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ABSTRACT

Mitigating the efects ofsound from mammade sourceis an important component
of marine conservatioof marine mammals, fish and crustace&wund travels from its
source, through the ocean theanimalsthat perceive itNaturalsound include wind,
waves, rain, ice, mammals, fish, and crustacddas-madesound includenon
impulsivesources such as vessels and oil rigs, and impulsive sources such as seismic
airguns, pile driving, and sonars. To protect animals ffesesound, safethresholds
are defined based thedailysooniderpaduré level{SEBSafe ng and
thresholddor impulsive sounds are about 1flfhose ofnonimpulsive To mitigate the
effects of sound on marine life we needétterquantifythe propeits ofmanmade
saurces and the differences betweson-impulsiveand impulsiveThis thesis provides

such information.

It is shown thataismic arrays have more energy above 1 kHz than previously
reported and therefore have greater effentsarine life.Sound levels from impact pile
driving dependn strike energypile penetratiorand the angle between pile and seabed.
These factors change the distance that must be monitopeotéatmarine life by a
factor of ten.

Thedaily SEL and the autocorrelatioof the oneminute sound exposure arsed
to describe the acoustic environmeéertiese metrics are used to idengfyironments
with and withouthumansoundsourcesandthedifference between different types of
soundscapes, especially coral rdedsn all others

Safe threshold$or sound exposurare based on the daily impulsive arah
impulsiveSEL Impulsive sounds changenonimpulsivelike over ranges of
kilometers, and at sontensitionpoint they should accumulate with then-impulsive
SEL Usingkurtosis as a measure of impulsiveness and a proplasstholdfor no
possible injurya new categorization oianmade sounds as impulsiver@nimpulsive
is presented that depends on the source and functional hearing group but not on range.

This workwill inform the development ofegulatory protocol$o help mitigate the

effects ofmanmadesound on marine life
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CHAPTER 1 INTRODUCTION
Contributionsof human sound sourcesttee marine soundscape are increasingly
regarded as an environmental effect that we have an ability to measure and control,
particularly with respect tcecovery of endangered spectsnaintaining the health of
commercial fish stockdVMleasuring baseline sound levels and mitigating the effects of
sound are i mportant el ements of the Canadi

(https://bit.ly/2Tcang® Management of noise is third on the list of actions that we can

take to help in the recovery of north Atlantic right whales (after reducing ship strikes and

fishing gear entanglemertttps://bit.ly/2BSeUIC). In the United States ocean noise

management is a priority for the National Oceanic and Atmospheric Administration

(https://cetsound.noaa.gov/reathp), including the establishemt of a network of Noise

Reference Stationéitps://bit.ly/2Ec8Pky. The European Union has identified annual

average sound levels and the number of days with impulsive sounds as indicators of
Good Environmental Stias within the Marine Strategy Framework Directive

(https://bit.ly/2NpksZ). In May 2018 the Global Ocean Observing System (GOOS)

added Ocean Sound as only the second ahiss#plinary essential ocean variable (EQV)

that observatories should measure and reptdd://bit.ly/2VisS70.

These higHevel management directives have led to increases in baseline
monitoring programs and dedicated sound measurement campaigns, bibétefadily
lower cost and higher performance autonomous acoustic data loggers. The programs in
turn have led to rapid growth in the available acoustic data that needs to be processed to
extract information from the raw data. There is a need for both sthoneldimetrics and

tools, and research to advance our understanding of how to collect, process, and interpret
1
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marine acoustic data. Basic acoustic metrics are defined in the recent ISO Standard 18405
(20173, and the Atlantic Deewater Ecosystem Observation Network (ADEON) project

in the United States b@roduced a Soundscape Specification and Data Analysis
Specification that go into are detail on what metrics to produce and how to compute

them (ttps://www.adeon.unh.eduiThese initiatives provide definitions for fundamental

measurements of sound levels, however, they do not proscribe sraastidetails
relevant to studying the effects of noise on marineslifeh as integration times for sound
pressure levebr metrics for describing how sounds evolve from impulsive te non

impulsive as they propagate.

Marine sound is aosircei mediumi receiversystemWe require knowledge of all
three components to understand the operation of the whole. Of the three, we know the
most about how sound propagates through the medium. Modeling of sound propagation
is well understood, especially for frequendietow 1 kHz where the physical scales of
our environment al data are within a few or
(Jensen et al. 20).1At higherfrequengesthe resolution of environmental data & n
longersufficientand t he medi umdéds effect become more
vessels, seismic surveys and pile driving is also below 1 kHz, so the analysis of the
properties of these sound sources has also been predominantly below 1 kHz.rHoweve
we know that many sound receivers in the ocean, especially pinnipeds and odontocetes,
only start hearing at 1 kHand abovd€Finneran 20150 We know very little about the
hearing sensitivity of most other marine life in terms of absolute thresholds as arfunctio

of frequency(to pressure or particle motigrgbility to distinguish sounds that are close


https://www.adeon.unh.edu/

in time or frequency, ability to localize sound sources, or their sensitivity to impulsive

versusnortimpulsivesoundgPopper et al2014h).

There is a mismatch between our knowledge of the sources, medium and receivers
in the marine sound system. This thesis provides new information on the characteristics
of human sound sources and proposesamr@lysistoolsand standardized rieds for

describing the sounds received by marine life.
This thesis is organized as follows:

1 The remainder of this Chaptetroduceghe effects of sound on marine life

and how we currently quantify them.

1 Chapter 2 introduces basic acoustic metrics, famge acoustic propagation

effects and the fundamental data analysis tools employed throughout the thesis.

1 Chapter 3 is a detailed analysis of-en@nth long seismic survey which
investigates the frequency content of seismic sounds as a function ofelistan
the auditory frequency weighted SEL, and how the data integration duration

affects results.

1 Chapter 4 uses a linear mixed model to analyze over 27,000 impact pile driving
strikes measured at ranges betweeni54000 m to determine how sound
levels chage with distance, pile inclination, strike energy and pile penetration

into the sediment.

1 Chapter 5 examines the SEL from 12 ldegn data sets. The results are used
to recommend a minimum protocol for measuring auditory frequency weighted
SEL: a samplig rate of 64 kHz and recording for at least 1 minute every 30
minutes. The error in the daily SEL estimates are determined by the
autocorrelation of the omminute sound exposures. The autocorrelation is also
shown to provide informatioon whethera soundcape isffectedby human

sounds.



1 Chapter Gxamines the transition of sounds from impulsive to-ingoulsive
and whether that mattersodi impulsivenessnetricsare compared by
computing their values usirgorttermand longtermrealworld dataas well
asnumerous synthetic and random data. Kurtosis is recommeasdtieel lzest
metric. It is proposed that the thresholdriorpossible injurys the auditory
frequency weighted sound pressure level given by the N(@683 TTS
threshold fomontimpulsivesound minus 50 dBlhe Chapter concludegth a
new categorization of sounds as impulsiveor-nomp ul si ve based on

functional hearing i@ups

1 Chapter 7 summarizes the results from all of the Chapters as a consistent set of
recommendations on how to record and analyze acoustic data for assessing the

effects of sound on marine life.

1.1. SOUND IN THE OCEAN AND THE RESPONSES OF MARINE LIFE.

Thereis a complex relationship between the oceans and human sdtietgceans
are critical to thénealth ofour planet and humankindstimates of the oxygen production
by marine phytoplankton range from-B0%o f t he wor | dTdeé consumpt. i
productivity ofthe ocean reliesroa healthyecosystem, including the role of large
predators (birds, whales) as nutrient recyc{Beman et al. 2014Doughty et al. 2016
Humans interact with the oceans in diverse w8ys.v ent een percent of t

humanpopulationobtain their protein from the oceémttps://bit.ly/2Gwxe83 Ninety

percent of world trade is carrieh the oceaUN 2017, carried by an ever increasing
fleet of merchant shipthat rosérom 38,000 vessels 2010 to 55,000n 2016.Control
of shippng lanes habeen a militarypriority since the days of the Roman Empirairty
percent of the worl@ oil and gas is obtained from offshore sosrce

(https://bit.ly/2SM6al) and offshore renewable energy installations are increasing world
4
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wide. Our activities in the ocean genenatestesof many typeshat may affect marine

life, includingsound(IMO 2014).

Soundis everywhere in the ocean andhi® most imprtant sensory modality for
mostmarine animalsThe acoustic landscape, or soundscape, is the sum of stbona
all sourceghat arrives at an animal or acoustic recordéfi/hen we analyze recorded
sound we characterizét with typical engineering measurementsuch as sound pressure
levels, weighted sound exposure levalsl the type and number of detectable sources
like ships, seismic airgun pulses and sounds from marine mammals. difesmeaning
of sounds to marine lifdepend upon tlehearing capabilities, time and spatial evolution
of the soundghe relative contribution of each source, the diredtioeach sourcand
how the sound has changed as it propagates through the envir¢rigerd1-1;
Jennings and Cain (2013NOAA 2016 Southall et al. 20198 A s o uneahidgalso
depends on the history of the listener with similar sounds and what the animal is
presentlydoing, which makes studies of the effects of sound challenfiligson etal.

2012 Hall et al. 2013
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Figurel-1. Conceptual views of a soundscajpeoundscape is composed of
6sounhdé physical measurements of the sound
how all of the sound sources overlap and are perceived by the listener [Figure from
(Jennings and Cain 20{13Right- Graphic representation of the multiple ocean sources
contributing to an ocean soundscape [Figure fiDAA (2016); figure was contributed
to Miksis et al. (2019)

Underwatesoundscapes are dynarrithey vary in space artine. The
contributors tahe inair soundscapthat humans are accustomedite generally within
several hundred meterstbie listenerUnderwater soundscapes are influenced not only
by local conditiongwithin 1 km)but also by disint sound sourcds1 0 6 s t o 10006 s
away) because sounds propagate long distances in \Magaraturalunderwater
soundscape is composed of contributifsosn natural abiotic or geophysical process
(e.g., wind, rain, ie), as well agontributions from biological sources (e.g., sound
produced from animal movement and vocalizations from marine mammals, fishes, and
invertebrategFigure 1; Pijanowski et al. 201.1n the las200 years humans have added
new soundto the ocean from machine driven shipping, seismic airgun surveys, pile
driving, oi l and gas ext-iag0osundifcwegteds onar s
by 3 dB / decade then became ste@hydrew et al. 2011 The development of seismic

6



airgun arrays to survesearch for oil and gdselow the seabed has created a new low
frequency sound sourcethgpln o ut t h e WNeuHliridebas. 206 2Nenvacelset

al. 2015.

Man-made soundourcesn the soundscapean affecimarine life thagenerates
sounds or listenm the same frequency bas@&ounds that are ecologically relevant to
marine animals include conspecific calls, predator and prey sounds, naturallg@inds
surfused for orientation, and echolocation calls from odonto¢€lask et al. 2009 It is
well known that marine mammals use soundidoaging and navigatio(Payne and
Webb 1971Au et al. 1974Madsen et al. 20Q4social communication®.g. Whitehead
and Rendell 2014 mothercalf bonding(Dombroski et al. 2016 andmating displays
(Payne and McVay 1971All fish and sea turtles have hearioggans and all individuals
measured to date respond to sound in some(Ragper et al. 20134bThere have been
multiple evolutons of sound production for courtship anamigtic displys in fish
(Parmentier et al. 20} Which implies a significant advantage is gained by being able to
produce soundreef fishare know tcselect or avoid settlement areas based on sound
(Parmentier et al. 20)5and it appears that both coral and fish lanvsethe intensity
and transient contenf the soundscape select settlement locatiofdéermej et al.
201Q Piercy et al. 2016 Thisshows that sound is important to these speciah kfie
stages. Invertebrates also produce and perceive sOyatkrs have a valve closing
response to sour(@harifi et al. 201Yas do scallops, which also make disive
6cough6é sound associated wi (DHoriceta. a0l ng
Snapping shrimgeneratdubblesby rapid movement of their clawisat are believed to

be useddr signalling and huntingrhese soundgry widely in space and time
7
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(Lammers et al. 20Q6Lobsters and many other crustaceans sense smahgenerate

sounds which are believed to be asatsxl with matindPye and Watson 20p4

Short and long term studies of passive acoustic data in conjunction with
observation of marine life behaviour have shown a wide range of infpactiuman
activities on marine life including:ikersion of migrating of bowhead whales around
seismic surveygRichardson et al. 1999a change in bowhead whale calling rates in
response to seismic survgackwell et al. 201} porpoise avoiding areas within 20
km of impact pile drivingTougaard et al. 2008randt et al. 2018 stress hormones
dropping in right whales when shipping was reduced after(@®afland et al. 2012
small boatsoundaffecting the settlement of lare@dish(Simpson et al. 20)6affecting
fishes orientation responsg@solles et al. 2018and increasing fish cortis¢stress) levels
(Spiga et al. 2012 seismic survegoundaffecting scallopsindlobsters months after
exposurgDay et al. 2018 alarm and startle reactions in fish and squid to seismic
surveys(Fewtrell and M€auley 2012 possible mortality of zooplankton exposed to
seismic surveyfMcCauley et al. 2017 a wide variety of responses bgriihic animals
to substratdornevibrations(Roberts and Elliott 20)7beaked whales responding and
stranding to naval sonaf®'Amico et al. 2009Tyack et al. 2011Deruiter et al. 201)3
blue whales changing behaviour and calliagternsvhen exposed to naval sonars
(Melcon et al. 2012Goldbogen et al. 20)®r seismic surveyd) lorio and Clark 201))
vessekoundrestricting the communication space for baleérals(Hatch et al. 2012
pile driving sounds injuring fisfHalvorsen et al. 2012&asper et al. 20)3blue

mussels changing their metabolic state when exposed to pile di8piga et al. 2016



anda marked difference beaked whalecholocation clicks in the presence of vessel

with echosounders runnirff@holewiak et al. 201)7

The Population Consequences of Acoustic Disturb@CAD) model was
developedo provide a framework founderstanishg what happens when human sounds
interfere withanimal® | i f e ¢ y NRE 2005 TocdmpleteR GAD models we
requireinformation onexistingpopulation sizes, fecunditynortalityand feeding rates,
thesoundsources, the behavioural effects that refsath exposurgand the
consequences of changes to these factors. Obtaining this breadth of information is a
challenge, even fdretterunderstod mammal populations such as the North Atlantic

right whales and Southern resident killer whalegp6://bit.ly/2TOAdL). Adding to the

complexity of modeling population consequenckacoustic effectare other sessors to
mammal populations, whided to the more generRlopulations Consequences of
Disturbance moddPCoD,Harwood et al. 201,&ing et al. 2015 Extensve research is
still requiredonthe effectof disturbing migrations, foraging, mating, and predapoey
detectionto serve as inputs to the modeléere is sufficient evidence in place now to
recommend measwg& mitigate auditory injury to marine mammals but not most other

marine life.

1.2. QUANTIFYING THE EFFECTS OF SOUND

The effects ofoundon humans and animdigstraditionally beervisualized as a
series of four zones or concentric rings aroundsthendsource Figurel-2). In Zone 1
the sound exposure leadsa@arotrauma injuryfor examples see Halvorsen et al. 2012b

or permanent threshold shift (PTS) meaning that hearing is damaged and does not
9
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recover. In Zone 2 the sound exposure causes a temporary threshold shift (TTS) where
hearing recovers from after some pérof time (e.g. the morning after a rock concert). In
Zone 3 thesoundsource masks the ability of an animal to hear other sonind
importancewvhich mayalsoimpact their fitness, such as soundg@datorsor prey,
environmentatues for navigation or homing, antbnspecificfor mating, socializing or
schooling In Zone 4 the sound is still audible and may evoke a behavioural response (e.g.
orientation, movement) or physiological response (e.g. stress hormbneseas of

Zones land 2 are generally small (radii on the ordeb@f 5000 m for Zone 2), and thus

only affect individuals of a population for short periods of tiffilee maskingarea(Zone

3)Yi s much |l arger, with radi:.@ up tohai006s of
may last for months. Thus Zonas3likely where the greatest effects on marine life occur
The significance of masking dfficult to quantifysince the importance of

communications for critical life functions are unknown in most cases, and we have

limited ecologicalunderstanding cé n i mabilityst@dcompensate for maskitigrough

adaptive strategig®ranstetter et al. 201&rbe et al. 2016

The zoneview of the effects ofioise does not accurately reflect the complexity of
auditory injury or impairment and the choices animals make to accept sound exposure for
other advantages such as feeding or md#titigson et al. 2012 When animals make the
choice not to respond to noise, they can stay in an area where very long sound exposures
result in auditory injury and impairment, and thus Zone 2 may be larger than Zone 4
(Hawkins and Popper 201 Similarly, a rapidbehavior&dresponss to sound can cause

animals to rapidly leave an area, which could result in dangerously rapid depth changes

10



(Jepson et al. 200Blix et al. 2013 or entering an area that results in strand®@gx et

al. 2006; in this manner Zone danbecome Zone 1.

Regulationghat specifya maximum value for biologically relevant indicator are
often imposean human activities to minimize injury to marine mammals and other
endangered marine lif&rbe 2013 Early marinesoundmitigation regulations were
bawd upon keeping the sound pressure level below the level associated with measured
injuries to the hearing of marine lifdIMFS 1995 NOAA 1998 FHWG 2008.

Evidence has since demonstrated that the total sound exposure level and the peak sound
pressure levels are better indicators of injury than the sound pressur&taublall et al.

2007, Popper et al. 2014bPeaksound pressure level is associateth immediate
physiological or auditory injury from extremely high amplitude souhdstypically

occur within very close proximity to a sound source. Injuries and impairment associated
sound exposure level are duedadterm exposure to high intensity sounds. These

injuries and impairments are far more likely to impact a greater number of individuals
over a larger spatial area than might be expected from iagsociatedvith peak sound
pressure levelAs noted abovéhe area over which injury occurs are much smaller than

the area over which effects from masking could accur

11
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Figurel-2. General principles cfoundexposure(afterDooling et al. (2015)

The sound exposure |[dUSEL)is a key acoustic metric considered in this thesis
because it is the predictor of auditory injury and impairment. iISEefined as 10 times
the logarithm (base 10) of the integral of the squared sound pressure over some period of

time, T, normalizd by a reference squared presguf@nd reference timéo:
0p pil C—. 1 00Qo 11

whereT, is normally 1 second amm is 1 pPa, so that the unitslof rare dB re 1 pPa?s.
In the far field of an acoustic source, pressure is equal to the particle médyjativided
by the characteristic impedance of the flyid)( and therefore the integral pf(t) is
proportional to the sound intensitylf), which has units of W/f If we integrate the

sound intensity over time, we obtain energy, and therefgféslused as a representation

12



of the sound energy in an acoustic event. By integrating over multiple events we can

obtain the total energy of those events.

The equal energy hypatkis(Eldred et al. 1956states that an equal amount of
energy(i.e. the same SELWWill have the same impact on hearing regardless wflbag
it takes to accumulate; i.e. a 190 dB re 1 pPa2-s SEL sound exposure will have the same
effect whether the sound pressure level is 190 dB re 1 pPafor 1 s or 160 dB re 1 pPa for
1000 s. The equal energy hypothesis has proven to be a powerful &pjoroac
guantifyingsoundexposure, howevethere aralso well known limitgoi t 6 s v al i di ty
(Finneran 2015a For instance, long periods between impulsive sounds allow some
animals to partially recover hearif@/ard 1997, sounds below a certaihreshold are
often treated as o6ef fect i v(S8tadepuandWoddbuaynd s ho
2009, and for some animals sounds that are too short do not cause the same effects as

longer but quieter soundgSmith and R. Gilley 2008

The fundamentals of hearing are the same for marine and terrestrial mammals in
that sounds enterg) the inner ear are transformed into neuronal signals by hair cells on
the basilar membrane. The stiffness and thickness of the membrane changes along its
l ength which changes the freqguency respons
to its apexMammals hear sounds at different frequencies when the nerves associated
with the hair cells that respond at those frequencies are stimulated. Noise induced hearing
loss occurs when the hair cells or their connecting nerves are physiologically or
physicallyimpacted by loud sounds which leads to a shift in hearing thresholds. This can

occur across a wide frequency range when exposed to a broadband impulse or only over a

13



narrower frequency range when exposed to an intense tonal signal. In cases of TTS the
damage is recoverable, but more severe damage may lead to hair or nerve cell death and
PTS(Le et al. 201). Sounds below the threshold of effective quiet do not induce any

physiological omeurological effects.

The fundamentals of hearing in fiahd sea turtleare different than in mammals.
The inner ears of all vertebrates contain otolith organs where bony resjibradiower
amplitude and different phase accelerationg/hich allow theanimals (including
humans) to sense physical accelerations and gravity. In the case of fish, the otoliths are
also sensitive to the acceleration from passing sound eegper et al. 2014bFish
hearingsensitivity is #ected by the relationship between a fishes swimbladder and the
inner ear. Itheswimbladder is involved in hearing it acts asamsformeithat converts
the pressure fluctuations from sound waves into larger ampliadiele motions sensed
by the otdiths which provides a higher sensitivity to soui@hnd and Hawkins 19Y.3
Since there are many modbgies of swimbladders in different groups of fish, there is
also a wide spectrum of hearing capabilities from groups that are only being sensitive to
particle accelerations to groups that have low frequency hearing that is more sensitive

than many marinemammalgqas discussed below)

Hearing mechanisms in invertebrate marine life are more poorly understood.
Decapod crustaceans have statocyst organs that allow the animals to sense acceleration
and gravity in a manner similar to the otoliths in vertebrathe statocysts are likely also
sensitive to accelerations from sound waves, however, only at very high intensities

(Popper et al. 2001Some crustacean species also have chordontal organs that can

14



respond to movement of the appendages or exoskeleton which in turn may allow them to
sense the substrate vibrations or particle accadaestissociated with sound waves close

to the sourcéEdmonds et al. 20)6Cephalods also have statocysts and sensory cells on
their skins that are sensitive to particle accelerg#ardré et al. 2016Samson et al.

2016.

Mammalsjncluding marine mammalsespond differently taorrimpulsive
sources of human sound, such as ships, compared to impulsive sound sources such as pile
driving and seisnti airgun surveygSouthall et al. 2019bFor the purposes of noise
induced hearing loss, impulsive sources are characterized by being broadband, short (< 1
second) and having a high peak pressures and short res{[iNfOSH] National
Institute for Occupational Safety and Health 1,988uthall et al. 2019bThehearing of
mammalds more sensitive tthe rapid variations of impulsive sound thamimpulsive
soundsThe rate of impulses is also critical to their impdctspulses that are 100 riis
10 s apart cause more damage than those closer together thag, thGrther apart
than 30 gErdreich 1986Henderson and Hamernik 198@mpulses preseaed during
high levels olhonrimpulsivesoundtend to cause higher levels of injury than either the
impulses ononimpulsivesoundon their own(Hamernik et al. 1974enderson and
Hamernik 198% In the marine envirament impulsive sounds include impact pile driving
and seismic airgun arraySonarpulses from Naval vesselshich stimulated extensive
research into the effects sbundon marine life aretypically grouped with th&on
impulsivesources due to their narrowband na{iN®AA 2001, NMFS 2018 Southall et
al. 2019b, butwere considered impulsive when reviewed by the European Union Task

Group onNoise(Van der Graaf et al. 20).2
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One of the differences in the effects of impulsive aogdimpulsivesounds on
hearing relates to how humans arlderanimals protect themselves from loud sounds.
Terrestrial mammals have evolved mechanisms to protect their hearing from loud sound
exposures, including tightening of the middle @4ung and Dallos 19732nd neural
attenuatior(Suga ad Shimozawa 1973j4Within the marine mammals we have some
understanding of the hearing mechanisms of toothed whales (odontocetes), but virtually
none about the large whales (mysticetes). Many odontocete species have a sophisticated
Gutomatic gain conpldéfor detecting echoes in the presence of their outgoing
echolocatiorpulses and those of other members of their g{dlgzhtigall and Supin
2008. They are able to learn to attenuate their hearing if a warning sound is received up
to 30 seconds prior to a loud souihhchtigall et al. 2018 For all mammals if there is
no warning of loud sounds the inner ear receives the full energy of impulsive sounds
which leads to increased damage comparewtempulsivesounds at the same energy
(Akay 1978 Finneran 20150 For terrestrial mammals impulses at a rate of 1 per second
are particularly damaginsince the acoustic reflex generally relaxes after 1 second, and
all impulses arriving at the inner ear have maximum efiétrd 1962 Buck et al. 1984

Danielson et al. 199)a

Theability of an animal to hear a sound is an important component of
understanding its possible effecthie frequencies that mammals are able to hear is
related to the dimensions of the basilar membriearing sensitivity is measured using
an audiogram thalepicts the relationship of the lowest amplitude sound an animal can
hearas a function of frequencffigure 1-3 shows a number of fish and marinammal

audiogramsGadiforms (e.g. @d) are examples of fish hoseswim bladders involved in
16



their hearingwhich allows themo sense acoustic pressure at relatively low levels.
Salmornds (salmon, troutare examples of fish with less developed pressurgtsen

hearing structures. Many other typeswarine taxa (e.g. the squid and mud crab in
Figure 1-3) havelimited sensitivity to acoustic pressuaad only sense sounery close

to the source where the sound field also haghatantialparticle motion component
(Popper et al. 2038The marine mammals have much more sensitive hearing than most
other marine life (lower minimum values Figure 1-3), and significant differences
between the species groups. Many of the groups are less senditégtncies below

200 Hz than the gadiforms and salmonids
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Figure 1-3. Examples ohudiogramsReferences: Marine Mammg(lisF-
Cetaceans, MEetaceans, HEetaceans, Phocid and Otariid Sgebouthall et al.
(2019b) Gadiforms and Salmonidd.adich and Fay (2013).oggerhead sea turtie

Martin et al. (2012h)Leatherback sea turtieEckert (2012, Mud crab- Hughes et al.
(2014) Longfin Squid- Mooney et al. (2010)

The hearing sensitivity ofreanimal group is accounted for when computing the
SEL by first applying an auditory frequency weighting functiéar human hearing we
us e twhee gohMNIOSHJLB9Y. Thefunctionis an inversion of the audiogram,
normalizedso thatit has a gain of zero at the frequencies of peak sensitfritgeran
(2016) analyzed existing audiogram data and other inputs to develop auditory weighting
functions thatepresenour understanding of the heariogpabilitiesof marine mammals

(Figurel-4, the sixth group, sirenians, are not shown nor are the sensitivitiedinsea

18



air). In order to assess the significance ofdhditory frequency weighted SEthey

must be compared to the appropriate thresh@dagaad et al. 201k Theauditory
frequency weighting functions and numehcesholds frontinneran (2016jhat were
incorporated intdNMFS (2018 are contained iffable1-1. The PTSthresholdsion
impulsiveand impulsive sounds are different, with the impulsive thresidisl8 dB
below those fononimpulsivesoundsTheaudiograms and threshold®re subsequently
published inSouthall et al. (2019h)with additional updates to the names of the marine
mammal hearing groups. TR®uthall et al. (2019kgroup names amgenerallyused

throughout this thesi
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Figurel-4. TheFinneran (2016inarine mammal hearing group auditory weighting
functions.Low frequency cetaceans include the large baleen whales (e.g. blue, fin and
humpback whales). Miffequeng cetaceans are the dolphins as webl@esrm and
beaked wmales that whistle and echolocate in the banell@00i 80000 Hz. High
frequency cetaceans are the dolphins, sperm wliagg spp)and porpoises that
echolocate in the range of 120 kHz. Otasgadls are sea lionsidfur seals, while phocid
seal s ar e c on €qudtens @rdhe dutvesare provisiezTallles-1.
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SEL

r e

Tablel-1. Summary of weighting function parameters and TTS/PTS thresholds.

t hr es hol ds?samd peak saundipBssurelevél thredhalds are in dB

1 Tabl®AE1l fromNMFS (2018). The SEL is accumulated over 24 ho8se
Tougaard and Beedholm (201®) an example of how to compute and apply the
weighting functionsThe MF group was renamed HF, and the HF group named VHF in
Southall et al. (2019b)

Non-impulsive Impulse
2a
(s14)
W(f)=C+10log,, 1 1 TS PTS Ts PTS
[H(f', -f;) } [1+(f/f1) } threshold | threshold threshold threshold
Grou a fi f c SEL SEL SEL peak SPL SEL peak SPL
P (kHz) (kHz) (dB) |(weighted)|(weighted)|(weighted)|(unweighted)|(weighted)| (unweighted)
LF 1 0.20 19 0.13 179 199 168 213 183 219
MF 1.6 8.8 110 1.20 178 198 170 224 185 230
HF 1.8 12 140 1.36 153 173 140 196 155 202
SI 1.8 4.3 25 2.62 186 206 175 220 190 226
ow 2 0.94 25 0.64 199 219 188 226 203 232
PW 1 1.9 30 0.75 181 201 170 212 185 218

Projecssthat are expected to generate sounds exogéte PTS threholdsat

required to mitigate possible effects on marine H®ject proponentase acoustic

propagation modeling to estimate the isopleth distance whegd-heur SELexceeds

the PTS thresholdrhey muswisually andor acoustically monitor the areaoundthe

activity and shut down the operation ipeotected animatnters thtarea (Zone 1 in

Figurel-2). Since the impulsive thresholds are 18 dB lower than the thresholds for

norrimpulsivesounds, a accurate understanding of the naturergfulsivesoundstheir

attenuation with range fro the source arnitheir effects on hearingre important to

properly mitigateghe effectof offshore activities.

The thresholds shown ifablel-1 arebased on many extrapolations and expert

opiniors. Two important issuesdentified for researchn marine mammalsre 1)

measuring the hearing of low frequency cetaceans and 2) deterthienagge from an
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impulsive sourcat whichthe waveforms nolonger hae the characteristics that make
themmore damaging thanreonimpulsivesound.More work is needed to improve our
understanding of the effects @fundon fish and invertebrates. For these groups we need
to develop auditorfrequencyweighting functions, determine the responses of different
groups to human sounds, and understand the differences in response between impulsive
andnonimpulsivesoundsThus, the study of human impulsive sources in-vweald

conditions is important for improving oability to predict and mitigate injury to marine

life from four human activities that occur worldwideshipping,sonars and

echosounderseismic airgun surveys and impact pile driviagmarine construction

1.3. QUESTIONS ADDRESSED BY THIS THESIS.

This thess analyzes data from impulsive amon-impulsivesound sources
recorded in the open ocean in order to provide practical guidance on how to measure and
guantify the SEL and assess the possible effects on marine life. The specific questions

addressed are:

1. How dothe unweighted and auditory frequency weighted 8&in seismic

airgun surveys and impact pile driving change wligtancerom the source?

2. What are the recommended recording protocols for measuring the weighted
SEL in terms of the hydrophone sengiies, sampling rate and duty cycle.

How does duty cycling affect the uncertainty in daily SEL estimates?

3. How do impulsive sounds transition to beimgnrimpulsivefor the purposes of
accumulating SEL? Is there an objective measure that may be used to
distinguish impulsive frormorrimpulsivesounds? Is there a practical threshold
similar toeffective quietbelow which auditory injury or impairment does not

need tdbe considered?
22



CHAPTER 2 BACKGROUND CONCEPTS

This Chaptelintroduces key terms, metrics, concepts and algorithms that are
employed throughout the remainder of the thd3s.most applications noise is defined
as any signal that interferes with a signal of interest, which implies noise is undesirable.
From the pint of view of a right whale, snapping shrimp, vessel and humpback whale
sounds are noise, while other right whales and killer whale sounds are signal. To seismic
exploration companies, airguns generate sounds of interest, while rain, wind and
mammals ar@oise. To deal with this perception bias, teavention used throughout
thisthesis s t he wuse of taboesticdpsriorbaticshsdgenerateddbye s cr i b e
geologic, biologic or anthropogenic sourc@oisedis reserved for acoustic
perturbationghatinterfere with detection of all sounds. Thus, noise includes acoustic
perturbationgienerated by flow around a hydrophone, movement of a hydrophone,
contact of a hydrophone by sediment or aniraalsvell aself-noise of a hydrophore

recorder system

2.1. AcousTic METRICS

2.1.1. Basic Metrics

This thesis uses the symbols and definitions for acoustic metrics from ISO standard
18405(1SO 2017a An important element of the standard is the distinction between field
guantities, such as sound pressure,levnel quantities that are 10 times the logarithm of
the field quantity, i.e. sound pressieeel

Definitions of the metcs employed in this thesis are provided able2-1. The

most important metrics employed in this analysis are
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1 peak sound pressure leve}p ) (note that the term peak SPL is deprecated).

7 sound pressure level over an averaging durdti@p 1), which may be referred to

as the SPL;

{1 sound exposure level over some pefigdLe,t), which may be referred to as the

SEL; and

1 weighted sound exposure levels(v) wher e &6 W6

s a frequen

frequency weightindunction The frequency bands enayied are the decidecade

bandg(see Sectio.1.2 and the marine mammal functedrinearing group

auditoryfrequencyfilters.

1 Kurtosis which is a measure of the impulsivenesstoha series

Table2-1. Definition of acoustic metrics used in this thesis.

Metric Definition Units
Ten times the logarithm of the ratio of the maximun
instantaneous sound pressure level in a stated freque
band attained by an acoustic pressure sigr{glfo the
Peak Sound reference valugy? (normally 1 pP3a
Pressure Level o i C ‘ﬂl' Ag o dB re 1 pPa2
(Lp.pd) n
Notethal ,«xi S a poor indicatc
because the peak signal duration is often very short. "
sound exposure level is a better indicator of loudnes
Ten times the logarithm of the ratio of the difference
between the maximum and minimum instantaneous s¢
pressure values in a stated frequency band over th
Peakto-peak duration of a signal of interepft) to the reference value
sound pressure pe?, (normally 1 uP3: dB re 1pPa?
level (Lp,pkpk) . . 2 A
010, F1mex{p0)- min(pco)|” 8
10) 2 u
| Po '
Ten times the logarithm of the ratio of the maguoare
Sound pressure pressure level in a stated frequgncy band over a tin
level (SPL oL, window (T) conta|n|n2g the acoustic event to a referen dB re 1 pPa?
Lon) ' value,po: (normally 1 uP3
pml C— —0Q0
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Metric Definition Units

The sound exposure level is ten times the logarithm of

ratio of the timeintegral of the squared pressure over t

analysis durationT), to the reference tim&, (normally 1
s) and reference square pressure vpdtignormally 1

Sound exposure HP&)

level (SEL, Le7) dB re 1 uPas

U p | — 0 Qo
AP C"Yr] n
where Tbis a reference time interval of 1 s. The SEL

represents the total acoustic energy received at sor
location during an acoustic event.

The sound exposure level computed over a tinmglow T
using a frguency weighted spectrum:

Weightedsound 0 rp p1i i C—B . T 6% QY Q0
exposure level whereW(f)is the frequency dependent auditory filter 9B re 1 uPés
(Lewr) function andS(f) is the power spectral density pft) over

a periedd sefcohdper Mdi Hon
divided into equalte8i z

Ten times the logarithm of the ratio of the distribution &
Meansquare function of nonnegative frequency of '_[heeansquare
sound pressure per unit
sountd ﬁrgssu_rte bandwidth of a sound having a continuous specttatie dB re 1 uPaHz
|Se|2/eecl, rfpn e reference square pressu'r‘e“vamfe(normally 1uP3:
picY® ;

The fourth moment of a time series divided bysbeare
of the second moment:

Kurtosi s > o no nfn Dimensionless

The third moment of a time series divided by the secc
moment to the power of 3/2.

Skewnes s 0 0 7 Dimensionless
55 Nho T e—- no nr

Difference, in dB, between the peak sound pressure |
Crest Factor and the sound pressure level averaged over some spe dB
period of time.
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Metric Definition Units

Harris Impulse Difference between the Impulsiene weighted SPL and
Factor slowtime weighted SPL (sddarris (1998) (IEC 2009)

2.1.2. Metrics Related to Frequency

The distribution of a soundadasspeggramver wi t h
whichistheabsol ute value of the Four iThesounda ansf o
spectrunis split into of adjacent frequency kdswhose width depends on the duration
of the time series input to the Fourier transfdthere are many excellenits on Fourier
Analysis; here | suggest Au and Hastings 2008 Principles of Marine Bioacoustics,

Chapter 6, since this text also has chapters on hearing, use and production of sound by
marine life and other background information relevant to the thesiscsubatte).

When using dsecond of input data, tlpectrumhasl Hz wide bandswhichyieldsan
estimate of th@owerspectral densitievel of the soundWelch 1967. It is common to
overlap thedata input to successive Fourier transforms by 50%, then average 120 of the
resulting spectra to obtain the pamute average power spectral densityese values
directly compare to the Wenz curves, which represent typical deep ocean sound levels
(Figure2-1, (Wenz 1962). Wenz averaged spectra over 200 secoand to be strictly
comparable current projects should tlee samealuration howeverjt has become

common practice to uskeminutedurationssince the results are very simikrd many
long-term autonomous recording programs have continuous data Bloaker than 200

seconds
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Figure2-1. Wenz curvegNRC 2003, adapted fronwenz (1962)describing
powerspectral density levels of marine ambisatindfrom weather, wind, geologic
activity, and commercial shipping.

In generamanmals perceive exponential incess in frequency rather than linear
increasegScharf 1970Saunders et al. 19y9Therefore, splitting the spectrum into 1 Hz
bands imotrepresentative of homanmals perceive sound; rathemalyzinga sound
spectrum wittbands that increase exponentiatiysize gives data that are more
meaningful. In underwater acoustics, a spectrum is commonly split into trettdse
1/10" of a decadevhere each decade represents-foldincrease in frequencyhe

centrefrequency of théth decdecadéband,fc(i), is defined as

M pd (2-1)
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