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Abstract 
The common microbial metabolite trehalose is often found in the symbiotic or­ 
gans of higher plants. Trehalose may be toxic for host cells unable to defend 
themselves by inducing trehalase activity. Trehalose may therefore be an early, 
broad-spectrum and/or unspecific agent preventing symbioses between suscep­ 
tible plants and trehalose-producing microorganisms (bacteria and fungi). 
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1. Introduction 

In a recent review Quispel (1988), states "The formation of a (symbiosis) is 
the consequence of a sequence of mutual interactions between host plant and 
microsymbiont. These interactions depend on the activities of many genes 
both on the bacterial and the plant side". Whilst Quispel goes on to discuss 
the molecular biology of the endophytic phase of nitrogen-fixing symbioses, I 
would like to go one step backward from the same starting point and consider if 
there may be some general properties of plants determining their interactions 
with microsymbionts. In particular this paper deals with the occurrence of 
the disaccharide trehalose in many symbiotic systems. My hypothesis can be 
reduced to the following: 
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1. Whilst trehalose is a common sugar in insects, fungi and bacteria, it is 
uncommon in higher plants and indeed toxic for several plants. 

2. Trehalose can be released from alive or dying cells of microorganisms and 
thus: 

3. Only trehalose-tolerant plants can enter into close associations with 
trehalose-producing organisms. 

In this paper the scattered and sparse references to trehalose have been gath­ 
ered together and reviewed in a symbiotic light. 

2. The Occurrence of Trehalose 

Trehalose ( alpha-D-Glucopyranosyl-( 1-1 )alpha-Glucopyranoside) was first 
isolated in 1832 (Wiggen, 1832) from Ergot, Since then it has been discov­ 
ered in a wide variety of lower organisms including bacteria and cyanobacte­ 
ria, red algae, liverworts, some lower vascular plants, fungi (including yeasts), 
insects, crustaceans, nematodes and anilids (reviewed by Elbein, 1974). In 
the vascular plants as a whole, trehalose is a rare sugar. It occurs in the 
pteridophyte lesser clubmosses, in the leaves of several eusporangiate ferns 
and in the ripening fruits of several members of the Apiaceae (Kandler and 
Hopf, 1980). Where trehalose occurs in vascular plants, it often exceeds su­ 
crose in concentration and indeed appears to replace sucrose as translocated 
disaccharide (Lewis, 1984; Arnold, 1968). With the exception of the above, 
trehalose has not been reproducibly identified in angiosperms (Gussin, 1972; 
Brocklebank and Hendry, 1989). One report on trehalose in the cambial sap 
of beech (Oesch and Meyer, 1967, demented by Gussin, 1972) was probably 
due to mycorrhization (see section 3). In dramatic contrast to the situation 
in plants alone, trehalose is a very common sugar in plant symbioses (see sec­ 
tion 3). The action of trehalose on higher plant cells is not well understood. 
Wagner et al. (1986) report that trehalose induces sucrose-sucrose fructosyl­ 
transferase in barley leaves, but no fructan synthesis took place, whereupon the 
cells rapidly died. Veluthambi et al. (1981) correlated the ability of plants to 
survive trehalose treatment with a largely inducible trehalase activity. Plants 
unable to raise enzyme levels sufficiently, blackened and died, predominantly 
at the sites of elongation growth. Although calli of some plants could grow 
on trehalose, to an extent proportional to the cellular trehalase, death rapidly 
occurred when trehalase inhibitors were included in the medium (Veluthambi 
et al., 1981). 
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3. The Occurrence of Trehalase (Trehalose-1-Glucohydrolase) 

It should be briefly mentioned at this point that the addition of trehalose to 
a raw extract and measuring the glucose produced is not sufficient evidence for 
trehalase (EC 3.2.1.28) activity. As Fig. 1 shows, trehalose can be hydrolysed 
in a variety of ways. This has probably led to some confusion in the earlier 
literature, especially with respect to prokaryotes (e.g. Crabbe, 1969; Guilloux, 
1971). 

I 

~ 

Glucose + Glucose-6-phosphate 

Phosphotrehalase1 l Reversible reaction 

Trehalose-6-phosphate 

Trehalose-6-phosphatase1 Reversible reaction 

2x Glucose Mixture of non-specific saccharidases4 Trehalose 

Trehalase2 · 

Trehalose phosphorylase- Reversible reaction 

Glucose + Glucose-I-phosphate 

Occurrence: lTrchalosc uptake in bacteria; 2pJanLs, fungi, animals; 3Euglena; 
4Detected 

in 
Frankia, a source of artifacts. 

Figure 1. Pathways of trchalosc hydrolysis 
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The status of trehalase in the bacterium Escherichia coli is "entirely un­ 
clear" (Boos et al., 1987). What is however clear, is that E. coli can take 
up trehalose, after phosphorylation, via a phosphotransferase-mediated trans­ 
port system, followed by immediate hydrolysis to glucose and glucose 6 phos­ 
phate (Boos et al., 1987; Giaever et al., 1988). Largely similar situations are 
found in Salmonella typhimurium (Postma et al., 1986) and Bacillus popilliae 
(Bhumiratana et al., 1974). It is also clear that rhizobia can grow on (Glenn 
and Dilworth, 1981) and accumulate (Streeter, 1985) trehalose. The uptake 
mechanism in rhizobia is unknown. The accumulation of trehalose in the bac­ 
terial cytoplasm argues against the presence of trehalase there. Bacteroids 
contain no trehalase activity (Mellor, 1988). Using cultured Frankia, Lopez 
and Torrey (1985) reported on a soluble trehalase activity with p H optimum 
5.0 and commented that an unresolved mixture of alpha glucosidases could 
also hydrolyse trehalose. There are also reports of trehalase from Streptomyces 
hygroscopicus (Hey-Herguson et al., 1973; Hey and Elbein, 1968) and S. an­ 
tibioticus (Brana et al., 1986). 

In the filamentous fungi, trehalase has been reported from a wide va­ 
riety of sources. These include: Aspergillus niger (Ng et al., 1974), 
A. oryzae (Horiko~hi and Ikeda, 1966), Aurobasidium pullulans (Catley and 
Kelley, 1975), Cofprinus (Rao and Niederpruem, 1969), Humicola lan/1ugi­ 
nosa (Prasad and Maheshwari, 1978), Mucor rouxii (van Laere and Slegers, 
1987) and Phycomyces blakesleeanus (van Laere and Hendrix, 1983). The 
yeasts include Scliizosacch.aromsjces pombe (Inove and Shimoda, 1981) and 
Saccharomyces cereviceae (Londesborough and Varimo, 1984). In bakers yeast, 
the best studied system, two trehalases are present. In the vacuole is a treha­ 
lase with an acid ( 4.0) pH optimum. The enzyme is highly glycosylated (86% 
of the molecular mass of 218 kDa is sugar) and is inhibited by acetate. The 
Km for trehalose is 4. 7 mM. The second trehalase has a neutral pH optimum, 
a molecular mass of 86 KDa and is inhibited by Zn++ and EDTA. The Km 
of the cytoplasmic enzyme for trehalose is around 5 mM but it can be acti­ 
vated several-fold by cAMP-dependcnt phosphorylation (Dellamora-Ortiz et 
al., 1986). 

Several membrane-associated trehalases have been reported from a range of 
animal sources as diverse as rabbit kidney (Sacktor, 1968), the labial glands of 
ants (Paulsen, 1971), bee (Lefebre and Huber, 1970), moth (Gussin and Wyatt, 
1965), cockroach (Gilby et al., 1967) and shrimp (Hand and Carpenter, 1986). 
One early review is by Friedman (1966). 

In the alga Euglena gracilis, trchalase is not present. Trehalose degradation 
is achieved by trehalose phosphorylase (Marechal and Belocopitow, 1972). 
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In the higher plants trehalase occupies a quixotic position insofar as where 
present, its substrate is absent ( except in symbiotic organs, see section 3), 
a similar situation to that of chitinase (Boller, 1986). Trehalase activity 
has been reported from sugar cane (Glasziou and Gayler, 1969; Alexander, 
1973; Fleischmacher et al., 1980). Trehalase is also an established pollen en­ 
zyme in £ilium (Gussin and McCormack, 1970), Lycopersicon, Hermerocallis, 
Clatonia, Carmellia and Lathyrus (Gussin et al., 1969). The pollen enzyme is 
similar to soya nodule enzyme (see later) with a broad pH optimum (5± 2), 
km for trehalose of about 1 mM and an optimum temperature of about 50°C. 
Veluthambi et al. (1981) report on trehalase activity in Lemna, Nicotine, 
Datura, Daucus, Glycine, Zea, Raphanus and Quamoclit. Trehalase activity 
was low in Phaseolus primary leaves and practically undetectable in Cuscuia. 

4. Trehalose and Trehalase in Symbioses 

Cyanobacterial symbioses 

Although cyanobacterial symbioses are actually outside the scope of this ar­ 
ticle, and data are very sparse, they should briefly be considered here for the 
sake of completeness. Data on the mechanism of trehalose uptake and/or syn­ 
thesis in cyanobacteria, as well as trehalose in symbiotic organs and trehalase 
in host organisms, are lacking. Trehalose is considered to be an osmoprotec­ 
tant in many cyanobacteria (e.g. Reed et al., 1984). Table 1 summarizes data 
taken from a more thorough work (Mackay et al., 1984) and relates this to 
symbiotic properties of cyanobacteria. Care should be taken in interpreting 
these data since the strains assayed by Mackay et al. (1984) were isolated from 

Table 1. Trehalose accumulation in cyanobacterial genera 
Genus Symbiotic properties Trehalose 
A nabaena Exosymbiont ( Azo/la1) 

Calothrix Microsymbiont ( Rhizosolena2) 
association ( Sargassum3) 

Nosioc Endosymbiont ( Gunnera4) 
Microsymbiont ( cyanolichens5) 
Exosymbiont ( cycads6) 

Chama>!.siphon None + 
Derifiocarpa · None 
Gloeoiheae None + 
Synecho~fUS , None 

+ 

+ 

Data rearranged from Mackay et al. (1984). 
References: 1 Newton and Herman, 1979, 2Pascher, 1929, 3Carpenter and Fox, 1974, 
4Bonnett, 1989, 5Rai, 1989, 6Lindblad and Bergman, 1989. 
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a wide range of habitats and should not be presumed to be identical with sym­ 
biotic strains. It can be seen from Table 1 that, although some non-symbiotic 
genera accumulated trehalose, the greatest similarity can be observed between 
members of trehalose-accumulating genera and genera where members enter 
into close symbiotic associations (for review see Rao, 1989). One exception 
is Anabaena, but in this case the corresponding symbiosis i.e. with the water 
fern Azolla (Peters and Mayne, 1974) is not an endosymbiosis. The inter­ 
esting question is, do the strains living in symbiosis with plants accumulate 
trehalose, as do the strains studied and can this trehalose then be released and 
diffuse to the host organism, as is proven for the symbioses ( Paramecium, 
Hydra) with the green alga Chlorella (Pardy et al., 1989)? A further question 
is, then, does this trehalose induce a trehalase in the host? 

The Actinorhiza 

In the actinomycetes (Benson, 1988), isolates cannot grow on a wide range 
of hexoses, pentoses, disaccharides and trisaccharides (Stowers et al., 1986; 
Tisa et al., 1983) thus metabolic studies which tend to focus on C-sources 
for nitrogen fixation, have concentrated on organic acids ( e.g. Akkermans et 
al., 1981). Frankia, however, accumulates glycogen as storage carbohydrate 
(Benson and Eveleigh, 1979) and also trehalose (Lopez et al., 1983, 1984). The 
amount of trehalose in Frankia is inversely correlated with nitrogen fixation 
(for similar results in the Rhizobium nodule system, see Streeter and Salminen, 
1988) although Lopez and Torrey (1985) explain this as reduced trehalose 
synthesis during times of nitrogen fixation. Actinorhizal nodules contain large 
amounts of sucrose. Sucrose and fructose are able to sustain nitrogen fixation 
in intact nodule slices (Lopez and Torrey, 1985). The status of trehalose in 
nodules and of host trehalase, is unknown. 

Rhizobial symbioses 

In rhizobial soya nodules, sucrose and trehalose are the dominant carbohy­ 
drates. Amounts up to 2 mg trehalose per gram nodule fresh weight have 
been found (Streeter and Salminen, 1988). This trehalose is confined to 
the nodule (Streeter, 1981). This is also the case in nodules of Phaseolus 
vulgaris, Pisum sativum, Archis hypogea, Medicago sativa, Trifolium repens, 
Lotus corniculatus (Streeter, 1985) and Sesbania rosirata ( unpublished ob­ 
servations). Thus amongst the Leguminaceae, members of the Papilionaceae 
and Caesalpiniaceae (Mimosaceae not tested) have trehalose-containing nod­ 
ules. Amongst the Rhizobiaceae, trehalose accumulates in associations in­ 
volving Azorhizobium, Bradyrhizobium and Rhi::obium ( Agrobacterium and 

'' 
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Phyllobacterium not tested). Carbon for trehalose in nodules is provided by 
plant photosynthate and enters the nodule as sucrose (Reibach and Streeter, 
1983; Kouchi and Yoneyama, 1986). Trehalose synthesis takes place only in 
the bacteroids (Salminen and Streeter, 1986; Streeter, 1985). The major por­ 
tion of this trehalose is, however, released and can be found again in the host 
cell cytoplasm (Streeter, 1987). The infected regions of nodules also contain 
large amounts of trehalase (Salminen and Streeter, 1986; Streeter, 1982). This 
trehalase is probably a host enzyme since it is found mostly in the host cell 
soluble fraction, whereas Bradyrhizobium bacteroids contain little (Salminen 
and Streeter, 1986) or no (Mellor, 1988; Hoelzle and Streeter, 1989) treha­ 
lase, although cultured Rhi::obium and Agrobacterium spp. contain trehalose­ 
splitting activities (Hoelzle and Streeter, 1989). It is also known that trehalase 
is induced in soya exposed to trehalose in the absence of rhizobia (Veluthambi 
et al., 1981). Interestingly, if legumes express trehalase in response to tre­ 
halose and the trehalose is only found in nodules, then trehalase may fulfill 
the definition of a nodulin (Legocki and Verma, 1980). 

The Mycorrhiza 

The mycorrhizal symbioses (Smith and Gianinazzi-Pearson, 1988) are the 
most common symbioses amongst vascular plants (Newman and Reddell, 
1987). Excised ascomycete ectomycorrhizas have been shown to convert glu­ 
cose and fructose into the "fungus specific" metabolites trehalose and mannitol 
(Lewis and Harley, 1965; Harley and Smith, 1983; Martin et al., 1985; Martin 
et al., 1988). Indeed mycorrhizas consume between 4% and 12% of total host 
photosynthate (see Harris et al., 1985). Trehalose can leak back to the plant 
host from ectomycorrhizas, as evidenced by Lewis and Harley (1965) and by 
Niederer et al. (1989), who also found trehalose concentrations in roots to be 
proportional to the degree of mycorrhization. Roots of soya ( Glycine max) 
infected with the vesicular-arbuscular mycorrhiza fungus Glomus mosseae dis­ 
play raised levels of trehalose and trehalase (Dr. P. Wyss, University of Basel, 
personal communication). It is also likely in this case, that fungal trehalose can 
enter the plant tissue, due to the very intimate nature of this endosymbiosis, 
where cell-cell contact is much closer than in the ectomycorrhizas (Marx et al., 
1982; Bonfante-Fasolo, 1987). Indeed, the vesicular-arbuscular mycorrhizae 
are often compared with rhizobial symbioses ( e.g. Wyss et al.,.1990). 

Whereas the vesicular-arbuscular mycorrhizas (Order Endogonates) are ob­ 
ligate symbionts on the plant host, this situation is reversed in the my­ 
cotropic Orchids, where the plant partner is dependent on mycorrhizal fungi, 
mostly Basidiomycetes, for growth (at least in the early developmental stages, 
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Alexander and Hadley, 1985). In this system, carbon movement is from the 
fungal mycelium to the plant (Alexander and Hadley, 1985). Carbon sources 
are taken up by the fungal mycelium and converted into mannitol and tre­ 
halose. This carbon then reappears in the plant as glucose, fructose and su­ 
crose (Hadley, 1984). The implication of this, that the plant (in this case 
Goodyera repens) possesses an active trehalase, has been indirectly confirmed 
by Ernst et al. (1971) who reported that non-symbiotic Phalaenopsis plants 
could develop on media containing trehalose as single carbon source. 

Pathogenic interactions 

The concept that microorganisms on or in plants leak trehalose into the 
host tissue is further supported by evidence involving pathogenesis. Keen and 
Williams (1969) found trehalose in tissue of Brassica oleracea infected with 
P?asmodiophora brassicae. Long and Cooke (1971) found a similar situation in 
leaves of Senecio squalidus infected with Albugo tragopogonis. 

5. Is There a Role for Trehalose in Symbiosis? 

The production of substances toxic to plants by microbes has been known 
for many years (Erdman et al., 1956; Wheeler and Luke, 1963). The best­ 
known microbial toxin produced in symbiosis is rhizobitoxin, a substance in­ 
ducing chlorosis in certain susceptible varieties of soybean (Owens and Wright, 
1965a,b). The production of rhizobitoxin appears to play no role in promoting 
the symbiosis, since neither partner can be expected to benefit when the host 
is ill. We should not rule out that trehalose is a similar, almost incidental 
compound, whose biological relevance is simply in preventing stable interac­ 
tions with susceptible (non-trehalase producing) hosts. On the other hand, it 
could also be speculated that trehalose plays a hitherto unsuspected role in 
symbioses. Before, however, considering a unique role for trehalose in sym­ 
bioses, one should first consider roles postulated for trehalose in non-symbiotic 
systems. These are: 

• an agent preventing phagolysosome fusion in host cells (Hohman et al., 
1982) 

• a reserve or storage form of reduced carbon (Sturgeion, 1985) 

• a help in thermotolerance (Grba et al., 1975, 1979) in resistance to water 
stesss, e.g. dessication (Martin et al., 1986), osmoregulation (Mackay 
et al., 1984), or stabilization of biological structures (Crowe et al, 
1984a,b,c). 
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Considered in a symbiotic light, the first alternative, inhibition of phagolyso­ 
some fusion, seems attractive due to recent findings that bacteroids in the 
Rhizobium-legume symbiosis (and therefore presumably in other endosym­ 
bioses) inhabit a lytic compartment ( for review see Mellor, 1989). Surely 
it must be an advantage for the endosymbiont to prevent host primary lyso­ 
somes from fusing with the compartment which it inhabits. The realization, 
however, that the microsymbiont inhabits a lytic compartment, is based upon 
the presence of lysosomal enzymes in the perisymbiontic space (the space be­ 
tween the microsymbiont outer membrane and the delimiting host membrane). 
Following the figures of Lin et al. (1988), infected cells account for about 40% 
of the total volume of a nodule. Assuming central vacuoles make up an aver­ 
age of 85% of the volume of uninfected and cortex cells, then the peribacteroid 
space makes up about 28% of the total lytic compartment of a nodule. Mellor 
et al. (1984) and Kinnback et al. (1987) reported that 12% of the total nodu­ 
lar alpha-rnannosidase occurs in the peribacteroid space and that this is of 
the vacuolar type, isoenzyme II, which accounts for 48% of the total nodular 
alpha-mannosidase activity. These two sets of figures allow the amount of vac­ 
uolar enzyme in the peribacteroid space to be calculated as a percent of the 
total activity in an infected cell. This rough integration indicates that over 
85% of the total isoenzyme II in an infected cell is located in the peribacteroid 
space. Thus it appears that the fusion between primary lysosomes and the 
compartment around the endosymbiont has not been significantly inhibited. 
Trehalose is regarded as a reserve carbon source in microorganisms ( e.g. 

Sturgeon, 1985), a view repeated so often that it is worth a closer examina­ 
tion. Wilkinson (1959) defined reserve carbon sources as substances which (a) 
accumulate in times of excess carbon, (b) are mobilized in times of carbon 
shortage, and (c) lead directly to energy production. Lille and Pringle (1980), 
working with yeast, showed that trehalose production starts only when the 
medium carbon is practically exhausted. Similar results have been published 
with Bradyrhizobium (Streeter, 1985). Grba et al. (1975, 1979) show further 
that, in yeast, trehalose production is dependent on incubation temperature, 
independently of carbon. status. Hoelzle and Streeter (1990) show furthermore 
that trehalose production in Rhizobium leguminosarum is independent of car­ 
bon status but influenced by oxygen status. Barton et al. (1982) germinated 
spores of Pichia pastoris (which contain 23% dry weight trehalose) on glucose. 
Trehalose was rapidly lost whilst the medium glucose was used cat.abolically. 
A similar situation was observed by van Laere et al. (1987) with Phycomyces 
blakesleeanus and by van Laere and Siegers (1987) with Mucor rouxii, the 
trehalose was not used for metabolism but was rapidly degraded to glycerin 
and lost in the medium. The cellular localization of trehalose, in free-living 
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organisms and symbioses, is the cytoplasm, which is also at variance with the 
normal situation for reserve substances. Although trchalose accumulates in 
rhizobia, this accumulation varies between strains, but the strains able to ac­ 
cumulate large amounts are not the strains most persistent in soils ( compare 
Streeter, 1985 with Keyser et al., 1984). Trehalose also represents a relatively 
small carbon pool in rhizobia in comparison to glycogen and poly-beta-hydroxy 
butyrate (Streeter, 1985). Since the growth rates of legume tissue cultures on 
trehalose are relatively poor in comparison to rates on sucrose (Veluthambi 
et al., 1981 and Mellor, unpublished observations), it appears that compelling 
arguments exist against a role for trehalose as simple carbon reserve for either 
partner, at least in the Rhizobium-legume symbiosis. 

A direct role for trehalose in thermotolerance seems to be rather at odds with 
the physical conditions occurring in symbioses, where extreme temperatures 
are an exception rather than the rule. 

Trehalose is especially common in the dormant stages of several organisms 
(e.g. Clegg and Filosa, 1961) or in organisms uncommonly resistant to storage 
and dessication. Trehalose is an osmoregulator in bacteria (Larson et al., 1987). 
Trehalose can stabilize membranes and proteins in vivo and in vitro ( Crowe 
et al., 1984a,b,c, 1985). Glucose-6-phosphate dehydrogenase can be stabilized 
in vivo and in vitro by trehalose as can glutamate dehydrogenase and the 
restriction endonuclease EcoRl in vitro (Hottiger, 1988). The question must 
therefore be posed: Do conditions of water stress occur in endosymbioses? 
This is an intriguing question since the concentration of biologically free water 
seems not to have been determined in any symbiosis. Thus the question of 
water stress remains open. 

In conclusion, the information presently available ( sections 1, 2 and 3) sup­ 
port the hypothesis outlined in the introduction, although clearly much more 
work remains to be done before this view can be confirmed or rejected. An 
active role for trehalose in symbioses is presently unknown. From the role 
for trehalose in nature generally, only the role of protectant for membranes, 
proteins or general biological structure, against water stress, stands a closer 
examination. 
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