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Abstract 
Ericaceous plants are widespread on the globe and colonize substrates ranging 

from arid sandy soils to moist mor humus substrates. These plants also grow on 
soils polluted with metal ions, where toxicity is alleviated by the mycorrhizal 
fungal symbiont. A crucial point of current research on ericoid fungi is to 
understand whether this variety of environments corresponds to functional and 
genetic diversity of the associated fungal symbionts. Interesting features of ericoid 
mycorrhiza have derived from the genetic analysis of several fungal isolates: 
increased knowledge on their diversity has revealed that ericoid mycorrhiza can be 
very promiscuous, with multiple occupancy of the thin roots of ericaceous plants. 
Genetic diversity is also increased by the presence of several Group I intrans in the 
nuclear 18S rDNA of most ericoid isolates, a feature rarely reported in eukaryotes. 
Biochemical analysis of hydrolytic enzymes produced by fungi from different 
environments also revealed diversity among isolates growing in polluted and non 
polluted soils. These results indicate that ericoid mycorrhizal fungi constitute a 
diverse population, both genetically and functionally. 
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1. Introduction 

Ericaceous plants are able to associate symbiotically with soil fungi to form 
a distinctive type of mycorrhiza, termed ericoid mycorrhiza (Perotto et al., 
1995). The morphology of ericoid mycorrhiza is highly conserved even though 
different fungal and plant partners may associate in a range of combinations. 
The epidermal cells of the thin ericoid mycorrhizal roots are found to harbour 
dense coils of fungal mycelium, which remain enclosed within a single root cell 
without further spreading along the root tissues (Bonfante and Perotto, 1988; 
Perotto et al., 1995). 
In nature, mycorrhizal ericaceous plants colonize very diverse environments. 

They occur as dominant species in heathlands, but they also associate with 
other endo- and ectomycorrhizal plants as understorey vegetation. Plants 
belonging to this group grow in areas ranging from the artic tundra to the 
Mediterranean area, on acidic as well as on calcareous soil. The ecological 
significance of ericoid mycorrhiza has been studied in more detail for low­ 
mineral, acidic organic soils (Read, 1991 and references therein), where a 
crucial role in plant nutrition has been ascribed to the saprotrophic 
capabilities of the mycorrhizal endophyte. Ericoid mycorrhizal fungi can be 
isolated from infected roots and grown in axenic culture. The enzymatic 
abilities of these fungi, as tested in pure culture, indicate that they are well 
adapted to degrade the complex organic components found in humus soils 
(Leake and Read, 1991). Experimental evidence also demonstrated that 
symbiosis can make ericoid mycorrhizal plants successful in surviving high 
concentrations of toxic metal ions (Bradley et al., 1981). 

Because ericaceous plants occur in a wide range of habitats and soil 
conditions, a high degree of diversity may be expected in the genetic and 
physiological abilities of the mycorrhizal fungal endophytes. A number of 
fungal species have been recorded as mycorrhizal on ericaceous plants, but 
relatively little is known about their genetic variability. The aim of this 
paper is to review the current knowledge of the genetic diversity of ericoid 
fungi and to provide some novel information on the organization of the nuclear 
ribosomal genes in different isolates. Some aspects of the functional diversity 
of ericoid fungi will also be discussed, in particular concerning the ability of 
some strains of Oidiodendron to tolerate conditions of heavy pollution. 

2. Genetic Diversity of Ericoid Mycorrhizal Fungi 

The ericoid fungal endophytes isolated so far belong to ascomycetes, 
although basidiomycetes have been observed by electron microscopy inside 
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naturally colonized roots (Bonfante, 1980; Peterson et al., 1980). Our knowledge 
on the extent of biodiversity of ericoid mycorrhizal fungi has been increasing 
rapidly in the recent years (Stoyke et al., 1992; Perotto et al., 1995). The first - 
and for about ten years the only - ericoid fungal endophyte described was an 
ascomycete with a dark, slow growing sterile mycelium, later identified by 
Read (1974) as Hymenoscyphus ericae (= Pezizella ericae). More recently, 
species of Oidiodendron were described as symbionts of ericaceous plants in 
Canada (Couture et al. 1983; Dalpe, 1986) and Europe (Douglas et al., 1989; 
Perotto et al., 1996). Many other fungal endophytes have been isolated from 
infected roots of Ericaceae (Stoyke and Currah, 1991) and Epacridaceae 
(Hutton et al 1993). However, the taxonomic position of most isolates is 
unknown because they do not form reproductive structures under the culture 
conditions tested. 

Investigations on the genetic diversity of ericoid fungi has greatly benefited 
from PCR techniques as a mean to overcome the difficulties of morphological 
identification. PCR-RFLP analysis of different regions of the ribosomal genes 
has been used to investigate the identity and diversity of ericoid fungi. 
Examination of the small subunit of the ribosomal genes of the hyphomycete 
Scytalidium vaccinii revealed its close taxonomic relationship with H. ericae 
(Egger and Siegler, 1993), while RFLP analysis of the ITS region amplified 
from mycelia colonizing Calluna vulgaris roots has demonstrated that the root 
of a single plant harbours several populations of mycorrhizal and non­ 
mycorrhizal fungi (Perotto et al., 1996a). Investigation of mycelia isolated 
from Gaultheria shallon roots (Monreal et al., 1996) has also revealed the 
simultaneous presence of fungi with different ITS restriction patterns. 

RAPD analysis has enabled investigation on the genetic polymorphism of 
isolates at a higher resolution (Perotto et al., 1996a). This technique is very 
sensitive to reveal genetic polymorphisms among related organisms. Because of 
its high resolution power, the RAPD techniques has found several applications 
in molecular ecology and population biology (reviewed by Hadrys et al., 1992). 
When applied to mycological studies, it has been successfully used to identify 
races or even individual "clones" of filamentous fungi (Smith et al., 1992). 

PCR-RAPD was used to analyse about 80 mycorrhizal mycelia isolated from 
C. vulgaris growing in five neighbouring sites, some forming conidia and 
identified as Oidiodendron maius, others growing in culture as sterile mycelia 
and grouped according to morphological criteria and by restriction fragments 
analysis. Results of PCR amplification with about ten random primers have 
shown a high polymorphism in 0. maius isolates and a lower variability 
within populations of sterile mycelia. Many isolates of 0. maius showing 
polymorphic RAPD bands were actually derived from the root apparatus of 
the same plant of C. vulgaris. These data, together with the results of 
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ITS/RFLP, further demonstrate that the root system of a single plant of C. 
vulgaris is a complex mosaic where several populations of mycorrhizal fungi 
coexist, each represented by a variable number of genetic individuals (Perotta 
et al., 1996a). The PCR-RAPD technique also revealed cases where similar 
DNA fingerprints were shared by fungal mycelia isolated from neighbouring 
plants of C. vulgaris, suggesting that networks of individual mycelia may 
connect the root apparatus of different host plants (Perotto et al., 1996a). 

3. Occurrence of Group I Introns is a Common Feature of Ericoid Fungi 

Analysis of the nuclear ribosomal genes in ericoid fungi has revealed for 
many isolates an unusual feature in their organization. Amplification using 
universal primers designed on the 18S subunits has yielded DNA fragments 
which were often much larger in size than expected (Fig. 1). Sequencing of these 
fragments has revealed that this discrepancy was due to the insertion of Group 
I introns. The sequence of Group I intrans is characterized by four conserved 
regions which play a role in the formation of secondary structures (Johansen et 
al., 1996). These intron elements are uncommon in the nuclear ribosomal genes of 
eukaryotes. They occur sporadically in a few fungal species and in algae, but 
their role has not been elucidated. In fungi, they are abundant in the 
polyphyletic group of lichen-forming fungi (Gargas et al., 1995). 

In ericoid fungi, one intron element inserted in the region towards the 3' end 
of the 18S subunit was well characterized in H. ericae (Egger et al., 1995). A 
number of additional insertions have been found for other isolates of the same 
species H. ericae, in Oidiodendron spp. and in most groups of ericoid sterile 
mycelia (S. Perotto et al., in preparation). Although their role is not known, 
they certainly contribute to increase genetic diversity among ericoid fungi 
because of their sequences and sites of insertion along the 185 rDNA. In 
different isolates of the same species, they can be either present or absent at 
specific sites (Fig. 2). 

4. Functional Diversity: Production of Hydrolytic Enzymes 

Ericoid fungi are capable of exploiting simple and complex organic matter 
commonly found in soils (Leake and Read, 1991; Leake and Miles, 1996; Caimey 
and Burke, 1996). In particular, H. ericae has been extensively investigated for 
its ability to grow on a variety of complex organic substrates (Leake and Read, 
1991). A great proportion of the organic matter in the soil consists of the 
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Figure 1. Separation on 1 % agarose gel of PCR fragments amplified from different sterile 
ericoid fungal isolates using universal primers NSS and ITS4 (White et al., 
1990), which amplify about 700 bp of the 18S rDNA gene and the whole ITS 
region. The expected size for the fragment is about 1.3 Kbp, that was found only 
for sterile mycelium H. All the other isolates gave larger PCR fragments. 
Amplification of the sole ITS region (data not shown), gave DNA fragments of 
identical size for all these isolates, indicating that the insertions occur in the 
18S rDNA sequence. 

M 1 2 3 4 5 6 7 ------- 
1270 bp 

Figure 2. Ethidium bromide-stained 1.4% agarose gel showing the migration of PCR 
fragments amplified from different isolates of Hymenoscyphus ericae with 
universal primers NS5/NS6 (White et al., 1990). The difference in size is due to 
the insertion of a Group I intron. Lanes: 1) H. ericae; 2) H. ericae strain A; 3) H. 
ericae 100; 4) H. ericae 101; 5) H. ericae CV3; 6) H. ericae CV4; 7) H. ericae CVS. 

polymeric components of plant and fungal cell walls, especially under 
conditions where microbial decomposition is slow. Ericoid fungi can utilize, 
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through the production and secretion of extracellular hydrolytic enzymes, 
polysaccharides such as pectins (Peretto et al., 1993), carboxymethylcellulose, 
tylose, laminarin (Varma and Bonfante, 1994) and xylans (Cairney and Burke, 
1996). They can also degrade chitin, the structural polysaccharide of the 
fungal wall, proteins and even lignin (Leake and Read, 1991). Ericoid 
mycorrhizal isolates in the Myxotrichaceae and Gymnoascaceae, telomorphs 
of Oidiodendron, have also been reported to be cellulosolytic (Dalpe, 1989). 

In order to investigate functional diversity of specific enzymes produced by 
ericoid fungi, we investigated the production of polygalacturonase (PG), an 
enzyme involved in the degradation of pectins, in a wide range of endophytic 
ericoid fungi isolated from different environments of distant geographic 
regions of Europe, North America and South Africa (Perotto et al., 1997). The 
results of biochemical analysis have shown that species belonging to the same 
genus (e.g. 0. citrinum, 0. griseum and 0. maius) isolated from environments as 
different as forest soils and sandy heathlands secreted mostly acidic PG 
isoforms with similar mobility by solid and liquid IEF. On the other hand, 
PSI and PSIV, two sterile ericoid mycelia isolated in the same site but 
genetically distinct, were found to produce predominantly a basic and an acidic 
PG isoform, respectively (Perotto et al., 1997). These data suggest that the 
characteristics of PG isoforms may be more tightly correlated with the 
taxonomic position of the ericoid isolates than with the environment where 
these fungi grow. 

Although the results discussed in Perotto et al. (1997) and Hutton et al. 
(1994) indicate that production of PG enzyme isoforms may be mostly related to 
the fungal species involved, evidences of specific functional adaptations to soil 
environments have derived from studies on ericoid fungi growing in polluted 
soils. Mycorrhizal isolates of 0. maius have been isolated from soils either 
contaminated or not with heavy metals such as zinc and cadmium (K. Turnau, 
Krakow, Poland). Fungi isolated from polluted soils showed in vitro, in the 
presence of the same metal ions, a better growth ability when compared with 
isolates of the same species derived from non polluted soils (Perotto et al., 
1996b; Martino et al., in preparation). When the production of poly­ 
galacturonase enzymes was analysed for these fungal strains, it was found that 
0. maius isolates derived from polluted soils produced higher amounts of PG 
enzyme activity, and that activity of the purified enzymes could be directly 
increased by zinc and cadmium, the same metal ions found in the contaminated 
soil. These data suggest the ability of ericoid isolates to adapt to contaminated 
environments, and suggest that the presence of specific PG isoforms may 
contribute to this adaptation. 

In conclusion, recent biochemical and genetic investigations on several 
ericoid fungal isolates available in culture collections indicate for these fungi 



DIVERSITY OF ERICOID MYCORRHIZAL FUNGI 25 

quite a high degree of polymorphism, which is probably an important source of 
variability to allow adaptation to stressful environments. The group of ericoid 
fungi comprises a number of species which is likely to increase as more analyses 
are being carried out on genomic sequences. Preliminary results of this type of 
analysis, in part described in this paper, suggest that the very narrow range of 
specificity first described for this association is in fact wider with respect to 
the fungal symbionts. The same is true also for the plant hosts, since Duckett 
and Read (1995) have demonstrated a major extension of the host range of H. 
ericae to liverworts. Liverworts may act as a source of inoculum for ericaceous 
plants, because they can share the same mycobiont and often share the same 
environments. 

We can also hypothesize that the variability observed in the biochemical 
characteristics of secreted enzyme isoforms, linked with the concept of 
multiple occupancy derived from the genetic analysis, may be of great 
ecological significance. Investigations on another promiscuous association, the 
symbiosis between corals and multiple photosynthetic microalgal 
endosymbionts, strongly suggest that the different physiological 
characteristics of the algal partners may contribute to the phenomenon of 
photoadaptation (Rowan and Knowlton, 1995; Rowan et al., 1997). Similarly in 
ericoid mycorrhiza, an individual ericaceous plant may be broadening its 
metabolic capabilities in the exploitation of difficult soil substrates through 
the association with several mycorrhizal fungi. 
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