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Abstract

Over the past couple of decades, the advancement and growth of digital information

and communication technologies have resulted in information explosion and these

technologies are profoundly changing all aspects of modern society. The populariza-

tion of the Internet and mobile technologies fueled the rise of social media, providing

technological platforms for information spreading, content generation, and interactive

communication, which has been contributing to the global data growth. Addition-

ally, social media have become one of the main outlets for obtaining information

about latest news, people, businesses, services, etc. The research on it has gained

traction having in mind the growing interest in the applications and related tech-

nical and social science challenges and opportunities. One of the big challenges of

the widespread online textual data is the structure and size. Structurally, it is not

in proper grammatical form, has slang, emoticons, improper sentences, which is the

standard way we communicate daily. Size-wise, the text is usually very short. How-

ever, this is not only the case with the online data; medical notes, open-ended survey

questions, various old-school maintenance reports are just some of the examples. We

particularly focus on the problem of author profiling on short texts in three different

domains. Automatic author profiling is a set of methods to determine an author’s (or

group of authors’) gender, age, native language, personality type and similar, which

can be useful in different application contexts such as forensics, security, marketing,

product personalisation, socio-demographic analyses and so on. In the first task, we

explore fine-grained language dialect/variety identification and propose a new feature

weighting scheme. In the second task, we work on bot detection on social media and

propose a simple, but efficient method based on statistical diversity measures. In

the third task, we present some interesting findings on topic modelling in relation

to author on open-ended survey questions from the Canadian Longitudinal Study on

Aging (CLSA).
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Chapter 1

Introduction

1.1 Motivation

Over the past couple of decades the advancement and growth of digital informa-

tion and communication technologies have resulted in an information explosion and

they are profoundly changing all aspects of modern society. The society where the

creation, distribution, use, integration and manipulation of information has a sig-

nificant economic, political, and cultural impact is called in literature “information

society” [174, 283]. Ubiquitous access is a key characteristic of the underlying en-

abling platform — the Internet. Further, rapid growth of mobile device technology

and increase in processing capabilities are leading to a new era of omnipresent com-

munications systems. It is the era where users are able to obtain the information at

any time and any place relying on different electronic devices. Hence, mobile devices

are becoming adapters between sources of information (e.g. sensors) and global In-

ternet mobile services (health, education, government, etc.). In such environment,

development of architectures, algorithms and protocols is necessary to make the In-

ternet capable of supporting users in access to information. The rapid growth of

number of users of Internet is correlated with the amount of data generated. Compa-

nies capture huge amounts of information about clients and business operations, and

millions of networked sensors are being embedded in the physical world in different

types of devices and transport vehicles, sensing, creating, and communicating data.

Moreover, the popularization of the Internet and mobile technologies fueled the rise

of social media, providing technological platforms for information spreading, content

generation, and interactive communication, which has been contributing to the global

data growth.

The research interest in machine learning applications to the related technical

and social science challenges and opportunities is constantly growing. The research

spectrum is very wide and interdisciplinary. Social Networking Sites (SNSs, often

1
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in literature called Online Social Networks — OSNs) and social media have become

some of the main outlets for obtaining information about latest news, people, busi-

nesses, services, and interacting with other users via messaging, sharing, etc. Such a

complex system is interesting to businesses because it gives them an unprecedented

opportunity to connect with customers and prospects. Lately, use of social media for

political purposes (campaigning, opinion sharing, promoting, etc.) has uncovered a

research on its impact on a countries’ political processes [29].

Understanding user behaviour on SNSs has become a fundamental issue in so-

cial network analysis. Hence, “user profiling” involves building semantics-based user

profile (basic information, socio-demographic characteristics, opinions, interests, etc.)

from noisy and unstructured (loosely structured) data. The constructed user profiles

can have many different applications. For instance, recommender systems can benefit

from high quality profile database to provide good recommendations. For companies,

user profiling is important for locating potential customers. Another related term,

“author profiling” is used in literature [227] to describe a method or set of methods

to determine an author’s gender, age, native language, personality type and similar.

Author profiling is usually used in different application contexts such as forensics,

security and marketing. For example, being able to determine the linguistic profile of

the author of a problematic text by analyzing the text could be extremely valuable

for evaluating suspects in court cases. As mentioned earlier, companies may be inter-

ested in predicting, based on the analysis of blogs and online product reviews, what

types of clients like or dislike their products. However, use cases involving automated

analysis of author traits can have some ethical implications, but this complex and

sensitive topic is out of the scope of the thesis.

Speaking broadly and considering very active research in the Natural Language

Processing (NLP) domain, there are many “off-the-shelf” tools and frameworks avail-

able for a fairly big set of problems. The accuracy of these tools is proven to perform

relatively well on the benchmark datasets, depending on the complexity of the prob-

lem. Because these methods usually rely on the probability (or frequencies) of the

text features, they require long texts to “learn” representative distributions. However,

when we apply these methods to short and noisy texts, current NLP tools usually

perform worse, additionally because they are characterized as informal, not carefully
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edited, and contain grammatical errors, slang, abbreviations, emoticons, etc. This

is very different for the corpora built in the NLP tools — they are usually gram-

matically and structurally consistent. Therefore, the methods need to be adapted to

boost the performance on noisy texts. There are known ways to adapt NLP methods

to this kind of texts. One way is to perform text normalisation, in such way that it

becomes structurally closer to the formal texts. Another way is to retrain the existing

models on annotated noisy texts. Depending on application, third way would be the

combination of the two approaches.

In this work we present three projects, each aimed to address the aforementioned

challenges in the respective domains. The first project focuses on language and variety

identification of short texts. First we examine similarities between 44 (40) European

languages by employing Common N-Gram (CNG) distance method [135]. We addi-

tionally investigate the effect of various feature weighting schemes on language identi-

fication performance and propose a new one based on CNG. In the second project we

explore the problem of bot detection on social media, with the focus on Twitter. We

propose simple, yet effective method for bot detection based on statistical diversity

measures. The motivation behind it is that genuine human accounts use more diverse

type of messages compared to automated accounts. In the third project we move

from supervised to unsupervised learning, where we conduct a set of experiments on

an open-ended question from survey conducted on 50,000 elderly Canadians who were

asked: “what in their opinion are important factors to age gracefully?”. We conduct

topic modelling techniques and clustering to draw the potential relations between the

opinions and different demographic variables, such as age, sex, health conditions and

similar.

1.2 General Background

We tackle all the research areas important for this study, going through known meth-

ods and approaches for the similar problems. We outlined the relevant work in the

domain of short and noisy data, with the accent on social media user-generated data.

Graph-based text mining is one of the focal points of the study, as well as the do-

main adaptation techniques, because the tools that are built for regular, semantically

coherent, and error-free texts usually underperform in the case of short texts.
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1.2.1 Mining with Short and Noisy Textual Data

Noise in text can be defined as a difference in the surface form from the intended,

grammatically correct or original text. Noise in text can be induced in two ways.

First, noise can be introduced during an automated conversion process to textual

representation from some other form. Conversion from printed or handwritten doc-

uments, spontaneous speech, and camera-captured scene images, are some of the

examples where computer algorithm results in noisy text. The characteristic of noise

in these cases is the deviation of the converted text from the representation of the

original signal. Second, noise can be introduced when the text is produced in digital

form. Online instant messaging, SMS (Short Messaging Service or texting), emails,

social media, blogs and forums, open-ended survey questions, are some of the ex-

amples where users produce noise in text. Such text contains grammatical errors,

special characters such as emoticons, non-standard or slang word forms, word forms

from multiple languages etc.

A considerable amount of research is conducted related to short and noisy texts.

One of the reasons is the increasing popularity of short messaging on the Internet.

Moreover, many platforms are built around the idea of sharing short snippets of in-

formation. Sentiment analysis and opinion mining [158, 178], text classification [260],

and text normalisation [15, 105] are some of the very active general short text research

topics. It has been observed that algorithms that perform well for larger bodies of text

might have decreased performance for short and noisy texts. Derczynski et al. [65]

presented a part-of-speech (PoS) tagger solution for Twitter posts. They claim that

taggers trained for long and grammatically correct texts perform poorly in the con-

ditions of brevity and noise. To enrich the context of a short text (tweet), Guo et

al. [103] presented a solution where they linked the context of a tweet to the related

news.

1.2.2 Author Profiling

The Author Profiling (AP) task, as mentioned earlier, is concerned with determin-

ing specific person’s characteristics such as gender, age, native language and simi-

lar, by analyzing the language usage in groups of authors. It is applied in different
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domains such as psychology [213], social media [211, 247], socio-demographic analy-

ses [198, 237], etc. The common processing pipeline consists of three steps: a) textual

features extraction, b) documents representation using these features, and c) training

a classification model of documents. The first step has received most of attention,

where features fall into two groups: content features (words such as nouns, adjectives,

verbs, etc.) and stylistic features (function words, PoS tags, punctuation, etc.) [202].

Rosso et al. [235] is an excellent survey on author profiling, with the particular focus

on Arabic language. However, they give a good overview of the recent and influential

developments in the author profiling tasks. They split author profiling into three

subtopics: age and gender detection, native language and dialect/variety identifica-

tion and the deception, irony and sarcasm detection. In Chapters 2 and 3 we will

focus more on the research related to language and gender identification.

1.3 Contributions

Having all that laid out, we explore user profiling in three different domains. Under

domain-specific settings, the goal is to find alternative (presumably better, in a way)

solutions to existing, well-established approaches. The following subtopics are used

as guidelines:

Subtopic 1: In the task on Similar Language Identification we tackle a few ques-

tions:

• Can a distance-based classification model be used to analyze the training set

and provide more insights about the similarity among related languages? Is this

automatic model potentially suitable as a tool for comparative linguistics?

• Do different weighting schemes significantly affect the quality of a model?

• Is a distance based weighting scheme appropriate (superior?) compared to

traditional weighting schemes?

Subtopic 2: In the task on Bot Identification on Social Media, we explore:
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• Can simple measures from Information Theory (Shannon’s, Simpson’s indices)

be used to model user behaviour and to develop a supervised method to distin-

guish between genuine users and bots?

Subtopic 3: In the task on Topic Modelling on Open-ended Survey Questions, we

try to answer:

• Is an Information Retrieval (IR) based method suitable for topic modelling?

• Can it be used to automatically create a participant-to-topic mapping which is

suitable for further analyses?

Workshop and conference papers that were the result of this study: [140, 141, 142,

143, 144, 145].

A paper that is in the process of publishing:

“Language Distance using Common N-Grams Approach”, INFOTEH 2020 (Jahorina,

Bosnia).

1.4 Outline

This rest of this thesis is structured as follows.

Chapter 2 First, we briefly discuss related work, mainly in the domain of language,

dialect and language variety identification for short texts. Second, we explore measur-

ing similarity among a set of languages spoken in Europe using Common N-Grams

distance [135]. Third, we conduct a comprehensive study on weighting techniques

and their impact on classification performance across a set of classifiers. We give

task-specific conclusions and potential extensions and questions to investigate in the

future.

Chapter 3 In this chapter we conduct a study on bot identification on social media.

We discuss the relevant work and try to outline most important directions of research

in this domain. Having that the bot and fake news detection solutions on online

social networks are increasingly in demand by the companies, diversity in approaches

is vast. We address a small fraction of this big set of problems and show that using
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Figure 1.1: Thesis mind map.

simple statistical measures can help in identifying automated accounts. At the end,

we lay out the conclusions and propose potential extensions and questions for future

work.

Chapter 4 In this chapter we use unsupervised algorithms to explore topics in

open-ended survey questions. We compare topic modelling techniques to clustering

techniques for the case of very short texts. Although, there have been topic mod-

elling methods specifically developed for this kind of data, we show that clustering

combined with knowledge transfer demonstrates better results. The meaning of the

“better results” can be questioned, especially in the case when we do not have a

gold standard to compare to. Our conclusion is mainly driven by the fact that the

result obtained was deemed more appropriate by the domain experts for the purpose

of further statistical analyses. At the end, we lay out the conclusions and propose

potential extensions and questions for future work.

Chapter 5 In Chapter 5 we give general summary of the study and future directions

of the conducted experiments.

The thesis mind map is given in Fig. 1.1.



Chapter 2

Language Identification on Social Media

2.1 Introduction

The unique definition of language does not exist. A couple of them are cited very fre-

quently. Language scholar Henry Sweet defines it as “the expression of ideas by means

of speech – sounds combined into words. Words are combined into sentences, this com-

bination answering to that of ideas into thoughts.” Two other linguists Bernard Bloch

and George L. Trager agreed that “a language is a system of arbitrary vocal symbols

by means of which a social group cooperates.” According to a famous linguist Noam

Chomsky, a language is “a set (finite or infinite) of sentences, each finite in length

and constructed out of a finite set of elements.” He further claims that all natural

languages have “a finite number of phonemes (or letters in its alphabet) and each

sentence is representable as a finite sequence of these phonemes (or letters).”

Regardless of not having a unique definition, the fact is that natural languages are

fundamental components of individual and human heritage. They are the enabling

“tool” for expressing identity, sharing ideas, and in a broader sense, achieving politi-

cal, educational and economic autonomy, as well as promoting peace and sustainable

human development [289]. Since Information Technologies (IT) became the vessel for

all aspects of social, cultural, economic and political life, it is essential to ensure that

everyone has access and can contribute with their own content to the multilingual

Internet. Hence, ITs can be considered as a tool for promotion of linguistic diver-

sity. In general, the Internet is open to all languages of the world, but only when

certain conditions are met, such as having enough human and financial resources. To

this end, many world organizations, including UNESCO1, La Francophonie2, Union

Latine3 and ANLoc4 are committed to promoting multilingualism on the Internet.

1United Nations Educational, Scientific and Cultural Organization, http://unesco.org/
2http://www.francophonie.org/
3http://www.unilat.org/
4The African Network for Localization, http://www.africanlocalization.net/

8



9

As previously explained, linguistic diversity on the Internet is of crucial interest.

This poses a challenge from the perspective of computer processing in an automated

way. Automatic Language Identification (LID) is a task of automatically identifying

the language of a spoken utterance or text. It is a very active area of research due

to its application in computational sciences, particularly Machine Translation (MT),

Speech Recognition (SR) and Data Mining (DM). LID is often the prerequisite for

accurate text analytics because natural language models are governed by language-

specific interrelated systems such as phonology, morphology, syntax, the lexicon, and

semantics. A statistical language model represents a probability distribution over

sequences of tokens (w1, ...wn). Given the sequence of length n it assigns a probability

P (w1, . . . , wn) to the whole sequence. Some of the well-known statistical models

include n-gram, maximum entropy and neural network models.

For a human listener (reader) familiar with the language of interest recognizing

utterances or texts comes naturally. The aim of automatic LID is to mimic this hu-

man ability. Indeed, a number of automatic approaches have been developed that

are able to identify language without human intervention. The advantage of auto-

matic systems over an average human is speed and the ability to recognize a handful

of languages, like a trained linguistics expert. There has been a significant effort

to document and create resources for as many world languages as possible, such

as the Ethnologue project [71]. As of 2019, Ethnologue lists 7,111 registered lan-

guages (Fig. 2.1). On the other hand, BabelNet [193], a large multilingual semantic

network, covers only 284 languages. This illustrates how many of them are poorly

documented and underresourced, which may lead to the eventual disappearance of a

language. There are other efforts to document languages in a systematic way such as

WordNet [185] (English only) and Universal Knowledge Core (UKC) [98]. It is worth

mentioning that UKC is an ambitious project to develop a large scale linguistic re-

source which aims to cover all registered languages of the world.

Different systems of communication are building blocks of different languages;

the degree of difference needed to establish a different language is hard to quantify.

In practice, the systems of communication are recognized as different if the parties

5Source: https://www.ethnologue.com/guides/how-many-languages
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Figure 2.1: Geo-spatial locations of 7,111 world languages and dialects.5

cannot understand each other without some learning. Actually, mutual comprehen-

sion cannot be expressed in a discrete way, but rather on a scale. To that end,

Gamallo et al. [93] explore the distance between 44 different European languages and

varieties in a quantitative way. Fig. 2.2 from their work, clearly shows the clusters of

closely related languages. The measure they used for generating the graph is based

on a perplexity measure shown in Eq. (2.1). Perplexity is an evaluation metric for

language models used to measure fitness of test data built with n-grams which was, in

this case, adapted to measure distance between languages. Let M be a language model

with n-gram probabilities P (·) and set of character sequences T = {t1, t2, ..., tn}.

PP (T,M) = n

√
1∏n

i P (ti|ti−11 )
(2.1)

N -gram probabilities are defined as in Eq. (2.2). The probability is calculated by

dividing the observed count C(·) of a particular character sequence by the count of

the prefix of the same sequence (lower rank n-gram):

P (tn|tn−11 ) =
C(tn−11 tn)

C(tn−11 )
(2.2)

Final distance matrix is generated by applying Eq. (2.1) pairwise between all lan-

guages in the observed dataset Dist(L1, L2) = PP (TL1 ,ML2). Finally they compared
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Figure 2.2: Language distances represented as graph. The nodes (languages) are con-
nected by the edges calculated perplexity-based distance on n-gram language mod-
els [93].

the results with ground truth (language similarities rated by a linguistics expert) and

found a high level of agreement (accuracies in the range from 82.50% to 85% for 2

datasets).

In the sea of challenges and tasks related to human language we particularly choose

to explore the possibility of distinguishing closely related languages in short texts. In

this chapter we explore the impact of different weighting techniques on performance

of classifiers for discriminating similar languages. Although weighting methods were

used in this scenario by many authors [315, 54] there is no comprehensive study on

feature weighting for this particular task. Hence, our aim is to test the significance

of a set of weighting techniques on several datasets used in recent years for LID.

2.2 Related Work

LID have been studied for more than 50 years. At the time of writing there has

been several survey papers that cover most relevant research in this domain. Most

recent ones are by Garg et al. [96], by Qafmolla [224] and the most extensive one by

Jauhiainen et al. [126].
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Mustonen [190] tackled the problem of LID in 1965. They describe statistical

methods for discrimination between Swedish, Finnish and English words. The method

they used is based on Multiple Discriminant Analysis (MDA) with carefully curated

character level features (set of letters that are exclusive to the respective languages,

presence of diphthongs, etc.). The accuracy of the approach was 76%, however,

it is not clear what training and tests sets consist of, therefore the result is not

reproducible. In 1974, Rau explores LID in his Master thesis [229]. The features they

used are relative character unigram and bigram frequencies. The final classifier was

ensemble of seven simple classifiers using majority voting. The classifiers are built on

two measures, Kolmogor-Smirnov’s Test [139] and Yule’s K characteristic [314]. The

accuracy of the system was 89% distinguishing between English and Spanish.

Early works didn’t clearly distinguish between written text and spoken utterances.

House et al. [116] uses phonetic information on transcribed utterances to identify

spoken English, Russian, Hindi, Greek, Chinese, Korean and Japanese. They explore

different aspects such as the necessary minimum length of a utterance to identify a

language. Church et al. [52] try to assign accents to words. To apply their method to

loan words, they developed a character trigram Bayesian model to identify a language

and then apply corresponding syllabic rules. Although they used character n-grams,

Beesley [20] were the first to identify it as such.

Likely the most known early work on LID is by Cavnar et al. [43]. Their approach

is based on language profiles and an “out-of-order” similarity metric on n-gram ranks.

They conducted the experiments on 3,478 documents in 8 different languages on the

articles collected from Usenet newsgroups. The reported accuracy is 99.8%, which is

very high. It is worth mentioning that there is an “off-the-shelf” implementation of

their method available online called TextCat which currently supports 69 different

languages. A part of the reason why their research got high exposure is due to the

fact that the implementation is suitable to be used as a baseline.

2.2.1 Text Representation and Features

The usual format of the text for a LID task is a stream of characters. How the text is

stored can make a big difference. Character encoding is a way to represent characters
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by a standardized encoding system. For example, Braille or Morse are examples of en-

coding systems. In computer science, some of the most common encodings are ASCII

which uses fixed number of bytes (one byte) to represent a character, and UTF-8

which uses variable length to accommodate a larger number of characters. The UTF

family of encoding systems are, in general, designed to fit as many languages as pos-

sible. The encoding matters a lot when it comes to data pre-processing. Kikui et

al. [136] use the encoding information as a feature to identify a language. They con-

ducted the experiments on three Eastern Asian languages and six Western European

languages. They show that there was no confusion between European and Asian

categories, but there was some confusion within the categories. With the respect to

encoding, later research has addressed this issue in different ways. Some [17, 146]

developed systems that handle multiple encodings, while others [165, 257, 271] used

encoding per language as separate models. However, most of research does not take

into account the potential issues with the encoding with the assumption that the

whole corpus is encoded in the same system.

Words and Characters

Some of the research [111, 244] exploited the fact that some different languages (as-

suming that they are in the same script family) have language-specific letters. Fea-

tures such as capitalization, the frequency of punctuation, length of words, hapax (dis)

legomena are used in distinguishing closely related languages (or dialects) [150, 256].

Character frequency or probability is often used as a feature [229]. Tran et al. [282]

and Windisch et al. [303] used frequency of prefix and suffix characters, respectively.

Another approach used is based on weighted character frequency [199, 273]. The ap-

proach incorporates variants of Inverse Document Frequency weighting (IDF), which

they call inverse class frequency (ICF), Arithmetic Average Centroid (AAC) and Class

Feature Centroid (CFC). Takçi et al. [273] also use Mutual Information (MI) and chi

square (χ2) as weighting techniques. They [272] also explored the relative character

frequencies with discriminating weights. However, most of the recent research fo-

cuses on using character sequences rather than single characters. Baldwin et al. [17]

showed that, in general, character sequences perform better than using statistics of

single characters.
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Character N-grams and Character Co-occurrences Co-occurrences is another

well-explored feature in LID tasks. Lee et al. [288] conducted a case study where they

used the ratio of question, exclamation characters and the total number of the end of

sentence punctuation as features with different ML algorithms. Franco-Salvador et

al. [88] applied fastText6 character n-gram embeddings [31] in conjunction with

neural network classifier. Use of characters (including letters and some non-letter

characters) and complex character repetitions (handled with regular expressions) are

common character-based features found in literature [18, 73, 255]. Barman [19] used

a combination of lexicon words, word lengths and character n-grams, where n ∈
{1, 2, 3, 4, 5}.

Character n-grams are another way of text representation that is used very of-

ten in the NLP tasks, especially the ones that are low level (where there is no need

for semantic inference, or complex parsing). Character n-grams represent a contin-

uous sequence of characters with the length of n. They can be overlapping or non-

overlapping. For example, the word “sample” can be represented as [“sa′′, “mp′′, “le′′]

if the n-grams are non-overlapping, or more common in the literature are overlapping

ones, and the example is [“sa′′, “am′′, “mp′′, “pl′′, “le′′]. Zamora et al. [315] showed

that feature weighting scheme based on MI applied on character n-grams worked well

on the evaluation dataset provided by the TweetLID workshop [325] organizers.

Word N-grams and Word Co-occurrences Words are also commonly used as

features in LID tasks in various ways. A position of a word (as a part of CRF model)

has been used in the case of code-switched corpora [70, 147]. Basic dictionary is often

used as a training corpus [293]. The dictionaries were constructed in various ways,

such as using only stop words [300], or most relevant language words [230], function

words [269], words that convey modality [5], etc. In general, many researchers agree

that a combination of word and character features can boost the performance [126].

Word and Character Embeddings Word and character embeddings became

a popular (and successful) choice for text representation in many NLP tasks be-

cause of its ability to encode high level relations between the tokens (semantic,

syntactic similarity). It particularly became prominent with the breakthrough of

6https://github.com/facebookresearch/fastText
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“word2vec” et al. [183], paving the way towards developing better performing repre-

sentations [31, 153, 259]. There are a number of recent studies that take advantage

of word and character embedding representations. Jaech et al. [121] used character

embedding (“char2vec”) representation. The character vectors are learned for each

Unicode code point that appears at least twice in the training data, including punctu-

ation, emoji, and other symbols. Kocmi et al. [138] followed a similar setup for input

representation, with the difference then they used moving window of 200 characters

of input text. More recently, Zhang et al. [322] explored LID for code-mixed sen-

tences, the feature embeddings consist of a few separate feature matrices: character,

script and lexicon features. Wan et al. [297] explored the usage of word embeddings

to cluster words per language (German, French, Italian, English and Romanian).

Franco-Salvador et al. [88] use embeddings of the text based on subword character

n-grams using fastText. However, some report [54] that the embeddings did’t pro-

vide any significant improvement over traditional representations. Our intuition is

that the success of embeddings largely depends on the quality and size of the training

corpora.

2.2.2 Approaches

A number of recent studies used readily available classifier implementations and rather

focus on feature engineering and report the performance in the contexts of their

studies. In the following subsections we discuss some of the most common approaches

for LID tasks.

Probabilistic methods

One of the simplest methods found in the literature is use of so-called positive and

negative decision rules. In the case of positive decision rule, the language is identified

if a unique character or character n-gram was found. For the negative decision rule, if

a character or character n-gram that was found that does not exist in a language, then

that language is not considered in identification [70, 107]. Decision trees (DT) and

random forests (RF) (ensemble decision trees) with information gain-based decision

are shown to be successful [45, 75]. In some LID setups [89], it is demonstrated

that a simple dictionary scoring can discriminate between unrelated language groups,
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but more sophisticated methods are necessary when the languages are closer in the

linguistic tree.

Franco-Salvador et al. [87] combined String Kernels (SK) and word embeddings,

which capture different characteristics of texts. They run the experiments on two sub-

problems of LID, called Language Variety Identification (LVI) and Native Language

Identification (NLI) with the aim to generalize the approach over related tasks. One

of the datasets they used is also used in our study (Section 2.8.1).

Zampieri et al. [317] presented some supervised computational methods for the

identification of Spanish language variants. The methods include character n-grams

(2–5), word unigrams, word bigrams, PoS and morphological features as well as the

additional lexicons. In a different study [316], they discussed about efficiency of the

n-gram method compared to the efficiency of the Bag-of-Words (BoW) approach.

The experiments have shown that the n-gram based algorithm gives better results

that the Bag-of-Words approach.

Tromp et al. [284] discussed an n-gram graph-based method for LID of short and

noisy text which they call LIGA. The results were relatively good; however, lan-

guage identification task was conducted on significantly different languages. Vogel et

al. [294] extended the LIGA method, by introducing some improvements with us-

ing word length information, reduction of the weight of repeated information, using

median scoring, and using log frequencies. Ljubesic et al. [160] presented a varia-

tion of the task: distinguishing similar Slavic languages/dialects. Two methods are

combined: most frequent words and character n-grams.

LID on the idiomatic microblog language is more challenging than on formal texts

of equal length[42]. Carter et al. [42] go beyond text of the tweet: mentions, hashtags

were used as additional features. They opted for using an n-gram approach to LID.

They used, as they call, semi-supervised priors to address the sparsity and imbalance

if the data. Vatanen et al. [291] discussed character-based language identification

with n-gram language models. The approach is shown to be well suited to LID tasks

that have dozens of languages, little training data and short test samples.

Gamallo et al. [92] (TweetLID 2014 workshop [325]) presented the systems which

are based on two different strategies: ranked dictionaries and Näıve Bayes classifiers.

The ranked dictionaries method outperformed the Näıve Bayes method on a small
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training data, while Näıve Bayes algorithm shows better results with larger training

data. The experiments have shown that word unigrams perform better than character

n-grams. In the same workshop, Porta et al. [222] described a system based on

Support Vector Machines (SVMs) and Rational Kernels.

Neural-network-based methods

MacNamara et al. [168] experimented on LID using Neural Networks (NNs) and

showed that 3-gram language model was superior compared to a shallow recurrent

neural network (RNN) and exceeded the accuracy for 4%. The experiments with

NNs [54] conducted on one of the datasets used in our study (Section 2.8.1) also

show that their simple NN architecture performed worse compared to the linear SVM

model. However, they also stated that there is still a potential in using NNs for LID

using better architectures, more data, and performing exhaustive parameter tuning.

On the other hand, there haave been a couple successful studies on NNs and LID.

Geng et al. [97] use attention layer with Bidirectional Long Short Term Memory Neu-

ral Network (Bi-LSTM) to identify utterances in different languages. Note that the

dataset is not in a textual form, but represented as i-vector [63]. I-vector is a vector

representation of a given speech utterance and it is widely used representation in

the area of speech recognition. In general, it is built using a simple factor analysis

and it is characterized by being low-dimensional, speaker- and channel-dependent.

Cai et al. [40] showed that using a convolutional layer in conjunction with Bi-LSTM

and attention layers can improve the performance (the experiments are conducted

on the same dataset as in the previously mentioned study [97]). Kocmi et al. [138]

described and experimented with a method based on Bidirectional Recurrent Neural

Networks and they found that the system performs well in monolingual and mul-

tilingual language identification. They covered 131 languages. They also showed

that their system works well on short texts. Jaech et al. [121], using Bi-RNN took

advantage of hierarchical input text representation. First, they trained “char2vec”

representations of words and then used Bi-RNN layer to represent temporal charac-

teristic of the word sequence. One of the datasets they used is also used in our study

(Section 2.8.1). However, although they showed comparable results to traditional

probabilistic methods, they did not provide the results of significance tests.
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2.2.3 Language Analysis

One of the early statistical linguistic analyses is presented in 1949 by Zipf [324]. Zipf

formulated an empirical law stating that given a large sample of words used, the

frequency of any word is inversely proportional to its rank in the frequency table.

Human languages exhibit a wide spectrum of similarities and differences in struc-

ture. Ferrer et al. [82] analysed syntactic dependency networks for three languages:

Czech, German and Romanian. Similarly, Liu et al. [159] built fifteen linguistic

complex networks based on the dependency syntactic treebanks of fifteen different

languages. Gao et al. [95] generated independent word co-occurrence network for

Arabic, Chinese, English, French, Russian and Spanish languages. They found sev-

eral interesting results. First, English language network is more dense which means,

they concluded, the English language is more flexible and powerful in expression.

Second, Spanish and French is more constrained by the rules. Arabic and Russian

have many inflections, and the networks are very sparse. Chinese shows that less

characters express more meaning than other languages.

Asgari et al. [14] built word co-occurrence network for fifty languages. The edges

between nodes are weighted use cosine similarity between word embeddings. Addi-

tionally, they perform word alignment between two graphs, which means that the

words from different language networks are aligned by semantic similarity. Their re-

sults show that they were able to show that clustering follows the expert knowledge

on linguistic similarity. This approach is powerful, but there are a few drawbacks.

First, large amount of data is required to train word vectors for each language. Sec-

ond, training high quality word vectors can take long time. Last, vector alignment

is also time consuming algorithm and human intervention is required to set the seed

word mappings among languages. To that end, Gamallo et al. [93] that we mentioned

earlier provided less computationally expensive approach.

2.2.4 “Off-the-Shelf” LID tools

“Off-the-shelf” LID tools have been evaluated by many researchers. One of the most

recent ones [210] tested 13 languages on multilingual comments and identifiers in the

documentation of software projects. Tools that were available at the time of writing

are listed in Table 2.1.
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Table 2.1: List of available “off-the-shelf” tools for language identification.

LID tool Lang. # Description

CelLang7 100
Hybrid ad-hoc ranking combined with
dictionary and Näıve Bayesian classifier.

CLD8 83 Näıve Bayesian classifier.

fastText LID9 176
Word embeddings and sub-word information
by Joulin et al. [131].

GuessLanguage10 64 Dictionary-based.

LangDetect11 53 Näıve Bayesian classifier.

LangId12 97 Näıve Bayesian classifier by Lui et al. [166].

LDig13 17
Logistic regression classifier
by Okanohara et al. [205].

LingPipe14 trainable n-gram models.

OpenNLP15 103
Maximum entropy, perceptron or Näıve
Bayesian classifiers.

TikaIdentifier16 18 Euclidean distance between n-gram profiles.

TextCat17 69
n-gram ranking-based model
by Cavnar et al. [43].

whatlang-rs18 84
n-gram ranking-based model
by Cavnar et al. [43].

2.3 Standardized Evaluation Metric

LID task us commonly considered as a document-level classification problem. Given

a set of labeled evaluation documents (“gold-standard”), and labels predicted by a

model, the document-level accuracy (Eq. (2.3)) is the ratio of the correctly labeled

documents over the entire evaluation collection. Often authors provide fine-grained

7https://code.google.com/archive/p/language-identification/
8https://github.com/CLD2Owners/cld2
9https://fasttext.cc/docs/en/language-identification.html

10https://bitbucket.org/spirit/guess language
11https://code.google.com/p/language-detection/
12https://github.com/saffsd/langid.py
13https://github.com/shuyo/ldig
14http://alias-i.com/lingpipe/index.html
15http://opennlp.apache.org/models.html
16https://tika.apache.org/
17http://odur.let.rug.nl/vannoord/TextCat/
18https://github.com/greyblake/whatlang-rs
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per-language results. Precision (Eq. (2.4)) and recall (Eq. (2.5)) are the measures

that are usually used to express this.

ACC =
TP + TN

TP + TN + FP + FN
(2.3)

where TP is the number of true positive examples; FN is the number of false negative

examples; FP is the number of false positive examples; and TN is the number of true

negative examples.

P =
TP

TP + FP
(2.4)

R =
TP

TP + FN
(2.5)

F-score (Eq. (2.6)) is also a common way to evaluate the performance of a system

and it is expressed as the harmonic mean of precision and recall. The F-score was

developed in IR to measure the effectiveness of retrieval with respect to a user who

attaches different relative importance to precision and recall.

Fβ = (1 + β2)× P× R

β2 × P + R
(2.6)

β is the parameter which regulates the importance of precision and recall. For

example, β = 2 will weigh more recall, and β = 0.5 will weigh more precision. In

LID, commonly used value is β = 1 (Eq. (2.7)).

F1 = 2× P× R

P + R
(2.7)

For multiclass classification problems, two strategies are used to compute global

F1, P and R measures and those are macro-averaging and micro-averaging. We used

macro-average for multiclass problems (common choice in evaluation labs).

Statistical Significance New approaches and variations of similar ideas to existing

problems are a common occurrence in machine learning. Hence it is important to be

able to determine which of them work better in practice. Accuracy measure alone

is not enough to report and compare the performance of systems. To ensure the

validity of such claims, a couple of papers addressed this problem [64, 69] by laying

out the common statistical methodology applicable in all scientific areas and relying

on empirical observations called Null Hypothesis Significance Testing (NHST). We
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use exact binomial two-tailed McNemar’s test for comparisons of error rates on gold

standard tests among classifiers, as described by Dietterich [69]. For significance

testing on F1 scores across 10 folds on identical splits across different classifiers, we

use Wilcoxon signed-rank test. It is a non-parametric statistical hypothesis test used

to compare, among other things, repeated measurements on a single sample to assess

whether their population mean ranks differ. It is considered as a weaker test compared

to student’s t-test. Because of student’s t-test strong assumptions, it is not always

applicable, and the Wilcoxon test is recommended [69].

Benavoli et al. [21] questioned the adequacy of NHST and laid out its main draw-

backs. They stated that the frequentist reasoning has great disadvantages and is

often improperly used in publications. Instead, they proposed using the Bayesian

paradigm to analyse the results. However, this is out of scope of this study and will

be considered as a part of future work.

2.4 The Common N-Grams Language Distance Measure

The Common N -Grams (CNG) text classification is an algorithm which in its core

compares the frequencies of character n-grams (strings of characters of length n) that

are the most common in the considered documents and classes of documents [135].

In other words, the algorithm solves the task of labeling a document (a text message)

with a single label from a given fixed set of labels (assigning the text to one class from a

fixed set of classes). The document is classified based on the closest similarity measure

between the document being tested and the training profiles of different classes. This

classification method could be interpreted as a k nearest neighbours classification

method with k = 1 and where instead of the standard Euclidean distance, a modified

Euclidean distance is used, known as the CNG distance (2.8). The CNG distance is

used in various text classification tasks. In the original dissimilarity distance proposal,

Keselj et al. [135] applied it to the authorship attribution task: given a predefined

set of author names the algorithm is designed to label an unseen document with

one of these names. Using the same method, Jankowska et al. [124, 125] conducted a

thorough analysis on authorship attribution task in different languages and developed

a visualization tool for feature analysis. The model is built from training data which

consists of documents with designated class membership. All training documents
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belonging to the same class are merged into one document with one class membership.

Hence, for each defined class and a new unlabeled document, the algorithm builds

a class profile, which consists of frequencies of the most common character n-grams

with the length of n. The n-gram frequencies are normalized: n-gram counts divided

by the total number of n-grams; i.e., they are estimates of n-gram probabilities based

on the training documents.

The k nearest neighbours classifier with CNG (k = 1), where only one neighbour

(profile) votes on class membership of a new sample, as stated earlier, is based on the

CNG dissimilarity distance between n-gram profiles from the profile p1 of an unlabeled

document, to the profile p2 — the summary profile of all training documents in a

certain class — defined with the Eq. (2.8). The total dissimilarity D(p1, p2) (as called

by authors, since a higher number means lower similarity; i.e., higher dissimilarity

or higher distance) between two profiles is calculated by summing squares of relative

distances of individual n-gram frequencies over all n-grams:

D(p1, p2) =
∑

x∈(p1∪p2)

(
2 · (fp1(x)− fp2(x))

fp1(x) + fp2(x)

)2

(2.8)

where x are all n-grams in the profiles p1 and p2, and fpi(x) (i ∈ {1, 2}) is frequency

of n-gram x in profile pi. If an n-gram x is not present in a profile pi, we take

fpi(x) = 0. The classifier has been also reported as a successful method for various

other classification tasks: effective identification of software source code authors [90],

genome classification [280], page genre classification [176], determination of composers

of musical works [304], and recognition of computer viruses [2]. There are two hyper-

parameters that can be set: the n-gram length, and the profile length. The profile

length is a cutoff value for selecting the number of most frequent n-grams across all

profiles.

2.5 The Effect of Different Feature Weighting Techniques

Term weighting techniques have a wide range of applications in IR and ML domains.

It has been thoroughly explored in ongoing evaluation forums including TREC [106]

since 1992, NTCIR [134] since 1999, INEX [101] since 2002, and FIRE [171] since

2008. Term weighting aims to evaluate the relative importance of different features
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Table 2.2: Local term weighting.

# Local w. Expression Description

1 tf tf Raw term frequency.

2 tfb

{
1, if tf > 0

0, otherwise
Binary term presence.

3 tfa k+(1−k) tf
maxt(tf)

Augmented term frequency, maxt(tf) is
the maximum frequency of any term in
the document, k is a parameter (0.5 for
short documents) [242].

4 tfs log(1 + tf) Sublinear term frequency.

5 tfbm25

(k1+1)tf

tf+k1(1−b+b dl
dlavg

)

BM25 (Best Match) tf, dlavg is the
average document length in the corpus.
Default k1 is 1.2 and b 0.95 [129].

within a dataset. There are three components in a term weighting scheme: local

weight, global weight and normalization factor (Eq. (2.9)) [149, 242].

xij = lij × gi × nj (2.9)

where xij represents the final weight of i-th term in the j-th document, lij represents

the local weight of i-th term in the j-th document, gi is the global weight of the ith

term, and nj is the normalization factor for the j-th document.

Local term weights are built upon frequencies within a document. The most

common used in practice are laid out in Table 2.2 is derived only from frequencies

within the document.

The most used representation, tf, counts how many times the term occurs in a

document which means the weight is higher for the terms that appear more frequently.

The representation tfb does not take into account the frequency of the term, but

instead it records presence or absence of the term. This is useful when the frequency is

not important. tfa is known as augmented term frequency proposed by authors [242].

It gives weight to all terms that appear and then give some additional weight to terms

that appear frequently. Sublinear term frequency tfs is designed to adjust within

document frequency. That means that it will assign similar weights to less frequent

terms. tfbm25 uses the information about document length and it has adjustable

parameter k1. It is important to note that we did not present the experiments with
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Table 2.3: Global term weighting. a - number of training documents in the positive
category containing term ti; b - number of training documents in the positive category
which do not contain term ti; c - number of training documents in the negative
category containing term ti; d - number of training documents in the negative category
which do not contain term ti.; N - total number of documents in the training document
collection, N = a + b + c + d; N+ - number of training documents in the positive
category, N = a+b; N− - number of training documents in the negative category, N =

c+ d.; p+ - probability of document belonging to positive category, p+ = a/N+

a/N++c/N−
.;

p− - probability of document belonging to negative category, p− = c/N−

a/N++c/N−
.

# Global w. Expression Description

1 idf log2(
N
a+c

) Inverse term frequency [261].

2 idfp log2(
N
a+c
− 1)

Probabilistic inverse term
frequency [306].

3 bm25 log2
(
b+d+0.5
a+c+0.5

)
BM25 idf [129].

4 ig

a
N
log2

(
aN

N+(a+c)

)
+

b
N
log2

(
bN

N+(b+d)

)
+

c
N
log2

(
cN

N−(a+c)

)
+

d
N
log2

(
dN

N−(b+d)

) Information gain.

5 gr
idfig

−N+

N
log2

(
N+

N

)
−N−

N
log2

(
N−
N

) Gain ratio.

6 mi log2

(
max( aN

N+(a+c)
, cN
N−(a+c)

)
)

Mutual information.

7 mi’ log2 (max(2p+, 2p−))
Modified mutual
information [305].

8 χ2 N(ad−bc)2
N+N−(a+c)(b+d) χ2-based weighting.

9 delta log2(
N−a
N+c

) Delta idf [175].

10 ∆sm log2(
N−(a+0.5)
N+(c+0.5)

) Smoothed delta idf [207].

11 ∆sm2 log2(
(N−−c)(a+0.5)
(N+−a)(c+0.5)

) Smoothed delta idf [207].

12 ∆bm25 log2(
(N−−c+0.5)(a+0.5)
(N+−a+0.5)(c+0.5)

) BM25 delta idf [207].

13 rf log2(2 + a
max(1,c)

) Relevance frequency [149].

14 ne 1 + p+log2p
+ + p−log2p

− Natural entropy [305].

15 re b0 + (1− b0)idfne Regularized entropy [305].

different variants of term weighting for the reason that all of our datasets are short

texts and we found no significant impact on the performance.
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Term Frequency-Inverse Term Frequency (tf-idf) is one of the best-known weight-

ing algorithms. Several newer methods adapt tf-idf for use as part of their process,

and many others rely on the same fundamental concept. idf, being the measure’s

key part, was introduced in 1972 by Karen Spärck Jones [261]. Around the same

time, Robertson et al. [232] examined statistical techniques for exploiting relevance

information to weight search terms in documents and developed a weighting algo-

rithm called Best Match 25 (BM25). Rousseau et al. [236] conducted experiments

with IDF and BM25 variants on IR tasks, and found that the weighting techniques

significantly outperform non-weighted setup, but there is no significant difference

among the weighting approaches. Another study [285] tested different variants of

BM25 on IR tasks and found that adaptive BM25 yields the best performance. For

our study, we consider only original BM25 and BM25 delta which was proposed by

Paltoglou [207] and tested on text classification tasks.

2.6 Common N-Gram-based Feature Weighting Scheme

We introduce two new supervised term weighting schemes for text classification based

on Euclidean and CNG distance measures. The motivation behind this is to calculate

distance of positive class term profile and negative class term profile. Following the

same notation as in Table 2.3, the normalized positive class term frequency can be

expressed as: f+ = a/N+ and the normalized negative class term frequency can

be expressed as: f− = c/N− (a - number of training documents in the positive

category containing term ti, c - number of training documents in the negative category

containing term ti, N
+ - number of all training documents in the positive category, N−

- number of all training documents in the negative category, K - classes). Hence, the

distance measure between positive and negative class term profiles can be expressed

as in Eq. ( 2.10) using the Euclidean metric and as in Eq. ( 2.11) using CNG.

euclidean =
∑
K

(
f+ − f−

)2
(2.10)

cng =
∑
K

(
2 · f

+ − f−

f+ + f−

)2

(2.11)

We evaluate these two weighting schemes along the ones in Table 2.3.
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2.7 Evaluation on 44 (40) European Languages

2.7.1 Dataset

Phylogenetic studies within historical linguistics [215] are interested in finding a good

measure for language similarity. A study [93] that was mentioned in the introductory

part focused on testing a distance measure (perplexity) between languages. They

collected two datasets, each consisting of long articles in 44 European languages. The

first dataset is corpus collected from Web pages in the respective languages. The texts

are heterogeneous. The second corpus consists of parallel translations of the Bible.

The authors provided the dataset and the results of their study, however, the dataset

is missing complete training samples for some of the languages that were reported as

part of the results. Authors did provide the actual similarity matrix, so we were able

to remove the missing languages from it and compare our results. Information about

the number of tokens per language, per corpus and missing languages can be found

in Tables A.1 and A.2 in Appendix A.

2.7.2 Methodology

We used the CNG algorithm described in Section 2.4. Using the training subsets

we prepared language profiles using character n-grams within the range 3–7 and

word unigrams. We evaluated the test subsets by preparing test profiles and applied

pairwise CNG between each train-test language pair. The gold standard was provided

by the original author (it was created by a language expert), and it is in the following

format:

• Portuguese Galician 1

• Portuguese Spanish 2

• Catalan Spanish 3

• Bosnian Serbian 3

• ...
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Figure 2.3: Experimental setup for language distance task.

The number represents how far apart are the languages. For example, Portuguese

and Galician should be the closest (first neighbours). Portuguese and Spanish should

be first or second neighbours. Catalan and Spanish should be first, second or third

neighbours, and so on. The gold test consists of 40 language pair distances. For the

Web corpus, we had to remove 2 labels, and for the Bible corpus, 4. The system

architecture is shown in Fig. 2.3.

For the profile length hyperparameter, for all experiments we used the the maxi-

mum length of the smallest profile in the dataset. We evaluated the test subsets by

preparing test profiles and applied pairwise CNG between each train-test language

pair. The result of this is an asymmetrical distance matrix among train and test lan-

guage profiles. Then, using the evaluation method described by Gamallo et al. [93]

we obtain accuracies in reference to the gold standard. To evaluate the significance

of the results, we employ McNemar’s test. To compare the stability among different

methods and setups, we use the Spearman correlation coefficient. The Spearman

correlation coefficient is a special case of the Pearson correlation coefficient where the

variables are the rank variables.

For a sample of size n, the n raw scores Xi, Yi are converted to ranks rgXi, rgYi

and rs is computed as:

rs = ρrgX ,rgY =
cov(rgX , rgY )

σrgXσrgY
(2.12)
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Table 2.4: 40 European languages. Adjusted accuracies are calculated with removed
languages that were missing in the test set. ↓significantly higher ratio of errors com-
pared to adjusted perplexity (highlighted row). ↑significantly lower ratio of errors
compared to adjusted perplexity (highlighted row). McNemar’s test with p < 0.05.

Corpus
Method Web Bible

Rank reported 82.50 82.50
Perplexity reported 85.00 85.00
Rank adjusted 84.21 83.33
Perplexity adjusted 86.84 83.33
CNG 3-gram 78.95↓ 91.67↑

CNG 4-gram 78.95↓ 88.89↑

CNG 5-gram 81.58↓ 88.89↑

CNG 6-gram 81.58↓ 94.44↑

CNG 7-gram 81.58↓ 88.89↑

CNG w 1-gram 86.11 86.11↑

where ρ denotes the Pearson correlation coefficient applied to the rank variables,

cov(rgX , rgY ) is the covariance of the rank variables, σrgX and σrgY are the standard

deviations of the rank variables. In our case, raw values are the CNG distances

between each language. That means that the Spearman coefficient can show us how

much the ranks change across different approaches (experimental hyperparameter

settings).

2.7.3 Results and Discussion

Table 2.4 shows the results of the CNG algorithm. Significantly better results were ob-

tained on the Bible corpus with every character n-gram profile length in the observed

range (3–7). CNG with 6-grams performed the best with an accuracy of 94.44%,

which is better than 83.33% and even reported 85.00%. However, CNG performed

significantly worse on the Web corpus, where the best accuracy is 81.58% compared

to 86.84%. Word unigrams provided the same accuracy for both datasets, where for

the Web dataset it was not significantly different from the authors’, and for the Bible

dataset was better than the reported, but worse than our character n-gram setup.

The CNG method seemed to favour the parallel corpus with only 2 errors out of 36

available labels. The misses were Catalan-French and Russian-Ukrainian. The Web

corpus was harder and resulted in somewhat lower accuracies.
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Figure 2.4: Language similarity using CNG and 3-gram features. Web corpus.

Figures 2.4 and 2.5 show the similarity matrix in the form of a heatmap. We

can clearly see the big language groups such as Slavic in top left corner, followed by

Romantic, then by Germanic. The bottom right corner represents the languages that

are unique by its origins, such as Albanian, Basque and Hungarian. One interest-

ing observation is that the Latin language shows higher similarity across all groups,

indicating its historic influence.

On Fig. 2.6 we present the results of averaged Spearman correlation among dif-

ferent approaches. Spearman correlation measures statistical dependence between

the rankings of two variables. The correlation is stronger if the value is closer to 1,

and it is considered weak if it is closer to 0. In our case, we want to measure how

constant each language neighbour rankings are. We consider the method more stable

if it shows high Spearman correlation among different setups. The Rank approach

measures, in general, exhibit weaker stability. CNG-based runs show that the ranks

are more stable, but that they drop with the length of n-grams.
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Figure 2.5: Language similarity using CNG and 3-gram features. Bible corpus.

The final language graph generated by CNG method on Bible corpus with 7-grams

is shown in Fig. 2.7. The nodes represent languages, the edges represent similarities,

and the layout used is force layout. The graph is generates using networkx and

matplotlib Python libraries.

2.8 Evaluation on 7 LID datasets

We considered 7 different datasets from recent evaluation campaigns. The specific

details on each dataset are given in the following sections.

2.8.1 Datasets

TweetLID (SEPLN 2014)

The dataset presented in the SEPLN 2014 TweetLID Workshop [325] is an annotated

corpus of nearly 35k tweets. The tweets are written in the top five languages of
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Figure 2.6: Average Spearman coefficient among measures.

Iberian Peninsula which include Castilian, Catalan, Galician, Portuguese, Basque

and English (Table 2.5). The dataset also includes some noise tweets, either written

in some other language or have more than one label (code-switched text, multilingual).

Additionally, some tweets are labeled as “ambiguous”, which means that it could not

be distinguished as a unique language by a human annotator.

Twitter data consisting of users’ comments generally shows several challenging

characteristics which we considered in our experiments. First, messages are noisy

and likely incorrect in terms of grammar, skewed by informatively irrelevant elements,

such as emoticons, hyperlinks, numbers, onomatopoeias and hashtags. In addition to

that, messages are rather short due to Twitter message limitation of 140 characters,

and extracted features do not provide as much information as longer texts. Another

characteristic particular to the dataset is that the similarity between certain classes is

very high. A characteristic that is very often found in various classification problems
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Figure 2.7: Graph generated from CNG similarity matrix.

Table 2.5: TweetLID v2.0 dataset overview of the training, development subset.
Train & Dev. Test

Language/Variety Class Instances Tokens Instances Tokens

Castilian es 8,562 84,036 12,812 132,382
Catalan ca 1,466 18,383 1,471 18,019
Galician gl 507 4,801 456 4,369
Portuguese pt 2,151 19,991 2,169 19,800
Basque eu 380 2,307 374 2,152
English en 999 9,242 968 9,012
Other other 21 202 420 3,851
Undefined und 188 477 595 2,100
Ambiguous amb 717 5,204 651 4,856

Total 14,991 144,643 19,916 196,541

is the existence of a class representing a set of texts which do not belong to any

of the defined classes (“open-world” classification problem). Denoted as “other” (or

undefined “und”), this class is the default class, which means if a message does not

belong to any of the defined languages, it should be classified as “other”. For example,

the number of messages in the training set labeled as Spanish (“es”) is 61.22% and

the messages labeled as undefined is 3.51%.
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Table 2.6: DSLCC v3.0 dataset overview of the training and development subset.
Information taken from the authors [172].

Train & Dev. Test
Language/Variety Class Instances Tokens Instances Tokens

Bosnian bs 20,000 743,732 1,000 37,630
Croatian hr 20,000 874,555 1,000 42,703
Serbian sr 20,000 813,076 1,000 41,153
Indonesian id 20,000 831,647 1,000 42,192
Malay my 20,000 618,532 1,000 31,162
Brazilian Portuguese pt-BR 20,000 988,004 1,000 49,288
European Portuguese pt-PT 20,000 908,605 1,000 45,173
Argentine Spanish es-AR 20,000 999,425 1,000 50,135
Castilian Spanish es-ES 20,000 1,080,523 1,000 53,731
Mexican Spanish es-PE 20,000 751,718 1,000 47,176
Canadian French fr-CA 20,000 772,467 1,000 38,602
Hexagonal French fr-FR 20,000 963,867 1,000 48,129

Total 240,000 10,346,151 12,000 527,074

DSLCC v3.0 (VarDial 2016)

The dataset released for VarDial Workshop [172] at COLING 2016. Table 2.6 shows

the distribution of test, development and training samples, as well as the number

of tokens (words) per subset. The dataset consists of three test sets: one in-domain

(Table 2.6), and two out-of-domain (Table 2.7). The in-domain test set contains 1,000

instances per language of journalistic data.

The out-of-domain test sets B1 and B2 contain 100 Twitter users per language

or variant each, and a varying number of tweets per user. The number of classes for

these subsets is reduced and they cover only two groups of closely-related languages:

South-Slavic (Bosnian, Croatian, Serbian) and Portuguese (Brazilian and European).

The token distribution is shown in Table 2.7.

Fig. 2.8 shows the sample length distribution of test and development sets. All

the distributions are relatively similar (majority 100–400) except Malay, Indonesian

and Mexican Spanish where samples tend to be in a shorter range (100–300).

DSLCC v4.0 (VarDial 2017)

In 2017, organizers [318] continued the evaluation campaign on DSLCC datasets. This

dataset does not have an out-of-domain evaluation test set, but has three additional
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Table 2.7: DSLCC v3.0 dataset overview of the test subset. Information taken from
the authors [172].

Out-of-domain test
Language/Variety Class B1 Tokens B2 Tokens

Bosnian bs 100 209,884 100 170,481
Croatian hr 100 179,354 100 119,837
Serbian sr 100 181,185 100 124,469
Brazilian Portuguese pt-BR 100 151,749 100 19,567
European Portuguese pt-PT 100 134,139 100 13,145

Total 500 856,331 500 323,030

Table 2.8: DSLCC v4.0 dataset overview of the test, development and test subsets.
Information taken from the authors [318]

Train & Dev. Test
Language/Variety Class Instances Tokens Instances Tokens

Bosnian bs 20,000 716,537 1,000 35,756
Croatian hr 20,000 845,639 1,000 42,774
Serbian sr 20,000 777,363 1,000 39,003
Indonesian id 20,000 800,639 1,000 39,954
Malay my 20,000 591,246 1,000 29,028
Brazilian Portuguese pt-BR 20,000 907,657 1,000 45,715
European Portuguese pt-PT 20,000 832,664 1,000 41,689
Argentine Spanish es-AR 20,000 939,425 1,000 42,392
Castilian Spanish es-ES 20,000 1,000,235 1,000 50,134
Peruvian Spanish es-PE 20,000 569,587 1,000 28,097
Canadian French fr-CA 20,000 712,467 1,000 36,121
Hexagonal French fr-FR 20,000 871,026 1,000 44,076
Persian fa-IR 20,000 824,640 1,000 41,900
Dari fa-AF 20,000 601,025 1,000 30,121

Total 280,000 8,639,459 14,000 546,790

language varieties: Persian and Dari (a variety spoken in Afghanistan, often referred

to as Farsi) and Peruvian Spanish. Table 2.8 shows the token distribution across

subsets and classes.

Fig. 2.9 shows the sample character length distribution across classes. We can see

that most of the classes have the majority of the samples between 50 and 300. For

Portuguese variants the length tends to be slightly longer (200–300), and Peruvian

Spanish samples are slightly shorter (50–200).
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Figure 2.8: Sample length distribution in training & development subsets for
DSLCCv3.0.

ILI (VarDial 2018)

VarDial Workshop in 2018 [319] for the first time organized an Indo-Aryan Language

Identification task. The target classes are 5 languages and variants from the Indian

subcontinent: Awadhi (Awadh region of Uttar Pradesh), Bhojpuri (northern-eastern

part of India and the Terai region of Nepal), Braj (northwestern Uttar Pradesh, the

eastern extremities of Rajasthan and the southern extremities of Haryana), Hindi

(official dialect of India) and Magahi (Bihar, Jharkhand and West Bengal). Table 2.9

shows the number of tokens per language per data subset. Note that Awadhi and Braj

are considered as dialects of Hindi, while Bhojpuri and Magahi are different languages,

but considered to originate from the same ancient language (Mithila Prakrit or Bengali

Prakrit). All languages share the same script - Devanagari.

Fig. 2.10 shows the sample character length distribution across classes. Most of

the classes have the majority of the samples between 20 and 150. The texts are

sampled mainly from the literature domain, which were published either on the Web

or in print.
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Figure 2.9: Sample length distribution in training & development subsets for
DSLCCv4.0.

Table 2.9: ILI dataset overview of the test, development and test subsets.
Train & Dev. Test

Language/Variety Class Instances Tokens Instances Tokens

Awadhi AWA 10,787 136,893 1,502 22,029
Braj BRA 17,419 278,438 2,147 30,871
Hindi HIN 17,895 358,045 1,835 34,888
Bhojpuri BHO 16,900 304,052 2,006 49,706
Magahi MAG 17,591 262,337 2,202 33 876

Total 80,592 1,339,765 9,692 171,370

DFS (VarDial 2018)

The same workshop [319] organized the Dutch-Flemish variety identification. The

task was defined as a binary classification problem: Dutch (Northern Dutch) and

Flemish (a Low Franconian dialect cluster of the Dutch language). The corpus

consists of subtitles from articles as samples. These raw subtitles were originally

converted into linguistically annotated text in the original SUBTIEL corpus [288].

Table 2.10 shows the token distribution across the subsets and languages.

Fig. 2.11 shows the sample character length distribution across classes. Most of
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Figure 2.10: Sample length distribution in training & development subsets for ILI’18.

Table 2.10: DFS dataset overview of the test, development and test subsets.
Train & Dev. Test

Language/Variety Class Instances Tokens Instances Tokens

Flemish BEL 150,250 5,027,941 10,000 334,408
Netherlandic DUT 150,250 5,104,494 10,000 339,112

Total 300,500 10,132,435 20,000 673,520

the classes have the majority of the samples between 120 and 250.

GDI (VarDial 2018 & 2019)

The German Dialect Identification shared task was first introduced as a part of the

VarDial Workshop series in 2017. The dataset is subsampled from the Archimob cor-

pus of spoken Swiss German [243] originally developed for studying linguistic micro-

variation and for developing NLP tools. The compilation of this corpus is set in the

context of an increasing presence of Swiss German variants in different domains of

everyday communication. The subset is also adjusted to the purposes of the task,

where the organizers removed information about the authors of the utterances and

general metadata related to transcriber, and particular tokens. The task is formu-

lated as a classification problem, where the participants were presented with four

language variations to be classified: Bern, Basel, Lucerne and Zurich. Additionally,

in the 2018 task, in the test phase, organizers introduced a fifth, unknown language

variety, which was not part of the training set. Tables 2.11 and 2.12 show the number

of tokens per subset (training and gold), per language variety.
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Figure 2.11: Sample length distribution in training & development subsets for DFS’18.

Table 2.11: GDI 2018 dataset overview of the train, development and test subsets.
Train & Dev. Test

Language/Variety Class Instances Tokens Instances Tokens

Bern BE 4,956 35,962 1,191 12,013
Basel BS 4,921 36,965 1,200 9,802
Lucerne LU 4,593 38,328 1,186 11,372
Zurich ZH 4,834 36,919 1,175 9,610
Unknown XY - - 790 8,938

Total 19,304 148,174 5,542 51,735

Table 2.12: GDI 2019 dataset overview of the train, development and test subsets.
Train & Dev. Test

Language/Variety Class Instances Tokens Instances Tokens

Bern BE 4,803 35,349 1,191 12,013
Basel BS 4,797 36,389 1,199 9,803
Lucerne LU 4,407 37,629 1,176 11,271
Zurich ZH 4,802 36,919 1,177 9,612

Total 18,809 146,286 4,743 42,699

Fig. 2.12 shows the sample character length distribution across classes. Most of

the classes have the majority of the samples between 20 and 80.
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Figure 2.12: Sample length distribution in training & development subsets for GDI’18.

MADAR (ACL 2019)

Organizers presented the MADAR (Multi-Arabic Dialect Applications and Resources)19

shared task at ACL 2019 [37]. The corpus is constructed from a commissioned trans-

lation of the Basic Traveling Expression Corpus (BTEC) [274] sentences from English

and French to 26 different Arabic dialects in parallel. The dialects cover 25 different

Arabic-speaking cities across North Africa and the Middle East with the addition of

Modern Standard Arabic (MSA). Table 2.13 shows the token distribution over the

subsets and over the dialects.

Fig. 2.13 shows the sample character length distribution across classes. Most of

the classes have the majority of the samples between 10 and 70, and the distribution

is even, partially because of the fact that the corpus is parallel.

2.8.2 Methodology

In our experiments, we used three ML algorithms (SVM, Logistic Regression and

Multinomial Näıve Bayes) with default parameters in the scikit-learn Python li-

brary. For SVM we used the sklearn.svm.LinearSVC implementation, which is

more suitable for bigger datasets because it is an optimization designed for the linear

kernel. Default parameters are C=1.0; loss=squared hinge; penalty=l2. For Lo-

gistic Regression we used sklearn.linear model.LogisticRegression implementa-

tion with the default parameters C=1.0; solver=lbfgs; penalty=l2. LBFGS is an

19https://camel.abudhabi.nyu.edu/madar/



40

Table 2.13: MADAR 2019 dataset overview of the train, development and test subsets.
Train & Dev. Test

Language/Variety Class Instances Tokens Instances Tokens

Rabat (Morocco) RAB 1,800 13,303 200 1,475
Fes (Morroco) FES 1,800 13,067 200 1,455
Algiers (Algeria) ALG 1,800 13,123 200 1,466
Tunis (Tunisia) TUN 1,800 12,470 200 1,406
Sfax (Tunisia) SFX 1,800 12,221 200 1,364
Tripoli (Libya) TRI 1,800 13,003 200 1,463
Benghazi (Libya) BEN 1,800 13,030 200 1,447
Cairo (Egypt) CAI 1,800 13,020 200 1,438
Alexandria (Egypt) ALX 1,800 13,174 200 1,443
Aswan (Egypt) ASW 1,800 13,389 200 1,484
Khartoum (Egypt) KHA 1,800 13,269 200 1,451
Jerusalem (S. Levant) JER 1,800 12,565 200 1,371
Amman (S. Levant) AMM 1,800 13,246 200 1,452
Salt (S. Levant) SAL 1,800 12,686 200 1,432
Beirut (N. Levant) BEI 1,800 12,121 200 1,333
Damascus (N. Levant) DAM 1,800 12,204 200 1,376
Aleppo (N. Levant) ALE 1,800 12,185 200 1,340
Mosul (Iraq) MOS 1,800 12,787 200 1,403
Baghdad (Iraq) BAG 1,800 12,311 200 1,360
Basra (Iraq) BAS 1,800 11,901 200 1,298
Doha (Gulf) DOH 1,800 12,123 200 1,328
Muscat (Gulf) MUS 1,800 13,050 200 1,456
Riyadh (Gulf) RIY 1,800 12,640 200 1,405
Jeddah (Gulf) JED 1,800 12,139 200 1,341
San’a (Yemen) SAN 1,800 12,763 200 1,431
Modern Standard Arabic MSA 1,800 14,339 200 1,593

Total 46,800 332,129 5,200 36,811

iterative method for solving nonlinear optimization problems using a limited amount

of computer memory. For two datasets (DSLCC), due to the fact that the aforemen-

tioned implementation makes a copy of the data in C++ (underlying implementation

liblinear20) and takes up extra space, we used sklearn.linear model.SGDClassifier

with the parameter setting loss=log, which is, essentially, logistic regression that in-

stead of minimizing the log-probability uses Stochastic Gradient Descent (SGD) as a

solver. For Multinomial Näıve Bayes we used the sklearn.naive bayes.MultinomialNB

implementation with default parameters. We did not apply extensive grid search to

20https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Figure 2.13: Sample length distribution in training & development subsets for
MADAR.

Figure 2.14: Experimental setup for language feature weighting task. *N-gram sizes
with length setting 1–7, depending on a dataset; **15 weighting schemes; ***3 dif-
ferent classifiers: Multinomial Näıve Bayes, Logistic Regression and Linear SVM.

find optimal hyperparameters because that is out of the scope of this experiment. We

particularly focus on the effects of different feature weighting schemes. The experi-

mental setup is shown in Fig. 2.14.

2.8.3 Results and Discussion

In this section we present the results and discuss our findings on the 7 LID datasets

described previously.
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TweetLID’14 Table 2.14 shows the results on the TweetLID dataset using the

F1 measure designed for multilabel problems and used for system evaluation by the

task organizers. This dataset was more difficult to work on due to the large class

imbalance, unseen class problem and code-mixed tweets. Features that were used

in the experiment include character n-grams (n ∈ {2..4}) and word unigrams. We

show that, in the case of this dataset, the weighting scheme can have a significant

impact on the results. Most of the weighting schemes did improve the final result

compared to no-weighting, but not all of them were significant. Linear SVM showed

the best (and significant) performance using mutual information weighting scheme

(mi), followed by modified mutual information (mi’ ) and cng. Scheme idf did slightly

improve the performance, but we did not find statistical significance on the given test

set. Table A.3 in Appendix A shows the comparison between our best results and

the workshop top three results. It seems that our method did perform better (best

workshop result is 75.2%), but we were unable to verify whether our results are

statistically significant, due to the lack of detailed results by the systems of interest.

Additionally, we were left unclear if the gold test set is identical to the one that was

used in the competition, because even with no weighting applied, we obtained slightly

better results.

DSLCCv3.0’16 Tables 2.15 and 2.16 show the results on the DSLCCv3.0 dataset

on the in-domain gold test set and two out-of-domain gold test sets, respectively,

using macro-averaged F1 measure. We performed 10-fold cross-validation and tested

it separately on the gold test set. The challenge of this dataset, as mentioned, is that

it had two additional out-of-domain test sets. We briefly described in the previous

section that the training set comes from the news sites in respective languages, while

B1 and B2 test sets are samples collected from Twitter. The feature set consists

of character n-grams (n ∈ {1..7}) We can observe that the weighting at first glance

didn’t provide any gains in performance. However, McNemar’s statistic with p < 0.05

indicates that idf, bm25 and cng have statistically significant ratio of errors compared

to the no-weighting setup. The top three results in the workshops on the in-domain

test sets are 89.4%, 88.8% and 88.7%.

Although the results on B1 and B2 test sets seem very high, the task is simpler
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Table 2.14: Results on the TweetLID dataset (global weighting scheme)×(classifier).
F1 measure was obtained using organizers’ script for evaluation adjusted for multilabel
problems. Due to the nature of the dataset we did not perform cross validation.
↓significantly higher ratio of errors on gold test compared to no-weighting scheme
(highlighted row). ↑significantly lower ratio of errors on gold test compared to no-
weighting scheme. McNemar’s test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 68.47 69.30 76.53
idf 70.08↑ 68.82 76.58
bm25 70.10↑ 68.81 76.54
ig 68.47 69.31 76.54
gr 68.47 69.30 76.53
mi 70.75↑ 71.32 77.07↑

mi’ 69.68 70.04↑ 76.80↑

χ2 64.73↓ 70.66↑ 75.07↓

∆sm 68.47 69.30 76.53
∆sm2 68.47 69.30 76.53
∆bm25 68.47 69.30 76.53
rf 69.00↑ 69.49 76.58
ne 68.62 69.32 76.47
reb0=0.2 68.60 69.31 76.47
reb0=0.5 68.58 69.34 76.50
reb0=0.7 68.51 69.35 76.54
euclid 68.47 69.30 76.53
cng 68.94↑ 69.40 76.62↑

as the number of test classes is reduced to 5. The best results for both datasets

(Table 2.16) were obtained using Linear SVM. Mutual information (mi) significantly

improved the results over the no-weighting setup. Significant weighting schemes were

obtained by idf and cng. Similar to the previous dataset, χ2 had a detrimental effect

on the performance. The top three results in the workshop on B1 test set are 91.9%,

91.3% and 89.7%. The top three results in the workshop on B2 test set are 87.7%,

85.7% and 83.8%.

DSLCCv4.0’17 Table 2.17 shows the results on the DSLCCv4.0 dataset on the

gold test set with 10 fold cross validation on the training set. As features, we used

character n-grams (3–6) and word unigrams. For MNB classifier the best result was

obtained by applying the bm25 weighting scheme which was significantly better that
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Table 2.15: Results on the DSLCCv3.0 dataset (global weighting scheme)×(classifier).
F1 measure mean and standard deviation across 10 folds. ↓significantly higher ratio of
errors on gold test compared to no-weighting scheme (highlighted row). ↑significantly
lower ratio of errors on gold test compared to no-weighting scheme. McNemar’s
test, p < 0.05. ⇓significantly lower 10 fold results compared to no-weighting scheme.
⇑significantly higher 10 fold results compared to no-weighting scheme. Wilcoxon’s
test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 83.12 (81.71±0.44) 77.51 (78.33±0.47) 88.21 (86.94±0.25)
idf 85.21↑ (83.12±0.35)⇑ 81.00↑ (81.34±0.38)⇑ 88.50 (86.99±0.15)
bm25 85.21↑ (83.13±0.35)⇑ 81.05↑ (81.42±0.40)⇑ 88.51↑ (86.99±0.14)
ig 83.11 (81.69±0.43) 77.46 (78.31±0.46) 88.20 (86.94±0.25)
gr 83.12 (81.71±0.44) 77.48 (78.33±0.44) 88.21 (86.94±0.25)
mi 81.59)↓ (80.29±0.36)⇓ 76.42 (77.13±0.51)⇓ 87.86 (86.35±0.24)
mi’ 80.72)↓ (80.18±0.25)⇓ 77.67 (78.66±0.52) 87.67 (86.33±0.33)
χ2 83.07 (81.66±0.45) 77.38 (78.26±0.50) 88.26 (86.94±0.22)
∆sm 83.12 (81.71±0.44) 77.45 (78.34±0.50) 88.21 (86.94±0.25)
∆sm2 83.12 (81.71±0.44) 77.49 (78.36±0.47) 88.21 (86.94±0.25)
∆bm25 83.12 (81.71±0.44) 77.57 (78.35±0.47) 88.21 (86.94±0.25)
rf 83.53 (82.12±0.39) 78.17 (78.90±0.51) 88.26 (87.09±0.22)
ne 82.95 (81.62±0.42) 77.48 (78.34±0.49) 88.16 (86.90±0.27)
reb0=0.2 82.95 (81.63±0.42) 77.54 (78.34±0.44) 88.16 (86.91±0.27)
reb0=0.5 83.00 (81.65±0.43) 77.52 (78.36±0.48) 88.17 (86.91±0.26)
reb0=0.7 83.04 (81.66±0.43) 77.50 (78.35±0.49) 88.17 (86.92±0.25)
euclid 83.12 (81.71±0.44) 77.55 (78.35±0.44) 88.21 (86.94±0.25)
cng 83.47 (81.89±0.41) 78.19 (78.90±0.40) 88.21 (86.90±0.24)

the no-weighting scenario for the training and gold data. A significant result was

obtained with idf, while others, such as cng and rf did show improvement, but were

not significantly better. Surprisingly, mi and mi’ had a significant negative effect.

For the LR classifier the result was similar, but rf and cng did have significant positive

impact. The best overall performance was obtained by linear SVM with bm25 and

idf weighting. Other weighting schemes did not have a significant impact on the

performance. For comparison, the three best performing systems at the workshop

were evaluated at 92.7%, 92.5% and 91.6%, respectively. All of them implement

two level classification — language group classifier, followed by a language specific

classifier. Interestingly, the best performing system used the bm25 weighting scheme

with SVMs, which confirms our findings.
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Table 2.16: Results on the DSLCCv3.0 dataset (global weighting scheme)×(classifier).
F1 measure on B1 & B2 out-of-domain datasets. ↓significantly higher ratio of errors
compared to no-weighting scheme (highlighted row). ↑significantly lower ratio of
errors compared to no-weighting scheme. McNemar’s test, p < 0.05.

B1 B2
Wgt MNB LR LSVM NB LR LSVM

none 88.77 85.32 89.10 80.70 76.47 85.32
idf 89.05 84.47 88.91 82.03 77.33 85.93
bm25 89.05 83.54 88.91 82.03 77.12 85.93
ig 88.77 85.32 89.10 80.70 77.12 85.72
gr 88.77 85.32 89.10 80.70 76.47 85.72
mi 89.26 86.80↑ 89.10 82.39 79.83↑ 85.70
mi’ 88.02 87.02↑ 89.10 82.37 80.45↑ 86.62
χ2 79.10↓ 77.40↓ 85.96↓ 73.94↓ 69.94↓ 81.63↓

∆sm 88.77 85.32 89.10 80.70 76.47 85.72
∆sm2 88.77 84.46 89.10 80.70 76.63 85.72
∆bm25 88.77 85.32 89.10 80.70 76.47 85.72
rf 88.82 86.51 89.12 81.98 79.33↑ 85.94
ne 88.79 85.93 89.10 81.11 77.47 85.72
reb0=0.2 88.79 85.32 89.10 81.11 77.86↑ 85.72
reb0=0.5 88.57 85.53 89.10 81.11 78.01↑ 85.72
reb0=0.7 88.77 85.74 89.10 80.92 77.55 85.72
euclid 88.77 85.32 89.10 80.70 76.47 85.72
cng 88.37 85.53 89.32 81.18 78.21↑ 85.94

ILI’18 Table 2.18 shows the results on the ILI dataset on the gold test set with

10 fold cross validation on the training set. For MNB classifier, we found that mi

and mi’ boosted the performance of the classifier, while idf and χ2 had a negative

impact. For the LR classifier the results are slightly different. While mi and mi’

seem best, idf, rf, ne, re and cng had positive impact as well. Scheme bm25 had a

negative impact. The best performing classifier was linear SVM with mi as the best

weighting scheme obtained 90.92% on the gold test. Only χ2 had a negative impact.

The three best performing systems at the workshop were evaluated at 95.8%, 90.2%

and 89.8%, respectively. However, it is important to point out that the first result

used an adaptation technique, where, through multiple runs on the gold test, they

reused the best predictions for retraining and retested on the same gold test.
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Table 2.17: Results on the DSLCCv4.0 dataset (global weighting scheme)×(classifier).
F1 measure mean and standard deviation across 10 folds. ↓significantly higher ratio of
errors on gold test compared to no-weighting scheme (highlighted row). ↑significantly
lower ratio of errors on gold test compared to no-weighting scheme. McNemar’s
test, p < 0.05. ⇓significantly lower 10 fold results compared to no-weighting scheme.
⇑significantly higher 10 fold results compared to no-weighting scheme. Wilcoxon’s
test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 85.08 (84.84±0.29) 80.36 (81.03±0.42) 90.28 (90.28±0.35)
idf 86.68↑ (86.29±0.33)⇑ 83.12↑ (83.73±0.28)⇑ 90.73↑ (90.47±0.32)⇑

bm25 86.72↑ (86.34±0.33)⇑ 83.28↑ (83.86±0.23)⇑ 90.74↑ (90.47±0.33)⇑

ig 85.01 (84.79±0.28) 80.50 (80.99±0.40) 90.28 (90.28±0.35)
gr 85.08 (84.84±0.29) 80.65 (81.05±0.42) 90.28 (90.28±0.35)
mi 83.36↓ (83.04±0.36)⇓ 79.38↓ (79.72±0.41)⇓ 89.85 (89.69±0.33)
mi’ 83.96↓ (83.81±0.33)⇓ 80.66 (81.21±0.37) 89.64 (89.68±0.37)
χ2 85.12 (84.84±0.29) 80.32 (81.07±0.44) 90.24 (90.27±0.36)
∆sm 85.08 (84.84±0.29) 80.57 (81.08±0.41) 90.28 (90.28±0.35)
∆sm2 85.08 (84.84±0.29) 80.59 (81.03±0.36) 90.28 (90.28±0.35)
∆bm25 85.08 (84.84±0.29) 80.58 (81.06±0.48) 90.28 (90.28±0.35)
rf 85.55 (85.41±0.33) 81.05↑ (81.53±0.38)⇑ 90.47 (90.40±0.35)
ne 85.01 (84.79±0.27) 80.63 (81.07±0.31) 90.26 (90.24±0.36)
reb0=0.2 84.99 (84.80±0.27) 80.57 (81.07±0.43) 90.27 (90.25±0.36)
reb0=0.5 85.03 (84.80±0.28) 80.49 (81.01±0.39) 90.26 (90.25±0.36)
reb0=0.7 85.03 (84.81±0.27) 80.46 (81.09±0.35) 90.27 (90.26±0.37)
euclid 85.08 (84.84±0.29) 80.50 (81.06±0.45) 90.28 (90.28±0.35)
cng 85.38 (85.08±0.26) 81.09↑ (81.55±0.35)⇑ 90.28 (90.26±0.36)

DFS’18 Table 2.19 shows the results on the DFS dataset on the gold test set with

10 fold cross validation on the training set. For the MNB classifier, we found that idf,

rf, ne and cng significantly boosted the performance compared to the no-weighting

scheme, with idf giving the best boost. None of the weighting schemes negatively af-

fected the performance. Schemes re and χ2 schemes did provide significant boost, but

only on the gold test set (McNemar’s test), while the folds do not seem significantly

different (Wilcoxon’s test). For the LR classifier, the highest and only significant

impact was mi scheme and this is the overall best result — F1 on the gold test set

is 63.95%. The linear SVM classifier does not seem significantly impacted by the

weighting schemes. The three best performing systems at the workshop were evalu-

ated at 66.0%, 64.6% and 63.6%, respectively. The first result is produced by a single
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Table 2.18: Results on the ILI’18 dataset (global weighting scheme)×(classifier). F1

measure mean and standard deviation across 10 folds. F1 measure mean and standard
deviation across 10 folds inside brackets, and F1 measure on gold standard dataset.
↓significantly higher ratio of errors on gold test compared to no-weighting scheme
(highlighted row). ↑significantly lower ratio of errors on gold test compared to no-
weighting scheme. McNemar’s test, p < 0.05. ⇓significantly lower 10 fold results
compared to no-weighting scheme. ⇑significantly higher 10 fold results compared to
no-weighting scheme. Wilcoxon’s test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 86.42 (96.52±1.00) 85.09 (94.53±1.75) 90.66 (97.40±0.90)
idf 85.97↓ (96.78±1.09)⇓ 85.64↑ (95.70±1.60)⇑ 90.55 (97.52±0.91)⇑

bm25 86.60 (96.72±1.04)⇑ 84.75↓ (94.44±1.82)⇓ 90.62 (97.50±0.99)⇑

ig 86.42 (96.52±1.00) 85.06 (94.53±1.74) 90.66 (97.40±0.90)
gr 86.42 (96.52±1.00) 85.07 (94.53±1.76) 90.66 (97.40±0.90)
mi 88.18↑ (96.84±0.90)⇑ 86.45↑ (95.06±1.44)⇑ 90.86 (97.50±0.77)⇑

mi’ 88.06↑ (96.69±0.83)⇑ 87.09↑ (95.30±1.24)⇑ 90.92↑ (97.46±0.77)
χ2 77.46↓ (89.86±0.99)⇓ 77.98↓ (89.38±2.86)⇓ 87.47↓ (94.62±1.17)⇓

∆sm 86.42 (96.52±1.00) 85.08 (94.54±1.76) 90.66 (97.40±0.90)
∆sm2 86.42 (96.52±1.00) 85.11 (94.52±1.75) 90.66 (97.40±0.90)
∆bm25 86.42 (96.52±1.00) 85.10 (94.54±1.78) 90.66 (97.40±0.90)
rf 87.29↑ (96.69±0.90)⇑ 86.32↑ (94.97±1.60)⇑ 90.67 (97.45±0.82)
ne 86.48 (96.54±0.98)⇑ 85.32↑ (94.61±1.75)⇑ 90.72 (97.41±0.88)
reb0=0.2 86.48 (96.54±0.98)⇑ 85.25↑ (94.60±1.76)⇑ 90.70 (97.41±0.89)
reb0=0.5 86.47 (96.54±0.99) 85.22↑ (94.59±1.76)⇑ 90.69 (97.41±0.91)
reb0=0.7 86.45 (96.53±0.98) 85.21↑ (94.58±1.76)⇑ 90.66 (97.41±0.91)
euclid 86.42 (96.52±1.00) 85.11 (94.53±1.76) 90.66 (97.40±0.90)
cng 86.41 (96.54±0.98) 85.60↑ (94.90±1.65)⇑ 90.66 (97.37±0.94)

linear SVM with 1–4 character n-grams, word unigrams and bigrams and hyperpa-

rameter tuning (C = 0.4). The second and third had similar setups, where they used

an ensemble of linear SVMs, one trained on character n-grams and the other on PoS

tags, n-grams, and syntactical information.

GDI’18 Table 2.20 shows the results on the GDI 2018 dataset on the gold test

set with 10 fold cross validation on the training set. For all three classifiers the

mi’ weighting scheme provides the biggest boost. The MNB classifier results are

significantly impacted by the idf, mi, mi’, χ2, rf and cng weighting schemes. The

LR classifier performs much better than MNB even without weighting, where mi, mi’
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Table 2.19: Results on the DFS’18 dataset (global weighting scheme)×(classifier). F1

measure mean and standard deviation across 10 folds. ↓significantly higher ratio of
errors on gold test compared to no-weighting scheme (highlighted row). ↑significantly
lower ratio of errors on gold test compared to no-weighting scheme. McNemar’s
test, p < 0.05. ⇓significantly lower 10 fold results compared to no-weighting scheme.
⇑significantly higher 10 fold results compared to no-weighting scheme. Wilcoxon’s
test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 59.71 (60.92±0.35) 63.36 (63.88±0.41) 63.14 (64.49±0.49)
idf 61.53↑ (63.17±0.38)⇑ 63.48 (64.74±0.46) 62.17 (64.10±0.58)
bm25 59.71 (60.92±0.35) 63.40 (63.88±0.41) 63.14 (64.49±0.49)
ig 59.71 (60.92±0.35) 63.38 (63.88±0.40) 63.14 (64.49±0.49)
gr 59.71 (60.92±0.35) 63.37 (63.88±0.40) 63.14 (64.49±0.49)
mi 60.87↑ (63.40±0.32)⇑ 63.95↑ (65.59±0.41)⇑ 63.00 (66.31±0.53)
mi’ 60.79↑ (63.03±0.36)⇑ 63.83 (65.36±0.43) 63.06 (65.97±0.51)
χ2 59.84↑ (60.80±0.28) 63.40 (63.85±0.43) 63.31 (64.43±0.53)
∆sm 59.71 (60.92±0.35) 63.37 (63.88±0.41) 63.14 (64.49±0.49)
∆sm2 59.71 (60.92±0.35) 63.36 (63.88±0.41) 63.14 (64.49±0.49)
∆bm25 59.71 (60.92±0.35) 63.39 (63.88±0.41) 63.14 (64.49±0.49)
rf 59.98↑ (61.32±0.41)⇑ 63.63 (64.16±0.35) 63.14 (64.54±0.48)
ne 59.77↑ (60.98±0.35) 63.43 (63.92±0.39) 63.15 (64.53±0.49)
reb0=0.2 59.76↑ (60.98±0.34) 63.43 (63.91±0.40) 63.14 (64.52±0.48)
reb0=0.5 59.77↑ (60.96±0.35) 63.43 (63.90±0.41) 63.15 (64.53±0.49)
reb0=0.7 59.76↑ (60.95±0.34) 63.42 (63.89±0.40) 63.14 (64.52±0.48)
euclid 59.71 (60.92±0.35) 63.39 (63.88±0.40) 63.14 (64.49±0.49)
cng 60.36↑ (61.48±0.44)⇑ 63.55 (64.13±0.40) 62.97 (64.52±0.53)

and cng had significantly positive impact. However, χ2 had negative impact. The

best classifier (linear SVM) showed significantly the best performance even without

weighting. Scheme mi’ provided the biggest boost. The only system that participated

in the task with the “unknown” class setup was evaluated at 51.2%. This task, even

without the additional class was shown to be difficult. Table A.4 in Appendix A

shows the confusion between classes. Most problematic is XY.

GDI’19 Table 2.21 shows the results on the GDI dataset on the gold test set with

10 fold cross validation on the training set. All classifiers showed the biggest boost

with the mi weighting scheme, MNB obtaining the best performance, 66.12%. For

MNB, idf, mi and mi’ had positive impact, while χ2 had negative impact. For LR, mi



49

Table 2.20: Results on the GDI’18 dataset (global weighting scheme)×(classifier). F1

macro-averaged shown. Due to the nature of the dataset we did not perform cross
validation. ↓significantly higher ratio of errors on gold test compared to no-weighting
scheme (highlighted row). ↑significantly lower ratio of errors on gold test compared
to no-weighting scheme. McNemar’s test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 28.74 46.34 51.15
idf 33.63↑ 46.34 51.39
bm25 28.74 46.34 51.18
ig 28.74 46.34 51.15
gr 28.74 46.34 51.15
mi 39.20↑ 48.41↑ 51.82↑

mi’ 39.62↑ 48.60↑ 52.04↑

χ2 35.63↑ 43.83↓ 47.07↓

∆sm 28.74 46.35 51.15
∆sm2 28.74 46.34 51.15
∆bm25 28.74 46.34 51.15
rf 31.91↑ 46.98 51.44
ne 29.47 46.47 51.23
reb0=0.2 29.41 46.43 51.23
reb0=0.5 29.17 46.42 51.24
reb0=0.7 29.09 46.40 51.21
euclid 28.74 46.34 51.15
cng 30.42↑ 46.67↑ 51.34

and mi’ had positive impact, and χ2 had negative impact. For linear SVM, only mi

had positive impact, and χ2 had negative impact. Table A.5 in Appendix A shows the

confusion between classes. The three best performing systems at the workshop were

evaluated at 75.93%, 75.41% and 74.55%, respectively. However, led by the previous

year’s task success of using an adaptation technique to enhance the final results, the

top three systems used it and got significantly better results on the test set (almost

10% boost). The problem with the evaluation of this approach is that the dataset

that the systems were tested on was also used in the adaptation. The fourth result

used no adaptation and yielded 62.55%.

MADAR’19 Table 2.22 shows the results on the MADAR dataset on the gold test

set with 10 fold cross validation on the training set. We used word unigrams and
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Table 2.21: Results on the GDI’19 dataset (global weighting scheme)×(classifier). F1

measure mean and standard deviation across 10 folds. ↓significantly higher ratio of
errors on gold test compared to no-weighting scheme (highlighted row). ↑significantly
lower ratio of errors on gold test compared to no-weighting scheme. McNemar’s
test, p < 0.05. ⇓significantly lower 10 fold results compared to no-weighting scheme.
⇑significantly higher 10 fold results compared to no-weighting scheme. Wilcoxon’s
test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 64.82 (79.35±1.53) 64.25 (78.74±1.48) 64.65 (80.76±1.79)
idf 65.56 (81.50±1.47)⇑ 64.86 (80.56±1.46) 63.98↓ (80.64±2.13)
bm25 65.48 (81.52±1.39)⇑ 64.90 (80.62±1.48) 63.96↓ (80.64±2.14)
ig 64.82 (79.35±1.53) 64.25 (78.74±1.47) 64.67 (80.76±1.79)
gr 64.82 (79.35±1.53) 64.25 (78.74±1.48) 64.65 (80.76±1.79)
mi 66.12↑ (81.86±1.51)⇑ 65.56↑ (81.03±1.36)⇑ 64.97↑ (81.41±1.77)⇑

mi’ 65.76↑ (81.04±1.72)⇑ 65.56↑ (80.69±1.03)⇑ 64.72 (81.39±1.71)
χ2 56.59↓ (69.94±2.81)⇓ 61.05↓ (73.62±2.30)⇓ 62.15↓ (75.54±2.32)⇓

∆sm 64.82 (79.35±1.53) 64.23 (78.74±1.48) 64.67 (80.76±1.79)
∆sm2 64.82 (79.35±1.53) 64.25 (78.74±1.46) 64.67 (80.76±1.79)
∆bm25 64.82 (79.35±1.53) 64.25 (78.75±1.50) 64.67 (80.76±1.79)
rf 65.12 (79.99±1.61)⇑ 64.78 (79.22±1.37) 64.77 (80.81±1.78)
ne 64.92 (79.48±1.60)⇑ 64.36 (78.86±1.56) 64.71 (80.75±1.81)
reb0=0.2 64.90 (79.47±1.59)⇑ 64.33 (78.84±1.55) 64.67 (80.74±1.81)
reb0=0.5 64.84 (79.43±1.57) 64.33 (78.82±1.55) 64.63 (80.76±1.82)
reb0=0.7 64.82 (79.40±1.57) 64.29 (78.80±1.54) 64.63 (80.76±1.80)
euclid 64.82 (79.35±1.53) 64.23 (78.75±1.47) 64.65 (80.76±1.79)
cng 65.01 (79.89±1.44)⇑ 64.50 (79.07±1.32) 64.68 (80.73±1.79)

1–3 character n-grams. The best classifier was MNB with the idf weighting scheme.

Schemes bm25 and cng had positive impact, while χ2 had negative. However, idf and

bm25 both had lower levels of errors than cng in the gold test. LR was influenced

by the same weighting schemes in a similar way. Linear SVM did not have any

significant gains from weighting. Surprisingly, idf and bm25 had negative impact.

The three best performing systems at the workshop were evaluated at 67.32%, 67.31%

and 67.20%, respectively. All three methods combined discriminative and generative

algorithms (language models). A preliminary study by the organizers [241] showed

that incorporating language models with a classifier can boost the performance and

achieved 67.5%. Without a language model, they reported 63.60%. The classifier

they used is MNB with word unigrams and 1-3 character n-grams.
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Table 2.22: Results on MADAR dataset (global weighting scheme)×(classifier). F1

measure mean and standard deviation across 10 folds. ↓significantly higher ratio of
errors on gold test compared to no-weighting scheme (highlighted row). ↑significantly
lower ratio of errors on gold test compared to no-weighting scheme. McNemar’s
test, p < 0.05. ⇓significantly lower 10 fold results compared to no-weighting scheme.
⇑significantly higher 10 fold results compared to no-weighting scheme. Wilcoxon’s
test, p < 0.05.

Classifiers
Wgt MNB LR LSVM

none 61.77 (59.89±4.18) 61.61 (60.03±4.37) 62.03 (60.58±4.53)
idf 64.31↑ (62.06±4.31)⇑ 63.42↑ (61.69±4.50)⇑ 61.51↓ (60.29±4.58)⇓

bm25 64.29↑ (62.08±4.30)⇑ 63.36↑ (61.72±4.50)⇑ 61.52↓ (60.29±4.61)⇓

ig 61.63 (59.86±4.11) 61.30 (59.96±4.45) 61.87 (60.68±4.49)
gr 61.77 (59.89±4.18) 61.61 (60.02±4.38) 62.03 (60.58±4.53)
mi 62.00 (59.76±4.39) 62.24 (60.49±4.47) 62.37 (60.62±4.67)
mi’ 60.52 (59.15±4.18) 62.17 (60.32±4.42) 62.29 (61.19±4.50)
χ2 47.98↓ (47.96±3.09)⇓ 52.78↓ (52.54±3.34)⇓ 56.30↓ (55.69±3.40)⇓

∆sm 61.77 (59.89±4.18) 61.60 (60.02±4.37) 62.03 (60.58±4.53)
∆sm2 61.77 (59.89±4.18) 61.60 (60.03±4.37) 62.03 (60.58±4.53)
∆bm25 61.77 (59.89±4.18) 61.60 (60.03±4.37) 62.03 (60.58±4.53)
rf 61.77 (59.95±4.15) 61.66 (60.06±4.40) 62.03 (60.60±4.52)
ne 61.80 (59.88±4.17) 61.69 (60.06±4.32) 62.07 (60.62±4.56)
reb0=0.2 61.84 (59.88±4.15) 61.67 (60.06±4.31) 62.05 (60.62±4.56)
reb0=0.5 61.86 (59.88±4.12) 61.66 (60.05±4.32) 62.05 (60.62±4.54)
reb0=0.7 61.82 (59.87±4.13) 61.66 (60.04±4.34) 62.01 (60.61±4.50)
euclid 61.77 (59.89±4.18) 61.61 (60.02±4.37) 62.03 (60.58±4.53)
cng 62.02↑ (60.18±4.28)⇑ 61.68 (60.28±4.33) 61.93 (60.50±4.54)

Table 2.23: The number of significantly improved results (↑) and significantly wors-
ened results (↓) using standard schemes. The number indicates how many datasets
had significant improvement per weighting scheme and classifier. Maximum 9.

Clf. idf bm25 ig gr mi mi’ χ2 ∆all rf ne reb0=x

↑
MNB 5 3 - - 5 4 2 - 4 1 1
LR 3 3 - - 6 6 1 - 3 1 2
LSVM 1 2 - - 3 3 - - - - -

↓
MNB 1 - - - 2 1 6 - - - -
LR - 1 - - 1 1 6 - - - -
LSVM 2 2 - - - - 7 - - - -

Overall results are summarized in Tables 2.23 and 2.24.



52

Table 2.24: The number of significantly improved results (↑) and significantly wors-
ened results (↓) using proposed schemes. The number indicates how many datasets
had significant improvement per weighting scheme and classifier. Maximum 9.

Clf. euclid cng

↑
MNB - 3
LR - 4
LSVM - 1

↓
MNB - -
LR - -
LSVM - -

2.9 Conclusion and Future Work

In this chapter we examined a couple of questions in the domain of automatic Lan-

guage Identification. First, we explored the possibility of using the CNG algorithm

for language relatedness analysis. Influenced by a study from Gamallo et al. [93]

published in 2017, we applied our method and showed that CNG is appropriate for

such a task. Nevertheless, “appropriateness” can be disputed by linguistic experts

who claim that language similarity cannot and should not be represented as a single

distance value. Our goal was not to disprove this, but to offer an automated way

of measuring one aspect of language similarity. Second, we noticed the lack of a

comprehensive study on the effect of feature weighting techniques in the domain of

short texts. Additionally, we proposed two supervised weighting schemes, first based

on Euclidean distance, and second based on CNG. So far, the usual weighting tech-

niques used are idf and less frequently bm25. We considered 13 schemes found in the

literature related to text classification tasks and 2 of our own. The general findings

are:

• scheme idf is not always the best weighting method, it depends on the dataset;

• scheme χ2 does not seem to work so well in the explored settings (short texts,

very similar classes);

• mutual information (mi) and modified mutual information (mi’) can boost the

results significantly compared to no-weighting and idf;

• the CNG-based weighting scheme shows promising results, as it was better than
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no-weighting and idf on most of the explored datasets.

Because our goal was to explore the effect of various weighting schemes, we did not

focus on the architecture of the classifier, nor hyperparameter tuning. One possible

extension of this study is to work on these two aspects. Neural Networks, especially

LSTMs, gained a lot of traction when in comes to language modelling. Although

we did some preliminary experiments with NNs and LSTMs (not reported in this

dissertation), our findings were that the datasets are likely too small to build neu-

ral models that are on par with probabilistic models. To support this claim, more

thorough study should be conducted as part of the future work.



Chapter 3

Twitter Bot Detection using Digital Fingerprints and

Diversity Measures

3.1 Introduction

Millions of Internet users collaborate and communicate through SNSs. One of the

most influential platforms, at least in the western world, is Twitter. It provides free

microblogging services, where users can share their ideas, news, advertise, promote

figures, products and agendas. However, the openness and convenience of the Twit-

ter platform has its drawbacks. It facilitates the creation and usage of automated

malicious accounts whose aim is to manipulate other users for the sake of financial

gain or to spread fake information. An automated user (bot) is a program that

emulates a real person’s behavior on social media. A bot can operate based on a

simple set of behavioral instructions, such as tweeting, retweeting, “liking” posts, or

following other users. In general, there are two types of bots based on their pur-

pose: non-malicious and malicious [268]. The non-malicious bots are transparent,

with no intent of mimicking real Twitter users [234]. Often, they share motivational

quotes or images, tweet news headlines and other useful information [161], or help

companies to respond to users [246]. On the other hand, malicious ones may gen-

erate spam, try to access private account information, trick users into following or

subscribing to scams [1, 74, 91, 321], suppress or enhance political opinions [109, 228],

create trending hashtags for financial gain, support political candidates during elec-

tions [22, 68], create fake online reviews [78, 177] or create offensive material to troll

users. Additionally, some influencers may use bots to boost their audience size. Bosh-

maf et al. [35, 36] show that OSNs are vulnerable to infiltration of bot networks into

legitimate social communities for the sake of collecting of sensitive personal data.

Paradise et al. [209] extended their previous study to what kind of infiltration strate-

gies work best, and they found that the most effective attack is randomly sprayed

54
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friend requests. Similarly, Bokobza et al. [32] explored infiltration strategies on two

social networks Flickr1 and Twitter. They found that social communities whose social

network topologies have low clustering coefficients are more vulnerable to infiltration.

There has been some research related to the effectiveness of bot networks. A few

authors designed covert bot networks by exploiting the social habits of individual

users and using steganography techniques to conceal bot communication [192, 208].

At first, automated users sharing random bits of information across Twitter may

not seem like a threat, but bots can potentially jeopardize online user security. Bots on

social media platforms generate spam content and degrade overall user experience.

With the growth of social networks and their influence in news and information

sharing, bots have become a serious threat to democracies. The “foreign actors” use

bots to share politically polarizing content in the form of fake news in order to increase

its influence or intentionally promote certain people and their agendas. Counter-

measures are needed to combat these coordinated influence campaigns. Bots are

constantly evolving and adapting their behaviour to mimic real users. Nevertheless,

many of these bots are coordinated [47], which means that they can show similar

behaviour. This characteristic can be used to develop models for bot detection.

We experiment on bot detection techniques based on users’ temporal behaviour.

Additionally, we apply a set of statistical diversity measures to describe how diverse

the user behaviour is over an extended period of time. Using datasets from two

different researchers [55, 290] and a dataset from the PAN Author Profiling task [227]

we examine if the automated accounts have less diverse behaviour than genuine user

accounts and if these measures can help in detecting automated behaviour without

diving into language-specific analyses. Second, we explore if the way the dataset is

collected affects the ability of the measures to capture the difference between bot and

human accounts.

3.2 Related Work

To battle the problem of Online Social Networks (OSNs) malicious content, a fairly

large research community got involved. One of the most prominent tasks in recent

1Flickr is an image hosting service and video hosting service created in 2004.
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social media analysis is detection of automated user accounts (bots). As said, re-

search on this topic is very active [180, 313], because bots pose a big threat if they’re

intentionally steered to target important events across the globe, such as political

elections [22, 102, 117, 265, 290]. There are a few thorough survey papers that try to

cover the most important developments in the area of social media malicious content

detection. These include Verma et al. [292] from 2014, Kabakus et al. [133] from

2017, and the most recent one at the time of writing by Wu et al. [309].

Social media has been used in political communication over the last couple of

years. Debates over political topics and political campaigns are a common occur-

rence on Twitter [81]. The platform makes it easier to broadcast information quickly

and to a large group of people, which are some of the reasons why it gained such

importance. However, information manipulation in political sense can have moral,

ethical and legal implications. A few of the recent political situations include the

Brexit debate in 2016 [117], the US presidential election in 2016 [22, 102], German

state elections in 2017 [38], the Catalan independence referendum in 2017 [265], the

Brazilian presidential election in 2019 [275], the political scene in Venezuela [86]. Ed-

wards et al. [72] examined how well automated accounts communicate versus human

accounts. Their study suggests that a TwitterBot agent is perceived differently than a

human agent on variables related to perceptions of communication quality. However,

Goga et al. [99] found that that in the case of identity impersonation attacks on Twit-

ter, it can impact any user and the attackers are creating real-looking accounts that

are harder to detect by current systems. Similarly, Elyashar et al. [74] experimented

on Facebook and Xing2 (German-based competitor to LinkedIn) networks where they

demonstrated how easy it is to create malicious social bots that mimic social network

“friends”, which makes users vulnerable to exposing too much information about

themselves (personal and career info). Everett et al. [76] found that a typical In-

ternet user is twice as likely to be deceived by automated content than a security

researcher. Also, they found that entertainment and adult content is significantly

easier target for deception. Flores et al. [85] developed a system supported by social

media bots acting as recruiters to help non-profit organizations recruit volunteers

with specialized knowledge. He et al. [108] identified several behavioral features of

2https://www.xing.com/
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social bots and based on them proposed a bot detection system. Stieglitz et al. [267]

analysed the data from the 2016 US presidential election and found that there are

some differences in behaviour between humans and bots such as the number of fol-

lowers, retweets and used links per day of an account. Interestingly, Luceri et al. [164]

showed that social bots can be classified according to their political leaning. They

also showed that conservative bots share most of the topics of discussion with their

human counterparts, while liberal bots show less overlap and a more inflammatory

attitude. Thieltges et al. [278] discussed related ethical questions in relation to the

bot detection development process by examining the trade-off among three variables

which characterize a machine learning method: accuracy, transparency and robust-

ness. Accuracy represents a rate at which the ML method makes the right decision,

transparency is the openness of the ML method (the features and the underlying

learning algorithm are not a black box) and robustness represents the number of fea-

tures being used. They argue that the more transparent the approach is, the more

likely it is that the robustness and accuracy decrease over time (bot creators adjust

their new bots to bypass detection).

There are a couple of ways to categorize the approaches to bot detection. Ferrara et

al. [80] discussed the approaches in a more general way, dividing it to three groups

which include: social graph-based, crowdsourcing-based and feature-based methods.

The categorization laid out by Wu et al. [309] seemed more relevant to our work.

Guided by their comprehensive taxonomy, we briefly describe representative papers

for each category. The research is divided into the following groups:

1. Syntax analysis

(a) Key segment (URLs, keywords and username patterns)

(b) Tweet content (term frequency, bag of words and sparse learning)

2. Feature analysis

(a) Statistical information (tweet & account, only tweet and campaign)

(b) Social graph (graph based and neighbourhood based)

3. Blacklist
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Detection based on syntax analysis These methods rely on using segments such

as keywords, username patterns and URLs to represent the context of tweets and

their authors. The motivation behind it is that malicious accounts tend to contain

deceptive URLs, keywords or usernames to mimic a genuine account. It is shown that

a malicious tweet is more likely to contain an appealing title followed by an external

URL [50, 51].

Detection based on feature analysis Bot detection approach by Cresci et al. [55]

is based on DNA-inspired fingerprinting of temporal user behaviour. They defined a

vocabulary Bn, where n is the dimension. An element of the vocabulary represents

a label for a tweet. User activity is represented as a sequence of tweet labels. They

found that bots share Longer Common Substrings (LCSs) than regular users. The

point where LCS has the biggest difference is used as a cut-off value to separate

bots from genuine users. In the follow-up study [56] they benchmark several state-of-

the-art techniques proposed by the related literature and compare results with their

approach. They show that Twitter, humans, and cutting-edge applications are still in

its infancy, and they are not accurate in detecting the new social spambots. Similarly,

Chavoshi et al. [46, 47] were rather focused on temporal user behaviour on Twitter.

They used Dynamic Time Warping (DTW) distance to capture bot networks. The

intuition behind this is that bots inside bot networks follow the same tweeting pattern

(repeated tweeting at approximately the same time over a certain period of time).

Statistical information A relatively early paper on Twitter bot detection [298]

uses features such as follower and friend numbers, number of duplicate tweets in a 20

tweet sequence, number of URLs and number of mentions, and four different classi-

fiers among which Näıve Bayes classifier performed best. Alarifi et al. [6] analyzed

the meta-attributes of users and found that statistics of the tweets (character number

and standard deviation, number of hashtags and mentions, links, number of retweets,

favorites etc.) can help in identifying automated accounts. Dickerson et al. [68]

showed that a collection of network-, linguistic-, and especially sentiment-based fea-

tures can improve the identification of bots. The Twitterati [170] bot identification

system is based on features including inter tweet delay (the frequency between con-

secutive tweets), whether the content contains spam keywords, near duplicate tweets,
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Klout score3 and the tweeting device. It uses simple C4.5 (decision tree) to distin-

guish humans and bots. Igawa et al. [119] proposed an interesting approach based on

a Discrete Wavelet Transform (DWT) feature vector representation of each user ac-

count in conjunction with a new weighting scheme they call Lexicon Based Coefficient

Attenuation (LBCA). Their system distinguishes three classes: humans, bots and cy-

borgs (bot assisted human accounts) and shows an accuracy over 94%. A follow-up

study [132] applies the same method on different data where they distinguish different

classes: humans, legitimate bots and fraudulent bots.

Graph-based Authors [253] explore methods for fake news detection on social

media, which is closely related to the problem of automated accounts. They state

that the performance of detecting fake news only from content in general doesn’t

show good results, and they suggest to use user social interactions as auxiliary in-

formation to improve the detection. OCTracker [23] is a framework developed for

tracking overlapping community evolution in OSNs. It models a community struc-

ture and dynamic changes in social networks using a density-based approach. Their

follow-up study [24] uses the framework to detect spammers in online social com-

munities. SybilRank [41] is a proposed system that relies on social graph properties

to rank users according to their perceived likelihood of being fake. Another system

called Íntegro [34] proposes an amalgamation of graph-based features and account-

based features. Their approach outperformed SybilRank by a large margin (Area

Under the ROC Curve (AUC)=0.92, which was 30% greater than SybilRank; ROC -

Receiver Operating Characteristic Curve). Yang et al. [313] found that SVM and a

threshold classifier in conjunction with selected features that include friend request

frequency, outgoing requests accepted, incoming requests accepted and clustering

coefficient (mutual connectivity) obtain an accuracy between 98.68% and 99.50%.

They conducted the experiments on the data from Beijing-based OSN Renren4. A

framework by Ahmed et al. [4] for bot detection uses the Euclidean distance between

feature vectors to build a similarity graph of the accounts. After the graph is built,

they perform clustering and community detection algorithms to identify groups of

similar accounts in the graph. Messias et al. [180] explored strategies of how a bot

3Klout was a Web service that used social media analytics to rank its users according to online
social impact. The service is not available anymore, since the company got acquired.

4http://renren.com/
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can interact with real users to increase their influence. They show that a simple

strategy can trick influence scoring systems. BotOrNot [60] is an openly accessible

solution available as API for the machine learning system for bot detection. They

showed that the system is accurate in detecting social bots. Ferrara et al. [81] used an

extensive set of features (tweet timing, tweet interaction network, content, language

and sentiment) to detect online campaigning as early as possible.

Bot problem on social media platforms inspired many competitions and evaluation

campaigns such as DARPA Twitter Bot Challenge [270] and PAN Author Profiling

Task [58, 223, 227]5.

Gender Identification

Gender and age identification are common author profiling problems explored in the

literature. Most research agrees that stylistic features are key to distinguishing users

by gender and age. Although not perfect, it is an established basis for a successful

identification system. The research on this topic is big and active, but we draw a

limit by describing a few most relevant, recent and influential studies.

One of the earlier works [100] uses slang words and variation in sentence length

in addition to standard vocabulary words and part of speech. It shows significant

improvement (about 10%) compared to using vocabulary words only. The dataset

consists of 20K blog posts collected in 2004 from Blogger6. Thelwall et al. [277]

explored the correlation between sentiment and age and gender on the MySpace

social network. They found that women are more likely to give and receive positive

comments compared to men. They argue that women are more successful OSN users

partly because of their greater ability to textually harness positive affect. Sarawgi et

al. [245] conducted a thorough study on a cross-topic dataset and explored the effect of

a topic on detection performance. They used a Probabilistic Context-Free Grammar

(PCFG) model, two shallow word-level and character level language models and bag

of words (BoW). Peersman et al. [212] studied the prediction of gender and age

on a corpus of chat texts from the Belgian social networking site Netlog7. They

used character and word n-grams and linear SVMs. An interesting observation was

5https://pan.webis.de/publications.html
6https://www.blogger.com/
7The service has been unavailable since 2015.
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described by Dadvar et al. [57]. They found that men and women use different foul

words and that gender-specific features can improve cyberbullying detection.

Schwartz et al. [249] extracted 700M words, phrases, and automatically generated

topics from Facebook and correlated them with gender, age, and personality. They

used a popular tool in psychology called Linguistic Inquiry and Word Count (LIWC)8

to extract psychometric features from the raw text.

A language independent approach [10] was proposed which relies on five color-

based features extracted from Twitter profiles (such as profile background color).

Magno et al. [169] conducted an experiment on data from the Google+ social net-

work to study gender differences in 73 countries. They found a strong correlation

between online indicators of inequality and established offline indicators. Using so-

cial graph link analysis they showed that women in less developed countries with

larger gender differences have a higher social status online as measured in terms of

number of followers (in-degree links). Author profiling focusing on age and gender

identification in Roman Urdu and English languages was also studied [77]. They

used a set of stylometry, word, character and text richness-based features which are

standard recommended features for this task. Stylometry and statistical readability

measures have been successfully applied in spam email detection tasks [250, 251].

The best performing system at the PAN Author Profiling Workshop in 2019 was

by Pizzaro et al. [220]. For both bot and gender tasks, their best model was linear

SVM with character and word n-grams. They did not apply any novel methods,

except a thorough hyperparameter tuning.

3.3 Digital fingerprint of user online behaviour

DNA sequences have been exploited in different areas such as forensics, anthropology,

and biomedical science. Cresci et al. [55] used the idea of DNA coding to describe

social media user behaviour in the temporal dimension. The same idea was used in

this study, with a slightly modified way of coding. We define a set of codes An with

8http://liwc.wpengine.com/
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the length n = 6. The meaning of each code is given in (3.1).

A6 =



0, plain

8, retweet

16, reply

1, has hastags

2, has mentions

4, has URLs

(3.1)

Each character in the vocabulary An, which describes a tweet, is constructed by

adding up codes for tweet features. The first three codes describe the type of the

tweet (retweet, reply, or plain) and the rest describe the content of the tweet. For

example, if a tweet is neither retweet nor reply, it is plain (with the code = 0). If the

tweet contains hashtags, then code = code+1, If the same tweet contains URLs, then

code = code+ 4. Final tweet code is 5. We transform it to a character label by using

ASCII character table indexes: ASCII tbl[65 + 5] = F . Hence, the vocabulary, given

the code set An, consists of 3 ∗ 23 = 24 unique characters. The number of tweets

with attributes encoded with characters determines the length of the sequence. The

sequence, in our case, is simply the length of a user timeline, that is, actions in

chronological order with the appropriate character encoding.

An example of a user fingerprint generated from their timeline looks like:

fpuser = (ACBCASSCCAFFADADFAFASCB...)

3.3.1 Fingerprint segmentation using n-gram technique

To calculate data statistics, we extracted n-grams of different length (1−, 2− and

3−grams appeared to work best). An example of 3-gram extraction of a sample user

fingerprint is shown in Fig. 3.1.

N -gram segments are used to calculate richness and diversity measures, which

seem to unveil the difference between genuine user and bot online behaviour.
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Figure 3.1: 3-gram extraction example from user fingerprint.

3.4 Statistical Measures for Text Richness and Diversity

Statistical measures for diversity have a long history and wide application [287]. A

constancy measure for a natural language text is defined in this thesis as a compu-

tational measure that converges to a value for a certain amount of text and remains

invariant for any larger size. Because such a measure exhibits the same value for

any size of text larger than a certain amount, its value could be considered as a text

characteristic. Common labels used are: N is the total number of words in a text,

V (N) is the number of distinct words, V (m,N) is the number of words appearing m

times in the text, and mmax is the greatest frequency over all words.

3.4.1 Yule’s K Index

Yule’s [314] original intention for the K Index use was for the author attribution task,

assuming that it would differ for texts written by different authors.

K = C
S2 − S1

S2
1

= C
[
− 1

N
+

mmax∑
m=1

V (m,N)(
m

N
)2
]

To simplify, S1 = N =
∑

mmV (m,N), and S2 =
∑

mm
2V (m,N). C is a constant

originally determined by Yule, and it is 104.

3.4.2 Shannon’s H Index

Shannon’s diversity index (H) is a measure that is commonly used to characterize

species diversity in a community. Shannon‘s index accounts for both abundance and

evenness of the species present. The proportion of species i relative to the total

number of species (pi) is calculated, and then multiplied by the natural logarithm

of this proportion (ln(pi)). The resulting product is summed across species, and
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multiplied by -1.

H = −
V (N)∑
i=1

piln(pi)

V (N) is the number of distinct species.

3.4.3 Simpson’s D Index

Simpson’s diversity index (D) is a mathematical measure that characterizes species

diversity in a community. The proportion of species i relative to the total number of

species (pi) is calculated and squared. The squared proportions for all the species are

summed, and the reciprocal is taken.

D =
1∑V (N)

i=1 p2i

3.4.4 Honoré’s R Statistic

Honoré (1979) proposed a measure which assumes that the ratio of hapax legomena

(1, N) is constant with respect to the logarithm of the text size:

R = 100
log(N)

1− V (1,N)
V (N)

3.4.5 Sichel’s S Statistic

Sichel [254] observed that the ratio of hapax dis legomena V (2, N) to the vocabulary

size is roughly constant across a wide range of sample sizes.

S =
V (2, N)

N

We use this measure to express the constancy of n-gram hapax dis legomena (num-

ber of n-grams that occur two times) which we show to be distinct for genuine and

bot accounts.

Fig. 3.4 shows the comparison of density plots of all measures of bot accounts

versus genuine users.
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3.5 Measures for Text Readability

For the gender identification task, we additionally use two readability measures de-

signed for English and Spanish. In 1949, Flesch [84] designed a readability test score

used to indicate how difficult a passage in English is to understand.

readabilityen = 206.835− 1.015× total words

total sentences
− 84.6× total syllables

total words

The score scale is 0-100, where, for example, range 0-30 indicates low readability,

but understood by university graduates, while 90-100 indicates very readable text,

easily understood by an 11 year old student.

In 1959 Fernandez [79] introduced the equivalent score for Spanish.

readabilityes = 206.84− 0.6× (total syllables)− 1.02× (total words)

We chose to use the readability score as a feature based on interesting findings

in the related literature [9, 110]. However, it is important to note that we did not

conduct detailed analysis of the features for the gender identification subtask, as our

focus was on the bot identification task. The dataset provided by the organizers of

the PAN Author Profiling Workshop included bot and gender identification in the

same task.

3.6 Methodology

We conducted the experiments with five different algorithms: Support Vector Ma-

chines, Logistic regression, K nearest neighbours and two ensemble methods — Ran-

dom Forest and Gradient Boosting. The implementation was done using the scikit-

learn machine learning package in python. For hyper-parameter tuning we used grid

search cross validation method for every classifier. Extensive grid searches didn’t

show significant improvement for the classifiers from using the default parameters

provided in the library. The only improvement was observed with the linear SVM

classifier. We applied all classifiers on different number of n-grams (1-3), where com-

binations were: 1, 1 + 2, and 1 + 2 + 3. We ran three experiments on all classifiers.

The first is 10-fold cross validation on the Cresci dataset, the second is 10-fold cross
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Figure 3.2: Experimental setup for bot detection task. *N-gram sizes with length
setting 1–4; **5 statistical measures; ***5 different classifiers.

validation on the Varol dataset, and the third is the experiment on classifiers with

the entire Cresci dataset training and the entire Varol dataset for validation. With

the first and second experiments the aim was to explore how important it is for a

dataset to be collected in a shorter time frame versus extended period of time, which

is the case with the observed datasets. The third experiment is designed to test if the

dataset with better results can improve the performance of the second dataset. The

architecture is shown in Fig. 3.2.

3.7 Evaluation on Cresci and Varol datasets

In the following subsections we briefly describe the datasets.

3.7.1 The Cresci (2017) Dataset

This dataset was obtained from Cresci et al. [56] in the form that was used in the

original study. The Twitter dataset constitutes the real-world data used in our exper-

iments. Table 3.1 reports the number of accounts and tweets they feature. According

Users Tweets

Genuine 3,474 8,377,522
Spambots #1 991 1,610,176
Spambots #2 3,457 428,542
Spambots #3 464 1,418,626

Total 8,386 11,834,866

Table 3.1: The Cresci 2017 dataset.

to Cresci et al. [56] the genuine accounts are a random sample of genuine (human-

operated) accounts. The social spambots #1 dataset was crawled from Twitter during
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the Mayoral election in Rome 2014. Spambots #2 dataset is a set of tweets from a

group of bots who spent several months promoting a specific hashtag. Spambots #3

group advertised products on sale on Amazon.com. The deceitful activity was carried

out by spamming URLs pointing to the advertised products.

3.7.2 The Varol (2017) Dataset

This dataset is made available by Varol et al. [290] on the website9. The dataset

in the original study consisted of 3,000 user accounts manually annotated by four

volunteers. At the time of download of the labeled user ids, the dataset consisted of

2,573 annotated samples. However, when we crawled the bot accounts, some of the

users were banned or had a protected profile. The final dataset in this study consists

of 2,115 accounts. Table 3.2 shows how many accounts were lost per class.

Total Genuine Bots

Original 2,573 1,747 826
Used in study 2,115 1,421 694

Table 3.2: The Varol 2017 dataset.

The dataset was crawled on January 5th, 2019 and it contains 5,261,940 tweets.

The number of tweets per user ranges from 20 to 3,250 (we filtered out accounts

that have fewer than 20 tweets). Data imbalance is evident in the original annotated

dataset, as well as the reduced one.

3.7.3 Experiments

A t-SNE visualization of both datasets is shown in Fig. 3.3. Features used for the

visualization are same as for the classifiers (diversity measures of fingerprint n-grams).

The Varol dataset (the figure on the left (a)) appears to have more confusion between

the genuine and bot samples, but the separation is still visible. The right hand figure

(b) shows the Cresci dataset where we coloured separately the three types of bots

and the genuine accounts. It is interesting to notice that the three types of bots

appear to be distinct groups in the feature space. This can be explained with how

the datasets were collected. While the Cresci dataset is collected around targeted

9https://botometer.iuni.iu.edu/bot-repository/datasets.html
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Figure 3.3: t-SNE representation: (a) Varol dataset and (b) Cresci dataset.

events in a certain time-frame, the Varol dataset is a collection of accounts that may

or may not be connected by the same background topic.

Feature extraction consists of user behaviour fingerprint generation, n-gram seg-

mentation (where n is 1, 2 and 3), and finally, diversity measures calculation on

n-gram population per sample. Fig. 3.4 illustrates the density differences of each

measure for all n-grams. The figure shows that the selected measures uncover the dif-

ference between automated and genuine users. Shannon’s and Simpson’s indices were

able to capture the differences between bot networks in the Cresci dataset, besides the

difference from genuine accounts. The last two measures mentioned in Section 3.4,

Honoré’s and Sichel’s measures, are developed for natural language text. Both of

them measure features that naturally occur in texts — hapax legomena (words that

occur once in a sample) and hapax dis legomena (words that occur twice in a sam-

ple). However, Fig. 3.4 (bottom five diagrams) illustrates that the genuine and bot

accounts show slight differences as well.

3.7.4 Results and Discussion

We report the results of the experiments using the F1 measure (Table 3.3). The

values represent the average of 10-fold validation scores. First, we analyze the use

of statistical diversity of n-grams as features for the set of different classifiers and
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Figure 3.4: Diversity measure distributions for Varol (top) and Cresci (bottom)
datasets.

the effect of increasing the n-gram order on the performance of the models. Training

the Random Forest classifier on n-grams shows an increase in the performance for

both datasets. However, the increase is slight with the increase in the number of

n-grams from 1 to 3. The Random Forest classifier has the best performance with

the F1 average 96.67% for Experiment 1, and 73.06% for Experiment 2. Second, we

can observe the dramatic difference in performance between the two datasets. In the

data visualizations (Fig. 3.3 and Fig. 3.4) the data separation in the Varol dataset

is somewhat worse than in the Cresci dataset, and this is reflected in the classifiers’

performance. Our argument is that this is due to different data collection techniques.

As mentioned earlier, the Cresci dataset was collected around specific events and

using keywords, so the users, especially bots, have correlated behaviour. On the

other hand, the Varol dataset was collected (directly from Twitter, given the provided

labeled ids) two years after the first study performed by the original researcher [290].

The differences between human and bot accounts are less distinguished, but still show

significant difference according to the diversity measures. In our third experiment, we
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used the entire Cresci dataset to train the models (we used rhe best parameters from

Experiment 1 for each model setup) and tested it on the entire Varol dataset. The

results obtained were very similar to the ones in Experiment 2, and we did not gain

much of an improvement. The best classifier performance was obtained with SVM,

and a combination of 1-, 2- and 3-gram features reaching average F1 = 74.03%.

Table 3.3: 10-fold validation on datasets, F1 measure shown. * - results are using the
entire Varol dataset as test for Cresci trained classifiers. ↑ - significantly lower ratio of
errors than the rest of the unmarked runs in the column using McNemar’s test with
p < 0.05. ⇑ - significantly different than the rest of the unmarked runs in the column
using Wilcoxon’s test with p < 0.05.

Features Classifier Cresci’17 Varol’17 Varol’17.test*

1-
gr

am

GB 95.18±6.14 72.29±5.07⇑ 68.52
LSVM 95.77±5.66 66.31±8.58 71.79

LR 95.80±5.29 67.87±8.89 71.65
KNN 95.52±7.90 66.44±5.60 70.53

RF 95.74±8.01 69.19±5.44 71.79

1+
2-

gr
am

GB 95.96±6.10 72.21±5.26⇑ 71.12
LSVM 96.08±5.15 68.24±8.72 72.69↑

LR 96.17±5.19 70.41±8.41 72.78↑

KNN 96.43±6.60⇑ 69.89±7.22 72.64↑

RF 96.43±6.48⇑ 71.40±6.56 71.38

1+
2+

3-
gr

am

GB 96.45±5.33⇑ 72.33±4.55⇑ 72.17
LSVM 96.20±4.62 68.83±8.61 74.03↑

LR 96.33±4.93 69.69±8.89 72.78↑

KNN 96.33±6.97 70.57±6.53 72.32
RF 96.67±6.18⇑ 73.06±7.58⇑ 73.11↑

In Fig. 3.5 we show a pruned estimator from the Random Forest classifier trained

on the Cresci dataset with diversity measures on unigrams. The most influential fea-

ture for this classifier is Simpson’s diversity measure (root). The separation between

bot and human is on 2.79 value. The accounts which have less or equal the value are

more likely to be bots. Other measures, such as Shannon on the second level, separate

accounts further. To note, this is a pruned classifier with maximum depth of 3, while

in Table 3.3 we did not have depth constraint (default setting in scikit-learn).

This classifier has average F1 measure of 95.48% (±5.08) using 10-fold validation.
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Figure 3.5: Example decision tree estimator from Random Forest classifier. Cresci
dataset.

3.8 Experiments with the PAN Author Profiling Task

3.8.1 Spanish and English datasets

The dataset provided by the organizers of the PAN Author Profiling Task [227] is

divided into two parts: English and Spanish. The English dataset consists of training

and development subsets, with 2,880 and 1,240 samples, respectively. The Spanish

dataset is slightly smaller and consists of training and development subsets, with

2,080 and 920 samples, respectively. Each sample is a user timeline in chronological

order, with 100 messages per user. Fig. 3.6 and Fig. 3.7 show the datasets using

t-SNE [167], an enhanced method based on stochastic neighbour embedding. The

features used for both visualizations are the ones used for the classifiers in the final

submitted run (Experiment 4 for bots, and Experiment 5 for gender).

3.8.2 Bot Identification

In Fig. 3.8 we show the comparison of density plots of all diversity measures of bot

accounts versus genuine users. We can see that the diversity measures are different

for bots and genuine users. We exploit this characteristic to build a good classifier

with as few features as possible.

For the bot identification sub-task we conducted four experiments with five dif-

ferent classifiers (Gradient Boosting, Random Forest, SVM, Logistic Regression, K

Nearest Neighbours). The differences between the experiments are more focused on
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Figure 3.6: Bot t-SNE visualization. (a) English, (b) Spanish

testing the improvement with training data increase, as well as feature set general-

ization using raw fingerprint n-grams versus statistical diversity measures.

Experiment 1

In Experiment 1 we used character n-grams of user fingerprints described in Sec-

tion 3.3. The n-gram lengths used are 2, 3 and 4. We can see that some classifiers

have fairly similar results (Table 3.4, column E1). The best classifier is Random For-

est for both languages. In this experiment we used the training subsets for English

and Spanish separately.

Experiment 2

In Experiment 2 we used the diversity measures calculated on character n-grams of

user fingerprint described in Section 3.4. The n-gram lengths used are 2, 3 and 4.

The best classifier is Random Forest for both languages. In this experiment we used

the training subsets for English and Spanish separately.

Experiment 3

In Experiment 3 (Table 3.5, column E3) we used the same features as in Experiment 1.

The best classifier is the Gradient Boosting ensemble for both languages. In this
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Figure 3.7: Gender t-SNE visualization. (a) English, (b) Spanish

Table 3.4: Bot classification. Results from testing on the development dataset. Per
language training dataset. ∗not available due to memory restrictions.

E1 E2

Dataset Classifier Precision Recall F1 Precision Recall F1

E
n
gl

is
h

GB 91.97 91.53 91.51 92.63 92.34 92.33
SVM 91.74 91.61 91.61 92.53 92.42 92.41

LR 88.40 87.50 87.43 92.61 92.42 92.41
KNN −∗ −∗ −∗ 92.84 92.58 92.57

RF 92.84 92.18 92.15 92.93 92.66 92.65

S
p
an

is
h

GB 86.66 86.63 86.63 84.29 83.91 83.87
SVM 86.02 85.98 85.97 81.64 81.63 81.63

LR 86.63 86.63 86.63 85.10 84.78 84.75
KNN −∗ −∗ −∗ 86.17 85.87 85.84

RF 91.15 90.33 90.28 85.03 84.89 84.88

experiment we used the training subsets for English and Spanish combined. Because

the features are language independent, we combined the training datasets into one,

and tested it on both languages. The final model is the same for both languages.

Experiment 4

In Experiment 4 (Table 3.5, column E4) we used the same features as in Experiment 2.

As in Experiment 3, we combined the training datasets into one, and tested it on
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Figure 3.8: Diversity measures density per dataset, per user type. (a) English – top
row, (b) Spanish – bottom row.

both languages. The best classifier for English is Gradient Boosting ensemble and K

Nearest Neighbours for Spanish.

Although a better performance was obtained on separately trained models for the

two languages (Random Forest, Table 3.4) with raw features, we opted for Gradi-

ent Boosting ensemble which was trained on combined dataset (the Spanish portion

slightly dropped in performance). The best classifier from Experiment 4 was re-

trained on the combined training and development sets for the official ranking.

3.8.3 Gender Identification (Experiment 5)

For the gender identification sub-task we used the same set of classifiers as for bot

detection. The results in Table 3.6 show that the Gradient Boosting classifier per-

formed the best for both languages. This subtask was language dependent, that is,

each language had its own model. This is a different case from the bot identification

subtask, where we developed a language independent model.
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Table 3.5: Bot classification. Results from testing on the development dataset. Com-
bined training dataset. †used as final classifier (E4 for official ranking). ∗not available
due to memory restrictions.

E3 E4

Dataset Classifier Precision Recall F1 Precision Recall F1

E
n
gl

is
h

GB† 92.52 92.42 92.41 93.30 93.06 93.05
SVM 90.94 90.81 90.80 91.99 91.77 91.76

LR 91.21 91.13 91.12 92.14 92.02 92.01
KNN −∗ −∗ −∗ 92.56 92.42 92.41

RF 91.89 91.53 91.51 92.56 92.42 92.41

S
p
an

is
h

GB† 88.96 88.80 88.79 85.12 84.24 84.14
SVM 85.88 85.87 85.87 84.90 84.35 84.29

LR 84.78 84.78 84.78 84.73 84.46 84.43
KNN −∗ −∗ −∗ 85.86 85.43 85.39

RF 87.64 86.96 86.90 84.98 84.35 84.28

Table 3.6: Gender classification. Results from testing on the development dataset.
†,‡used as final classifiers.

Dataset Classifier Precision Recall F1

E
n
gl

is
h

GB† 81.67 81.29 81.23
SVM 77.82 77.74 77.73

LR 76.30 76.29 76.29
KNN 60.54 60.48 60.43

RF 79.26 79.19 79.18

S
p
an

is
h

GB‡ 70.62 70.00 69.77
SVM 65.92 65.87 65.84

LR 64.18 64.13 64.10
KNN 58.51 58.48 58.45

RF 65.68 65.43 65.30

3.8.4 Results on Test Data

The official results are shown in Table 3.7. Bot detection for English performed with

similar results as in our experiments with the development set, while for Spanish it

performed better. Similar improvement was obtained with the Spanish dataset for

gender identification. The models for the final evaluation are trained on both, training

and development sets.
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Table 3.7: Final results on test dataset. Averaged per language.
Dataset Bot Gender

English 92.16 79.28
Spanish 89.56 74.94

Average 90.86 77.11

3.9 Conclusion and Future Work

In this chapter we conducted a set of experiments to find a simple, yet effective bot

detection method on the Twitter social media platform. We show that it is possible to

detect automated users by using a fingerprint of user behaviour and a set of statistical

measures that describe different aspects of that behaviour. The measures describe

“constancy” or “diversity” of the pattern. The hypothesis was that the automated

users show lower diversity, and tend to use a smaller set of types of messages over an

extended period of time. Through visual analysis, discussion and classification results

we showed that assumption did hold under our experimental setup. Additionally,

we conducted the experiments on two different datasets used earlier in the research

community to examine if the time-span of user behaviour has an impact on the ability

to detect bots. We showed that the dataset which was collected focusing around

specific topics and shorter time-spans generally performed better than the dataset

where these user patterns diverge. The strength of this approach lies in the fact that

it is language independent.

The main drawback of our approach is that a classifier needs at least 20 tweets

per user to generate a fingerprint. The number 20 was empirically picked based

on observations during the experiments (keeping the fingerprints shorter than 20

worsened the results of all classifiers). Another point is that social bots evolve over

time, and they tend to be more difficult to identify with established machine learning

methods. Bot creators can take advantage of the present ML knowledge and enhance

their algorithms, so they stay undetected longer.

And last, to further verify our results and perform more thorough study, we plan

to apply our approach to more datasets. Additionally, we plan to develop an un-

supervised method for bot detection on the same set of features using clustering

techniques.



Chapter 4

Topic Extraction Using the Centroid of Phrase Embeddings

on Healthy Aging Survey Open-ended Answers

4.1 Introduction

Survey research is a very common approach when it comes to gaining insights into

a research subject. For example, it is used in different domains, such as health and

health services [39], marketing and consumer analysis [262, 276], but it originated

in social sciences. Although the survey data is collected using a standardized form,

Open-Ended (OE) questions can be part of it. Its primary role is to to clarify am-

biguities and provide explanations and potentially identify opinions that researchers

did not include in the standardized form [231, 217]. Another important point to

mention is that OE questions expand the capability of the survey to capture sponta-

neous thoughts, sentiments and attitudes. This is useful in marketing research where

companies can measure consumers’ attitude towards their products.

Nonetheless, processing such questions requires great human effort. Because of

the nature of OE questions, the standard approach in identifying the topics requires

researchers to go through all the answers and label them manually. This may not

be a challenge for smaller studies, but in the case of tens of thousands of samples

the task can take a lot of resources to accomplish. If the data is labeled by multiple

researchers, the process is prone to errors, which is usually measured with between-

rater variance [279, 83]. An important challenge in automated processing of the OE

answers is that the texts are relatively short. Extracting topics from short texts is

difficult because most of the traditional methods rely on word co-occurrence, which

assumes that the related words occur together relatively frequently, and this is not a

reasonable assumption in the sparse data collections such as survey answers [114].

In this study our focus is on a survey from Canadian Longitudinal Study on Aging

(CLSA) conducted on over 50,000 older adults living in the 10 Canadian provinces.
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The survey responses were collected in two official languages of Canada: French

and English. Demographic forecasts indicate that Canada’s population is aging and

the demographic structure will change dramatically over the next two decades. The

numbers show that 25% of the population will be over 65 by 2036, almost double com-

pared to 2009 [30]. The consequences of the demographic shift are among Canada’s

most pressing health and social policy issues. To put it into perspective, the total

health and social care expenditures in Canada now exceed $300 billion with health-

care alone at approximately $211 billion, the largest expenditure item in provincial

budgets [252]. Optimizing population health and wellness over the trajectory of aging

— i.e. optimizing “healthy aging” — is therefore a major research and policy goal in

Canada [53]. Therefore, we are analyzing the answers on the following OE question:

“What do you think makes people live long and keep well?”

The aim of this study is to analyze open-ended survey responses by applying a com-

bination of IR and unsupervised ML techniques to discover the potential differences

among certain subgroups, including gender, age, and presence of health conditions.

We describe an interesting solution in a form of framework for group profiling based

on difference in opinions (that is, topics) and compare it with probabilistic topic mod-

elling approaches. Our goal is to extract the topic-representative keyphrases that are

more intuitive for topic labeling by the domain expert by introducing part-of-speech

information, as well as semantic relatedness in a form of word embeddings.

4.2 Related Work

Automatic topic identification has a long history [16, 33], and it has been covered by

a couple survey research papers over the course of the years [3, 8, 59, 127, 158]. In

1990, Deerwester et al. [62] identified deficiencies of term-matching retrieval. Their

underlying assumption is that every document has some underlying latent semantic

structure that is partially obscured by the randomness of word choice in queries for

retrieval.

Domain of the topic identification refers to tasks of finding semantically meaningful

topics from a document corpus. The base assumption says that there are hidden

variables (topics) which describe the similarities between observable variables (that

is, documents).
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Figure 4.1: Traditional (a) LDA model and (b) DMM model in plate notation.

Some of the most influential representatives of topic modelling methods are proba-

bilistic Latent Semantic Indexing (pLSA) [113] and its generalization – Latent Dirich-

let Allocation (LDA) [26]. LDA has been around for awhile, and has been applied to

different domains, such as short [114, 156] and long texts [27, 217], genetic data [218],

and images [115]. The model is shown in Fig. 4.1 (a) and in a simple notation can be

expressed as following:

1. Sample a topic proportion θi ∼ Dir(α), given i ∈ {1, . . . ,M};

2. Sample a multinomial distribution over words ϕk ∼ Dir(β), given k ∈ {1, . . . , K};

3. For each of the word positions i, j (i ∈ {1, . . . ,M}, j ∈ {1, . . . , Ni}):

(a) Sample a topic zi,j ∼ Multinomial(θi);

(b) Sample a word wi,j ∼ Multinomial(ϕzi,j).

where Dir(α) and Dir(β) are a Dirichlet distribution with a symmetric parameter α

(typically is sparse and α < 1) and β (typically is sparse), respectively.

However, an LDA model in its original setup has a few shortcomings, especially

when the target documents are short, or there are too many topics. This paper focuses

on the former. Dirichlet Mixture Model (DMM) in Fig. 4.1 (b) has been applied on

short texts, but it comes with a disadvantage: one document can be assigned with

one topic. This is not the case with our dataset, where a survey participant could

talk about a mixture of topics.

Topic modelling has been used in various domains. Lately, significant attention is

dedicated to modelling of short texts, due to OSN presence in all aspects of modern
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society. The source of short texts are not limited to online microblogs, news feeds

and forums. As already mentioned, OE questions in survey data, medical records

are also characterized by being short and very often noisy. Pivovarov et al. [219]

give an overview of the methods being used in the clinical domain. Some of the

research [154, 163] is particularly focused on using topic modelling on healthcare

data. In the next few sections we present some of the most influential and most

recent work in topic modelling on short and noisy texts.

4.2.1 Topic Models in Short Texts

In the literature there are several studies on topic extraction from survey OE re-

sponses. The main characteristics of these texts are that they are short (usually

between one and a few tens of words), not complete sentences, may or may not have

punctuation, and prone to a degree of grammatical mistakes. Roberts et al. [231]

proposed a Structural Topic Model (STM) for topic discovery in OE responses. The

main difference between traditional LDA and STM is that they include covariates of

interest into the prior distributions for document-topic proportions and topic-word

distributions. With this setup the result is a model where each OE response is a

mixture of topics with incorporated prior knowledge about topical variance. Thor-

ough experiments on topic modelling on OE responses were performed by Pietsch et

al. [217] using two then state-of-the-art algorithms (BTM, WNTM) [312, 326] and

LDA as a baseline. They examine suitability of the automated algorithms to replace

manual analysis and give some general recommendations for researchers and practi-

tioners how to choose the right method for a given research task. They particularly

chose the algorithms which are designed to address the issue of short documents. We

conduct our comparative analysis with the same set of algorithms, hence the next few

paragraphs are dedicated to description of the same.

Biterm Topic Model (BTM) [49, 312] is a model that does not use an external

knowledge source to deal with the short documents or missing context as some other

methods (LF-LDA). The main difference between BTM and LDA is that the input

for it is not a set of documents D, but set of biterms B calculated on the corpus

level. A biterm b represents a word pair that co-occurred in a specified short context

window. Additionally, LDA uses the word co-occurrence pattern per document to
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generate words while BTM generates biterms. One drawback of BTM model is that it

uses the word co-occurrence frequency over the whole corpus, which gives advantage

to the most frequent word pairs. Chen et al. [48] apply a simple modification by

weighting word co-occurrence with PMI. Another drawback of BTM model is the fact

that it generates one topic distribution for all documents which limits the model’s

expressiveness when the documents contain many topics. To address this, Zhu et

al. [323] proposed GraphBTM which uses Graph Convolutional Networks (GCNs)

to represent biterms as graphs. To overcome the data sparsity of LDA and the

aforementioned drawback of BTM, they sample a fixed number of documents and

merge them to a small corpus as a sample. Lu et al. [162] extended the BTM model by

integrating Recurrent Neural Network (RNN) layer to model term semantic similarity,

and used IDF to filter high frequency common words.

Word Network Topic Model (WNTM) [326] is a recent model that infers topic

distributions for words instead of documents to avoid the disadvantage of LDA with

short texts. The core of the algorithm is word co-occurrence network which is created

by moving a sliding window of length S through each document. The network nodes

are the vocabulary of the corpus and the edges represent the co-occurrences of each

word pair weighted by the number of co-occurrences in the corpus. In another words,

for each word wv a pseudo-document dp is created that consists of all words that

co-occur with wv, i.e. all words that are direct neighbours of wv in the word network.

The generated pseudo-documents are used as input in WNTM. However, WNTM can

introduce unrelated word co-occurrence information, which hurts the performance

and the coherence of the final topics. They [299] also proposed an improvement

called Robust WNTM (RWNTM), which filters out unrelated word co-occurrences

information.

Traditional LDA has a drawback of neglecting word order within documents, that

is, documents are not treated as a sequence of words but rather as a BoW. There

have been several attempts to address this problem, but most of the early attempts

were computationally costly. Topic Keyword Model (TKM) [248] tries to address

this in an efficient manner. They use the information of the topic assignments of the

keyword neighbouring words, so they have an impact on the topic assignment to that

particular keyword.
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Some of the methods aim to improve traditional LDA topic modelling by trans-

forming (concatenating) the original short documents into larger ones. This ap-

proach [179] was conducted in the experiments on three different Twitter datasets. A

tweet pooling scheme based on hashtags was proposed and compared to a few earlier

techniques [114, 191, 302] based on author, topic burstiness and temporal pooling.

They showed that hashtag-based pooling outperforms other schemes in most of the

cases and significantly outperforms LDA topic models on Twitter data. There are

other variants of pseudo-document generation to improve short text topic modelling.

Hajjem et al. [104] used IR technique to cluster similar tweets in larger pseudo-

documents. The process consists of three steps. The first step is preliminary set

generation (set length n), where they cluster tweets based on cosine similarity. The

second step is aggregation of similar preliminary sets into pooled set representation

(of length m, where m < n). This set is basically a set of pseudo-documents used for

the next step. The final step is traditional LDA. They compared the results of differ-

ent variants of the methodology with LDA trained on one document (whole dataset

merged into one) and BTM. Another interesting approach [25] was proposed as a gen-

eral framework for addressing the issues with short text topic modelling. They build

the model using BTM, WNTM and LF-LDA by applying an expansion procedure on

each document. Two variants were proposed: co-frequency expansion (CoFE) and

distributed representation-based expansion (DREx).

To overcome the sparsity of short texts, Jin et al. [128] proposed Dual Latent

Dirichlet Allocation (DLDA) model where they use transfer learning from auxiliary

long text data to cluster the short texts. DLDA jointly learns two sets of topics on

short and auxiliary texts and couples the topic parameters to deal with the possible

inconsistencies between the datasets. Lin et al. [157] proposed a method they call

Dual-sparse Topic Model that addresses both the sparsity in the topic mixtures and

word usage. They use “spike-and-slab” prior to decouple the sparsity and smoothness

of the document-topic and topic-word distributions. In this way, the model allows

that an individual document can select a few focused topics and a topic can select

focused terms. Lime et al. [156] conducted the experiments on a Twitter dataset

and incorporated the additional information into their custom LDA model including

authorship, hashtags and the user-follower network. They jointly model the text
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and the social network and apply hierarchical Poisson-Dirichlet processes (PDP) for

text modelling and a Gaussian process random function model for social network

modelling.

Another common approach to address the problem of the sparsity of short texts

is by incorporating external knowledge (similarity and relations between words).

Xie et al. [311] proposed a Markov Random Field regularized Latent Dirichlet Al-

location (MRF-LDA) model. Their model consists of a MRF on the latent topic layer

of the standard LDA to enforce the words labeled as similar to fall into the same

topic. Hence, the topic assignment of each word is not independent, but affected by

the topic assignments of the correlated words. They compare it to two other methods

which extend standard LDA: DF-LDA and Quad-LDA. DF-LDA [12] uses a Dirich-

let Forest prior instead of Dirichlet prior over the topic-word multinomials to encode

“Must-Links” and “Cannot-Links” between words. A “Must-Link” represents a prim-

itive which means that two words have similar probability within any topic (either

small or large, but similar). A “Cannot-Link” represents a primitive which means

that two words cannot both have large probability within any topic. Quad-LDA [195]

regularizes the topic-word distributions with a structured prior to incorporate word

relations. MRF-LDA seemed to outperform both of the aforementioned methods.

Another extension of traditional LDA is Latent Feature LDA (LF-LDA) [201]. It

addresses the sparsity of short texts by using pre-trained word vector representations

(Word2Vec [183] and GloVe [214]). In LF-LDA, the generative process is similar

to original LDA but differs in the way how words are generated from topics. In

LDA, a word can only be drawn from the Dirichlet multinomial distribution φ that is

trained on the target corpus, while LF-LDA additionally allows draw from the multi-

nomial distribution based on word vector representation of words and topics. This

means that LF-LDA incorporates semantic knowledge from external corpora. They

also introduce additional hyperparameter λ which determines the probability of word

sampling from external latent feature component. However, their implementation

adds to the complexity of the model and the inference time grows with the number

of documents, which makes it unsuitable for large datasets. Li et al. [155] proposed

another similar extension to Dirichlet Multinomial Mixture model with Generalized

Pólya Urn sampling method (GPU-DMM). They show that the inference is much
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faster than in LF-LDA. DMM however, assumes that a document has only one topic,

which inherently is a simpler model. Another similar approach with external knowl-

edge was presented by Hu et al. [118], with the difference being that they employ a

continuous vector space and can handle out-of-vocabulary words.

Model developed by Xie et al. [310] combines LDA and k-means clustering. They

used variational inference in learning phase. Some of the earlier works [123, 226]

proposed to guide topic modelling by setting a set of topic representative seed words

to initialize the model. The main limitation of this approach is that the researcher

has to know what topics to expect and which seed words are good representatives of

the topics.

4.2.2 Multilingual Topic Models

A significant amount of literature has studied transferring the probabilistic topic

modelling concept from monolingual to multilingual settings [296]. Bilingual LDA

has been independently designed by several researchers [61, 122, 186, 203, 216, 221].

In one of the early works in the domain Zhang et al. [320] proposed an extension

of standard pLSA to extract topics from cross-lingual datasets. They bridge the

gap between different languages (L1, L2, ...Ln) by introducing aligned dictionary. In

this setting they define word distribution of a cross-lingual topic θ for language Li

as pi(wi|θ) = p(wi|θ)∑
w∈Vi

p(w|θ) , where Vi is vocabulary of language Li. These formulations

are extension of the traditional maximum likelihood estimator to estimate parameters

and discover cross-lingual topics. Another similar work from around the same time —

JointLDA [122] addresses the issue in a similar way. Authors extended the standard

LDA model with a bilingual dictionary to mine multilingual topics from an unaligned

corpus (experiments conducted on English and Spanish). A more recent study by

Vulic et al. [295] consider the topic modelling for multilingual datasets by training

bilingual word embeddings. It is important to note that our approach is different in

a sense that we are using pre-trained aligned word vectors due to the fact that the

dataset presented in this study has a couple of limitations, such as size, length of

documents and imbalance between the languages.
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4.2.3 Neural Network Topic Models

ProdLDA [263] is a method based on Autoencoded Variational Inference For Topic

Model (AVITM). The model follows the traditional LDA algorithm in keeping the

Dirichlet multinomial parameterisation and instead of a variational Bayes approx-

imation of the posterior distribution for the inference phase it applies a Laplace

approximation to allow gradient to backpropagate to the variational distribution.

On the other hand, Miao et al. [181] employed models that directly parameterise

the multinomial distribution with neural networks and jointly learn the model and

variational parameters during the inference phase.

OnSeS [204] is a short text summarization method which is based on Word2Vec

word representation and neural network model for summary generation. The proposed

algorithm consists of three phases including clustering of texts using the k-means al-

gorithm, ranking content of each cluster by building a graph-based ranking model

using BM25 and generating main point of each cluster with the help of neural ma-

chine translation model on the top ranked sentence. Srivastava et al. [264] presented

a topic modelling algorithm based on Deep Boltzmann Machines (DBM) which was

at the time of publication state-of-the-art and outperformed LDA and other neural

model called Neural Autoregressive Density Estimators (DocNADE) [151] on stan-

dard benchmark datasets (20 Newsgroups and Reuters RCV1-v2).

4.2.4 Vector Space Models

Vector Space Models (VSMs) are widely used in IR to represent documents in a ma-

trix format, where each row is a term vector consisting of, in the simplest form, the

frequency of all terms in the given document and each column is a document vector

consisting of the frequency of documents the term appears in. However, the size of

the vector depends on the vocabulary (all possible terms in the corpus) and the size of

the corpus. Researchers tried to tackle this problem for many years [189, 258, 286] us-

ing different methods to “compress” vectors and retain the information they encode.

In 2013, Mikolov et al. [182, 184] presented a new method (NN-based) for learning

word vectors - Word2Vec and made a huge breakthrough. They demonstrated better

performance on word similarity tasks and managed to train their model in a fraction
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of the time required for pre-existing solutions. Soon after this publication Penning-

ton et al. [214] gave a probabilistic solution with comparable performance, and they

called it GloVe. A year later, Levy et al. [153] showed that neural network-based mod-

els are not superior to traditional probabilistic models when it comes to word represen-

tation. They presented a study on the effect of different hyperparameters in embed-

ding algorithms which can be transferred to traditional methods. As a base, they used

Positive Pointwise Mutual Information (PPMI) matrix and Shifted PPMI with Singu-

lar Value Decomposition (SVD) factorization. PPMI is constructed as PPMI(w, c) =

max(PMI(w, c), 0), while SPPMI is SPPMI(w, c) = max(PMI(w, c) − logk, 0), where

c is the context of word w and k is a hyperparameter representing a number of

negative samples. Soleimani et al. [259] proposed using PMI with a fraction of neg-

ative samples, PMI(w, c) = {PMI(w, c),PMI(w, c) > α; 0, otherwise, where α is the

fraction of negative samples. Their method demonstrated superior performance. Sa-

jadi et al. [239] proposed an interesting method for inferring word embeddings based

on Wikipedia concept graph and PageRank [206].

Advances in word embeddings paved the way to improvements in document vector

space representations and this is a very active area of research. Kusner et al. [148] pro-

posed a model for sentence representation based on Word Mover’s Distance (WMD)

which was inspired by earth mover’s distance metric. Other recent methods include

Word Mover’s Embedding [308], Distance to Kernel-based similarity measure between

documents [307], Universal Sentence Encoder [44] and Bidirectional Encoder Repre-

sentations from Transformers (BERT) [67] by Google researchers.

4.2.5 “Off-the-Shelf” Topic Modelling Tools

The fact that most of the approaches to topic modelling are language independent

and don’t require any domain-specific knowledge, they are relatively easy to publish

and apply on different datasets. “Off-the-shelf” topic modelling tools are often used

as baselines for novel work. Tools that were available at the time of writing are listed

in Table 4.1.
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Table 4.1: List of available “off-the-shelf” tools for topic modelling.

TM tool Description

Blei LDA1 Original author LDA implementation in C [27].

LDA and HDP2
Traditional LDA and Hierarchical Dirichlet Process (HDP)
implementation in Java by Block [28].

jLDADMM3 Traditional LDA and DMM implementations in Java [200].

Gensim LDA4 LDA implementation in Gensim framework (Python).

Mallet LDA5 LDA implementation in Mallet framework (Java).

STTM6
Implementations for DMM, GPU-DMM, GPU-PDMM,
LF-DMM, BTM, WNTM, PTM, SATM, ETM, LDA and
LF-LDA [225].

GraphBTM7
Implementation for GraphBTM from the original
paper [323].

ProdLDA8
Implementation for ProdLDA from the original
paper [263].

TKM9 Implementation for TKM from the original paper [248].

4.3 Standardized Evaluation Metric

Evaluation of the unsupervised machine learning models such as topic modelling pose

a challenge because usually there is no gold standard to compare to. Most topic mod-

eling research show qualitative assessments of the inferred topics or simply assert that

topics are semantically meaningful. Existing quantitative assessments use an exter-

nal task, such as IR [301] or a classification problem. AlSumait et al. [11] explored

the differences between topic-specific distributions over words and the corpus-wide

distribution over words to identify overly-general topics. Aletras et al. [7] defined a

topic coherence measure based on context vectors for every topic top word. A context

vector of a word w represents a vector generated bu using word co-occurrence counts

in context window of size of 5. Lau et al. [152] used two topic evaluation methods -

1https://github.com/blei-lab/lda-c
2http://www.bradblock.com/tm-0.1.tar.gz
3https://github.com/datquocnguyen/jLDADMM
4https://radimrehurek.com/gensim/models/ldamodel.html
5http://mallet.cs.umass.edu/index.php
6https://github.com/qiang2100/STTM
7https://github.com/valdersoul/GraphBTM
8https://github.com/akashgit/autoencoding vi for topic models
9https://github.com/JohnTailor/tkm
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word intrusion and topic coherence. Word intrusion is calculated by identifying an

intruder word among the top words of a topic. They structured the topic evaluation

in two different tasks: word intrusion and observed coherence. For topic coherence

they found that the UCI measure (which is defined below) performed better than

NPMI (Normalized PMI). Some research [66, 233] used and assessed the developed

metrics on a range of different corpora.

The state-of-the-art evaluation methods for topic coherence are the intrinsic mea-

sure UMass [187] and the extrinsic measure UCI [196, 197] which depends on external

reference corpora. Umass is defined as in Eq. (4.1).

scoreUMass(wi, wj) = log
D(wi, wj) + ε

D(wi)
(4.1)

where D(wi) is the count of documents containing the word wi, D(wi, wj) the count

of documents containing both words wi and wj, and D the total number of documents

in the corpus. This score measures how much, within the words used to describe a

topic, a common word is on average a good predictor for a less common word. ε is

added to avoid a logarithm of zero. Stevens et al. [266] found that UMass coherence

performs better if parameter ε is chosen to be small instead of ε = 1 as in the original

publication. UCI is defined as in Eq. (4.2).

scoreUCI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(4.2)

where p(wi, wj) = Dref (wi, wj)/Dref and p(wi) = Dref (wi)/Dref , Dref is the total

number of documents in the external reference corpus, Dref (wi) is the count of doc-

uments in the reference corpus containing the word and Dref (wi, wj), the count of

documents containing both words.

4.4 Dataset

CLSA is a study and national platform of adult development and aging individuals,

each with unique experiences of their environments, communities, and health and

social systems. The CLSA follows 50,000 Canadians between the ages of 45 and 85

years over a 20-year period. However, the data utilized in this thesis come from the

study baseline, collected between 2010-2015. CLSA is designed as a research platform
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with the aim to accelerate understanding of the complex interplay among the vast

array of determinants of health, from gene-environment interactions, to lifestyles,

social networks and transitions in retirement and wealth.

After applying the pre-processing tasks that are described below the number of

responses in English is 41,496 and 9,296 in French. To get a better understanding of

the data, we conduct a simple statistical analysis. In the English subset 24.60% of

responses are in the length range 1-3, 33.41% in 4-6, 20.44% in 7-9, 9.95% in 10-12

and 11.60% longer than 12, relative to the total responses in English. In the French

subset 39.37% of responses are in the length range 1-3, 38.02% in 4-6, 14.16% in 7-9

and 8.44% longer than 9 words. That means that more than a half of the responses

are shorter than 7 words.

4.5 Methodology

Our approach consists of a number of steps towards building a set of phrase groups

that represent meaningful topics. Unlike probabilistic topic modelling methods, the

method relies on IR techniques and a ML unsupervised method – clustering. In our

approach we use a spectral clustering algorithm. k-means and kernelized k-means

(Gaussian kernel) gave similar results from the perspective of coherence scores (we

used the top 20 words of each cluster for evaluation to make it comparable to Dirichlet-

based topic models), but overall content of clusters seemed subtly better as a final

result. The intuition behind our approach is that IR methods can facilitate and speed

up researcher’s learning about the data by introducing structure to the unstructured

text documents. With the right data representation model, one can exploit the full

power of other variables in the survey and get insights into possible correlations. We

refer to this method as Graph-aided Topic Clustering (GTC). The experimental setup

is illustrated in Fig. 4.2.

Pre-processing

We conducted a couple of pre-processing steps to decrease the noise in the dataset

and to transform the data in such a way that it complies with the requirements of the

methods for topic modelling. First, standard pre-processing techniques are performed,

such as conversion to lowercase and the removal of numbers and punctuation [173].
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Figure 4.2: Experimental setup for phrase clustering task. *tokenization, lemmati-
zation, PoS tagging, grammar correction; **neighbouring words are nodes connected
with edges; ***Phrases extracted with PoS patterns; Ospectral clustering with k pa-
rameter (number of clusters).

Using Stanford Log-linear Part-Of-Speech Tagger [281] for French and English we

tokenized and tagged the entire corpus. For unsupervised spelling correction (un-

supervised in a sense that we did not know which words are misspelled) contextual

grammar correction [120] was used which relies on the external Google 1T N-grams

corpus. To identify the candidates for spell correction, we scanned through words

that have frequency less than 5 and checked if they exist in FastText aligned word

vectors [130] used later in the process. If the words did not exist in the FastText word

vectors, they are flagged for spell correction. In general, the dataset did not contain

many misspellings, and the number of flagged words is less than 200. Lemmatization

of the English language was performed using Spacy10, and for the French language

we used dictionary-based lemmatizer [238]. Although the dataset consists of English

and French responses, we did not perform translation.

4.5.1 Graph Representation of Text

The dataset is represented by a directed graph G = (V,E,C), where V = w1, w2, ..., wN

is the set of nodes (i.e. vertices), each representing a word token. E ⊂ {(wi, wj) |
wi, wj ∈ V } is the set of edges between the vertices and it represents a direct neigh-

bour connection between two word tokens. Each edge e ∈ E is an ordered pair

e = (wi, wj) and is associated with a weight wewi,wj
> 0, which indicates the strength

of the relation (frequency of the relation between two tokens in the dataset). Fig. 4.3

illustrates an example of the graph representation of two sentences.

10https://spacy.io/
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Figure 4.3: Example — graph representation of two answers “healthy eating and
regular exercise” and “happiness and moderation.”

Ganesan et al. [94] used similar concept to represent a set of unstructured and

short texts and perform summarization. Our work is different in a few aspects. First,

our goal is to extract characteristic keyphrases of 1-3 words in length, while they try

to capture longer common sequences of words. Second, each token is enriched with

additional information such as lemma form and part-of-speech tag which are used in

keyword extraction process. Third, the whole word graph is extended with other fields

from the survey, such as participant id and other variables of interest. This makes it

possible to reconstruct each participant’s response to its original form. We used the

Neo4j graph database [194] because of its powerful SQL-like declarative graph query

language called Cypher and its accompanying graph-specific features. Fig. 4.4 shows

the conceptual model of a part of CLSA survey (the survey itself is far more complex

including over 300 variables) that is relevant to this study.

4.5.2 Centroid of Phrase Word Embeddings

To extract the word phrases consisting of one, two or three words we used the tag

information. The only words considered are verbs, nouns, adjectives and adverbs.

The meaningful phrases are constructed by considering neighbouring words with the

PoS tag rules that describe common phrase constructions in English and French:

• ˆ(DET)?(-?ADJ)*-?NOUN(-ADJ)?$

• ˆVERB-NOUN$

• ˆADV-ADJ$
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Figure 4.4: Conceptual graph model of the survey dataset. Filters: SDC — socio-
demographic characteristics; ED — education; COG — cognitive disabilities; CCC
— health conditions; ALC — alcohol consumption; SMK — smoking.

• ˆVERB-ADV$

• ˆADJ$

Word2Vec [183], as mentioned earlier, is known as a computationally efficient pre-

dictive vector space model (VSM) for learning word embeddings from raw text. The

FastText implementation is considered to be state-of-the-art (at the time of writing)

for a couple of reasons. First, the models are trained using subword information,

meaning that words are represented as a sequence of character n-grams. Second, the

models for different languages can be aligned in the same vector space so the words

from different languages with high semantic similarity are close to each other [130].

We opted for using FastText pre-trained aligned word vectors for English and French.

To represent a multi-word phrase, we calculate a centroid of word vectors. The

centroid of a finite set of m (m = 3 in our case) word vectors w1,w2, . . . ,wm ∈ Rd

(d is the vector dimension and in our case d = 300) is given as follows:

pC =

∑
i=1..m wi

m
(4.3)

Note that this is a very simple representation and there is significant work done in

document and sentence vector representations [13]. Our motivation to use centroids

stems from the fact that the phrases are very short and the neighbouring words
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are likely to be semantically close. However, different phrase representations will be

investigated in follow-up work.

4.5.3 Spectral Clustering

The extracted phrases represented as the phrase vectors are clustered using a spectral

clustering algorithm. The spectral clustering algorithm is essentially a modification

to k-means clustering algorithm with a few extra pre-steps. Given a set of n vectors

(phrases) P = {pC1,pC2, . . . ,pCn ∈ Rd}, the objective of spectral clustering is to

divide these vectors into k clusters. The steps of the algorithm for spectral clustering

are:

• Construct an affinity matrix A, consisting of pairwise similarities aij. The

similarity measure method used to calculate aij in this paper is Gaussian ker-

nel function for constructing the similarity aij = exp(−γ‖pCi − pCj‖2), where

γ(= σ2) is a specified scaling parameter used for determining the size of neigh-

bourhoods.

• Compute the normalized Laplacian matrix L based on the affinity matrix A as

L = D−
1
2AD−

1
2 , where D is an n × n diagonal matrix with di =

∑n
j=1 aij on

the diagonal.

• Compute the k largest eigenvectors of the normalized Laplacian matrix L, and

form the matrix V = (vij)n×k using these eigenvectors as its columns.

• Form the matrix U = (uij)n×k by normalizing the rows of V , such that uij =

vij/
√∑

j v
2
ij.

• Each row of U represents a new vector for a phrase in Rk space. Then cluster

the vectors using the k-means method.

• Assign each phrase pCi to a given cluster c if the corresponding row i in U is

assigned to this cluster.

4.5.4 Hyperparameter settings

For the experiments on BTM, WNTM and LDA we used the implementations by

Qiang et al. [225]. The reason for choosing hyperparameters values α, β and γ as
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Table 4.2: Hyperparameters for the models used.

Method # of topics # of models hyperparameters
LDA k ∈ {2, 4, .., 50} 20 α = 0.05, β = 0.01
BTM k ∈ {2, 4, .., 50} 20 α = 0.05, β = 0.01
WNTM k ∈ {2, 4, .., 50} 20 α = 0.05, β = 0.01
GTC k ∈ {2, 4, .., 50} 2 γ = {0.1, 1.0}, kernel = rbf

shown in Table 4.2 is simply because they are recommended settings for short texts

in the studies [201, 217, 312, 326] that proposed the algorithms.

4.6 Results

4.6.1 Quantitative evaluation

Fig. 4.5 gives an overview of the coherence scores (UMass top and UCI bottom row)

produced for the different methods. The topic is considered more coherent if the

score is higher. The UMass coherence score, as mentioned earlier, is calculated on the

corpus itself. It indicates that coherence slowly decreases with the number of topics.

It also shows a significantly lower value for the GTC approach. The reason for this

is that the responses (documents) are very short and the number of topically related

terms within a response is low (1-3 related terms). Hence, the point-wise mutual

information statistic is unable to pick up semantically related terms from different

documents because they rarely occur in the same context. The coherence measure

performed on the reference external corpus (Wikipedia with longer documents and

more samples) demonstrates almost opposite results. GTC shows better coherence

scores for French and English (k > 20). The entire French Wikipedia (around 2.2

million documents) and the entire simple English Wikipedia (around 200 thousand

documents) were used as reference corpora. Due to the volume of the standard edition

of English Wikipedia (5.9 million articles at the time of writing) we were unable to

use it as a reference, which may have been reflected in the results.

4.6.2 Qualitative Evaluation

We explore the quality of the topics based on the opinions of three domain experts.

We used topics generated for the setting where k = 20. The reason for choosing this
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Figure 4.5: UMass (top row) and UCI (bottom row) coherence measures calculated
and averaged over different models for top 10 representative terms for English (left
column) and French (right column) subsets.

number is based on an empirical assumption about the number of topics derived from

a prior simple analysis of the data. The coherence scores did not provide a definitive

choice in terms of the number of topics, but 20 seemed like a good choice where the

coherence score for English becomes better than the rest of the methods.

Age Groups

Pennebaker et al. [213] explored the correlation of use of words and age. They found

that the older the individuals are, they use more positive and fewer negative affect

words, among the other findings. Inspired by their experiments, we examine the

differences between age groups in our dataset. The experiment is set up as a set of

binary classification problems. The classes are: 1 (45-54 age range), 2 (55-64 age

range), 3 (65-74 age range) and 4 (75+ age). The classification is applied pairwise

with all possible age group combinations. Fig. 4.6 shows logistic regression results



96

Table 4.3: Top 10 terms and coherence scores for two example topics per method for
English subset, where k = 20. (a) best topic according to UMass score, (b) best topic
according to UCI score.

Method UMass UCI Terms

LDA (a) -1.8966 -326.8925
exercise good social family diet friend
healthy relationship life activity

LDA (b) -2.5279 -171.6791
eat exercise properly right healthy active
n’t eating food drink

BTM (a) -1.9055 -276.5447
exercise activity social active diet physical
mental mind healthy good

BTM (b) -2.5599 -198.8898
exercise eat food good diet vegetable
healthy not n’t fruit

WNTM (a) -2.2245 -182.6595
positive attitude life outlook mental good
n’t people happy not

WNTM (b) -2.5611 -234.1146
good healthy active prop regular positive
social balanced attitude activity

GTC (a) -2.8286 -357.9075
active activity important interest physical
physically mind mentally interested
mental

GTC (b) -3.9109 -254.3686
positive attitude moderation outlook
good humour fun laugh humor mental

with 10-fold validation on each pair. An interesting observation is that with the bigger

age gap the classification accuracy tends to increase and the trends are similar in both

languages. Please note that the features for the classification consist of lemmas which

are filtered based on the following PoS tags: nouns, adjectives, adverbs and verbs.

The classification results and differences would be likely higher if we included the

filtered words which is out of the scope of this paper.

The most notable trend in Fig. 4.7 is that most of the topics show ordered gradual

increase/decrease in a topic involvement per group. The most notable difference is

for the first age group which use phrases from topic 0 cluster and topic 19 cluster

more than other groups. Topic 0 cluster contains words about exercise and topic 19

is about healthy eating and diet.

Gender

To examine the differences between genders in the dataset the experiment is set up

as a binary classification problem. The classes are: F (women) and M (men). Using
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Table 4.4: Top 10 terms and coherence scores for two example topics per method for
French subset, where k = 20. (a) best topic according to UMass score, (b) best topic
according to UCI score.

Method UMass UCI Terms

LDA (a) -2.0289 -375.1233
physique vie social activite alimentation
exercice bien bon mental travail

LDA (b) -2.5971 -93.5049
physique activite alimentation bon
exercice nutrition mental stress sain
activites

BTM (a) -2.0253 -280.7812
actif pas physiquement bien bon
alimentation exercice vie sante stress

BTM (b) -3.2007 -182.1551
pas problemes regulier vis mental trop
difference physique alimentation vie

WNTM (a) -2.1108 -320.6495
plus possible vie bon alimentation pas
medecin moins stress exercice

WNTM (b) -2.9369 -104.4695
soin sante gens plus bien mental pas
exercice personne c’est

GTC (a) -2.7957 -378.3365
alimentation bon nourriture nutrition sain
physique exercice gestion genetique
activite

GTC (b) -8.1423 47.5306
activite physique actif genetique activites
activities gene excess genes hygiene

logistic regression and the same set of features as for the age groups we show that

there is a difference between men’s and women’s responses. Fig. 4.8 illustrates the

results on 10-fold cross validation.

Fig. 4.9 shows the differences in topics between genders. The most notable dif-

ferences are topics 0, 2, 3, 4 and 5. Topic 0 cluster has terms mostly about exercise.

Male participants use words from this cluster more than females. Clusters 2, 3 and 4

contain word related to family, children and relationships. Female participants tend

to talk about these topics slightly more than males. The other clusters seem more or

less balanced.

Pre-existing Conditions

In this section we examine the topical differences in participants that reported health

conditions. On the conceptual graph (Fig. 4.4) the filter is referred as “CCC”. Similar

classification experiments were conducted on subsets of participants who reported
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Figure 4.6: Pairwise classification with 10-fold validation between age groups for
English (left) and French (right) subsets.

Figure 4.7: Difference in topics among age groups.

anxiety versus who did not, cancer versus who did not and Alzheimer’s disease versus

participants who did not. However, there was no significant difference between the

groups and logistic regression classifier did not perform better than random. Although

the difference was not detected in the classification experiments, the topic modelling

methodology can help in discovering the differences on a semantic level. Fig. 4.10 and

Fig. 4.11 show the topical distribution for three setups: anxiety-no anxiety, cancer-no

cancer and Alzheimer’s-no Alzheimer’s.
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Figure 4.8: Classification with 10-fold validation between genders for English (left)
and French (right) subsets.

Figure 4.9: Difference in topics between genders.

4.7 Conclusion and Future Work

In summary, the current work has demonstrated an alternative method for topic ex-

traction from OE responses. We compared the method with probabilistic approaches

for short texts: BTM and WNTM, and LDA as a baseline. The results are compared

based on Umass and UCI coherence measures which are two common unsupervised

evaluation approaches. The observation is that these two measures, although based on

the same idea (point-wise mutual information), show different results on the dataset.

The main difference is that the former is intrinsic (based on the statistics of the



100

Figure 4.10: Difference in topics in setup anxiety-no anxiety.

Figure 4.11: Difference in topics in setups: Alzheimer’s-no Alzheimer’s (left), cancer-
no cancer (right).

dataset) and the latter is extrinsic (based on the statistics of the larger external cor-

pus). We show and discuss why, in this case study, the extrinsic measure is more

suitable to measure topic coherence. Additionally, we explore topical distributions

with different grouping setups and discover some interesting insights about the data.

In this chapter we found that:

• IR and clustering-based method can be used for topic modelling in short open-

ended survey answers;

• although not perfect, it is a more suitable method for creating user to topic

mappings;
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• intrinsic and extrinsic measures for short texts give the opposite results, which

can be used to interpret to which degree we can use semantic information from

short text corpora, and if possible;

• the extrinsic coherence measure is more suitable for short texts where it is hard

to draw semantic information due to the sparseness.

Nevertheless, there are a couple of drawbacks of this approach that are important

to mention. First, it is not suitable for online topic modelling as it depends on

clustering and PoS tagging which are too slow for real-time settings, at least with

the tools that we used in this study. However, the surveys are closed sets that are

primarily focused on exploratory analyses and the prompt performance time is not a

requirement. Second, the quality of the results largely depends on the quality of the

pre-trained word vectors. To put it into perspective, for domain-specific datasets this

can pose a challenge in a sense that the word vectors may not have good coverage for

domain-specific terms.

For future work, we plan to conduct manual topic labeling and evaluate our meth-

ods in the usual way found in papers on topic models. Researchers, along with

coherence scores, report classification accuracy on topic classification tasks. Next,

BERT [67] can be used for phrase representation instead of simple phrase centroid

distance, given that BERT has demonstrated better performance than GloVe and

FastText on benchmark datasets and particularly works better for contextual word

representation. This can be useful in cases when word meaning highly depends on

surrounding words. For example, in French word “hygiéne” in general, means “hy-

giene”, but in the context “hygiéne et sécurité” means “health and safety”, or in

“hygiéne de vie” is a compound phrase that means “lifestyle”. And last, we plan

to apply Bernoulli Mixture Model (BMM) to the generated binary matrix (partici-

pants)×(topics) and analyze “soft” clusters in relation to other survey variables.
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Conclusion

In this thesis, we tackled some problems related to author profiling based on short and

noisy textual data. The problems are deconstructed and expressed in three projects

where our aim was to explore a set of questions specific to the explored domains.

In the first project we looked into a few special cases of language identification

(LID) on textual data. LID for long texts is considered to be a solved problem.

However, traditional methods seem to fall apart when the texts of interest are short,

noisy, or the languages are very similar. In the first part, we use CNG approach to

quantify language differences. Using the dataset on 44 (40) European languages from

Gamallo et al. we compare our results and show that CNG is suitable for modelling

language distances. In the second part, we used seven different datasets gathered from

evaluation labs at prominent conferences over the course of the years (2014–2019).

Communal characteristics of these datasets are noise, brevity and sparsity. Most of

the datasets are balanced. One of them is unbalanced (TweetLID), two datasets

are dealing with transcribed utterances (GDI 2018 and 2019), four are focused on

fine-grained language variant identification (both GDI, DFS and MADAR), and two

are of a challenging size (both DSLCC). We test different global feature weighting

methods, and propose a new one based on CNG distance. To our knowledge, there is

no comprehensive study on impact of weighting techniques on language identification

tasks. We show that idf, BM25, mutual info and cng can significantly improve the

performance.

In the second project we explored automated account detection on social me-

dia. Bot and fake news detection are very active areas of research. Processing large

amounts of data on social media and detecting anomalous behaviours is computa-

tionally challenging. With that consideration in mind, we explore different statistical

diversity measures to characterize online user behaviour. The behaviour in this con-

text means what types of messages an author uses on a social platform in a certain

102
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period of time (mentions — interactions with other users, hashtags — interactions

with topics, and similar). Our hypothesis is that automated accounts have less diverse

interactions than genuine users. On two out of three datasets, we show that it is pos-

sible to distinguish automated bots with over 90% of accuracy. One of the datasets

comes from PAN Author Profiling shared task, where we were placed 13th out of 50

publicly visible submissions. It is important to stress out that our method was com-

putationally the fastest, due to using only 6 features. Our method is also language

independent. As a part of future possible extensions, we can use our approach as a

preliminary step for collecting suspicious accounts, and then use fine-tuned classifiers

to decide if the bot is truly malicious.

Finally, the third project focuses on an unsupervised machine learning problem.

Topic modelling on short and noisy texts has been in the focus of domain research for

many years, mainly due to the popularity of OSNs. However, this kind of texts is not

only common for microblogs. The use case study in this thesis focuses on mining open-

ended survey answers from Canadian Longitudinal Study on Aging (CLSA) available

in English and French language. The samples (answers) are brief and noisy which

makes standard LDA model not so useful in discovering latent topics. We show that

clustering-based methods with transfer learning from external knowledge are a better

alternative to LDA-based topic models. In this case we also show that, between the

two standard topic coherence measures used frequently in literature to report on the

quality of topics, give opposite results. Our conclusion is that the intrinsic measure,

which relies only on word pair distribution of the dataset is not capable of capturing

semantically similar words, because they usually don’t appear in the same sample,

given that most of the answers are laconic. On the other hand, the extrinsic measure

is driven by semantics of external knowledge base, and hence it is capable of assigning

high score to semantically related words.

5.1 Future Work

In the LID task, we considered only one aspect of building a powerful classification

model. We focused on identifying the best global weighting schemes, and did not

experiment on the architecture improvements, nor hyperparameter tuning. Nowa-

days, it is very common to use complex ensemble methods. In the language distance
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experiments, we have shown that some languages are more similar then others. This

characteristic has a big impact on a model performance. Based on the thorough data

analysis we can identify the classes that are harder to distinguish and build a model

that is tuned particularly for those classes. We have seen that the most of datasets in

the LID feature weighting task have classes that are hard to separate. One approach

is to build a hierarchical model of classifiers: the root classifier distinguishes languages

groups, and leaf classifiers distinguish specific language varieties/dialects [141]. Some

languages have very limited digital resources, and the training sets are sparse, small

and unbalanced. The approach for underresourced languages can involve transfer

learning. In recent years, NLP domain had a number of breakthroughs (Google’s

BERT language model). Harnessing the power of pre-trained language models can

introduce knowledge that is otherwise not available in our limited training set. Neu-

ral Networks, especially LSTMs, gained a lot of traction when in comes to language

modelling. Although we did some preliminary experiments with NNs and LSTMs

(not reported in this thesis), our findings were that the datasets are likely too small

to build neural models that are on par with the probabilistic models. To support this

claim, more thorough study should be conducted as a part of the future work.

In the bot identification task, we considered a simple method based on statistical

diversity measures. To further verify our results and perform more thorough study,

we plan to apply our approach to more datasets. Additionally, we plan to develop an

unsupervised method for bot detection on the same set of features using clustering

techniques. As the social bots are constantly evolving and exhibiting human-like

behaviour, single simple classifier is likely to drop in performance, as time passes.

There is no ideal proposition to address this issue, as bot creators can constantly use

the knowledge of the research and improve on their bot models. Nevertheless, we

plan to work on a complex ensemble method, that incorporates different aspects of

user online behaviour, including topic interest, temporal behaviour, social network,

likelihood to interact with fake news posts, etc.

In the topic modelling task on health data, we proposed a set of steps to extract

topics and create mapping participant-to-topic. There are a couple of aspect where

we can extend and improve our approach. First,we plan to conduct manual topic
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labeling and evaluate our methods in the usual way found in studies on topic mod-

els. Researchers, along with coherence scores, report classification accuracy on topic

classification tasks. Although the labelling can be an expensive and tedious task,

the benefits of having a gold standard generated by domain experts are great. The

evaluations are more descriptive and explainable. Next, language models, such as

BERT [67] can be used for phrase representation instead of a simple phrase centroid

distance, given that BERT has demonstrated better performance than GloVe and

FastText on benchmark datasets and particularly works better for contextual word

representation. This can be useful in cases when word meaning highly depends on the

context. For example, in French word “hygiéne” in general, means “hygiene”, but in

the context “hygiéne et sécurité” means “health and safety”, or in “hygiéne de vie”

is a compound phrase that means “lifestyle”. And last, we plan to apply Bernoulli

Mixture Model (BMM) to the generated binary matrix (participants)×(topics) and

analyze “soft” clusters in relation to other survey variables. Last, some of the draw-

backs of our approach is that in consists of a few computationally expensive steps,

which makes it unfit for any kind of on-demand analysis (as a Web service). To ad-

dress this, we plan to experiment to alternative approaches which do not involve PoS

tagging and spectral clustering.
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of new malicious code using n-grams signatures. In 2nd Annual Conference on
Privacy, Security and Trust (PST), pages 13–15, 2004.

[3] Charu C Aggarwal and Cheng Xiang Zhai. A survey of text clustering algo-
rithms. In Mining text data, pages 77–128. Springer, 2012.

[4] Faraz Ahmed and Muhammad Abulaish. A generic statistical approach for spam
detection in online social networks. Computer Communications, 36(10):1120–
1129, 2013.

[5] Mohamed Al-Badrashiny, Heba Elfardy, and Mona Diab. AIDA2: A hybrid ap-
proach for token and sentence level dialect identification in Arabic. In Proceed-
ings of the Nineteenth Conference on Computational Natural Language Learn-
ing, pages 42–51, Beijing, China, July 2015. Association for Computational
Linguistics (ACL).

[6] Abdulrahman Alarifi, Mansour Alsaleh, and AbdulMalik Al-Salman. Twitter
Turing test: Identifying social machines. Information Sciences, 372(C):332–346,
December 2016.

[7] Nikolaos Aletras and Mark Stevenson. Evaluating topic coherence using dis-
tributional semantics. In Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013) – Long Papers, pages 13–22, Potsdam,
Germany, March 2013. Association for Computational Linguistics (ACL).

[8] Rubayyi Alghamdi and Khalid Alfalqi. A survey of topic modeling in text
mining. A Survey of Topic Modeling in Text Mining (IJACSA), 6(1), 2015.

[9] Omar Ali, Ilias Flaounas, Tijl De Bie, Nick Mosdell, Justin Lewis, and Nello
Cristianini. Automating news content analysis: An application to gender bias
and readability. In Proceedings of the First Workshop on Applications of Pattern
Analysis, pages 36–43, 2010.

[10] Jalal S. Alowibdi, Ugo A. Buy, and Philip Yu. Language independent gender
classification on Twitter. In Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, ASONAM
’13, pages 739–743, New York, NY, USA, 2013. ACM.

106



107
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[144] Dijana Kosmajac and Vlado Kešelj. Twitter user profiling: Bot and gender
identification. In CLEF 2019 Labs and Workshops, Notebook Papers. CEUR-
WS.org, September 2019.



120
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Appendix A

Additional results for LID experiments

We present supplementary information for the Chapter 2.

Table A.1: 44 languages corpora token information for large language groups.
Web Corpus Bible Corpus

Language/Variety Code Train Test Train Test

Bulgarian bg 125,882 42,520 122,607 39,871
Macedonian mk 81,074 16,966 123,289 35,827
Bosnian bs 119,717 39,596 119,717 39,596
Croatian hr 126,263 43,120 54,552 22,608
Serbian sr 126,888 43,012 117,372 33,324
Slovenian sl 126,575 42,670 122,568 37,595
Russian ru 126,480 42,990 246,105 41,311
Ukrainian uk 111,732 22,255 122,558 41,907
Slovak sk 127,325 42,839 122,482 40,093
Czech cs 126,630 42,703 118,041 39,884
Polish pl 126,618 42,948 117,905 39,305
Portuguese pt 125,680 42,415 113,526 38,446
Galician gl 121,716 28,553 121,969 40,884
Spanish es 126,016 42,594 118,473 39,627
Catalan ca 123,915 27,525 122,456 41,039
French fr 125,608 42,229 116,556 38,280
Latin la 127,385 42,681 - 21,841
Romanian ro 125,891 42,291 88,269 36,578
Italian it 127,992 43,559 114,392 38,409
English en 124,996 42,067 117,661 38,692
German de 125,839 42,322 121,816 40,053
Luxembourgish lb 141,208 77,794 141,208 77,794
Frisian fy - - 40,868 40,867
Dutch nl 125,588 42,257 128,417 40,960
Danish da 154,486 42,717 121,472 40,837
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Table A.2: 44 languages corpora token information for outlier language groups.
Web Corpus Bible Corpus

Language/Variety Code Train Test Train Test

Norwegian nn 125,619 42,439 139,833 39,828
Swedish sv 127,233 43,201 114,199 40,661
Finnish fi 127,586 42,840 121,963 39,938
Estonian et 68,260 43,276 116,221 39,555
Lithuanian lt 129,181 43,601 118,406 38,985
Latvian lv 112,426 21,846 - 35,687
Welsh cy 129,141 28,639 123,492 57,549
Irish ga 107,911 20,515 123,037 34,103
Gaelic gd 31,189 31,175 126,030 36,732
Islandic is 125,811 42,392 138,509 41,742
Maltese mt - - 101,876 29,639
Basque eu 110,965 14,413 - 86,844
Hungarian hu 127,001 42,865 120,944 42,426
Albanian sq 126,404 42,327 122,396 39,667
Greek el 125,486 42,353 123,111 40,376
Azari az - - - 41,524
Turkish tr 129,939 43,760 118,718 40,117
Armenian hy 103,421 16,316 123,901 41,390
Georgian ka 78,267 15,715 109,855 46,800

Table A.3: Detailed result on Linear SVM with features weighted by mutual infor-
mation on TweetLID’14 dataset gold test data and comparison to the workshop best
results.

Language P R F1

pt 95.07 89.37 92.13
eu 96.11 71.93 82.28
ca 86.30 87.22 86.76
es 95.24 93.43 94.33
en 82.42 77.25 79.75
gl 63.59 51.72 57.04
amb 100.00 65.59 79.22
und 35.10 60.20 45.05

Global 81.84 74.59 77.07

TweetLID systems

ELiRF UPV II 82.5 74.4 75.2
ELiRF UPV I 82.4 73.0 74.5
UB/UPC/URV 77.7 71.9 73.6
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Table A.4: Confusion matrix on GDI’18 dataset gold test data.
Predicted

T
ru

e

BE ZH LU BS XY

BE 696 45 71 108 271

ZH 44 685 82 131 233

LU 299 47 432 89 319

BS 41 54 73 850 182

XY 238 102 165 19 266

Table A.5: Confusion matrix on GDI’19 dataset gold test data.
Predicted

T
ru

e

BE ZH LU BS

BE 804 98 106 183

ZH 35 845 91 206

LU 381 101 570 124

BS 54 110 96 939

Table A.6: Confusion matrix on ILI’18 dataset gold test data.
Predicted

T
ru

e

AWA BHO BRA HIN MAG

AWA 1114 102 174 98 14

BHO 7 1848 32 98 21

BRA 14 0 2108 14 11

HIN 2 93 13 1725 2

MAG 16 41 42 24 2079



Appendix B

Additional results for CLSA experiments

The effect of language correction was presented on Fig. B.1.

Figure B.1: Language correction in CLSA dataset. Before (left) and after (right).
t-SNE visualization.
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