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Abstract

State space models require the ability to perform filtering, smoothing and prediction

during analysis. To perform these procedures fairly complex computational algo-

rithms are required. There is a consequent need for software tools to facilitate the

implementation of state space models. One of leading choices for computation data

analysis is the statistical programming language, R. And a key area where analysis

tools are lacking is for advanced state space models. This thesis outlines the develop-

ment of a comprehensive toolkit for nonlinear and non-Gaussian state space models:

the nLnG package.
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Chapter 1

Introduction

Throughout the field of statistics it is not uncommon for the problem being studied to

become larger or more complex than one may readily handle without computational

support such as analysis packages. There are many different programs available to

aid with this computational support and it has become important for statisticians

to have and make such resources available in the community. In computer science,

libraries and packages act as tools for programs and these tools work as collections

of resources and can consist of pre-written code, subroutines, classes, types, etc; each

part adds functionality to a program’s base structure. The technique of using libraries

and packages has also become very popular in the field of computational statistics

when looking to add the needed statistical functionality.

There are many areas of interest in the field of statistics, so it only makes sense

that the collections are usually grouped together by these areas of interest into li-

braries and packages. One such area where this problem occurs is that of analysing

dynamical systems, more commonly known in the statistical field as being a part

of time series analysis called; State Space Models (SSMs). SSMs solutions tend to

be computationally heavy and rely greatly on programs to produce results for prob-

lems of interest. While there are available libraries and packages for SSMs currently

available, these libraries and packages do not cover a full set of procedures. One

particular procedure worth making available for SSMs is that of smoothing for Non-

linear Non-Gaussian (NLNG) systems. These types of SSMs can be used in modelling

weather systems, stock markets and tracking animal behaviour (as we will show), and

a smoothing procedure is a commonly needed procedure when working with SSMs.

A SSM is made up of a two part system of equations: the state (or process) equa-

tion; and the observation (or measurement) equation. The state equation advances

1
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the system state forward through time, as the observation equation makes measure-

ments of the state available at given times. The state equation is a dynamical sys-

tem model that usually describes some real world phenomenon and the observation

equation describes the statistical properties of equipment/tools used to measure such

phenomena. An example that a SSM system could be used to describe is weather

patterns, where the location and how that weather system acts is described by the

state equation and the equipment used to locate that weather system is described by

the observation equation. Both the state and observations equations/models involve

random error (noise). In the weather system example the error/noise in the state

equation would be equivalent to the difference in expected location of the weather

system from a movement the model may not account for. The error/noise in the ob-

servation equation would be equivalent to the measurement error used by the satellite

to track the weather system. The goal in using SSMs is to make optimal estimates of

the full system state (or true system state). Optimal estimates of the true state are

produced by using the models, and the noisy observations; each contains information

about the true state of the system.

These developed libraries for analysing SSMs range across many of the available

language platforms for programming. One of these platforms is the statistical pro-

gramming language R available from the Comprehensive R Archive Network (CRAN)

(R Core Team, 2014). R is a fully available open source independent program that en-

courages users to create their own libraries/tools. These tools then can be submitted

and shared with the rest of the user community through CRAN or other contribution

sites, like R Forge (https://r-forge.r-project.org/). With many tool packages already

having been created for R (a number of which offer SSMs analysis methods), its

importance within the statistical community has grown quickly and it has become

the program of choice for many statisticians. This is because R is free to obtain,

has a large user base and it is verified/maintained by well known statisticians in the

community. It makes sense to use R for any new development of tools for statistical

programming, since any developments are shared through one of the mentioned meth-

ods above. Contributions to the larger community as a whole arises, as the software

becomes freely available for all to use.
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R has several packages for analysing SSMs. Most of these packages concentrate on

working with just SSMs that are of the linear Gaussian type. An area of SSMs that

still needs development for R is working with NLNG types of SSMs. The general types

of SSM problems that need to be solved are still the same in both the linear Gaussian

and the NLNG classes of SSMs; they consist of filtering, smoothing, prediction and

parameter estimation. Filtering requires that we can predict the state at the end of

the observation time interval, smoothing asks that we can predict the state in the

middle of the observation time interval and prediction wants us to predict the state

beyond the end of the observation time interval. Parameter estimation requires that

we can predict values for the model parameters and/or error structures that describe

the error/noise. In the R package developed in this thesis we will look to enhance

the ability to solve these problems for NLNG type of SSMs. The new package will

contain methods for solving the filtering and parameter estimation problems, and is

the first to include a method for solving the smoothing problem.

1.1 Motivating Example

One interesting example that occurs in marine ecology is that of tracking the location

of animal movements as they occur in their ocean habitat. The problem is that we

are unable to directly monitor animals for long periods of time without influencing

their behaviour in some manner. The ability to analyse movement tracks has been

aided greatly by technologies like satellite, archival and harmonic radar tags (elec-

tronic chips usually attached to the animal) which are able to produce measurements

of location. These methods of measurements are susceptible to errors or deviations

from the true location of the animal, this is known as observation error. The use

of these technologies has allowed the determination of animal movements over great

distances (Roland et al., 1996; Bergman et al., 2000; Block et al., 2001). Accounting

for errors, such as deviations in recording measurements from equipment can now

be incorporated into the observation equation. We want to determine the true state
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location from the measurement observations and/or we also wish to infer the ani-

mal’s behaviour through parameter estimation. This animal tracking problem is now

exactly the type of situation we wish to solve using SSMs tools.

Like all SSMs the animal tracking process is represented by a 2 part equation

system, first the animal movements are represented through a state equation and

second, a recordable measurement of the location for the animal is then produced

by the observation equation relating the system state. The observation equation is

generally just relative to the measurement to the true state by a relation function

and error term accounting for the shortcomings in the measurement equipment. It

is the state equation that controls the animals movement and behaviours. The state

equation must be defined in a way that mimics true animal movement. One way to

think about this is graphically. The movement locations are much like moving around

a xy-plane space (sometimes a xyz-space is used to add depth for an animal). Instead

of xy coordinates, we record locations in terms of latitude and longitude (see Figure

1.1 for an example animal movement track plot). We therefore need a 2-dimensional

(2D) system state to represent the animal’s position. It has been shown that animal

movement paths are statistically consistent with Random Walk Models (RWM), in

particular the correlated random walk model (CRW) or biased random walk model

(BRW) (Kareiva and Shigesada, 1983; Turchin, 1998). This leads us to use the 2D

RWM for representing animal movements as our state model.

Animal tracking problems require that one be able to reproduce the tracks by sim-

ulation, perform filtering and smoothing on the noisy observations and get estimates

of parameters. It has been shown that filtering and smoothing methods are able to

estimate true states and parameters for linear Gaussian SSMs (Nielsen et al., 2006;

Johnson et al., 2008). Since animal tracking data and models are typically not linear

and Gaussian in nature, methods have been developed for NLNG SSMs to account

for this problem. The first solution is using Markov Chain Monte Carlo (MCMC)

methods to estimate true states and parameters (Jonsen et al., 2005; Patterson et al.,

2008). The second approach, less popular, but quickly advancing is to use Sequential

Monte Carlo (SMC) methods (Ionides et al., 2006, 2011; Dowd and Joy, 2011) to get

estimates of true states and parameters. This approach presents advantages for both
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Figure 1.1: Recorded observations from a Atlantic grey seal on the Scotian shelf, supplied by the
Ocean Tracking Network at Dalhousie University, Halifax, NS. The initial animal position is marked
by the green point, while the movement path is the highlighted red line.

the linear Gaussian, as well as the NLNG type SSMs.

1.1.1 2D Random Walk Model

The RWM is a special case of time series models called autoregressive models, in

the animal tracking case we will be using a 2D, or bivariate version. The state xt is

represented by a 2 × 1 random vector with elements corresponding to the longitude

and latitude positions at the current time, t. The RWM here is comprised of an initial

starting point plus white noise and is of the following form:

xt = δ + xt−1 + vt (1.1)
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where the xt is the state vector at time t, δ represents the drift term and vt is the

state error at time t. The model contains a dynamic function that relates the animal’s

behaviour based on a set of parameters from the last time position to the new time

position and may have a much more complex error structures than that of just white

noise. For the rest of this thesis we will first produce synthetic animal tracking data

from a 2D RWM with a drift term and secondly use a more complex 2D correlated

RWM to model movement of an Atlantic Grey Seal from observed data. These will

be used to test the SSM algorithms.

1.2 Rise of Programming Tools for State Space Models

The creation of tools for SSMs was slow to develop and this was expressed best by

Durbin and Koopman (2001) when they wrote “In our opinion, the only disadvantages

are the relative lack in the statistical and econometric communities of information,

knowledge, and software regarding these models.”. As of 2001, the lack of software

available for analysing SSMs was still one of the limiting factors in working with these

types of models. Since then though, there has been an explosion of software tools

developed for analysing SSMs. These tools were developed using a wide variety of

programs, which includes R, MATLAB, SAS, C, S-Plus, STAMP, REGCMPNT,

EViews, GAUSS, Stata, RATS, gretl, Python, etc. Now there is obviously no longer

a shortage of available tools for analysing SSMs. The problem now is what algorithms

have or should be implemented in SSM tools? We shall now do a small review of the

functionalities of some of the currently developed tools, focusing mainly on the tools

available within R for SSMs.

1.2.1 State Space Models Tools in R

A general requirements list for packages for SSMs in R is given by Petris and Petrone

(2011). They suggested that packages must offer functions for performing filtering,

smoothing and forecasting (prediction) for both univariate and multivariate linear
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Gaussian SSM and pared the packages down to 3 that satisfied the requirement at that

time. The packages are Dynamic System Estimation (dse) (Gilbert, 2009), Dy-

namic Linear Modelling (dlm) (Petris, 2010) and Kalman filters and smoothers

for Exponential family state space models (KFAS) (Helske, 2012). These are the

packages that offered the most complete set of tools for working with SSMs. Petris

and Petrone (2011) also presented a number of other SSM packages for R that we

will cover in this review. Lastly the package Statistical inference for partially

observed Markov processes (pomp) (King et al., 2010) is the first library or set of

tools really aimed at working with SSMs of the NLNG framework and will be where

we finish up the review of current R packages available.

Let us start this review with packages that do not require the user to encode

the data in an object. The packages available that meet this requirement are the

base stats package and the package KFAS. In Table 1.1 below, the functions for these

two packages are summarized for analysing SSMs. Looking at the table; some com-

mon trends can be seen in the packages. Both packages contain a Kalman filter and

Kalman smoother function and each require only that the data be of ts type (the

base time series data type in R). When R is downloaded the base stats package in-

cludes functions for modelling, using the Kalman filter, smoothing data and making

forecasts. One disadvantage of the stats package is that it does not include many

functions for working with the SSM object within the package. This means that be-

sides the included applications, additional packages will be needed to add the missing

SSM applications. The package KFAS (Helske, 2012) includes a variation of Kalman

filters and smoothers, functions for calculating the log-likelihood of the model and a

simulation smoother.

The packages for R summarized in Table 1.2 are made in the object oriented

framework and require that the data be made into an object that is usable by the

functions. Table 1.2shows the functionality offered across the three packages dlm, dse

and State Space Models in R (sspir) (Dethlefsen et al., 2012). All three packages

offer at least one method for filtering and smoothing, packages dlm and dse each of-

fer methods for forecasting, Maximum Likelihood Estimation (MLE) and modelling

autoregressive moving average (ARMA) Models. All three packages have their own
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Processes base KFAS

kalman filter KalmanLike kf,00Index

forecasting perdict.arima NA

smoothing tsSmooth ks,efsmooth

MLE/LogLik NA flik,eflik0

simulating NA simsmoother

arima ARIMA NA

object ts ts

Table 1.1: Functions avaliable for the listed state-space methods for the ts data type packages in
R. Across the top the packages are listed, with the method listed down the left side. If the package
doesn’t contain a function NA is listed, else the function name is given for the method(s)

method of creating an object for the SSM. Looking closer at each packages’ finer

points; package sspir was created to give a formula language for specifying dynamic

generalized models, and is an extension of the glm formulation with the coefficient

allowed to be time-varying. The package requires that functions be expressed in one

of two ways, the first being for representing Gaussian SSMs and second for defin-

ing SSMs into a glm-style call. Package dlm was designed for doing Bayesian and

likelihood analysis of dynamic linear models (SSM). They have included some of the

basic techniques such as the MCMC output analysis for performing adaptive rejec-

tion Metropolis sampling, drawing from the posterior distribution of state vectors

and Gibbs sampling for the d-inverse-gamma model. Other functions included in the

package are mostly for working with the data object, though they do have a function

that will create a random dlm object (or more general a random SSM). The largest

of the packages that has been produced for R is dse. The packages main functions

are for creating objects for time input and output data, for a dse structure and for

model, data and estimation information. The general methods of the package are for

constructing ARMA and state space models, while the main analysis tools included

are for evaluating a model, simulating from a model and for smoothing a model.

It then offers methods for producing and evaluating forecasts and also methods for

performing model diagnostics.

The newest package released for working with SSMs in R that supports the NLNG

case models is pomp (King et al., 2010). It was created to provide inference on time
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Processes sspir dlm dse

kalman filter kfilter,extended dlmfilter NA

forecasting NA dlmForecast forecasts

smoothing kfs,smoother dlmsmooth smoother

MLE/LogLik NA dlmLL,MLE estMaxLik

simulating recursion simulate NA

arima NA dlmModARMA ARMA,toARMA

object SS,ssm dlm TSdata,TSmodel

Table 1.2: Functions avaliable for the listed state-space methods for the object using packages in
R. Across the top the packages are listed, with the method listed down the left side. If the package
doesn’t contain a function NA is listed, else the function name is given for the method(s)

series data using partially-observed Markov processes or SSMs, with the most impor-

tant feature being that it was designed for nonlinear stochastic dynamical systems.

pomp is the first of the tools we have looked at that openly tackled the problem of

NLNG models, a key new area of development for SSMs. Notice now the difference in

functionality that pomp offers compared to packages for R as summarized in Tables

1.1 and 1.2. pomp requires that the user be able to setup the object with the system

models and variables. The first major challenge is that the Kalman filter is not ap-

plicable for NLNG models, so it is replaced by the particle filter, multiple iterative

filtering (MIF) and a Bayesian particle filter by Liu and West (2001) in this package.

They also include a function for fitting models to data using nonlinear forecasting

for model prediction, as well as one to simulate from the SSM. Although not directly

related to SSMs, the next functions included are trajectory matching for fitting a

deterministic dynamical trajectory to a set of data and probe matching which fits a

model using summary statistics to data until the agreement between model and data

is maximized by some criterion. pomp has been the only SSM package for R that has

continued to build upon the framework, by later adding a second MIF application

(Ionides et al., 2011) and continuing modifications over time. With the development

of pomp, the ability to work with SSMs in the NLNG framework has taken a step

forward.

This ends the review of tools that are currently available for working with SSMs.

The goal here was to build up knowledge of what tools and functionality was included
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in existing software packages for SSMs. Any new creation of software should at

a minimum add to the functionality offered by existing software, relevant to the

analysis of SSMs. From the review, it can be seen the linear and Gaussian model

case has been covered for both univariate and multivariate SSM frameworks quite

thoroughly. Table 1.3 shows the existing packages in R all support working with both

the univariate and multivariate models (except for the base package). Therefore any

new packages for working with SSM should include this functionality to support the

linear Gaussian case. The tools that should be offered in the package for the linear

Gaussian model consist of filtering, smoothing, forecasting, estimating, calculating

likelihoods, simulating and diagnostic tests checking. This would represent a complete

set of analysis tools comparable to what current software offers and this set of tools

will be outlined in the next chapters.

1.2.2 Need For Nonlinear and Non-Gaussian Tools

The tools for linear Gaussian SSMs are well defined; while for the NLNG SSMs

case the opposite is true. Table 1.3 shows that support for NLNG models within

R packages is not as common, as only few packages offer options. Both stochastic

volatility models and dynamic generalized linear models are covered to a certain

extent, as they are probably the most popular NLNG models. Package sspir offers

the ability for univariate extended Kalman filtering and smoothing for the dynamic

generalized linear models with Poisson or Binomial distributions, while package KFAS

offers approximate Kalman filtering and smoothing for these model types. The release

of pomp has done much to provide a set of tools for working with NLNG SSMs that

was not available previously. The ability to work with NLNG models has seen some

improvement with the release of pomp. The package pomp offers the user filtering,

estimation and forecasting methods to work with NLNG SSMs, however the overall

framework of working with NLNG SSMs still has room for improvement. The new

package nLnG created for this thesis will look to develop one of these methods in

particular, smoothing for NLNG SSMs. The smoothing method that will be used in
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Library LG MLG NLNG

R-base v2.15.0 Y N N

R-sspir v0.2.8 Y Y Y

R-dse v2012.4-1 Y Y N

R-KFAS v0.6.1 Y Y Y

R-dlm v1.1-2 Y Y N

R-pomp v0.42-4 Y Y Y

Table 1.3: Libraries that support the model type are marked with a ”Y” and model type not
supported are marked with an ”N”. Where LG - Linear Gaussian Models, MLG - Multivariate
Linear Gaussian Models and NLNG - NonLinear and Non-Gaussian Models

the packages and in this thesis will be the particle smoother of Godsill et al. (2004).

This method has not been tackled for the NLNG case to date.

1.3 Thesis Overview

This thesis is structured in the following manner. Chapter 2 will act as a background

chapter for SSMs, in which all the theory for the general SSM filtering, smoothing

and parameter estimation problems will be introduced for the algorithms used for the

new package. The following topics will be covered:

• General SSM

• Kalman Filter

• Particler Filter

• Kalman Smoother

• Particler Smoother

• Maximun Likelihood Estimation

• State Augmentation

• Multipler Iterative Filtering
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In Chapter 3, we start by illustrating to the reader the details of creating new packages

for R and explain the methods used to create the new package nLnG. We then move

into a demonstration of all the functionality of the new software using synthetic RWM

data that represents an animal pathway. We then show the user how to encode SSMs

with nLnG, as well as the methods for extracting and changing parts of the encoded

model. Next the filters and smoothers are both demonstrated for nLnG and the

reader is shown how to set up the functions and process the object for the results

from the procedures. An appendix showing how the results for the synthetic RWM

data are equivalent under both the linear Gaussian and NLNG filtering and smoothing

methods of state estimation can be found in Appendix C. Finally the methods for

parameter estimation will be illustrated using one of the parameters from the synthetic

RWM used throughout the chapter. Chapter 4 will use the package nLnG to analyse

a real set of observed animal tracking data, showing the more general approach to

working with these types of problems with the new software. This thesis will conclude

with a summary of final thoughts in Chapter 5, as well with suggestions for future

work for the software.



Chapter 2

Background: State Space Theory

This chapter will present the general background information for the SSM concepts

being used in the new nLnG package. It can be broken down into three main parts.

The first part is filtering techniques, the second part is smoothing techniques and the

third part is parameter estimation methods. In each of these sections we will first

introduce the general algorithm for the technique, then detail each method used for

the procedure in nLnG (plus any methods needed for supplementary support). Below,

we will start by introducing the theory for SSMs in term of the general model form.

2.1 The General State Space Model

The general SSM is made up of a two part equation system: the state (or process)

equation, and the observation equation that relates the observations to the true state.

They are defined as follows:

xt = d(xt−1, θ) + vt, (2.1)

yt = h(xt, φ) + et, (2.2)

where

xt : state vector at time t

vt: state error vector at time t

d(·): state function describing the dynamics

θ: the dynamical parameters

yt: observation vector at time t

et: observation error vector at time t

h(·): observation operator function that relates xt to yt

13
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φ: observation operator parameters

The state (process) equation, xt, is a difference equation, where one or more of

the variables are stochastic making it an stochastic difference equation. The process

xt is also a Markov process meaning that xt only depends on the state at the previous

time, xt−1 using the dynamical state function, d(·), and dynamical parameter, θ, that

controls how the system evolves through time. The state, xt, then is related to the

observation equation, yt, by the observation operator function, h(·), and the operator

parameter, φ. The observation equation, yt, tends to resemble regression slightly,

though regression approaches would only treat the observation equation alone and

not account for the influence from the state equation. The goal with SSM solutions

is to estimate the state, xt, over time, as well as perhaps the parameters. The most

basic solution to this problem is to use filtering techniques to consider the observation

equation and the state equation at the same time. As a note, for convenience we will

only consider the dynamical parameters, θ, and drop the the use of φ going forward.

2.2 Filtering Techniques

The filtering solution is foundational in that it not only solves the issue of filtering,

but it is very closely related to the prediction problem, as well as the smoothing

problem. The filtering method also plays a role in the estimation of model parameters

for SSM and it will be the basis for the parameter estimation methods included

in the nLnG package. The filtering solution requires that we determine the filter

probability density, p(xt|Yt, θ). The filter probability density is defined in terms of

the current state, xt, given all observations up to and including Yt, such that Yt

= {y′1,y
′
2, · · · ,y

′
t}
′
. The solution for filtering is then broken down into a two step

procedure: 1) model prediction and 2) measurement update. The technique can then

be summarized into the general filtering algorithm for SSM as follows:



15

Algorithm 1 The general filtering algorithm for State Space Models

p(x0|Y0, θ) = p(x0)

for t in 1 to N do

Prediction Step

p(xt|Yt−1, θ) =
∫
p(xt|xt−1, θ)p(xt−1|Yt−1, θ)dxt−1

Measurement Step

p(xt|Yt, θ) ∝ p(yt|xt, θ)p(xt|Yt−1, θ)

end for

The filtering algorithm begins by setting the first filter density, p(x0|Y0, θ), equal

to some initial state conditions, p(x0), for the state, xt. The first filter density then

acts as a starting point and is passed to the prediction step. In the prediction step

the model is used to predict the state, xt−1, ahead in time and the predictive density,

p(xt|Yt−1, θ), is calculated by integrating the model “transition” density, p(xt|xt−1, θ),
and the filter density, p(xt−1|Yt−1, θ), at time, t− 1, with respect to the state, xt−1.

Statistical moments for the predictive state can then be calculated from the predictive

density. In the measurement step a new observation, yt, becomes available and the

prediction is refined by multiplying the predictive density by the likelihood of the

observation, p(yt|xt, θ), and that is proportional to the new filter density, p(xt|Yt, θ),

at time, t (following Bayes’ Theorem). Statistical moments for the filter state can

then be calculated from the filter density.

By using the above algorithm, the probability density function (pdf) for xt can

be determined using the information from the model predictions and observation

updates. As briefly discussed in section 1.1, there are a number of techniques for

filtering depending on the type of problem. There will be two filtering techniques

included as tools in this new package. The Kalman filter is the first of the two and

it is used for SSMs with linear systems and Gaussian noise structures. Since the

Kalman filter does not work for NLNG SSMs, a sample based version of the filter,

known as the particle filter, is used instead to handle these types of problems and it
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is the second of the filters included in the package.

2.2.1 The Kalman Filter

The Kalman filter is used to estimate the true system state from a set of noisy

observation measurements made about the state for a linear/Gaussian system. The

system model and the set of observations are used recursively to predict and update

the state and produce an optimal estimate of the true state (Kalman, 1960). Consider

the case for the general SSM from section 2.1. The Kalman filter requires that the

error structures for both the state, vt, and observation, et, equations be normally

distributed with a mean of zero. The state and observations noise must be specified

as vt ∼ N(0,Qt) and et ∼ N(0,Rt). Since vt and et are both normal random

vectors, the system state xt will also be a normal random vector. First let us state

the linear/Gaussian system:

xt = Dtxt−1 + vt, (2.3)

yt = Htxt + et, (2.4)

for use in the text below. The Kalman filter hence assumes that the values d(·) and

h(·) (Eqn. 2.1 and 2.2) are linear and are represented by the matrices, Dt and Ht, in

the above equations.

The Kalman filter algorithm follows the general filtering algorithm above in Al-

gorithm 1. The written algorithm for the Kalman filter is as follows:
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• Setup initial conditions x̂0|0 ∼ N(µx0 ,P0)

• For t = 1 to N − 1

Prediction Step:

* compute predictive mean: x̂t|t−1 ← Dtx̂t−1|t−1

* compute prediction covariance: Mt ← DtPt−1D
′
t + Qt

Measurement Step:

* compute filter covariance: Pt ← (M−1
t + H

′
tR
−1
t Ht)

−1

* compute Kalman gain factor: Kt = PtH
′
tR
−1
t

* compute filter mean: x̂t|t ← x̂t|t−1 + Kt(yt −Htx̂t|t−1)

• End For

The initial state conditions, p(x0), need to be normally distributed with mean,

µx0 , and covariance, P0, and have to be supplied as a starting point for the filter in

x̂0|0. The Kalman filter computes a mean and covariance matrix of the system state,

xt, at each step of the process. During the prediction step, the predictive mean,

x̂t|t−1, is obtained by running the model forward in time by applying the dynamics

matrix, Dt, to the previous filter state, x̂t−1|t−1. The forecast error covariance matrix,

Mt, is calculated by adding the previous filter covariance, Pt−1, with the state error

covariance matrix, Qt. In the measurement step, the new filter covariance is computed

by taking the inverse of the prediction error covariance, Mt, adding the observation

error covariance, Rt, related to the process by the observation operator matrix, Ht

(Equation 2.4) and taking the inverse of it. The filter covariance is then used to

calculate the Kalman gain function, Kt (Equation 2.2). The new filter mean, x̂t|t,

is computed by adding the prediction mean and a correction term, which is the

Kalman gain function multiplied by the difference between the observations, yt, and

the prediction mean with the observation operator matrix applied to it. The Kalman

gain function acts as a weighting factor for the correction term,

Kt = PtH
′
tR
−1
t . (2.5)
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The gain function is formed by combining the error covariance matrix, denoted as Pt,

and the observation operator matrix, Ht, with the inverse of the observation noise

error structure, Rt. The state estimates of xt is now conditioned on the observations

up to and including time, t.

The implemented algorithm for the Kalman filter is presented in section 3.4 and a

synthetic data set produced from an example animal tracking problem is also analysed

to show its functionalities. Let us now look at the other filtering technique, the particle

filter and show how its design is capable of handling NLNG types of SSMs.

2.2.2 The Particle Filter

The particle filter’s main goal is much the same as it was with the Kalman filter.

We wish to estimate the true state of the system, except now for models not only

of the linear Gaussian SSM class (Equations 2.3 and 2.4), but the NLNG SSM class

as well (Equation 2.1 and 2.2). To do that the particle filter needs a way of getting

at the time evolution of the pdf p(xt|Yt, θ) that does not involve the updating of a

mean and variance since the SSMs are no longer of the linear Gaussian form. To

solve this problem the solution was to use a set of samples, also called ensembles

or ‘particles’, to represent a distribution for the filter density. The sample has the

following relationship:

{x(i)
t|t , w

(i)
t } ∼ p(xt|Yt, θ), (2.6)

where {·} represents the collection of all samples or particles members of the state,

such that x
(i)
t|t , w

(i)
t is the ith member of the weighted sample drawn from p(xt|Yt, θ),

and “∼” refers to “is a draw from”.

The sample represents the distribution of the filter density at time t. It is made up

of particles of the state, x
(i)
t|t , and the weights, w

(i)
t . This generated sample set is used

by the prediction and the measurement steps of the filter algorithm to approximate

the joint distribution of the system state at the given time t. With the estimated state

distribution obtained at each time-step, relevant statistics can be calculated for the
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distribution if desired. This approach to filtering is very useful, as this technique can

provide exact solutions to NLNG SSM problems in the limit of very large sample sizes.

Note that there has been more than one method proposed for particle filtering. The

method we will focus on is the most common one based on using a SMC algorithm.

There is an excellent guide that illustrates many of the SMC concepts and theory

behind them by Doucet and Johansen (2011). I would encourage any reader with an

interest in SMC or MCMC methods to follow up there, as it presents the topics in an

easy to understand and well organized manner.

The earliest versions of the particle filter used a sequential importance sampling

(SIS) algorithm (Geweke, 1989), but SIS had a major flaw as weights could collapse

down to a single particle in the set (meaning that all weights are zero except for

a single particle), leading to what’s called particle degeneracy. Generally SIS just

does not work in practise. The solution to this problem was offered by introducing

a re-sampling stage in the measurement update part of the SIS algorithm. Thus the

most common method of particle filtering arose, Sequential Importance Re-sampling

(SIR). This particle filter method will be an important inclusion in the new package

of tools being created. The SIR filter functions as the fundamental process in the

various state and parameter estimation methods available in nLnG and we will look

at those in an upcoming section. Let us now introduce the SIR method in further

detail.

2.2.3 Sequential Importance Resampling (SIR)

The SIR algorithm for the particle filter has had a number of versions over time.

The Gordon et al. (1993) version of the algorithm was the first to introduce the

updated recursive Monte Carlo algorithm of SIR, where they showed its superiority

over a modified Kalman filter, the extended Kalman filter (EKF), when working with

NLNG SSMs. In the measurement update step of the filter algorithm, Gordon et al.

(1993) introduced the idea of re-sampling with replacement, which is accomplished
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by re-sampling {x(i)
t|t−1} with the probability proportional to the weight at time t,

w
(i)
t , or by what is called a weighted bootstrap. This allows the set of particles to

contain more of the most probable particles in comparison to the new observation

made available.

The version of the SIR algorithm being used in package nLnG will be from Ionides

et al. (2006). Ionides et al. (2006) version of the algorithm is very similar to the

version by Gordon et al. (1993), except that the re-sampling stage is performed using

a systematic updating version. The written algorithm is presented in the following

manner using the notation established in Chapter 2. The SIR algorithm follows the

general filter algorithm, Algorithm 1 presented in Section 2.2.

For each t over time span N :

1. Suppose recursively that {x(i)
t−1|t−1} has (approximately) a marginal density of

p(xt−1|Yt−1, θ)

2. Prediction: Make x
(i)
t|t−1 a draw from p(xt|xt−1 = x

(i)
t−1|t−1, θ). Then {x(i)

t|t−1} has

(approximately) the marginal density of p(xt|Yt−1, θ)

3. Measurement: Now draw x
(i)
t|t from {x(i)

t|t−1} with probabilities proportional to

the re-sampling weights w
(i)
t = p(yt|xt = x

(i)
t|t−1, θ). {x

(i)
t|t} has (approximately)

a marginal density of p(xt|Yt, θ),

The SIR algorithm can still face the problem that the number of unique particles

in the sample can diminish over time (or what is known as sample impoverishment).

One solution to this problem is to use a larger particle set, the trade-off being that the

Monte Carlo error is slightly greater for computed values and computation time tends

to be greater. The use of SMC methods aims at lessening the loss of unique particles

in the sample sets. A common procedure after a filtering solution is obtained for a

SSM is to run the filtered results through a smoothing process. This is done since

the filter uses only the past observations and for many studies the complete data set

is available for state estimation. This is described below.
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2.3 Smoothing Techniques

The smoothing solution that we will use for SSMs is called the forward-backward

smoothing algorithm by Rauch (1963). It requires that a forward sweep through the

observations is made by a filtering process first. The smoothing process is performed

using a backwards sweep through time estimating the state distribution at time,

t, considering all the observations up to some other later point in time, N . The

smoothing solution depends on having the conditional likelihood for the observations:

p(YN |x0,x1, · · · ,xN , θ) =
N∏
t=1

p(yt|xt, θ) =
N∏
t=1

p(et), (2.7)

where YN=(y′1,y
′
2, · · · ,y′N)′. The joint density function of the states is:

p(x0,x1, · · · ,xN |θ) = p(x0|θ)
N∏
t=1

p(xt|xt−1, θ) = p(x0|θ)
N∏
t=1

p(vt). (2.8)

These pieces are used to make up the conditional density function for the smoothed

posterior distribution in the following manner:

p(x0,x1, · · · ,xN |YN , θ) =
p(YN |x0,x1, · · · ,xN , θ)p(x0,x1, · · · ,xN |θ)

p(YN |θ)
. (2.9)

This can be rewritten with the above definitions as:

p(x0,x1, · · · ,xN |YN , θ) ∝ p(x0|θ)
N∏
t=1

p(xt|xt−1, θ)
N∏
t=1

p(yt|xt, θ) (2.10)

∝ p(x0|θ)
N∏
t=1

p(vt)
N∏
t=1

p(et). (2.11)

This gives us the probability density of the states, x0,x1, · · · ,xN , conditioned on the

set of observations, YN , and the parameter(s), θ. This is different from the filtering

result, where only one new observation, yt, is available at each measurement step. The

smoother solution considers all the observations simultaneously. For this reason the
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smoothing solution for SSMs often produces a smoother prediction of the true state

than the filter produces for an estimate. This is a result of having future information

available (the observation states) that is relative to the time of analysis, which allows

for inferences to be made about the system noise (Rauch, 1963). This feature alone

distinguishes the smoothing solution from the filtering solution for SSMs. The general

forward-backward smoothing algorithm has the following form:

Algorithm 2 The general forward-backward smoothing algorithm

Require: forward filter sweep to collect p(xN |YN , θ)

Setup initial conditions p(xN |θ) at the final t, t = N

for t in N − 1 to 0 do

p(xt|YN , θ) = p(xt|xt−1, θ)p(yt|xt, θ)
end for

The new package nLnG will include solution methods for both linear Gaussian and

NLNG SSMs for the smoothing problem. We will examine each of these smoothing

algorithms next.

2.3.1 Kalman Smoother

The Kalman smoother algorithm being using in nLnG was first introduced by Rauch

(1963). The Kalman smoother is akin to the Kalman filter in that it requires that

the SSM to be from the linear and Gaussian class of SSM. The system of equations

produced can then be turned into the following written algorithm for the Kalman

smoother with the following form:

1. Setup and run the Kalman filter. Store x̂t|t, Pt and Mt for t = 0, · · · , N .

2. Starting with the filter estimates at the final time x̂N |N , PN = PN |N . Run the

algorithm backward in time from t = N − 1 to t = 0.

(a) Compute an updated gain matrix K∗t = PtD
′
t+1Pt+1|t
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(b) Compute the smoother variance Pt|N = Pt + K∗t (Pt+1|N −Mt+1)K
∗′
t

(c) Compute the smoother mean state x̂t|N = x̂t|t + K∗t (x̂t+1|N −Dt+1x̂t|t)

The Kalman smoother follows the forward-backward smoothing algorithm represented

in Algorithm 2. After a forward sweep by the Kalman filter, the smoother is run back-

wards in time using the the final positions of the filter estimates as initial conditions.

For each time-step calculating the updating the Kalman gain matrix, K∗t , (Equation

2.12), the smoother error covariance, Pt|N , and the smoother mean, x̂t|N .

K∗t = PtD
′
t+1Pt+1|t. (2.12)

The Kalman smoother included in nLnG is fully demonstrated with the sample prob-

lem in Chapter 3.6. The Kalman smoother though, like the filter, lacks the ability to

handle models in the NLNG framework. There are modified versions such as the ex-

tended, and ensemble Kalman smoothers which aim at solving this problem. Where

the Kalman smoother is generally thought of as being a computationally efficient

algorithm, the NLNG smoothing algorithms are much more difficult and computa-

tionally heavy. The NLNG smoother choice for inclusion in the new package is an

SMC based method, the particle smoother, and is discussed next.

2.3.2 Particle Smoother

The particle smoother application for nLnG is a main focus for the development of

this package. Since no packages for R currently include an algorithm for the particle

smoother, nLnG will be the first to do so. The particle smoother algorithm replaces

the updating of means and variance with the computation of a set of samples, particles

or ensembles. This set of samples represents the joint distributions for the system

state using all available observational information. The smoothing algorithm requires

that on the forward sweep through the observations (running the particle filter) the

samples, {x(i)
t|t−1}, of the joint distributions, p(xt|Yt−1, θ), be stored for each timestep
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t. The algorithm being used for this inclusion of the particle smoother is from Godsill

et al. (2004). This algorithm again uses the recursive forward-backward algorithm

presented in Algorithm 2, though it uses an SMC version. The algorithm uses an SIR

method to calculate the weights, w
(i)
t|t+1, for sampling the smoother state, x̃t. The

written version of the algorithm has the following representation:

• Choose x̃N = x
(i)
N with probability w

(i)
N

• For t = N − 1 to 1

– Calculate w
(i)
t|t+1 ∝ w

(i)
t p(x̃t+1|x(i)

t|t , θ) for each i = 1, · · · , j

– Choose x̃t = x
(i)
t with probability w

(i)
t|t+1 when w

(i)
t|t+1 > α

• x̃1:N = (x̃1, x̃2, · · · , x̃N) is an approximate realization from p(x1,x2, · · · ,xN |YN , θ)

The particle smoother algorithm starts with selecting one of the saved state particles,

x
(i)
N |N , from running the filtering process (in this case the particle filter) as the starting

condition for the smoother, x̃N . The smoother then runs backwards in time starting

at N − 1 calculating the weights, w
(i)
t|t+1. The weights are defined by the following

equation:

w
(i)
t|t+1 =

w
(i)
t p(xt+1|x(i)

t|t , θ)∑N
j=1 w

(j)
t p(xt+1|x(j)

t|t , θ)
. (2.13)

In Equation 2.13 the weight, w
(i)
t , attached to particle x

(i)
t is applied to the state

transition density p(xt+1|x(i)
t , θ) and is then normalized by the collected sum of the

state transition densities over j. The weights, w
(i)
t|t+1, are then used to sample the

smoother state at time, x̃t, when that weight’s probability is higher than the randomly

generated uniform distributed value, α ∼ U(0, 1). Once the algorithm runs backwards

in time until t = 0 , the sample x̃1:N will be an approximate sample from the posterior

distribution, p(x1,x2, · · · ,xN |YN , θ). One of these samples is called a realization and

generally you wish to generate many of these realizations, as each of these realizations

are independent from each other. The realizations of the conditional distributions,
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p(x0,x1, · · · ,xN |y1:N , θ), are then used to approximate the smoothing distributions

so that relevant summary statistics can be computed.

The implemented algorithm for the particle smoother (Godsill et al., 2004) is

presented in Chapter 3.7. An example of its functionality using the synthetic animal

tracking data is demonstrated as well. The downfall of the particle smoother is that

when computing large numbers of realizations for large particle sets, the computation

cost becomes very large very quickly. The particle set for the smoother needs to be

the same size as the set used for the filter, since the smoother uses the saved filter

densities, p(xt|Yt, θ), to update the smoother posterior density. Generally running

larger number of particles for the filtering is a good idea, though the smoother only

samples one particle from the set to be the approximation at that time t. It is possible

to keep computational time reasonable for the smoother by keeping the particle set

size smaller for the filter, at the cost of possible sample impoverishment during the

filtering process. We have now introduced the filtering and smoothing methods that

are included in the new package, let us move to the last area of tools we wish to cover

for SSMs. SSMs generally require the ability to estimate model parameters, and we

consider this problem next.

2.4 Parameter Estimation

The estimation of parameters for the SSM is usually one of the main tasks when

examining a data set. A data set is usually a set of observed states of some phe-

nomenon, which need a state equation, or process model, identified for them and a

observation equation or model that describes the act of measurement. These models

need to have parameters that account for effects on the phenomenon of interest or in

our case, animal behaviours. SSMs require estimation of either the dynamics param-

eters or the statistical parameters from Eqns 2.1 and 2.2. The dynamics parameters

needed for the state and observation models are comprised of the dynamic parameter,
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θ, the observation operator parameter, φ, and the initial condition, x0. Other sta-

tistical parameters are comprised of the relevant quantities that describe the errors

associated with each of the state and observation models, in this example case it will

be vt ∼ N(0, σ2
v), et ∼ N(0, σ2

e). There are various methods of estimation for SSMs,

but we look only at the methods being included in the new package and detail how

each work. We show how the methods can estimate both the dynamic and statistical

parameters for the example SSM used Chapter 3. Maximum Likelihood Estimation

(MLE) will be covered for both the linear Gaussian and NLNG SSM cases. Note: the

MLE values returned in nLnG will not be an optimized solution, but will be in terms

of the likelihood of the data given the parameter(s) for the test. Then we look at the

two SMC methods for estimation based on using the particle filter as an ‘engine’ for

the procedure. Many of the estimation methods being included in the new package

are also covered by Wong (2012) and the reader may find it a good reference for the

methods presented here. First let us introduce the likelihood based methods that

both the filtering procedures in nLnG use to obtain estimates of parameters.

2.4.1 Maximum Likelihood Estimation (MLE)

The methods for MLE are based on the filtering solutions presented in Section 2.2.

MLE’s goal is to determine which parameter values are most consistent with the data

and those values will maximize the likelihood function. The likelihood function for the

two filters (Kalman filter and particle filter) are equivalent in the general formation

as shown below:

L(θ|YN) = p(YN |θ) =
N∏
t=1

p(yt|Yt−1, θ), (2.14)

where θ is the vector of unknown parameters. From this point the methods start to

differ. We will start by looking at the method implemented in the Kalman filter. It

uses the concept of innovations to construct the likelihood function. Innovations are
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defined as follows:

vt = yt − ŷt|t−1, (2.15)

where ŷt|t−1 = Htx̂t|t−1 is referred to as the one-step ahead prediction error. We also

need the innovations’ error covariance matrix. It is defined as follows:

Ft = HtMtH
′
t + Rt. (2.16)

So vt ∼ N(0,Ft) and if p(vt) is the density function of the innovations, the likelihood

function for the Kalman filter can be written as follows:

L(θ|YN) =
N∏
t=1

p(vt|θ). (2.17)

The log-likelihood function is then constructed as:

logL(θ|YN) = constant− 1

2

N∑
t=1

log|Ft| −
1

2

N∑
t=1

v′tF
−1
t vt. (2.18)

We convert the likelihood function into the log-likelihood function for convenience,

since working with the logged version of the function is generally much easier. Dur-

ing the Kalman filtering process innovations and the error covariance matrices are

calculated for each timestep, t. They are then used in the log-likelihood function to

calculate the likelihood of the parameters.

Let us look at how the likelihood function changes when using the particle filter

(SIR) for calculating the MLE in NLNG problems. Instead of calculating innovations,

the sample of particles and the observed data is used for constructing the likelihood.

From the general likelihood function Equation 2.14 above, p(yt|Yt−1, θ) is now the

conditional density of the observations, and can be calculated as:

p(yt|Yt−1, θ) =

∫
p(yt|xt, θ,Yt−1)p(xt|Yt−1, θ)dxt. (2.19)

Now p(yt|xt, θ,Yt−1) = p(yt|xt, θ) and can be calculated since the observation density

is based on the density of observation error, et, which is known. p(xt|Yt−1, θ) is the
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predictive density and we can drawn samples from it, {x(j)
t|t−1} ∼ p(xt|Yt−1, θ) of size

J . We can now approximate the right-hand side of Equation 2.19 as follows:∫
p(yt|xt, θ,Yt−1)p(xt|Yt−1, θ)dxt ≈

1

J

J∑
i=1

p(yt|x(i)
t|t−1, θ). (2.20)

Then by substituting Equation 2.20 into 2.14, we get the following likelihood function:

L(θ|YN) ≈
N∏
i=1

1

J

J∑
i=1

p(yt|x(i)
t|t−1, θ), (2.21)

and the log-likelihood takes the form:

logL(θ|YN) ≈
N∑
t=1

log(
J∑
i=1

p(yt|x(i)
t|t−1, θ))−NlogJ. (2.22)

So during each timestep t of the filtering run, the MLE is calculated by summing

the weights, w
(i)
t , from the SIR phase of the measurement update and then summing

them together to get a approximation of the log-likelihood for parameter estimation.

The log-likelihood methods for parameter estimation in the new package nLnG

will be illustrated in Chapter 3.8 for the synthetic animal tracking data set and when

examining the real observed data in Chapter 4 to estimate the parameters for the

unknown SSM. We will now move to estimation methods for parameters that are

based on running the particle filter.

2.4.2 State Augmentation

Another method that uses the particle filter for parameter estimation is state augmen-

tation. The goal of this method is to estimate the joint density function of the state

and the unknown parameter(s). This allows for the parameter vector, θt, to evolve

through time and provides an estimate of the parameter at that timestep (Kitagawa,

1998). The idea of this method is to augment the state vector to include the unknown
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parameter(s) in the following manner:

ẋt =

xt

θt

 . (2.23)

The parameter vector now evolves as θt = θt−1 + eθt , where the moments of eθt must

be specified. We can now write the augmented states in the following SSM form as:

ẋt = f(ẋt−1) + ėt, (2.24)

yt = g(ẋt) + et. (2.25)

The error term is augmented as well to include the parameter error, as well as the

state error as follows:

ėt =

vt

eθt

 . (2.26)

Now that we have the parameter(s) included in the augmented state vector, ẋt, we

can use the particle filter (SIR) algorithm to obtain the joint filter density for the

state vector. Note that the state evolution is now nonlinear, and therefore the particle

filter must be used. The sample or particle set now has this relationship:

{ẋ(i)
t|t} = {x(i)

t|t , θ
(i)
t } ∼ p(xt, θt|Yt). (2.27)

Although parameter estimation by state augmentation has the upper hand over

MLE by having far better computational times. MLE provides estimation for static

parameters while state augmentation estimates a time varying parameter and results

are not really consistent with MLE results. The problem with state augmentation is

that parameter values will not converge to static values. If the parameter(s) values do

not evolve through time (i.e. θt = θt−1, then the filtering will ”collapse”. The solution

to this problem is switching to using either multiple iterative filtering (covered next) or

another method like particle MCMC. An example of state augmentation is presented

in Chapter 3.9 with the synthetic animal tracking data set to illustrate this problem.
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2.4.3 Multiple Iterative Filtering (MIF)

The last of the parameter estimation tools to be included in the new package is

multiple iterative filtering (MIF). It is important to include a method in the package

where estimates of parameter values will converge to static values. MIF is one such

method (Ionides et al., 2006). MIF also uses the particle filter as the engine for

the procedure. The method uses the idea of state augmentation, but includes a

modification in that it decreases the variance of the parameter’s error term over a

specified number of runs of the state augmented particle filter (Ionides et al., 2006;

Wong, 2012). The goal of MIF is to use parameters evolving through time to produce

optimal estimates of time invariant parameters. By decreasing the variance of the

error term, the parameter value will converge to values that approximately represent

their corresponding MLE values as the variance of eθt gets closer to zero (Ionides et al.,

2006; Wong, 2012).

The algorithm used in package nLnG for the mif procedure was introduced by

Ionides et al. (2006) (a newer version of the algorithm was introduced in Ionides et al.

(2011)). The goal of the algorithm is to maximize the likelihood in terms of the

parameters, θ. The value that maximizes the likelihood is then the most appropriate

value to represent that parameter in the SSM. The written version of Ionides et al.

(2006) algorithm has the following form:

1. Select starting values θ̂(1), variance for starting values σ, a discount factor 0 <

α < 1, an initial variance multiplier c2, and the number of iterations T .

2. For n in 1, · · · ,M

(a) Set σn = σαn−1. For t = 1, · · · , N , evaluate θ̂
(n)
t = θ̂t(θ̂

(n), σn) and Vt,n =

Vt(θ̂
(n), σn) using the state augmented particle filter.

(b) Set θ̂(n+1) = θ̂(n) + V1,n
∑N

t=1 V
−1
t,n (θ̂

(n)
t − θ̂

(n)
t−1), where θ̂

(n)
0 = θ̂(n).
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3. Take θ̂(M+1) to be the maximum likelihood estimate of the parameter θ for the

fixed parameter model.

The algorithm begins in step one with setting the all the initial conditions for the

use of the MIF. The starting points for the parameter(s) evolving are selected, θ̂(1),

the initial variance multiplier, c2 (that inflates the variance of the parameters error

term in the beginning iterations of the MIF), the discount factor, α, (that controls

the level of decrease in the variance of the parameters error term on each iteration

of the filter) and the number of iterations for the filter to make M . In step two

the filter is iterated for 1 to N , decreasing the starting point of the variance, σn, by

the discount factor, α, to the power of the iteration number minus one. The state

augmented particle filter is then run over the time vector, t = 1, · · · , N , calculating

the following equations:

θ̂
(n)
t = θ̂t(θ̂

(n), σn) = E[θt|Yt]. (2.28)

Vt,n = Vt(θ̂
(n), σn) = V ar(θt|Yt−1). (2.29)

The algorithm uses the normal distribution with the moments shown above to update

the random walk and as σ decreases towards zero we can get an estimate of θ. At the

end of each of the particle filter iterations the parameter estimate, θ̂(n+1) is updated

by the parameter estimation at time n added to the sum of the different of parameter

estimate at time t and t− 1 weighted by the variance at time t. In step three at the

end of the MIF iterations the parameter estimate θ̂(M+1) can be considered to be the

MLE of the parameter, θ.

The one real downfall with the MIF method is that it is computationally heavy

as it runs the augmented particle filter (SIR) many times to get MLE estimates of

the parameter values, but it is likely more efficient computationally than MLE. The

main issue with particle filter MLE is that the likelihood is subject to Monte Carlo

variation from it being computed from samples. The implemented algorithm for MIF

is presented in Chapter 3.10 and an illustration of the functions use with the synthetic

animal tracking dataset is shown. Now that we have introduced the background for
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the applications to be included in nLnG. Package creation in R, the finer details of

package nLnG’s creation will be covered next. We will also look at the implemented

version of the algorithms for each of the tools in nLnG and see their use with the

synthetic animal tracking dataset.



Chapter 3

An R Package: nLnG

During this chapter the details of package creation in R are discussed as well as the

package developed for this thesis: nLnG. The tools available in the nLnG package

will be presented in detail for the reader. For each tool that is included in nLnG,

we will present the implemented pseudocode for each of the included algorithms and

also illustrate the use of the package throughout the chapter using a synthetic animal

tracking data set. Also, each of the parameter estimation tools in the package will be

demonstrated with the synthetic dataset, and a short discussion is included on how

the results for each method compare. Appendix C at the end of the thesis is included

to verify that the two filters and smoothers in the package produce matching results

when the SSM is a linear Gaussian system.

The synthetic dataset we will use to introduce the tools in the nLnG package will

mimic simple animal tracking data. The state vector xt will be equivalent to Equation

1.1, describing the longitude and latitude position of the animal. The state equation

and the observation equation for the problem are of the general form from Section

2.1, though the dynamics, d(·), and relation, h(·), functions are both only identity

matrices with the dynamics/relation parameter on the diagonals rather than having

more complex structure. The synthetic model will also include a drift term, δ. The

state equation has the following form:

xt = δ + xt−1 + vt (3.1)

The observation equation is then described as:

yt = xt + et (3.2)

33
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theta <-c(d=1.00 ,h=1.00 , drift =0.05 , Xlon .0=-60.5 ,

Xlat .0=44.0 , slon =0.15, slat =0.075 , sOb =0.25)

Listing 3.1: Parameter vector to be used for the example tracking problem.

Table 3.1 specifies the parameters for the synthetic tracking model. The compar-

ison showing the link between the mathematical symbols and the variables supplied

to the model in a named vector as shown in Listing 3.1 above. The values for the

identity dynamics and relation parameters are given as d=1.00 and h=1.00, as are

the standard errors for the longitude, slon=0.15, the latitude, slat=0.075 and for

the observation model, sOb=0.25. There is also a drift parameter included in the

vector; it is set as drift=0.05 for each coordinate. The initial state positions for the

longitude/latitude coordinates are set to -60.5/44.0 degrees respectfully, with Xlon

and Xlat tagged with .0 at the end. Now that we described the setup of the problem,

the reader can continue on to see how we encode the problem into the nLnG object in

Section 3.2. However, we will start with covering the topic of package creation in R

and giving some of the details of the creation of package nLnG.

Mathematical Symbol nLnG Variable

xt,long Xlon.0

xt,lat Xlat.0

θ d

φ h

vt,long slon

vt,lat slat

et sOb

δ drift

Table 3.1: This table shows the linking between the mathematical symbol in the state and
observations equations and the variables supplied in nLnG
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3.1 Package Creation

3.1.1 Introduction

The procedure for building packages for the statistical programming language R is

well documented on the CRAN website in their “Writing R Extensions” guide (R

Core Team, 2014). R packages necessarily consist of functions implementing the

relevant methods, sample data and examples that users can run, as well as users

guides. Historically one would go about putting the folder for the package together

manually, but packages have become so common within R that the developers have

included a function package.skeleton in the methods package that will prepare the

base structure of a package for the user. There is an excellent guide for using the

package.skeleton function by Leisch (2009) “Creating R Packages: A Tutorial”.

The function requires that the user supply a package name and the R source code

base for the package. It then returns a source folder for the package (named by the

package name the user supplied in your current workspace) containing the R code, a

base structure for all the manual (man) pages for the functions, a base description

file, a base NAMESPACE file, and a read-then-delete-me file with instructions on how

to add compiled code libraries to the package. R is compatible with a number of

programming languages to use as compiled code libraries from C, C++, etc. The

compiled code is placed in a new folder called src inside the package folder created by

package.skeleton. Compiled code generally offers an improvement in calculation

times over what would be required by the base R program. The compiled code has

the advantage that once complied it has memory allocated to it in advance, instead

of at run time or at initialization of the function. Some additional files and folders

are needed depending on which programming language is used for the compiled code.

See the extensions guide for more details.
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3.1.2 Linking Complied Code

Compiled code can be linked to R through a number of different methods, even by

using other packages. We will only give details of the methods used for writing

extensions for R mentioned earlier in the chapter. The methods contain details for C,

C++ and FORTRAN. Each of these languages can have compiled code embedded

into R, using interface functions .C or .Fortran. The interface function contains the

name of the function from the compiled code (which will be a void function) and

the data mappings from the R atomic vector nodes to the type for each argument of

the function, meaning the function assigns to each variable the type of data it will

be (i.e. integer, double, etc). For passing R objects to compiled code the user can

use either the .Call or .External function by supplying the function name for the

complied code and the lists of variables needed to be passed to the function from R

(note the data type no longer needs to specified here). For working with R objects

within compiled code the user can make use of the R Internals package. Instead of

specifying the type of each argument now, the R Internals package lets the user use

SEXPs (pointers) and it points the compiled code function to look at the spot that

R has the object and/or variables saved in memory. The pointers come in different

types called SEXPTYPEs, with each working to get different information types from the

location in memory. For working with C/C++ you call the R Internals package by

including Rinternals.h in the header of your program file. One of the big advantages

of using the R internals package is that the user can create, manipulate and return

R objects in/from their C/C++ code to your R code all by just using SEXPs. The

use of R Internals can be somewhat rigorous as the amount of information in the

functionality of it can be quite extensive. Other common R functions can be called

within C/C++ by including R.h in the header, while some of the special distribution

functions can be called by including Rmath.h. The headers lets C/C++ have access
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to a set of internal functions in R (many of which are coded in C), which helps

consistency and saves time.

3.1.3 Help Pages

The man pages for the package created by package.skeleton have only the base

structure of the help file. These files contain only the arguments for the function

and some sparsely filled in function uses, leaving the title, descriptions, examples,

etc. for the user to define. R also offers a section on writing R Documentation files

in their extension guide mentioned above to ensure problems can easily be searched

for. The .Rd files are very similar to LaTeX (a document markup language/doc-

ument preparation system) with a few exceptions mostly to do with how code is

handled by the interpreter, since code segments are more common in .Rd files. The

package.skeleton function will generate man files for every function, method and

generic defined in the package; this can lead to a large set of help files for the user to

write. It is best to combine as many of the common files together into one file, and

then use the Alias command to link the keywords to be searched for that will trigger

the help page to open. For example, when someone is searching for the way to define

an attribute of a function, the function’s man page is called instead of a man page just

explaining the use of the attribute (since that would cause a lot of redundancy in the

help files and saves programming time).

3.1.4 Package Management

The NAMESPACE file is a management system for the package. It controls which package

variables are made available to be exported and what variables need to be imported

from other packages. If the package has compiled code libraries, the top of the
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NAMESPACE file will contain a call to load the libraries using the function useDynLib.

The libraries are compiled when the package is loaded in R by calling either library or

require in the session. The last of the files generated by using package.skeleton is

the description file. It contains the basic package information fields such as version,

title, date, description, license, author, maintainer, depends, and collate. Many of

these are self explanatory, but an interesting one is the depends field which loads

the required packages that the package needs to run. The other interesting field is

the collate field; during installation its order determines the order in which the

code is installed. This is important when the user has a class that might depend on

another class being installed first, and collate lets the user set the order. The use of

the package.skeleton function is very useful in getting the structure of a package

prepared.

3.1.5 R-Studio

The next aid in package creation we will discuss is RStudio, which was created by

JJ Allaire and his team and is a general working environment for writing code (or

performing analysis) with R. This type of environment is generally referred to as an

integrated development environment (IDE). RStudio acts as an interface with R to

create a powerful working environment for users. It will not function without an active

R installation. RStudio lets the user simultaneously see their workspace, a command

line to run code, as well as multiple scripts from which code can be run directly

and then another window for plots, files, and help files making it a very efficient

environment for coding. RStudio lets the user create a project space for their R

code, which includes the option to create a package, or a package with a C++ library.

When create a package is selected, it asks the user to supply the list of R source code

for the package, which can be just browsed to, found and the directory added, or a
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new directory can be created to hold the planned developed code. RStudio then

acts much like the package.skeleton function to create a package folder in your

current workspace with all the same file generation as package.skeleton does. The

package can be installed, after some editing by the user to include the help files,

fill in the description file and make any edits that the NAMESPACE file requires. A

programmer that has experience with scripting languages can have the listed changes

made by running a script and the package installed from inside RStudio, (if not the

installation will fail without the changes being made first). I personally spent time

trying to figure out now to get the installation not to fail before it was realized that

a script was needed so that you could stay within the RStudio workspace to make

testing the package easier. RStudio was very new at the time of the development of

nLnG and the supporting documentation available was not as vast as it is currently.

Other than a slight learning curve to begin with, RStudio is a great environment

tool for either doing analysis or development with the R language.

3.1.6 Error Checking

Now that we have introduced the way in which the user can generate files and how

they can organize the folder structure for the package they are creating, we will take

a second to talk about checking the package for errors and installing it on a computer

system. A common way to work in UNIX and Windows based systems, is to run

commands from the command line or prompt. To run R from the command line for

development, the user should have the following programs: LaTeX, The Inno Setup

installer (the latest version), Rtools and the MinGW-w64 toolchain. Once the user

has the listed programs installed, the last thing the user needs to do is to add the

pathways for R (the user can add both the 32 and 64 bit bins) and Rtools to the

Windows environment paths, so that the system can recognize the programs when
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called from the command line. To perform a error test on the package, first navigate

to the directory where the folder with the package files is located. A check on the

folder can be performed to see if the package is installable by using the command R

CMD check -packagename. This command prompts R to perform a number of checks

on the package making the user aware of its correctness and generates a folder in the

workspace named -packagename.Rcheck. If the package fails and is not installable,

this folder will hold an 00install file only. This file holds the details of the error

information. If the package contains an src file for complied code to be attached,

the user can have R check it for correctness by adding --check-subdirs=yes to the

checking command above. Note that this also performs a check of the man page files.

If the user has not filled in any details to the man pages yet, this will cause the package

to fail the error check. The user can avoid this by just giving the titles for each of

the man pages. R expects to be able to install the man (help) files for the package at

the time of installation. Once the package is installable, the -packagename.Rcheck

folder will be filled with the above report files on the error checking. It will also

contain an R file with all the examples for the man files and a folder with the package

name that contains the installable files. Note: when using RStudio for development,

the same list of programs is needed as when working from the command line above.

The working environment just automates the command line calls (user can also set

the options for these under Build->Configure Build Tools...).

3.1.7 Installation

Now that the package can be installed, we can do this by running the command, R CMD

INSTALL -packagename, from the command line and the package will be installed into

the R libraries directory. By adding the suffix --build to the install command, R

will then build the .tar file. Once the user can creates the .tar file for their package,
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you can run R CMD check --as-cran on the file. This error checks the package

so that it is ready to be uploaded as a package to CRAN. The user can now give

their package to other users, or upload it to CRAN or a user community site like R

forge. These same commands used from the command line can be used inside the

RStudio environment to perform the checking, building and installing of the package

as well. Now that we have looked at how to create the files, perform error checking

on them and install the package to our computer, we can look at the different styles

of programming for package creation in R.

3.1.8 Programming for Package Creation

Let us next introduce the two common object-oriented programming (OOP) system

types within R. We need to first define what OOP classes and methods are, how

they work and how they function differently in the two settings. When users perform

analysis on data or models in R there is a good chance that they will want to perform

multiple tests with that data, or those models. Creating classes is a way to group

results together and save them in one space for both the data or models used, and

this acts as the definition of an object in computer science. Methods in OOP act as

functions that perform a specific calculation on a specific type of class and/or returns

results that are stored in the class object. For example, calling methods on the object

lets the user access parts of the attributes contained in the object for doing things

such as summaries, plots, etc. When a package is loaded into R, its set of generic

functions is loaded into R’s table of available methods. Functions already in R’s

method table can be overloaded with other available methods if they have the same

name as a method already in the table. To avoid conflicts, methods are looked up

by name and the type of class object the method is designed for. Now that we have

defined how classes and methods operate in packages, we can move on to defining the
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R function S3 definition

class(x) Get or set the class attributes of x

unclass(x) Remove class attributes of x

methods(generic.function) All available S3 methods for a generic function

methods(class="class ") Get all S3 methods for a particular class

is(object) Return object’s class and all super-classes

is(object, class2) Tests if object is from class2

str(object) Display the internal structure of an object

Table 3.2: The list of functions for working with S3 class and methods in R and the definition of
what each function does

two class types associated with R.

Classes in R are either done in the S3 or S4 class types. The S3 type class is

equivalent to just adding a name to an object. The object is expected to have the

correct information since there is no formal object requirements for the object to

conform to. This makes the S3 type of OOP much simpler to implement and gives

users quite a bit of freedom in the way they wish to use it. The functions to generate

the typical class and method objects for the S3 type are summarized in Table 3.2. One

function not mentioned in the table is NextMethod, which will implement a simple

level of inheritance (a method of establishing the Is a relationship between objects,

so that a class can pass attributes to child classes) between objects, given the user

must be using a vector as the class object. S3 classes are used in R for many things,

though it is a rather loose system. For those looking for stricter guidelines, the choice

should be the S4 type of OOP system. The S4 type of classes and methods conform

much closer to that of other OOP languages.

To define a class object in S4 the user uses setClass. The user defines a name for

the object class, specifies if it contains any other class objects and lists a representation

for the object attributes. The new object is created by a call to the new constructor

function and is defined at the end of the function for the given class. Methods are set
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R function S4 definition

setClass() Create a new class

setMethod() Create a new method

setGeneric() Create a new generic function

new() Generate a new object for a given class

getClass() Get the class definition

getMethod() Get the method definition

getSlots() Get the name and class of each slot

@ Get or replace the contents of a slot

validObject() Test the validity of an object

Table 3.3: The list of functions for working with S4 class and methods in R and the definition of
what each of the functions are for

using setMethod in S4. The user gives setMethod the function name the method is

intended for, the signature of the object class the method is meant for, and the call to

the function for the method to perform. The functions that the methods implement

in the package can be made to belong only to the classes by using setGeneric. The

user gives setGeneric the function’s name, the function call to the method being

set, and the keywords standardGeneric with the function name enclosed to have the

function set as part of package. Users unfamiliar with S4 will notice a difference in

the function to return parts of the object. Many objects use the $ to parse through

the parts of the object, but in S4 objects slots are accessed by using @ instead. The

rest of the functions for working with S4 objects are summarized in Table 3.3, which

gives the R functions for working with the S4 class type along with what each of the

function’s definition is.

Looking at the two tables, Table 3.2 and 3.3, you can see how much more complex

the S4 class is to work with compared to the S3 class. The S4 classes have functions

defined for getting the parts of the class or method, and for checking the validity of

an object that S3 classes do not have.



44

We will next look at some of the details that went into the creation of the nLnG

package.

3.1.9 nLnG Package Creation Details

The package nLnG is designed for the R language, so that it can be made freely

available to the statistical community. The package is built using the S4 style of

OOP system for a more formal design. Much of the basic design for nLnG is based

on the R package pomp by King (2012), though the internal structures have been

updated or edited to some degree for its use in nLnG. The main reason is that pomp

does not contain linear Gaussian tools (i.e. Kalman filter and smoother) and nLnG

has been adapted to feature these tools as well. Also, pomp has the added feature

of having a solution method for the prediction problem for SSMs. However that

problem is not considered important here, as the primary target is to develop the

smoothing solution with nLnG. For this reason, while following the same programming

principle, the class objects are quite different. For example, the pomp class object has

a skeleton attribute for performing nonlinear forecasting, while the class object for

nLnG has a smoothing density calculator attribute, smooth.den. A full comparison

of the methods available for each package can be seen in Table 3.4. From the table

you can see that pomp does not support any linear Gaussian methods, or smoothing

methods, but does offer an additional parameter estimation method, particle MCMC.

The most notable internal structure of pomp that nLnG makes use of is the way

user-supplied functions and their interface plug-ins are used for either discrete or con-

tinuous data. This was done to speed up the development time for nLnG, as normally,

development time can be long and tedious. The user-supplied functions themselves

are detailed in Section 3.2 and based on the versions used in pomp. The functions

have all been edited to some extent for the incorporation of linear Gaussian methods.
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Method nLnG pomp

particle filtering Y Y

Kalman filtering Y N

particle smoothing Y N

Kalman smoothing Y N

nonlinear forecasting N Y

MLE Y Y

mif Y Y

PMCMC N Y

Table 3.4: Method inclusion comparison for the 2 packages. Methods are listed on the left and are
included/excluded in the package if indicated by ”Y/N” in the column

The methods for the particle filter and MIF are based on methods available in pomp.

The particle filter included in nLnG has been edited to calculate filter variances and

particle quantiles, while the MIF has yet to be edited to incorporate these new quan-

tities from the particle filter (See the future work section in the Conclusion 5.3 for

further details on edits still to be made for nLnG). The rest of the methods, while

written in the same style of coding practice as pomp, are all new developments for

nLnG.

Having just described the methods that will be included in nLnG, let us now focus

on the internal structure of the package. The representation of the class nLnG can

be seen in the Appendix A. One will notice it contains many of the variables you

would expect for SSMs. There are variables for data, time, states, parameters and

name variables for the parts of the model. Note in particular the variables that hold

functions for the class. These functions are used in some combination for each of

the various methods of analysis in nLnG. A full description of which user-supplied

functions are needed for which methods is in the following section. The functions

are for either simulating the process or calculating the target densities. Only the

initializer function does not have to be specified by the user. The user needs only
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to include the initial conditions for the model in the parameter vector parms with a

.0 attached to them to indicate it is an initial condition. The object then parses the

values and creates a default initializer. The variables that are defined as nLnG.fun-

type functions take the user-supplied function and check if its a regular R function or

if the user has chosen to include a piece of native code.

Native code is just code written in another programming language that is meant

for decreasing the computation time for the assigned function. We will not demon-

strate using native code in this thesis, users can refer to the advanced topic guide for

pomp by King (2012) for a better description and guide on how to use this function-

ality.

Now that we have covered much of the nLnG object structure we can move on to the

rest of the package. We can see that each of the major application methods included

in the package returns an object class (see Listing A.2 for the exportClasses field

in the NAMESPACE file) with the results for the application method encoded as parts

of the class object. There have been many class methods designed for accessing the

various parts of each of the returned class objects and many of these are illustrated

later in this Chapter.

In the NAMESPACE file, we can see useDynLib attaches a large library of complied

code that the package makes use of. This code is compiled upon installation and

loaded into the environment when the package is called. Many of the NLNG ap-

plications in nLnG use complied libraries to help decrease the computational cost of

these methods, as SMC methods are generally computationally heavy. (Note: in the

NAMESPACE file the other packages from R that nLnG uses are all called by using the

importFrom command in the file). The packages that nLnG depends on are mvtnorm,

subplex and deSolve. These packages are loaded automatically when nLnG is called.

The description file for the package can be viewed in Listing A.3. The
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description file is where the programmer includes the title, description of the pack-

age, information about his or her self, specifies what the package depends upon (in-

cluding the version of R that is required), and sets the collate field for the order of

installation. The license field is the type of license the package uses. It must be

specified or the distribution of the package or the general use of the package may be

illegal. nLnG makes use of the GPL license for versions greater than 2, meaning that

its under the “GNU General Public License” holding for both version 2 and 3 of it.

We have now covered the details involved in the creation of a package for R, as well

as for the new package nLnG. Let us move on to demonstrating the use of nLnG by

showing how to create an nLnG object.

3.2 Defining an nLnG State Space model object and Functions

The nLnG object requires that the user specifies the necessary parts of the object

needed for running the tool they wish to use. Each of the tools in nLnG requires that

a different subset of the function list below is encoded in the object. The below-listed

parts of the nLnG object requires the user to encode the function that performs the

specific action, such as advancing the state model from time t − 1 to time t, being

carried out by state.sim, or calculating the observation density for the particle fil-

ter, as obsev.den does. Depending on whether you wish to simulate data or analyse

a set of observed data the user must specify a data.frame either with the named

observed data and their times, or a data.frame with the named variables and the

time specified for the data to be recorded from the simulation.

The list of functions in nLnG objects are:

1. state simulate function (state.sim) - advances the state model from time t− 1

to t (Equation 3.1)
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2. observation simulate function (obsev.sim) - converts the observation state to

the process state or yt to xt (Equation 3.2)

3. state density function (state.den) - Included for future work (see note below)

4. observation density function (obsev.den) - computes the weights for the particle

filter

5. state update function (state.update) - computes the predictive mean for the

Kalman filter

6. smoother density function (smoother.den) - computers the weights the for par-

ticle smoother.

Each of the functions listed above will be introduced further in this chapter, as

each function supports different procedures. The parts of the object needed for each

of the procedures included in nLnG are summarized in the following list.

1. To simulate model, use functions 1 and 2

2. To perform Kalman filtering, use functions 1 and 5

3. To perform particle filtering, use functions 1 and 4

4. To perform Kalman smoothing, use functions 1 and 5

5. To perform particle smoothing, use functions 1,4 and 6

6. To perform multiple iterative filtering, use functions 1 and 4

The state.den function is currently not needed for any of the tools included in this

release of the package, but was included for work that may be developed at a later

date (see future work in Chapter 5.3). The requirements for all the tools include the
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state.sim function. The state.sim function is the base for all the implemented

tools, as each tool requires that the user can simulate from the state model.

The list of variables the user needs to supply for an nLnG object is as follows:

• data.frame with named variables

• times vector; may be included in data.frame

• tInit initial state time

• parms parameter vector

• Some combination of state.sim, obsev.sim, state.den, obsev.den,

state.update and smoother.den

• optional initializer function to set the initial conditions

• optional covariance table covar and times for each covariate tcovar

• optional names vectors obsnames, statenames, paramnames, covarnames and

zeronames

The nLnG object requires the user to specify the times variable. It can be specified,

or a pointer to the times variable in the data.frame can be used, by times="time".

The user must specify the time for the initial conditions of the state tInit. The user

must also specify the parameters for the model parms in a named vector. The initial

conditions for the model are also included in the parms vector and are signalled by

attaching a .0 to the end of the variable name. The user then needs to supply the

appropriate function for the tool they wish to use (described above). The user can

optionally supply a function that sets the initial conditions of the model (but the

nLnG object can create one from the parms vector; explained above). The user can

optionally supply a covariate table for each time t by specifying covar and tcovar.

The user can also optionally supply the names vectors for any of a number of variables
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supplied (listed above; not required as long as the data is in named vectors). Now

that we have detailed the parts of the nLnG object that needs to be specified by the

user, let us see how to encode the example animal tracking SSM problem in package

nLnG.

3.2.1 Example Problem: State Model Definition

We first need to write the state.sim and obsev.sim functions for producing the

synthetic data. The state.sim function performs a single step in time, t → t + ∆,

where ∆ is the size of the time-step of the state model. The state model, Equation

3.1, for the synthetic tracking data is written as follows:

track.state.sim <- function(x,t,parms ,delta.t ,...){

##get dynamic parameter

d <- parms["d"]

drift <- parms["drift"]

##generate new states

xnew <- rnorm(n=2,mean=c(drift ,drift)*delta.t+

d*x[c("Xlon","Xlat")],sd=(delta.t*parms[c("slon","slat")]))

names(xnew) <- c("Xlon","Xlat")

return(xnew)}

Listing 3.2: state.sim function

The function is straightforward. When called it gets the state vector, x, at time t, the

parms vector containing the parameters (where you pull the appropriate parameter(s)

out as seen above, Listing 3.2), and the time-step, delta.t (which is set to 1 by

default). The function must return a named vector containing the updated state
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vector at time, t + ∆. Being able to set the variable delta.t to different values

lets the user vary the time in which observations are made. This is because the

measurements may not be recorded at the regular time intervals. For the synthetic

data, the state.sim function in Listing 3.2 implements the RWM. The parameters

values, d and drift, are extracted from the parameter vector. The new state vector,

xnew, is then generated by using the rnorm function. The mean is set equal to the drift

plus the previous state position, x[c("Xlon","Xlat")], multiplied by the dynamic

parameter, d, and the standard deviation, sd, is equal to the corresponding value

for each of the longitude and latitude errors. The names of the variables are then

added back to the new state vector, xnew (note the names returned in xnew must be

the same as the names of the input vector x), and the updated states are returned.

Now that we have defined the state function, we can move on to using the simulate

function to produce data.

3.3 Creating an nLnG Object and Simulating Data (simulate)

While we will be simulating data for the synthetic animal tracking problem to il-

lustrate the use of nLnG, in a general SSM problem, usually one starts with a set of

noisy observations of the state of the system and not from simulated data. Simulating

data from the model can be useful to verify the model is correct before proceeding to

applications using the observed data. A general analysis will follow using nLnG with

the real animal tracking dataset in Chapter 4.

The other function we need to define for simulating from the model is the ob-

servation model function obsev.sim. It models the measurement properties for the

recorded observations. We define the function in the following manner:
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track.obsev.sim <- function(x,t,parms ,...){

##get relation parameter

h <- parms["h"]

##get observed point and return

y <- rnorm(n=2,mean=h*x[c("Xlon","Xlat")],sd=parms["sOb"])

names(y) <- c("ylon","ylat")

return(y) }

Listing 3.3: obsev.sim function

The function is again very straightforward. When called, it gets the state vector,

x, at time, t, and the parms vector containing the parameters for the model. The

function generates new observations for the state, then the observed state vector, y,

is named, and returned. In the synthetic data obsev.sim function, Listing 3.3, the

relation parameter, h, is extracted and then the observed states, y, are generated by

using the rnorm function. The mean is set to the relation parameter multiplied by

the current state vector, x[c("Xlon","Xlat")], and the sd set to the observation

error, sOb. Using the names commands in R plays an important part in encoding the

functions for the parts of the nLnG object. Using names lets the user add the labels

for the data to the newly generated data, so that it is saved correctly in the object.

Now that we have the functions specified for simulating the synthetic data, let us

generate the observed animal track that we will be working with for the rest of this

chapter.

The first thing we need to do to simulate data is to create the object for the model.

Creating a nLnG object is done by calling the self-named nLnG function. The user

needs to specify a number of the attributes for the object and assign it to a variable

inside the R workspace. The variable will then be of class nLnG and hold all of the

attributes of the class. The R object created will hold the data and the user defined
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functions for performing the required procedure (Listing 3.2 and 3.3 in this example

case here). (Note: all the functions do not need to be specified at one time for the

object and they can be added as needed. We will show this as we add the functions

to track.ex as we need them for each procedure throughout this chapter).

The object of class nLnG is created as shown in Listing 3.4 below. Listing 3.4

shows that the call to the nLnG function is saved in the variable, track.ex. Then the

following list of nLnG object arguments are defined:

• data is set to a data.frame, with the time set from 1 to 50 and 2 empty

observed variables holders (ylon and ylat)

• the times argument is pointed to the data.frame

• the initial state vector is at time zero, tInit=0,

• the model parameters are set to the parameters introduced earlier (Listing 3.1),

parms=theta

• both the simulator functions (track.state.sim and track.obsev.sim) de-

tailed in Section 3.2 and 3.3

It is important to note here that the state.sim variable has a function wrapper that

needs to be supplied to describe the type of timestep it is taking. The three choices to

use are discrete.time.sim, onestep.sim and euler.sim. Each stepping function

represents a different method for advancing the state function. The onestep.sim

wrapper is for when it is possible to simulate the state from one time to the next.

The euler.sim wrapper is for when the state is advanced by a continuous number of

smaller steps through time (method for using continuous-time distributions for the

state function). The discrete.time.sim wrapper is for advancing the state from one

time to another by as many timesteps as needed (used when time vector is discrete,

but time-steps are uneven). For the example we will use the discrete.time.sim
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wrapper and the reader can refer to the man pages for state.sim and plugins for

more details on the rest of the wrappers. Using the discrete.time.sim wrapper

requires that the user specify the stepping function step.fun (the state model in

Listing 3.2) and the time-step between measurements, delta.t. In the example case

here, delta.t=1, even though the time vector is of equal size step (this will be of

more importance in Chapter 4 when the time vector is no longer even).

track.ex <- nLnG(data=data.frame(time =1:50 , ylon=NA,ylat=NA),

times="time",tInit=0,

state.sim=discrete.time.sim(

step.fun=track.state.sim ,delta.t=1),

obsev.sim=track.obsev.sim ,

parms=theta)

Listing 3.4: nLnG object: Creating an object of class nLnG to hold the example animal tracking

data

Now we have specified everything we need to simulate data from the model, all

we have left to do is run the simulate function with the nLnG object track.ex and

the parameters theta. For the purpose of this example we have set the seed of the

random number generator (RNG) as seed=1. This is so that we are working with

the same synthetic data for illustrating each of the tools in nLnG. The call to the

simulate function can be seen in Listing 3.5 below.

> track.ex <- simulate(track.ex ,parms=theta ,seed =1)

Listing 3.5: Simulating data using the simulate function for the example tracking problem.
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After calling the simulate function, the model will be simulated over the given

time frame (1 through 50 in the case here) and the generated states are recorded in

the data.frame under the data variable column inside track.ex. Now that we have

the synthetic animal tracking data we should visualize it by plotting the data. This

can be done by using the plot method included in nLnG. It produces one dimensional

plots of all the data saved in the data frame of the object against the time and can be

seen in the Appendix B. The plot function is meant to be a quick way of visualizing

the data and does not support higher level plots. Since the tracking data is 2D, we

will need to plot the longitude positions, Xlon,Ylon, against the latitude positions,

Figure 3.1: In the top plot of the figure, the simulated animal states (light blue) and observations
(red) are plotted against each other for the 2D plot on a map of the Scotian Shelf. Underneath the
2D plot, each of the longitude and latitude state and observation variables are plotted individually
against the timestep.

Xlat,Ylat, by a different method. The user can extract the data.frame from the

nLnG object by using the as.data.frame method on the object.
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After extracting the data and plotting it, Figure 3.1 shows that the true state

(blue line) is fairly consistent throughout the plot, while the observed state (red line)

is much less consistent (which makes since, the observation error was sOb=0.25). Now

remember generally for an SSM problem we would only have the observed states to

begin with. So that means really we would only have the observed states (red line)

in Figure 3.1 and one can see how much they can deviate from the true states (light

blue line). One of the main goals would be to eliminate the noise and recover the true

location of the animal’s position. To do this, the state and observation models would

need to determine parameter estimates, but since we are using a test case SSM, it is

possible to skip this for the time being and move right into the de-noising problem of

the state estimation. We will first address the problem through the filtering solution

methods in nLnG, starting with the Kalman filter.

3.4 The Kalman Filter (kFilter)

For the implementation of the Kalman filter (Kalman, 1960) for the package nLnG

the written algorithm presented in Chapter 2.2.1 can be transferred to the following

pseudocode in Algorithm 3.

The first thing in the algorithm is the command for the function kFilter and we

can see that it requires that the user supplies an nLnG object and the parameters.

Looking at the algorithm, the initial state, N(x0,P0), is the starting point for the

filter density, x̂init. The filter is run over the length of the observation data (minus

one) until t = N . In the prediction step, x̂t|t−1 and Mt are updated. After they are

updated a new observation becomes available, yt. The observation is then used to

refine the prediction of the state in the measurement step. The new filter covariance,

Pt, is computed and used to determine the Kalman gain function, Kt. The Kalman

gain function acts as the correction term to update the new filter mean, x̂t|t. The
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algorithm then calculates the innovations, vt, and the innovation error covariance,

Ft. These are then used to calculate the conditional log likelihoods, lt(θ), which are

then summed for the log-likelihood estimate. Now that we have finished looking at

the algorithm used for the implemented kFilter function, let us demonstrate its use

with the example animal tracking data in track.ex.

Algorithm 3 kFilter(object,parms,...)

Require: nLnG object, parms

x̂init ← N(x0,P0)

for t in 1 to (N − 1) do

x̂t|t−1 ← Dtx̂t−1|t−1

Mt ← DtPt−1D
′
t + Qt

yt ← yobst

Pt ← (M−1
t + H′tR

−1
t Ht)

−1

Kt ← PtH
′
tR
−1
t

x̂t|t ← x̂t|t−1 + Kt(yt −Htx̂t|t−1)

vt = yt − x̂t|t−1

Ft = HtMtH
′
t + Rt

lt(θ)← log det Ft − v′tF
−1
t vt

end for

The kFilter function requires that the user specifies the state.update function

for updating the mean in the prediction step of the algorithm. The state.update

function acts very much like the state.sim function (from Section 3.2) and it could

be considered more convenient for the user because they do not need to re-specify

the state.sim function just for the kFilter, with the sd set to zero. This is needed

because the forecast error covariance, Mt, is updated separated from the prediction

mean, x̂t|t−1, as seen in Algorithm 3. Looking at the state.update function in

Listing 3.6 for the example tracking problem, the user can see the function is very
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much the same as the state.sim function in Listing 3.2. The function takes the

same variables as the state.sim function does: the state vector, x, the time, t,

the parameters, parms, the time-step, delta.t and anything else the user needs to

specify is covered by the · · · in the input variables. In the code for track.update, the

dynamics parameter is extracted from the parms and the position of the state at time

t is saved in x. The update of the state/mean for xnew is still performed by using the

rnorm function, the mean is set to Equation 3.1 minus the state error and the sd is

set equal to zero. xnew is then relabelled with the variable names and returned to the

kFilter function. Adding the function to the track.ex object is done in the same

manner as adding the state.sim function to the object, by using one of the three

stepping functions explained in Section 3.2. Adding track.update to the track.ex

object, can be seen in Listing A.7. In Listing A.7, we use the discrete.time.sim

stepping function to add the state.update function to the track.ex object with a

time.step equal to one. Now that we have specified the parts of the nLnG object

needed for running the kFilter function, we can look at how to use the command.

track.update <- function(x,t,parms ,delta.t ,...){

##get dynamics matrix

d <- parms["d"]

##get position at x at time t

x <- x[c("X1","X2")]

##update the mean

xnew <- rnorm(n=2,mean=c(parms["drift"],parms["drift"])*

delta.t+d*x,sd=0)

names(xnew) <- c("X1","X2")

return(xnew)}

Listing 3.6: state.update function for kFilter
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The kFilter function requires the user to specify the nLnG object and the model

parameters, parms, shown in Algorithm 3. The function also requires at the present

time that the user supplies the state error covariance matrix, Qt, the observation

error covariance matrix, Rt, and the time-step, delta.t, (see future work in Chap-

ter 5 for details on planned changes). The specified error matrices for the example

tracking case can be seen in Listing A.7, with sError being the state error covariance

matrix and oError being the observation error covariance matrix. With the error

matrices specified we now have everything we need to call the kFilter command.

The call to the kFilter function for the example tracking data can be seen in Listing

3.7. The kFilter function has been given the track.ex object with the encoded

model, the parameter vector, theta, (shown in Listing 3.1), the two error matrices,

oError and sError, and the time-step, delta.t=1. The bare minimum call to the

kFilter will return an estimate for the log-likelihood for the parameters supplied to

the function. The prediction and filter means and variances calculated are recorded

for the procedure by turning on the logical statements for each, by setting it equal to

TRUE (as seen in Listing 3.7). The output from the kFilter function is then saved in

track.kf, which will be of class kFilterd-nLnG, for a Kalman filtered nLnG object.

track.kf <- kFilter(track.ex,parms=theta ,obsev.error=oError ,

state.error=sError ,delta.t=1,pred.mean=TRUE ,

pred.var=TRUE ,filter.mean=TRUE ,filter.var=TRUE)

Listing 3.7: Call to the kFilter function for the example problem track.ex, using the parameters,

theta, and recording the results for the calculations.

The results saved in track.kf can then be extracted by using methods for the

kFilterd-nLnG object. The log-likelihood estimate for the parameters can be ex-

tracted from the kFilterd object using the logLik method. Listing 3.8 shows the
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call for logLik on the Kalman filtered example tracking object, track.kf, and that

the log-likelihood estimate for the parameter vector, theta, is -26.38947 from the

Kalman filter.

> logLik(track.kf)

[1] -26.38947

Listing 3.8: Extracting the Log-likelihood estimate from the object from the kFilter function for

the example animal tracking problem using the logLik function in package nLnG

For further inspection of the Kalman filter results, the prediction and filter means

and variances can be extracted using the pred.mean, pred.var, filt.mean and

filt.var methods for the kFilterd object. Using these methods, we can use the R

package ggplot2 (Wickham, 2016) (using the package ggmap (Kahle and Wickham,

2013) add-on for ggplot2 to obtain the map and create the map plot) to create the

2D plot in Figure 3.2 of the true states (the state from which the synthetic data were

generated), observed states and the Kalman filter estimated states. Figure 3.2, shows

that the filter state (red) follows much closer to the state (blue) than to the observa-

tions (green) and does a good job of estimating the true states. The filter mean does

overreact to a number of the observations that are far from the actual state positions,

which is expected with the size of the observation error, (sOb=0.25).

The user also has the option of using the built-in filter diagnostic function,

filt.diag, to quickly visualize the filter results. In Listing A.8, the call to filt.diag

for the example tracking problem can be seen. In the call, the user supplies the

function with the kFilterd object, track.kf, gives the number of variables, two,

gives the type of filter, type="Kalman", and signals whether to produce a 2D plot

or not, Dimplot=TRUE. The reader can refer to Figures B.2-B.5 for the diagnostics

plots that the function produces. From the above and the Appendix B results, we

can say that the filter did a good job of recovering the true values (as expected with
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Figure 3.2: In the top plot in the figure, the filtered states (red), observations (green) and the
true states (blue) are plotted against each other for the 2D plot on the map of the Scotian Shelf.
Underneath the 2D plot, each of the longitude and latitude variables are plotting individually, with
each having the filtered states (red), observations (green) and the true states (blue) plotted against
the time

the example problem using synthetic data). Now that we have covered the Kalman

filter will we next move to introducing the particle filter included in nLnG.
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3.5 The Particle Filter (pFilter)

For the implementation of the particle filter for the package nLnG, the Ionides et al.

(2006) algorithm presented in Chapter 2.2.3 can be transferred to the following pseu-

docode in Algorithm 4. Algorithm 4 first shows the command for the pFilter func-

tion. The user supplies the function with an nLnG object, the number of particles,

Np, and the model parameters, parms. The pseudocode begins with showing that the

algorithm requires that the same three user quantities just listed be specified and that

Np must be greater than zero. The algorithm then sets up and creates an ensemble

from the initial state, with the size of the ensemble equal to the specified number

of particles, Np. The ensemble representing the state is then run through the filter

over t from 1 to (N − 1). In the prediction step, the state particles are advanced

forward in time by the transition density (the state.sim function acts as the tran-

sition density in nLnG). Next, in the measurement step, when the new observation,

yt, becomes available the weights, w
(j)
t , are calculated (performed by the obsev.den

function in nLnG). Within the complied function pFilter computations, the weights

are first normalized and used to compute the portion of log-likelihood estimate for

the parameters by summing the weights and dividing by the particle size, J . The

prediction mean and prediction variance are computed straight from the prediction

density ensemble, {x(j)
t|t−1}. The filter mean and filter variance are calculated by ap-

plying the weights to the prediction density ensemble. The weights also are used in

re-sampling the predictive density ensemble, by first being used to build a re-sampling

index, I, by checking whether the cumulative weight value, cp, is greater than a ran-

dom uniform distribution between 0 and w(j)/Np and second by applying the I to

the predictive density, {x(j)
t|t−1, w

(j)
t }. This creates a filter density ensemble, {x(j)

t|t },
of state particles that have high probability of being close to the observation. The

conditional log-likelihood estimates, lt(θ), are summed for a log-likelihood estimate,
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l(θ), of the parameter θ (all of these computations are performed inside the compiled

library pFilter computations for nLnG).

Now that we have described the SIR algorithm being used for the particle filter

in nLnG, let us illustrate how to use the function. We need to be able to calculate

the target density for the distributions so we first need to write a observation den-

sity model, obsev.den, and add the function to the nLnG object, track.ex. The

obsev.den function calculates the weights in the measurement step of the particle fil-

ter. The obsev.den function requires that the user supplies the observation position,

y, the state vector, x, the time, t, model parameters, parms, and the log variable in

the function call. The function is then specified by the user to calculate the density,

p(yt|xt = x
(j)
t|t−1, θ), of the observations, y, given the states, x. The function must

contain a R distribution density function for determining the density of the function

or it will not be accepted by the nLnG object. The function should return the cal-

culated density as its output. The obsev.den function for the tracking example can

be seen in Listing 3.9. The obsev.den function for the tracking example models the

observation process for the equipment recording the animals position (or Equation

3.2 specified earlier). Looking at the user specified function for obsev.den in

Listing 3.9, the operator parameter h is pulled out of the parms vector to begin

with. In this example, h is just a identity matrix with the parameter on each of the

diagonal entries. Next the incoming states (x), the observation (y) and observation

error (sOb) are made into the following matrices, the observation, Y, the state, xx,

and the observation covariance, cv. This is done because we have bivariate data and

we wish to use dmvnorm to calculate the multivariate normal density, fnew. Finally,

if the log variable is set to TRUE, the log-likelihood is returned, else the likelihood is

returned in the value, fnew, from the obsev.den function.

Now that we have the obsev.den function specified, we can add the function to

the track.ex object. Adding additional functions to the nLnG object is very easy

and simple to do. The user simply re-creates the nLnG object with the arguments to
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Algorithm 4 pFilter(object,Np,parms,...)

Require: an nLnG object, Np, parms.

Ensure: Np > 0.

x0 ← xinit, θ0 ← θinit

{x(Np)
0|0 } ← rep(x0,Np)

for t in 1 : (N − 1) do

{x(j)
t|t−1} ← p(xt | xt−1 = {x(j)

t−1|t−1}, θ) (state.sim)

w
(j)
t ← p(yt|xt = x

(j)
t|t−1, θ) (obsev.den)

w
(j)
t ← w

(j)
t /

∑
w

(j)
t (pFilter computations)

lt(θ)← log(Np−1
∑Np

j=1w
(j)
t ) = log p(yt|yt−1, θ) (pFilter computations)

x̂t|t−1 =
∑

j x
(j)
t|t−1

J
(pFilter computations)

σ̂xt|t−1
=

∑
j x

(j)
t|t−1

x
(j)
t|t−1

−(
∑

j x
(j)
t|t−1

)/j

J−1 (pFilter computations)

x̂t|t =
∑

j x
(j)
t|t−1

w
(j)
t∑

j w
(j)
t

(pFilter computations)

σ̂xt|t =
∑

j x
(j)
t|tw

(j)
t x

(j)
t|t−(

∑
j w

(j)
t ∗w

(j)
t )/

∑
j w

(j)
t∑

j w
(j)
t

(pFilter computations)

for j in 1 : J do

while Uj(0, (w
(j)
t /Np)) > cp, where cp =

∑
mwm do

set p = p+ 1, where p1 = 1

end while

set Ij = p, where I is the re-sampled index

end for (pFilter computations)

re-sample {x(j)
t|t−1, w

(j)
t } according to Ij

{x(j)
t|t } ∼ p(xt|Yt, θ)

end for

l(θ)←
∑N

t=1 lt(θ)

the function being the previous nLnG object, plus any new arguments the user wishes

to add to the object. The call to add the obsev.den function to the track.ex object



65

can be seen in Listing A.9. The first argument in the call is the track.ex object that

was previously used and the second argument is adding track.obsev.den in Listing

3.9 to the object as the obsev.den function. After performing the call in Listing A.9,

the obsev.den function is now part of track.ex object and we are ready to use the

pFilter function in nLnG.

track.obsev.den <- function(y,x,t,parms ,log ,...){

h <- parms["h"]

xx <- matrix(c(x["Xlon"],x["Xlat"]),ncol=2,nrow =1)

Y <- matrix(c(y["ylon"],y["ylat"]),ncol=2,nrow =1)

cv <- matrix(c(parms["sOb"],0,0,parms["sOb"]),ncol=2

,nrow =2)

##get density

fnew <- dmvnorm(Y,mean=xx ,sigma=(cv%*%cv),log=log)

return(fnew)}

Listing 3.9: obsev.den function

The pFilter function requires that the user supplies the nLnG object, the model

parameters, parms, and the number of particles, Np, for its use. Running a pFilter

function call with only the bare minimum requirements will result in it only returning

a log-likelihood estimate for the model parameters supplied for the observed states,

y. Measurement quantities can be turned on by logical statements in the call to

the pFilter function for the predictive mean and variance, filter mean and variance

and saved states for each time-step (which allows for quantile calculation). For the

tracking example model, track.ex, the call to the pFilter function is in Listing 3.10.

Looking at the call, the first argument is the track.ex object with all the functions

and data stored in it, next the parameters are set to the vector theta (introduced at

the beginning of this chapter) and the number of particles are set to Np=1000. The
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additional arguments are all set to TRUE to tell the pFilter function that we wish

to record the measurements and save them to the new pFilterd-nLnG object made

when the pFilter completes. In Listing 3.10, all the findings from the filtering will

be saved in track.pf. The new pFilterd-nLnG object is a subclass of the nLnG class,

so it inherits all the attributes from the nLnG class and has its own class methods

to access the different parts of the object. We can start looking at the results saved

in track.pf for the filtering. The main methods of diagnostics are the calculated

log-likelihood for the parameters and the effective sample size for the particles used

with the filtering.

track.pf <- pFilter(track.ex,parms=theta ,Np=1000 ,

pred.mean=TRUE ,pred.var=TRUE ,

filter.mean=TRUE ,filter.var=TRUE ,

save.states=TRUE)

Listing 3.10: Call to the pFilter function for the example tracking data, using the parameter

vector, theta and recording the all the quantities from the calculations.

The log-likelihood for the track.ex object is obtained by using the class method

logLik. The logLik method returns the summed conditional log-likelihoods (the

individual conditional log-likelihoods can be accessed using track.pf@cond.logLik

and its use is shown in Listing 3.11). The method is used by calling the logLik

function on the filtered object track.pf. The estimated log-likelihood for the model

parameters, theta, is -22.41174. This estimate of the log-likelihood is very close to

the estimate seen in Listing 3.8 from the Kalman filter (-26.38947), with the difference

between them being contributed to Monte Carlo error in the particle filter. In the

MLE section, we will show how the estimate for the parameters values are obtained

by profiling the likelihood for the value that maximizes the log likelihood.
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> logLik(track.pf)

[1] -22.41174

Listing 3.11: Extracting the Log-likelihood estimate from the object from the pFilter function

for the example animal tracking problem using the logLik function in package nLnG

The next thing we can do to examine the filtering results is look at the plot of

the effective sample size. The effective sample size tells us how many of the particles

were distinct during each step of the filtering. If the state or observations models

are incorrect for the observed data, it is very likely the filtering will fail (almost all

particle weights are near zero). The effective sample size can be plotted using the

effSampleTime method included in nLnG. The call to the method’s function can

be seen in Listing A.4. The user gives the function the filtered object (in this case

track.pf). The plot produced using effSampleTime can be seen in Figure 3.3. Re-

ferring to the plot, the number of effective particles is generally very high throughout

and only drops below 200 effective particles once (Note: number of particles was

1000), around the 24th timestep. This is very good but since this is only a test

problem and we know the true states, we should expect the effective sample size to

be large. While these are good measures of performance for the modelling, we still

might want to know more about the filter and predictive densities. The user can do

this by turning on the calculations as shown in Listing 3.10 by setting them all equal

to TRUE.

Turning on these logical attributes tells the pFilter function to record the calcu-

lations in the pFilterd-nLnG object. The predictive densities are represented by the

prediction mean and variance at each timestep. They can be extracted from the object

using the two pFilter methods pred.mean and pred.var. The methods return a ma-

trix with the variables as rows and the timestep as columns. The filter densities also
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Figure 3.3: The plot of the effective sample size over time for the track.pf, where the total
number of particles used was 1000

have a filter mean and variance recorded in the object and the methods for extract-

ing each are filter.mean and filter.var. When the attribute save.states=TRUE,

the filter densities for each time-step are saved and can be accessed in the pFilterd

object by using objectname@save.states. The returned object from save.states

is a list, with the time-step being the list number. These different measures gen-

erally are plotted to observe their behaviours. The user can extract the data from

the pFilterd object (Listing A.5) and construct plots using one of the many plotting

functions available in R.

For the example animal tacking data in track.pf, we have the advantage of

knowing the true state, xt, so we can easily compare the results of the filter. We can

create a plot like in Figure 3.4 of the pFilter results, by plotting the filter mean,
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the observations and the true states. The plot shows that the filter mean (red line)

is much closer to the true state (blue line) than to the observations (green line). The

observation error for the example data is 0.25, so one would expect the filter state to

trend more heavily towards the observations. But yet the pFilter result performs

Figure 3.4: In the top plot in the figure, the filter states (red), observed states (green) and the
true state (black) are plotted against each other to form the 2D plot from the particle filter results
on the Scotian Shelf map. Underneath the 2D plot each of the longitude and latitude variables are
plotting individually with the filter states (red), observed states (green) and the true state (black)
being plotted against the time

much better with the filter mean being, while not a perfect match, a very good

representation of the true state in this case. Since we had the true states for the
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example problem we created our own plot, though nLnG does contain a plotting

diagnostic function for quickly visualizing the filter results.

The user can call the filt.diag function on the pFilterd object produced from

the filtering. The call to the function for the example problem can be seen in Listing

A.6. The function gets the object, track.pf, the number of dimensions, 2, type of

filter, ="particle", and if a 2D plots should be created, Dimplot=TRUE. The plots

that filter.diag produces are Figures B.6-B.10 in Appendix B. From the above and

the appendix, it shows these results are fairly consistent with the results from the

Kalman filter in the last section. For the comparison of the particle filter and Kalman

filter results the reader can refer to the C.1 in Appendix C at the end of this chapter

(showing the two procedures are equivalent for the linear Gaussian SSM problem).

Now we have introduced the algorithms for the two filters included in nLnG and

seen them demonstrated with the example tracking data problem. We can now move

on to the next procedure included in nLnG, which is smoothing. We will first look at

the Kalman smoother.

3.6 The Kalman Smoother (kSmoother)

The Rauch (1963) algorithm, presented in Chapter 2.3.1, can be transferred to the

pseudocode in Algorithm 5 for the implementation of the Kalman smoother in pack-

age nLnG. Algorithm 5 skips over the the first step of the written algorithm which is

the Kalman filter, it is accomplished when the user runs the nLnG object through the

kFilter function to create the kFilterd-nLnG object. This is effectively perform-

ing the forward sweep for step one of the written algorithm and an kFilterd-nLnG

object is a part of the required information needed for the kSmoother function. The

rest of the user required information needed for the function are the filtered states

(x̂t,Pt,Mt) and the parameter set for the problem. The filtered states are saved in



71

the kFilterd-nLnG object by setting the prediction and filter means and variance

logical to true (for an example see Listing 3.7). Algorithm 5 shows that the function

call, kSmoother(), requires the user to specify the object with the saved information,

the parameters, parms, for the model, and any other information for the function,

· · · (this will be illustrated in the demonstration below).

The kSmoother function then performs the second step of the written algorithm.

In Algorithm 5, it shows that the function first pulls the filtered states (x̂t,Pt,Mt) out

of the object the user supplied. The procedure then runs backwards in time starting

at the second to last step, N − 1, and running till the initial time-step. During the

iterating for each step three calculation are performed. First, a modified Kalman

gain matrix is calculated by combining prediction variance and filter variance with

the inverse of the dynamics parameters. This modified Kalman gain matrix is then

used to weight the calculation of both the smoother variance, Pt|N , and the smoother

mean, x̂t|N . Once the time-step reaches the initial time, the function completes and

returned a new object of type kSmootherd-nLnG, with the saved results. Now that

we have introduced the algorithm, we will illustrate the use of the function with the

example tracking problem.

Algorithm 5 kSmoother(kFilterd-nLnG object,parms,...)

Require: kFilterd-nLnG object, filtered states(x̂t,P,M), parameters

P ← pred.var(object)

M ← filt.var(object)

x̂t ← filt.mean(object)

for t in N − 1 to 0 do

K∗t = PtD
′
t+1Mt+1

Pt|N = Pt + K∗t (Pt+1|N −Mt+1)K
∗′
t

x̂t|N = x̂t + K∗t (x̂t+1|N −Dt+1x̂t)

end for
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The kSmoother function does not require the user to specify any additional tran-

sition or density functions for the procedure. The call to the kSmoother function

for the example tracking data can be seen in Listing 3.12. It shows the function

requires that the user supplies a kFilterd-nLnG object and the parameter vector, in

this example case we have given the function the track.kf object from the Kalman

filter result and the parameters vector, theta. We also have turned on the two logical

attributes to record the smoother mean and variance with smoother.mean=TRUE and

smoother.var=TRUE respectively. It also shows in Listing 3.12, that we have saved

the results of the kSmoother function in the variable, track.ks, it will now be of

class type kSmootherd-nLnG. Now that we have shown the reader how to use the

kSmoother function, let us illustrate how to access and perform diagnostics on the

results saved in the object created by the smoother function, track.ks.

track.ks <- kSmoother(track.kf,parms=theta ,

smoother.mean=TRUE ,

smoother.var=TRUE

)

Listing 3.12: Call to the kSmoother function for the example tracking data, using the parameter

vector, theta and recording the smoother mean and variance.

The functions smooth.mean and smooth.var are methods for the kSmootherd

object class to extract the saved smoother mean and variance from the kSmootherd

variable. In Listing A.10, it shows that the two functions are called on the object con-

taining the Kalman smoother results, track.ks. By extracting the smoother mean,

the 2D plot in Figure 3.5 can be created of the true state (blue), the observations

state (red) and the smoother mean state (green). Figure 3.5 shows that the Kalman

smoother mean state (green) again follows much closer the true state (blue) than to

the observation state (red). This again shows that the estimated state follows the true
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Figure 3.5: In the top plot in the figure, the smoother states (red), observed states (green) and
the true state (blue) are plotted against each other to form the 2D plot from the Kalman smoother
results on the Scotian Shelf map. Underneath the 2D plot each of the longitude and latitude variables
are plotting individually with the smoother states (green), observed states (red) and the true state
(blue) being plotted against the time

state of the animal much more closely than the observed location of the animal. It is

safe to say that the procedure has done a good of recovering the true state/locations

of the animal.

The nLnG package also contains the diagnostic function, smoother.diag, that

allows the user to be able to quickly visualize the results of a smoothing test. For the

example tracking problem, the user call for smoother.diag can be seen in Listing
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A.11. From the above results and the appendix findings, we can say the results of the

Ksmoother application are consistent with what we were expecting. The smoother

estimate state tends to be through the middle of the filter states and the estimates

of the variance are very close to the estimates that were returned from the Kalman

filter.

Now that we have detailed the kSmoother function for package nLnG and illus-

trated its use with the example tracking problem for the user. We can move on to

the second smoother included in nLnG, the particle smoother.

3.7 The Particle Smoother (pSmoother)

The particle smoother function is the novel aspect of SSMs included in package nLnG.

The pseudocode for the function shown in Algorithm 6 is derived from the written

algorithm presented in Section 2.3.2. We will demonstrate the use of the function

and its methods with the example tracking problem we have been using throughout

this chapter. First let us explain the pseudocode and show how to use the function

from the user’s point of view.

Looking at Algorithm 6, it begins by showing the user call for the function is

pSmoother(), the requirements for the function and the inputs the function requires.

The user call for the function requires the following inputs: a pFilterd object, the

parameters, parms, the number of realizations to run, Nreal, the number of parti-

cles to use, Np, and any additional information covered by · · · . Note there are also

measurement calculations which can be turned on and off by logical statements and

we will illustrate them in the example case below. The pSmoother function requires

that the pFilterd-nLnG object contains the filtered states from the pFilter results

(saved by indicating save.states=TRUE in Listing 3.10) and they are just passed

through the object to the particle smoother. The pSmoother function also ensures
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that the number of realizations is greater than zero and that the number of parti-

cles is greater than zero (and matches the number of particles for the particle filter

procedure performed).

The pseudocode in Algorithm 6 begins with the filter state set, {x(Np)
1:N |1:N}, being

extracted from the pFilterd-nLnG object. The filter states are passed inside an outer

loop that has been added for the smoother to run the number of realizations indicated

by Nreal. Once inside the loop, the starting condition (state) for that realization is

selected uniformly from the saved filter state set at time N of the particle filter

procedure and is stored in {x̃N}. Then stepping backwards through time starting at

t = N − 1, the filter state set at time t, {x(Np)
t|t }, is extracted and used to predict the

state at time t+1, {x̂(Np)
t+1 }. The difference, {dx}, is then taken between the predicted

states, {x̂(Np)
t+1 }, and the smoother state at time t + 1, {xst+1}. The weights, wt|t+1,

are then calculated by the smoother.den function supplied by the user, computing

the density of the differences, {dx}, centred at zero. The weights are standardized,

then a probability α is generated using a uniform distribution. A sample, x̃t, is

selected for the realization when its weight, w
(i)
t|t+1, is greater than the probability

α and this continues randomly until one state is selected. The smoother continues

doing this each step backwards in time until t = 1. Then each realization, x̃1:N , from

the smoother is recorded in the list, x̃real[[nr]]. Statistics can then be performed on

the realizations to come up with means, variances, and, in the particle smoother case,

also the quantiles of the smoother distributions. Now that we have introduced the

algorithm for the particle smoother in the package nLnG, let us show how to use the

function.

The Particle smoother function requires that the user supplies a function for the

smoother.den function attribute in the nLnG object. This function calculates the

densities of the differences in the pSmoother function. The good thing is that the

function that calculates the weights for the pFilter can also be used for calculating

the weights for the pSmoother. The track.obsev.den function can be used again
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Algorithm 6 pSmoother(object,parms,Nreal,Np,...)

Require: pFilterd object, filtered states, parameters, Np, Nreal

Ensure: Np > 0, Nreal > 0

{x(Np)
N |N } ← save.state(pFilterd object)

for nr in 1 to Nreal do

ip← runif(1,Np)

{x̃N} ← {x(ip)
N |N}

for t = N − 1 to 1 do

{xp(Np)} ← {x(Np)
t|t }

{x̂(Np)
t+1 } ← p(x̃t+1|x(i)

t = {xp(Np)}, θ) (state.sim)

{xs
(Np)
t+1 } ← {x̃t+1}

{dx} ← {xst+1} − {x̂t+1}
wt|t+1 ∝ w

(i)
t p(x̃t+1|x(i)

t = {dx}, θ) (smoother.den)

wt|t+1 ← w
(i)
t|t+1/

∑j
i=1 w

(i)
t|t+1

α← runif(0,1)

rd← runif(1,Np)

if w
(rd)
t|t+1 > α then

x̃t = x̂
(rd)
t

end if

end for

x̃real[[nr]]← x̃1:N

end for

(Listing 3.9) for the smoother.den function, therefore the user only has to define the

density function once. Including the density function to the nLnG object is simply

done by recalling nLnG object with the smoother.den attribute defined. Adding the

function to the example nLnG object can be seen in Listing A.12 and it shows that we

have added the track.obsev.den function to the pFilterd-nLnG object track.pf
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(the function also could be just specified in the original object if you plan to do

particle smoothing). Now that we have added the smoother.den calculator we can

run the pSmoother with the example tracking problem.

The pSmoother function requires that the object being specify is a pFilterd-nLnG

object and that the pFilterd-nLnG object has save.states=TRUE to record the filter

densities, p(xt|Yt) (the function will give an error if it has not been). The call to

the pSmoother function for the example tracking data can be seen in Listing 3.13

and it shows that we have supplied the nLnG object, track.pf, from the particle

filter procedure in Section 3.5. Also the user supplies the parameter vector, theta,

the number of realizations, Nreal=100, and the number of particles, Np=1000 (which

must match the number which was run in the particle filter). The rest of the input

values for the pSmoother are logical attributes for turning on calculations and for

recording quantities throughout the process. The smoother.mean and smoother.var

attributes turn on the calculation of the mean and variance from the realizations of

the smoother densities. The save.real attribute tells the smoother to record the

realizations, which is important for quantile calculations in the diagnostic function

and the xhat attribute records the predicted values from each of the realizations of

the smoother. Running the pSmoother function will create the object, track.ps, in

Listing 3.13 and the object will be a new type, pSmootherd-nLnG. Now that we have

illustrated how to use the pSmoother function we should look at how to perform the

diagnostics for the results from the test.
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track.ps <- pSmoother(track.pf,parms=theta ,Nreal =100,Np=1000 ,

smoother.mean=TRUE ,smoother.var=TRUE ,

xhat=TRUE ,save.real=TRUE

)

Listing 3.13: Calling the pSmoother function on example tracking data, running 100 realizations,

with 1000 particles and recording all the quantities from the procedure.

The user can access the different result quantities stored in the pSmootherd-nLnG

object using the class methods. The smoother mean and variance can be extracted

by using the two class methods smooth.mean and smooth.var respectfully for the

pSmootherd object. For the example tracking problem, the smoother mean can be

extracted and plotted against the true state positions and the observations to produce

the 2D plot in Figure 3.6. Figure 3.6 shows that the smoother mean (green) again

follows much closer to the true state (blue) positions than to the observations (red)

positions. One thing to notice is that the smoother mean does not react as strongly to

the observations as we saw with the filter; this feature is key in the smoother producing

a much less rough looking estimation of the true state than the filter produces. For

quick visualization of the procedure results, the user can also use the smoother.diag

diagnostic function with the pSmootherd object. The call to the smoother.diag

function for the example tracking data can be seen in Listing A.13 in Appendix A.

From the results above and the findings in the Appendix, again we can say the

particle smoother did good job of recovering the true state of the system. With

comparison to the recovered state estimate from the particle filter, the state estimate

has a much more smoother approximation of the of the true state (See Appendix B).

We have detailed the algorithm for the pSmoother function in the nLnG package

and illustrated the function’s use with the example tracking problem. We can now

move on to the parameter estimation methods available in nLnG. We will start first
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Figure 3.6: In the top plot in the figure, the smoother states (red), observed states (green) and
the true state (black) are plotted against each other to form the 2D plot from the Particle smoother
results on the Scotian Shelf map. Underneath the 2D plot each of the longitude and latitude variables
are plotting individually with the smoother states (red), observed states (green) and the true state
(black) being plotted against the time

with maximum likelihood estimation (MLE).
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3.8 MLE Methods

In this section we will illustrate the use of both maximum likelihood estimation (MLE)

methods that are included in the package nLnG. The MLE methods aid in the process

of parameter estimation for the model used to represent real world phenomenon. We

will demonstrate the MLE methods with the example tracking problem that has been

used throughout this chapter. But first let us talk about how the MLE methods are

used in the design for nLnG, then explain the algorithms for each MLE method and

show the user how to obtain the value(s) using the built in package methods, or access

the raw data from the object itself. As noted in Section 2.4.1, the MLE procedures

included in nLnG do not return optimized MLE values, but instead the estimate, in

terms of the log-likelihood value, for the data using the parameter(s).

The MLE methods included in the nLnG package are not procedures (or func-

tions) by themselves, but are included as the main result from the function for the

two filtering methods available in nLnG (both demonstrated earlier in this chapter).

The two filtering methods each return only the MLE unless additional measurement

calculations are specified by the user. The MLE is returned in terms of the log-

likelihood value for the data in terms of the parameter(s) used for the procedure.

The methods for calculation of the log-likelihood for each filter are slightly different

from each other. The particle filter sums the weights from each of the measurement

steps, whereas the Kalman filter calculates the innovation error for each time-step,

(both methods were illustrated in Section 2.14). The algorithms for each method

are included in each of the filter Algorithms 3 and 4, presented earlier in Chapter 3

(illustrated in the algorithms by the calculation of lt(θ) during each step of the filter

and the summation of the log-likelihood, l(θ) at the end of filtering in each case).

As mentioned in Chapter 3, the MLE methods included in the filtering procedures

in package nLnG could also have been included in the smoothing procedures as well.
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Though the log-likelihood estimates obtained from the smoothing procedure would

just be redundant information as it is already calculated by running the filter (which

is required to be performed before any smoothing is done). With most of the details

for the MLE methods presented earlier, we can move on to explaining how the user

can access the MLE methods in nLnG.

The log-likelihood value can be obtained from either the filtered object by using

the method (or helper) function logLik on the object the filtered results are saved in

(shown in Listing 3.8 and 3.11), or the user can also pull out all the conditional log-

likelihood values from each of the time-steps so that they can be inspected by using

@loglik on the filtered object. The logLik function just sums each of the conditional

log-likelihood time- steps value into the full log-likelihood for the procedure. Now that

we have detailed how the package nLnG performs MLE and how log-likelihood values

are obtained, we can move on to demonstrating MLE with the example tracking

problem.

The general practice of parameter selection for either of the state or observation

model is usually more involved than this demonstration will be and we will see this in

Chapter 4 when working with the real data set. MLE methods help in the process of

parameter estimation by maximizing the log-likelihood estimate when the parameter

values being used best fit the modelled phenomenon. For the illustration of how the

log-likelihood is maximized, we will be running both the filtering methods to profile

the likelihood rather than maximizing it and computing log-likelihood estimates for

different values of the dynamical parameter, d (or A in the Kalman filter case) for the

example tracking problem, while holding all other parameters constant.

The procedure for performing this can be seen in Listing A.17, in Appendix A.

In Listing A.17, for the test the dynamics parameter vector, dvec is set to be the

sequence from 0.997 to 1.003 by 0.001 increments. Variable vectors (loglikest and

loglikestKF) are set up and used to collect the log-likelihood from each run of the

particle filter and Kalman filter, as the filters are looped over the sequential values
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of the dynamics parameter. The results from the procedure are summarized in the

following Table 3.5.

Dynamics
Parameter

Value

Kalman Filter
Maximized

log-likelihood

Particle Filter
Maximized

log-likelihood

0.997 -91.24812 -182.72203

0.998 -53.24622 -67.31155

0.999 -31.62655 -30.23498

1.000 -26.38947 -22.24077

1.001 -37.53413 -39.2682

1.002 -65.05835 -98.78089

1.003 -108.95874 -255.49694

Table 3.5: Values for the profiled MLE (log-likelihood) over the range of dynamics parameter listed
for the example tracking problem using both the Kalman filter and particle filter procedures.

The table shows that at the two ends of the dynamic parameter value range, the

Kalman filter and particle filter log-likelihood estimates are different. This occurs

from the particle filter’s effective sample size growing smaller as the parameter value

is getting farther away from the truth, resulting in a effective sample size that is

made up of fewer unique particles. This is a results of the particle filter likelihood

being affected by Monte Carlo variation. As the dynamics parameter approaches

the true value the log-likelihood values from the two filters are much closer to each

other. It shows that both filters maximize the log-likelihood for the true value of the

dynamics parameter at 1.000 and this is what we are expecting to see with the example

tracking problem (knowing the true parameters in advance). Now randomly searching

or profiling the likelihood is not an effective method for parameter estimation when

trying to parametrize the SSM, but the general idea of maximizing the log-likelihood

will be used in the parameter estimation methods yet to be demonstrated in package

nLnG and this was a quick way in which to illustrate this concept.
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We now have illustrated the MLE methods available for package nLnG and demon-

strated their use in the parameter estimation case, we will move on to the next pa-

rameter estimation method included in nLnG, know as state augmentation. State

augmentation is the first method which allows for time varying in the parameter

space for the SSM and utilizes the particle filter as the computational engine.

3.9 State Augmentation (sAugmentation)

The state augmentation parameter estimation method is a special inclusion in the

nLnG package and is mostly made available to highlight the issues with this type of es-

timation, as well as motivate the next parameter estimation method, the multiple iter-

ated filter. In this section we will introduce the pseudocode for the stateAugmentation

function included in package nLnG and demonstrate the function’s use for the reader

using the example tracking problem to illustrate some issues with this type of esti-

mation. Let us first introduce the pseudocode for the algorithm.

The stateAugmentation function is more generally a wrapper function for the

pFilter function that allows the user easier set-up for the augmentation settings.

The algorithm looks very similar to the pFilter function in Algorithm 4, since state

augmentation just uses the particle filter procedure, but allowing for the parameter(s)

to be able to time vary. With only slight changes, the algorithm for state augmenta-

tion will not differ greatly from Algorithm 4 for the particle filter and we will highlight

just the modifications. The pseudocode for the stateAugmentation function can be

seen in Algorithm 7.

In Algorithm 7, it first shows the user call for the stateAugmentation function. It

looks very similar to the user call for the pFilter function we have seen, besides the

following additions to the call. The extra requirements are the parameter(s) which

vary with time, contained in a named vector, pars, and the standard deviation for
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each parameter(s), contained in named vector, pars.sd. The user should also set the

maximum failures, max.fail, to allow for more failures of the filtering during esti-

mation (by default max.fail will be set to 100 with a warning, if not specified). The

stateAugmentation function also requires all the same base inputs as the pFilter

function, specifying the nLnG object, the parameters, parms (initial parameters in this

case), and the number of particles, Np. The stateAugmentation function also has

logical variables for the collection of the predictive mean and variance, filter mean

and variance. The parameter values for the augmentation are added to both sets of

the means and variances. Let us move on to look at the main body of the algorithm

for the stateAugmentation function in Algorithm 7.

The main body of the algorithm resembles the particle filter version in Algorithm

4 for the most part and for the sake of not being redundant we will highlight the

differences made to the state augmentation algorithm. The first thing the user should

notice is that the stateAugmentation algorithm requires the user to supply the

parameter(s) to vary, pars, and the standard deviation for the varying parameter(s),

pars.sd. If either are not supplied, an error will prompt the user that no parameter(s)

were specified. Notice that the parameters supplied to the function are the initial state

of the parameters, θ0, some of which (the parameters defined in pars) will evolve with

each time-step. The initial state, ẋt, has now been edited to include the parameter,

θt, making it equivalent to the Equation 2.23, and the error, ėt, includes the error for

the parameter(s), eθt , to make it equivalent to Equation 2.26. The parameter space

is represented by a set of particles equal to the number, Np, supplied by the user,

the same way the state is represented. The method for calculating/updating of the

predictive and filter states is the same as was seen in the particle filter

algorithm, with the only difference being that the ensemble being used in state aug-

mentation includes the parameter(s). The prediction step moves forward the state(s)

and parameter(s) in time from t − 1 to t and then the measurement step computes

the weights (or likelihoods) for the state(s) and parameter(s). The parameter(s) are
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Algorithm 7 stateAugementation(object,parms,Np,pars,pars.sd,mif.fail,...)

Require: nLnG object, Np, parms, pars, pars.sd

Ensure: Np > 0, pars.sd > 0

θ0 ← θinit.cond , x0 ← xinit,

ẋ
′
t =

[
xt θt

]
, ė
′
t =

[
vt eθt

]
for t in 1 : (N − 1) do

{ẋ(j)
t|t−1} ← p(ẋt | ẋt−1 = {ẋ(j)

t−1|t−1}, θt−1|t−1) (state.sim)

w
(j)
t ← p(yt|ẋt = ẋ

(j)
t|t−1, θt−1|t−1) (obsev.den)

w
(j)
t ← w

(j)
t /

∑
w

(j)
t (pFilter computations)

θ
(j)
t|t−1 ← θ

(j)
t−1|t−1 +N(0, pars.sd) (pFilter computations)

lt(θt) ← log(Np−1
∑Np

j=1w
(j)
t ) = log p(yt|yt−1, θt) (pFilter computations)

ˆ̇xt|t−1 =
∑

j ẋ
(j)
t|t−1

J
(pFilter computations)

σ̂xt|t−1
=

∑
j ẋ

(j)
t|t ẋ

(j)
t|t−(

∑
j ẋ

(j)
t|t−1

)/j

J−1 (pFilter computations)

ˆ̇xt|t =
∑

j ẋ
(j)
t|t−1

w
(j)
t∑

j w
(j)
t

(pFilter computations)

σ̂ẋt|t =
∑

j ẋ
(j)
t|tw

(j)
t ẋ

(j)
t|t−(

∑
j w

(j)
t ∗w

(j)
t )/

∑
j w

(j)
t∑

j w
(j)
t

(pFilter computations)

for j in 1 : J do

while Uj(0, (w
(j)
t /Np)) > cp, where cp =

∑
mwm do

set p = p+ 1, where p1 = 1

end while

set Ij = p, where I is the re-sampled index

end for (pFilter computations)

re-sample {ẋ(j)
t|t−1, w

(j)
t } according to Ij

{ẋ(j)
t|t } ∼ p(ẋt|Yt, θt|t)

end for

l(θt)←
∑N

t=1 lt(θt|t)
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predicted forward with the noise being described by a Normal distribution centered

at zero and varied by the supplied parameter standard deviation(s), pars.sd. The

state(s) and parameter(s) are then re-sampled with replacement according to those

weights, to create the new ensemble of state(s) and parameter(s). The log-likelihood,

l(θt) is then summed for the the procedure and returned. This details the main dif-

ferences made for the stateAugmentation algorithm to allow for time varying in the

parameter space. Let us now demonstrate the function’s use in parameter estimation

for SSMs.

For this demonstration we will be using the example animal tracking problem that

has being used throughout Chapter 3 for introducing the functions in nLnG. Again

the test will be estimating the value of the dynamic parameter, dt, the same as was

done for the MLE parameter estimation examples, only this time by letting the pa-

rameter(s) varying with time during the process. In Listing 3.14, the user call for

the demonstration can be seen for the stateAugmentation function. The user call is

very similar to the pFilter function, with the following exceptions. The parameter

for estimation is specified by setting the parameter in a named vector, pars=c("d").

A standard deviation for the parameter is given by pars.sd=c(d=0.005) and a max-

imum filter failures is specified, max.fail=100. The other defined attributes are the

same as was seen with the pFilter user call, using the nLnG object, track.ex, the

original parameters, theta, the number of particles, Np, and the logical attributes for

predictive and filter means and variances (which now contain the parameters as well).

Let us now move on to look at the results from the test.
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track.sa <- stateAugmentation(track.ex,parms=theta ,Np=1000 ,

pars=c("d"),pars.sd=c(d=0.005) ,

pred.mean=TRUE ,pred.var=TRUE ,

filter.mean=TRUE ,filter.var=TRUE ,

save.states=TRUE ,save.parms=TRUE ,

max.fail =100)

Listing 3.14: User call for the stateAugmentation function with the Tracking example data,

estimating the dynamics parameter,d, with a standard deviation of 0.005 and saving the finding for

the predictive and filter means and variances.

The parameters sample space can be extracted from the object with the saved

result (track.sa here) to produce a credible region for the estimated parameter and

is done by pulling save.parms from object using the @. The time-varying parameter

can be pulled from the lists and plotted to give the plot below, Figure 3.7. In Figure

3.7 the estimated dynamics parameter starts at 1.00 and ends at around 1.0008667.

The issue with this is that while the median is very close to the initial and true value

of the parameter, d, the trace of the prediction contains deviations from the true

value and there is no indication of what the estimated value should be. The returned

log-likelihood value for the test is -42.93537 (Listing A.18), which is quite different

from the value seen in Listing 3.11, -22.41174, for the true value. Figure 3.7, shows

the 95% credible region for the prediction median as well, the width of the region is

approximation 0.02 wide for the majority of the time-steps. This again leaves a large

region of values in the credible region for the estimate of the parameter and is not

helpful in the determination of the estimated value to use from the test. Confounding

the problem is if the test is run again the values could easily be different. This is the

biggest problem with using state augmentation for parameter estimation for SSMs

and why nLnG will include the MIF parameter estimation procedure that
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Figure 3.7: The plotted sample estimate of the dynamics parameter median from the
stateAugmentation function test, with 95% credible intervals.

corrects for this flaw.

This finishes the illustration using the stateAugmentation function with the ex-

ample tracking problem. The demonstration highlighted issues with using this method

of parameter estimation for parametrizing models and motivated the need for the next

parameter estimation method to be covered in package nLnG. We next move on to

the parameter estimation method known as MIF.

3.10 Multiple Iterative Filtering (mif)

The parameter estimation method known as multiple iterative filtering (MIF) is the

last of the main procedures to be included in package nLnG. It builds on both the

previous demonstrated parameter estimation methods (MLE and state augmentation)

and offers the user a method for parameter estimation. In this section we will be

introducing the reader to the use of the mif procedure in nLnG, detailing the pseudo

code for the function’s algorithm and demonstrating the procedures with the example
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tracking problem. We will first detail the pseudo code for the algorithm and define

the user call for the mif function in nLnG.

The pseudocode for the mif procedure is adapted from Ionides et al. (2006) written

algorithm in Section 3.10 for package nLnG and can be seen in Algorithm 8. The

algorithm first shows the function call for the mif function. In the function call,

the user must supply an nLnG object to the procedure. The nLnG object requires

only that the state and observation models attributes be specified in the object,

the same as we seen with the pFilter function. The mif procedure makes use of

the pFilter procedure as the engine for its calculation. Next the user needs to

supply the starting positions for all the parameters being used in the procedure in

start (usually a initial guess for the parameter(s) being estimated). Now depending

on which type of estimation operation the user wishes to run, the parameters are

specified in one of two ways. If you want to perform ordinary parameter estimation

with the mif operation, the parameters are supplied to the function through the

pars attribute in a character vector naming the parameters. The other option is

if the user wishes to perform fixed-lag smoothing for the estimation of initial-value

parameter(s) (IVP(s)). The user supplies the IVPs through the ivps attribute by

a character vector containing only the parameter variable name(s) to be estimated.

The user must supply the standard deviation for the RW through the rw.sd attribute,

which is applied to the parameter(s) for either of the two cases of estimation by a

named vector with the size of the deviation to use. In the case where the estimating

parameters are supplied by pars and rw.sd, they must match, and be defined by a

positive standard deviation, and are used in the RWM for the parameters in pars.

In the case where we are estimating IVP(s) the parameters in both ivps and rw.sd

must match, having a positive error value and are used as a scale factor for scaling

the IVPs. The parameters defined in either of pars or ivps should be a subset of

the parameters supplied by start (we will demonstrate this shortly with the example

problem). The user must specify the number of MIF iterations to perform, Nmif, and
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the number of particles, Np, for the pFilter to use in the ensembles. Now that we

have explained how to specify the parameters for using the mif function and set the

iterations, we still need tell the function how to decrease the parameter variance.

For controlling the variance for the procedure, the user first selects the scaling

coefficient for the width of the starting particle distributions by supplying a positive

integer for the variance factor, var.factor, for the parameters contained in the rw.sd

vector. The user then must specify the exponential cooling factor, α, by setting

cooling.factor attribute to be a positive number no greater than one. The cooling

factor determines how fast we decrease the variance between each MIF iteration. For

the case where we are estimating IVPs, the user is required to supply the time-point

to apply the fixed-lag smoothing by specifying the ic.lag attribute. The IVPs are

updated/replaced with their filtering means at this time. The ic.lag value needs

to be a positive integer and should be less than the last time-point in the series (or

the mif function will automatically set it to be the last time-point for the series with

a warning to the user). The user may also supply their own function to set up the

starting particle distribution by creating a function of type particles and assigning

it to the same attribute name in the function call. If particles is not specified by the

user, the default particles function samples from a multivariate normal distribution

with mean, center, and standard deviation, sd is used. The other optional user input

is the method used for the update rule in the procedure and can be set to one of the

three options by the method attribute. The user can pick between using Ionides et al.

(2006) iterating filtering rule by setting method="mif", or updating the parameter

to the unweighted average of the filtering means of the parameters at each time by

setting method="unweighted", or updating the parameters to the filtering means at

the end of the time series by setting method="fp". By default the mif function uses

the method="mif" update rule. Now that we have finished detailing the user inputs

for the mif procedure in nLnG, we will now describe how the mif algorithm itself

operates.
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Looking now at the procedure for the mif function in Algorithm 8, the first thing

we see is the required arguments that the user must supply to run the MIF. Like

the rest of the procedures in package nLnG the mif function requires an nLnG object

containing the necessary state and observation equations to run the pFilter function

(See Section 3.5). The number of MIF iterations to make, Nmif, must be supplied.

Next the parameters, θ, are required to be supplied through the methods described

earlier depending on the type of estimation being performed. The cooling or discount

factor, α, and the variance multiplier, c, are both required for the algorithm and

lastly the number of iterations for the particle filter, Np, is required. The Algorithm

next shows hows the input values for the mif function link to the symbols used to

describe the procedure. The start values for the parameters in start are saved in

θ, the variance cooling, factor cooling.factor, are saved in α, and the variance

multiplier, var.fact, are saved in c. After the variable setup we get the main part

of the MIF Algorithm.

The main part of the Algorithm starts with entering the primary loop, looping

from n to the number of MIF iterations, Nmif , for the procedure. For each iteration

of the loop the MIF algorithm starts by computing the cooling factor, α, raised to

the power of n − 1 (the number of the current iteration minus 1) and storing it as

α and also as γ, by squaring the α value. Next in the Algorithm the cooled sigma,

σn, is updated by multiplying α by the standard deviations for the parameters being

estimated, σ. Now that we have the cooled sigma, the parameters are next initialized

with it and the variance factor, c. The new parameter set is drawn for θ̂(n), using

θ as the center and σn multiplied by c as the standard deviation for the parameter

space and θ̂(n) is then used by the pFilter function. The pFilter function call in

the mif algorithm shows the particle filter runs a state augmented version of the

filter. The cooled sigma, σn, is used by the pFilter function to perform the random

walk for the parameters (.rw.sd=sigma.n) and θ̂(n) is set as the parms vector. The

logical arguments for the prediction variance and the filter mean are set to TRUE, they
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are key results from the pFilter function for the update rule in the mif algorithm.

The running of the pFilter function computes the results of Equations 2.28 and 2.29

from the MIF Section 2.4.3. Depending on what type of MIF update rule was selected

by the user one of three different update rules, use the results from the pFilter to

update the variance, V , and θ̂
(n)
t .

Algorithm 8 mif(object,Nmif,Np,start,pars,ivps,cooling.factor,var.fact,...)

Require: nLnG object, Nmif, Np, parameters, θ, α, T, c

θ̂ ← start, α← cooling.factor,c← var.fact, σ ← .rw.sd

for n in 1 to Nmif do

α = αn−1 , γ = α2 (mif.cooling(α,n+1))

σn = α ∗ σ
θ̂(n) = θ̂t(θ̂

(n), σn ∗ c) (particles(θ̂(n),σn*c))

{x(j)
t|t , θ̂

(n)
t } ← pFilter(object,Np,θ̂(n),· · · )

if method = ”mif” then

Vt,n = Vt(θ̂
(n), σn)

V1,n = γ ∗ (1 + c2) ∗ σ2

θ̂
(n)
t = θ̂t(θ̂

(n), σn)

θ̂(n+1) = θ̂(n) + V1,n
∑T

t=1 V
−1
t,n (θ̂

(n)
t − θ̂

(n)
t−1)

else if method = ”unweighted” then

θ̂
(n)
t = θ̂t(θ̂

(n), σn)

θ̂(n+1) ←
∑T

t=1{θ̂
(n)
t }

T

else if method = ”fp” then

θ̂
(n)
t = θ̂t(θ̂

(n)
T , σn)

θ̂(n+1) ← θ̂
(n)
t

end if

end for

θ̂(N+1) = θ̂(n+1)
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If the user selects the mif method of update, the MIF rule is applied from Ionides

et al. (2006). This method first sets Vt,n equal to the prediction variance from the

pFilter function for the parameters. It then calculates V1,n by multiplying γ by 1

plus c squared and then multiplying that value by the variance of the parameters being

estimated, σ2. The filter density for the parameters from the pFilter function result

is extracted and then saved as θ̂
(n)
t . The parameters, θ̂n+1, are then updated by adding

the previous parameters θ̂n to V1,n, multiplied by the sum of the differences of θ̂n

divided by the transpose of the Vt,n. If the update rule was selected as unweighted by

the user, then θ̂n is set to the filter mean from the pFilter function for the parameters.

θ̂n+1 is then updated by taking the means of θ̂n for each of the parameters. In the

last update rule, fp, the user can select to set θ̂n to the filter mean from the pFilter

function for the parameters at the final time-step. The parameters, θ̂n+1, are then

updated by just being set equal to θ̂n. This details the end of the different update

rules for the mif function. When the last iteration is reached for the parameters,

θ̂n+1, is taken to be the MLE of the parameters for the fixed parameter model θ̂N+1

(Ionides et al., 2006). Now that we have finished detailing the algorithm for the mif

function in nLnG, we can move on to illustrating its use in parameter estimation for

SSMs.

For this demonstration of the mif function, we will again be using the exam-

ple tracking problem and be estimating the dynamics parameter, dt. We will be

discussing both the ordinary and IVP parameter estimation methods for the mif

function. We should first look at the user call made for the mif function using the

example tracking problem and then do an analysis of the results from the test. The

set-up for the mif function can be seen in Listing A.19. It shows that the parameters

from the particle filtered object, track.pf, are saved into the variable, truth, using

the coef method in the nLnG package. The dynamics parameter, d, is saved into

the variable, parEst, as a character vector. This set-up will be used for both the

ordinary and IVP parameter estimation methods. The user call for the mif function
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for ordinary parameter estimation can be seen in Listing A.20, and for IVP param-

eter estimation can be seen in Listing A.21. The two user calls for the mif function

look very similar, with one difference to indicate the type of estimation to perform

(explained above). For this reason we will do one explanation of the user call and

highlight the lone difference between them. The first thing to notice in the two List-

ings is that the mif function call is enclosed inside a replicate function. By doing

this we are running the mif function multiple times by starting the dynamics param-

eter at various different locations. This is just to illustrate the convergence of the

MIF method to the same value from different starting values. The test is performed

10 times for the illustration, as n=10 in the Listings. The original parameters are

next saved into the variable guess from the variable truth and then the dynamics

parameter is varied by using a normal distribution centred at the original value of the

dynamics parameter, truth, with a standard deviation of 0.005. For the mif function

user call in the Listings, the following attributes are defined. The particle filtered

object, track.pf, is supplied, since it has all the necessary parts needed to run the

particle filter in the MIF procedure. The number of MIF iterations, Nmif, is set to

50, and the initial values for the parameters, start, is given the parameter vector,

guess. This is where the two parameter estimation methods differ. In Listing A.20,

for ordinary parameter estimation the attribute pars is supplied the variable created

in Listing A.19, parEst, containing the parameter for estimation. In Listing A.21,

for IVP parameter estimation the attribute ivps is supplied the variable, parEst.

The standard deviation for the parameter RW is set by the variable, rw.sd, and set

to d=0.001. Each of the two parameter estimation methods pulls the RW standard

deviation from this variable. The number of particles for the particle filter to use,

Np, is set to 1000. The time-point to apply the fixed-lag smoothing, ic.lag, is set

to the last point of the series (50). The variance cooling factor, cooling.factor, is

set to 0.99 and the variance multiplier factor, var.factor, is set to two. The last

attribute in the user call is the maximum failure allowed for the pFilter function,
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max.fail, and it is set to 100, to give the filter a higher threshold on failure for the

parameter estimation process. Now that we have described the set up for the tests

done for this demonstration, we can move on to examine the results from the mif

functions in Listing A.20 and A.21.

The results from the mif function are each saved in variables as list objects,

track.Pmif in Listing A.20 and track.Imif in Listing A.21. The user can pull

these objects apart by referencing the variable result lists individually and extract

specific parts of the results by using the @ sign, with the attribute name (ex. in

Listing A.23). The tests performed in Listing A.20 and A.21 are large procedures to

demonstrate the mif function and the objects produced contain the results of all 10

runs of the replicated test. For these situations, the nLnG package includes a method

called mif.comp that allows the user to quickly produce a set of diagnostic plots for

the results from the mif function and it will be used to do the heavy lifting with the

example cases used here. Listing A.22 shows the user call for mif.comp. It requires

that the mif object with the saved results be supplied in the function call (track.Imif

in this Listing). The method produces a number of diagnostic plots of the keys results

from the MIF procedure that would be of interest to the user for analysis of the test.

The diagnostic plots produced by the mif.comp function for the two examples cases

of parameter estimation can be seen in Figures 3.8 and 3.9. The mif.comp function

produces two sets of diagnostics plots when called. The first set of plots are shown

in Figure 3.8 and are the diagnostics for the last filter iterations. The second set of

plots are shown in Figure 3.9 and are the MIF convergence diagnostics. In Figure 3.8,

the results from the track.Pmif object are plotted on the top in Figure 3.8a and the

results from the track.Imif object are plotted on the bottom in Figure 3.8b. The

following plots are produced: a plot of the effective sample sizes, a plot of the the state

variable(s) (in this case, one for each of the longitude and latitude states), and a plot

for each of the estimated parameter traces (in this example, the dynamics parameter,

d). In Figure 3.9, the results from the track.Pmif object are plotted in 3.9a and



96

the results from the track.Imif object are plotted in 3.9b. Referring to one of the

sub-figures, it shows in the convergence diagnostics the following plots are produced:

a plot of the log-likelihood convergence, a plot of nfail (number of filtering failures)

convergence and a plot for each of the estimated parameter(s) convergence. Now that

we have introduced the mif.comp method, we can now examine the results, for the

two mif objects being saved in Listing A.20 and A.21.

In Figure 3.8a, the results from the ordinary parameter estimation show that for

each of the 10 tests the results for the latitude and longitude states are fairly consistent

as each of the traces are plotted pretty much on top of each other. The effective sample

size plot shows that the effective particles only drop below 100 twice and is consistent

across the 10 tests as well, with little variation. The plot of the dynamics parameter

trace shows each of the 10 tests produce close to the same estimation result, with only

slight variations in the traces at about the 8, 32 and 44 time-steps. With the results

being fairly consistent across the 10 tests, the mif function has done a good job of

estimating the ordinary parameter, d. The convergence diagnostics for the test will

be examined shortly to show the reliability of the parameter estimation, but first let

us review the IVP test filtering iteration diagnostics. Referring to Figure 3.8b now,

the results from the IVP parameter estimation test show again that the mif function

produces fairly consistent findings for the latitude and longitude states, with each

of the 10 traces being on top of each other. The plot of the effective sample size is

very consistent across the tests and the particles size only dips low around the 8 and

24 time-step. The biggest difference is in the trace of the estimated parameter, d,

from the previous results. The IVP parameter estimation focus is on estimating the

initial parameter values, therefore after the first iteration the parameter value goes

unchanged. The parameter trace moves slightly at the beginning and then levels off

within the first five time-steps, this allows for convergence of initial parameter values

and is the expected result from the test. Now that we have reviewed the last filter

iterations diagnostics, let us move on to the convergence diagnostics produced by
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(a) The plotted last filter iteration diagnostics from the ordinary pa-
rameter estimation test using the mif function for the example tracking
data. Plots included in the panels (top to bottom) are the effective
sample size, filter state for the longitude, filter state for the latitude,
and the estimated parameter, d.

(b) The plotted last filter iteration diagnostics from the IVP(s) param-
eter estimation test using the mif function for the example tracking
data. Plots included in the panels (top to bottom) are the effective
sample size, filter state for the longitude, filter state for the latitude,
and the estimate parameter d.

Figure 3.8: The plotted last filter iteration diagnostics from the two mif function tests for the ex-
ample tracking data. a) the ordinary parameter estimation test and b) the IVP parameter estimation
test.

mif.comp.

In Figure 3.9a, the convergence diagnostics for the ordinary parameter test shows

very good results. The plot of the log-likelihood value has converged around the -30
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(a) The plotted convergence diagnostics results from the
ordinary parameter estimation test using the mif function
for the example tracking data. Plots included in the panels
(top to bottom) are estimated log-likelihood, the number of
filter failures and the estimated parameter, d.

(b) The plotted convergence diagnostics results from the
IVP parameter estimation test using the mif function for
the example tracking data. Plots included in the panels
(top to bottom) are estimated log-likelihood, the number of
filter failures and the estimated parameter, d.

Figure 3.9: The plotted onvergence diagnostics results from the two mif function tests for the ex-
ample tracking data. a) the ordinary parameter estimation test and b) the IVP parameter estimation
test.

mark, even though it starts at numerous places on the y-axis. This value is close to

the value we saw with the particle filter test in Section 3.5 and the difference between

them can be attributed to the parameter changing with time in the MIF test. Next

the plot of nfail shows that each of the 10 tests had no filtering failures. This can

be expected since we knew the true parameter to begin with and the size of the error
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used was small. The parameter convergence is even close to the true value of 1.00,

with all 10 tests converging around that mark or just slightly below it. From the

findings, the mif function has done a very good job of recovering the true value of the

estimated parameter, d. Referring now to Figure 3.9b, the convergence diagnostics

for the IVP test are quite different then what we just saw for the ordinary estimation.

The plot of the log-likelihood convergence shows a value below zero, though with the

green line within the plots has taken longer to converge. Besides the green line that

only had failures in the first time-step, the plot of nfail convergence looks like most

of the 10 tests had zero failures. The convergence plot for the parameter, d, shows

that all but the green line converge in the first time-step to the value of 1.00 for the

rest of the MIF iterations. The IVP parameter test has done a good job of recovering

of the initial parameter value of 1.00 used to simulate the data. Now that we have

demonstrated how to quickly access the results of the mif function and analysed the

performed tests, let us move on to seeing how the ordinary parameter estimation did

numerically.

In Table 3.6, the numeric results for the ordinary mif parameter test are listed.

The reader can refer to Listing A.24 to view the procedure for obtaining the results

to Table 3.6. The Table lists the estimated parameter, d, the log-likelihood, and

the log-likelihood standard error for both the true values of the parameter and the

estimate from the mif test. Looking at the Table, it can be seen that the estimate

for the parameter value is fairly reasonable in comparison to the true value. The

estimate of d is only off the true value by 0.0006596. The log-likelihood values differ

by -2.2429 from each other and the standard errors are as they should be expected,

as the standard error of the true value is smaller than that of the estimate. From the

numerical results, it can be said that the mif function has recovered a fairly good

represents of the original dynamics parameter, d.

This ends the demonstration of the mif function for the nLnG package. Included

in Appendix C, a comparison of methods is presented for the reader, showing the
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Value Truth MIF Estimate

d 1.00 0.9993414

loglik -22.18221 -24.42531

loglik.se 0.1679821 0.5213355

Table 3.6: This table compares the estimated parameter values for d, the log-likelihood
value and the standard error to their true values for the oridnary mif parameter test using
the example animal tracking problem.

equivalence of the methods in package nLnG, filter to filter, and smoother to smoother

when the data set is linear. One may choose to skip the findings in Appendix C and

continue straight to Chapter 4, with the demonstration of package nLnG with a real

set of observed animal tracking data.



Chapter 4

Observed Data Analysis with nLnG

In this chapter the focus will be illustrating the use of package nLnG while working

with a set of real data. The process of creating the SSM for the observed data varies

from what has have seen so far in Chapter 3 with the simulated data. Therefore a

full exploratory analysis of the data set will be presented to show the difference when

working with observed data using the software. The chapter will begin with doing a

explanation and visualization of the observed data being used, show the user how to

create the SSM in nLnG for the observed data, estimate parameters for the SSM, then

use the other package applications to determine the true state of the system (in this

case the true position of the animal). Let us first introduce the data for the observed

animal track.

4.1 Data Introduction

The observed data set that will be used for this demonstration is a set of Atlantic

grey seal data. The observations are recorded using GPS tags placed on the seal

and this dataset has been supplied by the Ocean Tracking Network (OTN) research

group at Dalhousie University. OTN is a worldwide conservation project currently

headquartered at Dalhousie University, Halifax, Nova Scotia and they aim to increase

the information available on the world’s oceans. There is much to learn about the

depths of the ocean waters, particularly their importance in sustaining the quality of

animal life around the world. Using acoustic telemetry technology to track thousands

101



102

of marine species around the world, from fish to birds, these data can be used to build

a library of data to understand animal life in the ocean. OTN has sponsored several

studies on the Atlantic Grey seal to determine effects of the species’ population on

their surrounding environment. Such studies, have been made possible recently with

the advancements in technology and tagged tracking implemented by satellite teleme-

try. By tagging animals, movements over large distances can followed (Roland et al.,

1996; Bergman et al., 2000; Block et al., 2001). The tagged animals produce move-

ment pathways from their location and time being recorded from satellite monitoring

over a period of time.

These pathways are time-series of location observations of the animal, and can be

modelled using SSMs. These pathways have been used in the past to do studies such

as meta-analysis of animal movement (Jonsen et al., 2003) and to examine seasonal

foraging tactics (Breed et al., 2009). Each of these studies and others have used

SSMs in their analyses of animal pathways data. This connection between SSMs

and the animal’s pathways lead to the idea of the animal pathways being thought

of as correlated random walks (CRW) (Kareiva and Shigesada, 1983; Marsh and

Jones, 1988; Turchin, 1998; Okubo and Gross, 2002). Even though the idea of using

CRW for animal’s pathways is an established one, fitting the models to data was

difficult (Turchin, 1998; Okubo and Gross, 2002). The fitting of these models has

become easier by using MCMC simulations or particle filters (Gelfand and Smith,

1990; Doucet et al., 2001) as compared to earlier analytical or numerical methods

(Kalman, 1960). Particle filters are an SMC method and these type of methods even

offer benefits over MCMC such as real time calculation, computational efficiency, and

straightforward implementation of NLNG models (Breed et al., 2009). Only a few

studies have chosen to use SMC methods to solve ecological problems (Ionides et al.,

2006; Dowd and Joy, 2011), though both these particle filter and smoother methods
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have been shown to be used for state estimation for animal pathways (Royer et al.,

2005; Andersen et al., 2007) . In this demonstration SMC methods will be heavily

used as the package nLnG’s NLNG methods are all of this type. Modelling choices

will be discussed more in the next section.

OTN has supplied two sets of observed Atlantic grey seal data for this thesis from

one of their studies. The first animal’s observed pathway can be seen in Figure 1.1

in Chapter 1 and while the second animal’s pathway can be seen in Figure 4.1. The

second pathway in Figure 4.1 will be used for this demonstration. It was recorded

from July, 14, 2011 till December 28, 2011 (the section used for the demonstration

is from July, 14, 2011 till July 16, 2011). In Figure 4.1, the red line shows that the

pathway starts travelling on land from the west side of Sable Island area to the east

side of the island, then moves southeast out into the water and after a period starts

swimming back northeast. This transition from land to water also corresponds with

a significant jump in time between observations being recorded.

In Listing A.26, a sample of the recorded data for one of the animals can be seen.

The sample of the recorded data shows the data includes an identifier (EID), the

animal’s tag number (this one was 106709 and the file name for the data was 106709f,

where the f indicates the seal was a female), the date and time of the observation

and the latitude and longitude positions at that time for each observation made. The

other information included in the data is the speed the animal was moving at the

time of the observation, the amount of time (seconds) between observations and the

cumulative time in seconds (which has been added to the data). Now that the real

observed data for demonstrating the use of the package nLnG has been introduced,

let us now move into the modelling process for the SSM that will be used to estimate

the true state (unobserved state) of the system.
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Figure 4.1: Plot of the Atlantic grey Seal track from the Scotian Shelf that will be used to
demonstrating the use of nLnG with real data.

4.2 Model Selection and Parametrization

4.2.1 Model Selection

The process of creating a SSM for an observed data set is much different than what

has been seen so far in Chapter 3 with the simulated animal pathway. In the case

with simulated data, the observed state and the true state for the animal pathway

were both known, so it was a little bit like cheating in terms of the modelling process.

When working with observed data, one generally does not have the true state of the

system and that is what is generally being recovered from the observed data.
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The process of creating a SSM for the observed data can be long and tedious,

but it is good practice to look to past research into the data to get help. With the

observed Atlantic grey Seal data there is a considerable past research, some of which

was presented in either Section 1.1 or Section 4.1. Most of this research used some

type of SSM to mimic the movement for the state equation. The latest research used

a CRW to represent the state equation (Breed et al., 2012). This model is similar

to the single state first-difference CRW used by Jonsen et al. (2005) as the state

(process) equation and will be the model used here to try to fit to the observed data.

The CRW model is described by the following set of equations:

dt = γtTdt−1 + vt,vt ∼ N2(0,Σt), (4.1)

dt = xt − xt−1, (4.2)

T =

 cosϕt −sinϕt

−sinϕt −cosϕt

 , (4.3)

Σ =

σ2
lon,t 0

0 σ2
lat,t

 . (4.4)

ϕt ∼ wC(0, ct) (4.5)

The displacement between unobserved states, dt, is described in Eq. 4.2 as the

difference between the positions xt and xt−1. γt represents the correlation magnitude

and direction of consecutive displacements. The turn matrix, T , is described in Eq.

4.3 with cos and sin on the cross diagonals and each has the turn angle parameter,

ϕt, associated with it. The parameter is then described in Eq. 4.5 by a wrapped
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Cauchy distribution (results from the “wrapping” of the Cauchy distribution around

the unit circle) centered at 0 and with a concentration parameter, ct, for the error

term. In Eq. 4.1, the correlation term, γt, is applied to T and is multiplied by the

displacement at t − 1, dt−1. The error term is then described as a bivariate Normal

distribution with mean, 0, and variance-covariance matrix, Σt. Σt is diagonal with

entries σ2
lon,t and σ2

lat,t, the error terms for the change of location position.

Eq. 4.1 can then be rewritten in term of xt to fit into the SSM form that has been

represented so far in this thesis, by adding xt−1 to each side and substituting Eq. 4.2

in for dt−1. This yields the following equation:

xt = xt−1 + γt

 cosϕt −sinϕt

−sinϕt −cosϕt

 (xt−1 − xt−2) + vt,

vt ∼ N2

(
0,

σ2
lon,t 0

0 σ2
lat,t

).
(4.6)

Lastly, this is not in markovian form since xt cannot depend on both xt−1 and xt−2.

To fix this define xt−1 = zt and the augmented state as:

ẋt =

xt

zt

 .
Eq. 4.6 can now be expressed in markovian form in terms of ẋt.

In comparison to the example data SSM used in Chapter 3, the main differences

between the models are there is no inclusion of a drift term here and the addition of

the correlation term based around the displacement between the last two time steps,

xt−1 and xt−2. This will be the form of the Breed et al. (2012) SSM that will be used

for the state equation for this test. With the state equation defined, let us move to

the observation equation.
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The observation equation that relates the unobserved location, xt, to the observed

position, yt, for the Breed et al. (2012) model is described as follows:

yt = ẋt + et, et ∼ N2

(
0,

σ2
η 0

0 σ2
η

). (4.7)

The model in Eq. 4.7 closely resembles the observation model from the example SSM

used in Chapter 3. The observation, yt, again depends only on the state, xt, and an

error term, where σ2
η, is the variance of the latitude and longitude found in Costa

et al. (2010a) and represents the measurement location uncertainty. Now that the

SSM to apply to the observed Atlantic grey seal movement track to has been defined,

let us move into parametrizing the model based on the new data.

4.2.2 Parametrization

The parametrization will consist of specifying a group of parameters. The non time-

varying parameters are made up of just the error term for the equipment reading for

latitude and longitude positions in the observation model, σ2
η, where:

σ2
η = 0.036 km2. (4.8)

The standard error term in the process model for the longitude position, σlon, and

the process standard error term for the latitude position, σlat, are:

σlon = σlat = 1 km. (4.9)

The time-varying parameters for the state model that need to be estimated in-

clude the correlation magnitude, γt, and the standard error term for the turn angle
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parameter, ct. So the parameter space for the CRW model can be represented in the

following manner in terms of θ:

θt = (γt, ct) (4.10)

With the parameter space now defined, it is now necessary to give initial starting

points for each of the parameters for the estimation. Let us look at the values selected

for each of the parameters in θt.

In Breed et al. (2012), the parameters γt and ct range from 0 to 1. During

the parameter estimation procedure a few special methods were used. There were

transformations used on the parameters so that they can be added as Gaussian noise

in the augmentation part of the estimation; a mixed-Normal distribution was used

in order to allow for rapid parameter value variations to deal with animal behaviour

changes. This experiment will only deal with recovering the travel behaviour state

and therefore will not require the use of a mixed-normal distribution for the behaviour

changes, so only one half of the model parameters used in Breed et al. (2012) will

need to be specified. In the Simulation Section of Breed et al. (2012), listed under

Design 2; are a set of fixed parameters used for the switching model parameters in

one of the simulations performed. The set of fixed parameter values used for the

travel behaviour state are listed as γ1 = 0.9, c1 = 0.98, and σlon,1 = σlat,1 = 1 km

(defined above) (Breed et al., 2012). These point values from the simulation will

act as good initial parameters guesses for performing parameter estimation with the

observed data for this demonstration. The parameters for the observed data will

likely not be equal to these, but they are good parameters to begin the process with.

Now that the model and parameters chosen to mimic the animal’s movement

have been explained, with the initial values of the parameters from Breed et al.

(2012) acting as entry points, the parameters for the unobserved data set can be now

estimated to fit the model.
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4.3 Parameter Estimation

In this section the observed data set will be used to estimate the model parame-

ters. These will be then used to simulate movement tracks to perform filtering and

smoothing upon. First, the observed data will be encased into a nLnG object for the

reader and the highlights explained, before using the created object for the parameter

estimation process.

4.3.1 Preparing the Observed Data nLnG Object

The job of creating the nLnG object is similar to what was seen in Chapter 3, with

a few small changes. The object needs to have the appropriate parts defined for

running the specific procedure, the initial time, the initial parameter vector and the

data frame. The data frame is where the biggest change occurs from what was seen

in Chapter 3. Instead of just setting up the names for the data and filling them from

the simulation, the observation and their times need to be included in the data frame.

Let us examine the nLnG object now for the observed data.

Listing 4.1 shows the creation of the nLnG object for the observed data. Looking

at the object’s function call, all the parts of the object for performing MIF param-

eter estimation have been defined. The realtrack.ex object contains a data frame

(which will be discussed below), a set of times, a initial time, a state simulation func-

tion, a observation density function and a parameter vector. The biggest change from

what was seen in Chapter 3 is in the data.frame, as it now contains the set of times,

longitude and latitude positions from the observed data (data2 here). The data is set

up from the 3rd record to the 53rd to grab the first set of 50 observations, with the
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first two positions kept as initial conditions for the first state transition. The times

attribute is set to be a pointer to the time specified in the data.frame and the initial

time position, tInit, is set to the 2nd time-step in the time vector (data2$X[2]).

The object has 2 functions filled in for performing state transitions and calculat-

ing observation densities. The state.sim function is using the discrete.time.sim

wrapper as the method to advance from one time to the next (this selection will be

realtrack.ex<-nLnG(data=data.frame(time=as.numeric(

data2$X[3:53]) ,

ylon=data2$lon [3:53] ,

ylat=data2$lat [3:53]

),

times="time",tInit=data2$X[2],

state.sim=discrete.time.sim

(step.fun=real.track.state.sim ,delta =1),

obsev.den=real.track.obsev.den ,

parms=theta)

Listing 4.1: Creating the nLnG object for the unobserved Atlantic Grey seal data to be used for

the parameter estimation test.

discussed further later). Lastly, the initial parameter vector, theta (introduced in

the next section), is specified to complete the nLnG object for the observed data. Let

us describe the included functions now.

In Listing A.27, the function for the state transition (an implementation of Eq.

4.6) can be seen. Looking at the function, the 2 time-varying parameters, gam and

c, have some type of limit set on their values. The angle for the turn matrix (T ) is
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produced from a wrapped Cauchy distribution (using package CircStats (Lund and

Agostinell, 2018)). The new state position (xnew) is calculated from a multivariate

Normal distribution, then checked to make sure it is within a certain area. The issue

was at times a few of the particles were taking on odd values. This caused the mif

procedure to fail, so the large box catches those values and replaces them with a

value that will not cause the filter to fail or have the state hold any weight in the

measurement part of the filtering. The new state, xnew, is then combined with the

previous xt position, renamed with the correct names and returned to the procedure.

In Listing A.28, the implementation of Eq. 4.7 for the observation density model

can be seen. The function is straightforward, as the observation error, nada, is pulled

from the parameter vector and used to compute the conditional likelihood of state,

xt, given the observation, yt, by multivariate Normal distribution. The conditional

likelihood is then returned to the procedure. Now that the object has been created to

perform the parameter estimation, let us move to performing the test for the observed

Atlantic grey seal data.

4.3.2 Simulation Testing

During this parameter estimation test, the 2 time-varying parameters in Eq. 4.10

will be estimated using the mif application included in package nLnG. Let us start by

introducing the initial parameter vector for the nLnG object in Listing 4.1. The initial

parameter vector, theta, holds the starting positions for the first state transition and

the initial parameter value guesses for the estimation procedure. Table 4.1 links the

parameter vector in Listing 4.2 to the SSM in Eq. 4.6 and 4.7. Table 4.1 shows the
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theta <-c(c=0.98 ,gam=0.9, xlon1 .0= -60.01687 , xlat1 .0=43.92794 ,

xlon .0= -60.01379 , xlat .0=43.92359 , slon =0.539957 ,

slat =0.539957 , nada =0.1)

Listing 4.2: Initial Parameter Vector.

the observation model, nada and it has been set to the static value from Costa et al.

(2010a). With all the initial values introduced for the parameter vector, parms, for

the unobserved data object, let us move now to setting up the test for the parameter

estimation.

Mathematical Symbol nLnG Variable Value

γt gam 0.9

ct c 0.98

σt,lon slon 0.539957

σt,lat slat 0.539957

xt,lon xlon.0 -60.01379

xt,lat xlat.0 43.92359

xt−1,lon xlon1.0 -60.01687

xt−1,lat xlat1.0 43.92794

σ2
η nada 0.1

Table 4.1: This table shows the link between the mathematical symbol in Eq. 4.6 and 4.7, the
variables supplied for use in Listing 4.2 and the initial value for the parameter.

The parameter estimation test using the mif application can be viewed in Listing

4.3, starting with the set up for the test and then the calling of the mif function.

Referring to Listing 4.3, the 2 time-varying parameters names are first placed in the

vector, parEst. Next, the test is set to be replicated, though is currently only being
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run the one instance. The estimation parameter vector, guess, is given the parameter

vector, theta, in Listing 4.2 and then the starting position for the parameter values.

The parameters γ and ct are set using a uniform distribution to get the values between

2 time-varying parameters initial values are set at the prior values from Breed et al.

(2012) (the error for the state position has been converted from kilometers to nautical

miles). Next are the initial longitude and latitude positions for states xt (xlon.0 and

xlat.0) and xt−1 (xlon1.0 and xlat1.0). The first two observations of the data set

are used for the initial points, this also mean that both xt and xt−1 will be stored in

the nLnG object. xt−1 is stored for convenience of it being easier to access for the state

model in Listing A.27. Last in Table 4.1 is the error term for the desired interval of

0 and 1. With the starting points for the parameters being estimated now set, next

we move on to the function call for the mif application.

The function call for the mif is fairly straightforward and the key attributes will be

highlighted here. The function is supplied the nLnG object, realtrack.ex, containing

the parts of the SSM from Listing 4.1. The number of mif iterations, Nmif, is set at 50.

The starting point for the parameters, start, is set to the vector, guess (which gets

the initial points for the estimation during the mif setup). The vector of parameter

names to estimate, pars, is defined. Also set are the error value for the parameters

being estimated, rw.sd, and the number of particles used, Np, is set to 2000. The

variance factor, var.factor, is set to be 4 times to begin and the variance cooling,

cooling.factor, set to 0.99. This finishes the setup for the parameter estimation

for the mif test. Next we will look at the results from the procedure.
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### parameters to estimate

parEst <- c("c","gam")

###mif test

realTrack.mif <-replicate(

n=1,

{guess <- theta

##giving differnt starting point to the parameter

guess [("c")] <- runif (1,0,1)

guess [("gam")] <- runif (1,0,1)

##call to the mif function

mif(

realtrack.ex , Nmif=50,

start=guess , pars=parEst ,

rw.sd=c(c=0.075 , gam =0.2),

Np=2000, var.factor=4,

ic.lag=51, cooling.factor =0.99,

max.fail =500, verbose=TRUE)

})

Listing 4.3: Observed data parameter estimation test, running the mif function for determine the

2 time-varying parameters, gam and c.

Figures 4.2 and 4.3 shows the results from using the the mif.comp function in the

package. Figure 4.2 are the diagnostic plots for the last iteration of the filter and

Figure 4.3 are the diagnostic plots of the MIF convergence.

Figure 4.2, the last filter iterations results shows plots of the effective sample size,

xlon, xlat, c and gam. An issue can be seen within all the the plots in the Figure,
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in that at about the 50000 second mark; there is a large time jump between recorded

observations and the next one is not till about 175000 seconds. Referring to the

individual plots in the Figure, it can be seen that the values before the time jump

tend to be vastly different from the values after the jump in time. This could lead to

issues with the estimation process, mainly that the observed track may have

Figure 4.2: Shows the diagnostics plots of the last filter iteration for the parameter estimation
test for c and gam using the real observed animal data. Plots included in the panels are the effec-
tive sample size, the estimated states (xlon1,xlat1 get plotted from inclusion) and the estimated
parameters over the time (seconds). Note: the long straight line in the middle represents the jump
in time between observations.
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contained little information to begin with and with a large time jump in the middle

of the track, the information could quite possibly change after the jump (implication

further discussed in Conclusion).

Now moving to Figure 4.3 shows the plots of the convergence for the mif test.

Looking at the 4 panels of the plot, it shows convergence diagnostics are returned

for the log-likelihood value (loglik), the number of failures (nfail), and the two

(2) parameters that were estimated during the test (c and gam). The log-likelihood

convergence shows that the value begins around -119 and slowly oscillates in an in-

creasing manner throughout the iterations, with it ending at approximately -116.5.

Next nfail shows that the test consistently had no failures during the estimation

process. Next is the convergence plot panels for the two parameters that were esti-

mated. The convergence plot of c shows the value starts at approximately 0.4 and

while the trace does not converge constantly, its steadily increasing again throughout

the iterations; with it ending at a value slightly above 1.6. Lastly, the convergence

plot of gam shows that the value begins at approximately 0.2 and wildly oscillates

between -0.6 to 0.6 throughout the iterations, ending at value slightly below -0.2. In

Breed et al. (2012) gam is a value changing from 0 to 1, and this could explain the

value oscillating about zero and not appearing to converge during the process. This

could be caused by a few issues affecting the process such as parameter trade-off,

covariance, and/or the observed data not containing enough information. We will

continue on with the analysis with the estimated parameters even though neither

parameter appears to converge during the test, but will have a further discussion on

the estimation process in the Conclusion. Now that we looked at the plotted results

for the mif, let us look at the estimated value for the parameters from the test.
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Figure 4.3: Shows the convergence diagnostics plots for the parameter estimation test for c and
gam using the real observed animal data. The 4 panels show plots of the log-likelihood value, number
of failures, and estimated parameters values over the course of the mif iterations.

In Table 4.2, it shows the values for the estimated parameters from the mif test.

The estimated value for the c, which influences the turning angle, was 1.6559215

and the estimated value for the gam, which weights how correlated the next state

position is to the previous was -0.2979874. Next are some performance numbers for

the estimated values, the average log-likelihood for the test was -114.9911 and the

standard error for the log-likelihood was 1.01391. Overall the estimated values seem
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to be a little off from what was expected. The value for c is above the limit we

expected to see and outside the range that was set. While the value for the gam

parameter is a little lower than the expected range, but not seriously out of question

as a plausible value. This issue may have been caused by the problems addressed

in the analysis of the mif diagnostics plots above. Now that we have estimated new

parameters for the state model based on the observed animal track data, let us move

on to testing how the parameters perform with the other NLNG applications in nLnG.

Value MIF Estimate

c 1.6559215

gam -0.2979874

loglik -114.9911

loglik.se 1.01391

Table 4.2: This table shows the values from the mif test for the two estimated parameters (c and
gam), the log-likelihood value for them and the standard error for the log-likelihood value.

4.4 Filtering and Smoothing Results

In this section the estimated model parameters will be used first to perform particle

filtering and then, second, to smooth the result using the particle smoother. Let us

start with using the pFilter application to obtain the filter states to use for the

smoothing process.
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4.4.1 Filtering

For the filtering process the particle filter will be used. The user call for the function

can be seen in Listing 4.4. The following are supplied: the nLnG object, realtrack.ex,

containing the state and observations function defined in Listing A.27 and A.28, the

saved parameter estimate, theta.mif, from the mif procedure, the number of parti-

cles is set at 1000 and we set all the statistical measurements to be collected. Now

that we highlighted the test to be conducted, let us examine the results from it. We

will start by looking at the effective sample size plot.

realTrack.pf <- pFilter(realtrack.ex,parms=theta.mif ,

Np=1000, pred.mean=TRUE ,

pred.var=TRUE ,filter.mean=TRUE ,

filter.var=TRUE ,save.states=TRUE)

Listing 4.4: Call for pFilter function for the observed data using the parameters estimated using

the mif function.

In Figure 4.4 it shows the effective sample sizes for the particle filter test using

the real observed animal data. The particle size used for the test was 1000. Figure

4.4 shows the maximum number of unique particles in the sample was approximately

around 80 and the smallest number of least unique particles in the sample around 20

(a few times). The number of unique particles in the sample mostly averaged about

60. These effective sample sizes are smaller proportion wise than what was seen with

the example problem, but are an effect of now working with more complex models

and actually observed data; since the model may not be consistent with the data.

Now that we have looked at how the filter performed for the estimated parameters.
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Figure 4.4: Plot of the effective sample size for the pFilter result for the real observed animal
tracking data (max number of particles was 1000).

Let us next look at how the particle filter did at recovering the states.

In Figure 4.5 the top plot is the 2D plot of the filter states (red) superimposed

on the observations (blue), with the smaller two plots being the individual longitude

and latitude positions versus time. The 2D plot shows that the observed states (blue)

appear to be in the middle of the filter states (red). The variations of the filter

states appear to be generally large from the observed states at times, making the

filter state appear more jagged. The two individual component plots of the longitude

and latitude in Figure 4.5, maybe shows the more interesting finding. In each plot,

during the middle of the time period, there is a large jump in time (or a large period

of time without an observation), resulting in a long straight line from timestep 30000

to 175000 (this long time jump may also have effects on the parameter estimation

process, which will be added to the discussion in the Chapter 5). The beginings and
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ends of each of the component plots appear as we would expect without the long

straight middles. In the longitude component plot (on the left) the filter states (red)

follow fairly closely to the observations (blue), while in the latitude plot (on the right)

the filter states (red) are much more varied from the observations (blue). From the

results, we can say the estimated parameters did an adequate job at producing filter

states for the observed animal track.

Figure 4.5: Plots of the results for the pFilter function. Top: 2D plot of the filter states (red) vs
the observations (blue). Bottom: component plots of longitude and latitude variables versus time.

Now that the result for the observed animal data has been filtered and the object,

realTrack.pf, prepared for using with the particle smoother application in nLnG.

Let us now smooth the filtered result from above.
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4.4.2 Smoothing

In this section, the result from the pFilter application for the observed animal tack

data will be used to demonstrate the particle smoother application, pSmoother, in

nLnG. In Section 4.4.1 the object, realTrack.pf, had the ensemble states saved and

prepared for use with the pSmoother. Let us first start by describing the set-up of

the pSmoother.

Listing 4.5, shows the call to the pSmoother function for the observed data test.

The function call used the pFilterd-nLnG object, realTrack.pf, from the particle

filter test, the estimated parameters from the mif, theta.mif, number of particles,

realTrack.ps <- pSmoother(realTrack.pf,parms=theta.mif ,

smoother.mean=TRUE ,

smoother.var=TRUE ,

Nreal =25,Np=1000 , xhat=TRUE ,

save.real=TRUE ,verbose=TRUE)

Listing 4.5: Call for pSmoother function for the observed data, running 25 realization, with

1000 particles used and collection all the values for smoother mean & variance, the xhats, and the

realizations.

Np, number of realization, Nreal and was told to collect a number of quantities during

the process (smoother mean and variance, the x̂t, and the realizations). With the

test performed now highlighted, let us examine the results.

For the smoother, we will use two sets of plots to assess the results from the test.

The first set of plots will be the regular 2D and component plots. The second set of

plots will be comparison of the particle filter and smoother results. Let us examine
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the results of the smoother first.

Figure 4.6, shows the plots of the particle smoother results plotted with the ob-

served data. In the large 2D plot at the top of the Figure, the smoother state (blue)

does fairly well at the start of the observations (red) before separating from it. The

smoother state does correct itself to the observations before another set of large devi-

ations (this is where the large gap in observations takes place). After the time jump,

the smoother state again corrects itself to the observations, then with another slight

separation before finishing back on top of the observations. Now referring to the

individual components in the lower 2 plots in Figure 4.6. Starting with the longitude

Figure 4.6: Plots of the results for the pSmoother function. Top: 2D plot of the smoother states
(blue) with the observations (red). Bottom: component plots of longitude and latitude variables
versus time (seconds).
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component plot (on the left), the smoother state (blue) is fairly close to the obser-

vations (red) throughout the plot even after the time jump. Looking at the latitude

component plot (on the right) the smoother state (blue) does much worse at following

the observations (red) and is barely on top of the observations throughout the plot

at all. Next let us look at the smoother state estimated in contrast to the filter state

before discussing the results.

Figure 4.7 shows the plots of the smoother state plotted with the filter states and

observations. Referring to the large 2D plot at the top, note that the smoother state

(blue) only does a good job at smoothing a few of the spots of the filter state (red)

(mostly where the smoother estimated state did a good job of following the observed

states (green)). Referring to the 2 component plots in the lower part of the Figure.

The plot of the longitude (on the left) component shows the smoother state (blue)

does a fairly good job of going through the middle of the filter state (red), while in

the latitude component plot (on the right) the smoother state (blue) does a very poor

job at eliminating the filter state’s (red) roughness. Now that we have examined the

plots of the particle smoother results and contrasted them against the particle filter

results, let us move to discussing the overall performance.

Overall, the particle smoother result for the observed data seems to do only an

average job of estimating the true state (observed in this case) of the animal. While it

seems that the longitude variable did a much better job of estimating the true state,

the latitude variable’s terrible performance of estimating the true state is probably a

big factor in the overall result. This could be caused by a couple of different reasons.

First the number of realizations run for the particle smoother was rather small (only

25). Normally you would want to run a much larger set (discussed further in the

Conclusion). Also the lack of information in the observed data for estimating the
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Figure 4.7: Plots of the results for the particle smoother vs particle filter. Top: 2D plot of the
smoother states (blue) vs the observations (red). Bottom: component plots of longitude and latitude
variables versus time (seconds).

parameters to fit the Breed et al. (2012) SSM likely contributed to the poor perfor-

mance.

This brings the demonstration of the nLnG package with the observed Atlantic

grey seal data to an end. Next there will be a discussion in the Conclusion about

the overall performance in general, as well as package creation for R and remarks on

future work for the package.



Chapter 5

Conclusion

In this conclusion we will first do a brief discussion on the creation of the nLnG

package, followed by a full discussion on the demonstration of the package with the

observed Atlantic grey seal data and end by discussing future steps for the package.

5.1 Package Creation

From the package creation aspect of the thesis, it would be easy to say that nLnG

accomplished what the main purpose of the thesis to develop an R package for NLNG

SSMs, with the unique inclusion of a particle smoother. The package itself passes

all the CRAN checks to install and has been installed on multiple systems. The

package offers a variety of SSM applications of interest, that support both single and

multivariate types of model structures, with quick to use diagnostics and comparison

plotting to analyse results. The creation of nLnG using R’s infrastructure at the

beginning was a slightly tedious process, with having to copy files and prepare the

package folder with all the appropriate parts for error checking during programming

and testing. Switching to using RStudio allowed for some of the tedious aspects to

be removed, as it has options to create packages as a project, which allows the user

to automate some of the error checking process. One of downfalls of using RStudio

to generate packages was that the none of the man pages were generated, which still

left the user significant work to prepare this folder. My solution to the issue was to
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create a script, that I would run to collect the missing files from the previous version

of the package folder and copy them to the new package folder (RStudio was very

new at the time of the creation of nLnG, and far more documentation/examples are

available currently).

One of the main issues that still occurs with nLnG, is that while the analysis of

simulated data can be done in a fairly timely fashion, introducing real observed data

into the process; meant the analysis process becomes slow and very computational

heavy. Even with the inclusion of compiled code to perform much of the computa-

tional heavy mathematics, R’s overhead system cost really becomes a burden to the

execution speed of the programs when introduced with real observed data to anal-

yse (This of course is based on one example data set tested). Let us now move to

discussing the analysis of the observed Atlantic grey seal data in Chapter 4.

5.2 Observed Data Analysis

The analysis of the observed data in Chapter 4, while a good demonstration of us-

ing real observed data with package nLnG, did not do a great job of mimicking the

observed state of the animal. The poor performance is more based on the modelling

process than that of the software. The main contribution of the software to the issue

is the time in which it requires to perform the analysis, limiting the possibilities to

explore different modelling techniques. With more time during the modelling and

parametrization process different time-stepping wrappers could have been explored

to test for advancing the state (process) model by either using one time step or Euler

steps wrappers instead of the discrete time wrapper. Next with the parametrization
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of the model to the observed data, there are a few issues affecting the process. To

start, as mentioned in Section 4.3, the observed animal data may simply not con-

tain enough information to fit the model. The parameters being estimated could

either have been trading off or had a strong covariance between them. While with

more time to perform the analysis, single parameters estimation tests could have been

attempted, while holding the other parameters static for the test (we estimated two

parameters, which could lead to the issues mentioned above). Also, with more testing

time, different bounds from those from Breed et al. (2012) on the estimated parame-

ters could have been attempted for the MIF procedure. Finally, the large time jump

in the middle of the observations corresponding to the transition from land to water

could be another reason that the observed data lacks information for the estimation

process. This transition could also represent a change in behaviour from near shore

active to foraging, which would cause a change in the parameter values being esti-

mated during the test. This could easily be the cause of why the parameters do not

appear to converge during the MIF test in Section 4.3.

The resulting estimated parameters lead to the rather poor estimates of the true

state of the animal for the particle filter and smoother applications. With more

analysis time, extra testing could have been performed to explore getting better esti-

mated parameter results for the following applications. Now that we have discussed

the demonstrated observed data analysis, let us finish with a small discussion on the

future work for the package.
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5.3 Future Work

The future of the nLnG package after this thesis can take one of a couple different

of paths depending on which I prefer to follow through on. Option one would be to

release and maintain the package myself through the CRAN site (or another one of

the R package distribution sites). While, this would give me full autonomy over the

package going forward, it could also mean any inquiries or package updates (streamline

the Kalman application better, add to the parameter estimation methods offered,

continue adding on the diagnostic features available, etc) would have to be done fully

by me, which could be very time consuming for one person. The other option for

the package would be for me to become part of a group of contributors to a current

package (ideal target is POMP), where my responsibilities would be to maintain the

particle smoother application within the larger scope of things and only need to

attend to inquiries and updates for a much smaller portion of the overall package. As

well, the particle smoother would have to be throughly tested, and its computational

performance improved. This could be done with different process models, using both

synthetic data generated under various statistical assumptions as well as real data

(that may not be fully consistent with the process model proposed). This concludes

the introduction of the nLnG package for this thesis.
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Code Appendix

setClass(’nLnG’,

representation(

data = ’array’,times = ’numeric ’,

tInit = ’numeric ’,state.sim = ’function ’,

state.den = ’function ’,obsev.den = ’nLnG.fun’,

obsev.sim = ’nLnG.fun’,initializer = ’function ’,

state.update = ’function ’,

smoother.den = ’nLnG.fun’,

states = ’array ’,parms = ’numeric ’,

covar = ’matrix ’,tcovar = ’numeric ’,

obsnames = ’character ’,

statenames = ’character ’,

paramnames = ’character ’,

covarnames = ’character ’,

zeronames = ’character ’,

PACKAGE = ’character ’,userdata = ’list’)

)

Listing A.1: nLnG Class Representation
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useDynLib( nLnG ,

get_nLnG_fun ,

lookup_in_table ,

do_obsev_sim ,

do_obsev_den ,

do_state_sim ,

do_state_den ,

do_init_state ,

do_state_update ,

euler_model_simulator ,

euler_model_density ,

simulation_computations ,

R_Euler_Multinom ,

D_Euler_Multinom ,

R_GammaWN ,

systematic_resampling ,

pFilter_computations ,

systematic_resampling2 ,

pSmoother_computations

)

importFrom(graphics ,plot)

importFrom(stats ,simulate ,time ,coef ,logLik ,window)

importFrom(mvtnorm ,dmvnorm ,rmvnorm)

importFrom(subplex ,subplex)

importFrom(deSolve ,ode)
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exportPattern("^[[: alpha :]]+")

exportMethods(

"$",

"coef",

"coef <-",

"coerce",

"cond.logLik",

"continue",

"conv.rec",

"data.array",

"dprior",

"eff.sample.size",

"filter.mean",

"filter.var",

"init.state",

"kFilter",

"kSmoother",

"logLik",

"mif",

"nLnG",

"obs",

"obsev.den",

"obsev.error",

"obsev.sim",

"parms.rec",
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"pars.mean",

"pars.var",

"particles",

"pFilter",

"plot",

"pmcmc",

"pred.mean",

"pred.var",

"print",

"pSmoother",

"show",

"simulate",

"smoother.mean",

"smoother.var",

"state.den",

"state.error",

"state.sim",

"state.update",

"stateAugmentation",

"states",

"summary",

"time",

"time <-",

"timezero",

"timezero <-",



134

"window",

"xhat"

)

exportClasses(

"kFilterd.nLnG",

"kSmootherd.nLnG",

"mif",

"nLnG",

"nLnG.fun",

"pFilterd.nLnG",

"pmcmc",

"pSmootherd.nLnG",

"stateAugmentated.nLnG"

)

Listing A.2: NAMESPACE file for class nLnG
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Package: nLnG

Type: Package

Title: NonLinear NonGaussian State Space Model Tools

Version: 1.0

Date: 2012 -08 -26

Author: Joey Hartling

Maintainer: Joey Hartling <joeyh@mathstat.dal.ca>

Description:

Package for non Linear non Gaussian state space model

filtering and smoothering tools

Depends: R(>= 2.14.1) , methods ,stats ,graphics ,mvtnorm ,

subplex ,deSolve

License: GPL (>= 2)

LazyLoad: TRUE

LazyData: False

BuildVignettes: no

Collate: nLnG -help.R eulermultinom -nLnG.R nLnG -fun.R

nLnG.R nLnG -methods.R obsev.den -nLnG.R

obsev.sim -nLnG.R state.den -nLnG.R state.sim -nLnG.R

state.update -nLnG.R smoother.den -nLnG.R

init.state -nLnG.R simulate -nLnG.R

pFilter -nLnG.R pFilter.methods -nLnG.R

filter.diag -nLnG.R kFilter -nLnG.R

kFilter.methods -nLnG.R mif.class -nLnG.R

particles -nLnG.R mif -nLnG.R mif.methods -nLnG.R

mif.comp -nLnG.R pDesign -nLnG.R pmcmc -nLnG.R

pmcmc.methods -nLnG.R pmcmc.comp -nLnG.R

kSmoother -nLnG.R kSmoother.methods -nLnG.R

plot -nLnG.R stateAugmentation2 -nLnG.R

stateAugmentation.methods -nLnG.R

pSmoother -nLnG.R pSmoother.methods -nLnG.R

smoother.diag -nLnG.R compare.diag -nLnG.R

Listing A.3: The description file for package nLnG
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effSampleTime(track.pf)

Listing A.4: effSampleTime plot function call for the Particle filtered object, track.pf, to return

the plot of the effective particle sample size of time

pm <- pred.mean(track.pf)

pv <- pred.var(track.pf)

fm <- filter.mean(track.pf)

fv <- filter.var(track.pf)

Listing A.5: Methods for extracting the predictive and filter means and variances for the pFilter

function

filter.diag(track.pf ,2,type="particle",Dimplot=TRUE)

Listing A.6: Filter diagnostic call for the particle filtered object track.pf

##adding state update to model

track.ex <- nLnG(track.ex , state.update=

onestep.sim(step.fun=track.update)

)

##setting up error matrices for kalman filter
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oError <- matrix(c(0.7^2 ,0 ,0 ,0.7^2) , nrow=2,ncol =2)

sError <- matrix(c(0.4^2 ,0 ,0 ,0.2^2) , nrow=2,ncol =2)

Listing A.7: Setup for kFilter function inputs

filter.diag(track.kf ,2,type="Kalman",Dimplot=TRUE)

Listing A.8: Filter diagnostic call for kFilter

track.ex <- nLnG(track.ex , obsev.den=track.obsev.den)

Listing A.9: Adding obsev.den to track.ex

##Methods for Kalman Smoother

##get smoother mean and var

sm <- smoother.mean(track.ks)

sv <- smoother.var(track.ks)

Listing A.10: Showing methods to extract the smoother mean and variance for the Kalman

smoothed object, track.ks. Storing the extracted information in variables sm and sv.

smoother.diag(track.ks ,2,type="Kalman",Dimplot=TRUE)

Listing A.11: Calling the smooth.diag diagnostic function on the example tracking data for the

example tracking problem object, track.ks
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track.pf <- nLnG(track.pf ,smoother.den=track.obsev.den)

Listing A.12: Adding smoother.den function to the nLnG object, track.pf, making the smoothing

denisty calculation available to use

smoother.diag(track.ps ,2,type="particle",Dimplot=TRUE)

Listing A.13: Call to smoother diagnostic function smoother.diag for the example tracking

problem object, track.ks

compare.diag(track.pf ,track.kf ,2,Dimplot=TRUE)

Listing A.14: Comparison function diagnostic compare.diag call for the comparison of the filter

methods in package nLnG. pFilter vs. kFilter for the example tracking problem

compare.diag(track.pf ,track.ps ,2,Dimplot=TRUE)

Listing A.15: Calling compare.diag on the Particle filter and smoother objects

compare.diag(track.kf ,track.ks ,2,Dimplot=TRUE)

Listing A.16: Calling the compare.diag diagnostic function on the example tracking data

##showing the log -likelihood for MLE section of thesis

##running pFilter over different values of dynamic parameter

dvec <- seq (0.997 ,1.003 ,by =0.001)

loglikest <- NULL

for(i in 1:7) {

theta["d"] <- dvec[i]

track.mle <- pFilter(



139

track.ex,

parms=theta ,

Np=1000,

pred.mean=FALSE ,

pred.var=FALSE ,

filter.mean=FALSE ,

filter.var=FALSE ,

save.states=FALSE

)

loglikest[i] <- logLik(track.mle)

}

##### Changing Theta over to the Kalman Filter

### verison parameter d = A, h = Q

theta <-c(A=1.00 ,Q=1.00 , drift =0.05 , Xlon .0=-60.5 , Xlat .0=44.0 ,

slon =0.15, slat =0.075 , sOb =0.25)

##running the kFilter for different values of

##dynamic parameter

loglikestKF <- NULL

for (i in 1:7){

theta["A"] <- dvec[i]

#running the kalman filter

track.mle <- kFilter(track.ex,parms=theta ,

obsev.error=oError ,

state.error=sError ,

delta.t=1,pred.mean=TRUE ,
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pred.var=TRUE ,filter.mean=TRUE ,

filter.var=TRUE

)

loglikestKF[i] <- logLik(track.mle)

}

Listing A.17: Computing the Log-likelihood for the dynamic parameter dvec using the particle

filter function pFilter and Kalman filter function kFilter

> logLik(track.sa)

[1] -42.93537

Listing A.18: Computing the Log-likelihood for the returned object track.sa from the

stateAugmentation function, for the dynamics parameter estimation test

##setting up and

##running estimation by mif

truth <- coef(track.pf)

##picking parameters to estimate

parEst <- c("d")

Listing A.19: Setting up the initial parameter estimates and the picking which parameter we want

to estimate for the mif function

track.Pmif <-replicate(n=10,

{guess <- truth

##giving differnt starting point

guess[parEst]<-rnorm(n=length(parEst),
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mean=guess[parEst],

sd =.005)

##call to the mif function

mif(track.pf ,

Nmif=50,

start=guess ,

pars=parEst ,

rw.sd=c(d=0.001) ,

Np=1000,

var.factor=2,

ic.lag=50,

cooling.factor =0.99,

max.fail =100)

})

Listing A.20: Running a MIF for parameter estimation using pars.

track.Imif <-replicate(n=10,

{guess <- truth

##giving differnt starting point

point to the parameter

guess[parEst]<-rnorm(n=length(parEst),

mean=guess[parEst],

sd =.005)

##call to the mif function

mif(track.pf ,
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Nmif=50,

start=guess ,

ivps=parEst ,

rw.sd=c(d=0.001) ,

Np=1000,

var.factor=2,

ic.lag=50,

cooling.factor =0.99,

max.fail =100)

})

Listing A.21: Setting up the parameter vector guess varying the parameters for estimate parEst

(the dynamics parameter in this case) the for each run of the mif storing the results for each mif

results in track.Imif.

mif.comp(track.Imif)

Listing A.22: Call to use the visual analysis tool mif.comp for mif object in package nLnG for the

example tacking problem track.Imif

track.mifP [[1]] @conv.rec

Listing A.23: Example of Extracting the convergence records for the first mif replication from the

saved results in mif object, track.mif.pars

> theta

d h drift Xlon.0 Xlat.0 slon slat sOb
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1.000 1.000 0.050 -60.500 44.000 0.150 0.075 0.250

> theta.mif <- apply(sapply(track.mif.par ,coef),1,mean)

> theta.mif

d h drift Xlon.0 Xlat.0

slon slat sOb

0.9993414 1.0000000 0.0500000 -60.5000000 44.0000000

0.1500000 0.0750000 0.2500000

> loglik.mif <- replicate(n=10, logLik

(pFilter(track.mif.par[[1]] ,

+ parms=theta.mif ,Np =1000)))

> bl <- mean(loglik.mif)

> bl

[1] -24.54787

> loglik.mif.est <- bl + log(mean(exp(loglik.mif -bl)))

> loglik.mif.est

[1] -24.42531

> loglik.mif.se <- sd(exp(loglik.mif -bl))/

+ exp(loglik.mif.est -bl)

> loglik.mif.se

[1] 0.5213355

> theta.true <- coef(( track.ex))

> theta.true

d h drift Xlon.0 Xlat. slon slat sOb

1.000 1.00 0.050 -60.500 44.000 0.150 0.07 0.250

> loglik.true <- replicate(n=10, logLik(
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pFilter(track.ex ,

+ parms=theta.true ,

+ Np =1000)))

> loglik.true.est <- bl + log(mean(exp(loglik.true -bl)))

> loglik.true.est

[1] -22.18221

> loglik.true.se <- sd(exp(loglik.true -bl))/

+ exp(loglik.true.est -bl)

> loglik.true.se

[1] 0.1679821

Listing A.24: Processing the results from the MIF test for the example animal tracking problem.

Showing how to pull the values of interest out of the mif object for the parameters estimated; the

log-likelihood estimate and the standard error of the log-likelihood.

> theta

d h drift Xlon.0 Xlat.0 slon slat sOb

1.003 1.000 0.050 -60.500 44.000 0.150 0.075 0.250

> theta.mif <- apply(sapply(track.Imif ,coef),1,mean)

> theta.mif

d h drift Xlon.0

0.99977323 1.00000000 0.05000000 -60.50000000

Xlat.0 slon slat sOb

44.00000000 0.14378084 0.07715031 0.25000000

> loglik.mif <- replicate(n=10, logLik

(pFilter(track.Imif [[1]] ,
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+ parms=theta.mif ,Np =1000)))

> bl <- mean(loglik.mif)

> bl

[1] -21.71642

> loglik.mif.est <- bl + log(mean(exp(loglik.mif -bl)))

> loglik.mif.est

[1] -21.70551

> loglik.mif.se <- sd(exp(loglik.mif -bl))/

exp(loglik.mif.est -bl)

> loglik.mif.se

[1] 0.1513775

> theta.true <- coef(( track.ex))

> theta.true

d h drift Xlon.0 Xlat.0 slon slat sOb

1.000 1.000 0.050 -60.500 44.000 0.150 0.075 0.250

> loglik.true <- replicate(n=10, logLik(pFilter(track.ex ,

parms=theta.true ,Np =1000)))

> loglik.true.est <- bl + log(mean(exp(loglik.true -bl)))

> loglik.true.est

[1] -22.01209

> loglik.true.se <- sd(exp(loglik.true -bl))/

exp(loglik.true.est -bl)

> loglik.true.se
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[1] 0.334381

Listing A.25: Processing the results from the IVP MIF test for the example animal tracking

problem. Showing how to pull the values of interest out of the mif object for the parameters

estimated; the log-likelihood estimate and the standard error of the log-likelihood.

EID sealid date lat lon spd Timestep

X

1 35890 106709 14/06/2011 14:21 43.92794 -60.01687 1.9176288

0 0

2 35891 106709 14/06/2011 14:38 43.92359 -60.01379 2.1385149

1019 1019

3 35892 106709 14/06/2011 14:54 43.92142 -60.00716 2.1239551

982 2001

4 35893 106709 14/06/2011 15:10 43.92542 -60.00295 1.7354930

946 2947

5 35894 106709 14/06/2011 15:26 43.92339 -60.00785 3.3761050

939 3886

6 35896 106709 14/06/2011 15:59 43.92435 -59.98433 0.7476652

2010 5896

Listing A.26: The head of one of the sets of data supplied by OTN for one of the Atlantic Grey

seals. The data has the date and time for the observation at the latitude and longitude positions,

as well as the speed the animal was moving at. I’ve added Timestep and X to the data, where the

Timestep is the seconds between observations and X is the cumulative time.

##state simulate function
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real.track.state.sim <- function(x,t,parms ,delta.t ,...){

##get parameters

gam=parms["gam"]

if(parms["gam"]<0|| parms["gam"]>1){

if(parms["gam"]<0)

parms["gam"] <- 0

else

parms["gam"] <- 1

}

if(parms["c"]<0|| parms["c"]>1){

if(parms["c"]<0)

parms["c"] <- 0

else

parms["c"] <- 1

}

turn=rwrpcauchy (1, location=0, rho=parms["c"])

##setup Matrices

##define the turn matrix

tx <- matrix(c(cos(turn),-sin(turn)

,-sin(turn),-cos(turn)),

ncol=2,nrow =2)

if(parms["slon"]<0)

parms["slon"] <- 0

if(parms["slat"]<0)

parms["slat"] <- 0
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##define the covariance matrix

cv <- matrix(c(parms["slon"]^2,0,0, parms["slat"]^2),

ncol=2,nrow =2)

##generate new states

xnew <- rmvnorm(n=1,mean=(x[c("xlon","xlat")]+

(gam*(tx%*%(x[c("xlon","xlat")]

-x[c("xlon1","xlat1")])))) ,

sigma=cv)

if(xnew[1]< -63.00)

xnew [1] <- -63.00

if(xnew [1] > -57.00)

xnew [1] <- -57.00

if(xnew [2] <40.00)

xnew [2] <- 40.00

if(xnew [2] >48.00)

xnew [2] <- 48.00

##combine the new and state from 1 time step before together

xnew <-c(xnew ,unname(x[c("xlon","xlat")]))

##give the new states the correct names

names(xnew) <- c("xlon","xlat","xlon1","xlat1")

return(xnew)

}

Listing A.27: Observed data state(process) model, transitioning the state from time t to t+1.

##observation density calculator
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real.track.obsev.den <- function(y,x,t,parms ,log ,...){

##get parameter

nada <- parms["nada"]

cv <- matrix(c(parms["nada"]^2,0,0, parms["nada"]^2),

ncol=2,nrow =2)

##get density

fnew <- dmvnorm(x=y[c("ylon","ylat")],

mean=x[c("xlon","xlat")],

sigma=cv ,log=log)

return(fnew)

}

Listing A.28: Observed data observation model, for calculating the likelihood of the state given

the observed state.



Appendix B

Plots and Figures

Figure B.1: The plot of the simulated data for the state and observations models, Xlon,Xlat state
model, ylon,ylat observation model
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Figure B.2: The 2D plot of the Kalman Filter mean with 95% confidence intervals and observations

Figure B.3: The plot of the longitude variable Kalman Filter mean with shaded 95% confidence
intervals and observations
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Figure B.4: The plot of the latitude variable Kalman Filter mean with 95% confidence intervals
and observations
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Figure B.5: The plots of the longitude (left) and latitude (right) variables Kalman filter mean
(top) and variance (bottom) individual plots
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Figure B.6: The 2D plot of the particle filter median with 95% confidence intervals and observations
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Figure B.7: The plot of the longitude variable particle filter median with shaded 95% confidence
intervals and observations
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Figure B.8: The plot of the latitude variable particle filter median with shaded 95% confidence
intervals and observations
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Figure B.9: The plots of the longitude (left) and latitude (right) variables particle filter mean
(top) and variance (bottom) individual plots
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Figure B.10: The 2D plot of the particle filter mean and observations
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Figure B.11: The 2D plot of the results from the kSmoother function. The Kalman smoother
mean (black) with 95% confidence intervals (red) are plotted with the recorded observations (blue).
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Figure B.12: The plot of the results from the kSmoother function for the longitude variable.
The plot is of the Kalman smoother mean (black) with 95% confidence intervals (shaded) and the
recorded observations (blue).
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Figure B.13: The plot of the results from the kSmoother function for the latitude variable. The
plot is of the Kalman smoother mean (black) with 95% confidence intervals (shaded) and the recorded
observations (blue).
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Figure B.14: The plots of the longitude (left) and latitude (right) variables Kalman smoother
mean (top) and variance (bottom) individual plots from the kSmoother function results.
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Figure B.15: The 2D plot of the Particle smoother median with 95% quantile area and observation
points
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Figure B.16: The plot of the longitude variable Particle smoother median with 95% quantile area
and observation points
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Figure B.17: The plot of the latitude variable Particle smoother median with 95% quantile area
and observation points
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Figure B.18: The plot of the longitude (left) and latitude (right) variables Particle smoother mean
(top) and variance (bottom) plotted against time.
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Figure B.19: The 2D plot of the longitude and latitude variables Particle smoother mean with
the observation points
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Figure B.20: The plot of the longitude variable Particle filter median vs. Kalman Filter mean

Figure B.21: The plot of the latitude variable Particle filter median vs. Kalman Filter mean
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Figure B.22: The plot of the longitude variable Particle filter median vs. Particle Smoother
median
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Figure B.23: The plot of the latitude variable Particle filter median vs.Particle Smoother Median
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Figure B.24: The plots of the longitude (left) and latitude (right) individual variables Particle
filter vs. Particle Smoother mean (top) and variance (bottom) plots each plotted against the time
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Figure B.25: The plot of the longitude variable Kalman filter mean vs. Kalman Smoother mean
with the observations points
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Figure B.26: The plot of the latitude variable Kalman filter mean vs. Kalman Smoother mean
with the observations points
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Figure B.27: The plot of the longitude (left) and latitude (right) variable Kalman filter mean vs.
Kalman Smoother mean with the observations points (top) and Kalman filter variance vs. Kalman
Smoother variance (bottom)



Appendix C

Comparisons Appendix

In this Appendix, the comparisons are presented for the results from Chapter 3. Using

the example tracking problem to prove the equivalent of the procedures in the package

nLnG, when the SSM being used is of the linear Gaussian class. We first show that

the results from of the Kalman and Particle filter are equivalent to each other, then

show that the Kalman filter and smoother have equivalent results and lastly show

that the particle filter and smoother also have equivalent results as well.

The comparisons are all made by using the compare.diag method available in

package nLnG. The compare.diag function takes two different nLnG procedure results

(or they can be the same procedure, if you want to compare two Kalman filter results

say) and produces comparison plots of the findings so that the user can easily view

them together. The compare.diag function takes the following inputs, the two nLnG

objects produced from the procedures, the number of variables in the data set and

whether or not to produce a 2D plot of the variables. The comparison plots produced

mirror the plots produced by the filter.diag and smoother.diag functions, except

that the second set of results are overlaid onto the first set. Therefore a plot of

each of the variable(s) with 95% CI against the time, a plot of the filter mean(s)
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and variance(s) against the time and a 2D plot of the variables if the option has

been selected. We can now look at the comparisons made for the example tracking

problem used in Chapter 3. Let us start with the comparisons for the filter methods

in package nLnG.

C.1 Filter Comparison

For the filter comparison, the results from the particle filter and Kalman filter results

are compared to show the functions’ equivalence under the linear Gaussian case.

Looking at the Figure C.1 closer you can see the particle filter median (green) and

the Kalman filter mean (black) states match very well from the two procedures. With

the particle filter median being practically directly on top of the Kalman filter mean

in the plot. In Figure C.2 is comparing the two filter means and variances for each

of the variables plotted against the time. In the bottom two variance plots you can

see that the Kalman filter variance (red) crosses through the middle of the particle

filter variance (black) for each the longitude and latitude position variables, this is

what we hope to see when comparing the two procedure. The Kalman filter variance

will always be much smoother and linear looking than the particle filter variance and

overlaying them the Kalman filter variance could approximately be the mean of the

particle filter variance. This is the expected result we were looking to show that when
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Figure C.1: The plot of the particle filter median, the Kalman filter mean and observations for the
example tracking data, particle filter median (green), Kalman filter mean (black) and observation
state (blue).

we have a linear Gaussian SSM the results are equivalent.
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Figure C.2: The plots of the longitude and latitude variables Particle filter vs. Kalman filter mean
and variance individual plots

C.2 Smoother Comparison

For the smoother comparison, the results from the particle smoother and Kalman

smoother results are compared to show the functions equivalence under the linear

Gaussian case. Looking at the Figure C.1 closer you can see the particle smoother

median (green) and the Kalman smoother mean (black) states match very well from

the two procedures. With the particle smoother median being very close to the
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Kalman smoother mean throughout the plot. In Figure C.4 is comparing the two

smoother means and variances for each of the variables plotted against the time.

Figure C.3: The plot of the particle smoother median, the Kalman smoother mean and obser-
vations for the example tracking data, particle smoother median (green), Kalman smoother mean
(black) and observation state (blue).

In the bottom two variance plots you can see that the Kalman smoother variance (red)

crosses through the middle of the particle smoother variance (black) for each the lon-

gitude and latitude position variables, this is what we hope to see when comparing the

two procedure. The Kalman smoother variance will always be much smoother and

linear looking than the particle smoother variance and overlaying them the Kalman



180

smoother variance makes a floor of the lowest points for the particle smoother vari-

ance. Again, this is the expected result we were looking to show that when we have

a linear Gaussian SSM that results are equivalent.

Figure C.4: The plots of the longitude and latitude variables Particle smoother vs. Kalman
smoother mean and variance individual plots
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