 

Our results indicate that support vector machine and adaptive boosting combined with 

SMOTE provided the best area-under-the-receiver-operating-characteristic-curve 

(AUROC). The cross-validated AUROC scores for predicting the graft status were 85%, 

66%, and 84% in 1st and 2nd and 3rd cohort, respectively, whereas the F1-Micro score for 

the risk of graft failure was 62%. The feature importance scores were calculated using Gini 

impurity and permutation based techniques to identify the important predictors and analyze 

their changing contribution in predicting the results for the three different time-cohorts; we 

noted a change in the significance of attributes across the three different time cohorts (e.g. 

the number of years on dialysis before transplant was an important attribute in only 1st and 

2nd time-cohorts, whereas, the recipient’s age and recipient’s diabetes status were 

important in only 3rd cohort). 

  



vi 
 

List of Abbreviations Used 

ESRD  End Stage Renal Disease  

ML  Machine Learning   

KM  Kaplan Meier   

CPH  Cox Proportional Hazard  

RSF  Random Survival Forest  

SVR  Support Vector Regression   

DT  Decision Trees  

RF  Random Forests  

LR  Logistic Regression   

UNOS  United Network of Organ Sharing   

SMOTE  Synthetic Minority Oversampling Technique  

RUS  Random Under Sampling   

ANN  Artificial Neural Network   

CFS  Correlation Feature Selection   

PC  Pearson Correlation  

SA  Sensitivity Analysis  

RFE  Recursive Feature Elimination  

ANOVA Analysis of variance  

PCA   Principal Component Analysis  

AUROC  The Area Under the Curve 

ROC   Receiver operating characteristic  

RFECV  Recursive feature elimination by cross validation  

PV   Paired Variables  

MLP   Multi-layer Perceptron  

PRC   Precision Recall Curve  

USRDS  United States Renal Data System   



vii 
 

Acknowledgements 

I would like to thank my God, who got me this far; who blessed me with the right people 

to help me during the course of my study. It gives me great pleasure to express my deepest 

respect and sincere thanks to my advisor Professor Syed Sibte Raza Abidi for his 

encouragement, valuable suggestions, discussion and guidance throughout my graduate 

studies. He was patient with my writing style and taught me how to explain my thoughts 

and be articulate while presenting them. Without his guidance and persistent help this thesis 

would not have been possible.  

In addition to his mentorship, the success of this project required a lot of guidance and 

assistance from many people and I feel indebted to express my gratitude to all these people 

who contributed and supported me in the completion of this project. 

I owe my deep gratitude to Dr. Karthik Tennankore and Dr. Amanda Vinson for their 

supervision from domain experts perspective. Their useful critiques, advice and assistance 

were invaluable in order to accomplish this project. In addition, their pleasant attitude made 

this collaboration joyful and productive the same time. 

A special thanks to Syed Faizan, Raja Rashid and Patrice Roy for the brainstorm session 

at the beginning of our projects. 

Last but not the least, I owe my sincere thanks to my family and friends both back home 

and here, for their continued love and support whose love and sacrifice for me is beyond 

anything I will ever understand.



1. Introduction 

1.1. Motivation 

Kidneys are vital for the health of an individual. The overarching purpose of the kidney is 

to filter the waste products from the blood and produce hormones and urine [1]. It becomes 

a serious health condition when the performance of kidneys starts to deteriorate because 

the waste substances, such as urea and creatinine, gradually begin to accumulate and 

become toxic for the body. When the performance of kidneys leads up to failure, it is called 

End Stage Renal Disease (ESRD) [2]. Today, more than 10% of the global population is 

affected by ESRD and its ensuing morbidities (such as cardiovascular disease, etc.). If 

timely measures are not taken to deal with this problem, premature death becomes an 

inevitable outcome [3][4].  

Kidney transplantation or dialysis are two main treatments of kidney failure [5]. Kidney 

transplantation is the optimal form of kidney replacement therapy treatments with respect 

to improving the patient’s length and quality of life [6][7]. However, whilst kidney 

transplantation has shown great survival results in the past two decades, the graft rejection 

rate is still considerably high and even when the kidney starts to function properly after 

transplant, there is a high probability of long term graft failure. In the US, there are an 

increased number of dialysis patients who have been reported to have a transplant failure 

after a few years of their surgery [8]. Kidney allocation is based on a number of donor-

recipient related factors and it is very important to study individual factors that are 

responsible for graft failure in the short and long term. Studies have been conducted on the 

implications of these factors in the clinical domain, but the complex interaction amongst 

these factors still requires a thorough understanding. For this, modern predictive techniques 

appear an effective solution. 

Prediction tools and models have gained attention in the recent years [9]. Pre-transplant 

donor-recipient factors have been incorporated in these prediction tools and models to find 

hidden interactions and predict the outcome of the transplant. Machine Learning (ML) has 

played an effective role in the development of these prediction mechanisms and there has 

been growing evidence that the application of supervised ML techniques can further aid in 

improving predictive accuracy. 
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1.2. Research Objectives 

This study aims to leverage ML methods to improve the accuracy of predicting the outcome 

of kidney transplants and to empower nephrologists in selecting the best deceased donor 

kidney during the organ matching process. It intends to address the prediction of graft 

survival and graft status over short, medium and long term because they are usually 

considered by the nephrologists before allocating the organ. Our focus in this research is 

on the classification techniques which have the ability to make class predictions in different 

time-cohorts. 

Specifically, this research seeks to: 

a) identify appropriate supervised classification methods and develop prediction 

models to predict graft survival and graft status in short, medium and long term. 

b) analyze the changing effect of significant donor-recipient related predictors over 

the period of the study. 

The main challenge that we face during this research is the selection of appropriate features 

from a high dimensional feature space to build a robust machine learning model.  

1.3. Solution Approach 

We aim to attain our research objectives by exercising binary and multiclass classification 

approaches. Our solution approach comprises of standard data mining methodology which 

is based on data preparation, feature selection, prediction modelling and evaluation. The 

task of data preparation involves the discovery or identification of outcome variables that 

hold vital implications for the graft survival. Specifically, this thesis explores and 

investigates the potential of breaking the dataset into binary and multiclass classification 

problems that can effectively perform data analytics.  

1.4. Contribution 

This research can potentially yield benefits for nephrologists, researchers and recipients. 

The contributions of the thesis are summarized as follows: 

 This research provides a detailed study on the implications of preparing the dataset 

as a binary or a multiclass problem. 
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 It provides an analysis of results to discover the best model among all and 

evaluation of results with the baseline results 

  It identifies and provides an analysis of important features during different time-

cohorts 

Most existing studies are based on predicting the status of the graft (failed or survived) in 

overlapped time-cohorts, thus, those features which are important during a particular frame 

of time cannot be identified. Our research has addressed a gap in the research literature by 

involving both overlapped and non-overlapped time cohorts along with an exploratory 

study on multiclass classification approach to develop the prediction models and analyze 

the changing relevance of features over time.  

1.5.  Organization of the thesis 

This thesis is composed of five chapters. Whilst the first chapter introduces the thesis, the 

second chapter presents the basic concepts of survival analysis and reviews the literature 

pertaining to ML based prediction modelling and feature selection techniques used in this 

thesis, as well as the conventional statistical techniques for the analysis of high dimensional 

survival data. 

The third chapter describes the data mining methodology for analyzing high-dimensional 

survival data from the classification perspective. Three different approaches of breaking 

the dataset to select significant features and develop prediction models are discussed. 

The fourth chapter provides the results and analysis: a) to discuss the classification 

approaches considered in the research; b) to discover the best model among all; and to 

evaluate the changing relevance of the feature over time. 

The thesis concludes in Chapter 5 with a summary of the study's contributions, limitations 

and suggestions for future research. 
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2. Background and Related Works 

In this chapter we provide the background required to understand the rest of this thesis. We 

start by discussing the survival analysis. This includes a brief overview of statistical 

techniques such as the Kaplan-Meier estimator, and the proportional hazards model and 

the problem of censored data. Next, we discuss the machine learning approaches to survival 

analysis which encapsulates the resampling techniques, prediction modelling, selection of 

significant features, and evaluation metrics used in the literature. 

2.1. Survival Analysis  

Survival analysis is a widely used method in the domain of healthcare to analyze the time-

to-event patient data. The event of interest, particularly in healthcare is an adverse outcome, 

which can be a death of a patient, re-occurrence of a disease or a relapse after a surgery, is 

measured within a specific time frame called survival time [10]. The survival time is 

calculated as the span from the beginning of the follow-up to the occurrence of an adverse 

event.  The likeliness of the adverse event tends to increase with the passage of time, 

however, it is also highly likely that the patient stops to follow-up before the occurrence of 

the event. If that is the case, the event of interest is said to be missing in the observation 

and the time of the outcome is said to be right censored [11]. 

An observation is considered as censored data when the information of a participant is 

missing before the end of the study due to any reason that is unrelated to the study. In 

contrast to other statistical techniques, survival analysis approaches have the capability to 

deal with the censored data. 

There are broadly two kinds of censored data in survival analysis: interval and point. Since 

most of the survival data is point censored, we will only refer to the point censoring in the 

discussion to follow. Point censoring, which is also known as right censoring, occurs when 

the participant in study stops to follow-up during the course of the study or the participant 

completes the study without the occurrence of the adverse event. Various techniques have 

been developed by statisticians to deal with the problem of right-censored data. These 

includes complete data analysis, imputation of the data, removal of all censored 

observations and treating the censored data as non-event [12][13]. In machine learning 

approaches, the patients who are censored in the later part of the study are considered to be 
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non-failure/successful, however, those who are censored in the early stages are either right-

censored and discarded from the analysis or are generally considered twice in the dataset, 

one as experiencing the event and one as event-free [11][14].  

Independent censoring, random censoring and non-informative censoring are three 

assumptions that are taken into consideration whilst analyzing survival data. These 

assumptions establish that the participant who dropped out of the study does not do so due 

to the reasons related to the study [15].   

2.1.1. Conventional Techniques in Survival Analysis 

The two primary functions in survival analysis that are used to calculate the probabilities 

related to event of interest are survival function S(t) and hazard function h(t). The survival 

function is important to survival analysis because it provides survival probabilities for any 

point of time beginning from the induction of the patient to the occurrence of adverse event. 

Here T 

is the positive random variable indicating the time from the beginning of the event till the 

survival. 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡), 𝑡 ≥ 0. 

 

On the other hand, the hazard function H(t) is a conditional failure rate of an individual 

which is conditional that the individual survived up until time t. The value of hazard 

function can range from 0 to infinity, and can be either increasing, decreasing or constant.  

 

ℎ(𝑡) = 𝑙𝑖𝑚𝑑𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡|𝑇 ≥ 𝑡)

𝑑𝑡
, 𝑡 ≥ 0. 

 

Both survival function and hazard function are closely related to each other. The general 

formula is express as follows: 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=  

−𝑑𝑙𝑜𝑔𝑆(𝑡)

𝑑𝑡
 

and 
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𝑆(𝑡) = 𝑒−𝐻(𝑡) 

 

We can define the cumulative hazard function as a survival function in the following way: 

𝑆(𝑡) = 𝑒−𝐻(𝑡) = 𝑒− ∫ ℎ(𝑢)𝑑𝑢
𝑡

0 , 𝑡 ≥ 0 

 

Kaplan Meier (KM) model and Cox Proportional Hazard (CPH) model are two of the most 

used statistical techniques in survival analysis. The KM model is a simplest nonparametric 

test used to plot the survival curve and estimate the probability of both censored and 

uncensored individual surviving at a given time period. The method is also known as 

“Product Limit Estimate” because it involves computation of probabilities for the 

occurrence of adverse event in all points of time. The final estimate is provided by 

multiplying the successive probabilities by any earlier computed probability of survival 

[16]. KM estimates are used in conjunction with Log Rank test to compare the statistical 

difference between the groups in the study [17]. Since the KM model is based on one single 

covariate, it is only suitable to use if the groups being compared are reasonably similar.  

When multiple covariates are needed to be factored in the analysis, CPH model is utilized 

to do the needful. 

CPH model is a semi-parametric regression model in survival analysis which is used to fit 

the survival data with multiple covariates on baseline hazard function ℎ(𝑡)0. The model is 

semi-parametric because the baseline is calculated using KM estimate which is a non-

parametric function. The model is fitted in the form below: 

 

ℎ(𝑡) = ℎ(𝑡)0exp (𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘) 

 

where t is determined by the hazard function ℎ(𝑡) and covariates are determined by x. The 

baseline hazard function  ℎ(𝑡)0 assumes that the covariates are all zero at the start of study. 

The value of baseline hazard varies during the course of the study but the coefficients of 

covariates remain constant throughout the period. Due to this constant effect of covariates 

during the study, this is also named as proportional hazards model. The quantity of exp(𝛽) 

is the ratio of hazards which can multiplicatively impact the risk of the event by increasing 

or decreasing it depending on the change in the number of covariates, irrespective of time. 
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It can also be written as ℎ(𝑡)/ℎ(𝑡)0. The values of 𝛽 are adjusted to maximize the Cox 

partial likelihood. The Cox partial likelihood is simply the product of probabilities for the 

events of an individual at all points of time which are conditional to all the individuals who 

are at risk at that particular point of time. 

Significant research in medical domain has been done with variations of cox based models 

in the survival analysis of different organ transplants [18][19][20]. Despite the limitations 

such as the assumption of the proportionality of the hazards etc., the model is widely used 

for its flexibility with the point censored data. 

2.2. Machine Learning in Survival Analysis 

Machine Learning (ML) approaches in survival analysis has provided us more robust 

alternatives. The capability to deal with high dimensionality of risk factors by finding the 

complex interactions between them is arguably the main difference between the ML 

methods and the traditional statistical methods. The ML methods are generally classified 

into regression and classification methods. The main difference between a regression and 

classification method is the type of the target variable. In regression methods, the target 

variable is continuous whereas in classification methods, the target variable is categorical. 

We will review the regression and classification methods in the sections below. 

2.2.1. ML Regression Methods in Survival Analysis 

The popular ML regression methods which are developed particularly for survival analysis 

includes survival ensembles,  support vector methods and Multi-task Logistic Regression 

[21][22][23]. Survival ensembles consist of different types; however, the most prevalent 

method is the Random Survival Forest (RSF)[24][25].  

RSF has been used alongside Cox models in medical literature [22][24]. The non-

parametric nature of the algorithm helps to deal with the time-varying effect of the 

variables. Apart from this, RSF has the ability to determine the important features from a 

high-dimensional feature space in the presence of right-censored data. The study by 

Pölsterl, Sebastian et. al [24] developed a neighborhood graph which is used to create a 

low-dimensional representation of the data which is close to the neighborhood of the high-

dimensional data. They used RSF to determine the local neighborhood relations in the 



8 
 

presence of right-censored data and perform feature selection from a high dimensional 

feature set.  

Support vector methods, on the other hand, have been categorized into ranking, regression, 

and combined approaches. Research shows that ranking approaches outperforms the other 

two approaches [21]. Traditional Support Vector Regression (SVR) models have been 

widely adopted in the literature but there are few instances where they are applied in 

survival analysis. The presence of right-censored data is the main issue when applying a 

traditional SVR because it requires the data to have a response variable [26]. 

In addition to survival ensembles and support vector methods, survival neural networks 

have also been proposed in the past decade but they are, in essence, the generalized form 

of Cox models for nonlinear functions [27]. However deep learning models which are 

based on dense neural networks have been adequately used to perform survival analysis in 

organ transplants. 

A number of studies have been conducted with deep neural networks to predict the time of 

survival. In the study by K. Matsuo et al. [28], survival risk of patients with cervical cancer 

was computed using a deep learning model. The model used a subnetwork of deep neural 

networks with a single output node and was trained on 3 disjoint subsets of feature space. 

The results showed that the model outperformed the different variants of Cox proportional 

hazard such as CoxLasso and CoxBoost for each subset of feature space. Likewise, in the 

study by M. Luck et al. [29], probability of survival was also predicted using deep learning 

in kidney graft survival analysis and the model again outperformed the conventional Cox 

proportional hazard model.  

2.2.2. ML Classification Methods in Survival Analysis 

Classification methods have been extensively adopted in studies on organ transplants. The 

time of survival in classification methods are converted into a binary or multiclass variable 

as per the desired outcome. The desired outcome is generally the status of the graft or the 

risk of graft failure in an arbitrary time period. Discussion on this desired target outcome 

is done in the subsection Binary and Multiclass Approaches, below. Apart from the 

prediction of the class variable, classification methods have proven their utility in selecting 

the significant features from a high-dimensional feature space using multiple wrapper 
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methods (See section Feature Selection). However, unlike Cox models and other survival 

methods, the classification methods do not provide any proper mechanism to deal with the 

right-censored data; therefore, multiple different ways have been adopted in studies to deal 

with this problem. The study by Kazim et al. [14] on kidney transplants discarded all the 

right-censored data before seven years from the time of transplant and included the rest in 

the low risk group. In another study on the prediction of heart transplant outcomes by A. 

Dag et al. [30], the dataset was broken down into three different time cohorts (one year, 

five years, and nine years) in order to predict the status of graft. All those patients who did 

not have any graft failure during that particular time-cohort were dropped from the analysis 

and all the patients beyond that time cohort were considered as successful transplants. 

In our study, the research questions are answered using classification approaches instead 

of regression approaches because we wanted to predict the risk of graft failure in short, 

medium and long term. The regression approaches have two main problems: a) the methods 

to make predictions and identify important features in survival data were relatively few, 

and b) the results were very difficult to evaluate, since the metrics (e.g. Mean Squared 

Error) have little interpretability. The classification methods that we have used in this 

research are stated in the subsection Supervised Machine Learning, however, the most 

frequently used classification techniques in survival analysis are reviewed below along 

with their advantages and limitations. 

The two classification algorithms which have been the first choice in several studies with 

survival data are Decision Trees (DT) and Random Forests (RF). Both DTs and RFs have 

high interpretability and fast computational power, but they have failed to compete with 

their more robust counterparts such as SVMs, ANNs and even Logistic Regression (LR) 

in producing better results [31][32][33][34][35]. A combination of ANN, SVM, LR and 

Bayesian belief networks were also used and compared in different datasets on heart, liver 

and kidney transplants [30][14][36][37]. The application ANNs on survival data has shown 

significant improvement in reducing the error rates in comparison to the conventional ML 

models. However, the two main constraints that it generally pose are the requirement of 

high computational power and bigger datasets [38][39]. The study by D. Medved et al. 

[40], trained a straightforward neural network with 2 layers each with 128 nodes using 
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Keras framework on a United Network of Organ Sharing (UNOS) heart transplant dataset. 

The results showed a marked difference of F1 macro score that rose to 0.68 from 0.271 

when compared with the baseline model.  

The study by C. Lee et al. [41] designed DeepHit which is a novel approach to predict the 

survival of a patient who possesses a risk of comorbidities. DeepHit has the ability to 

handle situations where there is a single underlying risk (occurrence of adverse event due 

to single cause) as well as multiple competing risks (occurrence of adverse event due to 

multiple causes). It utilizes multiple layers of shared and adverse-event specific sub 

networks to train the neural network. Although the aim was to develop a network for 

multiple adverse events, the network also worked well for single adverse event. The study 

used concordance index metric to measure the survival probabilities in any given time 

point, however they did not train the networks for different time-cohorts as we have 

generally seen in studies taking a classification approach to survival problems.  

2.2.3. Class Imbalance 

The biggest issue that comes with survival data - when it is approached as a classification 

problem - is the handling of class imbalance. This problem occurs when the distribution of 

outcome variable in the dataset is uneven. In survival data of organ transplants, irrespective 

of whether the outcome of the prediction is the risk of graft survival or the status of the 

graft, the number of failed grafts monotonically increase with time. The workaround to 

deal with this imbalance is to use over and under sampling techniques. 

Synthetic Minority Oversampling Technique (SMOTE) and Random Under Sampling 

(RUS) have been the popular techniques to deal with the class imbalance. SMOTE 

oversamples the minority class by generating data based on the neighboring observations. 

The k-NN algorithm is used to determine the number of nearest neighbors in the 

oversampling process. The technique allows the users to specify the type of variables (e.g. 

categorical and continuous) to perform accurate oversampling. The study by Blagus et. al. 

[42] investigated the behavior of SMOTE on high-dimensional imbalanced data and found 

that it  does not change the class-specific mean values whereas it decreases the data 

variability and introduces correlation between samples. The study on heart transplantation 

[30] used SMOTE to oversample the minority class in the three different time cohorts and 

the results were significantly improved when compared to the original dataset. Though it 
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improved the scores, it is a computationally expensive technique in comparison to its other 

counterparts [43]. RUS is relatively an easier technique. The way it works is that it selects 

the samples from majority class to even out the imbalance. Although, it is relatively faster 

than SMOTE, it fails to include important information [44].  

2.2.4. Binary and Multiclass Approaches 

There are broadly two approaches in medical literature to predict the outcome of the graft: 

a) binary and b) multiclass. The first approach -  which is a binary approach - is widely 

adopted to predict the status of the graft in different time points - we call them time-cohorts. 

In this thesis, we have categorized the binary approach into overlapping and non-

overlapping cohorts. These terms overlapping and non-overlapping have been frequently 

used throughout this thesis.  

The overlapping cohorts are defined as those where the starting point for the all the time-

cohorts is the beginning of the study, whereas the non-overlapping cohorts are defined as 

those where each cohort is mutually exclusive. The binary approach with overlapped 

cohorts has an extensive body of literature. As an example of the approach, deep learning 

was used to predict the heart transplantation outcome in three different time cohorts [40]. 

The time cohorts were formed for 0-180 days, 0- 365 days, 0-730 days, where all the 

instances in the prior cohorts were included in the later cohorts. Each of these cohorts were 

based on the number of individuals who either had experienced the adverse event or had 

remained safe during that time. The target variable was then used to train the classification 

models to predict the status of the graft by the end of that time-cohort.  

The second approach is a multiclass approach which involves the classification of the 

dataset into different risk groups. These risk groups are considered as the target variable 

used in the prediction process. In this study, three risk groups (high, medium, and low) 

were determined to predict the graft survival on kidney transplants dataset [14]. The first 

risk group comprises of patients who had a failure in the first year, the second group 

consists of patients who had failure between the second and seventh year, and the third 

group has all the remaining patients. An example of both overlapping binary and multiclass 

approach is shown in this study by J. Li et al. [45], where Bayes net classifiers were used 

to classify the status of the graft as well as the survival of the graft on renal transplantation 
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dataset; however, the dataset that they used in the analysis was very small in comparison 

to other recent studies.  

To the best of our knowledge, non-overlapping cohorts have not been studied in the 

literature. This would be the first study where non-overlapping cohort are considered for 

developing prediction models and analyzing the changing relevance of features over time. 

The motivation to formulate non-overlapping cohorts came from the fact that feature 

importance scores calculated in studies with overlapping cohorts only tell about the 

features which either emanate their influence in short term or long term. They cannot find 

out the features which are specifically important during a specific time frame. An arbitrary 

cohort based on long term transplants (e.g. 0-10 years) would intrinsically include the short 

term (e.g. 0-1 years) and medium term (e.g. 0-5 years) cases within itself hence, it would 

not be possible to find out the important features with an arbitrary time periods of 2-5 years, 

without involving the bias of the data from 0-2 years. Multiclass approaches also lack in 

this analysis because the significant features which are selected after the feature selection 

represents the whole dataset rather than a particular class of the outcome variable. A recent 

study on heart transplantation by A.Dag et al. [30] analyzed the changing significance of 

features for three overlapping time-cohorts (1-, 5-, and 9-year). They deduced that certain 

type of features perform well in long term as compared to the short and medium term. For 

instance, the socio-economic factors were more influential in 9-year time-cohort as it was 

covering major variation of the data. As mentioned above, this interpretation has one key 

issue: it cannot substantiate whether the socio-economic factors were actually influential 

in long-term or the merger of cohorts have made them more responsive to the target 

variable. The influence of factors in different intervals can only be substantiated if the 

analysis is done with non-overlapping cohorts with data relevant to that particular time 

period only with no previous data having the potential to create a bias. 

2.2.5. Feature Selection 

As mentioned in the sections above, feature selection is an important aspect of ML 

approaches. The survival data constitutes a plethora of features which can be primarily 

dichotomized into clinical and socio-economic features. With the advancement in 

technology and better recording tools, the feature space is constantly growing with 
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additional features, but it does not mean that all the features are equally important hence it 

is essential to remove the redundant features to prevent the perplexity during the model 

training. A study by A. Agrawal et. al [46], using UNOS dataset of lung transplants reduced 

the feature set from 50 features to 8 features by applying a feature selection technique. 

Selection of important features not only helped in reducing the feature space, it also 

improved the accuracy of the trained models by reducing the errors of making the wrong 

predictions. The Artificial Neural Network (ANN) model provided the AUROC score of 

59% when it was trained with 62 features, however the score rose to 66% when the feature 

set was reduced to only 12 features. There were a number of models that were trained but 

ANN showed the biggest difference before and after selecting the important features.  

Classification methods provide a high utility of analyzing the importance of the features. 

Backward/forward feature selection and sensitivity analysis are two of the frequently used 

feature selection techniques to understand the significance of features in the dataset.  

A study on lung transplants stated above used feature importance scores to select the 

important features after applying Correlation Feature Selection (CFS) on the complete 

feature space. The technique CFS is an extension of simple Pearson Correlation (PC). It 

adapts a greedy approach to find a subset of features which have a high correlation with 

the class variable and are weakly correlated amongst each other [46].   

Features tend to perform differently over time. Effect of predictors were found to be 

different in the long and short term [18]. The Information Fusion (IF) technique applied in 

heart transplant study above helped to analyze the performance of variables in three-time 

cohorts. Seven groups were formulated based on the significance of variables [30]. Another 

study by J. Yoon et. al [13], provided a complete transition of feature significance using a 

heat map. 

The different feature selection techniques which are related to the classification methods 

are discussed below. 

2.2.5.1. Sensitivity Analysis 

Sensitivity Analysis (SA) is a powerful technique which is used to enhance the accuracy 

of the model by selecting those features which have the maximum influence on the output’s 
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variability [47]. In other words, the sensitivity of the variable is calculated by taking the 

ratio of the prediction error from the time when the variable is included in the error to the 

time when the variable is not included. The equation below defines the sensitivity measure 

(𝑆𝑖) used in the feature selection process: 

 

𝑆𝑖 =
𝑉𝑖

𝑉(𝑦)
=

𝑉(𝐸(𝑦|𝑥𝑖)

𝑉(𝑦)
 

 

where y is the output variable (graft status or the risk of graft failure), 𝑉(𝑦) is the 

unconditional output variance, and 𝐸 is the expectation operator, which calls for an integral 

over all predictor variables except 𝑥𝑖.A further integral operator is implied over 𝑥𝑖 by the 

operator 𝑉𝑖. The importance of a specific variable is then computed as the normalized 

sensitivity, as described by Saltelli et al. [47]. 

The term SA has multiple connotations attached to it in different disciplines [48][49][50], 

but in our research, we will follow the definition that has been stated above followed by 

the equation. It can be further simplified as understanding the activeness of input factors. 

Studies on kidney and heart transplants mentioned above analyzed the sensitivities of the 

predictors using a number of different ML algorithms and finally adopted the IF technique 

[14][30][51]. The IF technique creates a fused model of the sensitivities of each predictor 

by taking a weighted sum of each predictor by the evaluation measure of the model. The 

equation below explains how the fused model is computed. 

𝑆𝜃(𝑓𝑢𝑠𝑒𝑑) = ∑ 𝜆𝑖𝑆𝑖,𝜃

𝑟

𝑖=1

 

The 𝜆𝑖 is the evaluation measure of the trained model which is multiplied by the sensitivity 

of the predictor. A weighted average is calculated by training models to finally generate a 

set of 𝑆𝜃(𝑓𝑢𝑠𝑒𝑑) fused sensitivities.  The evaluation measure employed in kidney dataset is 

an f-measure whilst the authors in heart transplantation chose AUROC score as weights of 

the predictors. The classifiers that were used to create a fused models were decision trees, 
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artificial neural network, support vector machines bootstrap forest and logistic regression 

[14][30]. 

2.2.5.2. Backward and Forward Feature Selection 

Backward feature elimination is a feature selection technique which keeps removing the 

features with the least information until the model stops to make further improvement. It 

begins with all the features in the feature space and removes each feature one by one to 

check the best score when the feature is not included during the training phase of the model 

[40]. The features removed in backward elimination are usually based on the p-values. The 

study by Lee et al. [52] performed simple statistical analysis with backward stepwise 

variable selection based on p-values with cutoff of less than 0.1 to select the important 

features.  Recursive Feature Elimination (RFE) is a ML variant of backward feature 

elimination. It involves the feature ranking system to remove the weak features. The feature 

ranking system used in recursive feature elimination can be based on multiple feature 

importance metrics such as sensitivity analysis, information gain and linear discriminant 

analysis [53][54][55]. The study by Escanilla et al. [53] performed RFE by sensitivity 

testing for SVM’s with nonlinear kernel. The SVM’s with linear kernel provides the 

coefficients for all the predictors which are then used in the RFE. All the algorithms which 

provide feature importance can be used in RFE, however, all the other algorithms can be 

utilized in RFE process with the help of sensitivity analysis. Another study used RFE by 

10-fold cross validation using the coefficients of a Logistic Regression model to produce 

the results [56]. 

Recursive feature elimination becomes a greedy sub-optimal method when multiple 

features are set to remove on each step. The study by Guyon et al. [57] explained how RFE 

can miss an important singleton feature in an effort to get the best subset of the features 

whilst eliminating multiple features at a time. 

Forward feature selection is very similar to backward feature elimination except that the 

features are added into an empty feature set with the priority given to most significant 

feature. The process stops when the performance of the model stops to improve. Both 

forward feature selection and backward elimination have been used with a greedy approach 

in a study by Medved, et al. [58]. They selected an optimal feature set by performing a 
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forward and backward search on a set of 482 variables from UNOS dataset for heart 

transplants. A threshold value of 0.0001 was used to evaluate the difference in the score by 

adding or removing the variable in forward selection and backward elimination, 

respectively. The point of interest in the study is the way how forward and backward search 

is employed to find the local optimum. The process starts off with an empty set and new 

variables are added into it using forward selection until the score stops to improve. Once 

the score stops to improve backward elimination comes into action on the set of variables 

formed by forward selection. The process continues back and forth until the score of both 

the backward and forward searches stops to improve by the threshold amount. 

2.2.5.3. Feature Importance Scores 

In DTs, the split of a node is based on the condition of the impurity. In classification 

problems, the criterion is either Gini impurity or information gain. When a dataset is trained 

with a tree classifier, the contribution of each feature in reducing the weighted impurity 

can be easily analyzed. In RF, the only difference is that the reduction in weighted impurity 

is based on the average of all the trees generated in the training process rather than a single 

tree. Computing feature scores is a fast calculation in terms of time and size of the memory, 

however, it has one major problem of inflating the importance of continuous features in 

comparison to categorical features. The continuous features always have the largest mean 

decrease in comparison to categorical features and even in categorical features, the features 

with high-cardinality are preferred over others. 

The workaround to deal with this intrinsic bias of impurity based feature scores is to use 

permutation based feature scores. The permutation based feature importance is measured 

by re-shuffling one of the predictors in the feature set whilst training a model. The drop in 

the outcome explains the dependency of the feature in the model. It is defined to be the 

decrease in a model score when a single feature value is randomly shuffled [59]. Although, 

this technique is reasonable effective, it is a computationally expensive in comparison to 

impurity based feature importance. Also, it overestimates the importance of the features 

which are highly correlated therefore it is important to handle the issue of collinearity 

before using this technique. 
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2.2.5.4. Miscellaneous Techniques 

There are a numerous feature selection and feature reduction techniques which have been 

used in medical literature. The most common statistical technique which is used in the 

studies is PC. The study by A. J. Aljaaf et al. [60] used  PC along with analysis of variance 

(ANOVA) to find the correlation among the different variables in the dataset. The study 

found a strong positive correlation between urea and creatinine level but chose to remove 

urea from the feature set because creatinine was more likely to correlate with the class 

variable then urea [4].  

Among feature reduction techniques PCA and auto-encoders have been used in few studies. 

The study by M.Zafar et al. [61] used auto-encoders to perform representation learning on 

the continuous features and input the resultant feature set along with the remaining 

categorical features for the conventional feature selection. The significant features from 

the final feature set were used for model training. The hyper parameters of the stacked 

auto-encoders were supposed to be adjusted for best accuracies. Since the stacked auto-

encoders were the first stage of the process, tweaking the parameters meant reiterating the 

whole process all over again. They compared the results with random forest before and 

after using auto-encoders and concluded that auto-encoders outperformed, significantly. 

Principal Component Analysis (PCA) is one of the effective feature reduction techniques. 

It works by finding the dimensions which have the highest variance and then retaining their 

variance in a new variable. Interestingly, PCA was among the least used techniques in the 

domain of survival analysis of organ transplantation. A study by J. Lasserre et al. [62] on 

predicting the renal transplantation outcome used PCA and Relief-F on reducing the feature 

space of 36 variables and concluded that PCA and Relief-F performed worse on their 

dataset. In another study by Raji et al. [36], PCA was used on a set of 197 attributes of liver 

transplant data. 27 attributes out of the whole feature space were ranked based on the 

standard deviation. Association rule mining was done before and after performing PCA to 

ensure the improvement in new rules. The important variables were eventually used in 

ANN for training and testing.  

To summarize the findings on PCA, it was interesting to see that it was rarely used 

technique to reduce the dimensionality of the data. The studies which used PCA in feature 

reduction did not highlight any significant performance improvement specifically due to 
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the use of PCA. In fact, one study claimed that PCA had worked contrary to any 

improvement and had actually worsen the performance. 

2.2.6. Supervised Machine Learning 

The review of the classification methods is already provided in the section ML 

Classification Methods in Survival Analysis above. Here we have provided the background 

for five ML classification methods that we have used in this research. 

2.2.6.1. Random Forest 

Random Forest (RF) [59] is an ensemble machine learning method based on multiple 

decision trees. The final decision in RF is based on the majority class outputted by the 

individual decision trees in the forest. It is a fast and easy to use algorithm mainly used in 

classification problems, however it is now widely used in survival analysis. Random 

Survival Forest which is a variant of Random Forest has shown its significance with right 

censored data in medical literature. The technique that underpins RF is bootstrap 

aggregation (bagging). Bagging makes RF a robust algorithm resistant to overfitting.  

RF has the ability to handle high dimensional dataset with imbalanced class distribution. 

The feature importance calculation of RF enables the algorithm to perform feature 

selection. It measures the impact of features by checking the mean decrease accuracy and 

mean decrease impurity by removing a feature from the feature set. Unimportant features 

do not account for any significant change in the accuracy. This in-built selection 

mechanism allows RF to discard unnecessary features from the dataset by recursive feature 

elimination. In this study, we have utilized this functionality of RF to select the best 

features from our dataset. We performed a 10-fold cross validated recursive feature 

elimination using RF. The resultant feature set is then used to fit multiple classifiers.  

2.2.6.2. Artificial Neural Network 

ANNs [63] are extensively used in data mining problem based on organ transplant datasets. 

The algorithm is primarily used in classification problems however different variants of 

ANNs are also used alongside Cox models in survival analysis. An ANN is a computational 

system that consists of “a highly interconnected set of processing elements, called neurons, 

which process information as a response to external stimuli. An artificial neuron is a 

simplistic representation that emulates the signal integration and threshold firing behavior 
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of biological neurons by means of mathematical equations” [41]. There are several 

algorithms for training neural networks and the most popular one among them are 

multilayer perceptron. This algorithm is based on input, output, and hidden layers, where 

each layer includes several nodes, referred to as neurons. In the studies on organ 

transplants, the input layer consists of all the pre-transplant donor-recipient variables 

affecting the status of the graft. The response variable of graft status is represented in the 

output layer with two neurons depicting the possible outcomes. In this research, we 

experimented with different kind of ANNs. We started performing some initial 

experiments using Keras framework however a multilayer perceptron-based ANN was 

finally selected in this study as it outperformed all other ANNs. 

2.2.6.3. Support Vector Machine 

SVMs [64] are robust classification algorithms capable of handling linearly and non-

linearly separable datasets. These algorithms are now also used in survival analysis to deal 

with censored data. For survival analysis, the two approaches, Ranking and Regression, 

have been used on high-dimensional clinical datasets to analyze their relevance against 

classical survival analysis techniques. SVMs generally perform by creating hyperplanes in 

multidimensional space to classify the class labels. A nonlinear dataset is transformed into 

multi-dimensional space so that the class labels become linearly separable. SVMs consist 

of several kernel functions. The purpose of these functions is to deal with the problem of 

computational inefficiency that grows immensely with the high dimensional datasets. In 

our study, we used SVMs with linear, polynomial, and radial basis function kernels. Our 

preliminary results showed that radial kernel performed best on our dataset, hence we used 

that kernel in further experiments.  

2.2.6.4. Adaptive Boosting 

AdaBoost [65] is a boosting method based on meta-learning that trains multiple weak 

classifiers to make one strong classifier. A pipeline of models is developed where the 

results of one trained model are passed onto the another model in the pipeline. The 

emphasis is given to the errors in the first model to be rectified in the next model. The 

process continues until perfect prediction is made or the desired number of models are 

trained. Different base classifiers can be used as weak learners in AdaBoost. A study on 
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breast cancer survivability prediction used the algorithm in combination with RF which 

resulted in improved results than standalone classifier [66]. We also emulated the strategy 

in this study with RF and Logistic Regression (LR). RF as base learner outperformed LR 

in most of the experiments. 

2.2.6.5. Logistic Regression 

Logistic Regression (LR) is a linear model based on the assumption that predictors do not 

have multi-collinearity with each other. As evident from the literature in the domain of 

medicine, LR has been repeatedly used in classification problems. We included this 

classifier due to its prominence so that a valid comparison can be made with other similar 

studies and baseline could be set for the other four classifiers that we have planned to use 

in this research. Apart from being computationally efficient, the implementation of the 

algorithm also provided us the probability scores within the least amount of time in 

comparison to other classifiers in the study.  

2.2.7. Performance Metrics 

2.2.7.1. Area under ROC (AUROC) 

The Area Under the Curve (AUROC) is an accepted traditional performance metric for a 

ROC curve [67][68]. A receiver operating characteristic (ROC) graph is a technique for 

visualizing, organizing, and selecting classifiers based on their performance. ROC graphs 

are two-dimensional graphs in which the true positive rate (TPR) is plotted on the y-axis 

and the false positive rate (FPR) is plotted on the x-axis. AUROC describes the 

performance of a classifier using a single scalar value. Because both TPR and FPR are 

bounded in the interval [0.0,1.0], the area is also bounded between [0.0,1.0][69]. It 

performs a cost benefit analysis of a classifier in a graphical style by calculating the trade-

off between TPR and FPR. A classifier that outputs a random label should have an AUROC 

value of 0.5, and therefore no functional classifier should have a lower value than that.  

2.2.7.2. F1-Measure 

The F1 score is the harmonic mean of precision and recall, see equation below and is 

bounded in the interval [0.0,1.0][70]. The score tends to be close to the minimum of both 

the precision and recall. 
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𝐹1 =  2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

We also used the F1-Micro score which is the harmonic mean between micro-precision 

and micro-recall [71]. The F1-Micro score was used to evaluate the models. It was 

considered in those situations where either the class imbalance was present or the AUROC 

was providing the same results for all the models. 

2.3. Summary 

A comprehensive literature review and background of survival analysis in healthcare is 

provided in this chapter. We began by examining the traditional techniques of survival 

analysis and how machine learning has been used in the process. We then looked into a 

number of feature selection/reduction methodologies which are deemed as one of the 

preliminary steps in the process of making robust classification models for prediction. 

Studies showed a spectrum of techniques ranging from simple statistical analysis (such as 

PC) to advanced stacked auto-encoders to be used in filtering down the feature space. 

Although PC is rather simple and fast method of computing correlation among variables, 

it has a limitation to be used only on categorical variables. Same is the case with stacked 

auto-encoders. They generally perform better than PC, but they require large dataset and a 

lot of memory to provide good results.  

Backward elimination and sensitivity analysis were among the most frequently used feature 

selection methods which were implemented either one by one on each feature or a subset 

of features to rank their significance. Performing them on each feature one by one is not an 

optimal solution therefore subsets of different features were chosen to process them in 

order to attain the best results. Even using the subset does not guarantee a global optimum 

solution therefore studies have taken a greedy approach to find a local optimum using either 

of the two implementations.  

Among all the feature selection techniques discussed above, variable pairing technique was 

nowhere to be seen. A few donor and recipient variables such as donor-recipient age, sex, 

and race etc. have the potential to be paired together in order to reduce the redundancy 

however a gap seems to exist as experiments are needed to be done to explore and analyze 

its influence.  



22 
 

Censored observations in survival data is a very common phenomenon. Studies have 

proposed various ways to handle the survival data. The easiest way to handle is to discard 

it, however doing that threatens a significant portion of important information to be 

removed from the dataset.  

Once the feature selection and censored data problems have been smoothly resolved, the 

next big step has been the model training and testing. The general approach has been to 

train multiple models simultaneously and evaluate the performance mainly using Area 

Under the curve of the Receiver Operating Characteristic (AUROC) or C-Index.  
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3. Methodology 

In this research, we followed a standard data mining methodology comprising data 

preparation, feature selection, prediction modelling and model evaluation to fulfil our 

research objectives. The workflow graph in Figure 1 demonstrates the pipeline of the steps 

taken to solve the problem.  

 

Figure 1 An overview of the methodology 

The data preparation phase consists of cleaning the dataset by removing the data 

observations and defining the target variable for performing classification analysis. The 

literature has shown us two approaches to perform classification on survival data (see 

Binary and Multiclass Approaches). Among binary approaches, the widely adopted 

strategy to perform the prediction analysis is by overlapping cohort, but since overlapping 

cohorts cannot substantiate the importance of features in short, medium and long term, we 

formulated the non-overlapping cohorts for the analysis. Thus, during the data preparation 

phase, we performed the analysis with overlapping and non-overlapping cohorts from the 

perspective of binary approach along with a subsidiary multiclass approach. The 

overlapping and non-overlapping cohorts were divided in to three different time-cohorts, 

whereas, the multiclass problem had one consolidated dataset with three different classes 

representing the risk of graft failure in different time points. Class imbalance remained an 
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obvious problem during the data preparation phase irrespective of the approaches; hence, 

we used an oversampling technique called SMOTE to adjust the imbalance. 

In the next phase, we performed feature selection using recursive feature elimination by 

cross validation (RFECV) and simultaneously calculated feature importance scores to 

analyze the changing significance of the features over time. We developed four different 

prediction models for each time cohort with the filtered set of features retrieved after 

performing feature selection. In addition to the four primary prediction models, we also 

trained LR because of its wide use in similar studies. The results acquired by LR model 

were considered as the baseline scores for the rest of the models. All the classification 

models incorporated in the study were evaluated with 10-fold stratified cross validation. 

Finally, a fraction of data that was not used in cross validation was used to make the final 

predictions.  

3.1. Data Preparation 

The dataset used in this study was taken from United Network for Organ Sharing (UNOS), 

which is a “private, non-profit organization that manages the nation’s organ transplant 

system under contract with the federal government” [72]. The dataset was based on 277316 

kidney transplants that took place between 1987 and 2017. The feature set primarily 

represented the pre-transplant attributes of donors and recipients with respect to their 

clinical and demographical factors. Few features (such as dates, graft outcome and patient 

status) were only used in the preprocessing stage to determine the outcome variable, 

whereas, several identifier features (such as transplant id, donor id, patient id) were 

immediately removed since they did not have any potential value in making predictions. 

There was one post-operative feature namely, Delayed Graft Function (DGF), which was 

recorded immediately after the transplant had been performed. Since our focus was on pre-

transplant variables, we also discarded this feature from the feature set. Table 1 provides 

the list of all the features along with their description which were used in the training 

process.  
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Table 1 List of features 

Feature Name Description 

pkpra Peak panel Reactive Antibody – Continuous 

REC_TX_PROCEDURE_TY Type of transplant – Categorical 

prevki Any previous kidney transplant – Categorical 

dage Donor Age – Continuous 

dht100 Donor Height – Continuous 

rht100 Recipient Height –  Continuous 

dwt Donor Weight – Continuous 

rwt2 Recipient Weight – Continuous 

doncreat Donor Creatinine Level – Continuous 

ecd Expanded Criteria of Donor – Categorical 

dcd Donation after Cardiac Death – Categorical 

dhtn Donor Hypertension – Categorical 

rhtn2 Recipient Hypertension – Categorical 

rbmi Recipient BMI – Continuous 

dbmi Donor BMI – Continuous 

cit Cold Ischemia Timing – Continuous 

ragetx Recipient Age – Continuous 

Hlamm Number of HLA mismatches – Categorical (Paired) 

functstat Functional Status of Recipient – Categorical 

drsex Donor-Recipient Sex – Categorical (Paired) 

drrace Donor-Recipient Race – Categorical (Paired) 

drage Donor-Recipient Age – Categorical (Paired) 

rcvd Recipient Cardiovascular Disease – Categorical 

dhcv Donor Hepatitis C Virus – Categorical 

rpvd Recipient Peripheral Vascular Disease – Categorical 

dracesimp Donor Race – Categorical 

rracesimp Recipient Race – Categorical 

rmalig Recipient Malignancy – Categorical 
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vintage Years on dialysis pre-transplant – Continuous  

ddm Donor Diabetes – Categorical 

preemptive Preemptive Transplant – Categorical 

rdm2 Recipient Diabetes – Categorical 

rcad Recipient Coronary Artery Disease – Categorical 

esrddxsimp Simplified ESRD diagnosis – Categorical 

drcmv Donor Recipient CMV – Categorical (Paired) 

ahd1 Donor Recipient Height difference – Categorical 

drwt Donor Recipient Weight difference – Categorical 

 

3.1.1. Data Cleaning 

The first and the foremost step in data preparation was cleaning the dataset with unwanted 

rows and columns. We removed all the identifier attributes (e.g. donor id, patient id, 

transplant id, etc.) along with those attributes which had over 50% missing values. 

Fortunately, only one predictor (Warm Ischemia Timing) was removed for having missing 

values otherwise all the predictors were stay put. We further fine-tuned our dataset by 

excluding all the cases pertaining to: a) living kidney donors; b) the recipients below the 

age of 18; and, c) all the sequential and en-bloc transplants. We set this exclusion criteria 

based on the suggestion of domain experts and evidence of a similar approach in the 

following studies [73][74][32]. We further restricted our dataset to only those transplants 

that took place after the year 1999 because the data was relatively better recorded in terms 

of features after that time point. 

3.1.2. Data Subsets with Overlapped Cohorts 

We have already stated in the section above that the overlapped cohorts have been the 

mainstream binary approach to transform the survival data into a classification problem 

with different survival intervals. There is an extensive body of research on different organ 

transplants with overlapped cohorts or one single consolidated cohort with binary classes 

(graft failed or graft survived), however, to the best of our knowledge, UNOS kidney 

transplant dataset has not yet been analyzed by overlapped cohorts with a dataset over 

10000 observations. Thus the first analysis that we performed in this research was guided 
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by overlapped cohorts in three different time points. Also, from domain expert’s viewpoint 

it was necessary to analyze overlapped cohorts because they give a more meaningful 

interpretation of predicting the status of the graft in short, medium, and long term. In non-

overlapped cohorts since the data is usually mutually exclusive there is a higher chance 

that an individual who is classified as a failure in short term would be classified as survived 

in medium or long term. This is semantically incorrect therefore, to reduce the probability 

of this happening, overlapped cohorts turn out to be a better approach than non-overlapped 

cohorts.  

The time-points that we decided to formulate our overlapped cohorts were 0-1 years, 0-5 

years, and 0-17 years. The first cohort of 0-1 years referred to short term failures, the 

second cohort of 0-5 years referred to medium term failures and the last cohort referred to 

long term failures. The outcome variable for each cohort was the status of the graft with 

two values, namely, graft failed and graft survived. The cases with the failed grafts includes 

all those transplants where the patient experienced graft failure or death during some point 

of time. Since these were overlapped cohorts, all the patients who failed or died in the 

earlier cohorts were also included as failures in the later cohorts. However, the calculation 

of patients with survived grafts was relatively complex because of the presence of censored 

data. The easy way to count survived patients could have been based on the assumption 

that all those patients who did not fail in a certain cohort are presumable survived. 

However, this assumption creates two problems: a) it does not account for censored data; 

b) it makes a severe class imbalance (we will discuss that in subsection below). The 

workaround to deal with this problem was to first remove the censored observations 

therefore, taking an inspiration from the study by Ali et al. [30] and Kazim et al. [14], we 

removed the censored observations and calculated the survived patients for each cohort 

using the equation below. Ali et al. [29] considered only those observations as censored 

which censored only during the time-cohort under analysis. All other observations were 

considered as survived grafts. We adopted this strategy to filter down the number of 

survived grafts but it still created a severe imbalance, therefore we considered the approach 

by Kazim et al. [13] to further refine the survived class. This study was based on a 

multiclass analysis on the same UNOS kidney transplant dataset, where they removed all 

the transplants which were considered survived for less than 7 years after the date of the 
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transplant. Taking inspiration from this strategy, we removed all the transplants which were 

considered survived for less than 8 years from the date of transplant. 

𝑆𝑖 =  {
𝑌𝑒𝑠 𝑖𝑓 (𝑑𝑎𝑦𝑠 ≥ 𝑖 ∗ 365  𝑎𝑛𝑑 𝑔𝑟𝑎𝑓𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 == failed)+(𝑑𝑎𝑦𝑠 ≥ 2920  𝑎𝑛𝑑 𝑔𝑟𝑎𝑓𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 == survived)

𝑁𝑜 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The above equation combines the survived patients from two groups. The first group of 

survived patients are based on those transplants which are considered survived for all the 

time-cohorts. These includes patients who survived for at least 8 years (2920 days) after 

their transplant. The second group was based on transplants which had actually experienced 

graft failure or death but they did not fail in the time-cohort under analysis instead they 

failed in a later point of time after the end of the cohort. The 𝑖 in the equation above 

indicates the last year of the time cohort (i.e. 1, 5, 17). The Table 2 below shows the class 

distribution of transplants in the three overlapped and non-overlapped time-cohorts after 

removing the censored data observations from the survived grafts.     

Table 2 Number of failed and survived transplants in three different cohorts before oversampling. 

Time-point 

 

Failed 
 

Survived 

1st cohort 7554 45273 

2nd cohort 23475 29352 

3rd cohort 37939 14888 

 

3.1.3. Data Subsets with Non-Overlapped Cohorts 

Non-overlapped cohorts were based on transplants that were restricted to a subset of an 

overlapped cohort, only. Unlike overlapped cohorts, the patients with the adverse event in 

the earlier cohorts were not reconsidered in the later cohorts for analysis in non-overlapped 

cohorts. However, the number of survived patients were computed using the same formula 

present in the equation in the section above. 

There was mainly one reason to analyze the non-overlapped cohorts and that was to analyze 

the changing effect of features in different time periods. As mentioned in the background, 

the changing effect of features have been studied on organ transplant datasets, but they 

have been studied from the approach of overlapped cohorts. The problem of analyzing the 

Overlapped Cohorts 
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significance of features with overlapped cohorts is that they also factor-in the significance 

of the feature from other cohorts and provide a cumulative significance in the end. For 

example, if a certain feature ‘X’ has an importance of 80% in short term (0-1) years and 

50% in medium term (0-5) years, the probability is high that the value of the feature in 

short term would be affecting the results in medium term. The degree of its impact can vary 

with the distribution of the transplants in each cohort and hidden interaction between 

different features but one can assure that the impact of the former cohort would be present 

to develop some kind of a bias. In order to reduce this impurity in calculation we developed 

the non-overlapped cohorts that would help us in bringing about a correct evaluation and 

discussion on the changing significance of the features.  

The non-overlapped cohorts were created in exactly same manner as overlapped cohorts. 

There were three cohorts representing short, medium and long term transplants however 

the starting points of the later cohorts were the ending point of the previous cohort. The 

short term cohort consists of adverse events occurring in the first year of the transplant, the 

medium term consists of adverse events occurring between 2-5 years of the transplant and 

all other adverse events after 5 years of the transplant were included in the long term cohort. 

The distribution of the classes in non-overlapped cohorts are already provided in the Table 

3 below. 

 

 

Table 3 Number of failed and survived transplants in non-overlapped cohorts before oversampling. 

Time-point 

 

Failed 
 

Survived 

1st cohort 7554 45273 

2nd cohort 15921 29352 

3rd cohort 14464 14888 

 

Interestingly, we did not come across any literature where non-overlapped cohorts were 

analyzed. The only studies where mutually exclusive cohorts were analyzed were 

Non-Overlapped Cohorts 
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approached as multiclass problem. Usually the primary objective of all the classification 

studies on organ transplants is to develop a prediction model. The identification of features 

has generally been considered a secondary objective therefore researchers have 

simultaneously computed the significance of the features from the same prediction models 

that have been fundamentally developed with the aim of predicting the status of the graft 

in different time-cohorts. Though it is not an incorrect strategy but a better way to do it is 

by using non-overlapped cohorts. 

3.1.4. Data as Multiclass Problem 

As stated in the objectives above, this research pursues the problem of predicting the 

outcome of the graft from both binary as well as multiclass approach. The binary 

approaches are already explained in the sections above. The goal of the binary approaches 

has been to predict the status of the graft by the end of each time-cohort, however, the 

multiclass approach has a slightly different goal. The multiclass classification is performed 

as an exploratory study on UNOS dataset without changing the classification algorithms 

which were mainly used for binary approaches. We performed multiclass classification on 

this dataset to predict the risk of graft failure in different time intervals. The time intervals 

that we defined in multiclass approach are exactly the same as non-overlapped cohorts, 

however since the problem is multiclass we did not perform separate analysis for each 

cohort, instead we considered the whole dataset as one consolidated cohort for the analysis 

with 3 classes (high, medium and low) representing the risk of failure. The patients 

included in high risk class were all those who had a short term failure within 1 year from 

the time of the transplant, the patients included in medium risk class were those who were 

present in the medium term cohort and the remaining patients with low risk were those who 

were included in the long term cohort. We restricted the number of groups to only three 

because: a) similar studies have also divided the dataset in three groups; b) the number of 

instances in each class would be close which would help the classifiers to analyze the data 

with reasonable accuracy; and c) the binary cohorts were also divided into three time-points 

hence the results from the multiclass problem would also help in endorsing the predictions 

from binary models and vice-versa.  
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Since it was not a binary approach the interpretation of the survived patients was different. 

The survived patients in binary approaches were based on the combination of two type of 

patients: a) who survived for at least 8 years; b) who did not experience the failure in the 

cohort under analysis. In multiclass approach we only considered the patients who survived 

for at least 8 years because the other patients were already included in one of the three risk 

groups. The survived patients were included in the low risk group for the analysis. We took 

the inspiration from the study by Kazim et al. [13] who used the same approach whilst 

predicting the risk of graft failure. They included the survived patients in the low risk group 

who survived for at least 7 years after the transplant.   

3.1.5. Class Imbalance  

Class imbalance was one of the major challenges in almost all the experiments that we 

performed in our research. The classification algorithms that we used in our research 

require decent class balance to perform with reasonable accuracy, thus we applied two 

different approaches to adjust the class imbalance. Among the two classes in binary 

approaches, the class referring to survived grafts was extremely high (in most cases) in 

comparison to the failed grafts, therefore the first approach that we undertook to strike a 

right balance was to perform a systematic under sampling for the survived class. As per the 

equation of calculating survived transplants (see section Data Subsets with Overlapped 

Cohorts), we removed all the transplants which had actually experienced the adverse event 

in some point of time after the end of the analyzed time-cohort (𝑑𝑎𝑦𝑠 ≥ 𝑖 ∗

365 𝑎𝑛𝑑 𝑔𝑟𝑎𝑓𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 == failed), but all those which survived for at least 8 years were taken 

into the consideration. The Table 4 below shows the distribution of the classes for the 

overlapped and non-overlapped cohorts after under sampling the survived class.  

Table 4 Number of failed and survived transplants in three different cohorts after under sampling 

Time-point 

 

Failed 
 

Survived 

 

Failed 
 

Survived 

1st cohort 7554 14888 7554 14888 

2nd cohort 23475 14888 15921 14888 

3rd cohort 37939 14888 14464 14888 

Overlapped Cohorts Non-Overlapped Cohorts 
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Even after under sampling the majority class, the imbalance in the 1st cohorts were 

significantly high, therefore we implemented SMOTE which is an oversampling technique 

to synthetically increment the minority class. This approach provided us relatively better 

results in comparison to our second approach (which we will discuss later), but the problem 

with this approach was its weakness on the scientific front. When the same group of 

survived patients was used in the analysis, the feature importance scores started to show a 

significant bias, thus we did not rely on this approach to build the prediction models.  

The second approach that we employed in adjusting the balance was alone based on the 

oversampling technique SMOTE. We applied SMOTE on all the cohorts which required 

an adjustment however the degree to which SMOTE was used to oversample the minority 

class was very low. Oversampling the minority class to create an equal balance with 

majority class meant to generate 600% additional synthetic samples (at least for the 1st 

cohort), which is a highly erroneous approach and is prone to overfitting.  Therefore, we 

only doubled our minority class to make the cohorts eligible for reasonable classification. 

Table 5 provides the oversampled results for overlapped and non-overlapped time-cohorts. 

Table 5 Class distribution after oversampling 

Time-point 

 

Failed 
 

Survived 

 

Failed 
 

Survived 

1st cohort 15845 45273 15845 45273 

2nd cohort 23475 29352 21133 29352 

3rd cohort 37939 27316 14464 14888 

 

The difference between the classes in the 1st cohort which was the most imbalanced cohort 

was still 1:3 however that was the best ratio that we could have come up with to prevent 

overfitting and enable the classifiers to perform decently.  

While using SMOTE, we specified the categorical variables and continuous variables 

beforehand so that the library could generate the accurate samples. The algorithm required 

to set the number of nearest neighbors for the analysis. We tried with 5, 10 and 15 neighbors 

Overlapped Cohorts Non-Overlapped Cohorts 
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and finally selected 10 neighbors due to a better accuracy and reasonable time that it took 

to generate the samples.  

3.1.6. Categorical vs Continuous Features 

The features in our dataset included both categorical and continuous variables, therefore 

classifiers such as SVM and ANN were incapable to process them in their raw form. Also, 

the scikit-learn library, which has been the primary tool in our experiments to perform ML, 

does not recognize categorical variables because of its implementation on numpy arrays 

[75]. Thus, we used the one-hot encoding module of scikit-learn library to transform the 

categorical variables into dummy variables (The description of the dummy variables is 

provided in the Table 21 in appendix). The transformed feature set was then used for 

training the classifiers mentioned, however, the original feature set was used for computing 

feature importance scores using H2O package which was also implemented in python.  

Although, the transformation of categorical variables into dummy variables was done 

entirely due to a limitation of the implementation, it helped us to understand the important 

dummy variables in different time-cohorts when we performed the feature selection. It was 

an insightful analysis to look into dummy variables rather than just analyzing the integral 

categorical variable because many a times one dummy variable of a same categorical 

variable was highly important whereas another dummy variable of that same categorical 

variable had no importance at all. Thus, conversion into dummy variables made it possible 

to remove the useless units of categorical variable. It would not have been possible if the 

categorical variables remained integral.  As a future work, the continuous variables can 

also be broken down into categorical variables with multiple levels where each level would 

be analyzed as a separate dummy variable. 

3.2. Feature Engineering 

This phase consists of manipulating the feature set by constructing new features and 

removing the redundant features for further analysis. Construction of new features was 

done by pairing variables together (explained below). Next, we implemented a feature 

selection technique called RFECV to select the significant features from all the 

experiments that we conducted in this study. 
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The total number of features that we initially used as the predictors were 45, however not 

all of them had an equal predictive power. Useless features tend to become a hindrance in 

the training process if they are not removed beforehand, therefore it was a vital process to 

identify and remove them from the analysis to train the classifiers without any potential 

confusion.  

The algorithm that we used in the process of performing RFECV and computing feature 

importance scores was RF. Since RFECV works on coefficients or the importance of the 

feature, RF was the best method to use. There were three main reasons why we chose RF: 

a) The algorithm returned decent results in comparison to LR and other methods which had 

the capability to provide coefficients and feature importance. ANNs and SVMs do not have 

the capability to return any coefficient or feature importance except the SVM with linear 

kernels which were incomparable to the performance of RF on our dataset; b) RF was used 

in similar studies for feature selection; and c) It also has the functionality to provide feature 

importance scores hence it became easier to analyze whether the RFECV removed any 

important feature by comparing them with the resultant features after applying RFECV. It 

would be an interesting insight if a certain feature would be removed by recursive feature 

elimination but it would not appear as the least important feature on the scale of feature 

importance scores. 

3.2.1. Paired Variables 

Paired variables were an interesting addition to our feature set. After exploring the 

literature, we realized that the dataset has always been analyzed with individual donor and 

recipient variables. We constructed new variables by merging same type of donor and 

recipient variable into a single variable. There were around 5 variables (such as sex, age, 

cmv etc.) which were transformed into a pair hence we named them Paired Variables (PV). 

We trained classifiers with the individual donor-recipient as well as the paired variable and 

to our surprise the paired variables performed relatively better. Thus, we entirely removed 

the individual variables and restricted to only paired variables for the next stage of feature 

selection by cross validated recursive feature elimination.   
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3.2.2. Cross Validated Recursive Feature Elimination 

Recursive feature elimination is a specific type of backward feature elimination which is 

based on the coefficients or the feature importance scores rather than p-values. In our work, 

we set the stopping criteria to a random number of at least 12 features out of the complete 

feature space, however, the optimal number of features returned by the algorithm were 

always more than 12 features. All the experiments (for selecting features) that were 

performed in this study were conducted using 10-fold stratified RFECV. One feature at a 

time was removed from the feature space to select the optimal set of features which 

provides the maximum AUROC score. The technique does not select features on the basis 

of individual feature importance instead it groups all those features together which 

performs better in consolidation. Therefore, there is a high chance that a feature with 

relatively high feature importance would be replaced by a less important feature merely 

because of its insignificance when it is used in combination with other features. We 

compared the features which were eliminated by cross validated recursive feature 

elimination with the feature importance scores to understand whether the removed features 

were least important or not. 

3.3. Classification Methods 

3.3.1. Logistic Regression 

LR has been used in a number of similar studies due to its easy and fast implementation. 

Interestingly few studies predicting the transplant survival have even quoted this classifier 

as the best among all the other different classifiers considered in the study [34][30]. We 

fundamentally used LR to make a comparison with other similar studies and draw a 

baseline for the rest of the classifiers. We utilized the scikit-learn implementation as it 

allows to adjust several hyper parameters. We explored different penalties, tolerance levels, 

solvers and C values in our analysis. The class weight was also available to adjust the class 

imbalance. The way class weight works is by penalizing the mistakes in samples of class[i] 

with class_weight[i] instead of 1. For e.g. if a majority class is three times more frequent 

than the minority class, the class weight would be set to {majority:1, minority:3}. So higher 

class-weight means we want to put more emphasis on a class. The easier way to manage 

the weight is to set it to balanced. The classifier implicitly replicates the smaller class until 

it has as many samples as in the larger one. In several experiments that we carried out, the 
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minority class remained lesser than majority class even after oversampling therefore, this 

class weight parameter came in very handy. We set the class weight to balanced instead of 

setting the exact ratios of minority and majority class. The Table 6 provides the parameters 

for Logistic Regression below. 

Table 6 Parameters for Logistic Regression 

Parameter  Default Value Optimized Values 

Penalty L2 L2 

Solver lbgfs sag 

C 1 10 

Max Iteration 100 1000, 2000 

Class weight none none, balanced 

 

 

3.3.2. Random Forest 

RF has been one of the most important ML algorithms throughout in our research. It was 

used as a standalone classifier, base learner for AdaBoost algorithm and a primary 

algorithm in the process of feature selection. There were two different implementations of 

RF that we utilized in this work. The RF implementation of scikit learn was used to build 

the prediction models and perform recursive feature elimination, however identifying the 

importance of categorical features was not possible in scikit learn implementation unless 

the features were transformed into dummy features. To overcome this issue, we utilized 

the h2o python’s implementation to process and determine the importance of features in 

different time-cohorts. Nonetheless, we also calculated the feature importance scores of 

dummy features using the Gini impurity and permutation method from scikit learn before 

using the H2O package for original feature set. 

While computing the feature importance scores for dummy features using Gini impurity, 

we trained the complete dataset and computed the scores without testing it, whereas the 

feature scores by permutation method were trained and tested in separate dataset with 80-

20 split. The feature importance scores using H2O package were computed on the full 
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dataset (training and testing combined) like we did it for dummy features in scikit learn, 

but it allowed to set the number of folds for cross validation therefore we analyzed it with 

10 different folds.  

Both implementations provide same hyper parameters which were optimized during the 

analysis. The number of trees, max depth, max features and the weight of the class were 

exhaustively adjusted for the best results. The Table 7 provides the hyper parameters that 

were selected for the training. 

Table 7 Parameters for Random Forest 

Parameter  Default Value Optimized Values 

Number of Estimators 100 1200 

Max Depth none 9,12,14 

Min Sample Split 2 2,3 

Class Weight none none, Balanced 

Max Features auto Sqrt, 14 

 

3.3.3. Adaptive Boosting 

Adaptive Boosting implementation by scikit learn library was tested with two weak 

learners: a) Random Forest, b) Logistic Regression. Logistic Regression did not perform 

at all and provided poor results on area under ROC, f1 and f1-micro metrics, thus we only 

proceed with RF in conducting the remaining analyses. RF with the optimized hyper 

parameters was used to train the boosting classifier. The implementation allowed to select 

the number of estimators, learning rate, and the algorithm apart from the base estimator. 

The Table 8 shows the parameters that were tested during the different experiments. 

Increasing the number of estimators was a memory intensive and time intensive 

computation. We restricted our analyses with 401 estimators which was the largest number 

to train the classifier in decent amount of time.   

Table 8 Parameters for AdaBoost 

Parameter  Default Value Optimized Values 

Number of Estimators 50 374, 401 
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3.3.4. Artificial Neural Network 

Artificial Neural Networks were first implemented using Keras, which is a higher-level 

deep learning framework for neural network [76]. Keras was selected as the first choice 

because it abstracts away many details, making code simpler and more concise. It provides 

a range of hyper parameters (such as activations functions, dropout layers, loss functions 

etc.) which can be easily tuned to optimize each layer of the neural network. We applied a 

grid search to evaluate the best loss functions, activation functions, number of neurons, 

batch and epoch size etc., but the results remained relatively poorer than the other 

classifiers. AUROC was the primary performance metric to evaluate the results. Scikit-

learn’s implementation of ANN namely, Multi-layer Perceptron (MLP) classifier was later 

applied. Since scikit learn is not per se a neural network framework and is built on top of 

numpy library, there were several limitations in the implementation, which restricted us to 

change a number of hyper parameters which are usually subject to adjustment in other deep 

learning frameworks. Nonetheless, this basic implementation proved to be the right choice 

for our dataset as it returned comparative results to the other classifiers that we used in the 

analysis.  

Neural networks require the variables to be continuous, however the dataset that we were 

using was mainly based on categorical variables therefore as mentioned in the sections 

above, we used the transformed dataset with dummy categorical variables to perform the 

analysis. We experimented with different normalization methods (such as MinMax, 

Normalizer) provided by scikit learn to normalize the continuous variables but none 

performed better than the original data. The hyper parameters that we changed in the 

analysis are given in the Table 9 below. 

Table 9 Parameters for Multilayer Perceptron 

Parameter  Default Value Optimized Values 

solver adam adam 

Learning rate 0.0001 e-2,e-5 

activation 2 2,3 

Learning rate constant invscaling, adaptive 

Hidden layer sizes {100,} {60,30,30,15} 
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3.3.5. Support Vector Machines 

Support Vector Machines have been a useful algorithm in the prediction of survival data. 

We utilized the scikit implementation of SVM in our experiments. Different kernels (such 

as linear, radial, sigmoid and polynomial) were tested during the initial training. Linear and 

sigmoid kernel provided the lowest scores and thus we did not use them in our further 

analysis though linear kernel took the least amount of time in training the model. 

Polynomial kernel with degree 2 and 3 were used to train the model. The only experiment 

where we used polynomial kernel was based on non-overlapped cohorts with graft failures 

in 1st year and the restricted survived patients’ dataset (those who survived for at least 8 

years only, provided in Table 4). The results with degree 2 polynomial were poorer than 

the radial kernel, however, the results for degree 3 remained unrevealed as the memory and 

time constraint stood out to be a severe hindrance. Radial basis kernel provided as the best 

results and thus we used it in our analysis. The Table 10 below provides the hyper 

parameters that were selected for the support vector classifiers in our analysis. 

Table 10 Parameters for Support Vector Classifier 

Parameter  Default Value Optimized Values 

C 1 50,100 

Kernel rbf rbf 

Gamma scale auto, scale 

Decision function shape ovr ovr, ovo 

Class weight none none, balanced 

 

3.4. Performance and Evaluation Metrics 

3.4.1. Cross Validation 

Cross validation is a standard machine learning model evaluation technique used to 

resample the data during the training and testing phase. The data is broken down into 

multiple folds where one of the old is kept for testing and the remaining folds are trained 

to build a ML model. The training process iterates multiple times until all number of folds 
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are tested one by one. The mean accuracy of all folds are computed at the end. It is a popular 

method because it is simple to understand and generally results in a realistic estimate of 

the model’s performance than other methods, such as a simple train/test split. Cross 

validation has two advantages. Firstly, it estimates the generalizability of the algorithm and 

secondly it ensures that the hyper parameters of the algorithm are optimal.  

We used this technique in all of our experiments with stratified 10-folds split. The 

stratification created each fold with same ratio of observations with a given outcome 

variable so that minimal biasness between the fold would be guaranteed. 

3.4.2. Area Under ROC and F1 Scores  

Once cross validation was performed, the results of each classifier were examined on the 

basis of Area Under Receiver Operating Curve (AUROC) and F1-measure. We preferred 

area under ROC in comparison to area under Precision Recall Curve (PRC) because of its 

suitability with the balanced datasets. Except the analyses where we did not oversample 

the minority class, all the different time-cohorts were almost balanced.  We evaluated two 

kinds of f1 score: a) F1 for the failed grafts; b) F1-Micro which is the micro average of 

both failed and survived class. F1 score and F1-micro were used in two kinds of situations, 

respectively: a) where the classes were unbalanced and the minority class happened to be 

failed grafts; b) where the class were balanced but the ROC score was almost same for all 

the trained classifiers. 

3.5. Feature Importance Scores 

Feature importance scores were calculated to analyze the changing relevance of features in 

different time-cohorts. We calculated these scores by training a RF classifier on the 

complete dataset. The scores were calculated using two different techniques (See Chapter 

2): a) Mean decrease in Impurity b) Permutation feature importance. The mean decrease in 

impurity could be calculated with two criterions: a) Gini impurity, b) information gain 

(entropy). We started our analysis on the basis of Gini impurity which is the default 

criterion for the RF implementation in scikit learn library. The information gain (entropy) 

criterion was tested during the initial analysis, but it did not make any difference in the 

performance metrics (such as Area under ROC and F1 score), thus we planned to go 

forward with the default settings for the remaining analysis. The problem with this 
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technique was the biasness towards the high cardinality features. In nearly all the 

experiments, the continuous features were among the leading top ten features in the list 

thus we applied the permutation based feature importance technique to counteract the bias. 

The analysis of these feature importance scores helped us to understand the importance of 

individual features in each time cohort. It also revealed the changing effect of features over 

the three time points that we have studied. We also calculated the feature importance scores 

for categorical features which were already transformed into dummy features. Since there 

were several dummy features we picked the most important dummy features which were 

behaving differently in time-cohorts and presented them in the form of bar charts. 
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4. Results and Discussion 

The study was based on a total of 52827 kidney transplants performed from year 2000 to 

2017. We performed prediction analysis and identified the changing relevance of features 

over the period of the study from two different approaches, namely binary and multiclass 

(as mentioned in Chapter 3). Binary approach remained the main approach in our analysis 

which was further divided into overlapped cohorts and non-overlapped cohorts. Although, 

we built the prediction models and analyzed the features using both binary approaches, the 

main purpose of using overlapped cohorts remained prediction of the status of the graft, 

whereas, the non-overlapped cohorts were meant to analyze the changing significance of 

features over three different time-cohorts. Multiclass experiments were also conducted but 

they were relatively subsidiary to binary class experiments because a) analyzing changing 

significance of features was not possible through this approach, b) classifiers performed 

poorly in comparison to the binary approaches. The multiclass experiments were an 

exploratory work to develop a basic understanding with respect to the classification 

algorithms on this particular dataset. 

We performed all the analyses on complete cases only, where all features were recorded 

without having any missing value. Before computing these complete cases, we removed 

all the unnecessary variables which were not a part of prediction model to retain the 

maximum possible data observations for running the experiments. The dataset consisted of 

69 variables including dates, identifiers, pre-transplant, post-transplant and inter-operative 

variables. We removed all the identifiers and post-transplant variables and focused on the 

remaining variables for the analysis. One of the pre-transplant variables named as ‘Warm 

Ischemia Timing’ was also removed from the dataset for its high sparseness. There were 

several categorical and numerical variables for the same process. Our preliminary analysis 

resulted in better performance with numerical variables, so we removed the categorical 

variables from the feature set where their numerical counterparts (duplicates) were 

available. 

As mentioned in Classification Methods, we applied 5 ML classifier; 2 based on black box 

(i.e. SVM and ANN), 2 based on ensemble methods (i.e. RF and AdaBoost), and 1 simple 

linear method (LR) to predict the status of the graft in three-time cohorts. These 5 classifiers 
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were used in two binary experiments and one multiclass experiment. LR was used to set 

the baseline for all the other classification methods. In addition to LR, we implemented the 

conventional CPH and RSF models to set the baseline for our work. The purpose of 

applying CPH and RSF model was to establish a difference between the performance of 

classification methods with the traditional and modern regression methods, whereas the 

baseline set by LR was used to compare the performance of the robust classification 

methods with the widely used LR in similar studies.  

In our analysis, all the computations were carried out using Python, specifically in the 

SciPy environment using the scikit-learn library [77]. The significance of the features 

(without any transformation into dummy variables) were computed using H2O package. 

We ran the simulations on an Intel Core i7 -3770 CPU 3.4GHz PC, equipped with 24.00 

GB of RAM Windows 10 64-bit machine. 

In the next subsections 4.1, we will discuss the prediction results from the experiments then 

in section 4.2 we will discuss the importance of the features in the three-time cohorts and 

finally in section 4.3, we will have a concluding discussion on the overall findings of this 

research. 

4.1. Analysis of prediction models 

4.1.1. Baseline Results 

Two different baselines were considered in this work to evaluate our solution approach. 

Our first baseline scores were based on the regression analyses that were performed with 

one statistical and one ML based regression technique. The second baseline scores were 

calculated using the LR classifier which is a linear model and has been widely used in 

similar studies. The rationale to develop these two baselines was to make a comparison 

with the traditional approaches of survival analysis and understand the degree of 

improvement in our ML models by comparing them with the LR model. 

The baseline results are provided in the sections below. The first two sections show the 

results for the regression techniques whereas the last section provides the results for the 

LR classifier applied on overlapped cohorts before and after feature selection. 
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4.1.1.1. Cox Proportional Hazards Model 

We implemented the Cox Proportional Hazards (CPH) Model using ‘survival’ package in 

R [78]. The complete dataset - which was considered for the classification approaches - 

was trained and evaluated on the basis of concordance index (equivalent to the area under 

the Receiver Operating Characteristic curve [79]). The p-values for the log likelihood test, 

Wald test, log rank test were also calculated to interpret the significance of the model. The 

summary of the results including the coefficients, hazard ratios and p-values for each 

variable are given in the Table 11 below. 

Table 11 Results of Cox Proportional Hazards Model 

Feature Name coef exp(coef) se(coef) z p 

drrace2 0.24 1.27 0.02 11.11 2E-16 

drrace3 -0.12 0.88 0.06 -1.99 0.046182 

drrace4 0.10 1.10 0.01 6.93 4.24E-12 

drrace5 -0.13 0.88 0.03 -5.15 2.57E-07 

drrace6 0.17 1.19 0.02 7.53 4.98E-14 

drrace7 0.02 1.02 0.07 0.29 0.771198 

drrace8 0.15 1.16 0.04 3.62 0.000296 

drrace9 0.19 1.21 0.06 3.41 0.000658 

drsex2 -0.06 0.94 0.02 -3.02 0.002524 

drsex3 -0.02 0.98 0.02 -1.08 0.279864 

drsex4 0.01 1.01 0.02 0.77 0.442771 

ahd11 -0.01 0.99 0.03 -0.51 0.613348 

ahd12 -0.03 0.97 0.02 -1.51 0.130171 

ahd13 0.03 1.03 0.02 1.46 0.14368 

ahd14 0.02 1.02 0.03 0.65 0.515553 

drwt2 0.03 1.03 0.02 1.77 0.076369 

drwt3 0.07 1.07 0.03 2.62 0.008918 

drwt4 0.02 1.02 0.02 1.07 0.286778 

drwt5 0.03 1.03 0.03 1.17 0.24051 

drage2 -0.01 0.99 0.02 -0.37 0.715183 

drage3 0.35 1.42 0.04 9.98 2E-16 

drcmv2 -0.02 0.98 0.02 -1.11 0.267119 
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drcmv3 0.02 1.02 0.02 1.23 0.220213 

drcmv4 0.05 1.05 0.02 2.52 0.011894 

rpvd 0.19 1.21 0.02 8.88 2E-16 

pkpra 0.00 1.00 0.00 13.02 2E-16 

REC_TX_PROCEDURE_TY102 -0.02 0.99 0.01 -1.46 0.144671 

prevki 0.12 1.13 0.02 6.70 2.09E-11 

dage 0.01 1.01 0.00 11.09 2E-16 

dht100 0.00 1.00 0.00 -6.10 1.06E-09 

dwt 0.00 1.00 0.00 -1.38 0.167742 

doncreat 0.02 1.02 0.01 4.51 6.62E-06 

ecd1 0.07 1.07 0.02 3.89 0.000102 

rht2100 0.00 1.00 0.00 2.90 0.003741 

rwt2 0.00 1.00 0.00 1.80 0.072567 

rbmi2 0.00 1.00 0.00 1.55 0.121616 

cit 0.00 1.00 0.00 7.12 1.09E-12 

ragetx 0.01 1.01 0.00 19.90 2E-16 

hlamm1 0.03 1.03 0.03 0.78 0.436263 

hlamm2 0.17 1.19 0.03 5.98 2.30E-09 

hlamm3 0.18 1.20 0.02 7.98 1.42E-15 

hlamm4 0.19 1.21 0.02 9.10 2E-16 

hlamm5 0.22 1.25 0.02 10.76 2E-16 

hlamm6 0.23 1.26 0.02 10.42 2E-16 

dbmi 0.00 1.00 0.00 1.16 0.245633 

functstat2 0.08 1.08 0.02 4.77 1.85E-06 

functstat3 0.16 1.18 0.02 10.75 2E-16 

functstat4 0.26 1.30 0.02 14.81 2E-16 

functstat5 0.25 1.28 0.02 12.95 2E-16 

functstat6 0.45 1.56 0.04 11.90 2E-16 

functstat7 0.24 1.27 0.05 4.42 1.01E-05 

functstat8 0.53 1.70 0.13 4.03 5.69E-05 

functstat9 0.90 2.46 0.08 11.52 2E-16 

functstat10 0.86 2.37 0.12 7.47 7.90E-14 

rhtn2 -0.02 0.98 0.02 -0.92 0.358774 

rcvd 0.04 1.04 0.03 1.58 0.114486 



46 
 

rmalig 0.15 1.16 0.02 6.61 3.98E-11 

dhtn21 0.08 1.08 0.01 5.65 1.59E-08 

ddm1 0.18 1.20 0.02 8.79 2E-16 

dhcv 0.35 1.42 0.03 11.70 2E-16 

dcd1 0.12 1.12 0.02 6.41 1.46E-10 

preemptive2 0.24 1.28 0.02 11.95 2E-16 

esrddxsimp2 0.14 1.15 0.02 5.93 3.03E-09 

esrddxsimp3 -0.29 0.75 0.02 

-

12.48 2E-16 

esrddxsimp4 0.10 1.10 0.02 6.01 1.88E-09 

esrddxsimp5 0.08 1.08 0.02 4.26 2.08E-05 

rdm21 0.18 1.19 0.02 8.92 2E-16 

rcad2 0.05 1.05 0.02 3.15 0.001619 

vintage 0.03 1.03 0.00 16.84 2E-16 

 

Concordance= 0.623  (se = 0.002 ) 

Likelihood ratio test= 5245  on 69 df,   p=<2e-16 

Wald test            = 5237  on 69 df,   p=<2e-16 

Score (logrank) test = 5351  on 69 df,   p=<2e-16 
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Figure 2 Probability of Survival by Cox Proportional Hazards Model 

The concordance index that we received after running cox proportional hazards model was 

0.623. The p-values for all three overall tests (likelihood, Wald, and score) were significant, 

indicating that the model was significant. In addition to that, half of the covariates as shown 

in the Table 11 were also significant (p < 0.05), however, half of them were insignificant 

(p>0.05). The study by Yoo et al. [80] received the score between 0.6-0.63 for their 

conventional cox model. Although, their dataset was relatively smaller than ours, it gave 

us a superficial understanding of an average strength of cox models on transplant datasets. 

The probability of survival was also generated by the trained CPH model as shown in the 

Figure 2 above. The diminishing graph shows the decreasing probability of survival with 

time. 

4.1.1.2. Random Survival Forests 

We implemented Random Survival Forest (RSF) using RandomForestSRC package in R. 

The summary of the developed model is given below. 

Training Dataset Summary 

Sample size 36979 
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Number of deaths 26576 

Number of trees 1200 

Forest terminal node size 15 

Average no. of terminal nodes 941.8933 

No. of variables tried at each split 7 

Total no. of variables 37 

Resampling used to grow trees swor 

Resample size used to grow trees 23371 

Analysis RSF 

Family surv 

Splitting rule logrank *random* 

Number of random split points 3 

Error rate 37.88% 

Testing Dataset Summary 

Sample size of test (predict) data 15848 

Number of deaths in test data 11363 

Number of grow trees 1200 

Average no. of grow terminal nodes 941.8933 

Total no. of grow variables 37 

Resampling used to grow trees  swor 

Resample size used to grow trees 10016 

Analysis  RSF 

Family  surv 

Test set error rate 37.98% 

 

The number of trees and node depth which were two of the hyper parameters were set to 

1200 and 14, respectively. The values were selected based upon the best c-index. The 

concordance index that we received after making the prediction on the test set was 0.6202 

which is approximately similar to the c-index that we got from CPH model.  

4.1.1.3. Logistic Regression 

The LR score before and feature selection are provided in the Table 12 and  
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Table 13, respectively. Interestingly, the pre-feature selection scores for LR were relatively 

better than the scores after feature selection. It proves that the feature selection by RF did 

not affect the LR models, positively. The cross validated ROC score for 1st cohort dropped 

down from 67% to 61% and the score for 3rd cohort came down from 76% to 71%. 

However, all scores for 2nd cohort remained intact after removing the unwanted features 

with no changes at all. We have compared the performance of LR with other classifiers in 

much more detail in the sections to follow. 

Table 12 Logistic Regression Scores before Feature Selection 

Model CV F1 

CV 

F1_Micro CV ROC Test F1 Test F1_Micro 

Test 

ROC 

1st cohort  

LR 0.47 0.62 0.67 0.47 0.62 0.63 

2nd cohort  

LR 0.58 0.61 0.65 0.58 0.61 0.61 

3rd Cohort  

LR 0.72 0.69 0.76 0.71 0.69 0.7 

 

 

Table 13 Logistic Regression Scores after Feature Selection 

Model CV F1 

CV 

F1_Micro CV ROC Test F1 Test F1_Micro 

Test 

ROC 

1st cohort  

LR 0.41 0.57 0.61 0.58 0.41 0.575 

2nd cohort  

LR 0.58 0.61 0.65 0.58 0.61 0.61 

3rd Cohort  

LR 0.71 0.68 0.76 0.71 0.69 0.68 

 

4.1.2. Overlapped Cohorts 

We used overlapped cohorts to predict the status of the graft in the three defined time-

cohorts. One of the objectives of this research was to build the prediction models using 
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supervised ML algorithms; we reached this objective by preparing the dataset in the form 

of overlapped cohorts. Multiple classifiers were used in our experiments. The best four 

classifiers that stood out during the initial runs were later used throughout the research. LR 

which is a simple linear classifier was considered as the baseline because of its extensive 

use in the literature. The results that we received from overlapped cohorts are explained 

under three subheadings, below. We first provided the preliminary results based on the 

complete dataset without optimizing the hyper parameters followed by the final prediction 

models. The final models were developed by optimizing the hyper parameters and selecting 

the important features using RFECV. The last subsection discusses the changing effects of 

the features. This analysis was particularly performed to understand the effect of 

overlapped cohorts on the significance of the features and why non-overlapped cohorts 

were a better way to analyze the significance. 

4.1.2.1. Preliminary Results 

The preliminary results were computed with complete feature set after minor parameters’ 

tweaking. Except LR, the default settings of the classifiers were resulting in very poor 

scores, thus few parameters such as number of trees in RF, number of layers and neurons 

in ANN and the type of kernel for SVC were fixed in preliminary analysis and they remain 

unchanged till the development of final prediction models. According to Table 2 which 

shows the distribution of the classes in three time-cohorts, the first cohort and third cohort 

needed a class adjustment but the second cohort had an adequate balance. Hence we used 

SMOTE to oversample the graft failed class in first cohort and survived class in third cohort 

to bring the class distribution into a state of consistency for classifiers to perform decently. 

Since the failed grafts in 1st cohort were still three times less than survived class even after 

oversampling, we utilized the class weight feature in scikit-learn library during the process 

of model training. 

The main evaluation metrics to select the winning model in our analysis was Area under 

ROC, f1 and f1 micro scores. The results provided in the Table 14 below are generated 

after performing 10-fold stratified cross validation on 80% of the dataset. The remaining 

20% of the dataset was used in predictions on the unseen test set. The results from the test 

set are also provided in Table 14. We have included the results of LR in these tables again 
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to make an easy comparison in the discussion ahead. As evident from the results, 

oversampling made a remarkable difference in both cohorts, therefore we preferred 

oversampled cohorts for developing final prediction models. 

Among all the classifiers, AdaBoost and SVC were most benefitted with oversampling; as 

a clear spike in AUROC score can be seen in the results in both first and third cohort, 

whereas LR remained the least affected classifier with oversampling. The best results in 

the 1st cohort were produced by Support Vector Machine with 85% on AUROC followed 

by AdaBoost with 82%. Other than AUROC, the metrics provided close scores with not 

much of any interesting insight. The second cohort was the largest cohort based on entirely 

original data without any synthetic oversampling. Since the dataset was decently balanced 

and AUROC scores were almost same across all the developed models, the metric of 

interest becomes f1 and f1-micro scores. In 2nd cohort, the LR and AdaBoost competed to 

be the winning models as they both have the best f1 and f1-micro scores. The f1-micro 

score was 61% for LR but a percent more (62%) for AdaBoost, whereas the F1 score was 

58% for LR and 53% for AdaBoost.  

The third cohort provided the best results with AdaBoost with 84% on AUROC as well as 

all the other metrics followed by ANN with 80% on AUROC. 

The testing set as shown in Table 14 below justified the results from the cross validated 

training set: a) SVC provided the maximum AUROC score in the 1st cohort after 

oversampling followed by AdaBoost; b) LR performed the worst among all the classifiers; 

c) the performance of the all the classifiers in 2nd cohort was almost same.  

Table 14 Overlapped Cohorts Baseline Cross Validation Scores 

Model CV F1 

CV 

F1_Micro CV ROC T F1 T F1_Micro 

T 

ROC 

1st Cohort without oversampling 

Random Forest 0.07 0.85 0.62 0.11 0.85 0.53 

ADA with RF 0.09 0.85 0.57 0.12 0.85 0.53 

SVC 0.04 0.85 0.55 0.04 0.85 0.51 

LR 0.31 0.61 0.65 0.3 0.61 0.6 

ANN 0.00 0.86 0.65 0 0.86 0.5 
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1st cohort with oversampling 

Random Forest 0.53 0.77 0.76 0.53 0.77 0.69 

ADA with RF 0.67 0.87 0.82 0.69 0.88 0.76 

SVC 0.7 0.87 0.85 0.73 0.88 0.8 

LR 0.47 0.62 0.67 0.47 0.62 0.63 

ANN 0.42 0.79 0.75 0.41 0.78 0.62 

2nd cohort (oversampling not required) 

Random Forest 0.48 0.62 0.66 0.49 0.63 0.61 

ADA with RF 0.53 0.62 0.65 0.53 0.62 0.61 

SVC 0.47 0.62 0.66 0.48 0.63 0.61 

LR 0.58 0.61 0.65 0.58 0.61 0.61 

ANN 0.54 0.62 0.66 0.48 0.62 0.59 

3rd Cohort without oversampling 

Random Forest 0.84 0.73 0.7 0.84 0.73 0.54 

ADA with RF 0.84 0.74 0.7 0.84 0.74 0.57 

SVC 0.84 0.72 0.67 0.84 0.72 0.5 

LR 0.71 0.63 0.68 0.71 0.63 0.63 

ANN 0.84 0.73 0.7 0.83 0.73 0.6 

3rd Cohort with oversampling 

Random Forest 0.75 0.71 0.78 0.75 0.72 0.71 

ADA with RF 0.82 0.78 0.84 0.82 0.78 0.77 

SVC 0.73 0.71 0.78 0.73 0.71 0.71 

LR 0.72 0.69 0.76 0.71 0.69 0.7 

ANN 0.78 0.73 0.8 0.71 0.69 0.7 

 

 

4.1.2.2. Results after Feature Selection 

We performed RFECV on each of the three cohorts to select the best set of features. Since 

the technique was implemented in scikit-learn, we were bound to only use it on the dataset 

based on dummy variables. The training and testing scores that we received after the 

process of feature selection are shown in the Table 15 below. The scores of the features 

which were selected after feature elimination process in all three cohorts are shown in 
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Figure 3, Figure 4 and Figure 5 below. We will discuss these scores during the analysis of 

the changing effects of features in section Analysis of changing effects of features.  
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Figure 3 1st cohort scores after recursive feature elimination 
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Figure 4 2nd cohort scores after recursive feature elimination 
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Figure 5 3rd cohort scores after recursive feature elimination 

Among the five classifiers, we focused on the AUROC scores for the 1st cohort and noticed 

that RF showed an improvement of 1% (from 76% to 77%) on cross validated training set 

whereas AdaBoost showed an improvement of 2% (75% to 77%) on testing set. SVC did 
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not exhibit any significant change in both the datasets and remained the winner for the first 

cohort. 

The second cohort did not show any significant improvements in scores except that several 

dummy variables were removed after the process of feature selection. SVC and AdaBoost 

remained the leading classifiers with 66% AUROC score on training dataset, however, LR 

performed the best on the test set with 61% AUROC score. 

The third cohort showed an improvement in nearly all the classifiers except LR. The 

leading classifier still remained AdaBoost with 84% AUROC score followed by ANN with 

81% AUROC on training dataset.  

Table 15 Scores after oversampling the overlapped cohorts 

Model CV F1 

CV 

F1_Micro 

CV ROC 

T. F1 T. F1_Micro 

T.  

ROC 

1st cohort  

Random Forest 0.614 0.79 0.774 0.534 0.733 0.686 

ADA with RF 0.68 0.87 0.824 0.7 0.87 0.77 

SVC 0.68 0.87 0.851 0.72 0.87 0.794 

LR 0.41 0.57 0.61 0.58 0.41 0.575 

ANN 0.45 0.78 0.74 0.41 0.78 0.62 

2nd cohort  

Random Forest 0.49 0.62 0.66 0.47 0.62 0.60 

ADA with RF 0.53 0.62 0.65 0.52 0.62 0.60 

SVC 0.47 0.62 0.66 0.47 0.62 0.60 

LR 0.58 0.61 0.65 0.58 0.61 0.61 

ANN 0.51 0.62 0.65 0.52 0.62 0.60 

3rd Cohort  

Random Forest 0.76 0.72 0.79 0.78 0.72 0.70 

ADA with RF 0.82 0.78 0.84 0.83 0.79 0.78 

SVC 0.75 0.72 0.79 0.76 0.72 0.72 

LR 0.71 0.68 0.76 0.71 0.69 0.68 

ANN 0.78 0.74 0.81 0.77 0.74 0.73 
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4.1.3. Non-Overlapped Cohorts 

4.1.3.1. Preliminary Results 

Baseline for the non-overlapped cohorts were drawn in the exact same manner like 

overlapped cohorts, but since the aim of non-overlapped cohorts were not the development 

of prediction models, the baseline scores were not separately provided in the section 

4.1.1.3. Logistic Regression. The scores for the training and testing datasets are provided 

in the Table 16, below. As the distribution of transplants in 1st cohorts of both overlapped 

and non-overlapped approaches was same, we did not explain the results in this section 

again. Contrary to 2nd cohort in overlapped cohorts, the 2nd cohort in non-overlapped 

cohorts needed a class adjustment. Interestingly, all the classifiers showed an improvement 

after oversampling except LR, which deteriorated by 2% on training set, however, a 

significant improvement was observed on the testing dataset. AdaBoost remained the 

winning model in 2nd cohort with 74% AUROC on cross validated training set and 67% 

AUROC on testing set, whereas all other models remained in the range of 67%-69%. The 

third cohort had a close competition among the models on both training and testing sets. 

The ANN model provided the best score 69% AUROC on training and 64% AUROC on 

testing. All the remaining models were stopped with 68% AUROC on training sets and 62-

64% AUROC on testing sets. 

Table 16 Preliminary results for non-overlapped cohorts 

Model CV F1 

CV 

F1_Micro CV ROC T. F1 T. F1-Micro 

T. 

ROC 

1st Cohort without oversampling 

Random Forest 0.07 0.85 0.62 0.11 0.85 0.53 

ADA with RF 0.09 0.85 0.57 0.12 0.85 0.53 

SVC 0.04 0.85 0.55 0.04 0.85 0.51 

LR 0.31 0.61 0.65 0.3 0.61 0.6 

ANN 0.00 0.86 0.65 0 0.86 0.5 

1st cohort with oversampling 

Random Forest 0.53 0.77 0.76 0.53 0.77 0.69 

ADA with RF 0.67 0.87 0.82 0.69 0.88 0.76 

SVC 0.7 0.87 0.85 0.73 0.88 0.8 
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LR 0.47 0.62 0.67 0.47 0.62 0.63 

ANN 0.42 0.79 0.75 0.41 0.78 0.62 

2nd Cohort without oversampling 

Random Forest 0.41 0.65 0.64 0.41 0.65 0.58 

ADA with RF 0.27 0.67 0.64 0.27 0.66 0.55 

SVC 0 0.65 0.64 0.00 0.65 0.50 

LR 0.51 0.61 0.64 0.61 0.59 0.45 

ANN 0.32 0.67 0.65 0.32 0.66 0.56 

2nd Cohort with oversampling 

Random Forest 0.57 0.64 0.68 0.58 0.64 0.64 

ADA with RF 0.56 0.7 0.74 0.57 0.70 0.67 

SVC 0.54 0.66 0.69 0.46 0.69 0.64 

LR 0.55 0.59 0.62 0.55 0.59 0.59 

ANN 0.48 0.63 0.67 0.55 0.59 0.59 

3rd Cohort (oversampling not required) 

Random Forest 0.61 0.63 0.68 0.61 0.63 0.63 

ADA with RF 0.62 0.63 0.68 0.62 0.63 0.63 

SVC 0.61 0.64 0.68 0.61 0.64 0.64 

LR 0.63 0.64 0.68 0.61 0.62 0.62 

ANN 0.63 0.63 0.69 0.61 0.64 0.64 

 

4.1.3.2. Results after Feature Selection 

As mentioned in the previous section, the results for the 1st cohort were same as the 

overlapped cohorts hence they are not discussed in this section again. The RFECV 

discarded around 14 features from 1st cohort, 26 features from the 2nd cohort and 18 features 

from the 3rd cohort out of 98 features, hence the number of features in the 1st, 2nd cohort 

and 3rd cohort were 84, 72 and 80, respectively. The Figure 6 and Figure 7 shows the 

importance of the features which remained in the feature set after performing recursive 

feature elimination. It is interesting to see that the continuous features have been the most 

important features in all three cohorts.  

The categorical features which were entirely removed from the 2nd cohort were rmalig, 

rpvd,dhcv, whereas, the number of dummy features which were removed after the feature 



60 
 

selection process were 23. In 3rd cohort, no categorical feature was completely removed, 

however 18 dummy features which were a part of one of the categorical variables were 

eliminated after recursive feature elimination. Detailed discussion about the importance of 

the features with respect to their changing relevance and the implication of potential bias 

coming from continuous features is done in next section. 
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Figure 6 Recursive Feature Elimination for 2nd Cohort 



62 
 

 

Figure 7 Recursive Feature Elimination for 3rd Cohort 

In the 2nd cohort, RF and AdaBoost performed best with 73% AUROC on training dataset, 

whereas Adaboost provided 67% AUROC on test dataset which was the best amongst all 
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the classifier. The 3rd cohort provided relatively close results with almost all the classifier 

performing similarly with 68% AUROC on training set and 64% AUROC on test set. 

Table 17 Scores after feature selection for non-overlapped cohorts 

Model CV F1 CV F1_Micro 

CV ROC 

T. F1 T. F1-Micro 

T.  

ROC 

1st cohort  

Random Forest 0.614 0.79 0.774 0.534 0.733 0.686 

ADA with RF 0.68 0.87 0.824 0.7 0.87 0.77 

SVC 0.68 0.87 0.851 0.72 0.87 0.794 

LR 0.41 0.57 0.61 0.58 0.41 0.575 

ANN 0.45 0.78 0.74 0.41 0.78 0.62 

2nd cohort  

Random Forest 0.55 0.70 0.73 0.58 0.64 0.64 

ADA with RF 0.56 0.70 0.73 0.57 0.70 0.67 

SVC 0.44 0.68 0.68 0.46 0.69 0.64 

LR 0.55 0.59 0.62 0.55 0.59 0.59 

ANN 0.55 0.59 0.62 0.55 0.59 0.59 

3rd Cohort  

Random Forest 0.61 0.63 0.68 0.61 0.64 0.64 

ADA with RF 0.62 0.63 0.68 0.61 0.65 0.64 

SVC 0.59 0.63 0.68 0.61 0.64 0.64 

LR 0.62 0.62 0.66 0.61 0.62 0.63 

ANN 0.60 0.63 0.68 0.57 0.64 0.64 

 

4.1.4. Multiclass Results 

The multiclass approach did not return any interesting results. Since oversampling had 

already been established as the right technique for our dataset, we applied the same 5 

classifiers that we have used in all other experiments to build the prediction models using 

the oversampled dataset.  The Table 18 below shows the number of instances in each class 

before and after oversampling. We oversampled each minority cohort class with a certain 

number of samples that would not generate too much noise in the data. The high risk class 
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was almost doubled, whereas, the medium risk class had an additional 4000 samples which 

are nearly one-quarter of original samples in the class. The idea was to generate the minimal 

amount of synthetic samples by which the classifiers would be able to provide decent 

scores. 

Table 18 Class distribution in multiclass approach 

Classes Without Oversampling With Oversampling 

High Risk 7554 15000 

Medium Risk 15921 20000 

Low Risk 29352 29352 

 

Unfortunately, none of the classifiers were even able to score at par with the baseline set 

by regression methods. Recursive feature elimination happened to improve the results but 

the improvement was not in terms of an increment in scores rather the feature set 

experienced a reduction of 52 features. However, after feature selection only RF showed 

an improvement of 4% from 49% to 53%. For all other classifiers the performance 

remained nearly indifferent. 

The Figure 8 below shows the importance of remaining features after performing RFECV. 

The top 10 features in the list belongs to the type of continuous features in our feature set. 

This high importance of continuous features over categorical features was caused by an 

intrinsic bias of RF algorithm. We have discussed this in detail in the next section.   
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Figure 8 Scores after Feature Selection for multiclass approach 
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The Table 19 below shows the results that were acquired through multiclass approach. 

Since there were more than two classes, the AUROC score could not be calculated, we 

evaluated the models on the basis of f1-micro scores only. 

Table 19 Results for multiclass approach 

Model CV F1-Micro Test F1-micro 

Before Feature Selection 

Random Forest 0.49 0.49 

ADA with RF 0.61 0.62 

SVC 0.61 0.63 

LR 0.46 0.47 

ANN 0.51 0.5 

After Feature Selection 

Random Forest 0.53 0.54 

ADA with RF 0.61 0.62 

SVC 0.62 0.63 

LR 0.46 0.46 

ANN 0.49 0.5 

 

The highest score was produced by SVC with 63% on testing set and 62% on training 

dataset. AdaBoost also provided 61% on training dataset however it lagged behind 1% on 

testing set with 62% from SVC. Throughout our experiments in this work, the training and 

testing scores were different with training scores overshadowing the testing scores 

however, whilst performing a multiclass classification the difference shrunk drastically. In 

fact, the testing scores for LR, AdaBoost and SVC exceeded the training score which was 

surprisingly a unique phenomenon for our dataset. 

4.2. Analysis of changing effects of features 

The second objective of this research was to analyze the relevance of the features over the 

period of time. The main approach that was used for the analysis was based on non-

overlapped cohorts. However, we also reported the results with overlapped cohorts in order 

to analyze the difference between the two approaches. We first calculated the feature 



67 
 

importance scores based on mean decrease impurity (Gini) using the H2O implementation 

of Random Forest for both binary approaches. 

The Figure 9 and Figure 10 below shows the importance of the features in overlapped 

cohorts and non-overlapped cohorts. 

 

Figure 9 Changing relevance of features based on overlapped time-cohorts  

0

0.05

0.1

0.15

0.2

0.25

Overlapped Time-Cohorts

1st cohort 2nd cohort 3rd cohort



68 
 

 

Figure 10 Changing relevance of features based on non-overlapped time-cohorts 
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showed a downward trend for 3rd cohort but still remained a highly important feature. 

FUNCTSTAT showed an erratic behavior. The importance of the feature increased to 

15.6% in 2nd cohort of overlapped cohorts, whereas it decreased to 1% in 2nd cohort of non-

overlapped cohorts. Though most features have shown a same trend in both overlapped 

and non-overlapped cohorts, we did not have any obvious interpretation for this change.   

There were several features that have low importance throughout the cohorts. However, 

few features were insignificant in the 1st cohort, but came in lime light in the later cohorts. 

Amongst them were Donor’s Age (DAGE), Recipient’s Age (RAGETX) and recipient’s 

diabetes status (rdm2). They became one of the most important features in 2nd and 3rd 

cohorts of both overlapped and non-overlapped. Based on the scores of non-overlapped 

cohorts, we tried to summarize the changing importance of the features (especially those 

features which fall in high and medium group) in the Table 20 below.  

Table 20 Categorical importance of features in three time-cohorts 

Time-Cohorts High Medium Low 

1st esrddxsimp, hlamm, vintage drcmv, drrace, functstat remaining 

2nd  esrddxsimp,hlamm,vintage dage,ragetx remaining 

3rd esrddxsimp,functstat,ragetx,rdm2 dage,ragetx remaining 

 

We already stated the features that moved from low importance group to medium or high 

importance group, but, there were several features that did not show any significant change 

in importance scores which would lead to shifting them from one group to another. Features 

such as Recipient’s Coronary Disease (RCAD), Recipient’s Hypertension (RHTN), Status 

of Dialysis before Transplant (PREEMPTIVE) and Donor’s Donation after Cardiac Death 

(DCD) were relatively more important in 1st cohort than 2nd and 3rd cohort, whereas 

Expanded Criteria of Donor (ecd) was more important in 3rd cohort. Though, these features 

have differing importance in time-cohorts, they were all part of low importance group. 

Several features (such as DHCV, PREVKI, RCVD, REC_TX_PROCEDURE_TY, 

RMALIG etc.) had negligible importance throughout the period of the study. Also, whilst 

performing RFECV these features were usually removed from the feature set. Interestingly 

both overlapped and non-overlapped cohorts provided the scores for them alike.  
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The analysis that we did above was mainly based on complete features. The categorical 

features were based on multiple levels, hence we performed the same analysis that we 

performed above with the dummy variables which were developed by transforming the 

categorical variables using one-hot encoding module of scikit-learn library. The figures 

below show the changing relevance of the categorical variables in overlapped and non-

overlapped cohorts. Since the number of dummy variables were huge (98), it was difficult 

to visualize all of them in a single figure whilst maintaining the visual clarity. Therefore, 

we filtered out all those variables which have the importance of less than 1% from all the 

three time-cohorts.  

The Figure 11 and Figure 12 below shows the feature importance scores in overlapped and 

non-overlapped cohorts.  
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Figure 11 Dummy feature importance scores based on overlapped cohorts 
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Figure 12 Dummy feature importance scores based on non-overlapped cohorts 
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features which had very low importance in the former analysis. These features include Cold 

Ischemia Timing (CIT), Donor’s BMI (DBMI), Recipient’s BMI (RBMI) and Donor’s 

Creatinine Level (DONCREAT). As per overlapped cohorts CIT was more important in 1st 

and 2nd cohort in comparison to the 3rd cohort, however, non-overlapped cohorts did not 

show any significant distinction in the importance of the variables. DONCREAT showed 

a decreasing importance over the period of study in both overlapped and non-overlapped 

cohorts, whereas RBMI and DBMI showed an increasing importance over the time. There 

was one more feature, namely Peak Panel Reactive Antibody (PKPRA), which showed an 

increasing importance in the beginning but stooped down in the 3rd cohort. This feature 

was relatively more important to predict the graft status in the medium term (2nd cohort) of 

both non-overlapped and overlapped cohorts. 

The dummy categorical features provided many interesting insights in this analysis. We 

already knew which features were important in the different time-cohorts, however, it was 

still not known that which value of the feature (dummy variable) is responsible for that 

prediction. This analysis helped us in overcoming that problem. The previous analysis on 

whole categorical features revealed us that HLAMM, ESRDDXSIMP etc. were important 

features in the 1st cohort. This analysis further explained that HLA with 5 mismatches 

(HLAMM_5) is the actual value that determine the status of the graft in 1st cohort. 

Similarly, ESRDDXSIMP was based on 5 different values. The distinguishing values for 

this feature are ESRDDXSIMP_2, ESRDDXSIMP_3 and ESRDDXSIMP_4. 

ESRDDXSIMP_2 and ESRDDXSIMP_3 possessed relatively more importance than 

ESRDDXSIMP_4. These dummy values were important in all three cohorts, however, 

ESRDDXSIMP_2 was more important in 3rd cohort whereas, ESRDDXSIMP_3 and 

ESRDDXSIMP_4 were more important in 2nd cohort. Amongst the paired variables, 

DRCMV_2 and DRRACE_1 were important in 1st cohort, whereas their importance was 

not notable in other cohorts. These two variables were also mentioned in Table 20 where 

they were included in medium importance group as integral categorical variables. The 

Functional Status of Recipient (FUNCTSTAT) was more important in long term (3rd 

cohort) with FUNCTSTAT values FUNCTSTAT _1, FUNCTSTAT _2, FUNCTSTAT _3, 

and FUNCTSTAT _5. Few features (such as ECD, RHTN, PREEMPTIVE, RCAD, RPVD 
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etc.) showed changing importance during the time-cohorts, but their dummy values had the 

same trend thus we did not specifically include them in this analysis. 

All the feature importance scores that we have discussed above were calculated on the basis 

of mean decreased impurity (Gini). The main problem with these scores was the bias 

towards high cardinality features. Interestingly most of our top scoring features, whether 

based on Gini index or RFECV, were continuous features. In order to make sure whether 

these features were actually important or were affected by the bias, we calculated the 

permutation based feature importance scores for both overlapped and non-overlapped 

cohorts. Our focus was particularly on the importance of the continuous features to analyze 

any potential difference between the new and the old feature importance scores. The Figure 

13 and Figure 14 below shows the importance of the features which made a difference after 

applying permutation technique. Most of the features that were shown as important by Gini 

impurity (See Figure 11 and Figure 12) above were also endorsed as important by 

permutation technique. RAGETX, DAGE, VINTAGE were continuous features that were 

stated as highly important by Gini method, but since these features have an equal 

significance by permutation method, we can deduce that the biasness of Gini method has 

not affected these features. Apart from this the dummy features (such as HLAMM_5, 

ESRDDXSIMP_2 etc.) also remained same in this analysis, however, few features (such 

as DONCREAT, CIT, DBMI etc.) were important in the previous analysis in both 

overlapped and non-overlapped cohorts, but they had very little permutation based score 

for non-overlapped cohorts. We only stated these features in overlapped cohorts, as they 

had shown some degree of importance in comparison to non-overlapped cohorts. 
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Figure 13 Permutation feature scores based on non-overlapped cohorts 
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Figure 14 Permutation feature scores for overlapped cohorts 
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for short term, SVM turned out to be the best classifier providing an AUROC score of 85%. 

We compared these results with three different studies on organ transplants which involves 

similar datasets with nearly same amount of data observations. The study by Ray S. Lin et 

al. [18] applied ANN and LR on their combined dataset from UNOS and United States 

Renal Data System (USRDS) for predicting the status of kidney grafts. The LR returned 

71%, whereas, the ANN returned 73% AUROC for the prediction models developed for 

1st year. The study by A.Dag et al. [30] predicted the outcome of heart transplants on a 

similar dataset by UNOS consisting over 30000 data observations. Their findings for the 

1st year were considerably low. The best classifier for them was LR providing 63% 

followed by SVM providing 62% AUROC score. There were several other studies which 

predicted short term graft status of different organ transplants (such as 

[37][33][45][62][46][81]), but due to their small size of datasets we did not make any 

comparison with them.  

Results for all the models which were trained in 2nd cohort did not show any marginal 

difference on AUROC metric, however, the f1-score for the failed grafts was highest for 

LR, therefore, LR was the winning model for 2nd cohort. The AUROC score was around 

66% on training dataset and 60% on testing dataset. The study by Tiong, H. Y. et al. [82] 

analyzed 20085 living donor transplant cases from UNOS for 5-year graft survival using 

nomograms and predicted the concordance index of 0.71. The predictors included in the 

study were pre-transplant features as well as a post-transplant feature delayed graft function 

to develop the nomograms. The study by Ray S. Lin et al. [18], - which is also referred for 

comparing the results of short term graft status above – also predicted the graft status for 

medium term 5-years. They provided a score of 77% for artificial neural network. Though 

their score was much higher than our results but their dataset was based 10641 survivals 

and 7215 failures, whereas, we analyzed 23475 failures and 29352 survivals (See Table 2). 

The study by A. Dag et al. [30] provided an analysis on 5- years heart graft status using 

UNOS dataset. They applied SVM and LR on their dataset after oversampling and received 

67% from both classifiers. The findings were closest to our results although the organ under 

analysis was different. 
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It was surprising to see that LR became the winning classifier among all the other robust 

classifiers used in this cohort. The only factor that could have resulted in this anomaly is 

the nature of data observations used in this particular cohort. In both 1st and 3rd cohort we 

made use of oversampling technique to generate synthetic samples however, in 2nd cohort 

the data was completely original with no use of oversampling. Hence it can be deduced 

that the other classifiers were able to make better prediction models in presence of 

oversampled data but LR came out to be the best algorithm in absence of oversampled data. 

The results for the 3rd cohort were better than 2nd cohort. Unlike 2nd cohort, the classifiers 

did not return same AUROC scores. AdaBoost and ANNs performed the best on the dataset 

providing 84% and 81% AUROC scores on the cross validated dataset. The testing dataset 

also showed AdaBoost and ANNs as the best classifiers with 78% and 73% AUROC 

scores. The study by Ray S. Lin et al. [18] predicted 82% AUROC score for 7-years graft 

survival using ANNs whereas a similar study by M. Luck et al.[29], based on nearly same 

number of transplants predicted the c-index between the range of 0.63-0.66 for 14-years 

graft survival. Our findings were relatively better than the results of both studies.  

The risk of graft failure was approached as a multiclass ML problem. We calculated the 

F1-micro scores for predicting the risk groups (i.e. high, medium and low) with our five 

classifiers. The SVM and AdaBoost provided us with 62% and 61% on cross validated 

dataset, respectively, whereas, the scores were slightly higher for the testing dataset with 

63% and 62% for SVM and AdaBoost, respectively. A.Kazim et al. [14] also performed a 

multiclass classification on the same dataset that we have analyzed in this research, 

however, the number of observations were slightly lesser than ours because they considered 

the transplants after June, 2004 whereas the our dataset was based on transplants between 

years 2000 to 2017. The F1-score for the 5-fold cross validation that they received was 

60.2% which is lower than our findings of 62%. Another study by Jiakai et al. [45] also 

performed the prediction of the period of the graft survival based on a multiclass approach. 

Although, their dataset was very small, the prediction results were between the range of 

30% to 68% with a variety of different Bayesian models. The best model which provided 

68% prediction score was Hill Climber (-P 3 –N –S BAYES). 
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We will further extend our discussion by comparing the changing significance of the 

features with respect to the findings of the similar studies. We will first look into the factors 

which were relatively more important for the short term (1st cohort). As stated in section 

Analysis of changing effects of features above, the most important features for the 1st 

cohort were VINTAGE, HLAMM, DRRACE, and DRCMV. HLA mismatches were an 

important predictor for the first cohort but not for the other two cohorts and this was close 

to the findings of Goldfarb-Rumyantzev et al. [83], who found HLA mismatches to be an 

important factor in first three years of the transplant. VINTAGE showed a diminishing 

significance with a very high significance in the first cohort. In the third cohort, VINTAGE 

was placed in the least important group. These findings were confirmed in other studies 

[33][84]. The paired variables such as Donor-Recipient Race and CMV (DRRACE and 

DRCMV) also showed its distinctiveness in short term. They had more predictive strength 

for the 1st cohort than the other two cohorts. Since the paired variables were not analyzed 

in the studies before, the research literature did not provide us its significance in the short, 

medium or long term. The recipient race was however individually recognized as an 

important variable for short term in the following study by T. Brown et al. [81]. Donation 

after cardiac death (DCD) and extending criteria of donor (ECD) were among the least 

important predictors; however, they had a relatively higher predictive power for the first 

cohort and third cohorts, respectively. DCD is linked to higher chances of Delayed Graft 

Function (DGF), which itself is an important predictor for short term failure, therefore the 

results for DCD are not surprising [85][86]. Since DGF is a post-transplant variable, we 

have not taken that variable into consideration. 

The most deterministic features for long-term (3rd cohort) were recipient’s diabetes status 

and recipient’s age. The findings were consistent with the results of some other studies 

[18][87]. 

To conclude the discussion above was fundamentally based on the results of the 

prediction models pertaining to different cohorts and the changing significance of the 

features. We have not considered the aspect of explaining and interpreting our machine 

learning models in this research work. Our explanation was only restricted to finding the 

most significant features in our prediction models using Gini impurity and permutation 

feature importance technique.  
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5. Conclusion  

5.1. Summary 

It is important to identify potential kidney failure as early as possible to help increase 

positive outcomes for the patient and to help reduce costs associated with end stage renal 

disease. In this research, we predicted the outcome of kidney transplants using the UNOS 

dataset based on 52827 kidney transplant cases from year 2000- 2017. The outcome of the 

transplant was considered as the status of the graft and risk of graft failure. We measured 

the status of the graft in three different time-periods as a binary class problem, whereas, 

the risk of the graft failure was approached as a multiclass problem. The three time-cohorts 

were formed to predict the status of the graft using overlapped and non-overlapped cohorts. 

The non-overlapped cohorts were based on cases which experienced an adverse event 

during 0-1 years, between 2-5 years and more than 5 years following the transplant, 

whereas the overlapped cohorts were based on cases which experienced an adverse event 

during 0-1 year, 0-5 years, and 0-17 years following a transplant. The risk of graft failure 

was calculated by categorizing the non-overlapping time cohorts into three categories 

representing the risk of failure i.e. high, medium and low. The 1st time-cohort represented 

a high risk of failure whereas the later time-cohorts represented likewise. We experimented 

with 5 classification algorithms (i.e. random forest, adaptive boosting, artificial neural 

network, logistic regression and support vector machine). In addition to developing the 

prediction models, we also analyzed the changes in the significance of the features over the 

period of the study. Our results indicate that support vector machine and adaptive boosting 

combined with SMOTE provided the best area-under-the-receiver-operating-

characteristic-curve (AUROC). The cross-validated AUROC scores for predicting the graft 

status were 85%, 66%, and 84% in 1st and 2nd and 3rd cohort, respectively, whereas the 

F1-Micro score for the risk of graft failure was 62%. The feature importance scores were 

calculated using Gini impurity and permutation based techniques to identify the important 

predictors and analyze their changing contribution in predicting the results for the three 

different time-cohorts; we noted a change in the significance of attributes across the three 

different time cohorts (e.g. the number of years on dialysis before transplant was an 

important attribute in only 1st and 2nd time-cohorts, whereas, the recipient’s age and 

recipient’s diabetes status were important in only 3rd cohort). 
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5.2. Limitations 

One of the main limitations of this research was the computational constraint of applying 

ML algorithms. Since the dataset was extremely large, the adequate computational 

resources needed to train the models became a hindrance. Except the ANN and LR 

classifiers, all the algorithms took a considerably time to train. The bagging classifier of 

scikit-learn library was implemented numerous times during the model training process but 

despite waiting for considerably long time, we were not able to get the completely trained 

models entirely due to the lack of computational power. The same issue was present while 

applying survival SVM during the development of baseline for our work. The training 

crashed several times due to the unavailability of the Ram. We skipped survival SVM and 

only relied on RSF method for generating the baseline scores. 

In addition to the computational limitation, a functional limitation of the research was 

realized whilst performing the feature selection with recursive feature elimination. Since 

the scikit-learn library does not allow categorical variables without transforming them into 

dummy variables, we were not able to calculate how many complete features were 

supposed to be eliminated. To measure the number of features, which were eliminated after 

performing RFECV, we manually checked the dummy features belonging to a certain 

categorical feature. If all dummy features of that categorical features were removed after 

the process, we considered the whole categorical feature as eliminated. 

Another limitation of our research lies in the assumption that all those transplants where 

graft status was missing and the patient had not died during the study were actually 

considered survived. In order to deal with this limitation, we removed all those survived 

cases which were censored before 8-years following their transplant. A better analysis 

could have been done if the status of the transplant survival would have been provided by 

the dataset providers rather than the assuming it by heuristics. 

5.3. Future Work 

The results presented in this thesis open a number of possibilities for future research. We 

developed the prediction models and analyzed the changing significance of features using 

a combination of categorical and continuous features. Most of the continuous features were 

found to be important throughout our experiments. There is a potential to further extend 
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the set of predictors by categorizing the continuous features into different categorical 

features. We believe the domain experts can assess this information and their advice can 

help us in efficient binning of these continuous features. The recipient’s age which is one 

the important features in 3rd cohort is a continuous feature. By categorizing this feature into 

different bins, we can identify which age group of recipients is more significant in the 3rd 

cohort. We can implement this on all the continuous features to get further insights.  

The multiclass experiments that we performed to predict the risk of graft failure were rather 

exploratory in nature. We implemented the same five classifiers that were used in binary 

approaches without exploring separately for the multiclass problem. Although, our results 

were relatively better than the contemporary studies, there is an immense potential to 

perform future research in this area. 

In addition to improving the accuracy of prediction models, the research work needs to be 

converted into a useful tool for the nephrology community. The iBox [88] tool is an 

interesting example which uses the patient’s follow-up reports to predict the probabilities 

of graft loss up to 10 years after patient evaluation. Our tool can be developed in the similar 

manner but it will provide the classification of the patient survival and failure in the three 

different time-periods. 
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Appendix 
Table 21 Description of Dummy Variables 

Dummy Variables Description 

ahd1_0 minus 5 to pos 5 (D=R)  

ahd1_1 less than minus 15 (D<R) 

ahd1_2 minus 15 to minus 5 (D<R) 

ahd1_3 post 5 to pos 15 (D>R) 

ahd1_4 > pos 15 (D>R) 

dbmisimp_0 <18.5 

dbmisimp_1 18.5-<25 

dbmisimp_2 25-<30 

dbmisimp_3 30-<35 

dbmisimp_4 >35 

dcd_0 No 

dcd_1 yes 

ddm_0 No 

ddm_1 Yes 

dhcv_0 No 

dhcv_1 Yes 

dhtn_0 No 

dhtn_1 Yes 

dracesimp_1 White 

dracesimp_2 Black 

dracesimp_3 Other 

drage_1 minus 20 to pos 20 (D=R) 

drage_2 less than minus 20 (D<R) 

drage_3 greater than pos 20 (D>R) 

drcmv_1 Donor neg, recipient neg 

drcmv_2 donor pos, recipient pos 

drcmv_3 donor neg, recipient pos 

drcmv_4 donor pos, recipient neg 

drrace_1 donor white-recipient white (DWRW) 

drrace_2 donor black-recipient black (DBRB) 
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drrace_3 donor other-recipient other (DORO) 

drrace_4 DWRB 

drrace_5 DWRO 

drrace_6 DBRW 

drrace_7 DBRO 

drrace_8 DORW 

drrace_9 DORB 

drsex_1 male donor-male recipient (MDMR) 

drsex_2 female donor-female recipient (FDFR) 

drsex_3 MDFR 

drsex_4 FDMR 

drwt_1 minus 10 to pos 10 (D=R) 

drwt_2 10 to 30 (D>R) 

drwt_3 >30 (D>R) 

drwt_4 minus 10 to minus 30 (D<R) 

drwt_5 less than minus 30 (D<R) 

ecd_0 No 

ecd_1 Yes 

esrddxsimp_1 GN 

esrddxsimp_2 DM 

esrddxsimp_3 PCKD 

esrddxsimp_4 HTN 

esrddxsimp_5 Other 

functstat_1 1-100% no complaints 

functstat_2 90%-minor sx 

functstat_3 80%-some sx 

functstat_4 70%-unable to do normal activities 

functstat_5 60%-req assistance 

functstat_6 40%-disabled 

functstat_7 30%-severely disabled 

functstat_8 20%-very sick 

functstat_9 10%-moribund 

preemptive_1 Yes 
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preemptive_2 No 

prevki_0 No 

prevki_1 Yes 

rcad_1 No 

rcad_2 Yes 

rcvd_1 No 

rcvd_2 Yes 

rdm2_0 No 

rdm2_1 Yes 

REC_TX_PROCEDURE_TY

_101 Left Kidney 

REC_TX_PROCEDURE_TY

_102 Right Kidney 

rhtn_1 No 

rhtn_2 Yes 

rmalig_1 No 

rmalig_2 Yes 

rpvd_1 No 

rpvd_2 Yes 

rracesimp_1 White 

rracesimp_2 Black 

rracesimp_3 Other 
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

ahd1_0

ahd1_2

ahd1_4

dage

dcd_0

ddm_0

dhcv_0
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dracesimp_3

drage_2
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drwt_2
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dwt
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functstat_6
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hlamm_0

hlamm_2
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hlamm_6

preemptive_1

prevki_0

ragetx

rcad_1

rcvd_1

rdm2_0
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rht2100
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rwt2

Non Overlapped Cohorts GINI Feature Importance Scores 
(Complete)

3rd 2nd 1st


