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Abstract

The main goal of this research is to pave a new path to solve electric power system
problems from a realistic perspective. The problems covered in this dissertation are
power transmission lines, power flow (PF) analysis, economic load dispatch (ELD),
power and energy forecasting, optimal relay coordination (ORC), fault location, and
state estimation. In this journey, we try to push the borders by digging everywhere
to find other alternatives to precisely solve many existing real-world power system
problems. This study considers many hidden facts and phenomena.

To ensure accomplishing this ambitious task with some sorts of intelligence, ad-
vanced tools are involved; including traditional and meta-heuristic optimization al-
gorithms and machine learning (ML) computing systems. Some superior hybrid op-
timization algorithms and ML computing systems are developed.

The mission starts from the Telegrapher’s equations where the distributed- and
lumped-parameter transmission line models are built on. The realization phase is
done by considering the effects of surrounding weather, system frequency, load cur-
rent, and cable design/status/age. Some innovative techniques are proposed to solve
the inherent weaknesses in explaining the deviation in distributed series and shunt
parameters of lines with sag. This realization is applied to enhance the solutions of
PF, ELD, short-circuit analysis, power system stability and ORC problems.

To avoid tedious and highly time-consuming computational methods, a new set
of optimization-free/modeling-free techniques are designed to solve ELD problems.

Through the realization and integration phases, many new innovative ideas are
presented. Also, because many problems heavily depend on ML tools, so a new com-
puting system is designed to achieve the accuracy and precision criteria without losing
the explainability and interpretability criteria. That is, compromising between the
strengths of classical linear regression (LR) and nonlinear regression (NLR) analysis
and modern artificial neural networks (ANNs) and support vector machines (SVMs).

To judge the performance of each technique, many theoretical and real-world test

systems and datasets are used with considering different scenarios and conditions.
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Receiving-end current
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Operating time of the ith relay for the xth fault
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Safety margin
Clearing time
Critical time
Potential

The degradation rate of the k;th unit located in the
1th power station based on the equivalent operating
hours accumulated for that unit when the best fuel
mixture is used

Actual complex power magnitude flowing in the -
jth branch, where the subscript k& denotes the ob-
servation number

Bus rated voltage
Receiving-end voltage
Sending-end voltage
Generator terminal voltage
Peak voltage

Number of towers

Set of design variables, which is also called the de-
sign vector

Generator direct axis transient reactance
Transformer series reactance

Conductor capacitive reactance

Conductor nominal capacitive reactance
Conductor nominal inductive reactance

External inductive reactance

Total reactance between generator and infinite bus
Feasible individual

Line admittance

xliii



YBUS

I'-circuit

O (xz,t)
o

.3

a(T)

Qaluminum

"T-circuit

Nominal shunt admittance of the M-model
Center shunt admittance of the M-model

Left and right shunt admittance of the M-model
Characteristic admittance

Nodal admittance matrix

Line impedance

Nominal series impedance of the M-model

Left series impedance of the M-model

Right series impedance of the M-model

Left or right series impedance of the M-model under
leveled-spans scenario

Characteristic impedance

External impedance

Internal impedance

Set of m inequality constraints

Set of [ equality constraints

Temperature change

Length change of an overhead line due to AT
Length section of long-length transmission lines

A gamma-shaped circuit to represent the lumped
series and shunt parameters of transmission lines

External source to make wave PDE inhomogeneous

Penalty function of the jth emission rate applied to
the 7th power station

Randomly generated SVR hyperparameters
Conductor resistance temperature coefficient
Cooling function of SA

Resistance temperature coefficient of an aluminum
conductor

An opposite-gamma-shaped circuit to represent the
lumped series and shunt parameters of transmission
lines

xliv



Ciy(Piy) Operating cost of the ith multi-fuel-based unit
when the Jth fuel type is used without consider-
ing the valve-point loading effect

» Complex peak current
V, Complex peak voltage
a Attenuation constant
B Phase constant
Tbus i Distance estimated from the ith busbar to the fault

location F),

Bext Conductor external inductance temperature coeffi-
cient

Bint Conductor internal inductance temperature coeffi-
cient

E Energy of a system maintained in a thermal equi-
librium

Boltzmann’s energy probabilistic distribution
Temperature

Initial temperature

Reference temperature

Temperature constant

P

T

Ty

Ty

Ty

T, Ambient temperature
T Temperature at the kth zone

T, Surface temperature

TOO Average surrounding temperature
T, Wind chill

vabs Absolute temperature

X

Number of iterations assigned to the jth stage of
RSA

© j The jth external universal arithmetic operator as-
J<y signed to the jth and (j + 1)th blocks of UFO; it
could be +, —, X, +, etc

|Sg| Receiving-end apparent power

) Bus voltage angle

xlv



Vi ey J
!
0
n
n

lossless
77overall

lossy

overall
Te—m
Te—t

Te—t

Tim—e

v

Vi

Generator internal voltage angle

Gas turbine fuel volumetric flow-rate, which is ex-
pressed as a function of the prime-mover angular
speed

Total volumetric flow-rate of the M; fuels assigned
to the ¢th unit

Total volumetric flow-rate consumed of multiple fu-
els consumed by the slack unit of the ith power
station

Total volumetric flow-rate of multiple fuels con-
sumed by the k;th unit of the ith power station

Volumetric flow-rate of the Wth fuel assigned to
the ith unit

Volumetric flow-rate of the Jth fuel assigned to the
k;th unit of the ith power station

Decrease

Empty set

Line efficiency

Thermal expansion coefficient

Overall efficiency of a heating system without con-
sidering losses

Overall efficiency of a heating system with consid-
ering losses

Efficiency of a chemical to mechanical energy trans-
formation

Efficiency of a chemical to thermal energy transfor-
mation

Efficiency of an electrical to thermal energy trans-
formation

Efficiency of a mechanical to electrical energy trans-
formation

For all
Propagation constant

Propagation constant with respect to current

xlvi



9y (X)
9q(X)
Ugj &

~

Y
h

oco-model

V]

NI

Propagation constant with respect to voltage
B-coefficients
C-coefficients

Estimated operating cost of the ith unit as a func-
tion of the ith transformed active power

Estimated operating cost of the ith unit as a func-
tion of the ith active power

Estimated active power of the ith unit as a function
of the ith operating cost

Species turnover rate at equilibrium

Equivalent medium line lumped shunt admittance
obtained from the ABCD parameters of a lone line

Equivalent medium line lumped series impedance
obtained from the ABCD parameters of a lone line

The biggest functional constraint
The ¢th inequality or relaxed equality constraint

Estimated complex power magnitude flowing in the
1-jth branch, where the subscript k£ denotes the ob-
servation number

Regressed response
Number of hidden layers

A transmission line model designed based on an
infinity-shaped circuit of lumped series and shunt
parameters

Conductor shunt capacitance temperature coeffi-
clent

Conductor shunt resistance temperature coefficient
Immigration rate

Bus voltage magnitude

Dew point temperature

Equilibrium number of species

Jacobian matrix

Feasible

xlvii
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Erraps ;

Errlargest _ever

Objective function used to find the optimum poly-
nomial order of regression analysis

Number of observations

Gas pressure

Atmospheric pressure

Station pressure

Exhaust steam vacuum pressure
Pressure of moist air

Pressure of saturated water vapour
Death penalty multiplier

Total length of a transmission line

Total length of a nominal transmission line with no
sag, which is also the total spans between all the
towers of overhead lines

Total length of a sag transmission line

Status of the branch located between the ith and
Jth busbars

Total height of an overhead line tower
Clearance of an overhead line

Pressure of water vapour

Number of temperature-dependent branches
Number of load buses

Number of buses

Recommended population size for the building
stage of UFO when a population-based optimiza-
tion algorithm is used

Wound conductor relative pitch

Sag of an overhead line

Receiving-end power factor

Sending-end power factor

Absolute error of the fitness at the ith trial

The largest absolute error among all the trials
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Errmean

Errsmallesh _ever

Errstd,dev

Esvr
GER, (Pr)

MAL;

J
MALL
PS&HX

Psconf

P Scost
P S net

PSprod
RESw forecast
9 en(d)

Solglb
Solfab

[I-circuit
II-model

coef(

Mean absolute error
The smallest absolute error among all the trials
Absolute error standard deviation

Acceptable tolerance to stop the internal optimizer

of the SVR algorithm

Rate of the jth gas emission produced by all n units
to generate Pr

Rate of the jth gas emission produced by the k;th
unit of the ith power station when the best fuel
mixture is used

Maximum allowable limit of the jth gas exhausted
to the atmosphere from all n units

Maximum allowable limit of the jth gas exhausted
to the atmosphere from all the ith power station

Array of daily total power consumed by a power
station auxiliary equipment

Array of daily configuration dates of all power sta-
tion units

Array of daily total fuel cost of a power station

Array of daily net power delivered by a power sta-
tion

Array of daily total power produced by a power
station

Resolution or updating manner of a forecast where
w could be: hourly, daily, monthly, annually, etc

Residual sum of squares obtained from the dth or-
der polynomial equation

Global solutions table
Local solutions table

A pi-shaped circuit to represent the lumped series
and shunt parameters of transmission lines

An equivalent model to the long-length transmis-
sion line model using the II-circuit

Independent term, used in SVR for polynomial and
sigmoid kernels, which represents one element of T

xlix



rand

nGA

Ho
o
Hair

Ok,

C-model

D-model

I

Uniformly distributed random number
Micro Genetic Algorithm

Emigration rate

Permeability of free space

Conductor relative magnetic permeability
Permeability of air

Vacuum wave-number

The kth internal universal arithmetic operator as-

signed to the kth predictor of the jth block of UFO;
it could be +, —, x, +, etc

Number of local backup or main-2 DOCRs
Angular frequency

Nominal angular frequency

Wind direction

Wind speed

Penalized cost function

Proportional to

Conductor resistivity

Conductor resistivity at Ty

Nominal conductivity of a medium between two
conductors

Stefan-Boltzmann’s constant

A transmission line model designed based on an
subset-shaped circuit of lumped series and shunt
parameters

A transmission line model designed based on a
superset-shaped circuit of lumped series and shunt
parameters

Reciprocal of square root of time

Span between two towers, which is also the ideal
cable length or the tower-to-tower length

Length of a sag cable placed between two towers
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m

€o

Eair

TW;

S

¢
{Bi;, Boi, Boo }

Receiving-end current angle
Receiving-end voltage angle

Operating cost of the 7th unit at P, estimated by
interpolation techniques

Active power generated by the k;th degraded /weary
unit located in the ¢th power station when the best
fuel mixture is used

Active power generated by the k;th unit of the ith
power station when that unit is operated by the
best fuel mixture and its efficiency is degraded

Forecasted power demand
Shunt resistance at 7| o and fo

Net electrical energy output after subtracting the
losses ey, from e,/

Distance estimated from the 1%° terminal of the i-
jth branch to the fault location, which is obtained
by subtracting x, (i.e., the distance from the 2"
terminal to the fault location) from the total length
of the 7-jth branch

Forecasted response

Increase

Acceptable error or tolerance

Grey body emissivity

Permittivity of free space

Permittivity of air

Total number of prohibited operating zones
Prime-mover angular speed of the ith gas turbine

Number of DOCRs mounted in a mesh power net-
work

Number of stages needed to run RSA
Skin-depth

Loss-coefficients or B-coefficients

li



{CT[m, C'T[ib}
{Lij, Li}

{Mla MQ}
{PSY, PS;-”}

{PSiz, PSj.}

{PSZ-,PS]-}
{Pijv Pﬂ}
{Qij, Qji}

{Riv Rj}
(Rl 2P

(R RyeP
{Rij, Xij}
{Sij, Sji}

{TMSY, TMS}"}

{TMS;,, TMS;,}

These coordination time intervals are similar to
CTI;, except that the subscripts a and b are used
to denote main-1 and main-2 relays

Conjugate values of {I;;, [;;}

Complex current flowing between the ith and jth
busbars

Population before and after the migration stage

These plug settings are similar to {PS;, PS;}, ex-
cept that the superscripts y; and w; are used to
denote the technologies of the ¢th primary and the
7th backup relays

These plug settings are similar to {PS;, PS;}, ex-
cept that the subscript x is either a or b where a
means main-1 relay and b means main-2 relay

Plug settings of the ith primary and the jth backup
relays

Active power flowing between the ith and jth bus-
bars

Reactive power flowing between the ith and jth
busbars

The ith primary and the jth backup relays
Downward and upward ramp rate limits

Downward and upward ramp rate limits of the k;th
unit located in the sth power station when the best
fuel mixture is used

Resistance and reactance of the i-jth line

Complex power flowing between the ith and jth
busbars

These time multiplier settings are similar to
{TMS;,TMS;}, except that the superscripts y;
and u; are used to denote the technologies of the
1th primary and the jth backup relays

These time multiplier settings are similar to
{TMS;,TMS;}, except that the subscript z is ei-
ther a or b where a means main-1 relay and b means
main-2 relay
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{TMS;, TMS;}

/

{Ti,kv T]l,k}

(T3P 750)

Yi Uj
{17 T

{ﬂ,kﬂ Eak}

{Tiar, Tivn e }

{Vi, V;}
{5i75j}
{Sij,k> Sji,k}

EFRE

{1551, 155}

{1, 9}
{ig, i}

P 1@
ij’Dz’j

{D

{Lij L}

ijko

Time multiplier settings of the ith primary and the
7th backup relays

Operating time of the ith primary and the jth
backup relays for a fault occurring at the kth lo-
cation and during a transient network topology

Closest known lower and upper operating times of
the 7th relay measured near the actual fault location

These relay operating times are similar to
{T;x,Tj1}, except that the superscripts y; and u;
are used to denote the technologies of the ith pri-
mary and the jth backup relays

Operating time of the ith primary and the jth
backup relays for a fault occurring at the kth lo-
cation

These relay operating times are similar to 7T; ;, ex-
cept that the subscripts a and b are used to denote
main-1 and main-2 relays

Complex voltages at the ith and jth busbars
Voltage angles at the ith and jth buses

The kth apparent power estimates of the 1°° and
27 ends of the branch located between the ith and
gth busbars

Apparent power flowing between the ith and jth
busbars

Biggest apparent power flowing between the ¢th and
7th busbars

Power angles at the ith and jth buses

[EC/BS-based coefficients respectively used to cal-
culate the operating times of the ith primary and
the jth backup relays, for a fault occurring at the
kth location, when their plug settings are kept con-
stant

Active and reactive power flow directions of the
branch located between the ith and jth busbars

The kth thermal indices of the 1% and 2°! ends of
the branch located between the ith and jth busbars
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{0i7 ej}
{%’,k, %’,k}

{192‘? ﬂj}

{PS;, PS;}

{&,¢}

{hi: ho}
{i1, 42}
{v1, v2}

i? b
{wakawjbk}

clb ,.cub
{‘T] ij

{?Jz', Uj}

{yij7 yji}

o,j

Qk,j

Current angles at the ith and jth buses

ANSI/IEEE-based coefficients respectively used to
calculate the operating times of the ith primary
and the jth backup relays, for a fault occurring at
the kth location, when their plug settings are kept
constant

Coefficients used, with either the IEC/BS or the
ANSI/IEEE standard, to calculate the operating
times of the ith primary and the jth backup relays,
respectively, when their time multiplier settings are
kept constant

Transformed plug settings obtained at the kth fault
location for the i¢th primary and the jth backup
relays, respectively

ANSI/IEEE-based coefficients respectively used to
calculate the operating times of the ith primary and
the jth backup relays when their time multiplier
settings are kept constant

Inside and outside surface convective coefficients
Incident and reflected current; in the time-domain
Incident and reflected voltage; in the time-domain

These weights are similar to w;y, except that the
subscripts 2a and b are used to denote main-1 and
main-2 relays

Closest lower and upper bounds or points prede-
fined near the actual fault location

Technologies used in manufacturing protective re-
lays; which can be electromechanical, static, elec-
tronic “hardware-based”, or numerical “software-
based” relays.

Series admittance between the ith and jth busbars

Intercept of the jth block of UFO; where ap; €
[ min max]

Qo5 5 Go,g
The kth weight assigned to the kth predictor lo-
cated in the jth block of UFO; where a;; €

[ min max]

O,j s A 5
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b j

Co

elit

[ (@)

I (i)

f best_ever

fbest,i

The kth exponent assigned to the kth predictor
located in the jth block of UFO; where b, ; €

g 2

Per-unit-length capacitance
Speed of light in vacuum

Exponent assigned to the jth analytical function
fj located in the jth block of UFO; where ¢; €

[C;-nin, C}nax]

Shunt capacitance at the kth zone

Chemical energy output

Polynomial degree

Distance Value

Penalty multiplier for the pth equality constraint
Electrical energy losses

Electrical energy output

elite solutions

Analytical function, where f(X) means a depen-
dent variable or function of X

Regular frequency
Exact global optimal solution

Active fuel-cost function when the i¢th gas turbine
is not connected to the grid

Reactive fuel-cost function when the 7th gas turbine
is not connected to the grid

Nominal regular frequency

Active power generated by the ith unit, which is
expressed as a function of the total volumetric flow-
rate of the M fuels assigned to that unit

Analytical function assigned to the jth block of
UFO; it could be 1 x (), 1/(), sin(), cos(), cot™(),

cosh(), ecsch™(), exp(), In(), log,(), log,,(), etc

The best ever fintess among all the trials (i.e., the
best of the best)

Estimated global optimal solution at the ith trial

lv



f mean
f std_dev

f worst_ever

fmax
fmin

Mean of all fi,e obtained from T, runs
Fitness standard deviation

The worst ever fintess among all the trials (i.e., the
worst of the best)

The largest element of f
The smallest element of f
Per-unit-length conductance

Active fuel-cost function when the ith gas turbine
is connected to the grid

Reactive fuel-cost function when the ith gas turbine
is connected to the grid

Function occupied by the jth block of UFO
Shunt conductance at the kth zone

The gth inequality constraint

Heat transfer coefficient

The pth equality constraint

Current along a transmission line; in the time-
domain

Fault location

Skin correction factor

Thermal conductivity

Boltzmann’s constant

Number of fault locations specified on one line
Per-unit-length inductance

Per-unit-length inductance at Ty

Total length of the line located between the ith and
7th busbars

Length of one spiral turn of a wound conductor
Mutation rate

User-defined maximum mutation rate
Mechanical energy output

Number of generating units
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Nair

Refractive index of air
Heat

Conductor radius
Per-unit-length resistance

Penalty hyperparameter of the SVR error term,
which represents one element of T

Equivalent radius of multiple conductors per bundle
Conductor resistance at the kth zone

Penalty multiplier for the gth inequality constraint
Per-unit-length resistance at w and Ty

Layer radius

Ratio of the Jth fuel assigned to the ith multi-fuel-
based unit

Ratio of the Jth fuel assigned to the k;th unit of
the ith power station

Variance

Geometric series sum of ¢ terms
Time

Thermal energy losses
Time in days

Time in hours

Time in months
Thermal energy output
Clouds

Dust

economic growth

Operating cost of the ith unit, which is expressed
as a function of the total volumetric flow-rate of the
M fuels assigned to that unit

Sun rays

Social and political events
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3

bsxfun

compet
elliotsig
hardlims
hardlim
logsig
netinv
poslin

purelin

Voltage across a transmission line; in the time-
domain

Indication of constraint violations
Weight assigned to the jth block of UFO; where

w; € [w;nm, w;nax]

Fault probability that might happen at the kth lo-
cation of a branch protected by the ith relay

Specific distance of a transmission line

Fault location, which is expressed as a function of
the operating time of the ith relay

Conductor inductive reactance at the kth zone
Per-unit-length shunt admittance

Shunt admittance at the kth zone
Per-unit-length impedance

Sector impedance before sag

Half sector impedance of the M-model under
leveled-spans scenario

Conductor impedance at the kth zone

Number of layers; including: input, hidden, and
output layers

Number of branches in an electric power network

A MATLAB function that applies an element-wise
operation to two arrays with implicit expansion en-

abled

Competitive transfer function

Elliot sigmoid transfer function
Symmetric hard limit transfer function
Positive hard limit transfer function
Logarithmic sigmoid transfer function
Inverse transfer function

Positive linear transfer function

Linear transfer function
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radbasn
radbas
satlins
satlin
softmax
tansig
trainbfg

traincgb

traincgf

traincgp

traingda

traingdm

traingdx

traingd
trainlm
trainoss
trainrp
trainscg
tribas
1o

2003

3¢

A&C
AAAC
AAC

Radial basis normalized transfer function
Radial basis transfer function

Symmetric saturating linear transfer function
Positive saturating linear transfer function
Soft max transfer function

Symmetric sigmoid transfer function

BFGS quasi-Newton training algorithm

Conjugate gradient with Powell/Beale restarts
training algorithm

Fletcher-Powell conjugate gradient training algo-
rithm

Polak-Ribiére conjugate gradient training algo-
rithm

Gradient descent with adaptive learning rate train-
ing algorithm

Gradient descent with momentum training algo-
rithm

Variable learning rate gradient descent training al-
gorithm

Gradient descent training algorithm
Levenberg-Marquardt training algorithm
One step secant training algorithm

Resilient backpropagation training algorithm
Scaled conjugate gradient training algorithm
Triangular basis transfer function
Single-phase

2 out of 3

Three-phase

Automation and Control
All-Aluminum-Alloy-Conductor

All-Aluminum-Conductor
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ABC
ABCD
AbsDiff
AC
ACAR
ACO
ACSR
Adam
AE
AGC
Al
AMI
AMDMs

AMN
ANM
ANN
ANSI
APL
APPSO

AR

AR
ARIMA
ARIMAX

ARMA
ARMAX

ART
AVC

Artificial Bee Colony

Two-port network matrix elements
Absolute Difference

Alternating Current
Aluminum-Conductor-Alloy-Reinforced
Ant Colony Optimization
Aluminium-Conductor-Steel-Reinforced
Adaptive Moment Estimation
AutoEncoder

Automatic Generation Control
Artificial Intelligence

Advanced Metering Infrastructure

Al-Roomi’s Mathematical Machines, which include
UFO, UTU, UTR (ULR and UNR), SFM, AMN,

MNR, and MAM.

Artificial Mathematical Network
Active Network Management

Artificial Neural Network

American National Standards Institute

Adaptive Piecewise Linear

Adaptive Personal-best oriented Particle Swarm

Optimization
Additive Regression

Auto-Regressive

Auto-Regressive Integrated Moving Average
Auto-Regressive Integrated Moving Average with

eXogenous variables

Auto-Regressive Moving Average

Auto-Regressive Moving Average with eXogenous

variables
Adaptive Resonance Theory
Automatic Voltage Control

Ix



AWG

BA

BBBO
BBO
BBO-ANN

BBO-EM
BBO-LP
BBO/DE

BFO
BP
BP/EA
BReLU
BREP
BS
BS-EPF
Btu

C-inspection
C&l1

CA

CAC

CB

CCPP
CDEMD

CEP

American Wire Gauge

Bat Algorithm
Blended Biogeography-Based Optimization
Biogeography-Based Optimization

Biogeography-Based Optimization - Artificial Neu-
ral Network

Biogeography-Based Optimization with Essential
Modifications

Biogeography-Based Optimization - Linear Pro-
gramming

Biogeography-Based Optimization/Differential
Evolution

Bacterial Foraging Optimization
Back-Propagation
Back-Propagation/Evolutionary Algorithm
Bipolar Rectified Linear Unit

Bagging Reduced-Error Pruning tree
British Standards

Binary Static-Exterior Penalty Function

British thermal unit

Major overhaul maintenance
Control and Instrumentation
Contingency Analysis
Context Aware Crossover
Circuit Breaker
Combined-Cycle Power Plant

Cultural Differential Evolution approach using a
measure of population’s Diversity

(Classical Evolutionary Programming

Ixi



CGA-MU
CGP/SA

CL
CNN
CO
CO-x

CO,
COA

Comb-model

COx
CPU
CSO
CST
CT
CTCC
CTI
CTR
Ccv

DC
DCOCR
DCS

DD

DE
DER
DEU

Conventional Genetic Algorithm with Multiplier
Updating

Cellular Genetic Programming/Simulated Anneal-
ing

Confidence Level
Convolutional Neural Network
Carbon Monoxide

Circuit Opening, where x € {2,5,6,7,8,9,11},
which are brands of the Westinghouse’s electrome-
chanical OCRs

Carbon Dioxide
Combinatorial Optimization Algorithm

A transmission line model designed based on a
comb-shaped circuit of lumped/distributed series
and shunt parameters

Oxides of Carbon

Central Processing Unit

Civilized Swarm Optimization
Common Storage Tank

Current Transformer
Current-Time Characteristic Curve
Coordination Time Interval
Current Transformer Ratio

Control Valve

Direct Current

Definite-Current Over-Current Relay
Distributed Control System
Dynamic Demand

Differential Evolution

Distributed Energy Resources

Dimension Expansion Unit

Ixii



DF
DFR
DG
DL
DLR
DM
DMS
DNP
DOCR
DP
DPRS
DPSO
DRU
DSP
DTCC
DTOCR

EA
EBFO
EHG
ELD
ELR
ELU
EMS
EOC
EOH
EP
EPA
EPF

Degrees of Freedom

Digital Fault Recorder

Distributed Generation

Deep Learning

Dynamic Line Rating
Discrimination Margin

Distribution Management System
Distributed Network Protocol
Directional OverCurrent Relay
Dynamic Programming

Double Primary Relay Strategy
Decisive Particle Swarm Optimization
Dimension Reduction Unit

Digital Signal Processor
Distance-Time Characteristic Curve

Definite-Time Over-Current Relay

Evolutionary Algorithm

Effective Bacterial Foraging Optimization

Electro-Hydraulic Governor
Economic Load Dispatch

End of Line Resistor

Exponential Linear Unit

Energy Management System
Equivalent Operating Cycles
Equivalent Operating Hours
Evolutionary Programming
Environmental Protection Agency

Exterior Penalty Function

Ixiii



Equals-Sign-model

ESN
ETLBO

EV
EV Burners

F&G

FA

FACTS
FAPSO-NM

FAPSO-VDE

FC
FCL
FEP
FGS
FME
FPZ
FS
FSA
FSNL

GA
GA-PS-SQP

GAB
GAF

A transmission line model designed based on an
Equals-Sign-shaped circuit of lumped series and
shunt parameters

Echo State Network

Elitism-based Teaching-Learning-Based Optimiza-
tion

Electric Vehicle

EnVironmental Burners

Fire and Gas
Fault Analysis
Flexible AC Transmission System

Fuzzy Adaptive Particle Swarm Optimization algo-
rithm with Nelder—-Mead simplex search

Fuzzy Adaptive Particle Swarm Optimization al-
gorithm with Variable Differential Evolution algo-
rithm

Feasibility Checker

Fault Current Limiter

Fast Evolutionary Programming
Faculty of Graduate Studies
Fourier-Motzkin Elimination
Fault Probability Zone

Fuzzy Systems

Fast Simulated Annealing

Full-Speed No-Load

Genetic Algorithm

Genetic Algorithm - Pattern Search - Sequential
Quadratic Programming

Binary Genetic Algorithm
Floating-point Genetic Algorithm

Ixiv



GD
GER
GHP
GMD
GMR
GN
GNU
GP
GPS
GSA
GT
GUI

H-PSO
HART
HMI
HRSG
HSI
HVDC
HW

I-model

I/0
IBk
IBT
ICA
ID
IDMT

Gradient Descent

Gas Emission Rate
Geothermal Heat Pump
Geometrical Mean Distance
Geometrical Mean Radius
Gauss-Newton

GNU’s Not Unix

Genetic Programming
Global Positioning System
Gravitational Search Algorithm
Gas Turbine

Graphical User Interface

Equality constraint

Hierarchical Particle Swarm Optimization
Highway Addressable Remote Transducer
Human-Machine Interface

Heat Recovery Steam Generator

Habitat Suitability Index

High-Voltage Direct Current
Holt-Winters” model

A transmission line model designed based on an ie-
shaped circuit of lumped series and shunt parame-
ters

Input/Output

Instance-Based /k-nearest neighbor algorithm
Inter-Bus Transformer

Independent Component Analysis

Inner Diameter

Inverse Definite Minimum Time

Ixv



IEC

IED
IEEE
IFEP
IFPE
IGA-MU

IGV
ILP
IOCR
IoT
IPF
ISDA
ISI
ISRLU
ISRU
IT
ITOCR

Jr

K*
KBES
KCL
kNN
KVL

L-BFGS

L-G Fault
L-L Fault

International Electrotechnical Commission
Intelligent Electronic Device

Institute of Electrical and Electronics Engineers
Improved Fast Evolutionary Programming
Instruments-Free Power Estimator
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Chapter 1

Introduction

A century ago, pioneers (such as Edison, Tesla, Heaviside, etc) were working to pave
the first infrastructure of what it is now known as electric power systems® [80, 139,
244,268]. From that time until now, many other pioneers (such as Nathan Cohn,
Leon Kirchmeyer, Thomas E. DyLiacco, William F. Tinney, and Lester H. Fink)
were continuously working to develop some new methods and approaches to solve the

inherent problems and weaknesses faced in those old systems [109, 123].

During the last two decades?, many advanced techniques and technologies have
been either theoretically proposed or practically employed to enhance the opera-
tion of existing electric power systems and how they can be effectively monitored,
controlled, and protected. In reality, electric power systems cannot be efficiently op-
erated without considering the real variables that have direct and indirect effects on
the overall performance and accuracy [209, 326, 386,399]. Also, most of the tech-
niques proposed by these pioneers and other leading researchers are presented for
some specific applications. For example, if a design is suggested to be exclusively
used for protection purposes, then its side effects on other power systems analysis
cannot be predicted if a lack of information is faced with that design [52,301]. Actu-
ally, modern power systems are highly interconnected between each other and they
are a result of an integration of many disciplines and fields of science. To show
how this research area is highly complex, a graphical overview is illustrated in Fig-

ure 1.1 [52,109, 123,209, 301, 326, 386, 399)].

As can be clearly seen from this figure, electric power systems engineering can be

seen as a combination or mixture of different branches and disciplines of engineering

!Electric power systems consist of three principal parts: generation, transnimission/sub-
transmission, and distribution systems.
2This period is called the digital or information age.
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(including electrical and electronics, communication, computer, process instrumenta-
tion and control, mechanical, and chemical), pure and applied mathematics, theoret-
ical and applied physics, computer and data science, etc®. From this fact, someone
may observe that there are a few studies presented in the literature to cover some
of these interconnected topics. This means that the door is widely opened to the
researchers who have the ability and capability to conduct their researches on these
stages as one realistic design. We believe that such designs must be established to
meet the requirements of modern highly complicated power systems. This forces us to
employ many advanced methods and utilizing many practical skills and experiences.
Merging these two essential parts in our realization process can reveal many hidden
facts and phenomena and can effectively minimize the current gap between the real-
world problems and their mathematical models. Also, this approach can point out the
flaws associated with many well-established mathematical models that are presented
in the literature and considered as the backbone of many other power system prob-
lems. Furthermore, some significant modifications and/or replacements can be made
to enhance the system performance with more accuracy. This can lead us to some
completely new promising achievements where theoretical and practical problems can
be addressed and then solved by some innovative smart tools and methods. All these
things can be directly and indirectly reflected on many future power products where
the four important criteria (simplicity, optimality, feasibility, and processing speed)

are satisfied.

1.1 Motivations

Selecting this challenging Ph.D. topic is made based on my personality that loves
to think outside the box and flees from flying with the swarm. It does not like to

stick with the traditional ways and tries its best to find other possible approaches to

3If someone looks into it from the optimization side, then he/she may find that there is a new
specialized field called “Multidisciplinary Design Optimization (MDQO)”. It is also known as “Multi-
disciplinary System Design Optimization (MSDO)”. It is a field of engineering, which uses optimiza-
tion techniques to solve design problems incorporating a number of disciplines. This field is just one
stage of our broad journey! Here, we are dealing with everything; analytical methods, numerical
methods, inspecting the current techniques, investigating the effects of hidden and neglected phe-
nomena, merging existing topics, suggesting new topics, raising our concerns, proposing our ideas,
and finally presenting our innovative and novel solutions.
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Integrating all the above topics to realize the actual systems

Figure 1.2: Background Timeline Before Joining Dalhousie University

achieve the same objectives. I made that decision based on my background history

in academic and industrial areas. These areas are depicted in Figure 1.2.

I strongly believe that the path to get some innovative ideas and leading stud-
ies is by merging different fields of electric power systems engineering; as shown in
Figure 1.3. Moreover, other engineering disciplines cannot be ignored! For exam-
ple, Figure 1.4 shows four different engineering disciplines. Mechanical engineering
is important to study the heat transfer and fluid transport of thermal generating
plants (such as steam turbines, gas turbines, diesel generators, etc). Chemical en-
gineering is important to study the reaction inside combustion chambers, fouling in
heat-exchangers, corrosion in metallic materials, etc. Instrumentation and control
(C&I) engineering is important to see the complete automation picture from the field

level to the supervisory level in every part of electric power systems. Furthermore,



Figure 1.3: Merging Different Fields of Electric Power Systems Engineering

because engineering is the use of scientific principles to design and build things, so
the other disciplines (such as mathematics, physics, and computer and data science)

are also highly important.

1.2 Objectives and Goals

To sum all the preceding points, the objectives and goals from doing this Ph.D. are

split into five main streams:
1. Creating superior hybrid optimization algorithms.

2. Realizing electric power systems and integrating topics from different fields and

disciplines®*.

3. Embedding artificial intelligence (AI) algorithms to find more efficient solutions

to some power system problems.

4. Developing innovative machine learning (ML) computing systems.

4The optimization algorithms designed before will be used to solve unrealistic and realistic opti-
mization problems.
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Figure 1.4: Interconnection Between Different Disciplines of Engineering

5. Designing novel optimization-free/modeling-free techniques.

The following subsections describe these five streams in detail:

1.2.1 Designing Superior Optimization Algorithms

Finding the best solutions to complex engineering problems cannot be achieved with
traditional mathematical analysis. They need some special tools called optimization
algorithms to find the minimum or maximum values based on the statements given in
the problem. In the past, the researchers did not have another choice except to use the
classical optimization algorithms. Because the state-of-the-art mathematical models
are very complex, so obtaining the best optimal values cannot be attained, or precisely
very hard to be obtained, using these algorithms. Also, coding them in computing
machines require high efforts from the researchers. Thus, some pioneers suggested
new optimization algorithms that are built based on some mechanisms inspired by
nature. These algorithms come with different names, such as nature-inspired al-
gorithms, evolutionary algorithms, meta-heuristic algorithms, stochastic algorithms,
modern optimization, non-traditional optimization, etc. For example, genetic algo-

rithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO),
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biogeography-based optimization (BBO), differential evolution (DE), simulated an-
nealing (SA), artificial bee colony (ABC), and wasp swarm optimization (WSO) are

some types.

In this part, our mission is to design new hybrid optimization algorithms, so
the strengths of each individual algorithm can be integrated and at the same time,
their weaknesses can be eliminated or minimized. Then, validating the performance
of these proposed superior algorithms by using a wide range of popular benchmark
functions®. The evaluation process should be carried out using different statistical

tests and sensitivity analysis.

Here, the hybrid approaches will be between classical and meta-heuristic opti-
mization algorithms. Linear programming (LP) and nonlinear programming (NLP)
will be used for the first category. For the second one, BBO, SA, and DE are used.
Some of them will be double-hybrid approaches, while others will be triple-hybrid
approaches. The goal of hybridizing two meta-heuristic optimization algorithms is to
have a good balance between the exploration level and the exploitation level. The
implementation of LP or NLP is to have a local optimizer; or, in other words, to act
as a fine-tuning stage. These hybrid optimization algorithms will be used to solve
many ELD and ORC problems. Some of them are continuous problems, and some

others are mixed-integer and combinatorial problems.

The BBO algorithm will also be used to optimize the hyperparameters of feed-
forward neural networks to have precise energy forecasting results; for some datasets
taken from Nova Scotia Power Inc. Furthermore, the primitive random search algo-
rithm (RSA) is modified by embedding a multi-start strategy with a sub-algorithm

to minimize its search space in each new start.

For some of our novel ML computing systems covered in Subsection 1.2.4, BBO
and DE can be hybridized with the opposition-based learning (OBL) algorithm before
being used to build the overall MLL model. For the curve fitting stage, the classical
tools will be the ordinary least squares (OLS) algorithm, the trust-region reflective

(TRR) algorithm, and Levenberg-Marquardt (LM) algorithm.

5Tt has to be said that hundreds of these benchmark functions have been revised and published
in my comprehensive repository that can be logged-in via the link: https://www.al-roomi.org.


https://www.al-roomi.org

1.2.2 Power System Realization and Integration

In this phase, the goal is to realize many power system studies presented in the lit-
erature. It starts from the Telegrapher’s equations®, which have a major impact on
power transmission lines and their precise distributed parameter models. Realizing
transmission lines have a direct impact on power flow (PF) analysis, which is consid-
ered as the backbone of many other power system studies, such as optimal power flow
(OPF), power system operation and control, power system security and contingency,
state estimation, power system dynamics and stability, fault analysis, power system
protection, load forecasting, electricity market, etc [49,57-59,64,65,109,123,149,155,
156,162,175,211,213,291,301,311, 326, 386,399]; which are depicted in Figure 1.1 and
Figure 1.3. These are some prospective areas of our research. The techniques used in
smart grids [325], renewable energy [6,365,383], and energy storage elements [215,383]
could be included as extensions of the preceding conventional models.

In our realization mission, we will study many hidden variables, such as the sur-
rounding temperature, pressure, humidity, aging of electrical components, etc, and
their impacts on the overall performance. This means that many topics from various
disciplines will be covered, such as heat transfer, fluid transport, instrument devices,
etc, with the help of regression analysis and other ML tools.

Therefore, the gap between the actual problems and the corresponding mathemat-
ical models presented in the literature (as books, chapters, technical reports, journals,
conferences, websites, software, etc) can be effectively minimized. Based on this, the
confidence level of electric power systems modeling and the dependability on energy
companies and industries can be increased. Such studies can be considered as bases of
future infrastructures for prospective next-generation smart grids and modern electric
power systems. Focusing on these highly important researches can shape our under-
standing of electric power systems engineering and the interconnections and relations
with other branches of science.

The integration phase is done by merging different topics into one. That is,
creating new topics from existing topics. This approach can open the door wide to

conduct many types of research and being a pioneer in many future areas. As said

SThese partial differential equations are known in mathematics as the Telegrapher’s equations.
These equations have many applications in applied mathematics and electrical engineering [205,259].



before, many proposals are raised in this stream of our Ph.D. research.

1.2.3 Embedding AI Tools

In electric power system problems, many types of uncertainty could happen at any
time. Thus, by just depending on the existing classical- and nature-inspired optimiza-
tion algorithms will not help to solve the subjectively judged problems. For example,
some phenomena of real electric generators are mathematically modeled based on
some data collected from sensors and judgments of expert engineers where the set-
tings of some unknown /ignorable variables are approximated and compromised”. The
main question that should be raised here is: How can we ensure that these observed

data, judged models, and approzimated/compromised settings are 100% correct?

Therefore, hybridizing Al computing systems with classical and evolutionary op-
timization algorithms could solve many real-world technical problems with some
promising results. For example, artificial neural networks (ANNs) and support vector
machines (SVMs) have some distinct capabilities where, through their learning pro-
cess, good results could be obtained smartly without referring to any highly accurate

mathematical models.

1.2.4 Developing Innovative ML Computing Systems

The goal of this phase is to try to design new computing systems that can merge
the strengths of linear regression (LR) and nonlinear regression (NLR) with Al-based
techniques. For example, classical regression techniques can provide good explana-
tions and interpretations for simple datasets, but they lack the accuracy for com-
plicated datasets; and vice versa for ANNs and SVMs. Our novel ML computing
systems are supposed to generate highly accurate models without facing any lin-
earization problem (as faced in LR), a user-defined model with its initial coefficients
and their side constraints (as faced in NLR), and without trapping into the black-box
issue (as faced in ANNs and SVMs).

"This could be due to the dynamic nature of the surrounding weather conditions and market.
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1.2.5 Designing Novel Optimization-Free & Optimization-Free /
Modeling-Free Techniques

The main issue associated with optimization-based techniques is that precise math-
ematical models are required to explain the variability of real-world problems, and
then these models need to be optimized effectively and correctly. This is why elec-
tric power systems engineering is considered as one of the most complicated fields in
engineering.

Here, we are trying to find some root solutions to these very stiff/headache prob-
lems by designing totally different techniques that can handle these problems with-
out implementing any optimization algorithm; and sometimes, without even using
any precise model. The operating principles of these algorithms are based on execut-
ing some steps to create big real data, then filtrating infeasible settings, and finally

sorting the best feasible settings. Actually, we have partially succeeded in ELD.

1.3 Main Contributions

This dissertation contains many contributions that have been successfully achieved

toward each one of the preceding five goals. The main contributions are listed below:

1. Different highly powerful hybrid optimization algorithms are successfully de-
signed. Some of them are between meta-heuristic optimization algorithms and
the others between meta-heuristic and classical optimization algorithms. Some

of them are double-hybrid schemes and the others are triple-hybrid schemes.

2. One of the preceding superior hybrid optimization algorithms is applied to solve
some standard ELD problems and it beats all the best records known in the

literature.

3. The regression transformation technique is applied to the classical optimal relay
coordination (ORC) model so that the time multiplier settings can be fixed to
have a linearized objective function that can be further minimized by tuning

the plug settings via integer linear programming (ILP).

4. The infeasibility of multiple time-current characteristic curves (TCCCs) of ex-

isting ORC problems is solved by searching for the optimal unified TCCC for
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all the relays.

. The biogeography-based optimization (BBO) algorithm is hybridized with a

classical feed-forward ANN so that its hyperparameters can be optimized. This
hybrid ML algorithm is applied to forecast some Nova Scotian heat consumption

profiles.

. A basic random search algorithm (RSA) is hybridized with a standard support

vector machine (SVM) so that its hyperparameters can be optimized. This
hybrid ML algorithm is applied to forecast the peak-load of Nova Scotia during
Winter 2018-2019.

A new precise lumped-parameter transmission line model, called the M-model,
is presented and its performance is evaluated against all the known standard

models. This new model excelled in most performance criteria.

. A comprehensive realization study is done in ideal transmission lines to inte-

grate the effects of the surrounding weather conditions (temperature, humidity,
pressure, etc), system frequency, load current, and cable design/status/age.
This study includes many uncovered phenomena that might affect the values of

distributed series and shunt parameters.

. The preceding M-model is applied to solve the difference in values of ideal and

sag transmission line parameters by using two innovative ways.

This is the first time in the literature to mathematically estimate the induc-
tance, capacitance, and conductance temperature coefficients of sag transmis-
sion lines. Three innovative approaches are introduced with/without knowing

the conductor temperature and with/without involving the heat transfer topic.

Applying some of the preceding transmission line realizations to solve different

power system problems.

Realizing the classical ELD model to include many hidden real-world challenges
and technical problems. This study shows, with some proofs, that all the ex-
isting ELD models could violate the optimality and/or the feasibility criteria.

Thus, a completely new non-traditional ELD model is presented.
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The classical ORC model is realized by considering different relay technologies®.

The classical ORC model is realized by considering the double primary relay
strategy (DPRS) where each bus is protected by main-1 and main-2 relays®.
This real phenomenon has not been covered in the literature yet, so a new
mathematical model is presented where the dimension of this non-conventional

ORC problem is larger and thus much harder to be solved.

This is the first time in the literature to apply ANNs to estimate the power flow
magnitudes, directions, and losses with satisfying the power balance equation
of ELD. These estimators need just to know the power inputs and outputs (i.e.,
generators and loads) and the status of network branches to provide their highly

precise estimations.

This is the first time in the literature to solve ELD problems without using any

optimization algorithm.

This is the first time in the literature to solve ELD problems without using
any optimization algorithm or mathematical model’®. The method is applied

to solve a real ELD problem and it shows an encouraging result.

A new transformation-based non-piecewise linear fuel-cost model is developed.
This model can compete with quadratic and cubic models and at the same time,
it can be optimized by LP. Also, it is much simpler and faster than the classical

piecewise linear model.

The fuel-cost function is borrowed from power system operation and utilized in
state estimation to provide an indirect backup measurement of power generated
by thermal units. Then, the well-known “2 out of 3” voting logic is borrowed
from C&I engineering to compare the signals received in both energy manage-

ment and automation systems; i.e., EMS and SCADA/DCS. This approach

8

i.e., electromechanical, solid-state, digital, and numerical technologies.

9Some references called them primary and local-backup relays.

10ANNs and SVMs can solve ELD problems without referring to any mathematical model, but
they contain internal optimization algorithms coded in the learning stage. Also, employing ML tools
in place of optimization algorithms will complicate the process, and thus it violates the simplicity
criterion.



20.

21.

22.

23.

24.

13

can ensure that precise information is shared between power system operation,
protection, state estimation, control, and automation; which has a significant

impact on the overall performance.

Some possible approaches are presented to trade non-electric energy sources in
the next-generation smart grids. The study proposes to install smart pipelines
in parallel with powerlines. These pipelines can deliver hot water from thermal
solar collectors, hot/cool air from geothermal heating/cooling systems, methane
gas from biomass units, and wood fuel from public logs warehouses (PLWs). In
this study, a heat-transfer analysis is covered to show the effects of pipe di-
ameter, pipe material, insulation material, and surrounding weather conditions
across different pipeline lengths. This study proposes many modifications and
extensions towards the classical models used in ELD and unit commitment (UC)

studies.

It proposes to use linear heat sensors (LHS), taken from fire and gas (F&QG)

systems, as a very cheap alternative to existing electric power protective devices.

The classical TCCC is transposed to act as a current-time characteristic curve
(CTCC), and then to a distance-time characteristic curve (DTCC) to locate
faults in mesh networks. In this study, the operating times and fault type,
detected by the two-end numerical directional overcurrent relays (DOCRs), are
utilized to precisely approximate the fault locations by using interpolation- and

regression-based models.

A novel ML computing system called “universal functions originator (UFO)” is
presented. This system can approximate functions by generating highly precise
linear and nonlinear mathematical models, and thus it can act as a general
LR/NLR unit. UFO can achieve the accuracy and precision criteria without

losing the explainability and interpretability criteria.

The UFO computing system is successfully hybridized with LR and SVMs to act
as a universal transformation unit (UTU). This unit is hybridized with ANNs

as a “calibration layer” to take care of the nonlinearity of the given dataset
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before being processed. The study also proposes some possible highly advanced
UFO-based frameworks that could be designed in the future.

25. All the preceding UFO and UFO-based ML computing systems are successfully
implemented to solve some power system problems; particularly, predicting elec-

tric power and locating faults.
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2. A. R. Alroomi and M. E. El-Hawary, “Optimal Coordination of Directional Overcurrent
Relays Using Hybrid BBO/DE Algorithm and Considering Double Primary Relays Strategy,”
in 2016 IEEE FElectrical Power and Energy Conference (EPEC), Ottawa, ON, 2016, pp. 1-7,
2016.

3. A. R. Al-Roomi and M. E. El-Hawary, “A New Technique to Locate Faults in Distribution
Networks Based on Optimal Coordination of Numerical Directional Overcurrent Relays,” in
2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE),
Windsor, ON, 2017, pp. 1-6.

4. A. R. Al-Roomi and M. E. El-Hawary, “Optimal Coordination of Directional Overcurrent Re-
lays Using Hybrid BBO-LP Algorithm with the Best Extracted Time-Current Characteristic
Curve,” in 2017 IEEE 30th Canadian Conference on FElectrical and Computer Engineering
(CCECE), Windsor, ON, 2017, pp. 1-6.

5. A. R. Al-Roomi and M. E. El-Hawary, “A New Realistic Optimization-Free Economic Load
Dispatch Method Based on Maps Gathered from Sliced Fuel-Cost Curves,” in 2017 IEEE 30th
Canadian Conference on FElectrical and Computer Engineering (CCECE), Windsor, ON, 2017,

pp. 1-6.

6. A. R. Al-Roomi and M. E. El-Hawary, “A Novel Multiple Fuels’ Cost Function for Realistic
Economic Load Dispatch Needs,” in 2017 IEEE Electrical Power and Energy Conference
(EPEC), Saskatoon, SK, 2017, pp. 1-6.



10.

11.

12.

13.

14.

15.

16.

17.

15

A. R. Al-Roomi and M. E. El-Hawary, “Effective Weather/Frequency-Based Transmission
Line Models—Part I: Fundamental Equations,” in 2017 IEEE FElectrical Power and Energy
Conference (EPEC), Saskatoon, SK, 2017, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Effective Weather/Frequency-Based Transmission
Line Models—Part II: Prospective Applications,” in 2017 IEEE Electrical Power and Energy
Conference (EPEC), Saskatoon, SK, 2017, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Metropolis Biogeography-Based Optimization,” in
Information Sciences, vol. 360, pp. 73-95, Sept. 2016.

A. R. Al-Roomi and M. E. El-Hawary, Economic Load Dispatch Using Hybrid MpBBO-SQP
Algorithm, in: Nature-Inspired Computation in Engineering (X.-S. Yang, editor) Springer
International Publishing, pp. 217-250, 2016.

A. R. Al-Roomi and M. E. El-Hawary, “Fuel Cost Modeling for Spinning Reserve Thermal
Generating Units,” in 2018 IEEE 31th Canadian Conference on Electrical and Computer
Engineering (CCECE), Québec City, QC, 2018, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Optimizing Load Forecasting Configurations of Com-
putational Neural Networks,” in 2018 IEEE 31th Canadian Conference on Electrical and
Computer Engineering (CCECE), Québec City, QC, 2018, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “New Heat Energy Trading Concepts for the Next Gen-
eration Smart Grids,” in 2018 IEEE 31th Canadian Conference on Electrical and Computer
Engineering (CCECE), Québec City, QC, 2018, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Possible Approaches to Trade Non-Electric Energy
Sources in the Next Generation Smart Grids,” in 2018 IEEE Electrical Power and Energy
Conference (EPEC), Toronto, ON, 2018, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Can Linear Heat Sensors be a Good and Practical
Replacement of Traditional Protective Fuses?,” in 2018 IEEFE Electrical Power and Energy
Conference (EPEC), Toronto, ON, 2018, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “How to Improve Linear Fuel-Cost Function to Com-
pete with Quadratic and Cubic Functions,” in 2018 IEEFE Electrical Power and Energy Con-
ference (EPEC), Toronto, ON, 2018, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Is It Enough to Just Rely on Near-End, Middle,
and Far-End Points to Get Feasible Relay Coordination?,” in 2019 IEEE 32th Canadian
Conference on Electrical and Computer Engineering (CCECE), Edmonton, AB, 2019, pp.
1-5.



18

19.

20.

21.

22.

23.

16

. A. R. Al-Roomi and M. E. El-Hawary, “Universal Functions Originator—Part I: Design,” in
2019 IEEE 32th Canadian Conference on Electrical and Computer Engineering (CCECE),
Edmonton, AB, 2019, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Universal Functions Originator—Part II: Evaluation,”
in 2019 IEEE 32th Canadian Conference on Electrical and Computer Engineering (CCECE),
Edmonton, AB, 2019, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Optimal Coordination of Double Primary Directional
Overcurrent Relays Using a New Combinational BBO/DE Algorithm,” in Canadian Journal
of Electrical and Computer Engineering, vol. 42, no. 3, pp. 135-147, Summer 2019. doi:
10.1109/CJECE.2018.2802461

A. R. Al-Roomi and M. E. El-Hawary, “Estimating Power Flow Directions Using Off-Line
PF Analysis and Artificial Neural Networks,” in 2019 IEEE FElectrical Power and Energy
Conference (EPEC), Montréal, QC, 2019, pp. 1-6.

A. R. Al-Roomi and M. E. El-Hawary, “Estimating Complex Power Magnitudes Using a
Bank of Pre-Defined PFs Embedded in ANNs,” in 2019 IEEFE Electrical Power and Energy
Conference (EPEC), Montréal, QC, 2019, pp. 1-7.

A. R. Al-Roomi and M. E. El-Hawary, “Novel Highly Precise Power Loss Estimators That
Directly Solve Power Balance Equality Constraints,” in 2019 IEEFE FElectrical Power and
Energy Conference (EPEC), Montréal, QC, 2019, pp. 1-8.

Accepted:

24

25.

26.

27.

. A. R. Al-Roomi, and M. E. El-Hawary, “M-Model: A New Precise Medium-Length Trans-
mission Line Model,” in 2020 IEEE 33rd Canadian Conference on FElectrical and Computer
Engineering (CCECE), London, ON, 2020, pp. 1-4.

A. R. Al-Roomi, and M. E. El-Hawary, “Diagnosing Fuel Pumps, Power Transducers, CTs,
and PTs via Fuel-Power Function and 2003 Voting,” in 2020 IEEE 33rd Canadian Conference
on Electrical and Computer Engineering (CCECE), London, ON, 2020, pp. 1-4.

A. R. Al-Roomi, and M. E. El-Hawary, “Mathematical Schemes to Linearize Operating Times
of Overcurrent Relays by Sequentially Fixing Plug Settings and Time Multiplier Settings,”
in 2020 IEEE 33rd Canadian Conference on Electrical and Computer Engineering (CCECE),
London, ON, 2020, pp. 1-4.

A. R. Al-Roomi, and M. E. El-Hawary, “Hybridizing UFO with Other ML Tools to Locate
Faults by Just Knowing Relay Operating Times,” in 2020 IEEE 33rd Canadian Conference
on Electrical and Computer Engineering (CCECE), London, ON, 2020, pp. 1-4.



17

Completed /Submitted:

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
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Ali R. Al-Roomi, “Telegrapher’s Equations: The Hidden Backbone of Electric Power Systems
Analysis,” pp. 1-108, 2016.

Ali R. Al-Roomi, “Fuzzy Linear Optimization,” pp. 1-70, 2016.

Ali R. Al-Roomi, “Optimal Fuzzy Input Set of Fuzzy Relation Equations Using BBO Algo-
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Add to that, many uncompleted and pending studies, which are a product of this

Ph.D. journey, will rise into the light soon.

1.5

Dissertation Outline

This dissertation is organized into eleven chapters and eighteen appendices as follows:

Chapter 1 This chapter covers our motivations, the goals from the dissertation,

the main contributions, the list of publications, and the dissertation outline.

Chapter 2 This chapter presents the innovative hybrid optimization algorithms

used in the other chapters.

Chapter 3 This chapter covers the classical modeling of economic load dispatch

problems and then applying one of the hybrid optimization algorithms designed

earlier in the second chapter.

Chapter 4 This chapter covers the classical modeling of optimal relay coordination

problems and then applying one of the hybrid optimization algorithms designed

earlier in the second chapter.
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Chapter 5 This chapter hybridizes some meta-heuristic optimization algorithms
with some machine learning tools to optimally forecast the consumption of energy

and power based on some datasets taken from the province of Nova Scotia.

Chapter 6 This chapter presents a new precise lumped-parameter transmission line
model and then compares its performance against all the standard models. It also
outlines some possible highly precise models by hybridizing both the distributed-
parameter and lumped-parameter models. Further, this chapter realizes the effects
of the surrounding weather conditions (temperature, relative humidity, wind speed
and direction, etc), system frequency, load current, and cable design/status/age.
Moreover, different innovative techniques are presented to estimate the distributed
series and shunt parameters of transmission lines during sag. Finally, this chapter
shows the first trial to estimate many temperature-coefficients of transmission

lines, which are not covered in the literature yet.

Chapter 7 This chapter realizes the existing economic load dispatch models by

applying the weather and frequency effects covered in the sixth chapter.

Chapter 8 This chapter realizes the existing optimal relay coordination models by
applying the weather and frequency effects covered in the sixth chapter. This
chapter also considers the relay technology and DPRS. Further, it investigates
the violation of the selectivity criterion, which is an inequality constraint, when
only some specific fault points (i.e., near-end, middle, and far-end points) are

considered.

Chapter 9 This chapter presents some of our innovative studies conducted in
electric power systems, which are derived from the realization and integration
phases done in the preceding chapters. It includes the following studies: 1. power
flow quantities estimation using ANNs, 2. optimization-free economic load dis-
patcher, 3. optimization/modeling-free economic load dispatcher, 4. developing
new transformation-based linear fuel-cost models to compete with quadratic and
cubic models, 5. diagnosing fuel pumps, power transducers, current transformers
(CTs), and potential transformers (PTs) via fuel-power function and “2 out of 3

(2003)” voting logic, 6. possible approaches to trade non-electric energy sources
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in the next generation smart grids, 7. using linear heat sensors as very cheap
alternative to existing electric power protective devices, and 8. locating faults
in mesh networks by distance-time characteristic curves designed for directional

overcurrent relays using interpolation- and regression-based models.

Chapter 10 This chapter introduces new machine learning computing systems that
have lots of applications in many fields; including electric power systems engineer-
ing. It shows how they can be designed by merging some concepts taken from dif-
ferent disciplines. Also, the chapter shows how these new computing systems can
compromise between the accuracy/precision and the explainability /interpretabil-
ity performance criteria. The last part of the chapter applies these novel comput-

ing systems to solve some power prediction and fault location problems.

Chapter 11 This chapter concludes our dissertation and lists some suggestions for

future work.

Appendix A This appendix shows how to linearize the objective function of ORC
problems by fixing the time multiplier setting of DOCRs in the IEC/BS model.

Appendix B This appendix shows how to linearize the objective function of ORC
problems by fixing the time multiplier setting of DOCRs in the ANSI/IEEE model.

Appendix C This appendix shows how to find the number of generations assigned

to each stage of our multi-start RSA.

Appendix D This appendix covers the derivation of the short-length transmission

line model.

Appendix E This appendix covers the derivation of the medium-length transmis-

sion line model when it is represented by the nominal I'-circuit.

Appendix F This appendix covers the derivation of the medium-length transmis-

sion line model when it is represented by the nominal "I-circuit.

Appendix G This appendix covers the derivation of the medium-length transmis-

sion line model when it is represented by the nominal T-circuit.
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Appendix H This appendix covers the derivation of the medium-length transmis-

sion line model when it is represented by the nominal II-circuit.

Appendix I This appendix covers the derivation of the medium-length transmis-

sion line model when it is represented by the nominal M-circuit.

Appendix J This appendix covers the derivation of the long-length transmission

line model when each distributed section is represented by the nominal II-circuit.

Appendix K This appendix derives the equivalent T-model based on the ABCD

parameters of the long-length transmission line model.

Appendix L This appendix derives the equivalent II-model based on the ABCD

parameters of the long-length transmission line model.

Appendix M This appendix derives the equivalent M-model based on the ABCD

parameters of the long-length transmission line model.
Appendix N This appendix derives the equation of the permeability of air.

Appendix O This appendix derives the equations of the incident voltage and cur-

rent and the reflected voltage and current in the time-domain.

Appendix P This appendix covers the derivation of the M-model for sag transmis-

sion lines.

Appendix Q This appendix shows the full data of the IEEE 42-bus test system
(IEEE Std. 399-1997).

Appendix R This appendix shows the full data of the turbo-generator used with
the 2003 voting logic.

Appendix S This appendix lists the pseudocodes of all the algorithms used in the

dissertation.



Chapter 2

Developing Innovative Hybrid Optimization Algorithms

2.1 Overview

The term mathematical optimization, or just optimization, is frequently heard
in mathematics, computer science, engineering and even in economic and manage-
ment science. Also, it can be found in proceedings, journals, books, encyclopedias,
websites, etc, under different sections and names, like soft computing, applied
mathematics and optimization, evolutionary computation, numerical anal-
ysis, etc.

From the basic of mathematics, suppose that there is a function f and it changes
as the independent variable = changes, then f becomes the dependent variable
of z and known shortly as f(z).

Based on the system requirements, or in another word the objective function,
the best solution to such a problem is called the optimum (or optimal) solution.
This solution is located at a specified value of the design variable “z”. The optima
could be either maxima or minima, and the tool used to find this point is called an
optimization algorithm. Figure 2.1 graphically represents the optimized solution
of an arbitrary minimization problem.

When dealing with optimization, there are so many types of algorithms. In gen-

eral, they can be classified into three main categories:
e Classical “Traditional” Optimization Algorithms
e Modern “Non-Traditional” Optimization Algorithms
e Hybrid Optimization Algorithms

The last category contains algorithms that are constructed by combining or merg-

ing multi-algorithms into one final algorithm. The algorithms of these combinations

22
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Figure 2.1: Minimization Problem with the Optimum Point

could be taken from one category as well as from different categories. The main rea-
son behind going to the hybrid approach is to accumulate the strengthes of different
techniques and at the same time to prevent, or at least to reduce, the associated
weaknesses of each technique!.

The general optimal design formulation of any problem can be depicted by the

flowchart shown in Figure 2.2 [107], which is aexplained in the following subsections:

2.1.1 Design Variables

These variables are also known as decision variables or solution features, which
are the independent variables of the optimization problem. If the function f depends
on two or more variables, then it can be mathematically expressed as f(z1,zg, -, Z,).
The subscript n denotes the total number of independent variables, and it is called
the dimension of the problem. In optimization, if the given problem contains

n decision variables, then it can be expressed in vector notation as f(X) where

LAlso, if a system problem needs an algorithm having some abilities of self-learning, logical
thinking and decision making, then the techniques built based on artificial intelligence (AI) are
the correct choice here. For example, finding the optimum solution of a numerical problem is one
task that can be assigned to artificial neural networks (ANNSs). Thus, by enough training, ANNs
can solve that problem smartly without expressing any mathematical model (i.e., modeling-free
techniques).
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Figure 2.2: Flowchart of the Optimal Design Procedure

X = [z1,29, ..., ...,xy) and @ = 1,2,...,n. [X] is called the set of design vari-
ables or simply the design vector, and z; is the ith element of the design vector

[X] [107,345,374]. For more understanding, let’s take the following simple functions:

f(x) = ar®+br+c=0 (2.1)
flzy,ze,23) = (a—x1)*+ (b—12)* + (¢ — x3)* = 4.5 (2.2)
flt) = e LSS (2.3)

From these equations, the problem could contain just one design variable (i.e.,
one-dimensional problem) as in (2.1) and (2.3), or it could contain n design
variables (i.e., n-dimensional problem) as in (2.2). The independent variables of
these equations are: x for (2.1), {x1, z9, 23} for (2.2), and ¢ for (2.3).

These design variables could be defined as continuous, discrete, integer, mized-
integer or even binary; which is a subset of discrete and integer types. The elements

of the X vector are the unknown variables that need to be determined by solving the



25

given problem numerically (i.e., via using optimization algorithms). This can be done
by ensuring that the variable f settled on its optimum value. Two important points
have to be taken into account:
e The speed and efficiency of any proposed optimization algorithm significantly
(193]

decrease as the problem dimension “n” increases. This phenomenon could be

used as one performance criterion in the evaluation stage.

e The set of design variables must be linearly independent; i.e., since they are
considered as independent variables, then each ith element x; should not be

affected by other n — 1 elements of the design vector X.

2.1.2 Design Parameters

The “parameters” are fixed values or “constants” that have to be defined in the
initialization stage of the optimization algorithm used in solving the given numerical
problem. For example, by referring to the preceding three equations, the parameters
are: {a,b,c} for (2.1) and (2.2), and o for (2.3).

Note that, from mathematics, the word “parameter” has a different meaning than
the word “constant”. If some variables are held constant, inactive, or depend on other
external ineffective variables during optimizing the function, then they are treated as
constants at some given conditions of those external variables. For example, if the
parameters {a, b, c} of (2.1) are varied, then a family or set of quadratic functions can
be generated?. As a real example from physics, the weight of a body W is equal to

[N

its mass “m” multiplied by the gravity acceleration “g”:
W(m)=mxyg (2.4)

The standard gravity acceleration is g = 9.80665m/s?. It is taken as a constant
value since all the simulations are done within the Earth’s surface. But, if there is a
significant difference in the altitude, then the value of g in (2.4) will definitely change

too. To clarify it more, let’s take the following arbitrary example:

p(t)
()

2This part is covered in fuzzy optimization where both the goals and parameters are fuzzified.

f(z) =3z +

(2.5)
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In (2.5), f depends only on z, but 8 is a function of ¢ that does not have any
effect on f if it is held constant. Thus, 5 has to be defined first at a predetermined
value of ¢, then it can be treated as a constant in f.

In addition to these design parameters, there are other parameters that need to
be defined before starting the optimization program, such as the total number of

iterations®, tolerance?, etc.

2.1.3 Design Function

To solve any faced numerical problem, first it has to be expressed mathematically
so the variability and behaviour of that problem can be translated into a meaningful
and measurable format.

This mathematical model can be created arbitrary for virtual “non-real” problems,
such as (2.1)-(2.3). Alternatively, that model can be created based on some data
collected from records, readings, analysis, surveys, and/or inspections of a specific
machine, system, factory, goods, market, etc, at different conditions and times. One
of the sways to do that is to employ linear and nonlinear regression analysis. The
other innovative ways will be presented later in Chapter 10.

All the required information about the design function, such as its objective (max-
imization or minimization mode) and the associated constrains (less than, equal to,

greater than, etc), needs to be identified and then defined in the design function.

2.1.4 Objective Function(s)

It has been seen that f depends on the design vector X, and it varies with any change
in any element of X. The variable f could be a linear or nonlinear function, in a
continuous or non-continuous domain, and its value could be a continuous, discrete,
integer, mized-integer or even binary.

The term objective function, which is also known as criterion or merit [316],
means finding the optimum value of f. Based the objective function, the term “opti-
mum”, as covered before, could mean minimum or maximum. For example, minimiz-

ing the cost of a specific product or minimizing the time consumed to manufacture a

3Also known as loops or, in modern optimization, as generations.

[P %2

4Also known as the minimum acceptable error “c” or the early stopping criterion.
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Figure 2.3: Multi-Optimum Points of a Single-Objective Function

product could be considered as the objective of such a problem. Also, that objective
could be formulated as finding the maximum profit/revenue of a project suggested
in a risky market or finding the maximum electric power delivered within different
material characteristics of transmission lines. In general, the objective function is
called the cost function when dealing with minimization problems and is called the

fitness when dealing with maximization problems [345]:
min f(z) = f(z) is called “objective” or “cost”

max f(z) = f(x) is called “objective” or “fitness” (2.6)

If a single-objective function has multi similar peaks and valleys, then its multi-
optimum points mean either multi-minimum or multi-maximum points as illustrated
in Figure 2.3. Thus, finding multi-optimum points does not mean finding a mixture
of minimum and maximum points at the same time. Based on this, if the objective
is to find the maximum value of a function, then the minimum value is considered as
the worst solution, and vice versa if the objective is to minimize that function.

Suppose that the programming code of an optimization algorithm is designed to
act as a minimizer. If the objective of a new design function is to find the maximum

point, then the algorithm designer has to modify the structure of his/her code to
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act as a maximizer. Practically, this approach is totally not preferred and imprac-
tical, simply because this primitive correction is a time-consuming approach and it
requires unnecessary effort and new codes to accomplish that task; especially when
that program was coded in the past without embedding enough comments or sup-
porting documents from the programmer. Alternatively, the duality principle can
solve this technical issue directly by just reforming the objective®. One possible way

to do that is by adding a negative sign as [345,374]:
min f(x) < max [—f(x)]

max f(z) < min [ f(z)] (2.7)

Thus, the optimization problem can be switched easily from the maximization
mode to the minimization mode, and vice versa, by just changing the sign. This is a
very useful trick, especially when the researcher wants to find both the minimum and
maximum points of f. That is, this trick can convert such optimization algorithms
into general-purpose optimizers where the design function can be plugged-in exter-
nally by a user and its objective function can be defined via a separate command

coded somewhere in the program.

2.1.5 Design Constraints

If f exists in all the points of X, then optimizing f(X) becomes a relatively easy task.
Such function is known as unconstrained function. If the objective is to minimize

f(X), then the formulation of the optimization problem can be expressed as:

( )
T

X2

Find X = ¢ = 7 which minimizes f(X) (2.8)

xs3

\ J

The large expression of (2.8) can be replaced by the following small expression:

min f(zy, 22, ,Ty) (2.9)

5This is valid with modern optimization algorithms. In linear programming, the duality approach
is not an easy task.
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Unfortunately, most of the problems faced in real-life applications have many
obstacles and restrictions called design constraints. They could exist on f as
behavior®, or could exist on each element of [X] as side constraints [316]. The

functional constraints can be further classified into:
¢ Equality Constraints
e Inequality Constraints

Since the side constraints are assigned to the design features (independent vari-
ables), so they are defined as just constant values (lower and upper limits). On
the opposite side, the functional constraints could be defined as linear or nonlinear
equations [246].

If all these design constraints are satisfied, then the obtained solution becomes
useful, and thus it can be effectively utilized and implemented. Such solution is
called a feasible solution. If any one of these constraints is violated, then that
solution is called an infeasible solution. It is a worthless solution’, which might

not have any logical representation®.

2.1.5.1 Equality Constraints

These constraints force the solution to be equal to only one value, which is equal to
zero in (2.1). If (2.1), for instance, equals 30 instead of zero, then this right-hand
side value should be subtracted in the left-hand side for getting a standard equality

constraint format as follows:

f(z) = az®+bx+c=30 (2.10)
f(x) = az®+br+c—30=0 (2.11)

If (2.1) or (2.11) is optimized, then the numerical solution should approach the

analytical one. Unfortunately, satisfying equality constraint is a very hard task and

6Also called functional constraints.

"This statement is applied in conventional optimization. In fuzzy optimization, the violated
constraints and parameters are accepted with a certain degree, as well be seen later.

8To be more precise, these infeasible solutions could contain good information that can guide
the optimization algorithm to settle on the optimum value. This is the main reason why some
constraint-handling techniques have better performance than others.
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it needs a large number of function evaluations (NFE)? in the optimization
algorithm, and the desired answer may not be reached at all. The reason behind
this is that when the equality constraint is assigned to a function, then the algorithm
will accept the obtained solution as a feasible solution if and only if the value of the
function is equal to the value of the equality constraint; it is zero in the standard
format.

Practically, if the equality constraints exist in the design function, then they could
be satisfied by a certain amount of tolerance (& ) rather than setting them to zero.
This approach can save a significant amount of CPU time and it can avoid getting
infinite loops if the algorithm stopping criterion is activated with zero value.

The symbol h is frequently used in references to represent one equality constraint.
If | equality constraints exist in the design function, then they could be represented
as [hi, ha, -+, hy],or hy: p=1,2,--- 1 or simply by using the vector notation [H].

It is important to check if these [ equality constraints are linearly independent or
not. If not, then the design function has a nonlogical expression and thus the entire
model needs to be reformulated again. If the given problem has a vector [X] with
a length n and a vector [H] with a length [, then the optimization problem can be

mathematically expressed as follows:

mgcin f(zy, 29, -+, xy)
Subjected to:
hi(z1, 29, ,x,) = 0
ho(x1, 9, -+ ,x,) = 0
hi(xy, 29, - ,2,) = 0 (2.12)

By referring to linear algebra, if (2.12) is a linear model, then there are three
possibilities [374]:

e n >1[ — wunder-determined case: the problem has many solutions and thus

the optimization technique is applicable.

e n =1 — critical case: the problem has one unique solution, so it is a solvable

problem.

9NFE = population size x number of iterations x number of evaluations.
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e n <l — over-determined case: the problem has no solution, so the design

function needs some corrections.

2.1.5.2 Inequality Constraints

Rather than the previous very intensive type of constraints that accepts only one
solution as a feasible solution, this inequality constraint is more flexible. It requires
fewer efforts from optimization algorithms, and it can be satisfied by many possible
feasible vectors of X.

Let’s take (2.2) as an example. If the objective here is to minimize f(X), then the
smallest point is zero. This point occurs when the three design variables equal their
corresponding parameters {x; = a,z5 = b, x3 = c}. But, because of its inequality
constraint, the answer zero is considered as an infeasible solution. That is, the feasible
solutions start when f(X) equals 4.5 or above. If (2.2) is subjected to an equality
constraint with zero on the right-hand side (i.e., the condition f(X) = 0 must be
satisfied), then the same difficulty faced with (2.1) will be faced here again.

Similar to the previous constraint, this type is represented by the symbol g. If
the design function contains m inequality constraints, then they can be represented
as [g1,92,  ,gm), OF g4 : ¢ =1,2,--- ,m, or simply by using the vector notation [G].

In mathematics, the sign that represents equality constraints is limited to (=
“equal to”). The sign (# “not equal to”) means that the solution obtained for f
should not equal to a predefined value. However, this sign does not give any additional
information. For example, it does not show whether the solution is greater or less than
the predetermined value. Therefore, four possible signs could be used to represent

inequality constraints, which are classified into two main groups:
e Strict inequalities

— g4(X) > a: g,(X) is greater than «

— g4(X) < f: gy(X) is less than S
e Not-strict inequalities

— g4(X) = a: g,(X) is greater than or equal to a (also known as: not

less than «a or at least «)
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— g4(X) < B g4o(X) is less than or equal to § (also known as: not

greater than  or at most f)

For the strict types, it is difficult to determine the endpoints (minimal and max-
imal points) of g,(X) to satisfy (>) and (<), respectively. The reason is that the
boundary of a and 8 cannot be reached (i.e., open intervals). For example, if (o = 3.0)
then the condition (g,(X) > «) is satisfied by infinite solutions {g,(X) =3 +107¢:
c=1,2,---,00}. It shows that g,(X) | as ¢ T, but it cannot reach the minimal point.
Based on this, the non-strict types are used instead to provide endpoints, which are
easy to be defined and coded in any numerical programming language.

To have the standard inequality constraint format, then only the sign “<” must be

used with zero on the right-hand side. Thus, (2.2) has to be reformulated as follows:
f(@1,22,23) =45 — [(a —21)* + (b—22)> + (¢ — 23)*] <0 (2.13)

Thus, for n—dimensional problems given with m inequality constraints, they can

be mathematically expressed as follows:

min f(xla Loy« axn)
Subjected to:
91(1'1,1'2,' wrn) < 0
92(1'1,1'27 7xn) < 0
gm(l'l,xg,‘ 75671) < 0 (214)

2.1.5.3 Side Constraints

This type of constraints has many other names, like domain, solution space,
search space, variable bounds, choice set, feasible region, bound constraints,
etc [107,272,316]. From its name, this type of constraints is associated with the
design features where each element of [X]| has two bounds called the lower and
upper limits or bounds. Due to the same mathematical representation difficulties
of the inequality constraints, the closed intervals are used here to define the side

min
%

max

constraints in the design function as z; € [LE , T ] 1 = 1,2,--- n, or as
Ly < ™™ §=1,2,---,n. Using the vector notation, it can be expressed as

X € [Xmin’Xmax} or as Xmin g X g X max
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As a rule of thumb, the optimization algorithm performs better as the span be-
tween the lower and upper bounds decreases. The reason behind this phenomenon is
that the algorithm needs less effort to search for the optimal solution within a very
narrow domain. It is like making a zoom-in into a small spot of a bigger search space,
and thus this cropped domain becomes very rich in good solutions.

Although the side constraints are classified as one type of design constraints'’, a
problem containing only side constraints is considered as an unconstrained problem.
The reason behind this is that, by nature, the logical problem has to be designed with
side constraints so that the algorithm can search for the optimality within a specific
search space. Suppose that the given problem is very complex and cannot be depicted
or solved analytically and its search space is open (i.e., X~>° < X < X*), then no
one can determine the location of the optima with this infinite domain. Thus, for

n—dimensional optimization problems, they can be expressed as follows:

mxin f(l’l,l'z,"' 7x7l)

Subjected to:
xr'ningxi <xmax 7/:172’ ;M (215)

K3 K3

2.1.6 General Principles

Before describing the final standard format of optimization problems when all the de-

sign constraints are assigned, it is important to cover the following general principles:

2.1.6.1 Feasible Space vs. Search Space

From the preceding design constraints, it has been seen that the obtained optimum
solution becomes useable only if it is feasible. The space of the design variables could
be open to infinity, or could be bounded between two limits. Moreover, even with
these side constraints, the feasibility also depends on some equality and inequality
constraints that have to be satisfied as well. These classifications create three different

layers on the entire space of any constrained optimization problem:

e Infinite space: lower and upper limits are open to infinity, X € [X =, X ]

0Except for some references, such as [272], where unconstrained optimization problems are called
bound-constrained optimization problems.
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e Search space: lower and upper limits are bounded, X € [X min X maX]

e Feasible space: lower and upper limits are bounded and the functional con-

straints are satisfied, X € [X~>°, X*], [A(X)]; =0, and [¢(X)]» <O

The difference between these three layers is graphically described in Figure 2.4.
Thus, the feasible space must be inside the search space; i.e., part of the search space.
Otherwise, the solution is considered infeasible. Also, as the number of equality and
inequality constraints increases, the feasible space is shrunk more and more, and thus

the optimum solution becomes very hard to be found.

g

Infinite Space Search Space

a7 (o (M
) )

Feasible Space

Figure 2.4: Infinite Space vs. Search Space vs. Feasible Space

2.1.6.2 Global Optimum vs. Local Optimum

It has been known that the definition of the optimum solution is either minimum or
maximum solution. It could appear as a single optimum or multi-optimum solutions,
as seen before in Figure 2.3. If multi-optimum solutions are not identical, then the

most optimum solution of these points is called a global optimum solution, while
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Figure 2.5: Global Optimum vs. Local Optimum

the others are called local optimum solutions. Optimization problems could have
groups of multi-global and multi-local optimum solutions. These local optima are
considered as traps where the efficient optimization algorithm has the ability to
escape from these traps and settle on or close to the global optimum solution(s)
quickly and smartly. Figure 2.5 shows a function that has a mixture of local and global
optimum solutions. Again, if the objective is to minimize f, then there will be only
one global optimum solution where the two global maximum points are considered as

the worst solutions, and vice versa if the objective is to maximize f.

If the global optimum solution is analytically'! predefined, then this solution is de-
noted by an asterisk. This symbol is assigned to both the dependent and independent
variables; as fuin (X*) and X*, respectively.

2.1.6.3 Types of Problem

Based on the availability of objective(s) and/or constraint(s), the design problem
could be one of the four possible types, as summarized in Table 2.1. For more details,

please refer to [122,220].

1Sometimes, the global optima can be numerically found with almost, or even exact, zero error.
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Table 2.1: Types of Problem

Objective Function

Constraints Yes No
Yes Constrained Optimization Problem Constraint Satisfaction Problem
No Free Optimization Problem No problem

2.1.7 Standard Format

By taking into account all the preceding issues, any design function can be trans-

formed into the following standard mathematical model [374]:

mccin flzy, 29, xy)
Subjected to: hy(xy,z9,--+ ,z,) = 0
ho(z1, 9, ,2,) = 0
hi(xy, 29, - ,x,) = 0
g1(@1, 22, an) <0
92(@1, 22, -+ ) <0
Im (21, T2, ,2,) <0

mglln < mn < xsax
where: fuin(X*)=a , af ={s1,82,"-,Sn} (2.16)
Also, it can be expressed as:
min f(xy, 9, - ,T,)
Subjected to: hy(x1, 29, - ,2,) = 0, p=1,2---,1
gq($1ax27"'axn) < 0 ) q_1727' , M
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x;nlngxigxgnax ) Z:1,27"‘,TL

where: foin(X*)=a , xf=s; (2.17)

Or, if the vector notation form is employed, then it can be expressed as:

min f(X), [X],
Subjected to: [h(X)], = 0, p=1,2,---,1
[9<X)]q < 0 ) q:1727"'7m

Xrnin < X < Xmax

where: fuin(X*)=a , X"=28 (2.18)

2.1.8 Constraint-Handling Techniques

The side constraints can be easily satisfied by controlling the independent variables to
be within the decided bounds. The following equation can be coded in any numerical

programming language to generate random values of each ith design variable:

x; = o™ + rand (2" — ") (2.19)

(2 3

where rand is a function that generates uniformly distributed random numbers in the
interval between 0 and 1.

min
%

max
7

It is clear that the variable z; is bounded between z;™" and x***, which are re-
spectively reached when rand = 0 and 1. Unfortunately, this direct solution approach
does not work with functional constraints (i.e., equality and inequality). Rather, they
require more complicated constraint-handling techniques. Selecting the correct type
is a very important step because the algorithm speed and accuracy can be markedly
affected by inefficient techniques [122]. Figure 2.6 summarizes the most popular
constraint-handling techniques [107, 122,199,316, 345,374,390, 392].

The penalty functions are often used because the other approaches are hard to
be modeled or/and need derivatives [122]. Besides, the exterior penalty function
(EPF) is preferred in constrained EAs. The reason is that the interior penalty
function (IPF) requires feasible individuals which in turn complicate the solution. In
this subsection, a brief overview of some EPFs is given. Also, the classical random

search method, which is classified as one of the direct search methods, is covered.
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By referring to (2.16)-(2.18), EPFs can easily transform them into unconstrained
optimization problems by employing either the additive or the multiplicative ap-

proach. These two approaches are respectively described as follows [390]:

min ¢(X), where ¢(X) = X, rxers (2.20)
X fX)+P(X), ifX¢F
m)}n d(X), where ¢(X) = XD, rxers (2.21)

f(X)x P(X), ifX¢F

where P(X) is called the penalty term, which is equal to zero for feasible individuals
(X € F) and be a positive value in case there is a violation of any constraint (X ¢ F).
Thus, for minimization mode, the penalized cost function ¢(X) becomes higher
than its actual value f(X). This P(X) can be provided in different forms based on

the type of penalty function employed. The most common form is:

P(X) = > rqo(X)+ > dy hy(X)

where: §,(X) = [max (0, g,(X)))’
hy(X) = |hy(X)] (2.22)

where 1, and d, are called the penalty multipliers. The coefficients 3 and ~ are user-

defined positive constants, which are commonly set equal to either 1 or 2 [122,316,345].

Because [H]; = 0 cannot be easily satisfied, so an acceptable tolerance (+ ¢) is

adopted instead of crisp zero. Thus, the pth equality constrain is satisfied if:

—e<hy(X)<e , p=1,2,---,1 (2.23)

This equation can be split into two inequality constraints, which can be expressed

using the standard format as follows:

hp(X) — ¢
—h,(X) —e <

N

0
0 (2.24)
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Therefore, by using (2.24), (2.22) can be modified to be:

m—1

P(X) = Y 1y §4(X) ; where
q=1

max B or m
G(X) = (max (0, g4 (X))]", for ¢ € [1,m] (2.25)
(max (0, |he(X)| —€)]?, forge[m+1,m+]|

Before describing the popular exterior penalty functions, it is important to men-
tion that the penalized cost function “¢(X)” does not apply to the random search
method. This classical direct search method depends only on an internal while-loop
to continue generating random elements of the design vector [X] until satisfying all

the design constraints. These ten constraint-handling techniques are briefly described

in the following lines:

2.1.8.1 Random Search Method

This constraint-handling technique is very simple, and it can be easily programmed

by following the steps of the pseudocode in Algorithm 1.

Algorithm 1 Rebuild Infeasible Individuals Directly via the Random Search Algo-
rithm (RSA)

Require: all the constraint values of each individual as a vector C
1: for j <~ 1 to N do {where N = population size}
2:  while any element of C; is violated do {there are N vectors of C'}
3: Randomly generate new design vector X
4: Determine new C;
5:  end while

6: end for

Unfortunately, this technique is not efficient and consumes high CPU time as
the problem complexity increases [316]. This complexity could be faced in different
locations of the problem. For example, it could be the dimension of the problem,
its type (convex or non-convex, explicit or implicit, unimodal or multimodal, etc),

type of design variables (continuous, discrete, mixed-integer, binary, etc), number of
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functional constraints, type of functional constraints (equality or inequality), lower

and upper bounds of design variables, etc.

2.1.8.2 Constant Penalty Function

In this type, the penalty term P(X) is set to a very high value if there is any violation
of any constraint. During the function evaluation process, this intensive penalty
function rejects all the infeasible individuals. This is why it is called the death

penalty approach [316, 345].

The main drawback of this simple type is seen when the infeasible solutions are
very close to the border of the feasible space. These individuals have some good
information that could guide the optimization algorithm to reach the feasible space.
However, this death EPF approach erases all these useful data. Thus, individuals
having a few or many violations will be treated by the same rejection action. This
means that all the infeasible individuals will completely disappear in the next gener-
ation [122].

The most popular sub-type is called the infinite barrier penalty [107,390]. It

comes in an additive form where P(X) given in (2.25) is calculated as follows:

PIX) =R 3 3,(X) (2.26)

" is replaced with a very large constant number “R”;

where the penalty multiplier “r,’
it is usually set equal to 10?°. From this equation, the penalty term will reach almost
infinity (i.e., P(X) &~ 4o00) if any violation is detected. Some of death penalty
functions are defined by only R term since R >> ZZ:;Z G4(X). Thus, P(X) is

expressed as a high constant value, which is independent of the violation magnitudes.

2.1.8.3 Binary Static Penalty Function

It is an additive penalty. The distance function g,(X) given in (2.25) can be expressed
as a simple binary value, which equals 1 if the gth constraint is violated. Otherwise,

it equals zero [122]. If r, is taken as a constant value for all the functional constraints,
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then the final expression of this penalty function can be formulated as follows:

em 1, if g,(X) is violated
P(X)=r) 3,(X), g(X)= (2.27)
=1 0, if g,(X) is satisfied

Now, the dimension of the vector r becomes one'?, which is easy to be tuned. In
contrast, the other static penalty functions, listed in Figure 2.6, are hard to be tuned.
Besides, the binary static penalty can compromise between the speed and accuracy,

which are very important winning factors in many engineering applications.

2.1.8.4 Superiority of Feasible Points (SFP) - Type I

In this method, the penalized cost function given in (2.20) is expressed as follows:

min ¢'(X) = 6(X) +6(X)

0, fF=0orXeF
where: (X) = (2.28)

a, fF#0and X ¢ F
The value of « is the largest feasible individual:
a=max|[f(Y)] : YeF (2.29)

This is done to ensure that the bad feasible individual is better, or at least, equal
to the best infeasible individual [390]. The penalty multiplier r, given in (2.25) can

be set as a fixed number [257]. In this dissertation, r, is set equal to 10.

2.1.8.5 Superiority of Feasible Points (SFP) - Type II

SFP-I does not cover the range when f(X) < 0, while SFP-IT does. The second type
has a similar expression, except for the value of a. Here, it is modified to be equal to

the difference between the largest feasible and the smallest infeasible individuals as

follows [199, 345]:

a =max |0, max fy)— )rpé]r; oY) (2.30)

12i e., it becomes a scalar value.
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2.1.8.6 Eclectic Evolutionary Algorithm

The bad thing about the extinctive static penalty function shown in Figure 2.6 is
that the solution quality is very sensitive to the values of the vector “r,” [390]. The
eclectic EA works in a similar principle of SFP types where the bad feasible individuals
are considered to be better than the best infeasible individuals, but in a different
way [345]. Instead of using how much the constraints are violated, it uses the number

of violated constraints as a basis to penalize the cost function as follows:

F(X), if X erF

P(X) = v(X)
" [1 BCED

(2.31)

y if X ¢ F

where K is a very large positive constant (it is taken as K = 1 x 10 [390]), v(X) is
the number of satisfied or non-violated constraints, and (m + [) is the total number

of functional constraints.

2.1.8.7 Typical Dynamic Penalty Function

If the soft counter, that counts the number of iterations or generations inside the
optimization algorithm, is used to simulate the time “t”, then the amount of the
penalized value is proportional to the number of iterations. This action provides two

things:

e In the beginning, the penalization process will forgive the infeasible individuals
by penalizing them with small values. Thus, the optimization algorithm is
given a chance to collect some useful information about the search space being

explored.

e As the number of iterations increases, the penalization level increases. Thus,
after collecting enough information about the problem, the penalty function will

start forcing the infeasible individuals to go inside the feasible search space.

The penalized cost function is defined as [122,316,345]:
O(X) = f(X)+ (ct)*P(X) (2.32)

where ¢ and « are constants. For example, they can be taken as 0.5 and 2, respec-

tively [345]. P(X) is similar to that of (2.25), but with r =1 and g = 2.
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2.1.8.8 Exponential Dynamic Penalty Function

Instead of using the additive form, as in (2.32), this type of EPFs comes in a mul-
tiplicative form. The same assumptions are applied here, except that the penalty
value grows in an exponential rate rather than a linear rate as in the typical dynamic
approach. The new penalization process is defined as follows [122, 316, 345]:

P(X)

P(X) = f(X) x e~

(2.33)

where 7 = \/Li’ which approaches zero as the number of iterations or generations
approaches infinity (i.e., t 00 =7 —= 0= ¢(X) — 0).
This type of dynamic penalties is valid just for minimization where f(X) > 0V X.

Otherwise, the normalized version, as described in [345], has to be used instead.

2.1.8.9 Adaptive Multiplication Penalty Function

From its name, it comes in a multiplicative form. The cost function is penalized

as follows [392]:

_ LR 4 ]
$(X) = f(X) x {1+(m+l)2{g?aX(XJ } (2.34)

q=1

Actually, there are many adaptive approaches presented in the literature. The
first one was proposed by [159]. After investigating the various types of adaptive
EPFs, the adaptive multiplication approach is selected because it works based on the
typical feedback and near feasibility threshold (NFT-based) approaches [390].
The original equation has a subtraction arithmetic operator, while (2.34) has an
addition arithmetic operator. This adjustment is essential to make it functional in
the minimization mode. The gth constraint g,(X) can be calculated by using (2.25)
with 3 = 1. The symbol §;***(X) denotes the biggest functional constraint, which

can be obtained as follows:

Gy (X) = max [e, max (§,(X))] (2.35)

q

The epsilon ¢ in (2.35) is very important to avoid dividing by zero when all the
individuals are feasible. For example, ¢ can be set equal to 1072°. Thus, if there is
no infeasible individual, then the summation term becomes zero instead of getting an

error due to dividing zero by zero.
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2.1.8.10 Self-Adaptive Penalty Function (SAPF)
The SAPF algorithm works based on the following two conditions [345]:

e If the ratio of the feasible individuals to the entire population size N is low,
then the penalized cost function “¢(X)” has to be small for infeasible individuals

having a few violations.

e If that ratio is high, then only infeasible individuals having low cost “f(X)”

should be penalized with small penalty terms.

To identify the best individual in the current population, SAPF penalizes infeasible
individuals by two terms, d(X) and P(X), as follows [350]:

o(X)=d(X)+ P(X) (2.36)

where d(X) is called the distance value. SAPF needs special care for constructing

(2.36). The steps can be summarized as follows [345,350]:

e Firstly, normalize f(X) of each individual as:

_ f (X ) B f min
fmax - fmin

where N(X) € [0,1] V X; the best individual occurs when N(X) = 0, and vice

versa when N(X) = 1.

N(X) (2.37)

e Secondly, compute the normalized violation magnitude of the gth constraint as:
1 ml o (X
M(X)=—— G&Ll) (2.38)

where g,(X) and g;"**(X) can be obtained by using the expressions presented

in the preceding penalty functions. Thus, M(X) =0V X € F and M(X) >
0V X¢F.

e Thirdly, for each individual, compute the distance d(X) as:

M(X), it F=0
d(X) = (2.39)
VINE(X) + M2(X), if F#0

where (F = () means that all the population individuals are infeasible.
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e Fourthly, the penalty term in (2.36) can be calculated as:
PX) = (1=rYi(X) +rY(X)
0, if F=10
M(X), ifF#0

where: Y1(X) =

0, it X e F
Y5(X) =

N(X), ifX¢F
number of feasible individuals

ro= — (2.40)
population size

As can be clearly seen from all these equations, (2.36)-(2.40), one of the main
disadvantages of SAPF is that it consumes more CPU time compared with other

penalty functions.

2.1.9 Performance Criteria Used to Evaluate Algorithms

To evaluate the performance of any optimization algorithm, it is necessary to define
the performance criteria based on which the algorithm performance can be assessed
and compared with other algorithms. The first stage is to run or execute the algorithm
to solve some standard benchmark functions'®. These functions are classified
as: unimodal (having one optimum solution) and multimodal (having multiple
optimum solutions). Also, they can be classified as: unconstrained/constrained,
static/dynamic, convex/non-convex, smooth/non-smooth, non-noisy/noisy,
non-shifted /shifted, non-rotated /rotated, single-objective/multi-objective,
etc. The other properties that might be considered are: continuity, separability,
differentiability, scalability, etc. The software shown in Figure 2.7 is developed
to study the 3D structure of any 2-dimensional function in detail.

The next step is to let the optimization algorithm to run multiple times and
collecting the fitness obtained from each random run. Then, the best, worst, mean,
and standard deviation'* of the final solutions are extracted. By these fundamental
records, someone can start comparing with other results reported in the literature.

It is important to ensure that the initialization stage has the same parameters used

13 Also known as test functions.
14Sometimes, the median metric is also computed.
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in other studies (i.e., population size N, number of generations G, etc) to get a
fair comparison. For the minimization mode, the best of the best and the worst of
the best-obtained solutions per certain number of simulation runs or trials can be

respectively computed as follows:

fbest,ever = min (fbest,b fbest,27 T fbest,ia ) fbest,TT) (241)
fworst,ever = max (fbesmla fbest,27 ) fbest,ia ) fbest,Tr) (242)
where T is the total number of trials and fyest,; Tepresents the best solution obtained

in the 7th trial. Also, the mean and standard deviation can be respectively calculated

as follows [194]:

Zril fbest 7
mean == 2.43
f L (2.43)
T, o 2
fstd,dev = \/z:i:1 <f};5ti 1 fmeaﬂ) (244)

For standard benchmark functions, the global optimal solution (f*) is known and
given. Based on this, the absolute error (Err,ps) between the estimated global optimal

solution frest; and the exact solution f* can be calculated as follows:

Errabs,i - |fbest,i - f*’ (245)

Thus, (2.41)-(2.44) can be respectively replaced by:

Smallest error :  Errgpanest.ever = Min (Ertaps 1, Ertaps o, - -+ Ertans ) (2.46)
Largest error : ErTjargest ever = Max (ErTapg 1, EtTaps 2, -+, Ertans 1) (2.47)
Z‘T:1 Erraps;
Mean error : Errpean = =4 (2.48)
T,
T, 2
" (Brraps; — Err
Standard deviation :  Errgq gev = \/ 2t ( ;) i 1 mean) (2.49)
L

In addition to the above criteria, the algorithm computational speed!'® can also be
used as one performance criterion. Advanced performance evaluations can be done
by conducting some statistical and sensitivity tests; as reported in [31]. Also, some
additional performance evaluations are shown in [67] with an extensive description

and new ideas.

15 Also known in the literature as the processing speed (CPU time).
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2.1.10 Types of Optimization Techniques

In general, the optimization techniques are classified into two main categories, called
classical (or traditional) and modern (or non-traditional) techniques. It is hard to
collect them all in one tree-diagram. Instead, the most popular types are briefly

summarized in Figure 2.8 [95,107,133,136, 218,260,279, 316, 345, 374].

2.2 Classical Optimization Algorithms

Traditional optimization algorithms are the most known methods. They need no
special knowledge from other fields of science, like biology and its branches. These
algorithms are straight-forward, which follow systematic mathematical steps, like
finding some derivatives, constructing matrices, tracing the error deviation between
two iterations, etc.

Some advantages of these optimization techniques are summarized as follows [95,
133, 136,218,260, 279]:

e They are very fast optimization algorithms. If the initial guess is good, then
these techniques become very useful to be embedded in systems that need fast
decisions, such as power system protection. The high computational speed per-
formance comes from their simple structures and also because they are single-
point algorithms. Thus, dealing with just one individual per each iteration
will definitely accelerate the computational speed and save part of the mem-

ory!S,

e These techniques are very old and thus they are well-established and available
everywhere in thousands of books, which make them easy to be reached. Add
to that, there are many ready-made codes with different programming formats
and languages such as Fortran, MATLAB, JAVA  C/C++, Python, Julia,

ete.

e They provide one unique solution every time they are executed with the same

initialization parameters.

6This term (i.e., the computational speed) may not be correct in some conditions. Suppose,
there is a very high-dimensional problem (n = 10* — 10°) and it needs to be optimized. Solving it
by classical methods may take tens of hours or even multiple days. On the opposite side, modern
optimization algorithms could find acceptable near-optimal solutions within just a few iterations.



50

Optimization Techniques

|

v

Traditional Techniques

y

> Network Methods

> Game Theory
> Programming Family

I~ Linear Programming Simplex
( Integer Programming
. Two-Phase Method ~ Revised Method
Linear .
Non-Simplex

L— Cutting Plane
Nonlinear

Karmarkar's Method

Khachiyan's Method Affine Scaling Method

Integer Polynomial Programming Two-Phase Method —L
o Basic Method
Lincar Discrete P
Branch-and-Bound ( ing)

I Seperable Programming
- Dynamic Programming
- Geometric Programming .
. . Linear
I Stochastic Programming —E Nonlinear
. . Geometric
- Nonlinear Programming

[» One-Dimensional Search Methods /
Bounding Phase
I-Bracketing Methods — [ Eihaustive Search

" A Interval Halvin
I~ Region-Elimination Methods Fibonacci Search
. . . Golden Section Search
I~ Point-Estimation Method Successive Quadratic Dichotomous Search

- Gradient-Based Methods

Newton-Raphson
Bisection
Secant
Gauss False Position Cubic Search
L

T T 1
Simple Gauss Gauss-Seidel Accelerated Gauss-Seidel

> Gradient-Based Methods
Cauchy’s (Steepest Descent) Method
Gauss-Newton Method
Levenberg-Marquardt Method

Solving Ax=b Least-Squares Analysis
Recursive Least-Squares Algorithm
Solution to Ax=b Minimizing ||x]|

Kaczmarz’s Algorithm

H> Conjugate Gradient-Based Methods
Linear Conjugate Gradient Methods — Conjugate Direction
Nonlinear Conjugate Gradient Methods Fletcher-Reeves
Polak-Ribie're
> Quasi-Newton Methods
Davidon-Fletcher-Powell (DFP) Method
Symmetric Rank One (SR1) Method
Symmetric Rank Two (SR2) Method
Berndt-Hall-Hall-Hausman (BHHH) Method
Broyden-Fletcher-Goldfarb—Shanno (BFGS) Method
Limil?d Memory BFGS (L-BFGS or LM-BFGS)

T T 1
L-BFGS-B OWL-QN Others

H» Derivative-Free Methods
Model-Based Methods

Coordinate & Pattern-Search Methods
Nelder-Mead Method

» Others

L Critical Path Method/Program Evaluation and Review Technique (CPM/PERT)

(it is distributed as parts in different locations, see below)

v

Non-Traditional Techniques

y

—» Genetic Algorithms
> Genetic Programming
> Evolution Strategies
> Evolutionary Programming
» Differential Evolution
> Simulated Annealing
B> Ant Colony Optimization
- Particle Swarm Optimization
> Cultural Algorithms
> Biogeography-Based Optimization
I Partial Migration-Based
I~ Single Migration-Based
- Simplified Partial Migration-Based
— Simplified Single Migration-Based
> Opposition-Based Learning
> Estimation of Distribution Algorithms
I~ Simple Estimation
. UMDA
I First-Order Estimation cGA
I- Second-Order Estimation PBIL MIMIC
- N E COMIT
- Multivariate Estlmatlon—‘: ECGA BMDA
L Continuous Estimation —Eo‘he's Continuous UMDA
Continuous PBIL

“—» Other Evolutionary Algorithms

I Tabu Search

I The Firefly Algorithm

I Artificial Fish Swarm Algorithm

- Group Search Optimizer

I Bacterial Foraging Optimization

I Shuffled Frog Leaping Algorithm

I~ Wasp Swarm Optimization

I Artificial Bee Colony

I~ Gravitational Search Algorithm

I~ Teaching-Learning-Based Optimization
I~ Harmony Search Algorithm

- Neural-Network-Based Optimization
- Optimization of Fuzzy Systems

I Seeker Optimization Algorithm

- Scan & Zoom

L Others

— Hybrid Techniques

‘These techniques are created through:
‘combination of different optimization:
‘algorithms from only traditional, non-:
‘traditional or both. :

‘These techniques are created by:
‘special arrangement on the function to'
‘satisfy more than one objective. Their'
‘optimization algorithms are taken:

IMPORTANT NOTE: Some books, like Engineering Optim

(without calculus methods, network methods, game theory or other programming methods) under nonlinear programming

zation: Theory and Practice (Singiresu S. Rao,) classified the above traditional techniques

from any basic algorithm of the:
:previous techniques.

Figure 2.8: Summary of the Most Popular Optimization Techniques



ol

e They have a solid mathematical foundation and principles.

e These gradient-based methods can be used as fine-tuning sub-algorithms

in hybrid global optimization techniques, as will be covered later.

Unfortunately, there are many limitations associated with this category of opti-

mization algorithms. Some of these weaknesses are summarized as follows:

e Some of them are very complicated algorithms, hard to be implemented, and

require lots of advanced mathematical expressions.
e Some of them are restricted to one-dimensional problems.
e Some of them have matrices and/or require derivatives.

e Most of them are prone to easily trap into local optima, especially if the initial

guess is not good.

e This field is very old and thus it is hard to get a creditable contribution

In this dissertation, some classical optimization methods are used!”. However,
they are not individually applied. Instead, they are hybridized with meta-heuristic
optimization algorithms as fine tuners. It has to be mentioned that the Python’s

and MATLAB’s built-in libraries are used for these classical optimization algorithms.

2.2.1 Linear Programming (LP)

Linear optimization or linear programming (LP) is one of operations re-
search (OR) tools used to find the best or optimal solution of linear mathematical
models. In real-world applications, the nonlinearity enters in different parts of the
problem, such as in its objective function as well as equality and inequality con-
straints. Thus, LP is considered as a special type of mathematical programming

that requires the following conditions [136,246,316,374]:

e Linear objective function
e Linear constraints

e Non-negative decision variables

17Please note that the Newton-Raphson algorithm and its modified versions, which are classified
as classical optimization algorithms, are used in many studies of electric power systems engineering.
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2.2.1.1 Historical Time-Line

Based on the proverb “necessity s the mother of invention”, the origin of LP
can be traced back to the World War II'® when the armies tried to find a proper way
to deal with the military problems effectively and economically; especially when the
army A wants to increase the losses of the enemy B with some limited and scarce
resources. The history told us that the first one is the Russian mathematician Leonid
Kantorovich who in 1939 proposed a method to solve linear problems. However,
the work was published in 1959 [334]. Also, at the same time, the Dutch-American
mathematician and economist Tjalling Charles Koopmans independently proposed a
method to solve linear economic problem [341]. Three years later (i.e., in 1941), the
American mathematician and physicist Frank Lauren Hitchcock successfully formu-
lated a method that can solve linear transportation problems [334]. After around
five years (i.e., between 1946 and 1947), George Bernard Dantzig independently gen-
eralized the formulation of linear programming as a suitable tool to solve planning
problems in US Air Force. His first paper was titled “Programming in a Linear
Structure” [104]. The term “linear programming” is coined by Koopmans in 1948,

and one year later Dantzig published the simplex method.

Nowadays, LP is a very popular linear problem solver for many applications in
mathematics, science, engineering, and business. LP is considered as an entry-level
to understand more complicated programming methods. As can be clearly seen in
Figure 2.8, LP is just one type of programming family, and it is available in
two main categories called the simplex and non-simplex methods. Simplex LP
problems can be solved by two ways called tabular and algebraic forms. The latter
is an extension of the conventional algebraic method, which is used to overcome
some weaknesses such as requiring many fixed steps and non-smart enough to jump
from infeasible sets. Also, LP problems can be solved by searching within the plot

boundaries of the constraints, which is known as the graphical method.

18Some authors said that the origin is dated back to the beginning of the nineteenth century when
Fourier suggested a method to solve linear inequalities problem in 1827, and that method is known
as Fourier—Motzkin elimination (FME) [341].
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2.2.1.2 Mathematical Formulation of LP Problems

By referring to the preceding three conditions of LP and the standard formulations
given in Subsection 2.1.7, the mathematical model can be expressed in many forms.

For example, it can be as follows:

Maximize: 121+ Ty + -+ CcpTy

Subjected to: 1121 + A12T2 + -+ + A1y < b0y

b
A21T1 + Qa2 + -+ + 2Ty < by

Am1T1 + Am2l2 + -+ AmnTn g bn

and: 2120, 2920 -+ ;2,20 (2.50)
Or, it can be formulated in vector notation as follows:

Maximize: [C][X]
Subjected to: [A] [X] < [D]
and: [X] > [0] (2.51)

where the vectors of n variables and m constraints are defined as follows:

[C]lxn = <617027 T 7cn>

[X]nxl = <.T1,;U2, T 7xn>T

(Al en = laij]

0] ;= (by b, by)"

mx1 —

2.2.1.3 Linear Programming Solvers

Because LP is used since a long time ago, so it is not surprising that many free
and commercial software and programming languages have special packages and/or
libraries to solve LP problems by simplex, revised simplex, interior-points, etc.
For instance, MATLAB, Python, Mathematica, Maple, Octave, LINGO, and
MS Excel.
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2.2.2 Sequential Quadratic Programming (SQP)

Sequential quadratic programming (SQP) is one of the most effective optimiza-
tion methods used to solve constrained nonlinear optimization problems. The SQP
method is applicable if the objective function and the constraints are twice continu-
ously differentiable. This optimization technique generates steps by solving quadratic
subproblems. That is, it solves a sequence of optimization subproblems. The SQP
can be used in both line search and trust-region strategies [273]. SQP is appropriate
for small and large problems and it is well-suited to solve problems with significant
nonlinearities [75]. A full description with detailed mathematical modeling of SQP
can be found in [75,273,279], and a good practical introduction with MATLAB and
illustrative examples are introduced in [153].

This classical optimization algorithm will be hybridized later, with one of our

purely hybrid meta-heuristic optimization algorithm, as a fine tuner.

2.3 Meta-Heuristic Optimization Algorithms

Meta-heuristic optimization algorithms are also called modern optimization
algorithms, non-classical optimization algorithms, and non-traditional op-
timization algorithms. They are classified into probabilistic and stochastic
algorithms [107,122,134,228,316,345,374]. The disadvantages of classical optimiza-
tion algorithms motivate many researchers to think about other innovative approaches
that can solve all the headache problems of the classical optimization algorithms. To
think about approaches that can converge accurately and quickly to the area where
the global optima are located without using any derivatives, matrices, or even initial
points. Many mathematical theories, principles, and foundations taken from different
disciplines have been utilized to design the mechanism of these unfamiliar algorithms.

For example!”:

e Based on the branches of physics science: the simulated annealing (SA) al-

gorithm from the physics of matter, and the gravitational search algorithm

9Tt has to be said that there are different sub-categories and sub-sub-categories of these algo-
rithms. For instance, some of them are called evolutionary algorithms (EAs), which are part
of a more broad sub-category called the nature-inspired algorithms. Also, each EA has many
versions. For example, some versions of GA are binary GA, real GA, stud GA (sGA), micro GA
(uLGA), etc.
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(GSA) from the law of gravity.

e Based on the branches of biology science: the genetic algorithm (GA) from
the genetic science, and the biogeography based-optimization (BBO) from
the biogeography science.

With these inspirations, many researchers have successfully applied these models
to solve highly complicated problems by just plugging them into the design function
and then pressing the run button.

These modern optimization techniques can also be classified according to their
number of generated individuals or candidate solutions per each iteration or genera-
tion. Algorithms having only one individual per each iteration (like traditional tech-
niques) are called single-point or single-solution algorithms. Such algorithms are
the tabu search (TS) and SA algorithms. Whereas, the term population-based
(PB) algorithm is used to identify the algorithms that generate multiple individ-
uals per each generation. Such algorithms are the particle-swarm optimization
(PSO) and the ant colony optimization (ACO) algorithms. Of course, the pre-
ceding non-traditional single-solution algorithms also can escape from trapping into
local optima, and they are considered as global optimizers.

Also, it is essential to differentiate between heuristic, meta-heuristic and hyper-
heuristic terms, because many references just mentioned them as “heuristic” meth-
ods without any clear definition. It has to be known that the heuristic-based tech-
niques are problem-dependent algorithms that can learn from the given information
about the design function and then adapting with that to provide good results. Such
techniques could fail due to the chance to trap into local optima. Now, suppose that
no useful information is given about the optimization problem; like the proper path
that can guide the algorithm to reach the optimum solution or what the optima looks
like. Then the techniques that can reach the space, where the global optima are lo-
cated without knowing how and from where to start, are called meta-heuristic-based
techniques?’. These algorithms benefit from the data of the previously obtained solu-
tions to determine the location of the best solution within the search space. Therefore,
they might not guarantee to settle exactly on the global optimum solution. Instead,

they might provide some approximate and near-global solutions.

29Some references called them black-box optimization algorithms.
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Hyper-heuristic is the most advanced technique compared with the preceding two

techniques. It depends on the heuristic or meta-heuristic technique to create its own

search space. Therefore, the word “hyper-heuristic” can be translated as a “heuristic

search for heuristic” [146,228,359].

Some advantages of modern optimization algorithms are [107, 122,228, 316, 345,

374]:

No need anymore to find derivatives or constructing matrices.

Very robust and can converge to the space of the global optima.

They are relatively easier to be understood.

The designers need less time and limited libraries to create their programs.

The designed programs can be used as general-purpose optimizers for any

plugged-in design function.

This branch is new, and thus the door is widely open to conduct many types of

research in this field.

On the other hand, some of the main disadvantages of modern optimization algo-

rithms are:

The population-based techniques are time-consuming. The processing time will

increase significantly as the population size increases.

The final solution is tuned after completing many generations because the al-

gorithms are probabilistic-/stochastic-based methods.

Still, the number of available references and codes is smaller than that of the

traditional techniques, especially for the most recent invented techniques.

To understand their principles and how they work, the researcher needs to study
some special topics in physics, biology, or/and other branches of science. This
may become hard for those people who have just pure background in the field

of mathematics, engineering, computer science, or economics.

In the next subsections, some detailed information about the meta-heuristic opti-

mization algorithms, used in this dissertation, is given.
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Figure 2.9: Simplified Equilibrium Model of Biota in a Single Island

2.3.1 Biogeography-Based Optimization (BBO)

The mechanism of this new population-based evolutionary algorithm is inspired by
an old scientific study conducted in biogeography?' by the ecologists Robert H.
MacArthur and Edward O. Wilson in the period between 1960-1967 [239,240]. This
study is known as “The Theory of Island Biogeography”. The theory proposes
that the dynamic equilibrium between immigrated and extinct species controls the
endemic species on isolated islands??.

The immigration rate \ and the emigration rate y can be set in many ways?3.
To simplify the mathematical process, MacArthur and Wilson used a simplified linear

migration model with equal maximum immigration and emigration rates (i.e., I =

21Biogeography is a branch of biological science. It heavily relies on theories and data taken from
ecology, population biology, systematics, evolutionary biology, and earth science [226]. Biogeography
seeks to describe, analyze and explain the geographic patterns and changes in the distribution of
ecosystems and fossil species of plants (flora) and animals (fauna) through geological space and
time [101,195].

22In island biogeography, the word “island” could be an aquatic island, desert oasis, lakes or
ponds, mountain-tops (sky-islands), caves, individual plants, microcosms or even patches of terres-
trial ecosystems [43,266,276].

23The emigration and immigration rates can be modeled as exponential, logistic, linear, etc [98,226,
238]. Also, the maximum emigration and immigration rates can be unequal (i.e., I # E) [238,240].
Moreover, the equilibrium location S can be shifted to the left-side or to the right-side based on
the type of rate functions, the area of island and/or the distance or isolation between the recipient
island and the source island or mainland [30,226,227,240].
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Amax = F = fimax) as shown in Figure 2.9. The symbol T denotes the species
turnover rate, which happens when the species density settles on the equilibrium
state S. The symbol S« denotes the maximum number of endemic species on that
island [238-240]. Thus, Apax or I happens when there is no available species on the
tth island, and pma or £ happens when all the nests are occupied by the emigrated
species from the mainland and/or other islands [237].

In BBO, the population size N is simplified to be equal to the maximum number
of species Spax. Therefore, \; and p; of the basic migration model, depicted in

Figure 2.9, can be determined as follows:

1 = <%)z (2.52)
Ai:1—m:1(1—%) (2.53)

Suppose that at time ¢ the island contains i species with probability Pr;(t), then
the variation of the probability from ¢ to (t+At) can be described as follows [239,240]:

Considering (2.54), to have i species at time (¢ + At), one of the following three
conditions should be satisfied [239, 240]:

1. i species at time ¢, and no migrated species during the interval At;
2. (i — 1) species at time ¢, and one species immigrated;

3. (i+ 1) species at time ¢, and one species emigrated.

APr;
At

Pro(t) = lim Ll A0 = Prit)
At—0 At
= — (N4 i) Pri(t) + XNica Pri—y (t) + g1 Priga(t) (2.55)

From calculus, it is known that the ratio ( ) approaches Pﬂ(t) as At — 0:

By considering the preceding three conditions, (2.55) can be re-expressed with the
following three cases:
—(Ni + i) Pri(t) + prig1 Priga (1), iti=0
Pri(t) = —(Ni + ) Pri(t) + Mica Pria (t) + i1 Prisa (), if1<i < N —1 (2.56)
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The value of Pri(t) can also be determined by using the matrix technique presented
in [342], which is successfully proved in [181]. Thus, using the known values of Pr;(t)
and Pr;(t), the value of Pr;(t + At) given in (2.54) can be approximated as follows:

Pri(t + At) 2 Pry(t) + Pry(t)At (2.57)

Equation (2.57) is the final form that should be used in the BBO program. To
find Pr;(t), two methods have been used by Simon in [342]. The first one is by solv-
ing (2.56) iteratively, while the other one can be directly applied through the following

theorem:

The steady-state value for the probability of the number of each species is given
by:
v
Pr(o0) = 33 (2.58)
> v
w=1
The eigenvector v can be computed as follows:
v = [v,v9,--- ,uny41]T , T means transpose
N! _
m, forw—1,2,-~~,w'
U'UJ
UN 42w, for w =w'+1,--- , N+1
N+1
where: w' = [T—i_-‘ (2.59)

Although the second method is easier and Pr;(t) can be directly computed with-
out any iterations, this approach is not preferred in many numerical programming
languages, because they set N = oo when N > 170. This infinity issue can be resolved
if an additional sub-algorithm is used. However, dealing with long product operations
requires extra CPU time [44]. Based on this, the iterative method is more flexible
and more convenient. Thus, it is adopted in this dissertation.

In BBO, the objective function can be optimized if each island is considered as

one individual and the independent variables of each individual are dealt as features.
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The solutions can be enhanced if these features are distributed between the source
and recipient islands. The source island could become a recipient island for other
better islands [342]. That is, the richness of species on an island is decided through
a probabilistic process. If many good biotic and abiotic features?* are available
on an island, then it will be good land for immigrants. Each feature is called a
suitability index variable (SIV'), which represents one independent variable of
such a problem in BBO. The island suitability index (IS1)% is the dependent
variable, which varies with any change in any element of the vector STV. Because
BBO is a population-based algorithm, so optimizing n-dimensional problem with -

individuals can be mathematically represented as follows:
IS[l:fZ(SIV;l,S[‘/;Q, ,S[V;’n) 5 221,2, ,N (260)

Once the initialization stage is completed, the BBO algorithm should pass some

sub-algorithms:

2.3.1.1 Migration Stage

The main idea of this stage is to share the good features of rich islands to modify
poor islands. Because the selection is done through a probabilistic process, so the ith
island is likely to be selected as a source of modification if I.S7; is high, and vice versa
for the jth recipient island. From Figure 2.9, low \; and high p; indications mean a
large number of endemic species are available on the ith island. Thus, the solution
I1SI; is high. As an example, point S, is located before S , SO A is high and p, is
low, and thus IS, is considered as a poor solution. On the opposite side, point .S,
is located after S, so Ay is low and g, is high, and thus .51, is considered as a good
solution. Based on this, y; and \; are used as metrics to know the solution quality of
each island.

Through the migration process, the islands with low .57 could be improved per
each new generation, and at the same time, the solution quality of the best islands

are kept away from any corruption.

24Biotic factors: predation, competition, interactions, etc. Abiotic factors: wind, water, sunlight,
temperature, pressure, soil, etc [241].
251t is also called the habitat suitability index (HST).
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Figure 2.10: Migration Process Between Different Islands in BBO

The original BBO algorithm comes with four migration forms, as described in [43,
344], and called partial, simplified partial, single, and simplified single migration based
(PMB, SPMB, SMB, and SSMB) models. The first published BBO paper used the
PMB model [342], which is graphically described in Figure 2.10. As can be clearly
seen from this figure, these rich and poor islands act as sources and recipients of
those migrated n SIV. Each SIV s of a poor island is updated by SIV o that is
probabilistically selected from one rich island. For the SPMB model, the n STV of
poor islands are updated from the first best island(s), which in turn increases the
probability to trap into local optimum solutions. The migration process of the SMB
and SSMB models are respectively similar to those of the PMB and SPMB models
with one main difference: only one randomly selected STV s of each poor island
is modified. The last two models are faster, but with low convergence rates. This
dissertation will consider all the essential modifications presented in [44] as a basis
for the proposed MpBBO-SQP algorithm. Thus, the original BBO algorithm (before
being hybridized with SA and SQP) can save around 32.32% of its total CPU time and
with better performance than that of the PMB-BBO model. The migration process
used in this dissertation is described by Algorithm 2.



62

Algorithm 2 Partial Migration Pseudocode

Require: Let ISI; denote the ith population member and contains n features
Require: Define emigration rate p; and immigration rate \; for each member

1: for i <~ 1 to N do {where N = number of islands or individuals, see (2.60)}

2:  for s < 1 ton do {where n = number of features “SIV” or design variables}
Use \; to probabilistically select the immigrating island 1.517;
for j < 1 to N do {Break once I5I; is selected}

Use p1; to probabilistically decide whether to emigrate to 1.51;
if 151 is selected then {where ISI; # 151}
Randomly select an SIV o from ISI;
Replace a random SIV s in IS1; with SIV o
end if
10: end for
11: next SIV
12:  end for

13:  next island

14: end for

2.3.1.2 Mutation Stage

As with many nature-inspired algorithms, this stage is very essential to increase the
exploration level. The mutation process of the BBO algorithm can be defined as
random natural events that affect the availability of the biotic and abiotic features
on an isolated island, which in turn reflected on the total endemic species on that
island. These events could be positive (like shipwrecks and wind pollination) that
increase the species density, or they could be negative (like volcanoes, diseases, and

earthquakes).

In BBO, the species count probability Pr is used exclusively to find the mutation
rate [342]. Thus, many choices are available to researchers to select their prefer-

able mutation rate, such as Gaussian, Cauchy and Levy mutation operators reported
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in [152]. The original mutation rate, which is also used in this dissertation, is de-

scribed as follows [342]:

Pri
i — Tlmax 1— 2.61
" " ( Prmax) ( )

where Pry.. is the largest element of the vector Pr, and my.. is a user-defined

maximum allowable value that m,; can reach.

As can be seen from (2.61), the mutation rate is inversely proportional to the
probability rate (i.e., m; ot Pr;). This equation forces m; to be equal to Myax
at (Pr; = 0), and equal to 0 at the largest element of Pr. It can be graphically

represented as shown in Figure 2.11.

The mutation rate will flip the bell-shape graph of the probability rate. The
main objective of using m; rather than Pr; is to have better control over the islands
targeted for the mutation stage. That is, the islands located at or near the equilibrium
point S will be preserved, while the other islands sorted on both sides will have a
higher chance to be mutated and hence could be improved. The mutation process is

described by Algorithm 3.
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Algorithm 3 Original Mutation Pseudocode

1: for i <~ 1 to N do {where N = number of islands or individuals, see (2.60)}
2:  Calculate probability Pr; based on \; and p; {by iterative or eigenvector
method}

3:  Calculate mutation rate m; {using (2.61)}

4 if rand < m; and i > R,, then {R,, is a user-defined mutation range}

5: Replace n STV vector of ISI; with a randomly generated n STV vector
6: end if

7: end for

2.3.1.3 Clear Duplication Stage

If this optional stage is used in BBO, then the diversity of the problem features
could increase. The reason behind this is that the emigrated STV o will take the
same value and place in other island(s), so these duplicated features may have an
insignificant impact on their I.SI. For one-dimensional problems, duplicated SIV
will give duplicated islands. In this situation, the exploration level will decrease and
the algorithm may quickly settle on a non-global optimum solution?®. The main
purpose of this stage is to check all n STV of all N 151 whether they are duplicated

or not. If any duplicated feature is detected, then it is replaced by a new randomly

generated feature. This process is described by Algorithm 4 [343].

Algorithm 4 Clear Duplication Pseudocode
Require: Check all n SIV on all N IS]
1: while there is a duplicated STV do

2:  for i < 1to N do {where N = number of islands or individuals, see (2.60)}
3: if any duplicated STV s is detected then

4 Replace the duplicated SIV s in ISI; with a randomly generated SIV o
5: end if

6: end for

7. end while

26The blended BBO, given in [236], is immune to this duplication phenomenon.
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It is important to know that this sub-algorithm must be partially deactivated
for discrete features of mixed-integer optimization problems, and completely
deactivated for combinatorial optimization problems. Based on the step-size
resolution and the side constraints of discrete variables, ignoring this vital step could

lead to trapping into infinite loops.

2.3.1.4 Elitism Stage

Suppose that the good individuals obtained in the last generation are ruined by the
previous BBO stages (i.e., migration, mutation, and/or clear duplication). Then,
those good solutions will be lost forever if this optional stage is not activated in the
BBO program. This stage can provide a rollback option to rescue the last state of
the corrupted best islands, or elites, and then recycle them back into the population
of the next generation [346].

The overall mechanism of the BBO algorithm is depicted by the flowchart shown in
Figure 2.12. The software shown in Figure 2.13 is developed to create many possible
BBO structures flexibly without knowing any programming skills. It gives the user

the ability to hybridize BBO with many other sub-algorithms and many options.

2.3.2 Differential Evolution (DE)

The DE algorithm is known as one of the most popular and simplest population-
based evolutionary algorithms. It was presented by R. Storn and K. V. Price in
1995 [355,356]. This algorithm can be programmed easily and quickly without facing
that much of challenges, and thus it gets high attention from many researchers.

Because DE is a population-based algorithm, /N candidate solutions are generated
at the initialization stage. Each individual contains n independent variables. Suppose
that the parameters N and n are respectively used to represent the population size
and the dimension of each individual. In DE, each new individual is generated by
selecting three different individuals from the same population.

Referring to the literature, someone may note that there are many versions of DE.

The simplest DE algorithm is called classic DE or DE/rand/1/bin?". The mechanism

2TThe other variations are: DE/rand/1/either-or, DE/rand/1/L, DE/rand/2/bin, DE/rand/2/L,
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of the classic DE algorithm is described by Algorithm 5. More details about the other

DE versions can be found in [345].

2.3.3 Simulated Annealing (SA)

In metallurgy and materials science, the word “annealing” means a heat process
that controls the properties of the metal (such as ductility, strength, and hardness) by
heating it up to a specific temperature (above the recrystallization temperature),
maintaining that temperature for a certain period, and then allowing it to cool slowly.
By this approach, the crystals will be formed in a good shape with the lowest internal
energy, and hence the metal will settle on a crystalline state. In case the cooling
rate is very fast, the metal will be on a polycrystalline state so that the high
internal energy will deform the structure of the crystals [316].

This slow cooling process inspired Kirkpatrick et al. [206] to design their novel
single-point global optimization algorithm, which was presented in 1983 as the “sim-
ulated annealing (SA)” algorithm. After two years, similar independent work was
presented by Vlado Cerny [373]. The core of this derivative-free nature-inspired opti-
mization algorithm is built based on the “statistical mechanics” that was demon-
strated by Metropolis et al. in 1953 [256] using the concept of Boltzmann’s proba-
bility distribution. It states that if a system is maintained in thermal equilibrium at
temperature T , then the probabilistic distribution P of its energy E can be achieved
by [316]:

o —AE

P(E) = e*sT (2.62)

where kg is Boltzmann’s constant. For simplicity, it is set to one. AF is the
difference in energy, which is translated in SA as the difference in the cost function.

It can be calculated as follows:
AE = f(X) = f(Xo) (2.63)

For minimization problems, the new design point X is directly accepted if the

following condition is satisfied:

f(X) < f(Xo) (2.64)

DE/best/1/bin, DE/best/1/L, DE/best/2/bin, DE/best/2/L, DE/target-to-best/1/bin, DE/tar-
get/1/bin, DE/target/1/L, DE/target/2/bin, and DE/target/2/L.
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Algorithm 5 Classic Differential Evolution Pseudocode

Require: F = step-size parameter € [0.4,0.9]
Require: C, = crossover rate € [0.1,1]
Require: Initialize a population of candidate solutions {X;} for i € [1, N]

1: while not(termination criterion) do

2:  for each individual X;, i € [1,N] do

3: r1 < random integer € [1,N] : 1y # 1

4: ry <— random integer € [1,N] : ro & {i,r}
5: r3 <— random integer € [1, N] : r3 & {i,71,72}
6: Vi < X, + F(X,, — X,,) (mutant vector)

7 ¢, + random integer € [1,n]

8: for each dimension j € [1,n| do

9: re; < random integer € [0, 1]

10: if (r,; < C;) or (j = () then

11: Uij < Vi,

12: else

13: Uij < Xi;

14: end if

15: end for

16: end for

17:  for each population index i € [1, N] do

18: if f(U;) < f(X;) then

19: X, + U,
20: end if

21: end for

22: end while
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In case (2.64) is not satisfied, then the new design point X will not be directly
rejected. Rather, it has another chance to be accepted if it passes the Metropolis

criterion.

From (2.62), the probability to accept X will increase as the molten metal is
heated to a very high temperature T, and that chance gradually decreases during
the annealing or slow cooling process. This process will avoid trapping into local
optimum points when T is high. This means that the exploration level is high at the
beginning of the annealing process, and the exploitation level is high at the end of

that process.

Based on this fact, it is very important to initialize SA at a high temperature
T. But the main question here is: how much?. Actually, it has been found that
the good initial temperature T, for some objective functions could be unsuitable for
other objective functions. Thus, the determination of T, itself becomes a challenge.
To solve this issue, many researchers estimate T, by taking the average cost of some

randomly generated individuals®®.

The classical SA algorithm is constructed with two searching loops. The external
one is coded as a number of cycles or stages z, while the internal one is set as a
number of iterations [. That is, SA is initialized with high T, for the first cycle
and then decreases by a specific cooling rate?”. During each cycle, the fitness is
enhanced by a certain number of iterations. Therefore, the convergence speed and
solution quality highly depend on the setting of T, and its cooling rate. Moreover, the
maximum limits of the external and internal loops (i.e., the number of cycles z and
iterations [) are also important settings in SA. Small z and [ lead to fast computation
but with low performance. In contrast, large z and [ improve the performance but
at the cost of a huge amount of CPU time. It is like compromising between the
solution quality and the processing speed. The CPU time can be reduced if these z
and [ loops are terminated once the solution tolerance is satisfied (i.e., |AE| < €).
However, this option should be turned off in order to have a fair comparison with
other algorithms when the processing speed is also considered as one performance

criterion. Algorithm 6 depicts how the basic SA algorithm works [316,345].

28This will be discussed later in the next section, which covers our hybrid optimization algorithms.
29Tn the literature, different cooling strategies are proposed for this purpose.
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Algorithm 6 Basic Simulated Annealing Pseudocode

Require: Ty = initial temperature > 0

Require: «(7) = cooling function: o(T) € [0,T)V T

Require: Initialize a candidate solution {X(} to the minimization problem f
1: while not(termination criterion) do
2. if f(X) < f(Xp) then

3: Xo+ X

4: else

5: r <« UJ0,1]

6: if r» < exp F(Xo) — f(X)} then
T Xo+— X g

8: end if

9:  end if

10 T oT)
11: end while

2.4 Hybrid Optimization Algorithms

In general, the main objective of these highly advanced non-traditional techniques is
to accumulate the strengths and eliminate or minimize the weaknesses of individual
optimization algorithms. The hybridization could be done by using at least two
optimization algorithms. These algorithms can be taken from classical and/or meta-
heuristic categories. In addition, the designers have a large space to maneuver and
they can apply their hybridizations and/or modifications in many locations of the new
algorithm. Therefore, the overall algorithm will integrate all of these improvements.

Minimizing the disadvantages associated with each individual optimization algo-
rithm does not mean that the overall hybrid optimization algorithm will have zero dis-
advantages. Each additional sub-algorithm added to the new optimization algorithm
will consume an extra CPU time and, at the same time, will complicate the program-
ming code. Thus, the new optimization algorithm resulted from this hybridization

will be slower®® and hard to be modified by other programmers. Moreover, because

30Unless modifying/bypassing some stages of the main algorithm or/and reducing the simulation
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the hybridization phase can be done anywhere on the main algorithm, so there is
no standard format to follow. Further, if there is insufficient information about the
proposed hybrid optimization algorithm, then this algorithm will stay lonely and no
body, except the programmer(s), knows its mechanism. The goal of the following
subsections is to reveal the mechanism of four hybrid optimization algorithms used

in this dissertation.

2.4.1 BBO-LP

Unlike gradient-based algorithms, EAs are probabilistic-based single /multi-point search
techniques, the fact that makes them very slow convergence and time consuming al-
gorithms. Thus, many researchers prefer to use only LP and NLP techniques or, at
least, hybridizing them with EAs [70,280].

To accelerate the convergence speed and accuracy, a hybrid BBO-LP algorithm is
designed. LP is selected instead of NLP for the sake of speed and simplicity. However,
the LP algorithm can be incorporated with EAs only if the objective function and
its design constraints are expressed in a linear form or if they are linearized as will
be seen later in Chapter 4. The framework of this hybrid optimization algorithm is
illustrated by the flowchart shown in Figure 2.14.

The mechanism of this hybrid optimization algorithm can be briefly described in

the following steps:

e First, BBO is executed normally, and the fitness per generation is selected.
It could be one or more solutions based on the elitism parameter and user

preference.

e Then, the independent variables of the preceding fitness (i.e., n SIV) are set as

initial point to the linearized problem in the LP sub-algorithm.

o After that, LP is executed for each elite solution to fine-tune the independent

variables and exploit the solutions as much as possible.

e Finally, the worst solutions in the population are replaced with the fine-tuned

parameters.
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solutions obtained by the LP stage3!.
e Repeat all the preceding steps again in the next generation.

This hybrid algorithm acts like a multi-start LP algorithm, but with the power
of EAs to explore the entire search space quickly and effectively. The speed can be
saved here as a result of being using just a few iterations and a small population size
compared with conventional EAs. Of course, if BBO-LP is initiated with the same

parameters of BBO, then the former algorithm will be slower.

2.4.2 BBO/DE

As a global optimizer, BBO has a good exploitation level, but it lacks exploration
level [151,152,225,300]. In contrast, DE has a good exploration level, and it can reach
the space where the global optimal solution is located in [151]. Therefore, merging
the strength of DE (i.e., the good exploration level) with the strength of BBO (i.e.,
the good exploitation level) together in one superior optimization algorithm has been
suggested by many researchers [8]. In this dissertation, a new fully discretized hybrid
optimizer built based on the BBO and DE algorithms is proposed. Here, the BBO
mutation stage given in Algorithm 3 is completely replaced with the mutant process of
the classic DE algorithm given in Algorithm 5. To match DE with BBO, DE should
have N candidate solutions and n independent variables, so each new individual
injected into the existing population of BBO is generated by DE from three randomly
selected and unduplicated individuals. The mechanism of this new hybrid BBO/DE
optimizer is depicted in Algorithm 7. The DE algorithm can be described through
lines 18 to 37 of Algorithm 7. This fully discretized hybrid optimization algorithm

will be used later in Chapter 8 to solve some real-world relay coordination problems.

2.4.3 MpBBO

The idea behind this proposed hybrid optimization algorithm is to let BBO work
normally, but when the migration stage is completed the modified features will not

be selected unless they show better performance. If the new design point STV ™"

31This is a very important step to guarantee that the best solutions, obtained by BBO before
initiating LP, are not ruined.
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Algorithm 7 Pseudocode of the Proposed Hybrid BBO/DE Algorithm

Require: Initialization stage: step-size parameter F', crossover rate C), problem

dimension n, population size N, number of generations G, etc

1: for g - 1 to G do {where G = number of generations}

[ N R N R O T e e T e T e T s T o S = S =

23:
24:
25:
26:
27:
28:

Elitism stage (optional)
for p < 1 to N do {where N = number of islands or individuals}
for s <— 1 ton do {where n = number of features “SIV” or design variables}
Use A, to probabilistically select the immigrating island 157,
for g < 1 to N do {Break once ISI, is selected}
Use p, to probabilistically decide whether to emigrate to 151,
if 151, is selected then {where IS1, # 151,}
Randomly select an STV ¢ from 151,
Randomly replace an SIV s in ISI, with SIV o
end if
end for
next SIV
end for
next island
end for
Update all N I.SI — sorting and mapping
for i <— 1 to N do {where N = population size}
Generate three random integers {ry,re,r3} € [1, N|, where ry # o # 13 # i
Create mutant vector V; = X,, + F' x (X,, — X,,)
Generate a uniform random integer ¢ € [1, n]

for j < 1 ton do {where n = number of independent variables, or dimension

of the problem}

Generate random number 7 ; € [0, 1]
if (r.; < C,) or (j = () then
Generate a trial element from the mutant vector U; ; =V ;
else
Keep the jth element of the ith individual U; ; = X; ;
end if
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29: end for

30:  end for

31:  for i<« 1to N do {where N = population size}
32: if f(U;) > f(X;) then

33: Accept U; as an updated individual

34: else

35: Reject U; and keep the previous individual X;
36: end if

37 end for

38:  Clear duplication stage (optional)

39:  Update all N IST — sorting and mapping

40:  Replace the worst IST with the past best IST stored in the elitism stage (op-
tional)

41:  Update all N IS — sorting and mapping (optional)

42: end for

is worse than the previous design point STV (i.e., ISI(SIV™¥) < ISI(SIV?)),
then the Metropolis criterion will decide whether or not to accept it. This is one of
the main differences between MpBBO and the modified BBO with the immigration
refusal stage, reported in [116], where the poor islands still have the chance to be

selected as a source of modification, which in turn increases the exploration level.

2.4.3.1 Cooling Strategies

Many types of cooling strategies can be used in SA. The initial temperature T, of all
the strategies can be determined in many ways. This study uses the average of four
random individuals generated by BBO as follows [316]:

o _ sum (ISI; — 151y)

i y (2.65)

where ISI; — ISI, are the 1% four best individuals obtained from the BBO initial-
ization stage.

Each cooling strategy has its inherent strengths and weaknesses, like scheduling
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simplicity, solution quality, processing time, etc. This study focuses on five common

types, which are briefly described as follows [284, 316, 345]:

Linear Cooling Rate

This is one of the simplest cooling strategies available in the literature. For the gth

generation of BBO, the cooling temperature T y of SA can be calculated as:
fg = max (TO —a Xy, Tmin> (2.66)

where Tl is a very small temperature that is used to avoid reaching zero or a negative
value [345]. Tt is taken as 107°. « is the slope of the linear decreasing rate and should
be selected properly. We take it equal to:

T,

5 (2.67)

o =

where G is the total number of generations assigned to the BBO sub-algorithm.

Exponential Cooling Rate

It is one of the most popular cooling strategies. This type can balance between the

simplicity, speed, and solution quality. It can be expressed as follows:
T,=cxT, (2.68)

where Tg_l equals T, when (g = 1), and the temperature reduction factor c is set in

a range between 0.4 and 0.8 [316,345].

Inverse Cooling Rate

M. Lundy and A. Mees in [229] proposed this strategy. The past temperature T g—1

is used to calculate the new temperature Tg as follows:

v

y T,
T,= —91 (2.69)
[1 -+ ﬁ X Tg—l]

where (3 is a small constant (typically, 0.001 — 0.01 [345]). We take this constant to
be 3 = 0.005.
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Inverse Linear Cooling Rate
This cooling strategy is easy to code. It was implemented to build fast simulated an-

nealing (FSA) [358]. The rate is inversely linear in time, which can be mathematically

expressed as follows:

. T,

Logarithmic Cooling Rate

This cooling strategy was introduced by Geman and Geman in [145]. Tts mathematical

formula is expressed as follows:

. p
T)y= ———— 2.71
7 In(g+d) (2.71)

where d is a constant, which usually set equal to one. p is also a constant, which
typically set equal to or greater than the largest energy barrier in the problem [284].
In MpBBO, it is taken as the largest I51; of the initial population:

p=max (ISl — ISIy) (2.72)

Of course, there are other more advanced and complicated cooling strategies, such
as the adaptive version presented in [284], but they are not covered in this dissertation.

Figure 2.15 graphically shows these five cooling strategies.

2.4.3.2 Metropolis BBO

The original SA algorithm comes with only one individual®?

, while BBO is a population-
based algorithm. Both are probabilistic meta-heuristic optimizers that can converge
to the space where the global optima is located in, but each algorithm has its own
strengths and weaknesses. As stated before, the original BBO algorithm lacks explo-
ration, while SA has a high probability to explore the other sides of the search space
if the temperature 7" is still high [135]. In contrast, the initial temperature T, and
its cooling strategy can markedly affect the performance of SA, while BBO has less

dependency on its own parameters.

32Because SA is a single-solution algorithm.
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Figure 2.15: Five Different Cooling Strategies of SA

Based on these weaknesses and strengthes, instead of running SA with only one
individual, it can be executed with multiple design points supplied from BBO. Thus,
the internal searching loops [, within each cycle of z, can be disabled without affecting
the solution quality of MpBBO. This approach can save a significant amount of CPU

time.

The flowchart of this hybrid MpBBO algorithm is shown in Figure 2.16, and the
pseudocode is given in Algorithm 8. It can be seen that the cooling rate of SA is up-
dated at each new generation g of BBO until reaching G. Once the migration stage is
completed, the features (n SIV') of the N islands will not be directly overwritten with
the new values supplied from the probabilistically selected source islands. Instead,
these n SIV of the N islands (before and after the migration stage) are saved in two
temporary matrices (M; and M) with size N x n. Each row of these two matrices
represents one individual (before and after being modified). The old independent

variables are used again if and only if the modified individual shows lower solution
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quality and does not satisfy the Metropolis criterion. With this restriction on the
migration stage, the overall performance can be enhanced.

This algorithm is the core of the most highly advanced hybrid optimization algo-
rithm designed in this dissertation by employing the SQP algorithm as a fine tuner®?.

To justify this selection, the following extensive performance analysis is covered [31].

2.4.3.3 Performance Evaluations

The original BBO [43,342], BBO-EM [44] and the proposed MpBBO models have
been extensively tested using 36 benchmark functions to cover various types of difficul-
ties, including unimodal /multimodal functions, few /many local optima, narrow/wide
search spaces, problems with different dimensions, etc. Although there are many
other benchmark functions available in the literature, this special set is carefully se-
lected to have a fair performance comparison with BBO and BBO-EM as well as
other BBO versions. Table 2.2 gives more details about these benchmark functions.
Further information can be found in [27,152,187,235,389]. Also, for a fair processing
time performance comparison, the three BBO algorithms are coded using MATLAB
R2011a and the simulations are carried out using Intel Pentium E5300 2.60 GHz and
4GB RAM with 32-bit Windows XP SP3 operating system.

Table 2.3 shows the parameters used in the simulations of this comparison. These
parameters are similar to those used in [233,235], but with some restrictions on the
generation limit. These restrictions are tabulated in Table 2.4.

Tables 2.5-2.6 show the best and mean values of these 36 benchmark functions
when the algorithm is initiated with and without mutation stage, respectively. In
addition, the actual and normalized average CPU time of the 30-dimensional problems
are also shown at the bottom of each table. The bolded numbers indicate the best
results achieved for each benchmark function.

As an overall observation, the first four fastest models are respectively BBO-EM,
MpBBO (logarithmic type), MpBBO (linear type) and BBO. The other three MpBBO
types are the slowest, but they show better performance in terms of solution quality

(i.e., best and mean).

33This will be covered in the next subsection.
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Algorithm 8 Hybrid MpBBO Algorithm Pseudocode

Require: Initialization stage with all the parameters

1:
2:
3:

10:

11:

12:
13:

14:
15:

16:
17:

18:
19:

20:
21:

Find \; and p; rates, then Pr; and m; rates
Generate N islands with unduplicated n STV
Sort and map the population to the species count (i.e., 1S} = .S is coupled
With fimax OF Amin, and continue until reaching I.STy = IS yorst)
for g <+ 1 to G do {where G = number of generations}
if g =1 then
Find the initial temperature T, based on the average of the 1 four best
solutions using (2.65)
else
Updated the temperature for the gth generation

end if

Save the required best solutions “elites” to be recycled again in the next gen-
eration

Save the vectors of all the individuals (before migration) in a temporary matrix
M; with size N x n and their cost functions in a temporary vector V; with length
N

Do migration (refer to Algorithm 2)

Save the vectors of all the individuals (after migration) in a temporary matrix
M, with size N x n and their cost functions in a temporary vector V5 with length
N

for i < 1 to N do {where N = number of islands or individuals}

Calculate AE; = Va(i) — Vi (i)
if AE; >0 then _ag,

v 3

Apply the Metropolis criterion P(E) = e*s7s
if P(E) > rand then

Accept Ms(i,1 — n) vector of matrix M, as an updated individual for

INYE
else

Re-select the past M;(i,1 — n) vector of matrix M; as an updated
individual for 151;
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Table 2.2: Some Characteristics of the Used Benchmark Functions (for more details,

refer to [27,152,187,235,389)])

f# Function Name Dimension Variables Bounds Characteristics Global Optimum
fo1l Shekel's Function No. 1 1 0<x<10 Continuous, Differentiable, Non- —10.1532
Separable, Scalable, Multimodal
f02 Shekel's Function No. 2 1 0<x<10 Continuous, Differentiable, Non- —10.4029
Separable, Scalable, Multimodal
fo3 Shekel's Function No. 3 1 0<x<10 Continuous, Differentiable, Non- —10.5364
Separable, Scalable, Multimodal
fo4 Branin’s RCOS Function 2) =5 =45 S 10 Continuous, Differentiable, Non- 0.3978873
0<x,<15 Separable, Non-Scalable, Multimodal
fO5 Bukin’s Function No. 6 2 —-15<x, <5 Continuous, Non-Differentiable, Non- 0
Separable, Non-Scalable, Multimodal
foe Davis’s Function ¢ —100 < x; <100 Continuous, Differentiable, Non- 0
Separable, Non-Scalable, Unimodal
fo7 Goldstein-Price’s Function 2 —2<%<2 Continuous, Differentiable, Non- 3
separable, Non-Scalable, Multimodal
fo8 Schaffer's Function No. 6 2 —100 < x; <100 Continuous, Differentiable, Non- 0
Separable, Scalable, Multimodal
f09 Schaffer's Function No. 7 2 —100 < x; <100 Continuous, Differentiable, Non- 0
Separable, Scalable, Multimodal
f10 Six-Hump Camel-Back Function 2 —bi=x =5 Continuous, Differentiable, Non- —1.0316285
Separable, Non-Scalable, Multimodal
f11 Box-Betts’ Exponential Quadratic Sum 3 09<x;,x3<12 Continuous, Differentiable, Non- 0
Function 9<x, <112 Separable, Non-Scalable, Multimodal
f12 Fletcher-Powell’s Helical Valley 3 —100 < x; <100 Continuous, Differentiable, Non- 0
Function Separable, Scalable, Multimodal
f13 Meyer-Roth’s Function 3 —20<x,<20 Continuous, Differentiable, Non- 0.00004
Separable, Scalable, Multimodal
F14 Perm Function No. 1 3 —ip = 75 = pAp Al Continuous, Differentiable, Non- 0
Separable, Non-Scalable, Unimodal
f15 Neumaier’s Function No. 2 4 0<x;<n Continuous, Differentiable, Non- 0
Separable, Non-Scalable, Unimodal
fi6 Wood’s (or Colville’s) Function 4 -10<x; <10 Continuous, Differentiable, Non- 0
Separable, Non-Scalable, Multimodal
f17 Perm Function No. 2 6 -1<x<1 Continuous, Differentiable, Non- 0
Separable, Non-Scalable, Unimodal
f18 Price's Transistor Modelling Problem 9 -10<x, <10 Continuous, Differentiable, Non- 0
Separable, Scalable, Multimodal
f19 Storn's Chebyshev Function 9 2y, 2" Continuous, Non-Differentiable, Non- 0
Separable, Non-Scalable, Multimodal
f20 Epistatic-Michalewicz’s Function 10 0<x;<m Continuous, Non-Differentiable, Non- —9.660152
Separable, Non-Scalable, Multimodal
f21  Neumaier's (or Trid’s) Function No. 3 15 —n? <x <n? Continuous, Differentiable, Non- —665 (forn = 15)
Separable, Non-Scalable, Unimodal
f22 Normalized Rana’s Function with 15 ~520 = x, = 520 Continuous, Differentiable, Non- —512.753162426235
Diagonal Wrap Separable, Scalable, Multimodal 910068636786193
123 Bent Cigar Function 17 —100 < x; <100  Continuous, Differentiable, Separable, 0
Non-Scalable, Unimodal
f24 Alpine Function No. 1 20 -10<x, <10 Continuous, Non-Differentiable, 0
Separable, Non-Scalable, Multimodal
25 Ackley’s Function No. 1 30 —32<x, <32 Continuous, Differentiable, Non- 0
Separable, Scalable, Multimodal
f26  Generalized Griewank’s Function 30 —600 < x; < 600 Continuous, Differentiable, Non- 0
Separable, Scalable, Multimodal
f27 Generalized Penalized Function No. 1 30 —-50<x; <50 Continuous, Differentiable, Non- 0
Separable, Non-Scalable, Multimodal
f28 Generalized Penalized Function No. 2 30 -50<x; <50 Continuous, Differentiable, Non- 0
Separable, Non-Scalable, Multimodal
f29 Generalized Rastrigin's Function 30 —5.12<x; <512  Continuous, Differentiable, Separable, 0
Scalable, Multimodal
30 Generalized Rosenbrock’s (or 2™ De 30 —30=x =30 Continuous, Differentiable, Non- 0
Jong's) Function Separable, Scalable, Unimodal
f31 Generalized Schwefel’s Function No. 30 —500 < x; <500  Continuous, Differentiable, Separable, —12569.5
2.26 Scalable, Multimodal
32 Schwefel’s Function No. 1.2 30 —100 < x; <100 Continuous, Differentiable, Non- 0
Separable, Scalable, Unimodal
33 Schwefel’s Function No. 2.21 30 —100 < x; <100 Continuous, Non-Differentiable, 0
Separable, Scalable, Unimodal
34 Schwefel’s Function No. 2.22 30 —lse =l Continuous, Differentiable, Non- 0
Separable, Scalable, Unimodal
f35 Sphere Model (Square Sum, Harmonic 30 —-100 < x; <100 Continuous, Differentiable, Separable, 0
or 1% De Jong’s Function) Scalable, Multimodal
f36 Step Function 30 —100 < x; <100 Discontinuous, Non-Differentiable, 0

Separable, Scalable, Unimodal




84

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

end if
end if

end for

Update the population with sorting and mapping

Do mutation (refer to Algorithm 3)

Clear any duplicated STV (refer to Algorithm 4)

Update the population with sorting and mapping

if g > 1 then

Replace the worst .51 with the good IST saved in the elitism stage

Update the population with sorting and mapping

end if
end for

Display the best individual

Table 2.3: Simulation Parameters of BBO (for more details, refer to [233,235])

Parameter Value
Population size “N” 50
Amax, Or 1 1
Mmax, OF F 1
Mmax 0.01
Elitism “elit” 1
Mutation range “R,,” round {(g) : N]
Number of trials “7,.” 30
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Table 2.4: Total Number of Generations Assigned for Each n-Dimensional Problem

(for more details, refer to [233,235])

Dimension “n” Generations “G”
1,2,3,40r6 1,000
9or 10 5,000
15, 17 or 20 10,000
30 20,000

Among these three powerful cooling strategies, Table 2.5 shows that MpBBO (in-
verse type) is the slowest type but it wins with the 15 lowest errors out of 36, and all
these are multivariate problems with the following characteristics: continuous, differ-
entiable, non-separable, and non-scalable. MpBBO (exponential type) is the fastest
type and wins with the 12 best means out of 36, and all these are multivariate prob-
lems with the following characteristics: continuous, differentiable, and non-separable
(especially for low-dimensional problems).

Table 2.6 presents the results obtained when the mutation stage is completely
disabled. It shows that MpBBO (exponential type) is the second fastest type, but
it does not win in any competition. In contrast, MpBBO (inverse linear type) is
the fastest model and it occupies the best position in terms of the lowest errors and
best means, especially when the problem dimensions are high. Because relatively few
available problems are non-differentiable, separable, and unimodal, the inverse linear

cooling strategy performs better in most of them.

2.4.3.4 Sensitivity Analysis

Similar to other EAs, the performance of MpBBO can be affected by changing its
parameters, such as population size N, elitism elit, maximum mutation rate My,
mutation range R,,, cooling strategy type a(T) and its setting, etc. The effects of
problem dimension n and search domain STV € [STV™in STV™aX] have been partially
covered through using different benchmark functions, as presented in the previous ta-
bles. However, selecting specific benchmark functions and changing their dimensions

and domains have not been covered yet.
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In this study, part of the sensitivity analysis is carried out by changing some
parameters and then recording the results for some selected high-dimensional bench-
mark functions. For that, some selected 30-dimensional functions are reduced down
to n = 20, and the other parameters are set as follows: £ =1 = 1, N = 50,
Mmax = 0.1, G = 100, and T, = 50. These new settings are essential to match the
results presented in [234]. In Table 2.7, the effect of the temperature reduction factor
¢ of the exponential cooling strategy is studied by incrementally increasing it from
0.1 to 0.9. It can be clearly seen that MpBBO with ¢ = 0.6 scores better solutions
than the others. Also, it can be noticed that the CPU time decreases as ¢ increases
because the acceptance probability of the Metropolis criterion slowly decreases and
thus the old stored individuals will have less chance to be selected again. That is,
if ¢ is very large, then the algorithm will require high computational effort for con-
vergence. Similarly, small ¢ will have a quick reduction in T, and so it will not have
enough chance to explore the search space where the global optimum point is located
in [316].

Optimal-trials plots shown in Figure 2.17 represent the good performance of ¢ =
0.6 as compared with ¢ = 0.9 and the original BBO algorithm. These plots show all

the 50 simulation runs with the known optima of Schwefel F2.22 “f34”, which is zero.

Based on this analysis, the same recommendation, which is applied to the original
SA algorithm to select the good setting of ¢, is also applied here for the hybrid MpBBO
algorithm where the recommended ¢ € [0.4,0.8].

Table 2.8 pertains to the performance of the most popular user-defined my,ay.
Through this analysis, it has been found that MpBBO performs better when m,.
is not very small (i.e., 0.005 or 0.001). The best-achieved results are those with 0.01,
0.05 and 0.1. The reason behind this phenomenon is that the mutation stage will
compensate for the limited exploration of the algorithm due to small G. Also, the
mutation stage is very useful when the algorithm is initiated with small N [234]. If
Mmax 1S very small, then the islands will have less chance to be mutated. Based on the
last row of Table 2.8, it can be observed that m,., has less effect on the processing

speed of MpBBO.

Moreover, the total number of good solutions stored in the elitism stage can affect

the overall performance of EAs. Here, elit is set to 1, 2, 4 and 6. Two obvious
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Figure 2.17: Optimal-Trials Plots of 50 Independent Simulation Runs of Schwefel
Function No. 2.22 “f34”. (a) Original PMB-BBO, (b) MpBBO - Exponential Cooling

Rate with ¢ = 60%, (¢) MpBBO - Exponential Cooling Rate with ¢ = 90%
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Table 2.7: Effect of the Temperature Reduction Factor ¢ on the Best Results of
MpBBO (Exponential Type)

f # Function Name n|lc=01 c=02 c=0.3 c=04 c¢c=05 c = 0.6 c=0.7 c=0.8 c=0.9
25 Ackley F1 20 | 9.96E4+00 9.67E4+00 9.92E4+00 9.32E+00 1.02E+01 9.37E4+00 1.03E401 8.59E+00 9.22E4+00
f26  Gen. Griewank 20 | 1.40E+01 1.66E4+01 1.74E+01 1.42E+01 1.47E+01 8.01E400 1.18E+01 141E+01 1.38E+01
f29  Gen. Rastrigin 20 | 5.08E4+01 4.84E+01 4.70E+01 4.37E4+01 5.11E4+01 5.59E+01 4.05E401 4.81E4+01 4.82E+01
f30 Gen. Rosenbrock 20 | 8.62E4+01 8.59E+01 1.03E+02 9.21E+01 9.44E4+01 7.94E+01 1.02E+02 1.18E4+02 1.04E+02
32 Schwefel F1.2 20 | 4.09E-01 4.13E-01 4.71E-04 1.25E+00 2.44E-01  5.42E-01 9.64E-01 5.40E+00  1.04E+00
£33 Schwefel F2.21 20 | 2.69E+01 2.57E4+01 2.51E+01 2.56E+01 2.54E+01 2.29E+401 2.36E+4+01 3.22E4+01 2.88E+01
34 Schwefel F2.22 20 | 9.93E4+00 1.15E+01 9.54E4+00 1.03E4+01 1.12E4+01 9.43E4+00 1.28E+01 1.50E+01 1.48E+01
35 Sphere 20 | 4.39E+00 4.31E4+00 3.02E4-00 3.37E+00 3.68E+00 4.00E4+00 3.15E400  3.66E+00 4.33E4+00
36 Step 20 | 1.03E403 1.43E+03 1.70E+03 1.51E+03 1.17E4+03 9.64E+02 8.52E+4+02 1.74E+03 1.81E+03
Avg. CPU Time (sec) 40.94 40.88 40.98 40.78 40.81 40.79 40.48 40.14 39.50

Table 2.8: Effect of the User-Defined Maximum Mutation Rate my.x on the Best
Results of MpBBO

f# 0.1 0.05 0.01 0.005 0.001
25 9.37TE4+00 1.00E401 8.04E400 1.00E401 1.01E+01
f26 8.01E400 1.20E401 1.24E+401 1.50E+401 1.42E+01
f29 5.59E+01  5.13E+01  4.74E+01 5.23E+01 4.73E4-01
30 7.94E+01 8.21E+01 9.50E+01 4.80E+01 6.26E+01
f32 5.42E-01 5.56E-01  4.04E-02 7.30E-01 6.01E4-00
£33 2.29E+01 2.52E401 2.24E401 2.63E+01 3.02E+01
f34 9.43E400 1.11E401 1.06E401 1.10E+01 1.19E+01
35 4.00E+00 3.78E400 2.69E+00  3.29E+00 3.85E+00
f36 9.64E402 1.16E4+03 1.45E+03 1.65E+03 1.32E4-03
CPU (s) 40.79 40.42 40.33 40.63 40.65

things can be noticed from Table 2.9: the solution quality is enhanced by selecting

non-small or large elit, and the CPU time is proportional to elit. It is known that

the good selection of elit depends on other parameters, such as n, N, and G. But

in general, small elit (like 0 or 1) will force optimization algorithms to lose useful

information contained in some good individuals that might guide them to settle on

better solutions. Similarly, large elit will reduce the exploration level by premature

convergence and thus the performance will worsen [79,346].

2.4.3.5 MpBBO vs. Non-Simplified BBO Models

By referring to the literature of BBO, it is known that the types of the immigration

rate \; and the emigration rate u; play an important role in the selection probability
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Table 2.9: Effect of the Elitism Parameter elit on the Best Results of MpBBO

f# 1 2 4 6

25 8.04E+00 7.87E400 9.18E+00 8.65E+00
£26 1.24E+01 7.85E400 1.05E+01 9.46E+00
£29 4.74E401 4.30E401 3.85E401 4.41E401
£30 9.49E+01 8.58E401 8.27E+01 6.92E+01
£32 4.04E-02 1.51E-03 8.52E-01 1.51E-03

£33 2.24E401 2.67E+01 2.15E401 2.49E401
£34 1.06E+01 9.55E+00 8.99E-+00 8.70E+00
£35 2.69E+400 3.24E400 2.91E+00 2.85E+00
£36 1.45E403 1.28E+03 1.06E+03 8.22E+02

CPU (s) 40.33 42.96 44.52 44.63

of the rich and poor islands, which in turn affect the overall performance of any BBO
algorithm [233,234,236]. Thus, selecting good rate functions for A; and p; could
increase the chance to get better solutions. These non-simplified migration rates
are not incorporated with MpBBO3*. However, it is highly interesting to compare
the performance of MpBBO with other BBO models equipped with some advanced
migration rates.

Table 2.10 shows the results achieved by MpBBO for some selected benchmark
functions. The parameters here are similar to [233] where: F = [ = 1, N = 50,
Mmax = 0.01, n = 20, G = 10,000 and T, = 50. The actual results of these 6 BBO
models are available in [233]. From Table 2.10, the proposed MpBBO algorithm
shows better performance compared with the first five models, and it shares the first
position with the last model where both achieve the same score for the step function.
Also, it can be observed that MpBBO is the winner against all the models for the
Schwefel F1.2 “f32” and Sphere “f35” benchmark functions.

2.4.3.6 MpBBO vs. Other EAs

One of the interesting things here is to make a comparison between the proposed
MpBBO algorithm and other EAs, especially those hybrid versions that contain SA

as an essential part of their structures. From the literature, many hybrid models are

34They could be considered in future work.
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Table 2.10: Comparison of the Best Results Over 50 Trials of MpBBO and BBO with
Six Migration Models. (a) modell: constant \; and linear y;, (b) model2: linear \;
and constant y;, (c) model3: linear A\; and p;, (d) modeld: trapezoidal A; and p;, (e)
model5: quadratic A\; and p;, (f) model6: sinusoidal A; and p;. The values of these
six models can be found in [233]. The Os and 1s mean whether MpBBO scored better
position or not, where the left hand side digit is for MpBBO and the right hand side
digit is for the models (i.e., if the result shows 1-0, this means that MpBBO is the

winner and vice versa)

f # Function Name n  MpBBO | vs. mdell vs. mdel2 vs. mdel3 vs. mdeld vs. mdel5 vs. mdel6
25 Ackley F1 20 1.0204E-01 1-0 0-1 0-1 1-0 1-0 0-1
f26  Gen. Griewank 20 2.0654E-01 1-0 1-0 0-1 0-1 1-0 0-1
f29  Gen. Rastrigin 20 3.2696E-02 1-0 1-0 1-0 1-0 0-1 1-0
f30 Gen. Rosenbrock 20 5.2682E-01 1-0 1-0 1-0 1-0 0-1 1-0
f32 Schwefel F1.2 20 1.9426E-09 1-0 1-0 1-0 1-0 1-0 1-0
£33 Schwefel F2.21 20 9.5348E-01 1-0 0-1 0-1 1-0 0-1 0-1
34 Schwefel F2.22 20 8.1196E-02 1-0 1-0 0-1 0-1 0-1 0-1
35 Sphere 20 2.9060E-04 1-0 1-0 1-0 1-0 1-0 1-0
36 Step 20 0.0000E400 1-0 1-0 1-0 1-0 1-0 1-1
Total Winning out of 9 Benchmarks 9/0 7/2 5/4 7/2 5/4 5/5

presented as effective optimizers for solving some numerical problems. For example,
the hybrid CGP/SA algorithm given in [135] is used for the data mining task of a data
classification problem, while the hybrid SA/TS algorithm given in [203] is used for the
optimal sizing problem of small autonomous power systems (SAPS). However, there
are also many other studies conducted based on some selected standard benchmark

functions, such as [91,327,338].

Table 2.11 shows the comparison between the results of MpBBO and 10 different
types of EAs taken from [327]. For this part of the study, some parameters are
modified to match [327]. From Table 2.11, it is obvious that MpBBO is the winner in
all the performance criteria (best, mean and median) for Rastrigin “f29” and Sphere
“f35” (multimodal and separable functions). For Rosenbrock “f30” (unimodal and
non-separable function), MpBBO scores the second position for the best and median

results and the third position for the mean result.

Also, with the same initialization parameters of [45], the performance of MpBBO
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is evaluated against bat algorithm (BA) and bacterial foraging optimization
(BFO) algorithm using 9 different benchmark functions. As can be observed in Ta-
ble 2.12, the competition is mainly between BFO and MpBBO. For some benchmark
functions, BFO can reach better solutions and sometimes even with better worst and
mean errors as with Egg Crate, Beale, and Booth functions. However, BFO is prone
to trap into local optima. This main drawback can be easily highlighted in the Ras-
trigin, Bartels-Conn, and Bohachevsky benchmark functions. In contrast, MpBBO
could lose in some benchmark functions, but the gaps between the bests, worsts,
and means are very small compared with BFO. For example, BFO scores 4.61E-07
with Bohachevsky Function No.3, but the average is 3.10E4-01, which is very big. A

similar thing can be seen with Bartels-Conn Function.

Table 2.13 shows another performance comparison between MpBBO and six other
types of EAs listed as follows [90]: standard PSO (SPSO), linear decreasing iner-
tia weight PSO (LDWPSO), quantum-behaved PSO (QPSO), teaching-learning-
based optimization (TLBO), elitism-based TLBO (ETLBO), producer-scrounger
TLBO (PSTLBO). Among these seven benchmark functions, it can be clearly seen
that the competition is mainly between TLBO, PSTLBO, and MpBBO. Both win
with the 3 best means out of 7. For the best standard deviation (StDev), it is obvious
that MpBBO is the winner. TLBO is superior with non-separable functions, such
as Ackley’s and Griewank’s functions, while MpBBO performs better with separable
functions, such as Rastrigin’s and Schwefel’s No. 2.26 functions. The noise term
applied to Quartic function makes PSTLBO win with the best mean and MpBBO

win with the best standard deviation.

Lastly, the performance of MpBBO is evaluated using ten benchmark functions,
and then compared with the following EAs [397]: PSO, gravitational search algorithm
(GSA), BFO, and effective BFO (EBFO). The best and mean values achieved by these
optimization algorithms are tabulated in Table 2.14. Except for BFO, most of them
perform well. PSO wins with the 10 lowest errors out of 10, while GSA, EBFO, and
MpBBO score 9 out of 10. However, with the 8 best means out of 10, MpBBO has
the highest stability compared to others.

More information, with some statistical hypothesis tests for this algorithm, is

given in [31]. Based on all these significant results, the MpBBO algorithm is selected
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Table 2.11: Comparison of the Best Results over 100 Trials of MpBBO and Ten Other

Types of EAs [327]

Algorithm Rastrigin “f29” Rosenbrock “f30” Sphere “f35”
Type Best Mean Median Best Mean Median Best Mean Median

PSO-g-a 64 104 101.5 195  497.1 302.5 238 3094 303
PSO-l-a 102 185.7 176 326 704.3 497 406 4494 452
H-PSO-a 95 432.7 291 247 528.3 340.5 301 360 361
PSO-g-b 82 142 132 230 641.2 382.5 289 363 355
PSO-I-b 119 270 220.5 408 798 615 516  563.2 563
H-PSO-b 142 500.9 367.5 295  780.2 471 388  453.9 453
A H-PSO 65 151.2 127 238 702 369.5 301 351.5 348
v H-PSO 52 184.4 117 144 352.7 262.5 173 209.6 205

PSO-B-SA1 98 147 148 203 270.2 260 3 9.6 10

PSO-B-SA2 13 38.8 36 37 52.64 54 5 10 9
MpBBO 0.61 1.66 1.58 69.83 304.21  246.46 1.54 3.82 3.47

as the basis of the next highly advanced triple-hybrid optimization algorithm.

2.4.4 MpBBO-SQP

The goal of this hybridization is to have a good balance between the exploration and

exploitation levels. In this proposed algorithm, two phases are suggested. Firstly,

modifying the migration stage of BBO by hybridizing it with the Metropolis criterion
of SA so that the bad migrated islands can be checked whether they are worth being

re-selected again as candidate solutions or not. Secondly, the best-obtained solutions

are fine-tuned by recycling them through SQP. If these elites are improved, then

they will take the positions of the worst individuals in the population so that the

original elites of MpBBO can be kept away from any change. The final name of this

hybrid algorithm, which is a combination of three different algorithms, is MpBBO-

SQP?°. Tt has been tried to collect the main strengths of each algorithm into one

35Mp stands for the Metropolis criterion of SA.
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Table 2.12: Comparison of the Best Results over 30 Trials of MpBBO and T'wo Other
Types of EAs [45]

Function BA BFO MpBBO
Name Best Worst Mean Best Worst Mean Best ‘Worst Mean
Rastrigin 4.99E-04 2.30E+00 1.21E400 1.69E-08 9.95E-01  5.30E-01 7.50E-06 8.60E-04 2.03E-04
Egg Crate 1.27E-04 1.30E400 3.18E-01 1.98E-09 2.12E-06 4.41E-07 1.53E-07  9.29E-05  1.15E-05
Bartels-Conn 2.94E-01 2.59E+02 9.07E+401 0.00E+00 1.09E+04 3.27E+03 4.33E-03 4.34E-01 9.51E-02
Beale 1.18E-06 8.41E-03  3.74E-03 2.68E-10 2.86E-07 1.01E-07 2.65E-07  1.82E-03  4.57E-04
Bohachevsky F1 8.07E-02 1.30E+01 5.15E400 2.42E-01 3.15E+02 4.18E401 1.09E-04 4.13E-02 8.39E-03
Bohachevsky F2 2.4E-03 1.74E401 5.17E+00 1.29E-02  3.14E+02 3.04E+01 8.42E-05 2.34E-01 9.56E-02
Bohachevsky F3 1.11E-02 2.61E4+01 7.05E+400 4.61E-07 2.12E4+02 3.10E+01 1.77E-04 1.84E-01 5.31E-02
Booth 8.57E-06 2.98E-01  9.43E-02 1.34E-10 3.33E-07 8.14E-08 147E-05 1.30E-03  4.27E-04
Parsopoulos 1.00E-05 2.54E-02  6.54E-03 1.72E-10  4.23E-08 1.27E-08 1.33E-13 1.02E-07  1.46E-08
Total Winning 0/9 0/9 0/9 6/9 4/9 4/9 3/9 5/9 5/9

algorithm and, at the same time, the main weaknesses are rejected. However, one
of the inherent problems faced with most hybrid algorithms is that their processing
times are higher than that of the classical algorithms. However, MpBBO-SQP is
relatively fast, because the internal searching loops [ of the SA sub-algorithm are
excluded and compensated by receiving multiple design points from the BBO sub-
algorithm without getting any big effect on the overall performance of MpBBO-SQP.
Also, the essential modifications considered in [44] are taken into account to save an
additional amount of CPU time.

The flowchart shown in Figure 2.18 gives a quick overview of the proposed MpBBO-
SQP optimization algorithm, while the pseudocode given in Algorithm 9 describes the
whole mechanism of the proposed triple-hybrid MpBBO-SQP algorithm. As can be
seen from the pseudocode, the migration stage of BBO is extended to include the
Metropolis criterion of SA. Thus, the migrated n STV between N ISI will not take
place unless they pass this test. The full description of the heuristic part of this
algorithm, i.e. MpBBO, is given in the preceding subsection. Once the migration
stage is completed and checked by the Metropolis criterion, the elites are fine-tuned
by SQP before starting the next generation. The MpBBO-SQP algorithm with this
triple-hybrid approach will be used in the next chapter to solve one of the popular

electric power system operation problems.
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Algorithm 9 Hybrid MpBBO-SQP Algorithm Pseudocode

Require: Initialization stage with all the parameters

1:
2:
3:

10:

11:

12:
13:

14:
15:

16:
17:

18:
19:

20:
21:

Find \; and p; rates, then Pr; and m; rates
Generate N islands with unduplicated n STV
Sort and map the population to the species count (i.e., 1S} = .S is coupled
With fimax OF Amin, and continue until reaching I.STy = IS yorst)
for g <+ 1 to G do {where G = number of generations}
if g =1 then
Find the initial temperature T, based on the average of the 1 four best
solutions using (2.65)
else
Updated the temperature for the gth generation

end if

Save the required best solutions “elites” to be recycled again in the next gen-
eration

Save the vectors of all the individuals (before migration) in a temporary matrix
M; with size N x n and their cost functions in a temporary vector V; with length
N

Do migration (refer to Algorithm 2)

Save the vectors of all the individuals (after migration) in a temporary matrix
M, with size N x n and their cost functions in a temporary vector V5 with length
N

for i < 1 to N do {where N = number of islands or individuals}

Calculate AE; = Va(i) — Vi (i)
if AE; >0 then _ag,

v 3

Apply the Metropolis criterion P(E) = e*s7s
if P(E) > rand then

Accept Ms(i,1 — n) vector of matrix M, as an updated individual for

INYE
else

Re-select the past M;(i,1 — n) vector of matrix M; as a confirmed

individual for 151;
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22:
23:
24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

end if
end if
end for
Update the population with sorting and mapping
Select the best individuals (elit)
for j < 1 to elit do {where elit = the best individuals}
Tune the jth elite by SQP
if 151 ;“"ed <7 SI;.‘"t“"ed then
Insert I1.S []t-“”ed in the population by taking the place of the worst individ-

uals

else
Neglect, IST{"me

end if
end for
Update the population with sorting and mapping
Do mutation (refer to Algorithm 3)
Clear any duplicated STV (refer to Algorithm 4)
Update the population with sorting and mapping
if g > 1 then

Replace the worst ST with the previous good ISI that are saved in the

elitism stage

41: Update the population with sorting and mapping
42:  end if
43: end for

44: Display the best individual
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Table 2.13: Comparison of the Best Means and Standard Deviation (StDev) over 50
Trials of MpBBO and Six Other Types of EAs [90]

Fun. Name Criteria SPSO LDWPSO QPSO TLBO ETLBO PSTLBO MpBBO
Ackley Mean 8.09E-02 5.52E-04 1.07E400 3.55E-15 1.24E-08 3.55E-15 1.94E-02
StDev + 7.57E-02 + 5.46E-04 + 8.43E-01 £ 0.00E4+00 £ 6.79E-08 =+ 0.00E+400 =+ 7.22E-03
Griewank Mean 4.80E-01 1.83E-01 1.67E-01 4.93E-03 7.40E-03 2.31E-02 5.08E-02
StDev + 1.78E-01 + 1.31E-01 + 1.54E-01 + 7.90E-03 + 1.24E-02 + 2.75E-02 + 2.56E-02
Quartic (with noise) Mean 5.10E-03 4.81E-03 3.61E-03 1.25E-03 1.11E-03 1.02E-03 1.10E-03
StDev + 2.41E-03 + 2.33E-03 + 2.43E-03 + 5.87E-04 + 5.26E-04 + 5.20E-04 + 4.63E-04
Rastrigin Mean 7.21E+00 4.51E400 9.43E+00 3.20E400 4.21E+400 3.57TE400 9.72E-04
StDev + 3.18E+00 £+ 1.36E4+00 £ 6.57TE4+00 £ 1.45E+00 £ 1.59E+00 4+ 1.89E4+00 =+ 6.01E-04
Rosenbrock Mean 3.82E+01 8.39E400 2.38E+01 2.93E+00 2.54E+00 3.09E400 6.01E+00
StDev + 4.29E+01 + 1.25E+01 + 5.34E+01 + 7.74E-01 + 3.14E-01 + 7.09E-01 + 4.49E+00
Schwefel F2.26 Mean -3.67E+03 -3.64E+03 -2.33E+03 -3.41E4+03 -3.38E+03 -3.88E+03 -4.19E+03
StDev + 1.83E+02 £+ 223E4+02 £ 1.84E4+02 £ 3.77E+02 £ 3.61E+02 &+ 1.82E4+02 £ 4.03E-02
Step Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
StDev £+ 0.00E4-00 =+ 0.00E400 =+ 0.00E+00 =+ 0.00E4-00 =+ 0.00E400 <+ 0.00E+00 = 0.00E4-00
Total Winning Mean 1/7 1/7 1/7 3/7 2/7 3/7 3/7
StDev 17 17 1/7 3/7 2/7 2/7 4/7

Table 2.14: Comparison of the Best Results over 50 Trials of MpBBO and Four Other
Types of EAs [397]

Function PSO GSA BFO EBFO MpBBO
Name Best Mean Best Mean Best Mean Best Mean Best Mean
Branin 0.398 0.398 0.398 0.398 0.398 0.409 0.398 0.398 0.398 0.398

Foxholes 0.998 0.998 0.998 4.631 0.998 0.998 0.998 3.482 0.998 0.998

GoldStein-Price 3.000 3.000 3.000 3.000 3.000 4.721 3.000 3.000 3.000 3.000
Hartman No.3 -3.863 -3.863 -3.863 -3.863 -3.862 -3.636 -3.863  -3.863 -3.863  -3.863
Hartman No.6 -3.322 -3.263 -3.322 -3.322 -3.252 -2.539 -3.322 -3.322 -3.322 -3.264

Kowalik 3.07E-04 4.74E-04 5.89E-04 4.02E-03 4.15E-04 4.21E-03 5.78E-04 7.67E-04 3.55E-04 7.83E-04

Shekel No.1 -10.153 -7.607 -10.153  -5.381 -10.152 -8.567 -10.153  -7.677 -10.153 -10.153
Shekel No.2 -10.403 -9.693 -10.403 -10.403 -10.332 -8.736 -10.403  -10.276 -10.403 -10.403
Shekel No.3 -10.536 -9.452 -10.536  -10.232 -10.526 -8.829 -10.536  -10.294 -10.536 -10.536
Six-Hump Camel-Back -1.032 -1.032 -1.032 -1.032 -1.032 -1.005 -1.032 -1.032 -1.032  -1.032
Total Winning 10/10 6/10 9/10 6/10 4/10 1/10 9/10 5/10 9/10 8/10
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Chapter 3

Economic Load Dispatch Using MpBBO-SQP

3.1 Overview

Optimal Economic operation is considered as one of the most important problems in
any power system that has to be solved to satisfy the load required by the end-users at
the lowest possible production cost so that the net profit can be maximized. The other
goal is to minimize the emission rates (oxides of nitrogen “NOx”, oxides of sulfur
“SOx”, oxides of carbon “COx”, soot, and unburned hydrocarbons “UHCs”).

Two main strategies can be involved here to achieve economic operation. The first
one is based on scheduling the output of generating units to meet the required load
demand at the lowest possible fuel consumption. The second strategy is based on
minimizing the losses in the network by controlling the flow of power in each branch.
The first strategy is called the economic load dispatch (ELD) problem, while
the second strategy is called the minimum-loss problem; and both strategies can be
optimized by means of the optimal power-flow (OPF) technique [155].

To solve the ELD problem, there are two possible streams called analytical and
numerical techniques. The first one is mainly used if the given system is small and has
many simplifications (such as neglecting generator limits and network losses) [326].
The second technique is more advanced and applicable to real-world problems. It is
used especially to solve large and highly complex systems. To minimize the objective
function of the ELD problem, many traditional and modern optimization algorithms
have been suggested [4,63,123,130,141, 155,165,175, 202,217,243, 258,298, 326, 386].
Also, this objective involves many constraints (equality, inequality, and side con-
straints) that need first to be satisfied to get a feasible solution.

Some of these traditional optimization techniques are: the lambda-iteration
method, the base point and participation factors method, the gradient method,
Newton-Raphson (NR) method, and LP/NLP methods. Because these techniques

are single-search methods, they are very fast compared to modern population-based

100



101

nature-inspired algorithms if both are initialized with the same number of iterations.
However, there are many limitations to these conventional techniques, like [141,165]:
converging to non-global solutions, derivative-based approaches®, the incremental cost
curves of generating units are linearized?. Practically, solving this power engineering
problem requires to consider many obstacles and constraints (such as power losses,
ramp rate limits, prohibited operating zones, and multiple fuel options),
which makes conventional methods insufficient for this type of applications. Although
dynamic programming (DP) is successfully used to solve this problem [63,217], it
consumes a large amount of CPU time and it may end up trapping into local optimum

solutions.

4 are used to overcome the

Based on this, more recent optimization techniques®
inherent complexities that come with the conventional techniques. Thus, there is no
need to simplify the design function, determine derivatives, or even selecting good
initial /starting points to ensure searching within the global area of the search space.
If penalty functions are selected to deal with these constrained problems, then the
optimization algorithms equipped with these constraint-handling techniques can work
independently. Thus, the design function and its objective (whether it is minimization

or maximization) can be inserted as a plug-in function within the program.

In this chapter, the triple-hybrid optimization algorithm MpBBO-SQP presented
in Chapter 2 is used to solve the ELD problem of the 3-, 13- and 40-unit test systems.
Although the classical BBO algorithm outperforms many nature-inspired algorithms
given in the literature [258], it has been found that our proposed MpBBO-SQP algo-

rithm can win in this competition.

IFor example, Newton-Raphson method.

2For example, linear programming method.

3The mechanisms of most algorithms are inspired by nature; or, more specifically, from biology,
physics and chemistry science [197]. Please, refer to Chapter 2; particularly Figure 2.8.

4For example, genetic algorithm (GA), evolutionary programming (EP), differential evolution
(DE), simulated annealing (SA), particle swarm optimization (PSO), ant colony optimization (ACO),
artificial bee colony (ABC), and bacterial foraging optimization (BFO) [4, 63,141,165, 202,243, 258,
313,348].
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3.2 Mathematical Formulation of ELD Problems

As extensively discussed in Chapter 2, the first step to optimize any ELD problem
is to transform the real-world problem into a mathematical model. The following

subsections cover the classical ELD optimization model.

3.2.1 Objective Function

The fuel-cost variation of each generating unit can be represented by many ways based
on the type of each unit [298]. Suppose that the sth unit is a conventional type®. To
achieve an optimal operation of n generating units, the following single-objective

function is commonly used:

OBJ = min Zn: Ct () (3.1)

i=1
where Cf is the operating cost of the ¢th unit to supply F;, which is a function of the
active power P; generated by that unit.

Some studies, especially OPF and electricity market, consider both the active
and reactive power. Thus, the cost required to generate a specific amount of reactive

power can be represented as:

OBJ = min zn:C'f (@) (3.2)

i=1
where C7 is the operating cost of the ¢th unit to supply @);, which is a function of the
reactive power (); generated by that unit.

These two operating costs can be mathematically expressed by the following

polynomial-based regression models [171]:

d

CH(P) = ag+ Y aP! (3.3)
J:l |

Cl(Q:) = B+ B (34)
j=1

where as and s are the polynomial coefficients obtained by fitting C7* and C] via

linear regression analysis. d is the degree of these two polynomial equations. Thus,

%i.e., a thermal unit.
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they become linear equations when d = 1, quadratic equations when d = 2, and cubic

equations when d = 3 — as follows:

o [fd=1:
Ci(P) = aotal; (3.5)
Ci(Q:) = Bo+ Qs (3.6)

o Ifd=2:
CiH(P) = ao+arP+ P} (3.7)
Ci(Qi) = Bo+ HQi+ Q7 (3.8)

o If d=3:
Cia (Pz) = o+ Oélpi + Oégf)z? + OégR;g (39)
Cl Qi) = Bo+ Qi+ BQF + B3Q] (3.10)

Actually, the best and most popular regression models used in the literature are

(3.7) and (3.8), because of two reasons:

1. Equations (3.5)-(3.6) are weak to explain the variability of C{ and C} in terms
of variance (s), mean squared error (MSE), coefficient of determination (R?)
and its adjusted and predicted versions (R, and R2,), etc.

pre

2. Statistically, it is insignificant to increase d from 2 to 3, because the improve-
ments on {s, MSE, R?, R2;;, R, - -~} through using (3.9) and (3.10) are in-
sufficient to replace the preceding quadratic equations in favor of the cubic

equations.

Sometimes, (3.5) and (3.6) are modified to be in piecewise forms, so the nonlinear
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cost curves C® and C! can be linearized in k zones as follows®:

min
Zl

4 r .
oo +a Py Poe |PM P >

M Zinin Zinax
agg+ag 1 Py Pe | P )

7 )

Cr =3 aso+asiP; P [P PAT) (3.11)

3 (2

r Zmax
Qe+ ae Py Pre | P 7PimaX:|

)
\

( M . Zmin
Bro+ Bi1aQi; Qi € Q™ Q" )
r Zmin Zmax
Poo+ B21Qi; Qi € Q" Q" )

max min
Zl ZQ

Ci = B30+ B31Qi; Qi € Ql , Q; > (3.12)

\ Bro + BeaQi; Qi € Qizznm; Qinax}

where P™" and Q™" are respectively the lower bounds of the ith active and reactive
power. Similarly, P™** and Q;"** are respectively the upper bounds of the ith active
and reactive power. PiZ’T " and QZZ’? " are respectively the lower bounds of the xth

operating zone Z, assigned to the ith active and reactive power. Similarly, PZ-Z’I‘n ~ and

max

QiZ” are respectively the upper bounds of the xth operating zone Z, assigned to the
ith active and reactive power. It has to be said that (3.11) and (3.12) are different
than the functional constraints of the prohibited operating zones phenomenon’.

In this chapter, only the quadratic fuel-cost function of the active power is used.
Thus, for simplicity, C¢ is replaced with C; and (3.7) is expanded and re-expressed
as follows:

Ci(P) =a;+ GiP, + ’YiPiQ (3.13)

where «;, (;, and ~; are the constants of the ith unit, and they are defined as fol-

lows [175]:
- ay: cost of crew’s salary, interest and depreciation ($/hr)

- B;: fuel-cost coefficient ($/MWh)

6The main goal from this approach is to solve ELD problems by LP.
"This phenomenon will be discussed later in this section.
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- 7;: losses measurements in the system ($/MW?h)

Equation (3.13) should be extended if the term of the valve-point loading effect
is included as follows [348]:

Ci(P) = a; + BiP; + %P + |e; x sin [ fi x (P = B)]| (3.14)

7

where e; and f; are the fuel-cost coefficients of the ith unit modeled with the valve-
point loading effect.

Moreover, the fuel-cost function should also be modified if some additional specifi-
cations (like emission rates and multiple fuels) are considered® [243,298]. Furthermore,
for non-conventional generators, the quadratic C; is replaced with other suitable ex-
pressions. For example, a linear fuel-cost function is considered for wind-generated
power [166].

Once the objective function is constructed, then some equality, inequality and
side constraints should be satisfied in order to have a feasible solution. Detailed
information about these constraints can be found in [4, 30, 130, 155,243, 386]. The

next subsections cover the most popular constraints:

3.2.2 Generator Active Power Capacity Constraint

Each generating unit has its own lower and upper active power limits. This side

constraint can be expressed as:
Bmin < -PZ < Pimax (315)

where P™" and P are respectively the minimum and maximum active power that

can be supplied by the ith generator.

3.2.3 Active Power Balance Constraint

To meet the consumers’ power requirement, the total generated power must satisfy
the power demand as well as the losses in the power network. This equality constraint
can be expressed as:

Pr—Pp—P,=0 (3.16)

8This will be extensively explained in Chapter 7.
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where Pr is the total power generated by n units, which can be calculated as follows:
Pr=>)_P (3.17)
i=1

and Pp is the total active load demand. The term P; represents the transmission
losses, which can be calculated by using Kron’s loss formula as follows:

n

P, =Y "PBjPj+ Y ByP,+ By (3.18)

i=1 j=1 i=1

where B;j, By;, and By are called the loss coefficients; and sometimes called the

B-coefficients [123,326].

3.2.3.1 Equality to Inequality Constraint Conversion

As described in the last chapter, satisfying equality constraints through a non-gradient

iterative process is very hard. Instead, an acceptable amount of tolerance “+ €” can
be used. Thus, (3.16) is satisfied if:

—e< h(P)<e , where h(P)=Pr—Pp— Py (3.19)

Because (3.19) is a functional constraint, so it can be split into two parts of
inequality constraints as follows:

0

—h(P)—e < 0

These new constraints can be satisfied by employing either the penalty functions

or the random search method?.

3.2.3.2 External Optimizer

The other possible approach to iteratively solve (3.16) is by employing a special
sub-algorithm to deal with that stiff constraint. For example, the Newton-Raphson
technique can be employed as a sub-algorithm within the main optimizer just to

satisfy this task.

9The full description about these constraint-handling techniques have been covered in the first
section of the last chapter; specifically, in Subsection 2.1.8.
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3.2.3.3 Slack Generator

The slack generator technique can also be used to directly satisfy this equality
constraint. Although any generator can be selected as a slack unit, it is preferable
to select the unit with the largest capacity to have a better chance to satisfy this
constraint in one pass. Neglecting the transmission losses P;, and considering P, as a

slack generator, the following equation can be used:
Pi=Pp-> P (3.22)
=2
If the term Py, is taken into account, then (3.22) is converted to:

Pi = Pp+P-) P

i=2
= Pp+ Z Z P,B;; P; + Z Boi P; + Boo — Z F; (3.23)
i=1 j=1 i=1 =2

By separating the slack generator!® P, from the summations and putting all the

Pi-terms on the left-hand side, (3.23) becomes:

P1—ZP1B1Z‘PZ'—ZPZ'BZ'1P1—BO1P1=PD+ZZPZBUPJ'

i=1 i=2 i=2 j=2

+>  BoiPi+ Boo — > _ P (3.24)
=2 1=2

By extracting P, from the first summation, (3.24) becomes a quadratic equation
as follows:

aP?+bP, +c=0 (3.25)

The analytical solution to this 2"¢ order polynomial equation can be obtained by

finding the positive roots of the following general formulal':

b= Vb? — 4dac

2a

P, and b* —4ac >0 (3.26)

0P is just as an assumption. Any unit can be used as a slack generator.

1Tt is important to note that the solution of this analytical technique becomes valid only if P,
passes some restrictions, like: located between the lower and upper limits, positive and real value,
satisfies its prohibited operating zones, satisfies its downward and upward ramp rates, etc.
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where
a = —BH (327)
b = 1-) BuP,—)» PBy— By (3.28)
=2 =2
¢c = Y Pi—Pp— % PByP—) BuPi— By (3.29)
=2 =2 j=2 =2

The slack generator approach is adopted in this study.

3.2.4 Generator Ramp Rate Limits

The power output of the ¢th unit cannot be adjusted instantaneously. Thus, for a more
convenient solution, the ramp rate limit has to be considered where the increasing

and decreasing actions should happen within some specific steps as follows:
Pinow o Pinew < R;iown (33())
PV — PV R (3.31)

(2 K3

where P and PV are the existing and new power outputs of the ith unit, respec-
tively. Also, R{"™ and R are respectively the downward and upward ramp rate
limits [243]. These two equations, which represent the ramp rate limits, can be

included within (3.15) as follows [87]:

max (Pimin’ PZ»HOW _ R?OWH) < Pinew < min (Pimax’ Pinow + Rllp) (332)

3.2.5 Prohibited Operating Zones

The phenomenon of the prohibited operating zones could happen to the ith unit
due to some physical limitations, such as vibrations in the shaft bearing, steam valve
opening, etc [243]. This phenomenon causes some discontinuities on the fuel-cost

curve. Thus, incorporating this constraint in (3.15) yields:

min L
P < P < P
U L
Fj s PisPjn
U L
B, —1 < PZ ~ Pi,%i
U

N
T
N
e
g
&

(3.33)

i7%i
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where PZL] and PZUJ are respectively the lower and upper limits of the jth prohibited
operating zone on the fuel-cost curve of the ith unit, and s; stands for the total

number of prohibited operating zones associated with the ith unit.

3.2.6 Emission Rates Constraint

Based on rules followed in each jurisdiction, there is an environmental regulation that
requires power plants to not exceed the maximum allowable limits of the emission

rates [302]. This constraint can be expressed as follows [4,243]:
GER, (Pr) < MAL, (3.34)

where GER; and MAL; stand for the gas emission rate and the maximum allowable
limit of the jth gas, respectively.

In addition to the preceding constraints, the objective function could also be
subject to many other constraints based on the type and operational philosophy of
electric power plants. Some of these constraints are: spinning reserve constraint, line
flow constraint, hydro-water discharge limits, reservoir storage limits, water balance
equation, network security constraint, etc. More details can be found in [4, 130,202,
243].

Moreover, optimizing this objective function requires using one or multiple sub-
algorithms to satisfy all these constraints to get feasible solutions. For side con-
straints, the independent or decision variables { Py, Ps, -+, P;,--- , P,} can be easily
satisfied by bounding the randomly generated values between the lower and upper lim-

12 as shown in (3.15) and programmatically explained in (2.19). The other equality

its
and inequality constraints can be satisfied by using different constraint-handling tech-

niques'® [122,316,345).

3.3 Numerical Experiments

The performance of the conventional and hybrid BBO algorithms are evaluated us-

ing three different test systems. The initialization parameters of these optimization

12This statement is invalid if the ramp rate limits, prohibited operating zones, and transmission
losses P, are considered.
13Please, refer to Chapter 2.
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Table 3.1: The Algorithm Parameters Used for Each Test System

Initialization 3-Unit Test System 13-Unit Test System 40-Unit Test System
Settings® without SQP  with SQP without SQP  with SQP without SQP  with SQP
Population Size (V) 20 5 20 15 60 20
Iterations No. (G) 50 20 250 40 1000 500
Total Trials (Tr) 50 50 50 50 50 50
Mutation (mmax) [258] 0.007 0.007 0.009 0.009 0.007 0.007
Elitism (elit) 1 1 1 4 3 8

%The initial population is randomly generated for all the test systems.

algorithms are listed in Table 3.1 for each test system. The fuel-cost curves of the
units of all the three test systems are modeled using the quadratic cost function with
valve-point loading effects, which is given in (3.14). All the required information
about these test systems can be found in [28,348].

The programs are coded in MATLAB R2011a and simulated on a computing
machine having the following specifications: Intel Pentium E5300 2.60 GHz and 4GB
RAM with 32-bit Windows XP SP3 operating system.

3.3.1 Test Case I - 3 Generating Units

This system contains three generating units with a load demand of 850 MW. Table 3.2
shows the results obtained by different BBO versions. Based on the mean of MpBBO,
the exponential cooling rate is selected for MpBBO-SQP. It can be clearly seen from
this table that MpBBO-SQP can converge to the best solution, but it consumes more
CPU time than BBO-EM and MpBBO. Also, it can be observed that, due to a few
numbers of generators, MpBBO-SQP could trap into local optima. However, this
happens just for a few trials as can be concluded from the median. This can be easily
avoided by increasing G and/or N. Figure 3.1 shows the fitness curves of this test
system, which again proves the superiority of the MpBBO-SQP approach.

Table 3.3 shows an extended comparison with other optimization algorithms pre-
sented in the literature. As can be obviously seen from this table, MpBBO-SQP can

reach the best known solution with the lowest N and G.
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Table 3.2: Comparison Between Different BBO Algorithms (Test Case I)

Generating BBO-EM* MpBBO MpBBO-SQP
Unit PMB Lin. Exp. Inv. Inv. Lin. Log. Exp.

P, (MW) 300.155  300.084 300.375 299.632 300.331 300.302 300.267
P, (MW) 149.925  149.982 149.802 150.398 149.780 149.783 149.733
P; (MW) 399.920  399.934 399.823 399.970 399.889 399.915 400.000
S P, (MW) 850.000  850.000 850.000 850.000 850.000 850.000 850.000
Best Cost ($/hr) 8234.22  8234.24 8234.20 8234.46 8234.15 8234.14 8234.07
Mean ($/hr) 8252.78  8254.33 8249.37 8250.34 8254.91 8254.43 8260.67
Median ($/hr) 8248.36  8252.37 8243.98 8246.37 8251.09 8249.23 8241.59
StDev ($/hr) 17.5654 15.0395 15.6774 15.8421 16.3213 17.6732 45.2105
Avg. CPU Time (s) 0.05233 0.05976 0.06033 0.06143 0.05997 0.05982 0.26762

?The acronym BBO-EM stands for BBO with essential modifications. This algorithm has been
previously used in [44] and won against the original BBO algorithm. It is used here just to show the
superiority of the proposed MpBBO-SQP algorithm.

8500
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Figure 3.1: The Fitness Curves of Different BBO Versions (Test Case I)
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Table 3.3: Comparison Between MpBBO-SQP and Other Algorithms (Test Case I)

Algorithm Performance Criteria
Type Best Cost ($/hr) Population Size (N) Iterations No. (G)
EP [388] 8234.07 30 50
GAB [348] 8234.08 20 50
GAF [348] 8234.07 20 50
CEP [348] 8234.07 20 50
FEP [348] 8234.07 20 50
MFEP [348] 8234.08 20 50
IFEP [348] 8234.07 20 50
MPSO [299] 8234.07 20 150
GA [258] 8239.20 300 150
PSO [258] 8234.72 300 150
BBO [258] 8234.08 300 150
MpBBO-SQP 8234.07 5 20

3.3.2 Test Case II - 13 Generating Units

This is the second system, which is relatively harder than the preceding one. The load
demand that has to be satisfied is 1800 MW. Table 3.4 shows the results obtained
by BBO-EM, MpBBO and MpBBO-SQP after 50 trials. Again, MpBBO-SQP is ex-
ecuted with the exponential cooling rate because it shows better mean as compared
with the other four cooling schedules. With fair CPU time performance comparison,
it has been found that MpBBO-SQP consumes more CPU time. However, it sig-
nificantly outperforms the other two algorithms; as can be seen in Figure 3.2. This
superiority can also be observed in Table 3.5. Among 17 different competitive opti-
mization techniques, MpBBO-SQP can reach 17963.8 $/hr with the lowest G and the

second lowest N.

3.3.3 Test Case III - 40 Generating Units

With 40 generating units, this system is considered as one of the biggest ELD test
systems available in the literature. The load demand of this ELD problem is 10500
MW. Table 3.6 shows the results obtained by BBO-EM, MpBBO, and MpBBO-SQP
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Table 3.4: Comparison Between Different BBO Algorithms (Test Case II)

Generating BBO-EM* MpBBO MpBBO-SQP
Unit PMB Lin. Exp. Inv. Inv. Lin. Log. Exp.
P, (MW) 449.268  449.099 539.574 538.214 538.804 449.194 628.319
P, (MW) 305.198  225.160 150.093 299.622 79.921 146.605 149.599
P; (MW) 145.659  221.228 228.265 70.523 148.985 149.103 222.751
Py (MW) 109.085  114.141 158.729 111.007 161.286 159.364 109.865
P; (MW) 111.583  109.271 60.143 62.090 107.561 161.413 109.866
Py (MW) 109.165  109.234 110.723 60.057 159.572 163.772 109.867
P; (MW) 66.301 158.037 110.242 110.634 159.795 108.754 109.867
Py (MW) 109.126  114.962 61.883 160.157 61.197 158.759 60.000
Py (MW) 159.715  62.576 109.950 155.804 109.449 60.633 109.867
Py (MW) 78.143 80.973 42.789 40.405 82.760 42.496 40.000
Py (MW) 44.689 42.393 79.005 44.654 40.547 83.474 40.000
Py (MW) 56.509 55.606 56.841 91.481 58.033 55.353 55.000
Pis (MW) 55.557 57.322 91.762 55.352 92.089 61.081 55.000
> P, (MW) 1800.00  1800.00 1800.00 1800.00 1800.00 1800.00 1800.00
Best Cost ($/hr) 18227.5  18226.9 18153.9 18185.0 18226.6 18267.0 17963.8
Mean ($/hr) 18393.1  18386.0 18301.6 18308.8 18325.4 18397.7 18070.0
Median ($/hr) 18380.4  18389.8 18290.9 18304.3 18321.7 18402.8 18073.3
StDev (8$/hr) 81.0980  61.6227 74.5877 55.3060 61.9199 58.3879 40.7717

Avg. CPU Time (s) 0.57700 0.62722 0.82779 0.83726 0.73686 0.63166 4.47230

%See the footnote of Table 3.2

after 50 trials. In this case, the inverse linear cooling strategy performs better than
the others in terms of average quality. Thus, MpBBO-SQP is executed with this
cooling rate. It can be observed from Table 3.6 that the processing time of MpBBO
increases as the solution quality increases. This phenomenon is obvious with the
exponential, inverse, and inverse linear cooling rates!'?.

be clearly seen that MpBBO-SQP is much better than the other versions of BBO.

In this comparison, it can

However, it consumes around 80% to 148% additional CPU time. In this system, the
SQP phase is not activated until it reaches 90% of G; as can be seen in Figure 3.3.
This approach gives enough chance to MpBBO phase to explore the search space,
and it can also save a significant amount of CPU time. Table 3.7 shows an extended

comparison between MpBBO-SQP and 17 different optimization algorithms presented

14Please, refer to MpBBO in Chapter 2.
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Figure 3.2: The Fitness Curves of Different BBO Versions (Test Case II)

Table 3.5: Comparison Between MpBBO-SQP and Other Algorithms (Test Case II)

Algorithm Performance Criteria
Type Best Cost ($/hr) Population Size (V) Iterations No. (G)
CEP [348] 18048.2 30 800
FEP [348] 18018.0 30 800
MFEP [348] 18028.1 30 800
IFEP [348] 17994.1 30 800
PSO-SQP [376] 17969.9 100 100
CGA MU [94] 17975.3 30 30 x 3000
IGA_MU [04] 17964.0 5 30 x 3000
PSO [89] 18014.2 20 250
PPSO [89] 17971.0 20 250
MPPSO [89] 17976.2 20 250
APPSO [89] 17978.9 20 250
DPSO [89] 17976.3 20 250
GA-PS-SQP [47] 17964.25 100 1000
ABC [165] 17963.9 300 200
FAPSO-NM [277] 17963.8 26 300
FAPSO-VDE [278] 17963.8 26 100
BBO [258] 17965.8 50 100
MpBBO-SQP 17963.8 15 40
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Figure 3.3: The Fitness Curves of Different BBO Versions (Test Case I1I)

in the literature. Again, MpBBO-SQP can detect better solutions with very small
population size N and relatively few numbers of generations GG, which proves itself as

a superior optimization algorithm.

3.4 Further Discussion

Based on the results presented in the preceding section, it can be concluded that
the BBO solution quality can be steeply enhanced by reinforcing the migration stage
through the Metropolis criterion of SA and fine-tuning the elites through SQP. With
this triple-hybrid approach, both the exploration and exploitation levels can be pret-
tily balanced.

It has been found that the other properties of SA have also been transferred
to MpBBO-SQP. Thus, the initial temperature T, and the cooling strategy are very
important factors that might affect the overall performance of MpBBO-SQP. However,
because BBO does not need many settings in the initialization stage, so MpBBO-SQP
has less dependability on the SA parameters.

Also, it has been found that, although the internal searching loops [ of SA are
deactivated in MpBBO-SQP, the overall hybrid algorithm consumes huge CPU time.
This is due to the processing speed of the second hybrid phase. It can be effectively
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Table 3.6: Comparison Between Different BBO Algorithms (Test Case I1I)

Generating BBO-EM* MpBBO MpBBO-SQP
Unit PMB Lin. Exp. Inv. Inv. Lin. Log. Inv. Lin.
P (MW) 109.9829 107.1563 110.4708 113.5721 112.3417 110.6294 110.8006
P, (MW) 112.9480 105.3991 109.8269 110.6250 110.2898 111.5661 110.8009
P; (MW) 60.8319 101.0059 92.6172 118.7452 96.7447 98.6038 97.4002
Py (MW) 177.5861 179.2414 177.6211 183.7266 180.1699 180.5318 179.7331
Ps (MW) 89.5334  92.0468 88.5719 89.1711 91.1842 96.0074 90.7899
Ps (MW) 111.2320 109.1939 131.7801 138.4395 106.1829 135.3823 140.0000
P; (MW) 259.8986 256.5497 292.8111 275.7522 257.3219 280.3666  259.6003
Py (MW) 283.0137 283.1697 284.6723 291.4189 285.2167 285.0032 284.6004
Py (MW) 283.6620 285.6290 284.3732 295.5165 283.8322 297.1240  284.5998
Pip (MW) 131.1614 204.8213 138.3372 134.3401 131.9480 193.0429 130.0000
Py (MW) 98.4919 156.3835 176.2985 169.1616 241.4022 94.8783 168.7998
P, (MW) 168.5389 172.5566 162.0961 100.6024 154.4301 172.7777 168.7998
Pi3 (MW) 214.1733 304.4306 215.7737 215.0265 214.3881 128.7132 214.7599
Py (MW) 397.7859 304.6572 298.7209 390.9713 395.1666 395.9701 394.2794
Pi5s (MW) 393.1412  299.3851 394.1351 302.5692 390.4244 305.1189  394.2793
Pg (MW) 387.4290 394.0908 394.4072 392.6898 306.8219 393.6977  304.5197
Pi; (MW) 485.7239 490.0678 490.9882 489.0061 496.8710 489.1214  489.2795
Pig (MW) 492.6118 493.0292 487.7777 486.1721 489.1898 489.4086  489.2795
Py (MW) 512.9207 512.3289 507.5660 511.9301 516.8716 511.3859  511.2795
Pyy (MW) 511.6986 511.2362511.1204 516.4457 511.3494 511.8786  511.2794
Py (MW) 521.4651 523.2986 524.7963 535.3893 520.2215 522.9748  523.2794
Py; (MW) 524.7502 533.0381 533.9713 533.6980 519.2020 527.9580  523.2794
Pz (MW) 534.8721 525.2546 521.4333 519.7955 519.9372 516.3175 523.2794
Py (MW) 522.3196 538.6236 521.6195 521.9118 525.9079 527.6274  523.2801
Pys (MW) 521.0463 524.3549 534.4174 528.5863 523.6342 528.7126  523.2800
Py (MW) 522.2667 525.3645529.7122533.1516 529.7113 528.4108  523.2794
Py; (MW) 12.9535 11.5957 10.7071 18.0412 12.1148 16.0110 10.0000
Pys (MW) 16.2587  10.9665 15.4744 10.9164 11.1498 16.1873 10.0000
Pyy (MW) 20.5544  10.1174 10.9433 10.0349 17.1487 14.6821 10.0000
P3y (MW) 96.5324  89.8871 90.8936 88.2024 91.6684 84.3462 89.7581
P3; (MW) 189.2199 181.5048 185.5420 185.7671 188.5363 189.4289 190.0000
P32 (MW) 188.3592 164.5573 189.2287 186.9412 189.1755 184.6063 190.0000
P33 (MW) 183.6452 169.0938 178.1893 188.7571 179.1483 188.4070 190.0000
P3, (MW) 171.3132 165.2316 164.1037 166.3106 163.2768 177.2380 164.8006
P35 (MW) 197.7943 182.2683 165.9807 170.2927 169.1983 171.9220 164.8002
P (MW) 193.9636 164.3957 166.6935 173.5405 170.3869 176.3794 164.8030
P37 (MW) 107.8912 103.0432109.0115109.1962 89.6925 91.7985 110.0000
Pss (MW) 99.5476  89.1103 98.4373 91.4707 99.2854 106.0449 110.0000
P3g (MW) 84.6454  99.4453 88.9657 88.6757 87.8194 105.4537 110.0000
Py (MW) 508.2361 526.4697 509.9135 513.4386 520.6376 544.2860  511.2794
> P, (MW) 10500.00 10500.00 10500.00 10500.00 10500.00 10500.00 10500.00
Best Cost ($/hr) 122762.2 122801.5 122577.9 122509.0 122642.4 122780.1 121415.3
Mean ($/hr) 123337.0 123324.5123080.7 123100.6 123057.2 123269.2 122025.2
Median ($/hr) 123326.6 123324.9 123043.9 123023.2 123050.3 123251.5 121989.1
StDev ($/hr) 268.1310 262.9107 243.7758 309.6664 210.4609 254.9956  343.0694

Avg. CPU Time (s) 12.53991 13.68938 17.23036 16.83868 16.71288 13.52386 31.07582

%See the footnote of Table 3.2
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Table 3.7: Comparison Between MpBBO-SQP and Other Algorithms (Test Case I11)

Algorithm Performance Criteria
Type Best Cost ($/hr) Population Size (N) Iterations No. (G)

CEP [348] 123488.3 100 1000
FEP [348] 122679.7 100 1000
MFEP [348] 122647.6 100 1000
IFEP [348] 122624.4 100 1000
PSO [89] 122324.0 40 500
PPSO [89] 121788.2 40 500
MPPSO [89] 122225.7 40 500
APPSO [89] 122044.6 40 500
DPSO [89] 122160.0 40 500
PSO-LRS [337] 122035.8 20 1000
NPSO [337] 121704.7 20 1000
NPSO-LRS [337] 121664.4 20 1000
CSO [336] 121461.7 30 1000
CDEMD [115] 121423.4 25 1000
ABC [165] 121441.0 800 200
FAPSO-NM [277] 121418.3 60 1000
BBO [258] 121510.8 500 100
MpBBO-SQP 121415.3 20 500

decreased by reducing the number of elites that need to be fine-tuned through SQP
and/or by setting a lower accuracy ¢ for the termination or early stopping criterion'®.
For example, the processing time of the 40-unit test system can be steeply decreased
from 31.08 seconds down to 8.13 seconds, with an optimal cost of 121478.0 $/hr, if
only the fitness is recycled through SQP instead of all the elites. This means that
MpBBO-SQP can get very good solutions with the lowest CPU time'®. Additionally,
it is good to initiate SQP after completing a big portion of the total iterations!” so
that the algorithm can have more chance to explore the search space and at the same
time the CPU usage can be effectively reduced.

It has to be said that many options can also be tried here to increase the per-

formance of MpBBO-SQP in terms of solution quality and processing speed. One

15Tn this study, a tolerance of 10~7 is used for SQP.
16Comparing with BBO-EM and MpBBO.
"For example, 90% of G, which is considered during solving the 40-unit test system.
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of these options is by finding the optimal algorithm settings'® by conducting some
sensitivity analysis. Moreover, it is good to test MpBBO-SQP with some adaptive
cooling strategies. Furthermore, the basic mutation and migration rates of BBO can
be replaced with more advanced rates that are presented in the literature. Also, op-
positional and blended BBO options (O8BO and BBBO) can be considered as new

phases for more advanced hybrid optimization algorithms.

8They are called hyperparameters, which are covered in Chapters 5, 9, and 10.



Chapter 4

Optimal Coordination of Directional Overcurrent Relays

Using BBO-LP

4.1 Overview

Overcurrent protection, as a subject, is very wide. Based on many criteria (applica-
tions, input signals, severity levels, etc), the protection can be achieved by many types
of protective devices, such as mechanical /thermal devices (Buchholz, bimetallic, and
pressure relief relays), fuses, and overcurrent relays (OCRs).

Compared with other expensive relays, OCRs can compromise between different
design criteria (cost, speed, reliability “security vs. dependability”, simplicity, ad-
equateness, selectivity, sensitivity, etc), and this is the reason why they are widely
used in power system protection [126,368].

Based on their time-current characteristic curves (TCCCs), OCRs can be
classified into three categories: definite-current overcurrent relay' (DCOCR),
definite-time overcurrent relay (DTOCR), and inverse-time overcurrent re-
lay (ITOCR). The last type is designed to remedy the inherent weaknesses of the
first and second types, and thus it becomes the most popular type of OCRs [147,292].
To set ITOCRs, there are two independent variables called the plug setting? (PS)
and the time multiplier setting® (7'M S) with three parameters {«, 3,7}. These
parameters are adjusted to have “short-time inverse”, “inverse”, “standard inverse”,
“moderately inverse”, “very inverse”, “extremely inverse”, etc, of TCCCs [56,147].

In general, OCRs are non-directional devices, which can detect faults based only
on their stepped-down current magnitudes |/| measured by current transformers
(CTs) to initiate trip signals to their corresponding circuit breakers (CBs). To

understand the main problem of non-directional OCRs, consider the parallel line

n some references, it is also called instantaneous overcurrent relay (IOCR) [147,292].

2In some references, it is also known as the pick-up setting (P.S) and the tap setting (7'S) [24].

3In some references, it is also known as the time dial setting (7'DS) and the time lever
setting (TLS) [24].

119
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Figure 4.1: Single-End Fed Power System of Parallel Feeders Containing only OCRs

radial circuit shown in Figure 4.1. In this example, assume that there is a fault F
on line 2 close to busbar B. If only OCRs are used, then the overcurrent relays
R3 and R4 will detect the same fault current magnitude and send their trip signals
simultaneously to the circuit breakers C'B3 and C' By, respectively. In addition, C'B,
will be tripped by R, after an additional time delay so that the fault can be completely
cleared from the system. The problem with this protection scheme is that the load
and line 1 are unnecessarily disconnected. Thus, this design is considered unreliable

and unselective.

To overcome this problem, an additional unit is combined with each OCR to
identify the direction of fault currents. Based on this, both the current magnitude and
direction are taken into account for tripping the faulty element as fast and selective
as possible, while the remaining parts of the network can operate normally (i.e.,
the dependability increases). This special protective device is called a directional

overcurrent relay (DOCR), which is the focus of this chapter.

The term relays coordination can be shortly defined as “the quality of selec-
tivity among protective devices [52|”. Without this crucial stage, the protection
design will not satisfy the selectivity criteria, and hence the overall design will become
unreliable where there is always a possibility that some backup relays may act before

their primary relays.

To achieve that, all protective relays should be adjusted with correct settings to en-
sure that the primary relays have enough time to act before giving the corresponding

backup relays the permission to act. This time delay is known as the coordination
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time interval® (C'TT). It can be calculated as follows [21]:
OTI = Tep + Tos + Tsu (4.1)

where Tep is the time delay of the circuit breaker. Tpg is called the overshoot
time®. Tg), is the safety margin given to the relay to account all the negligible errors
(current magnitude measurement error, relay timing error, CT-ratio error, etc [40]).
The typical value of CT'I lies between 0.2 and 0.5 second [52, 74].

Optimal relay coordination (ORC?) is simply achieved by satisfying two im-

portant things, which are:
1. The primary/backup (P/B) relay pairs are correctly coordinated.

2. The sum of operating times of protective relays, when they act as primary

devices, is minimized.

The solution of ORC problems is straightforward for simple radial networks. More-
over, it could be analytically solved by expert protection engineers for some small and
uncomplicated networks if all the faults, system contingencies, and abnormalities are
analyzed and predetermined. Otherwise, the only available tool is to use optimization
techniques where both the solution quality and processing speed are the key factors
to determine which algorithm is the best [24,40,280]. In general, these problems are
considered as highly constrained non-convex mixed-integer non-linear program-
ming (MINLP) problems where T'M S are continuous and PS are discrete”®.

The aim of this chapter is to cover: 1. the mathematical formulation of classical
ORC problems when only DOCRs are used, 2. the solutions of some popular test
systems, 3. the existing approach to enhance the solution quality and the main
challenges associated with this approach, and 4. our proposed approach to effectively

achieve the last point in an innovative way.

4In some references, it is also known as the selective time interval (STI) [292] and the dis-
crimination margin (DM) [147].

5The overshoot time is limited to electromechanical relays. It is also called the over-travel
delay and the coasting time [24].

6Please, note that the acronym ORC is different than the acronym OCR. The latter one is used
as a short name for overcurrent relays.

“In the literature, if numerical relays are used in ORC problems, then both P.S and TMS are
provided as almost continuous variables [24,110,111].

8This assumption is not correct in real-world ORC problems [21]; as will be seen later in Chapter 8.
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4.2 Mathematical Formulation of ORC Problems

As per extensively discussed in Chapter 2, the design function of any optimization
problem should be modeled as an objective function subjected to some design con-

straints. The following subsections cover all these parts of classical ORC problems:

4.2.1 Objective Function

Suppose that an electrical network contains § branches, and each branch is protected
by two CBs mounted on both ends. If each CB is triggered by one DOCR, then
the preceding network should contain ¢ = 28 DOCRs. Also, it is known that the
operating time of each DOCR depends on PS and T'M.S. Thus, the dimension n of
any DOCR-based ORC problem can be calculated as follows:

n=20=48 (4.2)

If an in-zone fault occurs at the location k, then the operating time of the ith

primary relay R; can be mathematically represented as follows:
Tzi,k; - f(TMSwPSu]z,k) 5 1= ]-727"' y 0 (43)

where [, is a short-circuit current seen by the ith primary relay R; for a fault
occurring at the kth location.

For T; x, there were many attempts to model ITOCRs mathematically [1,56, 84,
177,179,232,301,308]. One of them was modeled based on a polynomial equation,
and it was presented by Sachdev et al. in [232]. Until the last decade, many papers
have been presented based on that model to solve different ORC problems. In fact,
settling on one standard model was a very challenging task. It was deeply discussed
by one of the IEEE-PES committees in 1989 [1]. Nowadays, the operating time of
ITOCRs is mathematically modeled based on two common standards. The first one is

known as the TEC-60255 or BS142 standard, which is expressed as follows [42,177]:

__ B
L\

(7)1

The ANSI/TEEE standard model can also be used. It is similar to (4.4), but with

Tip = TMS; x (4.4)
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one extra coefficient called” [56,179] ~:

s

L\
(%) -
It has to be said that the lower and upper bounds of T'M S; depend on the standard
TCCC the relay belongs to'".

Tiw = TMS; x + (4.5)

The objective of this optimization problem is to find the best values of P.S and
TMS of all o DOCRs so that the weighted sum of the operating times, when DOCRs

act as primary relays, is minimized for [ fault locations as follows:

l
OBJ = min i Zwlka; (4.6)

i=1 k=1
where w; j, represents the fault probability that might happen at the kth location of
a branch protected by the ith relay. For the sake of simplicity, all the weights given
in (4.6) are considered equal to one [367].

To do short-circuit analysis, two options are available. The first option is to do it
manually by hand, which is a weary process and highly unrecommended. The other
option is to use one of the known commercial and free-distributed software!!.

For [ fault locations on each zone, Damborg et al. in [103] classifies three levels of
coordination criteria. By referring to Figure 4.2, the first one is called the desired
design criterion, which considers two fault locations. The first one is called the

near-end fault'? and the other one is called the far-end fault'®. For the near-end

9Please, note that there is no subscript i for the coefficients {c, 3,7} because most of the studies
consider that all o DOCRs have the same TCCC. If multiple TCCCs are used, then multi-standard
coefficients must be applied, and thus the subscript ¢ must be included to these coefficients.

10Please, refer to Subsection 4.3.3 for more details about this point.

11Such commercial software are: ETAP, DigSILENT PowerFactory, PowerWorld Simula-
tor, Neplan, ASPEN, SIEMENS PSS/E, and CYME. Also, there is one popular library in
Python called PandaPower, which has the ability to do static short-circuit calculation according
to IEC 60909.

12Tt is also known as the close-in fault.

13Tt is also known as the remote-bus fault and the tail-end fault.
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Table 4.1: Number of Faults Considered for Coordination Criteria

Coordination Criteria | Number & Names of Fault Locations
Desired Design Criteria 2 Bolted-Points: F, and F),

Minimum Design Criteria | 1-Bolted Point: F, for R, or F), for R,
Enhanced Design Criteria | 1-Bolted Point: F,,

location, the fault occurs at the nearest possible point of the line where the primary
protective relay is installed, and vice versa for the far-end location [34]. This criterion
could be relaxed to what is called the minimum design criterion where the relay
settings are optimized based on the near-end 3¢ faults. When larger classes of faults
are studied, then one fault at the mid-point of each line could be considered. This
case is called the enhanced design criterion [73], which is applied in [70]. All these
three design criteria are covered in Table 4.1 [34]. For the desired criterion, (4.6) is

re-expressed as follows:

gnear Qfar
OBJ =min | Y Tpwmeer 4y qpofr (4.7)
p=1 q=1

near

If the same number of relays are considered for both fault locations, then o

0" = p. Thus, (4.7) can be simplified to:

4
OBJ = min > (TP 4 TP (4.8)
=1
For other test systems, where the minimum and enhanced criteria are considered,

the previous expression is further reduced to:

o
OBJ =min » T (4.9)
i=1
where T} is calculated either at the near-end or mid-point!?.
Optimizing any one of these objective functions requires to satisfy first the follow-

ing design constraints:

14Please, note that the near-end fault for the zth primary DOCR mentioned in Figure 4.2 is
considered as the far-end fault for the yth primary DOCR.



125
4.2.2 Inequality Constraints on Relay Operating Times

To realize the operation of the ith relay, its speed should be bounded between two
limits:

TR < Ty < IO (4.10)
where T/ and T} are respectively the minimum and maximum operating times of
the 1th relay R; for a fault occurring at the kth location. T;f,‘jn depends on the internal
components of R;, whereas T;}** depends on the critical clearing time ., required to
preserve system stability [40,213,291].

The above functional constraint can be divided into two inequality constraints as
follows:
0

Tix —T% < 0

4.2.3 Side Constraints on Relay Time Multiplier Settings

Manufacturers of protective relays offer their products with some specifications. One
of these specifications is about the lower and upper limits of T'MS, which can be

expressed as follows:
TMS™M < TMS; < TMSM™ (4.13)

where TMS™™ and TM S are respectively the minimum and maximum values of
TMS of the ith DOCR.

4.2.4 Side Constraints on Relay Plug Settings

For the ith relay, the lower limit PS™" should be set equal to or greater than the
maximum overload current /3%, and the upper limit P.S;"** should be set equal to or

less than the minimum fault current’®. The term I32* can be calculated as follows:

[53% = OLF x [ (4.14)

where [;"** is the maximum rated current. OLF is the overload factor, which

depends on the element being protected, and it is usually set in the range of 1.25-
1.5 [147].

15Tn most cases, the minimum fault current is the single-phase 1¢ short-circuit current [123].
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Therefore, the practical side constraints on the plug settings of all p DOCRs
depend on the specification of powerlines!® and the short-circuit analysis. Once
these two fundamental steps are successfully done, the limits of PS of all p relays
can be defined. In general, the side constraint of the ith plug setting PS; can be

mathematically expressed as follows:
PSMr L PS; < PSP (4.15)

To simplify this constraint, most of the studies presented in the literature consider
this side constraint as a fixed vector of discrete values, such as [40,51,280]. However,
some other studies use the practical range associated with each relay, such as [40,70].

For the sake of clarity, these two bounds can be practically calculated as follows:

OLF x [max

PSMY = — b 4.16
Si OTR, (4.16)
2 .
pSmax — __—__pmin 4.1
Si 3CTR; 7 (4.17)

where C'TR; is the CT-ratio of the ith relay, and I}f‘;n is the minimum fault current

that must be detected by that relay [147].

4.2.5 Selectivity Constraint Among Primary and Backup Relay Pairs

This inequality constraint ensures that the associated backup DOCRs will not operate
before their primary DOCRs. This can be accomplished by selecting the proper PS
and T'M S so that the backup relay(s) can initiate the trip signal to isolate the kth
out-zone fault if the ith primary relay exceeds the given chance!”. The mathematical

formulation of this constraint can be expressed as follows'®:
Tip—Tix = CTI (4.18)

where T} i, is the operating time of the jth backup relay for an out-zone fault occurred

at the kth location.

16 e., transmission, sub-transmission, and distribution lines.

"In other words, it is the sum of the ith relay operating time 7" plus its coordination time
interval CTI;.

18]f all o DOCRs have the same coordination time interval, then the subscript ¢ is dropped to
have just C'T'I.



127

Based on this, the operating time of the jth backup relay must be known to check
whether the preceding constraint is satisfied or not. This can be easily calculated by
using any one of the previous standard equations. If the ANSI/TEEE standard given
in (4.5) is used as the TCCC model, then T}, can be determined as follows:

B8
Lin \©
() —1

where I, is a short-circuit current seen by the jth backup relay R; for a fault occur-

ring at the kth location®.

Tix = TMS; X + (4.19)

For having a more realized model, some researchers take into account the case
when one of the two-end primary relays operate before the other. At that short-
period of time, the network will have a transient topology and thus the fault current
will change. Therefore, it is important to ensure that the corresponding backup relays
will not operate at that moment [40,51,367]. This can be achieved by defining the

following inequality constraint:

/

T — T, >CTI (4.20)

where Tl-:k and lek are the operating times of the i-jth P/B relay pair under that
transient condition.
Therefore, by collecting all the optimization parts given above, the standard op-

timization model? of classical ORC problems can be expressed as follows:

min  Z(TMSy,--- , TMS,, PS,, -, PS,)

TMS,PS

Subjected to: T}y + CTI — T]bg

N

min pr
ik — Ly

N

1

TMS™ < TMS; < TMSM™
pSprax (4.21)

0

0

TP <0
; < T

PSM» < PS;

N

where i and j notations are respectively used to represent the primary and backup

relays, and the notation k£ represents the fault location.

19This location belongs to the ith primary relay R;. Thus, this fault is considered as an out-zone
fault for R;.
20Refer to the first section of Chapter 2.



128

It has to be remembered that, if the transient selectivity constraint expressed in

(4.20) is modeled in the ORC problem, then it should also be included in (4.21).

4.3 Possible Ways to Apply EAs to Solve ORC Problems

Once the mathematical model given in (4.21) is correctly formulated, any n-dimensional
optimization algorithm can be applied to find the optimal 7'M .S and PS. Three pos-

sible scenarios could be faced during designing any EA program:

e T'MS and PS are discrete — real-coded EAs: This approach could be used to

simulate electromechanical DOCRs.

e T'MS is continuous and PS is discrete — mixed-integer EAs: This approach
could be used to simulate solid-state DOCRs.

e TMS and PS are continuous — combinatorial EAs : This approach could be

used to simulate state-of-the-art numerical DOCRs.

To do that, different techniques could be applied here, which are categorized and

briefly described in the following subsections.

4.3.1 Applying Conventional Meta-Heuristic Optimization Algorithms

The conventional EAs given in Chapter 2 (i.e., DE, SA, and BBO) can be applied
to any one of the preceding scenarios. For example, the conventional BBO algorithm
shown in Figure 2.12 has been successfully used to solve some popular test systems of
this subject [24,40]. However, the ORC problems are well-known as highly stiff non-
convex nonlinear optimization problems where many constraints need to be satisfied.
Recently, some researches suggest to incorporating a pre-processing unit called a
feasibility checker (FC). This sub-algorithm checks the selectivity constraint of
each P/B relay pair and fixes it through a while-loop [40,201]. Actually, this is a
significant enhancement and a big step in developing superior optimizers, because this
FC has the ability to detect feasible solutions within just a few iterations compared
with hundreds and thousands of iterations as with conventional EAs [70,280]. To

explain it more, suppose that the conventional BBO algorithm shown in Figure 2.12
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Figure 4.3: Mechanism of the Feasibility Checker within BBO

is used to solve an ORC problem. The mechanism of the FC sub-algorithm can be
illustrated in Figure 4.3.

Also, some recent researches suggest to hybridize EAs with LP and NLP to ac-
celerate the convergence rate. Such studies are [14,70,280,297]. However, because
the ORC problems are nonlinear, so there is a technical problem when LP is selected
as a sub-algorithm in EAs. Detailed information about this problem and how to

practically solve it in different ways is given below.

4.3.2 Tuning Relay Settings by Hybridizing EAs with LP

In Chapter 2, it has been said that to be able to apply LP as a sub-algorithm?!, the
optimization model should be expressed in a linear form. Referring to the preceding
ORC models, it is obvious that the objective function and the functional constraints
are nonlinear. Thus, the first essential step to be used, before initiating LP, is to
linearize th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>