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Abstract 

Body size determines key ecological and evolutionary processes of organisms. 

Therefore, organisms undergo extensive shifts in prey, competitors and predators as 

they grow in body size. While empirical and theoretical evidence show that these size-

dependent ontogenetic shifts vastly influence the structure and dynamics of 

populations, theory on how those ontogenetic shifts affect the structure and dynamics 

of ecological networks is still virtually absent. Here, we take a first step towards 

generating such theory by developing an Allometric Trophic Network (ATN) model 

that incorporates size-structure in the population dynamics of fish species within 

complex food webs. Our preliminary results show that fish with larger allometric 

ratios attain higher biomass and tend to be correlated with greater ecosystem stability. 

We also find that that fish with a larger asymptotic body mass tend to be correlated 

with a larger total ecosystem biomass, a result that holds true across models for both 

the largest fish in the ecosystem and each fish species in the ecosystem. The approach 

adopted here offers a potentially instructive means of disentangling the effects of 

increasing life-history complexity in food-wed models. 

 

  



 viii 

List of Abbreviations and Symbols Used  

𝑎𝑖𝑗 Interaction between predator 𝑖 and prey 𝑗 

𝐴𝑆×𝑆 Food web matrix with 𝑆 species 

𝐵0𝑖𝑗  Half saturation density for 𝑖 eating j 

𝐵𝑖 Biomass of species 𝑖 
𝑐𝑖. Center of dietary range for species 𝑖 
𝑐𝑘𝑗  Predator interference of species k eating j 

𝑒𝑖𝑗  Assimilation efficiency for 𝑖 eating j 

𝑓𝑎  Fraction of assimilated carbon that contributes to growth 

𝐹𝑖𝑗  Normalized functional response 

𝑓𝑚  Fraction of assimilated carbon lost for maintenance 

𝑛𝑖  Niche value for species 𝑖 
𝑝𝑖𝑘 Fraction of i's prey that it shares in common with k 
𝑟𝑖 Intrinsic growth rate for autotroph 𝑖 
𝑥𝑖 Metabolic rate 

𝑦𝑖𝑗 Predator i's maximum consumption rate for prey j 

𝜂𝑖  Number of prey that species 𝑖 preys on 

𝜔𝑖𝑗  Relative inverse attack rate of species i on its prey j 

ATN Allometric Trophic Network 
𝐶 Connectance 

CV  Coefficient of variation 
ℎ  Hill exponent 
𝐾 Carrying capacity 
𝐿 Number of links between species 

𝑚 Body mass mean 

ODE  Ordinary Differential Equation 

𝑆 Number of species in the web 
T Short-weighted trophic position 

T1 Shortest trophic level 

T2 Prey-averaged trophic position 

𝑣 Body mass variance 
Z Allometric (predator-prey body mass) ratio 

  



 ix 

Acknowledgements 

 I would like to start by thanking my supervisors Dr. Jeffrey Hutchings and Dr. 

Anna Kuparinen for giving me the opportunity to work on such a fun coding project. 

I’m incredibly grateful for their generous support and for all the wonderful 

opportunities they provided. I’m also thankful the crucial direction which they gave 

me and for suggesting such an interesting theoretical problem.  

 I would like to thank Dr. Jeffrey Hutchings for helping me organize my 

writing and for motivating me through the tough periods. It was also wonderful 

hearing his stories, like how he invited Dr. Stephen Jay Gould to speak as a graduate 

student.  

 I would like to extend my thanks to Dr. Anna Kuparinen for all her insightful 

statistical advice. The clear direction that she gave on proceeding with the analysis 

was invaluable.  

 My heartfelt thanks goes to Dr. Fernanda Valdovinos, for hosting me and 

being so welcoming while I was in Arizona. Her advice on my model design was 

vital, and her extensive comments and review of my thesis were exceedingly 

generous. I would also like to thank Dr. Neo Martinez for inviting me to visit his lab 

and meeting with me both in person and over Skype. 

 I would like to thank Dr. Sebastián Pardo for his help with my simulation 

design and encouragement in writing my thesis. Through his brilliance, he was able to 

completely reorient the way I thought about coding in R within a two hour 

conversation. 

 I am profoundly grateful to everyone in Dr. Joe Bielawski’s lab for being so 

welcoming and allowing me to work in their office space. I would especially like to 

thank Noor Youssef and Chris Jones for the fun conversations, thesis advice, and help 

with statistics. Dr. Bielawski’s lab provided constant support and encouragement 

throughout my thesis, and I truly could not have done it without them. 

 Finally, I would like to thank my friends and family for their constant and 

undying support. 

 



 1 

Chapter 1: Introduction 

Body size determines key ecological and evolutionary processes during the 

ontogeny of organisms (Werner & Gilliam 1984). Ecological interactions, diet 

breadth, foraging efficiency, reproduction, mortality among other processes animating 

an organism’s life strongly depend on the organism’s size (Werner & Gilliam 1984, 

Yodzis & Innes 1992, De Roos et al. 2003). Given such dependency, organisms will 

undergo extensive shifts in prey, competitors and predators as they grow (Werner & 

Gilliam 1984, Ramos-Jiliberto et al. 2011). These size-dependent ontogenetic shifts 

vastly influence the structure and dynamics of aquatic populations and communities 

(Werner & Gilliam 1984, De Roos et al. 2003). For example, ‘juvenile bottlenecks’ 

influences the structure and dynamics of fish communities where prey populations 

compete with the juveniles of their predatory populations exhibiting similar body 

sizes (Byström et al. 1998). Moreover, theoretical work has shown that competitive 

and predatory (cannibalistic) interactions between different age cohorts drive fish 

population dynamics (Persson 1988, van den Bosch et al. 1988, De Roos et al. 2003). 

However, despite all the empirical and theoretical evidence of the vast impacts of 

size-dependent ontogenetic shifts and stage-structured populations on the population 

dynamics of interacting species, little theory has been developed on the effects of the 

size-dependent ontogenetic shifts and population structure on the structure and 

dynamics of ecological networks. Here, we give the first step towards generating such 

theory by developing a general Allometric Trophic Network (ATN) model that 

incorporates size-structure in the population dynamics of fish species within complex 

food webs. 

The study of ecological networks has recently achieved major breakthroughs 
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by recognizing that the ecological functionality of species can be largely attributed to 

their body sizes (Brose et al. 2006a; Otto et al. 2007). Specifically, large allometric 

(predator-prey body mass) ratios appears to be key to stabilizing the dynamics of 

complex food webs (Brose et al. 2006b). Through scaling by body size, so-called 

Allometric Trophic Network (ATN) models have proven successful in explaining the 

stability, structure and functioning of ecosystems (Williams and Martinez 2000; Brose 

et al. 2006b; Dunne 2006). Apart from model-based investigations on the role of body 

size in food web dynamics, the theory has been further supported by Boit et al. (2012) 

who created a remarkably accurate, empirically validated ATN model by 

incorporating body size that explained 30 to 40% of the variation in the seasonal 

dynamics of the Lake Constance plankton community. 

Within the context of food web dynamics models in general, and ATN models 

in particular, species of similar body size have been traditionally lumped together in a 

single functional group, such that scaling by body size is done with respect to 

individual body size across the species’ lifespan. This approach stemmed from a need 

to develop simple models to address generic questions, such as those related to 

species coexistence (Blondel 2003). However, for some species, an individual’s body 

size can change by orders of magnitude throughout its life (e.g., fishes; Wootton 

1999). As there are strong correlations between body size and key functional traits, 

such as metabolic rate (West et al. 1999), a species’ ecological functionality is likely 

to change substantially from juvenile to adult life-history stages. Thus, incorporation 

of the life-history structure of species that experience substantial changes in their 

body size across their lifespan is likely to increase the structural realism of food webs 

and yield more biologically realistic predictions about their dynamics.  
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Fishes constitute ideal study species because of their indeterminate growth, 

which causes them to shift through several ecological niches as they grow (Wootton 

et al. 1999). Their body size, diet, exposure to predation, and general ecological 

functionality changes tremendously from larvae through adult stages, resulting in 

many species transitioning from the bottom of the food chain to the position of apex 

predator. For example, during their lives, Atlantic cod (Gadus morhua) have the 

potential to change from being planktivores (as <10mm, 1-2g larvae) to apex 

carnivores longer than 1m in length and tens of kg in mass within 5-7 years (Brander 

1994; Hutchings and Rangeley 2011). Another aspect that makes fishes and aquatic 

food webs particularly interesting systems to study the role of life-history structures in 

food web dynamics is the fact that contemporary life-history trends towards smaller 

body sizes and earlier maturity have been documented in many fish species across the 

world (Hutchings and Baum 2005; Audzijonyte et al. 2013). Understanding the 

impacts that such life-history changes can have to interacting species and entire 

ecosystems warrants for knowledge about the role of fish life-histories in food web 

dynamics.  

The present study has two primary objectives. The first is to expand the ATN 

modelling approach by incorporating simple life-history structure for the fishes in a 

generic aquatic ecosystem. The second objective is to then explore the role of life 

histories across a broad range of alternative scenarios for aquatic food webs. To this 

end, we use the generic allometrically scaled niche model (Williams and Martinez 

2000) adapted to aquatic food webs (Martinez et al. 2012) to randomly generate 

scenarios for food webs, within which we introduce life-history structure to fishes and 

split the species-level diets among the life-history stages. Through systematic 

simulations, we disentangle the relative impacts of the following components 
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involved in the added life-history structure: i) extension of the food web to include 

additional nodes, ii) life-history dynamics moving biomass from previous life-history 

stages to subsequent ones and then into new larvae through reproduction, and iii) the 

role of different fish life-history types, characterized through traits such as species 

growth speed and body size, timing of maturity, and diet. These analyses will provide 

broadly generalizable insights into the ways in which fish life-histories affect their 

food webs. 
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Chapter 2: Methods 

2.1 Food Web Creation 

 The backbone of our model is the generation of random food webs. Food webs 

can be described mathematically using graph theory, where nodes represent species 

and the links between them are feeding interactions. The ATN model generates 

random food webs based on the relative body size between hypothetical species 

(Williams and Martinez 2000). The ATN model creates hypothetical species and 

chooses prey items for each predator based on the size differences between the 

species. It is particularly good at representing the layered structure of ecological 

networks. Additionally, unlike other food web models, it does not have a strict trophic 

hierarchy, which allows the model to incorporate elements such as cannibalism and 

loops. The features of this model are explored in more depth elsewhere (Williams and 

Martinez 2000).  

Food webs are commonly represented with matrices (Dunne 2006). In the 

present study, we use a binary directed matrix, where links indicate the presence of 

predator-prey interactions. For the sake of clarity, we will describe a model for which 

each node represents a species; the model can easily be extended to accommodate life 

stages within species. Here we create the niche model described by Williams and 

Martinez (2000), a food web with two main constraints: number of species and 

connectance (Figure 1).  

The primary characteristic used to distinguish species from one another is the 

niche value, which is drawn from a uniform distribution 𝑛𝑖 ∈ 𝑈(0,1) ∀ species 𝑖 

(Williams and Martinez 2000). This value is a rough proxy for trophic level; it gives 

species a hierarchical ordered ranking of where they fall relative to each other. 

Species are then assigned prey items from a range centred around a lower niche value 
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(Williams and Martinez 2000). Species with a low niche value are generally 

autotrophs, while species with high niche values are more likely to be carnivores 

(Williams and Martinez 2000). 

 

Figure 1. Niche creation model, reproduced from Williams and Martinez (2000), 

showing how diets are selected. A species with niche value 𝑛𝑖 is assigned any prey 

with niche values that fall within the range of 
𝑟𝑖
2⁄  of the center of the predator's 

dietary range, 𝑐𝑖. 
 

To control food web complexity (which determines how interconnected the 

web is), we can use a measure of connectance (𝐶) that takes the fraction of actual 

links (𝐿) between 𝑆 species over all possible links (𝑆2) (Martinez 1991): 

𝐶 =
𝐿

𝑆2
 

Complex webs, being more connected, have more predator-prey interactions. 

Species are then assigned the degree to which they are specialists or 

generalists. This is represented by the width of their range of predation (𝑟𝑖 ∈ (0, 𝑛𝑖)), 

where a larger range indicates a more varied diet. Range size is chosen by first 

drawing a random variable, 𝑥𝑖, from a beta distribution that has been weighted to 

reflect the desired connectance (C) of the web (see Appendix for the derivation of 𝛽): 

  𝑥 ∼ beta(𝛼, 𝛽) with       
𝛼 = 1

𝛽 =
1−2𝐶

2𝐶

 (1) 

  A less connected web will have more specialists, such that the distribution will 

skew more towards smaller range values (Figure 2). The range width for each species 
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is then scaled to fall in (0, 𝑛𝑖) so that it will never exceed the niche index, which we 

do by multiplying it by 𝑛𝑖: 

𝑟𝑖 = 𝑥𝑖𝑛𝑖 

 

Figure 2. Example beta probability distribution functions for various levels of web 

connectance with 𝛼 = 1. 

 

 To determine the trophic level at which each species preys on other species, 

we assume that organisms mostly consume prey with smaller niche values than 

themselves, and that if they do eat species with a larger niche value, no more than half 

of their diet has a larger niche value. This reflects the non-strictly hierarchical nature 

of real food webs. Beyond these two rules, we assume they have no other innate 
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preferences. Thus, we can centre their predation range using a uniform distribution, 

limited only by the above assumptions (𝑐𝑖 ∈ 𝑈 (
𝑟𝑖

2
, 𝑛𝑖)), where 𝑐𝑖 is the centre of their 

dietary range. Species are considered non-discriminatory beyond this such that they 

prey on all species within their dietary range [𝑐𝑖 −
𝑟𝑖

2
, 𝑐𝑖 +

𝑟𝑖

2
]. 

Matrices are a convenient and powerful way of compressing food web 

information (Dunne 2006). We create a matrix, 𝐴𝑆×𝑆, in which rows represent 

predators, columns represent prey, and element are assigned as: 

  𝑎𝑖𝑗 = {
1,  if predator i eats prey j

0,  if species i does not eat species j
 (2) 

= {
1, 𝑐𝑖 −

𝑟𝑖
2
≤ 𝑛𝑗 ≤ 𝑐𝑖 +

𝑟𝑖
2

0,  otherwise.
 

2.2 Discarding Webs 

 Webs are discarded if they fail to satisfy certain requirements. They must 

represent biologically realistic webs, so (i) they must not have isolated species that are 

neither predator or prey, and (ii) every species must have an autotroph in its food 

chain. They should also (iii) be connected, which ensures that our food web is not 

composed of several smaller, distinct food webs. We also confirm that (iv) the 

generated web exhibits our desired level of connectance.  

2.3 Calculating Trophic Level 

 Once a food web has been created, the question arises as to which type of 

species were created: autotrophs, invertebrates, or fish. Spotting the autotrophs is 

trivial; they are species that have no prey. The more complicated task is distinguishing 

between invertebrates and fish. A natural means of classifying organisms would be 

through their diet. In aquatic communities, an herbivore is more likely to be an 
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invertebrate, while a carnivore is more likely to be a fish (Romanuk et al. 2011). 

Using trophic levels can be thought of as the iterative version of this process. 

There are several ways of defining trophic position. Following Williams and 

Martinez (2000, 2004a), we use the short-weighted trophic position (T), which is the 

average of two other trophic metrics; the shortest trophic level (T1) and the prey-

averaged trophic position (T2): 

𝑇𝑖 =
𝑇1𝑖 + 𝑇2𝑖

2
, ∀ species i. 

The resulting trophic metric proves to be a better estimator of trophic position than 

either individually (Williams and Martinez 2000; Carscallen et al. 2012). Autotrophs 

are assigned a trophic position of 1 in every trophic metric that we use. The shortest 

trophic level (T1), as shown in Figure 3a, is defined as the shortest path to a basal 

species plus 1:  

𝑇1𝑖 = 1 + min
𝑗∈{𝑗|𝑎𝑖𝑗=1}

𝑇1𝑗 

where 𝑎𝑖𝑗 is a binary element from the species connection matrix (eq. 2); it is 1 when 

predator i feeds on prey j, and 0 elsewhere. In practice, we use Dijkstra's shortest path 

algorithm for directed unweighted graphs (Dijkstra 1959). This method progressively 

moves up the trophic levels, first identifying all the basal species, and iteratively 

finding the next level of predators. 

 Prey-averaged trophic position for species i, as shown in Figure 3b, is 1 plus 

the average trophic position of all its prey:  

  

𝑇2𝑖 = 1 +∑ 𝑎𝑖𝑗
𝑇2𝑗

𝜂𝑖𝑗∈𝑆

= 1 +∑
𝑇2𝑗

𝜂𝑖𝑗∈𝑆prey, i

.
 (3) 
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where 𝜂𝑖 is the number of prey that species 𝑖 consumes. We can use a computational 

shortcut to solve this using our species connection matrix (described in further detail 

in the Appendix). 

 

Figure 3. Trophic position for species in an example food web using the shortest 

trophic level, T1 (a); and prey averaged trophic position, T2 (b). The number in the 

nodes indicate the trophic position of each species, and directed arrows indicate the 

flow of energy from prey to predator. Green nodes represent autotrophs. Our model 

uses the short-weighted trophic position, which is the average of the two metrics. 

2.4 Species Identification 

 As noted above, autotrophs are tautologically defined as any species with no 

prey: 

Autotrophs = {𝑖|∑ 𝑎𝑖𝑗
𝑗∈𝑆

= 0} 

while the remainder of the species are classified as either fish or invertebrates. Our 

focus is on ecosystems in which fish tend to be large and carnivorous (Bowman and 

Michaels 1984, Bowman et al. 2000), such that they have high trophic positions. To 
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simplify our model, we assume that the three most apex predators are fish. This means 

that the fish in our model are the three species with the highest trophic positions. This 

might seem like an unrealistic distribution, but we will partially correct for this later 

when we incorporate additional life stages, which are frequently smaller than 

invertebrate species. All remaining species are assumed to be invertebrates. 

2.5 Estimating Mass 

 The next step in model development is to determine how efficient species are 

at processing their food. Here, we use their metabolic rate, an estimate of how energy 

flows through the system, as in Brose et al. 2006b. Rather than using trophic levels to 

estimate metabolic rates directly, Brose et al. uses body weight as a proxy for 

metabolic rate (2006b). This roundabout method is advantageous in two ways: (i) the 

relationships for both of these steps are well established, and (ii) we will later use fish 

body weights to infer life history properties. 

Allometric properties are fundamentally important in our model. We want to 

establish the weight relationships between each predator and its prey. Invertebrates 

typically eat species of a similar body size, while fish tend to predate on much smaller 

prey. We use a lognormal distribution to establish the predator-prey body mass ratios 

(Z). The mean (𝑚) values (variance 𝑣 in parentheses) of Z for autotrophs, fish, and 

other species were 1(0), 5000(100), and 100(100), respectively, based on the 

following equations: 

𝜇 = log (
𝑚2

√𝑣 +𝑚2
) 

𝜎 = √log (
𝑣

𝑚2
+ 1) 

We use this distribution because most biological traits are lognormally distributed 

(Magurran 1988; Limpert et al. 2001). 
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We now have enough information to determine how much each species 

weighs, relative to the basal species, since we know what each species eats, and how 

much larger they are than their prey. The simplest approximation for body mass 

assumes that everything in a species food chain has the same predator-prey body mass 

ratios, such that body mass is a simple function of trophic level: 

Mass = 𝑍𝑇−1 

We subtract 1 from the trophic level to exclude basal species from the calculation, as 

we are calculating the size relationship between species and the autotrophs.  

The allometric ratios can be incorporated directly into the calculations for 

trophic level. Instead of assuming that everything in a species food chain has the same 

allometric ratio, we can go through each link, and scale the body mass by the correct 

allometric ratio. This method reduces apex predator's estimated body mass by several 

orders of magnitude to a more realistic weight. The first step is to disentangle the two 

different trophic position components: 

𝑀 = 𝑍𝑇 

= 𝑍
𝑇1+𝑇2
2  

= √𝑍𝑇1𝑍𝑇2 

The first component is the mass calculation associated with the shortest trophic level 

(T1). This can be thought of as finding the smallest prey that a predator eats and 

modifying the size ratio between the two so that the difference is less extreme. We 

can replace it with the smallest prey consumed by species i. However, since 

allometric ratios have similar orders of magnitude, this metric will be predominantly 

determined by trophic level. We can simplify our equations by finding the smallest 

prey among the prey with the shortest trophic levels. Thus, this calculation of body 

mass for species i is just its allometric ratio times the weight of its smallest prey in a 

shortest distance path: 
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𝑚1𝑖 = 𝑍𝑖 ×min
𝑗
𝑚1𝑗     for{𝑗|𝑗 ∈ 𝑆prey 𝑖 and 𝑇1𝑗 = 𝑇1𝑖 − 1} 

We use a variation of the Floyd-Warshall algorithm to obtain the shortest 

multiplicative distance. 

The second mass component is calculated using the prey-averaged trophic 

position (Levine 1980). This scales a species weight by its entire diet such that body 

mass, calculated using prey averaged trophic position, for species 𝑖, is: 

𝑚2𝑖 =∏𝑍
𝑗

𝑐𝑖𝑗

𝑆

𝑗=1

 

where 𝑐𝑖𝑗 is an element of the matrix 𝐶 = (𝐼 − 𝑄)−1 from the calculations for prey 

averaged trophic position, 𝑆 is the number of species, and 𝑍𝑗 is the allometric ratio for 

species 𝑗. (The full proof can be found in the Appendix.) 

2.6 Metabolic Rates 

 Fish weight is of importance not simply because of dietary shifts but because 

metabolic rate per unit mass decreases with size. A school of large fish is more 

efficient at processing food than a school of small fish with the same biomass. In 

theory this means that an ecosystem would be able to support a larger biomass of fish 

if the fish were larger.  

Kleiber's Law states that metabolic rates increase at a slower rate than body 

mass (Kleiber 1975). While this law has been revised and modified many times, the 

underlying principle has held true (Smil 2000; Ballesteros et al. 2014). A predator 

may be 100 times larger than its prey, but its metabolic rate is only 75 times that of its 

prey. Yodzis & Innes (1992) took advantage of this relationship to approximate how 

efficient our hypothetical organisms are at converting energy from their food sources 

(Williams et al. 2007, Brose 2008).  
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The metabolic rate (𝑥𝑖) per unit of body weight (𝑀) is: 

 

  𝑥𝑖 = {

0,  for autotrophs

0.314𝑀−0.15,  for invertebrates

0.88𝑀−0.11,  for fish

 (4) 

2.7 New Life Stages 

 There are two key traits of new life history stages that will affect the 

simulation: how they fit into the food web and their metabolic rate. Everything else 

that we do to characterize these additional life stages is motivated by finding these 

two elements. For instance, body size in itself is not used to parameterize the time 

series simulation; it is merely a convenient stepping stone to find more important life 

history traits. But like most indirect solutions, each step will add noise to the model, 

and the cumulative noise has potential to spiral uncontrollably. We use a deterministic 

algorithm to find the weight for new life stages. From their weight, we can 

approximate their niche index so that we can fit them into the food web and their 

metabolic rates. 

We assign weights to three new, younger life stages (𝑡 = 0,1,2) with a von 

Bertalanffy isometric growth curve (Pauly 1980). Adults retain the original weight 

(𝑊𝑚𝑎𝑥) we assigned to each species, and we assume that is the age (𝑡𝑚𝑎𝑥 = 3) and 

weight of maximum yield per recruit. The curvature of the von Bertalanffy curve is 

set as 𝐾 =
3

𝑡𝑚𝑎𝑥
 (Froese and Binohlan 2000), and we assume the adults reach 

𝑊𝑚𝑎𝑥

𝑊𝑖𝑛𝑓
=

0.9 of their asymptotic weight. 

𝑊𝑡 = 𝑊∞(1 − 𝑒
−𝐾(𝑡−𝑡0))

3
 

Ecosystem dynamics can be described with ordinary differential equations, 

which we use to simulate the biomass of each species in the ecosystem. We modified 
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the ATN model (Williams & Martinez 2004b, Williams et al 2007) to accommodate 

life history structure. The following equations from the ATN model show the growth 

for autotrophs (equation 5) and predators (equation 6) during the growing season: 

𝐵𝑖̇ = 𝑟𝑖 (1 − ∑
𝐵𝑗

𝐾
𝑗∈Autotrophs

)𝐵𝑖

⏞                
Intrinsic Growth

− ∑ 𝑥𝑗𝑦𝑗𝑖𝐵𝑗
𝐹𝑗𝑖

𝑒𝑗𝑖
𝑗∈Predators

⏞            
Loss to Grazing

 (5)
 

 

𝐵𝑖̇ = −𝑓𝑚𝑥𝑖𝐵𝑖⏟    
Metabolic Loss

+ ∑ 𝑓𝑎𝑥𝑖𝑦𝑖𝑗𝐵𝑖𝐹𝑖𝑗
𝑗∈Prey⏟          

Dietary Intake

− ∑ 𝑥𝑗𝑦𝑗𝑖𝐵𝑗
𝐹𝑗𝑖

𝑒𝑗𝑖
𝑗∈Predators⏟            

Loss to Predation

(6)
 

where 𝑟𝑖 is the intrinsic growth rate for autotroph 𝑖, K is the carrying capacity, 𝑥𝑖 is 

the metabolic rate (eq. 4), 𝑦𝑖𝑗 is predator 𝑖's maximum consumption rate for prey 𝑗, 𝑒𝑖𝑗 

is the assimilation efficiency for 𝑖 eating 𝑗, 𝑓𝑚 is the fraction of assimilated carbon 

lost for maintenance, and 𝑓𝑎 is the fraction of assimilated carbon that contributes to 

growth. 𝐹𝑖𝑗 is the normalized functional response: 

𝐹𝑖𝑗 =
𝜔𝑖𝑗𝐵𝑗

ℎ

𝐵0𝑖𝑗
ℎ +∑ 𝑎𝑘𝑗𝑐𝑘𝑗𝑝𝑖𝑘𝐵𝑘𝐵0𝑘𝑗

ℎ
𝑆

𝑘=1
+∑ 𝜔𝑖𝑘𝐵𝑘

ℎ𝑆

𝑘=1

𝜔𝑖𝑗 =
𝑎𝑖𝑗

𝜂𝑖
=

𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑆

𝑗=1

 

where 𝜔𝑖𝑗 is the relative inverse attack rate of species 𝑖 on its prey 𝑗, and where 

𝜂𝑖total number of species 𝑖's prey. ℎ is the Hill exponent, 𝐵0𝑖𝑗 is the half saturation 

density for 𝑖 eating 𝑗, 𝑐𝑘𝑗 is the predator interference of species 𝑘 eating 𝑗, and 𝑝𝑖𝑘 is 

the fraction of i's prey that it shares in common with k. The values for these 

parameters are shown in Table 1 and Figure 4. 
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Table 1. Model parameters. 

Variable   Description   Value   Unit   Reference  

𝑆  Number of species 

in original niche 

web  

30  -   Martinez et 

al. 2012 

𝐶  Connectance  0.15   -   Martinez et 

al. 2012 

𝐾  Autotroph 

carrying capacity  

 540  μgC
𝐿⁄   Boit et al. 

2012; 

Martinez et 

al. 2012 

𝑟  Autotroph 

intrinsic growth 

rate  

𝑟 ∼ Ν(09,0.2) 

𝑟 ∈ (0.6,1.2) 

𝑑−1   

𝑦𝑖𝑗  Maximum 

consumption rate 

of predator i for 

prey j  

 10 𝑑−1  Boit et al. 

2012  

𝑒𝑖𝑗  Assimilation 

efficiency for i 

eating j  

{
0.45, 𝑗 is an autotroph

0.85, otherwise
 

-   Brose et al. 

2006b 

ℎ  Hill Exponent   1.2   -    

𝑓𝑎  fraction of 

assimilated carbon 

that contributes to 

growth 

0.4    

𝑓𝑚  fraction of 

assimilated carbon 

lost for 

maintenance 

0.1     
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Figure 4. The half saturation constants (𝐵0𝑖𝑗) and competition coefficients (𝑐𝑖𝑗) for 

predator 𝑖 eating prey 𝑗. Figure and constants reproduced from Tonin (2011). 
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At the end of each growth season, the Ordinary Differential Equation (ODE) is 

paused so that fish may mature and reproduce. The cumulative growth dedicated to 

reproduction is also passed along to offspring through the second term of this 

equation, while the first term forces 50% of adult biomass to become offspring and 

life stages to mature. The biomass (𝐵𝑖) shifts between life stages according to this 

Leslie matrix: 

(

 
 

𝐵̇𝑖
𝐵̇𝑖+1
𝐵̇𝑖+2
𝐵̇𝑖+3)

 
 
= (

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)(

𝐵𝑖
𝐵𝑖+1
𝐵𝑖+2
𝐵𝑖+3

) 

2.8 Simulation Design And Analyses 

 We investigated the model through systematic simulations to: (1) determine 

how inclusion of fish life-history structure affects the food web, its structure, 

dynamics, and stability; and (2) investigate how alternative fish life-history strategies 

are associated with various food-web properties. The addition of life-history structure 

for fishes changes multiple features of the food web. Introduction of life-history 

stages involves the addition of new nodes and feeding links to the web; life-history 

dynamics (growth from one life-history stage to the next) alters the ways in which 

biomass is transferred within the food web.  

To tease apart the relative roles of these components involved with the life-

history structures, we run 3 sets of simulations (hereafter denoted as ‘model types’). 

The first model type comprises an ‘original’ or baseline web that does not include 

life-history stages within species. That is, each species, including fish, is described 

through one single node in the food web. Model type 2 incorporates unlinked life-

history stages within each fish species. That is, each fish species is partitioned into 

life-history stages, but these stages are not linked with one another through Leslie 
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matrices. The new fish life stages are independent of each other and biomass does not 

grow from one stage to another. In the ATN modelling sense, they can be considered 

as new species. While this model type is not biologically realistic, it is crucial for 

disentangling the effects of adding new nodes to the food web from the effect of life-

history dynamics. Model type 3 is an ATN model that incorporates life-history stages 

that are linked to one another within each species.  

To compare the three model types, we begin the simulations (500 for each 

model type) with the same initial conditions.  In each simulation, the food web is 

allowed to stabilize for 200 years, after which the food web is either accepted or 

rejected, based on the rules detailed below. The dynamics of the food webs are then 

investigated across another 20-year period. Each year consists of 100 simulation time 

steps, representing a 100-day growing season. Because our objective is to study the 

impact of fish life-history stages, we choose amongst the stabilized food webs only 

those that contain at least one fish species or at least one fish life-history stage (in 

model type 2). Life stages become extinct if their biomass is lower than 10-6μgC⁄L, 

although fish species can be revitalized from the maturation of other life stages. 

We initially conducted a preliminary analysis on the probability of fish 

extinctions for each model type. For this preliminary analysis, we discarded only 

those food webs for which all fish became extinct. The remaining analyses were 

subjected to a more stringent constraint; at least one fish species must have persisted 

in every simulation run for a given model type for the web to be included. We used R 

version 3.3.2 (R Core Team, 2016) for all analyses, and the R library tidyverse 

(Wickham 2017). We modified the ATN model by Tonin (2011), and we run it with 

MATLAB version 2016b (The MathWorks).  
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Chapter 3: Results 

3.1 Model Realism 

 One means of assessing the biological realism of the model was to examine 

the degree to which the model produced biologically realistic results. In this regard, 

our model produced realistic von Bertalanffy growth curves (Figure 5). Mass is 

incomparable across simulations. However, fish species within a single simulation 

tended to be in the same size range, as the weight ranges for fish species often overlap 

(Figure 5). The youngest life stage of the largest fish species was smaller than the 

oldest life stage of the smallest fish in 69.6% percent of the simulations.  

 Given that we are using an allometric trophic network model, mass is unitless, 

such that the only important characteristic is the relative ratio of predator to prey body 

mass within the same model. The growth curves for any given species were also 

realistic, as we defined the curve to follow a von Bertalanffy growth function (Figure 

6a). The model produced fish species with realistic allometric ratios (Figure 6b), and 

fish extinctions were equally probable across the lognormal distribution of allometric 

ratios, such that none of our specific models favoured fish differentially by their body 

mass. 
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Figure 5. Von Bertalanffy growth curves for surviving fish in several simulated food 

webs. Each colour represents a different food web simulation (‘simnum’). Each 

species has four life stages. 
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Figure 6. Life history growth curves and associated histograms of the allometric 

(predator:prey body mass) ratios for the four adult fish life stages. The rows, from top 

to bottom, show a) the initial ecosystem, including all species that go to extinction, 

and the surviving fish species in b) the original model, c) the extended model, and d) 

the linked model. 
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3.2 General Simulation Outputs 

 A key criterion for the initial part of the analysis was to have the generic 

model achieve stability in overall fish biomass. Most (80.2%) of the simulations met 

this criterion, insofar as fish biomass stabilized in at least one of the experiments. A 

secondary criterion was that at least one fish species must achieve stability in each of 

the specific models; 24.3% of the simulations met this second criterion. An illustrative 

time series of the simulation of a food web that eventually stabilized is shown in 

Figure 7. This time series shows annual recordings of the biomass for the three fish 

species, into four life stages, and the total biomass of all other species in the 

ecosystem. Given that most simulations stabilized within 200 years, the initial 200 

years were discarded and the remaining 20 years used for analysis.  

Neither the CV for total ecosystem biomass (Figure 8a) or total fish biomass 

(Figure 8b) differed between the three model types. This result is supported by the 

frequency of the consecutive number of surviving fish species in each model (Figure 

9). The model types that included new life stages were more likely to have at least one 

fish species survive, as well as having every fish species survive. The difference 

between the linked model (model type 3) and unlinked model (model type 2) is more 

subtle. Linking the life stages seems to drive an “all or nothing” outcome; either all 

fish species survive or they all become extinct. The unlinked model seems to have a 

more intermediate outcome, while linking the life histories seems to steepen the 

probability of consecutive extinctions. 
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Figure 7. A time series of the biomass recorded at the end of each year for a linked 

model. The three fish species are represented with red, green, and turquoise lines, 

while the cumulative biomass of the rest of the ecosystem is shown as purple. Life 

stages are represented with different dashed lines. 
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 Figure 8. Boxplots of the coefficient of variation (CV) of the (a) total ecosystem 

biomass and (b) total fish biomass for each model type (CV’s greater than 100 are not 

shown for clarity). 
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Figure 9. The frequency of simulations with a) 0, 1, 2, or 3 surviving fish species, and 

b) or no surviving fish versus all fish surviving, shown for each model. The different 

colours indicate each model type: 1) The original ATN model (red), 2) Extended 

unlinked model (green), and 3) the linked model (blue). 
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3.3 Output For The Linked Model 

 Simulation outputs are illustrated for the fully linked model (type 3) (Figure 

10-Figure 12). The allometric ratio of surviving fish species is positively associated 

with mean fish biomass (t=3.15, df=969, p=0.002; Figure 10b) and negatively linked 

with the CV of mean total ecosystem biomass (t=-2.55, df=969, p=0.011; Figure 10c). 

This correlation is reversed in model 1 (t=2.21, df=969, p=0.027), but no trends were 

found in model 2 (t=-0.52, df=969, p=0.601). 

The allometric ratio was not correlated with either mean total ecosystem 

biomass (Figure 10a) or the CV of fish biomass (Figure 10d). Fish size is positively 

associated with a higher total mean ecosystem biomass (t=5.24, df=969, p<0.001; 

Figure 11a) but is not correlated with fish biomass or the CV’s in biomass (Figure 

11b-d). Associations between the mean and CV of ecosystem and fish biomass and 

asymptotic individual body mass are presented in Figure 12. Larger fish species tend 

to increase mean ecosystem biomass across all 3 models (t=8.3, df=1871, p<0.001; 

Figure 12a). Normality for each variable was confirmed using qqplots. 
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Figure 10. Mean and CV of biomass as a function of the allometric (predator:prey 

body mass) ratio of the largest surviving fish species for all simulations. Panels (a) 

and (b) show the mean ecosystem biomass and mean fish biomass of the 971 

surviving fish species, respectively (N=971 fish species across all simulations). Panels 

(c) and (d) show their respective CV’s. The blue lines represent linear regressions. 

These are significant for the log of fish biomass (panel b; t=3.15, df=969, p=0.002) 

and the CV of the total ecosystem biomass (panel c; t=-2.55, df=969, p=0.011). 
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Figure 11. Mean and CV of biomass as a function of the logarithm of the asymptotic 

individual body mass for the largest surviving fish species. Panels (a) and (b) show 

the mean ecosystem biomass and mean biomass of the 971 fish species, respectively 

(N=971 fish species across all simulations). Panels (c) and (d) show their respective 

CV’s. The blue lines represent linear regressions. These are significant for the log of 

the mean ecosystem biomass only (panel a; t=5.24, df=969, p<0.001). 
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Figure 12. Mean and CV of biomass as a function of the asymptotic individual body 

mass for each surviving fish species. Panels (a) and (b) show the mean ecosystem 

biomass and mean biomass of the 971 fish species, respectively (N=971 fish species 

across all simulations). Panels (c) and (d) show their respective CV’s. The blue lines 

represent linear regressions. These are significant for the log of the mean ecosystem 

biomass (panel a; t=8.3, df=1871, p<0.001). 
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Chapter 4: Discussion 

 The present study extends existing allometric trophic network (ATN) models 

by incorporating greater life-history complexity. Using Williams and Martinez’ 

(2004b) ATN model as a starting point, we created two additional model 

formulations. Firstly, we added additional life stages, or nodes, to each species. 

Secondly, we linked these life stages together into a life history where juveniles 

mature into adults that then produce offspring. Through this additional complexity, 

we are able to explore the extent to which this increased biological realism, from a 

very basic life-history perspective, modifies the output and predictive capacity of 

traditionally formulated ATN models.  

We find that the addition of life-stage complexity significantly influences 

model outcomes, but that the linking of life stages within each fish species alters the 

output of the unlinked model only marginally. For example, the addition of life stages 

reduces variability in total ecosystem biomass, which we interpret as reflecting 

increased stability. Given that new, unlinked life stages can be treated as new 

individual species, this finding is essentially equivalent to concluding that ecosystems 

which support greater numbers of fish species are more stable than ecosystems that 

support fewer fish species.  

In theory, the linking of multiple size-varying life stages should make each 

species more dependent on a broader range of prey. In a sense, we are creating a bet-

hedging scenario by linking all the life stages and by making them less dependent on 

any one particular prey. But we might also be increasing the extinction probability of 

a predator species if any one of its life stages becomes non-viable. These non-viable 

life stages may be partly responsible for why we failed to find a strong effect from 

linking the life stages together. Perhaps if we ensured life-stage viability by assigning 
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broader diets to each stage, we might have documented a larger effect of life-stage 

linkage. The linking of life stages might also alleviate the predator-induced mortality 

of certain prey species. If a fish predator is comprised of a wide variation of cohort 

sizes in its life stages, prey for any given life stage may go through phases of intense 

predation when it is being targeted by the largest cohort followed by a recovery period 

when the largest cohort is no longer preying on it. 

An exploration of the effects of increasing life-history complexity on 

ecosystems was recently undertaken by Mougi (2017) who undertook simulations in 

which he assigned a certain proportion of species in an ecosystem a two-stage, rather 

than a single-stage, life history. He found that inclusion of moderately more complex 

life histories (two stages rather than one) increased the probability of persistence of 

complex ecosystems, while it decreased persistence for simpler ecosystems.  

Based on the findings of the present study, we hypothesize that most of the 

effects that Mougi (2017) documented when adding life-history structure might be 

attributable to an increase in food web size resulting from the addition of non-random 

nodes, rather than any intrinsic effect of life-history structure. That said, our methods 

were quite different. We applied an annual Leslie matrix to model growth from one 

life stage to the next, while Mougi (2017) incorporated a continuous growth model 

directly into the differential equations. We used 4 life stages for 3 species, while he 

used 2 life stages for various proportions of the community. In addition, we used an 

ATN model while Mougi (2017) applied a continuous growth, two-life-stage model.  

4.1 Allometric Ratio, Biomass, And Ecosystem Stability 

 The three model formulations differ in their predictions as to how allometric 

ratio is related to biomass and ecosystem stability. Across all simulations in models 1 
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and 3, fish with larger allometric ratios attain higher biomass; model 2 did not yield 

an association. This apparent link might be attributable to the fact that fish that are 

much larger than their prey have lower metabolic rates per unit biomass, thus they 

require less food to sustain them. The simulations in Model 3 produced a positive link 

between fish allometric ratio and ecosystem stability (we interpret ecosystems with a 

lower CV in total biomass to reflect greater stability). This is consistent with previous 

findings that high predator-prey body mass ratios tend to enhance ecosystem stability 

(Brose et al. 2006b; Kuparinen et al. 2016).  

However, we find that model 1 yielded the opposite result: higher fish 

allometric ratios are associated with less stable ecosystems that exhibit greater 

fluctuations in total biomass (model 2 revealed no associated between allometric ratio 

and ecosystem stability). If fish allometric ratio truly does affect the CV in total 

biomass, we might have expected it to also affect fish biomass, but such a link was 

not evident in our results. Alternatively, the absence of such a link could simply mean 

that allometric ratio has a higher impact on prey species than predator species, such 

that invertebrates are impacted more heavily by being preyed on by fish with lower 

allometric ratios than by the fish species themselves.  

All three models were consistent in finding that fish with a larger asymptotic 

body mass tend to be correlated with a larger total ecosystem biomass, a result that 

holds true for both the largest fish in the ecosystem and every fish species in the 

ecosystem. 

4.2 Model Considerations 

 There are merits to our modelling approach, but there are also caveats that 

warrant future attention. Our application of the von Bertalanffy growth model lends 
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increased biological realism in terms of body mass and consequently metabolic rate. 

However, the species all have identical life histories (exactly 4 life stages, identical 

probabilities of maturity and age-specific fecundity); this may not be an issue, 

although it might be worth exploring alternative life spans in future model 

formulations. 

It is important to note, however, that when we incorporate these new nodes 

into the food web, we cannot apply the same methods that we used to generate the 

original web. This is because the original web generated the nodes and connections 

first and then assigned species characteristics based on their interactions. When we 

added new nodes, we reversed this process, such that the new nodes only 

approximately follow the species interaction patterns articulated by the original ATN 

web (Williams and Martinez 2000). 

 We anticipated that some of our simulations would not stabilize, given that we 

placed minimal constraints on the food webs during the web-creation stage. Thus, 

some of the webs would invariably end up being completely biologically unrealistic. 

This process of weeding out unstable webs might seem initially unintuitive, but it 

does mimic what is observed in nature; natural landscapes are eventually populated by 

stable ecosystems after a long process of species invasions and extinctions. Regarding 

species extinctions, if any of the life stages in our model survive, we treat the entire 

species as having survived. Model 1, having a single life stage per species, is more 

likely to produce fish extinctions than models 2 or 3, both of which incorporate four 

life stages per species. 

 Overall, our model produced relatively ‘noisy’ results, rendering it difficult to 

discern clear trends in our data. In part, this might have been caused by the variance 

associated with the model’s parameters. Although a reduction in parameter variances 
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might limit the range of ecosystems that our model can represent, it might provide 

clearer results for a subset of ecosystem types. Our model may be unduly sensitive to 

initial conditions, such that web stabilization web and probability of persistence is 

more dependent on the initial biomass of each species than the food web structure. 

An interesting note is that our model does not selectively remove fishes based 

on their allometric ratios, meaning that fish are equally likely to survive regardless of 

their predator:prey body-mass ratios. This might contribute to excessive noise in our 

model outputs such that we are unable to discern an effect of allometric ratio on fish 

survival. Whatever the case, it means that our initial distribution of allometric ratio is 

not substantially disturbed by our simulations, such that all of our models are testing a 

similar ecosystem. It also means that our models are not differentially selecting for or 

against any particular body size. 

 Another caveat might relate to the fact that our measure of allometric ratio is 

very approximate. Although we use log-normal random distributions to assign ‘ideal’ 

allometric ratios to all species, the actual allometric ratio is distorted in two ways. 

Firstly, our ideal allometric ratios are used to establish initial body masses of all 

species; given that we cannot guarantee a perfect correspondence between allometric 

ratio and body mass, it will be an imperfect measure. Secondly, the ratio is further 

disturbed by species extinctions. When prey become extinct, the allometric ratio 

should ideally be adjusted to reflect this extinction. 

To reduce model-output noise, it might be advantageous to approximate 

allometric ratios after the simulations have been completed, using only extant species. 

However, this approach might prove difficult to enact in practice. Not only is it 

computationally challenging, but issues can arise when not all life stages are 

connected to a basal species. This scenario is theoretically possible in our model. 
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Although we restrict our initial webs by forcing all nodes to be connected to a basal 

species, these chains can be broken during the simulations, resulting in life stages that 

obtain all their biomass growth from previous life stages but have no prey of their 

own. Under these circumstances, life stages survive solely by relying on a large 

biomass at the beginning of the year, but do not have any prey themselves. 

Our model is severely limited by the amount of stochastic variation in webs 

produced. Since our model generates random webs using minimal constraints, it 

generates a lot of variability in outcome of the simulation. At the risk of decreasing 

generality of our model, it might be helpful to heavily constrain our parameters so that 

our model produces similarly structured webs with more consistent outcomes. This 

will be useful in detangling results. Even if we don't constrain our parameters, we 

could try subsetting our data set to a group of more similar webs. For instance, we 

could try only looking at webs with large fish species. 

4.3 Future Considerations 

 The results of the present study suggest several avenues of future research. For 

example, a combination of the approached adopted here with that by Mougi (2017) 

offers a potentially instructive means of disentangling the effects of increasing life-

history complexity in food-wed models. There is also considerable scope to examine 

how increased life-history complexity might affect the influence of fisheries-induced 

evolution on ecosystems. Kuparinen et al. (2016) found that fisheries-induced 

evolution can destabilize an entire ecosystem (Lake Constance), with increased 

temporal fluctuations in fish biomass resonating down to basal species in the food 

web. Increasing life-history complexity might allow the well-parameterized Lake 

Constance model to be applied to a broader range of ecosystems. 
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Cannibalism is characteristic of many fish species, the consumption of con-

specific individuals often comprising a sizable percent of the diet (Smith and Reay 

1991). The effects of cannibalism on ecosystem stability are not well studied. If we 

allowed for cannibalism in our model, species would not be as dependent upon 

individual life stages because stages with less abundant prey would be able to persist 

by preying on younger life stages. Another consideration is that rare life stages may 

experience higher levels of predation, although this could probably be mitigated with 

a predation model that skews diet towards more abundant prey and relaxes predation 

on rare prey. 

Our results suggest that it would be instructive to increase life-history 

complexity in ecosystem models that account for fisheries-induced evolution, a 

selection response that primarily affects large adults rather than a more balanced 

spectrum of life stages. It would be interesting to examine how such size-selective 

fishing mortality, which would differentially affect some life stages but not others, 

influences species persistence and ecosystem stability. If adults experience higher 

mortality, then most of the offspring production would depend on younger, less 

fecund life stages. Additionally, if adults do not reproduce till the end of the year, as 

in our model, they will be depleting prey by preying on species that might be more 

effectively used by younger life stages while failing to contribute significantly to the 

next generation. 

An analytical approach might be enlightening. Our model is essentially a 

network where the links alternate between two states: a regular food web with weak 

links and a leslie life history growth matrix with strong and efficient links. 

Realistically, it would be a more continuous swap between the two matrices, and an 

even more accurate model would combine the two matrices into a single matrix with 
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link strength that varies on annual basis (for instance reproduction tends to be 

seasonal, so the fecundity links should be much stronger around that time). Hence, it 

would be worthwhile to use an analytical approach for a food web with seasonally 

variable interaction strength between the nodes.  
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Appendix A: Math 

A.1 Derivation Of β For The Beta Function 

 In order to get a beta distribution of the prey range values (ri), we used a 

beta distribution with the parameters specified in equation 1. The value for β is 

set so that the expected value for a species range is the connectance (C): 

𝐶 = 𝐸(𝑟𝑖) = 𝐸(𝑛𝑖𝑥𝑖)

= 𝐸(𝑛𝑖)𝐸(𝑥𝑖), since 𝑥𝑖 and 𝑛𝑖 are independent

=
1

2
𝐸(𝑥𝑖), since 𝑛 ∼ U(0,1)

=
1

2

𝛼

𝛼 + 𝛽
, since 𝑥 ∼ beta(𝛼, 𝛽)

2𝐶(𝛼 + 𝛽) = 𝛼
2𝛽𝐶 = 𝛼 − 2𝛼𝐶

𝛽 =
𝛼(1 − 2𝐶)

2𝐶
, and since 𝛼 = 1

𝛽 =
1 − 2𝐶

2𝐶

 

A.2 Prey-Averaged Trophic Position 

 Prey averaged trophic position for a single species can easily be calculated 

using equation 3 if you have already established the trophic positions of all of its 

prey, but this is more complicated for webs with loops, as shown in 

supplementary figure 1. The earlier equation is certainly more intuitive, but for 

practical purposes I will present an equivalent way of solving for prey averaged 

trophic position using matrix algebra (Levine, 1980). 

 The species connection matrix (eq. 2) is the primary way of conveying 

food web information, but here we will use a transition matrix instead. As you 

may recall, the connection matrix has simple binary links between species, 

indicating the presence or absence of predation. Transition matrices, on the 

other hand, also convey how much a predator relies on each species in its diet. 
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Each element qij of the transition matrix, Q, is defined as the fraction that species 

j consists of in predator i's diet: 

𝑞𝑖𝑗 = {
Fraction of predator i's prey that is species j,  if species i has prey;

0,  if species i is an autotroph.

=

{
 
 

 
 

𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑗∈𝑆

,  if ∑𝑎𝑖𝑗
𝑗∈𝑆

≠ 0;

0,  if ∑𝑎𝑖𝑗
𝑗∈𝑆

= 0.

 

 
Supplementary Figure 1. Prey-averaged trophic position (T2) of species in a food 

web with loops. 

 

Transition matrices (Q) are powerful because they describe how energy 

flows through a food web. By taking the kth power of the matrix (Qk), you can 

determine what proportion of a predator's diet came through exactly k trophic 

levels from each prey species. In other words, each element bij of B=Qk describes 

how much energy came through a food chain of length k from prey j for predator 

i. So element cij in the geometric series 

𝐶 = ∑𝑄𝑘
∞

𝑘=0

= 𝐼 + 𝑄 + 𝑄2 + 𝑄3 +⋯ 
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describes the average food chain length from prey j to predator i, weighted by its 

importance to the predator's diet (Orponen, 2005). So the sum of each row is 

equivalent to our desired prey-averaged trophic position (equation 3).  

 Conveniently, we can easily rearrange matrix geometric series:  

  (𝐼 − 𝑄)−1 = 𝐼 + 𝑄 + 𝑄2 + 𝑄3 +… (7) 

Which holds provided that lim
𝑘→∞

𝑄𝑘 = 0 (Watson, 2015). This is the case if all 

species have an autotroph in their food chain, so this calculation works for all 

biologically realistic food webs.  

 The end result is that we can use the following, computationally efficient, 

equation to solve for the prey averaged trophic position (T2i) for species i: 

𝑇2 = [

𝑇21
𝑇22
⋮
𝑇2𝑆

] = (𝐼 − 𝑄)−1 [

1
1
⋮
1

] 

A.3 Formal Proof 

 I will present a proof of the equivalence. See Levine (1980) for an 

alternative proof.  

A.3.1 Proof Of Equation 7 

 This part of the proof is analogous to the convergence of the geometric 

series 
1

1−𝑧
= ∑ 𝑧𝑖∞

𝑖=0 , for complex number z with |𝑧| < 1 (Watson, 2015). Let: 

𝐶𝑘 =∑𝑄𝑖
𝑘

𝑖=0

= 𝐼 + 𝑄 + 𝑄2 + 𝑄3 +…+ 𝑄𝑘 

So when you left-multiply by Q: 

𝑄𝐶𝑘 =∑𝑄𝑖
𝑘+1

𝑖=1

= 𝑄 + 𝑄2 + 𝑄3 +… + 𝑄𝑘 + 𝑄𝑘+1 

So  
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𝐶𝑘 − 𝑄𝐶𝑘 = (𝐼 + 𝑄 + 𝑄2 + 𝑄3 +… + 𝑄𝑘) − (𝑄 + 𝑄2 + 𝑄3 +…+ 𝑄𝑘 + 𝑄𝑘+1)

(𝐼 − 𝑄)𝐶𝑘 = 𝐼 − 𝑄𝑘+1
 

And similarly, if you right-multiply by Q: 

𝐶𝑘(𝐼 − 𝑄) = 𝐼 − 𝑄
𝑘+1 

So if lim
𝑘→∞

𝑄𝑘+1 = 0, then: 

𝐶(𝐼 − 𝑄) = (𝐼 − 𝑄)𝐶 = lim
𝑘→∞

(𝐼 − 𝑄𝑘+1) = 𝐼

𝐶 = (𝐼 − 𝑄)−1
 

A.3.2 Individual Body Mass 

 We want to find an equation equivalent to 

𝑚2 = 𝑍𝑇−1 

but where the value of the allometric ratio, Z, is split into components that 

describe the allometric ratio for each species in a predator's direct or indirect 

food chain. Since basal species have an allometric ratio of 1, we no longer need to 

subtract one from the trophic level: 

𝑚2 = 𝑍𝑇2

𝑚2𝑖 = 𝑍𝑖
𝑇2𝑖

𝑚2𝑖 = 𝑍
𝑖

∑ ∑ 𝑞𝑖𝑗
(𝑘)

∞

𝑘=0

𝑆

𝑗=1

𝑚2𝑖 =∏∏𝑍
𝑖

𝑞𝑖𝑗
(𝑘)

𝑆

𝑗=1

∞

𝑘=0

 

Where 𝑞𝑖𝑗
(𝑘)

 is the element in the ith row and jth column of the matrix 𝑄𝑘, the kth 

power of the transition matrix (Levine 1980). 

 At this point we want to modify the equation to take into account the 

allometric ratio of each node that the food path passes through. So we can set the 

allometric ratio to Z𝑗  instead of Z𝑖, to reflect the allometric ratio of the prey 

species rather than the predator: 
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𝑚2𝑖 =∏∏𝑍
𝑗

𝑞𝑖𝑗
(𝑘)

𝑆

𝑗=1

∞

𝑘=0

𝑚2𝑖 =∏𝑍
𝑗

∑ 𝑞𝑖𝑗
(𝑘)

∞

𝑘=0

𝑆

𝑗=1

𝑚2𝑖 =∏𝑍
𝑗

𝑐𝑖𝑗

𝑆

𝑗=1

 

This is equivalent to the row products of the hadamard power of the matrices: 

𝑀2 = Row Product

[
 
 
 
 

 (

𝑍1 𝑍2 ⋯ 𝑍𝑆
𝑍1 𝑍2 ⋯ 𝑍𝑆
⋮ ⋮ ⋱ ⋮
𝑍1 𝑍2 ⋯ 𝑍𝑆

)

∘(𝐼−𝑄)−1

]
 
 
 
 

 

which is easy to implement in MATLAB. 
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Appendix B: Code 

 The following code has been uploaded to DalSpace as electronic 

supplementary material. Our analysis code was written in R version 3.3.2 (R Core 

Team, 2016) and the R library tidyverse (Wickham 2017). 

B.1 Modified ATN Model 

 We modified a the ATN model from Tonin (2011) by extending it to include 

life history structure, as described in the thesis. We use MATLAB version 2016b (The 

MathWorks). 

B.2 Reformatting Data For Analysis 

 This R code inputs the simulation output and reformats it into tidy data 

(Wickham 2014). 

B.3 Analysis 

 This R code does all the analyses described in the main text. 

 


