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Abstract 
A study was conducted to find out if co-inoculation with N2-fixing Bradyrhizobium sp. and P-solubilizing 
ectomycorrhizal Pisolithus tinctorius can provide the synergistic effects for the growth of Acacia mangium under 
both N and P deficient conditions. Total dry matter production, and N and P contents were significantly higher in 
seedlings that received dual inoculation in the absence of both mineral N and soluble P than in uninoculated control 
seedlings that received similar nutrient supply. Individual inoculation of Bradyrhizobium or P. tinctorius failed to 
enhance seedling growth under both N and P deficiency. Seedlings that received dual inoculation also performed 
better than uninoculated control seedlings that received both nutrients in the available form and seedlings that 
received Bradyrhizobium and soluble P. However, presence of P. tinctorius did not have a stimulatory effect on 
nodule formation and functioning. Percentage dry matter allocated to nodules, specific nodule number (number of 
nodules formed g-1 of total dry matter produced) and specific nitrogenase activity (mmoles ethylene produced 
h-lg-1 of nodule dry weight) were significantly lower in seedlings that received dual inoculation when compared to 
seedlings that received Bradyrhizobium and soluble P. Relatively poor formation of nodules in seedlings that 
received dual inoculation could be due to competition for carbon between the plant and microbial symbionts in this 
tripartite symbiotic association. Future studies should focus on carbon partitioning between these two microbial 
symbionts during their association with the host plant. Also, studies are required to identify the fungal compounds 
that may be involved in restriction or regulation of nodule growth during ectomycorrhiza formation. 
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1. Introduction 

As low N and P availabilities are typical of forest 
ecosystems (Attiwill and Adams, 1993; Helmisaari, 1990), 
integration of leguminous trees that can form symbiotic 
associations with both rhizobia and mycorrhizal fungi into 
agro forestry and silvo-pastoral systems has been suggested 
as a possible solution to the problems faced in reforestation 
(Marques et al., 2001). Acacia mangium is a leguminous 
tree that can form symbiotic association with both N2- 
fixing Bradyrhizobium sp. and P-solubilizing 
ectomycorrhizal Pisolithus tinctorius (Pers) Coker and 
Couch. Individual inoculations of Bradyrhizobium (Fremont 
et al., 1999; Prin et al., 2003) and P. tinctorius (Jayakumar 
and Tan, 2005) have been reported to enhance the growth of 
A. mangium when compared to uninoculated seedlings. 

*The author to whom correspondence should be sent. 

Dual inoculation with arbuscular mycorrhizal (AM) 
fungi and Rhizobium significantly enhanced root nodulation 
in field crops (El Ghandour et al., 1996; Ianson and 
Linderman, 1993; Rahman and Parsons, 1997) and woody 
legumes (Andre et al., 2003; Marques et al., 2001) more 
than inoculation with either mycorrhizal fungi or 
Rhizobium. Similarly, dual inoculation of A. mangium 
with P. a/bus and Bradyrhizobium enhanced the growth of 
the seedlings (Duponnois et al., 2002). On the contrary, it 
has been reported that co-inoculation of A. mangium with 
AM fungi (Glomus intraradices) negatively affected nodule 
formation by Bradyrh.it.ob ium (Weber et al., 2005). 
Similarly, Ba et al. (1994) found that inoculation of P. 
tinctorius to A. holosericea seedlings prior to inoculation 
with Bradyrhizobium resulted in the inhibition of nodule 
formation. Hence, the present study was undertaken to find 
out if co-inoculation with Bradyrhizobium and P. tinctorius 
can provide the synergistic effects for growth of 
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A. mangium seedlings under both N and P deficient 
conditions, and also to find out the nodulation response of 
A. mangium seedlings to co-inoculation. 

2. Materials and Methods 

Culture maintenance and inoculum production 

Bradyrhizobium (Strain WAS 9) was stored on modified 
Yeast extract-mannitol (YM) agar plates at 4°C and used as 
the stock culture. Ten-day-old cultures on YM agar plates 
incubated at 27°C were used as mother cultures. 
Bradyrhizobium cultures on plates were transferred to 
sterile distilled water with 0.5% glucose and adjusted to a 
final concentration of 109 cells ml-I by measuring the 
optical density of the suspension at 650 nm as described by 
Cooper (1979) and Hoben and Somasegaran (1982). 
Pisolithus tinctorius (Isolate P53) was cultured on modified 
Melin-Nokran's (MMN) (Marx, 1969) agar plates, stored at 
4 °C, and sub-cultured every 2 months. Twenty-day-old 
colonies on MMN agar plates incubated at 27°C were used 
as mother cultures. Vegetative mycelial inoculum was 
prepared according to the procedures described by Marx and 
Bryan (1975). 

Pot culture experiment 

Acacia mangium seeds were surface sterilized in 95% 
sulphuric acid for 30 min, rinsed with sterile distilled water, 
and germinated on 1 % water agar at 25°C in the dark. One 
14-d-old healthy seedling was transferred into a plastic-cup 
containing 200 g of sterilized, water-washed river sand and 
50 g of peat moss. Uninoculated control 1 seedlings were 
grown in the absence of mineral N and soluble P while 
uninocu!ated control 2 seedlings were grown in the presence 
of both mineral N and soluble P. Treatment 1 and 2 
seedlings were inoculated with Nz-fixing Bradyrhizobium 
(WAS 9) in the absence and presence of soluble P, 
respectively. Mineral N was not given to treatment one and 
two seedlings. Treatment 3 and 4 seedlings were inoculated 
with P-solubilizing ectomycorrhizal P. tinctorius (P53) in 
the absence and presence of mineral N, respectively. 
Soluble P was not given to treatment three and four 
seedlings. Treatment 5 seedlings were inoculated with both 
Bradyrhizobium and P. tinctorius in the absence of mineral 
N and soluble P. Each seedling that did not receive soluble 
P was given 56 mg of mussori rock phosphate at the time 
of transplantation. 20.4 mg of NH4N03 (mineral N) and/or 
2.1 mg of KH2P04 (soluble P) were given in solution at 
15 d interval to each seedling according to the treatment 
conditions. Bradyrhizabium-inoculated seedlings received 2 
ml of suspension of Bradyrhirobium with 109 cells ml-l. 
Pisolithus tinctorius inoculation was done h~ mixing 40 g 
of vermiculite-peat moss-vegetative mycelium mixture to 
the rooting medium. Seedlings that were not inoculated 

with P. tinctorius received a mixture of moistened 
vermiculite-peat moss without any fungal mycelium. 
Fifteen replicate plants were set up for each treatment and 
uninoculated control. All the plants were supplied with 30 
ml of sterile N-free and P-free nutrient solution, pH 6.8 
(modified from Broughton and Dilworth, 1971) once in 15 
d. The seedlings were watered with sterile distilled water and 
the irrigation regime was varied as required to maintain 
moisture conducive to seedling growth. 

Pre- and post-harvest analysis 

The chlorophyll fluorescence parameters, i.e. minimum 
fluorescence (Fo), maximum fluorescence (Fm), and 
variable fluorescence (Fv), and the fluorescence ratios, 
Fv/Fm, Fv/Fo and Fm/Fo were determined for 3 
consecutive days before harvesting. A portion (diameter= 
0.5 cm) of the fully developed phyllode was covered with a 
plastic clip at 10.00 am in the morning to avoid exposure 
to light and left for 1 h. The chlorophyll fluorescence in 
that portion, immediately on exposure to light, was 
measured using a Plant Efficiency Analyzer (Model - PEA 
MK2, Hansatech, England). The plants were harvested after 
4 months and the Nz-fixing efficiency of the nodules was 
analyzed on the entire root system by measuring the 
Acetylene Reduction Activity according to the procedure 
described by Turner and Gibson (1980). Although Acetylene 
Reduction Activity measured in closed vessels does not 
represent the true nitrogenase activity (Chang et al., 1994; 
Minchin et al., 1983), it can be appropriate, however, in 
assays for comparative purposes (Becana et al., 1986; 
Irigoyen et al., 1992). The number of nodules per plant was 
recorded and the plant materials were dried in an oven with 
air circulation at 60°C for 72 h and dry weights were 
recorded. The dried samples were digested (Novasamzky et 
al., 1983) and N (Novasamzky et al., 1974) and P contents 
(Allen, 1989) were analyzed. Statistical analyses were 
performed using SPSS program. A multiple range analysis 
was used to test for significant differences between 
treatments using Duncan's procedure at P:;;0.05. 

3. Results and Discussion 

Total dry weight, total N and P contents, photosynthetic 
efficiency and nodulation response of 4-month-old A. 
mangium seedlings co-inoculated with Bradyrhizobium and 
P. tinctorius in absence of mineral N and soluble P are 
presented in Tables 1, 2 and 3. 

Seedlings that received dual inoculation and grown in the 
absence of N and soluble P showed significantly higher dry 
matter accumulation, and N and P contents when compared 
to uninoculated control seedlings grown under similar 
conditions (Table 1). Individual inoculation of 
Bradyrhizobium or P. tinctorius failed to enhance seedling 
growth under both N and P deficiency. Synergistic effects of 
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Table 1. Total dry weight, and N and P contents of 4-month-old A. mangium seedlings co-inoculated with Bradyrhizobium and P. 
tinctorius in the absence of mineral N and soluble P. Values are means± SE (n=l5). Values followed by same letter do not differ 
significantly at P~0.05 according to Duncan's multiple range test. RP, Mussori rock phosphate; MN, Mineral N (NH4N03); SP, 
Soluble P (KH2P04); Brady, Bradyrhizobium WAS9; Pt, P. tinctorius P53. · · 

Treatments Seedling dry Seedling N Seedling P Shoot N Shoot P 
weight (g) content (mg) content (mg) concentration (%) concentration (%) 

Uninoculated control 1 (RP) 0.38 ± 0.03a 5.1 ± 0.5a 0.09 ± O.Ola 1.94 ± 0.07ab 0.027 ± 0.0005a 
Uninoculated control 2 (MN, SP) 1.03 ± 0.05b 25.6 ± 1.9b 0.37 ± 0.02b 2.66 ± 0.12d 0.040 ± 0.0004d 
Treatment 1 (Brady, RP) 0.37 ± 0.03a 5.7 ± 0.6a 0.09 ± O.Ola 1.82 ± 0.05a 0.027 ± 0.0003a 
Treatment 2 (Brady, SP) 1.12 ± 0.04b 23.8 ± 0.9b 0.43 ± 0.02b 2.29 ± 0.02c 0.043 ± 0.0004e 
Treatment 3 (Pt, RP) 0.42 ± 0.03a 7.6 ± 0.6a 0.14 ± O.Ola 2.12 ± 0.04bc 0.044 ± 0.0004e 
Treatment 4 (Pt, RP, MN) 3.01 ± 0.09c 57.5 ± 1.6d 0.91 ± 0.03c 2.13 ± 0.05bc 0.031 ± 0.0006b 
Treatment 5 (Brady, Pt, RP) 2.82 ± 0.09c 53.1 ± 1.9c 0.89 ± 0.03c 2.16 ± O.Olc 0.036 ± 0.0004c 

Table 2. Photosynthetic efficiency of 4-month-old A. mangium seedlings co-inoculated with Bradyrhizobium and P. tinctorius in 
the absence of mineral N and soluble P. Values are means± SE (n=l5). Values followed by same letter do not differ significantly at 
P~0.05 according to Duncan's multiple range test. ND, Not detected; for other abbreviations, see Table 1. 

Treatments Fv/Fms Fm/Foa Fv/Foa 

Uninoculated control 1 (RP) 
Uninoculated control 2 (MN, SP) 
Treatment 1 (Brady, RP) 
Treatment 2 (Brady, SP) 
Treatment 3 (Pt, RP) 
Treatment 4 (Pt, RP, MN) 
Treatment 5 (Brady, Pt, RP) 

ND 
0.833 ± 0.004b 
ND 
0.835 ± 0.005bc 
0.814 ± 0.008a 
0.845 ± 0.002cd 
0.850 ± 0.001d 

ND 
5.1.± 0.1 lb 
ND 
5.2 ± 0.13bc 
4.5 ± 0.22a 
5.5 ± 0.07cd 
5.7 ± 0.05d 

ND 
6.1 ± O.llb 
ND 
6.2 ± 0.13bc 
5.5 ± 0.22a 
6.5 ± 0.07cd 
6.7 ± 0.05d 

a Higher value means higher photosynthetic efficiency. 

Table 3. Nodulation and N2 fixation in 4-month-old A. mangium seedlings co-inoculated with Bradyrhizobium and P. tinctorius in 
the absence of mineral N and soluble P. Values are means± SE (n=l5). Values followed by same letter do not differ significantly at 
P~0.05 according to Duncan's multiple range test. ND, Not detected; for other abbreviations, see Table 1. 

Treatments Nodule dry Number Total Dry matter Specific Specific 
weight (g) of nodules . nitrogenase allocated to nodule nitrogenase 

activitye nodules(%) numberb activity- 

Uninoculated control 1 (RP) 0.002 ± 0.001a 3 ±.la ND 0.71 ± 0.29a 8 ± 3ab I ND 
Uninoculated control 2 (MN, SP) 0.010 ± 0.003a 10 ± 2bc ND 0.99 ± 0.30a 10 ± 2ab ND 
Treatment 1 (Brady, RP) 0.003 ± 0.001a 5 ± lab ND 1.05 ± 0.50a 15 ± 7bc ND 
Treatment 2 (Brady; SP) 0.086 ± 0.004b 54 ± 3d 0.40 ± O.Ola 7.78 ± 0.34c 50 ± 3d 4.6 ± 0.3b 
Treatment 3 (Pt, RP) 0.003 ± 0.001a 4 ± lab ND 0.76 ± 0.24a 12 ± 3abc ND 
Treatment 4 (Pt, RP, MN) 0,010 ± 0.002a 11 ± 2c ND 0.33 ± 0.06a 4 ± la ND 
Treatment 5 (Brady, Pt, RP) 0.150 ± 0.006c 59 ± 3d 0.42 ± 0.04a 5.36 ± 0.22b 21 ± le 2.9 ± 0.3a 

aExpressed as mmoles ethylene produced h-1 plant=l : bexpressed as number of nodules formed g-1 of total dry matter produced; 
cexpressed as mmoles ethylene produced h-1 g-1 of nodule dry weight. · 

inoculation of legumes with AM mycorrhiza and rhizobia 
in low P soils on the whole plant growth are well 
documented (Azimi et al., 1980; Brown et al., 1988; El 
Ghandour et al., 1996; Subba Rao et al., 1986). Simi!~ 
effects using ectomycorrhizal P. tinctorius and 
Bradyrhizabium under both N and P deficient conditions are 
clearly demonstrated from the present study. Seedlings that 
received dual inoculation also performed well when 
compared to uninoculated control seedlings that received 

both nutrients in the available form and seedlings that 
received Bradyrhizabium and soluble P (Table 1). Seedlings 
that received dual inoculation had higher Fv/Fm, Fv/Fo and 
Fm/Fo ratios when compared to other seedlings (Table 2) 
indicating higher phot9synthetic quantum yield (Babani and , 
Lichtenthaler, 1996). Additionally, seedlings that received 
dual inoculation showed significantly higher nodule dry 
matter when compared to seedlings that received 
Bradyrhizobium and soluble P (Table 3). Legumes 
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inoculated with both rhizobia and mycorrhizal fungi benefit 
from P uptake and have greater nodule mass leading to 
higher N, P and dry matter accumulation than legumes 
inoculated only by rhizobia (Barea and Azcon-Aguilar, 
1983; Robson et al., 1981). 
Although seedlings that received dual inoculation had a 

significantly higher nodule dry matter when compared to 
seedlings that received Bradyrhizobium and soluble P, there 
was no significant increase in the number of nodules formed 
and nodule activity (Table 3). The responsiveness of nodule 
dry weight per plant than of nodule number and activity 
indicates that co-inoculation with P. tinctorius increased 
nodule dry matter by stimulating host plant growth rather 
than by exerting specific effects on rhizobial growth and 
survival or on nodule formation and functioning. Moreover, 
the percentage of total dry matter allocated to nodules, 
number of nodules formed g--1 of total dry matter produced 
and Nz-fixing efficiency of the nodules were significantly 
lower in seedlings that received dual inoculation when 
compared to seedlings that received Bradyrhizobium and 
soluble P. Poor nodulation and N2 fixation in soybean 
plants when inoculated with both AM fungi and Rhizobium 
has been reported earlier (Bethenfalvay et al., 1985; Brown 
and Bethenfalvay, 1987). Similarly, poor nodulation in A. 
mangium seedlings upon inoculation with AM Glomus 
intraradices (Weber et al., 2005) and in A. holosericea 
seedlings upon inoculation with ectomycorrhizal P. 
tinctorius (Ba et al., 1994) have been reported earlier. 
Development of nodules and fungal hyphae depends on the 
supply of carbon by the host plant (Cooper, 1984; Ho and 
Trappe, 1973). Several studies have shown that there is a 
competition for carbon. between plants, mycorrhiza and 
bacteria in symbiotic Nz-fixing systems (Bayne et al., 
1984; Bethenfalvay et al., 1985; Michelsen and Sprent, 
1994; Reinhard et al., 1992). These studies indicate that 
relatively poor nodule formation in A. mangium seedlings 
that received dual inoculation could be due to the 
competition for carbon between the plant and microbial 
symbionts. 

Alternatively, it has been reported that mycorrhizal roots 
have a depressive effect on the rhizosphere bacterial 
population when compared to non-mycorrhizal ones (Ames 
et al., 1984; Meyer and Linderman, 1986), which indicates 
that the compounds produced by the fungus during 
ectomycorrhiza formation can have a direct inhibitory effect 
on the nodulating bacteria. Ectomycorrhizal fungi secrete 
organic acids, especially oxalic acid and citric acid, which 
significantly reduce the pH of the rhizosphere soil (Arocena 
and Glowa, 2000; Griffiths et al., 1994; Wallander, 2000). 
Although gross concentrations of organic anions in the soil 
solution may appear insufficient to cause a significant 
reduction in the pH, higher concentrations are likely to be 
present in microenvironments surrounding fungal hyphae 
(Drever and Stillings, 1997). It has been reported that 
individual organic acids in the soil solution exceeds 
millimolar concentrations (Fox and Comerford, 1990; 

Stevenson, 1967), with extremely high concentrations in 
the vicinity of certain plants and fungal hyphae (Cromack et 
al., 1979; Gardener et al., 1983). Reduction in rhizosphere 
pH due to production of organic acids by the 
ectomycorrhizal fungi could be another reason for the poor 
formation of nodules as the bacterial multiplication in the 
soil and the nodulation process are very sensitive to low pH 
(Whelan and Alexander, 1986; Wolff et al., 1993). Poor 
formation of nodules could also be due to morphological 
and biochemical changes in the roots due to mycorrhizal 
colonization (Martin and Hilbert, 1991). There is little or 
no information available on the direct interactions between 
these two microsymbionts in the rhizosphere and their 
processes in the host system. Studies are required to identify 
the fungal compounds that may be involved in restriction or 
regulation of nodule growth during ectomycorrhiza 
formation. 
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