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Abstract 

Like all data, administrative health data are susceptible to bias. In this project I focus on 

bias due to misclassification of disease outcome in the context of a meta-analysis. I propose a 

novel approach to random effects estimation in the presence of misclassification based on a 

method proposed in the literature for fixed effects estimation. Both these approaches to meta-

analysis in the presence of misclassification adjust the study-specific variance in log odds ratio 

for the presence of between-study variance in misclassification rates. Monte Carlo simulation is 

used to compare these variance correction approaches to naïve (non-variance) correction 

approaches.  

The simulation demonstrates that, in fact, the naïve correction procedure yields effect 

estimates that are less biased than those yielded by the variance correction procedure, and its 

coverage probability is closer to its nominal value. High false negative rates are observed for all 

homogeneity statistics, while their false positive rates remain low.
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Comparison of Two Methods to Correct for 

Non-differential Misclassification in Meta-

analysis 

1 Introduction 
 

The evidence needed to generate an accurate risk-benefit profile for a drug is 

complex and multi-faceted. It ranges from pre-clinical investigations of potential toxicity 

in vitro or in vivo, to population level studies of the risk of adverse drug reactions after 

the drug has been approved for use in the general population. A life-cycle approach to 

prescription drug safety places special emphasis on post-market surveillance as a means 

of addressing the limitations of small, short-term pre-market controlled trials (1). 

Many unintended effects of prescription medication can only be observed in 

large populations followed for long durations. Linked administrative health data sets are 

well suited to this task. In Canada, unique personal identifiers allow for the linkage of 

administrative health databases within provinces, which is an advantage any other 

countries lack (2). The advantages of administrative health data sets for research – their 

large sample size and long term follow-up – would be maximized if all provincial 

administrative data were collected in a single repository, but privacy and legal concerns 

have prevented this from happening (3) (an exception is the Canadian Institute for 

Health Information’s discharge abstract database, which covers nearly the entire 

population of Canada outside of Quebec (4)).  
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The Canadian Network for Observational Drug Effect Studies (CNODES) is a 

distributed network of researchers that spans multiple Canadian provinces (3). It 

coordinates and directs observational pharmacoepidemiological studies carried out 

within participating provinces, where each study follows a common protocol and uses 

administrative health data. The results of the province-specific studies are then 

synthesized in a meta-analysis.  

Like all research, this type of observational pharmacoepidemiology is fraught 

with potential biases, some of which are more common in studies that use 

administrative health data. In this project, we focus on a particular source of bias – 

misclassification of disease outcome – and compare two methods of correcting its 

effects in the context of a meta-analysis. While misclassification has long interested 

epidemiologists and biostatisticians, it is understudied in this context. 

The two methods for correcting misclassification-induced bias investigated in 

this project are distinguished according to whether or not the study-specific variance in 

effect size is adjusted to reflect between-study variance in misclassification rates. The 

procedure to adjust study-specific variances is based on that articulated in (5) for fixed 

effects estimation. By proposing a novel Cochran between-study variance statistic (6,7) 

we show how an adjusted estimate of between-study variance in effect size may be 

derived. Monte Carlo simulation is used to compare the variance corrected meta-

analytic effect estimate to the naively (non-variance) corrected estimate on key 

performance measures. As the choice of a random or fixed effects model is an essential 



  

 3 

part of meta-analysis, we also compare various homogeneity test statistics for their false 

negative and false positive rates. 

It is our hope that by determining which is the superior approach to 

misclassification-induced bias correction in meta-analysis, this project will encourage 

more widespread use of quantitative bias analysis in meta-analyses. We feel that this is 

especially important for studies that use administrative health data, and that seek to 

inform policy decisions. 
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2 Background 

2.1 Administrative Health Data: Identifying Disease Outcomes 
 

Every encounter with the healthcare system generates data used for 

administrative purposes. Such data includes physician billing claims, hospital discharge 

abstracts, and pharmacy claims (8).  In Canada, a unique identifier associated with each 

patient and each physician allows for linkage across databases within provinces or 

territories (9). Date of admission and discharge for hospital abstracts, and date of 

service for physician billing and pharmacy claims allow for the definition of time-

windows for exposure and disease (10). Health outcomes are represented using 

diagnostic codes, with Canada adopting the International Classification of Diseases, 10th 

Revision (ICD-10) in a six year implementation process between 2001 and 2006 (11). 

ICD-10 provides a standardized system for representing “the universe of diseases, 

disorders, and other related health conditions” by assigning each such condition a 

distinct alphanumeric code (12). Standardizing diagnostic codes allows for easier 

comparison of health information between geographic regions and time-periods.   

The use of a coding system like ICD-10 allows for the development of consistent 

case-identification algorithms that can be applied to administrative health databases in 

different geographical settings. Standardized diagnostic codes may increase an 

investigator’s confidence that the same construct is being measured in every application 

of the algorithm. Case-identification algorithms often include additional criteria besides 

diagnostic and procedure codes, such as prescription records and time constraints. The 
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Canadian Chronic Disease Surveillance System, for example, uses an algorithm for 

identifying diabetes in administrative health that defines cases by the presence of one 

hospitalization or two physician billing claims within two years that contain a diagnostic 

code for diabetes (13) (for a range of other possible such algorithms, see Lix et al. (14)). 

However, just as an epidemiological study that does primary data collection must 

describe its selection process in order to demonstrate its internal and external validity, a 

study using administrative health data must describe why the database was created, 

how data is entered and by who, and how these factors may influence the accuracy and 

completeness of the database (15). 

Despite how valuable they are for research, administrative health data are not 

collected for research purposes. This can affect the accuracy of the diagnostic codes 

they contain, and hence the performance of a case-identification algorithm. Clerical 

errors in transcription can lead to inaccurate coding, and a given diagnostic code may 

represent a rule-out diagnosis rather than a final diagnosis (16,17). However, coding 

accuracy has been shown to depend on both the data source and the target condition 

(18), which hints that there are more subtle and often more important sources of coding 

error than can be captured by notions of simple clerical or transcription error (19). The 

choice of an appropriate case-identification algorithm must take into consideration the 

care-seeking behaviour of patients with the target condition, the diagnostic procedures 

and patterns of treatment associated with that condition, and intrinsic characteristics of 

the databases employed (20).  
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The clinical characteristics of the target condition – its acuity, severity, and 

symptomatology – will influence the care seeking behaviour of patients with that 

condition. The more acute or severe their symptoms, the more likely a patient will seek 

care. For this reason, administrative health data are biased toward the more severe 

cases of the target condition. This poses particular problems for the study of chronic 

diseases, which progress gradually and may go undiagnosed for some time. One can 

overcome this limitation by restricting oneself to the most catastrophic cases, increasing 

the accuracy of case-identification, but doing so may misrepresent the true morbidity of 

the target condition (20).  

The process by which a physician decides on a diagnosis and course of treatment 

determines, in part, whether the disease status of a given individual is accurately 

represented in an administrative health database (20,21). An accurate diagnostic code 

depends on an accurate diagnosis, which in turn depends upon a clear, reciprocal 

exchange of information between patient and physician that allows the physician to 

decide on the most appropriate diagnostic tools or procedures. However, this 

information exchange can be hindered if the patient has poor health literacy, or if the 

physician has poor communication skills (21). The focus of the practice or institution in 

which the encounter occurs will also play a part in shaping the expectations of the 

patient, and hence the information they are likely to provide, as well as the procedures 

and practices most familiar to the physician. These factors and more are encompassed 

by the notion of medical practice variation (22,23). Investigators should think critically 
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about how medical practice variation may affect the performance their chosen case-

identification algorithm. 

Reimbursement policies can also affect the reliability of administrative health 

data. Internal auditing of diagnostic codes associated with inpatient hospital stays for 

insurance purposes, for instance, may render these records more reliable than those 

associated with outpatient care (20). Formulary restrictions can also lead to certain 

pharmaceutical exposures being underrepresented in administrative health data (24–

26) 

All factors influencing the performance of a case-identification algorithm 

discussed in this section are known to vary by geographic region. Care seeking 

behaviour varies according to demographic and sociocultural factors that vary between 

regions (27–29). Geographic variation in medical practice is well documented 

(22,23,30,31). In Canada, formulary restrictions vary by province (32,33). This makes the 

analysis of potential variability in the performance of a case-identification algorithm an 

important consideration when synthesizing information from geographically dispersed 

administrative health databases. 

 

2.2 Meta-Analysis 

Meta-analysis is a statistical technique for the systematic synthesis of distinct 

research studies with the aim of achieving a more precise understanding of the 

distribution of a given treatment effect (34). If all studies are considered to be 
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estimating a common effect, a meta-analysis will in general provide a more precise 

estimate of the magnitude of that effect than any of the individual included studies (35). 

If the studies are not estimating a common effect, meta-analysis allows for the 

quantitative assessment of the heterogeneity between included studies. Investigation of 

heterogeneity is indeed one of the key motivations for conducting a meta-analysis (34). 

The former case is referred to as fixed effects meta-analysis, referencing the fact 

that the effect size being estimated is identical in all included studies. The latter case is 

referred to as a random effects meta-analysis to indicate that there is random variation 

in that effect size between included studies. To each of these models of the underlying 

distribution of true effect sizes among the included studies there exists a corresponding 

estimation procedure, respectively called fixed effects estimation and random effects 

estimation. In the random effects case, we assume that the true effect sizes in the 

included studies, μ𝑖 , are normally distributed about an overall mean μ with variance τ2. 

Since the true underlying model is unknown, a key step in any meta-analysis is 

the performance of a 𝜒2 test for homogeneity, which, if statistically significant, is strong 

evidence for the presence of heterogeneity, and may be taken as justification for the 

use of random effects estimation (36,37). In case the 𝜒2 test is not statistically 

significant, then fixed effects estimation is taken as appropriate. However, these 𝜒2 

tests are known to have poor performance, especially when the number of studies is 

small, and additional qualitative exploration of heterogeneity is usually necessary (38). 
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Table 1 lays out the notation used in this manuscript for the various data 

associated with any given meta-analysis. 

 Estimate Estimand (Target Value) 

Effect size in study 𝑖 𝜇
𝑖̂
 𝜇𝑖 

Variance in study 𝑖 𝜐𝑖̂ 𝜐𝑖 

Overall effect size 𝜇𝐹 , 𝜇𝑅 𝜇 

Fixed effects estimate 𝜇𝐹 𝜇 

Random effects estimate 𝜇𝑅 𝜇 

Between study variance τ2̂ τ2 

𝜒2 Homogeneity Statistic 
𝑄 𝑁𝐴 

Table 1: Notation used for data associated with a meta-analysis. Note that Q does not have a "true value", 
since it is a statistic calculated from the data 

2.2.1 Prospectively Planned Meta-Analysis 

 

CNODES conducts what may be referred to as “prospectively planned” meta-

analyses, which pose several unique methodological problems (39). They are 

prospectively planned because the location of the individual studies is known in 

advance. An argument can therefore be made that these studies do not comprise a 

random sample from some larger set of studies. If this is the case the use of a random 

effects model is theoretically questionable. 

Regardless of the validity of the above argument, heterogeneity must still be 

dealt with, and CNODES studies do employ random effects estimation. As shown in 

Table 2, four of the last six studies conducted by CNODES chose to use random effects 
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meta-analysis. Thus, questions concerning the performance of random effects 

estimation in meta-analysis of administrative health data are still relevant for CNODES 

(40–45). 

 Year Published Random Effects Model 
Used? 

𝜒2 Homogeneity Test 
Significant? 

Azoulay L, Filion KB, Platt RW, 
Dahl M, Dormuth CR, Clemens 

KK, et al. 

2016 Yes No 

Renoux C, Dell’Aniello S, Khairy 
P, Marras C, Bugden S, Turin TC, 

et al. 

2016 Yes No 

Henry D, Dormuth C, Winquist 
B, Carney G, Bugden S, Teare G, 

et al. 

2016 No N/A 

Renoux C, Lix LM, Patenaude V, 
Bresee LC, Paterson JM, 

Lafrance J-P, et al. 

2015 Yes Yes 

Gomes T, Paterson JM, Mukati 
M, Henry D, investigators for 

CNODES. 

2015 No N/A 

Dormuth CR, Filion KB, Paterson 
JM, James MT, Teare GF, 

Raymond CB, et al. 

2014 Yes Yes 

Table 2: Six most recently published CNODES studies, their use of random effects models, and the 
statistical significance of the 𝜒2 homogeneity test 

2.3 Misclassification  

Misclassification is a type of information bias to which all epidemiological studies 

are susceptible. Studies using administrative health data are especially susceptible, if 

only because such data is not originally collected for research purposes (other, more 

systematic reasons for the misrepresentation of health state information in 

administrative health databases are touched on above. See Terris et al. (21) for a useful 

conceptual framework). Early work investigating the effect of misclassification led to the 

development of the matrix method of correction, an algebraic technique that can 
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recover the original data assuming the misclassification rates are known (46). If the 

misclassification rates are not known, they can be estimated using validation studies 

(47). This section will first describe the validation study method of arriving at the key 

measures of misclassification – sensitivity and specificity – and then describe how the 

matrix method can be used to correct an odds ratio. We will then review the difference 

between differential and non-differential misclassification, and, finally, describe the 

magnitude and direction of the bias induced by non-differential misclassification. 

2.3.1 Validation Studies 

A validation study compares the performance of fallible classification criteria to a 

“gold-standard”, which is difficult and expensive to administer, and assumed to be 

infallible (47). The fallible classification criteria we are interested in are those that 

comprise an algorithmic means of identifying disease in administrative health 

databases, but identical considerations apply to the identification of other outcomes, 

such as exposure status, for example. Applying both the fallible and infallible criteria to 

the subjects comprising the validation sample yields data in the form of Table 3, from 

which four measures of misclassification can be derived: sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value (NPV). While PPV and NPV may be 

the most intuitive measures of performance, representing the probability that a positive 

and negative classification, respectively, are correct, their values depend on the 

prevalence of the outcome in question, meaning they cannot be generalized easily 

outside the population in which the validation was conducted (15). Therefore, sensitivity 

and specificity, the probabilities that a person is recorded as having the outcome given 
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that they truly do, and as not having the outcome given that they truly do not, 

respectively, are the most common way of quantifying the performance of a 

classification algorithm. 

 

  Infallible Classifier  

  Positive Negative 

Fallible Classifier Positive TP FP 

 Negative FN TN 
Table 3: Example output of validation Study 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
  

 

2.3.2 Matrix-method Correction 

Assume that sensitivity and specificity are known or have been estimated in a 

validation study. Let sensitivity be denoted 𝑠𝑒 and specificity be denoted 𝑠𝑝. The 

corrupting action of misclassification can be represented by the following corruption 

matrix 𝐵: 

𝐵 = [
𝑠𝑒 1 − 𝑠𝑒

1 − 𝑠𝑝 𝑠𝑝
] 
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If 𝑈 = [
𝑎 𝑏
𝑐 𝑑

] is the true contingency table, prior to corruption by misclassification, 

then the corrupted contingency table 𝐶 = [𝑎′ 𝑏′
𝑐′ 𝑑′

] is given by 

𝐶 = [
𝑎 𝑏
𝑐 𝑑

] ∗ [
𝑠𝑒 1 − 𝑠𝑒

1 − 𝑠𝑝 𝑠𝑝
] 

Clearly then, given values for 𝑠𝑒 and 𝑠𝑝, we can recover the original data 𝑈 by 

multiplying 𝐶 by 𝐵−1, where  

𝐵−1 = (
1

𝑠𝑒 + 𝑠𝑝 − 1
) ∗ [

𝑠𝑝 𝑠𝑒 − 1
𝑠𝑝 − 1 𝑠𝑒

]   

2.3.3 Differential versus Non-differential Misclassification 

In the above, we assume that sensitivity and specificity are the same in each 

exposure category. This situation is referred to as non-differential misclassification. If 

sensitivity and specificity depend on exposure category, we refer to it as differential 

misclassification.  

This project focuses on non-differential misclassification for three reasons. First, 

data on differential misclassification is more difficult to come by. Depending on the 

exposure, it may be unlikely that a published validation study reports sensitivity and 

specificity values separately for the particular exposure categories under investigation. 

Second, assuming non-differential misclassification allows for a more straightforward 

model of misclassification and therefore simplifies the simulation. Finally, as argued 

below, misclassification in our motivating example study is most likely non-differential. 
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2.3.4 Magnitude and Direction of Misclassification-Induced Bias 

Assuming the classifier performs better than chance (i.e. both sensitivity and 

specificity are greater than 0.5), and that misclassification is non-differential, ignoring 

misclassification of dichotomous outcomes across a dichotomous exposure will, on 

average, bias effect estimates toward the null (48). In that paper, Neuhaus derives a bias 

factor that allows us to approximate the magnitude of this attenuation relative to the 

true effect size. The amount of attenuation depends on the false positive rate (𝛾0 = 1 −

𝑠𝑝), false negative rate (𝛾1 = 1 − 𝑠𝑒), and prevalence of the outcome in question. 

Figure 1, reproduced from (48), shows the relation between 𝛾0, 𝛾1, and the ratio of 

observed and true effect sizes, assuming a prevalence of 0.5. We see, for example, that 

if the false negative and false positive rates are both 0.2, the uncorrected effect is 

approximately 60% of its true size.  

 

Figure 1: Contour plot of bias in log odds ratio due to misclassified outcomes. Reproduced from Neuhaus, 
1999 
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2.4 Systematic Error Reporting in Observational Studies 

Observational studies lack the benefits of randomization that (if properly done) 

ensure the unbiased allocation of treatment and the applicability of statistical 

techniques that assume randomization (49). Observational studies therefore have 

“built-in bias” (50) that must be carefully addressed in the design and execution of the 

study.  

Epidemiological journals require that authors report measures of random error, 

such as confidence intervals and p-values, but do not require quantitative analyses of 

potential sources of bias (51). The vast majority of observational studies only report 

quantitative measures of random error, due to randomization or sampling variance, for 

example (52). Yet confidence intervals and standard errors give an inadequate 

representation of uncertainty in the presence of bias, and their interpretation is 

problematic when no randomization or random sampling has occurred. Potential 

sources of bias tend to be addressed qualitatively, rather than quantitatively, but 

techniques for quantitative bias analysis exist and ought to be more widespread (53). 

Quantitative bias analysis in observational studies allows those who use the research – 

policy makers, regulators, etc. – to better understand sources of systematic uncertainty 

(52). This is relevant for the type of pharmacoepidemiological studies undertaken by 

organizations like CNODES which (i) use administrative databases that cover the entire 

population rather than a random sample, and (ii) are motivated primarily by the need to 

provide regulators with timely answers to drug safety queries (3) 
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2.5 Misclassification in Meta-Analysis: A Motivating Example 

Figure 2 presents the results of a 2014 study conducted as part of CNODES that 

used administrative health data from six Canadian provinces and two international 

databases to investigate the risk of new diabetes associated with higher potency versus 

lower potency statin use in patients receiving statins for the secondary prevention of 

cardiovascular events (45). It was the first study of this association that focused on real-

world use, was restricted to secondary prevention, and was specifically designed to 

evaluate diabetes endpoints, making it an important contribution to the literature. The 

criteria used in their case-identification algorithm for identifying diabetes from 

administrative health data were (a) a record of hospitalization with a principal or 

secondary diagnosis code for diabetes, or (b) a prescription for insulin or oral 

antidiabetic. As we argue above, the clinical characteristics of diabetes, the patterns of 

care associated with its diagnosis and treatment, and characteristics of the databases 

employed will all affect the likelihood that diabetes status is accurately represented in 

administrative databases (20). 

Diabetes is an example of a chronic disease that may be difficult to identify in 

administrative databases. It is clinically heterogeneous and can remain asymptomatic 

for long periods (54). Further, there is pronounced variation in diabetes treatment 

across geographic regions (55). Finally, systematic differences in the health-seeking 

behaviour of a subpopulation of diabetes patients, due to low health literacy (56–58), 

for example, could lead to its underrepresentation in administrative health data. If any 

of these systematic factors impacting the representation of diabetes status in the 
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databases used for this study vary across the populations covered by these databases, 

misclassification rates in these populations will also vary. 

 

Figure 2: Rate ratios for new onset diabetes within two years of starting higher potency or lower potency 
statins after a major cardiovascular event or procedure (Dormuth et al. 2014) 

 

If there is misclassification in this study, it is most likely non-differential. If 

sensitivity and specificity were to vary between the higher and lower potency statin 

groups within an individual site, then the choice of diabetes classification criteria would 

imply that either (i) the risk of hospitalization (and diagnosis of diabetes while in 

hospital), or (ii) the likelihood of receiving a prescription for insulin or an oral anti-

diabetic medication must vary between the exposure groups. The latter is unlikely as no 

evidence of a clinically meaningful drug-drug interaction between statins and oral anti-

diabetics or insulin exists (59) that would contraindicate their prescription based on the 

potency of the statin. It is also reasonable to assume that cases of diabetes in both 
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statin groups are clinically similar due to the focus on identifying incident cases. Hence, 

the patterns of care associated with their diagnosis and treatment will also be similar 

(20). While it is possible that differences in baseline characteristics make one statin 

group more likely to be hospitalized in general, inspection of Table 1 in Dormuth et al. 

(reproduced in Appendix 1) indicates that the number of hospitalizations is similar 

between exposure groups (45). However, note that non-differential misclassification 

refers to identical sensitivity and specificity between exposure groups within a single 

site, and not across sites. Misclassification rates could vary between sites and it could 

still be non-differential. 

Dormuth et al. provide a single estimate of sensitivity and specificity – 90% and 

92%, respectively – for their chosen case-identification algorithm. However, no bias-

correction was performed, and the choice of validation study from which these 

estimates were derived should raise some reservations. First, the authors state that 

“[u]sing hospital discharge data to capture diabetes was previously evaluated to have 

90% sensitivity and 92% specificity in the Canadian province of Ontario”, referring to the 

validation study of Hux et al. (60). Recall, however, that this was not the case-definition 

used (one would expect that the inclusion of prescription data would have an impact on 

sensitivity and specificity). Further, Hux et al. in fact validated an algorithm in which 

diabetes was defined as the presence of any hospital discharge abstract or physician 

service claim with the presence of a diagnostic code for diabetes. In the Dormuth et al. 

study, physician services claims were excluded due to concerns with immortal time bias 

(45). 
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Independently of the accuracy of sensitivity and specificity estimates, bias-

correction for misclassification in meta-analysis poses methodological problems. In 

meta-analyses of published studies, estimates of misclassification rates in each study 

will not be available. In a meta-analysis such as Dormuth et al., which is prospectively 

planned, validation studies could theoretically be conducted at every site, but in 

practice this is impossible due to resource constraints. In practice, and if possible, 

investigators conducting a meta-analysis should attempt to find a meta-analysis of 

validation studies from which to derive the sensitivity and specificity estimates for their 

chosen classification algorithm.  

2.6  Model of Between-Study Variation in Misclassification Rates 
 

Reitsma et al. (61) suggest that meta-analyses of validation studies should model 

the distribution of logit sensitivity and logit specificity as bivariately normally distributed 

among the included studies. As opposed to other methods of meta-analyzing validation 

studies, this method allows for the estimation of between study variance in logit 

sensitivity and specificity separately and calculation of a confidence ellipse around the 

pooled mean vector of logit sensitivity and specificity. Further, it allows for the 

introduction of covariates that have separate effects on sensitivity and specificity (61). 

In order to model the distribution of misclassification rates among studies 

included in a meta-analysis, we chose to follow this bivariate model. Thus, the logit 

sensitivity and logit specificity at the 𝑖𝑡ℎ site, 𝜃𝑖
𝑠𝑒 and 𝜃𝑖

𝑠𝑝, are bivariately normally 

distributed about an overall mean vector (𝜃𝑠𝑒 , 𝜃𝑠𝑝): 
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(𝜃𝑖
𝑠𝑒 , 𝜃𝑖

𝑠𝑝
) ∼ 𝑁((𝜃𝑠𝑒 , 𝜃𝑠𝑝), 𝛵), 

where 𝛵 is a 2x2 covariance matrix. 

This model will allow us to easily vary the between-study variance in logit 

sensitivity and specificity, and provides the ability to accommodate correlation between 

them (61).  

Like the early work on misclassification, which focused on the situation in which 

the true misclassification rates were known, this project focuses on the situation in 

which the true overall sensitivity and specificity are known. The overall sensitivity and 

specificity are assumed to be 90% and 92%, respectively, as reported in Dormuth et al. 

2.7 Matrix Method Correction in Meta-Analysis 

In a meta-analysis with varying misclassification rates, if sensitivity and specificity 

estimates could be derived from an internal validation sample at each site, the matrix 

method could be applied to the study-specific effect estimates separately, before 

pooling. More realistically, we must use an estimate of the overall misclassification rates 

(ideally pooled from a meta-analysis of validation studies) and apply the same 

correction matrix to every site. 

2.7.1 Derivation of Common Correction Matrix 

In Section 2.2.2, the correction matrix 𝐵−1 was shown to be of the form  

𝐵−1 = (
1

𝑠𝑒 + 𝑠𝑝 − 1
) ∗ [

𝑠𝑝 𝑠𝑒 − 1
𝑠𝑝 − 1 𝑠𝑒

] 
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for known sensitivity and specificity 𝑠𝑒 and 𝑠𝑝. However, in the context of a meta-

analysis in which the true logit misclassification rates follow the distribution specified in 

Section 2.5, 𝑠𝑒 and 𝑠𝑝 cannot simply be taken to the inverse-logit transform of the 

overall means 𝜃𝑠𝑒 and 𝜃𝑠𝑝. In the case of the study-specific sensitivities 𝑠𝑒𝑖, this is 

because 

𝐸[𝑠𝑒𝑖] ≠
𝑒𝜃

𝑠𝑒

1 + 𝑒𝜃
𝑠𝑒 = 𝑠𝑒 

 

Rather, a Taylor series expansion (62) must be used to approximate 𝐸[𝑠𝑒𝑖]. Let  

𝑔(𝑢) = 𝑙𝑜𝑔𝑖𝑡−1(𝑢) =
𝑒𝑢

1 + 𝑒𝑢
 

 

Then, with 𝜃𝑖
𝑠𝑒 the logit sensitivity at the 𝑖𝑡ℎ site, 

𝐸[𝑔(𝜃𝑖
𝑠𝑒)] = 𝑔(𝜃𝑠𝑒) +

1

2
𝑔′′(𝜃𝑠𝑒 ) ∗ σ𝑠𝑒

2   

𝐸[𝑠𝑒𝑖] =  𝑠𝑒(1 +
σ𝑠𝑒
2

2
(𝑠𝑒 − 1)(2 ∗ 𝑠𝑒 − 1)) 

 

Similar considerations hold for specificity. 

With these approximations of the true values of 𝐸[𝑠𝑒𝑖] and 𝐸[𝑠𝑝𝑖], the 

correction matrix becomes 

𝐵−1 = (
1

𝐸[𝑠𝑒𝑖] + 𝐸[𝑠𝑝𝑖] − 1
) ∗ [

𝐸[𝑠𝑝𝑖] 𝐸[𝑠𝑒𝑖] − 1

𝐸[𝑠𝑝𝑖] − 1 𝐸[𝑠𝑒𝑖]
] 
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2.7.2 Variance Correction 

 

The study-specific variances of the corrected log odds ratio estimates may be 

calculated directly from the matrix method corrected contingency table using the 

familiar formula of Woolf (63), a procedure we refer to as “naïve correction”. On the 

other hand, the study-specific variances may be updated to reflect the variance in 

misclassification rates, a procedure we refer to as “variance correction”. 

Our variance correction procedure will follow that articulated by Greenland in (5) 

for non-differential misclassification. However, whereas variation in misclassification 

rates in that paper was assumed to represent the sampling variance associated with the 

validation study from which the misclassification rates were derived, we are interested 

in the case in which variance in misclassification rates takes the form of between study 

variance. In this section, we describe the variance correction procedure proposed by 

Greenland and how it can be adapted for our purposes. 

For a given study 𝑖, let 𝑓1 and 𝑓0 respectively denote the corrected proportion of 

exposed and unexposed non-cases, and let 𝑒1 and 𝑒0 denote the corrected proportion 

of exposed and unexposed cases. If we let ∗ in the superscript indicate that the 

parameter refers instead to the uncorrected proportion, then Greenland provides the 

following formula for the corrected variance of the log odds ratio at study 𝑖: 

𝑉𝑖 = (𝑉𝑎𝑟[𝑠𝑒𝑛𝑠] ∗ (
1

𝑓1
−
1

𝑓0
)
2

+ 𝑉𝑎𝑟[𝑠𝑝𝑒𝑐] ∗ (
1

𝑒1
−
1

𝑒0
)
2

+∑𝐶𝑡
𝑡

)/𝐷2 

𝐶𝑡 = 𝑒𝑡
∗𝑓𝑡
∗/(𝑀𝑡𝑒𝑡

2𝑓𝑡
2),    𝑡 = 0,1 
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𝐷 = 𝑠𝑒𝑛𝑠 + 𝑠𝑝𝑒𝑐 − 1 

where 𝑀1 is the total number of subjects in the exposed group, 𝑀0 is the total number 

of subjects in the unexposed, and 𝑠𝑒𝑛𝑠 and 𝑠𝑝𝑒𝑐 are the estimated misclassification 

rates. Then 𝑉𝑎𝑟[𝑠𝑒𝑛𝑠] and 𝑉𝑎𝑟[𝑠𝑝𝑒𝑐] can be derived from the between-study variance 

in logit sensitivity, 𝜎𝑠𝑒
2 ,  and logit specificity 𝜎𝑠𝑝

2 , by an application of the delta method. 

See Appendix 3. 

The corrected weights for pooling the study-specific estimates into a variance 

corrected fixed effects estimate 𝜇𝐹
𝑉𝐶  of an assumed common log odds ratio 𝜇 are given 

by first forming the covariance matrix 𝑽 whose 𝑗𝑖𝑡ℎ (𝑗 ≠ 𝑖) element is given by 

𝑉𝑗𝑖 = ∑

(−1)ℎ+𝑡 (
𝑉𝑎𝑟[𝑠𝑒𝑛𝑠]
𝑓ℎ𝑗𝑓𝑡𝑖

+
𝑉𝑎𝑟[𝑠𝑝𝑒𝑐]
𝑒ℎ𝑗𝑒𝑡𝑖

)

𝐷2
ℎ,𝑡

 

and whose diagonal elements are the corrected study-specific variances: 

𝑉𝑖𝑖 = 𝑉𝑖 

Then, letting 𝑉𝑗𝑖  denote the 𝑗𝑖𝑡ℎ element of 𝑽−𝟏, 𝑊𝑖 = ∑ 𝑉𝑗𝑖𝑗 , and 𝑊+ = ∑ 𝑊𝑖𝑖 , 

the estimate of the common log odds ratio, 𝜇𝐹
𝑉𝐶, is given by: 

𝜇𝐹
𝑉𝐶 =

∑ 𝑊𝑖𝜇𝑖
𝑀𝑀

𝑖

𝑊+
 

where 𝜇𝑖
𝑀𝑀 is the matrix method corrected log odds ratio estimate from the 𝑖𝑡ℎ study. A 

consistent variance estimator for 𝜇𝐹
𝑉𝐶  is given by 1/𝑊+. 
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2.7.3 Why Matrix Method? 

 

There are many ways of correcting for misclassification-induced bias. The 

following section provides a rationale for focusing on the matrix method. 

The matrix method has the advantage over the inverse matrix method of 

utilizing sensitivity and specificity rather than predictive values. The latter depend on 

the prevalence of the outcome in question, meaning estimates provided in the literature 

have limited generalizability, as the prevalence in the validation sample from which they 

are derived is likely different from that in the sample to they are to be applied. 

Additionally, in the case of a prospective meta-analysis in the style of CNODES, in which 

an internal validation sample is theoretically possible, such a sample taken from one 

included study’s (site’s) population would face the same generalizability problems if the 

included study populations are heterogeneous. Finally, the inverse matrix method is 

most naturally applicable in the case of differential misclassification (64), which is not 

being considered here. 

The matrix method is also significantly less computationally intensive than the 

modified maximum likelihood approach. Because this project is looking to make a 

preliminary contribution to the literature on quantitative bias analysis in meta-analysis, 

we choose to simplify the simulation by focusing on the matrix-method. Further, given 

that a central concern of the present study is to argue for greater use of quantitative 

bias analysis in epidemiological studies, it makes sense to focus on the simplest, most 
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methodologically accessible approach. Future work ought to investigate the modified 

maximum likelihood method, however, which may provide better performance. 

Iterative approaches to bias analysis, such as probabilistic bias analysis and 

Bayesian bias analysis (52,65,66) depend on one of the above methods of correction. 

These more sophisticated approaches choose one method of bias correction, and 

repeatedly apply it to adjust a corrupted effect estimate, contingent on the values of 

relevant bias parameters (e.g. misclassification rates) that are iteratively drawn from 

pre-specified probability distributions on that parameter. The performance of iterative 

approaches to bias analysis therefore depends on the performance of the chosen bias 

correction method. By evaluating the matrix method of bias correction, we provide a 

basis upon which the validity of probabilistic and Bayesian bias analysis depends.  

 

2.8 Misclassification and Between-Study Variation in Effect Size 

The biasing effect of non-differential misclassification, because it draws the 𝑘 

study-specific estimates toward the null, will tend to shrink the differences between 

those estimates. The conventional 𝑘 − 1 degree of freedom 𝜒2 statistic  

 

𝑄 =∑𝑤𝑖(𝜇𝑖̂ − 𝜃̅𝐹)
2  

would then be biased toward the null and would suffer reduced power, decreasing the 

probability that heterogeneity would be detected. However, the study-specific variances 

𝜐𝑖 are also shrunk due to the biasing effect of misclassification, increasing the weights 
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𝑤𝑖, and hence biasing the Q statistic away from the null and increasing the probability a 

positive Q test.. 

A reduction in the power of the homogeneity test, which is already 

underpowered (67), can lead to the inappropriate use of a fixed-effects model. Fixed-

effects models generate tighter confidence intervals than random-effects (68) and 

would misrepresent the true extent of uncertainty about our pooled estimate. In the 

presence of misclassification, then, we risk overstating the precision of an inaccurate 

estimate. The direction of  bias due to non-differential misclassification means the true 

effect of a drug will be underestimated. Unless misclassification is adequately addressed 

in the planning and interpretation of a study, this could mean that a harmful drug 

remains in use, or that a beneficial drug does not make it to market. 

 

2.8.1 Corrected 𝝌𝟐 Test 

 

In addition to providing formulas for corrected study-specific log odds ratio 

variances and pooled fixed-effects overall log odds ratio estimate, (5) also provides a 

corrected 𝑘 − 1 degree of freedom 𝜒2 statistic, 𝑋ℎ
2, for testing for the homogeneity of 

the study-specific effect estimates: 

 

𝑋ℎ
2 =∑𝑉𝑗𝑖𝜇𝑗

𝑀𝑀𝜇𝑖
𝑀𝑀 −𝑊+(𝜇𝐹

𝑉𝐶)2

𝑗𝑖
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However, this statistic is of a different form that the conventional Q statistic. The 

Q statistic presented above is a kind of “generalized Cochran between-study variance 

statistic” (6,7), which are 𝜒2 statistics taking the general form 

 

𝑄𝑎 =∑𝑎𝑖(𝑦𝑖 − 𝜃̅𝐹)
2

𝑖

 

 
 

for any positive weights 𝑎𝑖, observations 𝑦𝑖, and weighted mean 𝜃̅𝐹 =
∑ 𝑎𝑖𝑦𝑖𝑖

∑ 𝑎𝑖𝑖
. By 

equating 𝑄𝑎 to its expected value, one can derive a generalized method of moments 

(GMM) estimator of the between study variance: 

 

𝜏𝐺𝑀𝑀
2 = max

(

 0,
𝑄𝑎 − (∑ 𝑎𝑖𝑣𝑖 −𝑖

∑ 𝑎𝑖
2𝑣𝑖𝑖

∑ 𝑎𝑖𝑖
)  

∑ 𝑎𝑖𝑖 −
∑ 𝑎𝑖

2
𝑖

∑ 𝑎𝑖𝑖 )

  

 

When the 𝑎𝑖 are inverse variance weights, 𝑎𝑖 = 𝑣𝑖
−1 = 𝑤𝑖,  𝜏𝐺𝑀𝑀

2  reduces to the 

familiar Dersimonian and Laird estimator. 

Because the corrected 𝜒2 statistic, 𝑋ℎ
2 is not a generalized Cochran between-

study variance statistic, it is not obvious how to derive a corresponding 𝜏2 estimate. In 

an attempt to address this limitation of 𝑋ℎ
2, we propose to use a generalized Cochran 

between-study variance statistic  

𝑄ℎ =∑𝑊𝑖(𝜇𝑖
𝑀𝑀 − 𝜇𝐹

𝑉𝐶)2

𝑖
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where the 𝑎𝑖 are the corrected study weights 𝑊𝑖 defined in Section 2.7.2, the 𝜇𝑖
𝑀𝑀 refer 

to the matrix method corrected effect estimate from site 𝑖 and 𝜇𝐹
𝑉𝐶  refers to the 

corrected pooled fixed effects estimate. A GMM estimator 𝜏ℎ
2 can then be derived from 

𝑄ℎ, allowing for the calculation of new study weights 𝑊𝑖
∗ as follows. Form a new 

covariance matrix 𝑽∗ from 𝑽 by adding 𝜏ℎ
2 to the diagonal entries representing the 

corrected study-specific variances: 

 

𝑉𝑖𝑖
∗ = 𝑉𝑖𝑖 + 𝜏ℎ

2 
𝑉𝑗𝑖
∗ = 𝑉𝑗𝑖,            𝑗 ≠ 𝑖 

 

Then, if 𝑉𝑗𝑖  denotes the 𝑗𝑖𝑡ℎ element of 𝑽∗−𝟏, let  

𝑊𝑖
∗ =∑𝑉𝑗𝑖

𝑗

 

𝑊+
∗ =∑𝑊𝑖

∗

𝑖

 

 

The corrected pooled random effects estimator 𝜇𝑅
𝑉𝐶  can be calculated as 

𝜇𝑅
𝑉𝐶 =

∑ 𝑊𝑖
∗𝜇𝑖
𝑀𝑀

𝑖

𝑊+
∗  

 

With this we have in hand two variance corrected effect estimates, 𝜇𝐹
𝑉𝐶  and 𝜇𝑅

𝑉𝐶, 

corresponding to fixed and random effects estimation, respectively. We are now ready 

to compare their performance to the corresponding naively (non-variance) corrected 

estimates 𝜇𝐹
𝑁𝐶 and 𝜇𝑅

𝑁𝐶, and determine which is more suitable for use in quantitative 

bias analysis. 
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3 Objectives 

The objectives of this study are, using a Monte Carlo simulation modeling a meta-

analysis of administrative health data, 

(1) To compare the performance of the variance corrected random effects estimator 

𝜇𝑅
𝑉𝐶  to that of the naively corrected random effects estimator 𝜇𝑅

𝑁𝐶 in situations in 

which there is between study heterogeneity in both effect size and 

misclassification rate 

(2) To compare the false negative rates and false positive rates of the 𝜒2 statistics 

(i) 𝑄, corresponding to the non-variance corrected estimate, (ii) 𝑋ℎ
2, Greenland’s 

variance corrected estimate, and (iii) 𝑄ℎ, our proposed generalized Cochran 

between study variance statistic 

(3) To compare the performance of the variance corrected fixed effects estimator 

(due to Greenland) 𝜇𝐹
𝑉𝐶  to the naively corrected fixed effects estimator 𝜇𝐹

𝑁𝐶 

(4) To determine whether the incorrect specification of the meta-analytic model (i.e. 

choosing a fixed effects estimator when in fact there is between study variance 

in effect size) affects the naively corrected estimator more than the variance 

corrected estimator 
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4 Methods 

This section will provide a description of the Monte Carlo simulation to be 

conducted. The simulation is coded using R. We begin by defining key simulation 

parameters. Following this, we specify our chosen performance measures, and trace 

how these measures are calculated, starting from site level effect size determination, 

through meta-analysis level pooling and hypothesis testing, and finally to what we call 

the context level, which is the level at which the performance measures are determined.  

4.1 Parameters of Simulation 

We call those parameters whose effect on the outcomes we wish to control the 

“variable” parameters, referring to the fact that their range is pre-specified, and their 

value changes at the direction of the user. The variable parameters in this simulation are 

the overall log odds ratio 𝜇, data generating model (DGM) 𝑀𝑜𝑑𝑒𝑙, and between study 

variance in misclassification rates 𝑇. The former two parameters parameterize the 

distribution of study-specific estimands in the simulated meta-analyses: if 𝑀𝑜𝑑𝑒𝑙 is 

𝐹𝑖𝑥𝑒𝑑 then the study-specific estimands 𝜇𝑖 are identical to 𝜇. If 𝑀𝑜𝑑𝑒𝑙 is 𝑅𝑎𝑛𝑑𝑜𝑚, 

𝜇𝑖 ~ 𝑁(𝜇, 𝜏𝑒𝑓𝑓
2 ), where 𝜏𝑒𝑓𝑓

2  is derived from 𝜒2 statistic reported in Dormuth et al. 𝑇 

parameterizes the distribution of the study-specific logit misclassification rates: 

𝑇 = [
𝜎𝑠𝑒
2 𝜎𝑠𝑒𝑠𝑝

𝜎𝑠𝑒𝑠𝑝 𝜎𝑠𝑒
2 ], 

where 𝜎𝑠𝑒
2  and 𝜎𝑠𝑒

2  are the variances of logit sensitivity and specificity, respectively, and 

𝜎𝑠𝑒𝑠𝑝 is their covariance. In order to ease the computational burden, we will consider 
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only those 𝑇 for which 𝜎𝑠𝑒𝑠𝑝 = 0 and 𝜎𝑠𝑒
2 = 𝜎𝑠𝑝

2 . We therefore use 𝑇 to refer to both 𝜎𝑠𝑒
2  

and 𝜎𝑠𝑝
2  in what follows. 

Different combinations of variable parameters correspond to different contexts 

in which a meta-analysis can be conducted. We define a data generating context (DGC) 

as a triple (𝜇,𝑀𝑜𝑑𝑒𝑙, 𝑇). The range of 𝜇 differs according to the value of 𝑀𝑜𝑑𝑒𝑙 to 

reflect the fact that Dormuth et al. observed a fixed effects estimated odds ratio of 1.15, 

and a random-effects estimated odds ratio of 1.11. The range of 𝑇 is independent of the 

other two variable parameters, taking on 10 equally spaced values in the range [0, 1]. 

Table 2 lays out the possible combinations of variable parameters that define the DGCs 

considered in the simulation.  

 Possible Values 

 Fixed Effects Model Random Effects Model  

Overall Log Odds Ratio log(1), log(1.15), log(2.3) log(1), log(1.11), log(2.22) 

𝑇 [0, 0.1, 0.2,… , 1] [0, 0.1, 0.2,… , 1] 
Table 4: Values of the Overall Odds Ratio and T for different values of Model 

The between study variance in effect 𝜏𝑒𝑓𝑓
2  is an example of a fixed parameter. 

Fixed parameters are those that are constant across all iterations in all DGCs. Other key 

examples of fixed parameters are the overall sensitivity and specificity values used by 

Dormuth et al., which are 90% and 92%, respectively. See Appendix 2, Table 1 for a full 

list of fixed parameters and their values. 

The stochastic variables are those that follow a probability distribution 

parameterized by the fixed and variable parameters just described. Appendix 2, Table 2 
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lists the stochastic parameters, the fixed and variable parameters determining their 

distributions, and the distributions themselves. 

4.2 Simulation Outcomes  

In each DGC, 10000 meta-analyses will be simulated. The number 10000 was 

settled on because of the possibility that the variance of the variance corrected effect 

estimates will turn out to be negative, and this happens in a non-negligible number of 

iterations. It is it difficult to determine the number of iterations necessary to achieve a 

given level of precision when the probability of a negative variance is unknown. 10000 

was judged to be a sufficient number of iterations to achieve a high level of precision 

(low Monte Carlo standard error) while allowing for the negative variance observations. 

The issue of negative variances will be discussed shortly. 

Table 4 lays out the key estimands, estimates, and statistics that will be 

calculated at the study and meta-analysis levels of the simulation. The following section 

describes how the parameters are determined at each level. 
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Level Estimands / Simulated 
parameters 

Estimates Statistics 

Site 

 

True overall log odds ratio 𝜇𝑖  

 

True sensitivity and 

specificity values 𝑠𝑒𝑖  and 𝑠𝑝𝑖  

 

 

Uncorrupted log odds ratio 

𝜇𝑖
𝑈 and variance 𝜈𝑖

𝑈  

 

Misclassified log odds ratio 

𝜇𝑖
𝑀 and variance 𝜈𝑖

𝑀   

 

Matrix method corrected log 

odds ratio 𝜇𝑖
𝑀𝑀 

 

Naively corrected variance 

𝜈𝑖
𝑁𝐶  

 

Variance corrected 

variance 𝜈𝑖
𝑉𝐶  

 

N/A 

Meta-
analysis 

Overall odds ratio 𝜇 

 

Data generating model 

𝑀𝑜𝑑𝑒𝑙 

 

Between study variance in 

logit misclassification rates 𝑇 

Misclassified pooled fixed 

and random effects 

estimates 𝜇𝐹
𝑀  and 𝜇𝑅

𝑀 and 

their variance 𝜈𝐹
𝑀  and 𝜈𝑅

𝑀  

 

Uncorrupted pooled fixed 

and random effects 

estimates 𝜇𝐹
𝑈  and 𝜇𝑅

𝑈 and 

their variance 𝜈𝐹
𝑈  and 𝜈𝑅

𝑈  

 

Naively corrected pooled 

fixed and random effects 

estimates 𝜇𝐹
𝑁𝐶   and 𝜇𝑅

𝑁𝐶  and 

their variance 𝜈𝐹
𝑁𝐶  and 𝜈𝑅

𝑁𝐶  

 

 Variance corrected pooled 

fixed and random effects 

estimates 𝜇𝐹
𝑉𝐶   and 𝜇𝑅

𝑉𝐶  and 

their variance 𝜈𝐹
𝑉𝐶  and 𝜈𝑅

𝑉𝐶  

Homogeneity statistics: 

Uncorrupted 𝑄𝑈  

Misclassified 𝑄𝑀 

Naively corrected 𝑄𝑁𝐶  

Proposed Generalized 

Cochran 𝑄ℎ  

Greenland’s corrected  𝑋ℎ
2 

Table 5: Site-level and Meta-analysis level simulation parameters 
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4.3 Simulation Procedure 

4.3.1 Site-Level 

Every simulated meta-analysis consists of 8 sites. Let the number of simulated 

subjects in the 𝑘𝑡ℎ treatment group of the 𝑖𝑡ℎ site be denoted 𝐽𝑖𝑘, where this value is 

taken from the Dormuth et al. study (see Appendix 2, Table 1). The disease status of the 

𝑗𝑡ℎ individual in this treatment group, 𝑆𝑗𝑖𝑘, is determined by a draw from a binomial 

distribution 

𝑆𝑗𝑖𝑘~𝐵𝑖𝑛(1, 𝑝𝑖𝑘),  

where 𝑝𝑖𝑘 is the probability of disease in the 𝑘𝑡ℎ treatment group of the 𝑖𝑡ℎ site. The 

probability of disease in the lower potency statin group, 𝑝𝑖0, is a fixed parameter taken 

from Dormuth et al. To derive the probability of disease in the higher potency statin 

group, 𝑝𝑖1, from the known parameters 𝑝𝑖0 and study-specific log odds ratio 𝜇𝑖, first 

note that the odds ratio 𝜑 = 𝑒𝜇𝑖  is given by 

𝜑 =
𝑝𝑖1(1 − 𝑝𝑖0)

𝑝𝑖0(1 − 𝑝𝑖1)
 

Multiplying by 𝑝𝑖0 lets us begin with the following simplified term: 

𝜑 ∗ 𝑝𝑖0 =
𝑝𝑖1(1 − 𝑝𝑖0)

(1 − 𝑝𝑖1)
 

Our goal is to determine an expression 𝛾 such that (1 − 𝑝𝑖1) ∗ 𝛾 = (1 − 𝑝𝑖0). To do this, 

see that 
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(1 − 𝑝𝑖0) = (1 − 𝑝𝑖0) ∗ (1 − 𝑝𝑖1 + 𝑝𝑖1) 

= (1 − 𝑝𝑖0) ∗ (1 − 𝑝𝑖1) + (1 − 𝑝𝑖0) ∗ 𝑝𝑖1 

Then 𝛾 is given by: 

(1 − 𝑝𝑖1) ∗ 𝛾 = (1 − 𝑝𝑖0) ∗ (1 − 𝑝𝑖1) + (1 − 𝑝𝑖0) ∗ 𝑝𝑖1 

𝛾 = (1 − 𝑝𝑖0) +
(1 − 𝑝𝑖0) ∗ 𝑝𝑖1
1 − 𝑝𝑖1

= (1 − 𝑝𝑖0) + 𝑝𝑖0 ∗ 𝜑 

So, we have the following expression for 𝑝𝑖1: 

𝑝𝑖1 = 𝑝𝑖0 ∗
𝑒𝜇𝑖

1 − 𝑝𝑖0 + 𝑝𝑖0 ∗ 𝑒
𝜇𝑖
 , 

 

where the study-specific log odds-ratio 𝜇𝑖 = 𝜇 if 𝑀𝑜𝑑𝑒𝑙 = 𝐹𝑖𝑥𝑒𝑑,  or 𝜇𝑖 ∼ 𝑁(𝜇, 𝜏𝑒𝑓𝑓
2 ) if 

𝑀𝑜𝑑𝑒𝑙 = 𝑅𝑎𝑛𝑑𝑜𝑚. Choosing 𝑝𝑖0 as a fixed parameter is necessary, as 𝜇𝑖 does not 

uniquely determine the probabilities of disease in both groups. 

The simulated subjects are then partitioned into a contingency table 𝑈𝑖 

according to their disease status 𝑆𝑗𝑖𝑘 and their treatment group 𝑘. 𝑈𝑖 therefore 

represents the true cross-classification of disease and exposure, from which the 

uncorrupted log odds ratio and its variance can be calculated: 

𝑈𝑖 = [
𝑎 𝑏
𝑐 𝑑

] 

𝜇𝑖
𝑈 = log (

𝑎𝑑

𝑏𝑐
) 
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𝜈𝑖
𝑈 =

1

𝑎
+
1

𝑏
+
1

𝑐
+
1

𝑑
 

To corrupt 𝑈𝑖 by misclassification and generate the misclassified contingency 

table 𝑀𝑖, first let 𝜃𝑠𝑒 = 𝑙𝑜𝑔𝑖𝑡(0.9) and 𝜃𝑠𝑝 = 𝑙𝑜𝑔𝑖𝑡(0.92) denote the overall logit 

sensitivity and specificity. Then the study-specific logit sensitivity and logit sensitivity 

𝜃𝑖
𝑠𝑒 and 𝜃𝑖

𝑠𝑝 are stochastically determined: 

(𝜃𝑖
𝑠𝑒 , 𝜃𝑖

𝑠𝑝
) ∼ 𝑁((𝜃𝑠𝑒 , 𝜃𝑠𝑝), 𝛵) 

If 𝑠𝑒𝑖 and 𝑠𝑝𝑖 are the value of the misclassifications rates corresponding to 𝜃𝑖
𝑠𝑒 and 𝜃𝑖

𝑠𝑝, 

then 

𝑀𝑖 = [
𝑎 𝑏
𝑐 𝑑

] ∗ [
𝑠𝑒𝑛𝑠𝑖 1 − 𝑠𝑒𝑛𝑠𝑖

1 − 𝑠𝑝𝑒𝑐𝑖 𝑠𝑝𝑒𝑐𝑖
] 

 

This table yields the misclassified log odds ratio 𝜇𝑖
𝑀 and its variance 𝜈𝑖

𝑀. 

Then, to yield the matrix method corrected log odds ratio 𝜇𝑖
𝑀𝑀, we correct the 

corrupted table 𝑀𝑖  using the expected study-specific sensitivity and specificity values 

𝑠𝑒𝑜𝑣𝑟 and 𝑠𝑝𝑜𝑣𝑟 determined from 𝜃𝑠𝑒 and  𝜃𝑠𝑝 according to the procedure outlined in 

Section 2.7.1 to yield the corrected table 𝑀𝑀𝑖: 

𝑀𝑀𝑖 = (
1

𝑠𝑒𝑜𝑣𝑟 + 𝑠𝑝𝑜𝑣𝑟 − 1
) ∗ 𝑀𝑖 ∗ [

𝑠𝑝𝑜𝑣𝑟 𝑠𝑒𝑜𝑣𝑟 − 1
𝑠𝑝𝑜𝑣𝑟 − 1 𝑠𝑒𝑜𝑣𝑟

] 

 
 

The naively corrected variance 𝜈𝑁𝐶  is calculated using the standard formula 
1

𝑎
+
1

𝑏
+
1

𝑐
+

1

𝑑
 using the corrected cell counts in 𝑀𝑀𝑖. 
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Finally, the corrected variance 𝜈𝑖
𝑉𝐶  is determined using the formula in Section 

2.6. 

Matrix method correction in this way can possibly introduce negative cell counts 

in the corrected contingency table. If this happens, new study-specific misclassification 

rates are drawn and the corruption/correction procedure is redone. This occurs until all 

cell counts are non-negative. The total number of iterations that generate negative cells 

counts will be reported in Appendix 4. 

4.3.2 Meta-analysis Level 

Once the study-specific data has been generated, the meta-analytic outcomes 

may be calculated. We use the usual formulas for calculating the fixed effects estimate 

for the uncorrupted, misclassified and naively corrected observations 

𝜇𝐹
+ =∑𝑤𝑖

+𝜇𝑖
+/∑𝑤𝑖

+ 

𝑖𝑖

 

𝑤𝑖
+ = 1/𝜐𝑖

+ 

where the " + " indicates that this formula is used for these three observations.  

Finally, the variance corrected fixed effects estimate 𝜇𝐹
𝑉𝐶  is calculated according 

to Greenland’s procedure as described in Section 2.6. 

The various homogeneity statistics are calculated as described in Section 2.7.1. 

Each are compared to a 𝜒2 distribution with 7 degrees of freedom.  

An estimate of between study heterogeneity 𝜏2 is derived using the GMM 

procedure with weights corresponding to the type of observations used. For the 
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uncorrupted, misclassified, and naively corrected data, the random effects estimator 

𝜇𝑅
+ is calculated as usual 

𝜇𝑅
+ =∑𝑧𝑖

+𝜇𝑖
+/∑𝑧𝑖

+ 

𝑖𝑖

 

𝑧𝑖 = 1/(𝜐𝑖
+ + 𝜏2) 

while the variance corrected random effects estimator is calculated as described 

in Section 2.7.1. 

4.4 Performance Measures 
 

Following Morris et al. (69), we use bias, coverage probability and empirical 

standard error to quantify the performance of an estimation procedure, and false 

negative and false positive rates to quantify the performance of the homogeneity test. 

For each of these measures, we calculate a corresponding Monte Carlo standard error, 

which represents the uncertainty about that measure due to the fact that only a finite 

number of iterations are run (69). Table 5 lays out the definition of these performance 

measures, their estimates, and the Monte Carlo standard error of these estimates. We 

suppress superscripts and subscripts, and use the “hat” notation to represent an 

estimated value, but recall that performance measures are calculated for all types of 

observations calculated at the meta-analysis level of the simulation. 
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Measure Definition Estimate Monte Carlo SE of estimate 

Bias 𝐸[𝜇̂] − 𝜇 
1

𝑛𝑠𝑖𝑚
∑ 𝜇̂𝑗

𝑛𝑠𝑖𝑚

𝑗=1

− 𝜇 √
1

𝑛𝑠𝑖𝑚(𝑛𝑠𝑖𝑚 − 1)
∑(𝜇̂𝑗 − 𝜇̅)

2
 

𝑛𝑠𝑖𝑚

𝑗=1

 

Coverage 

 
P (𝜇̂𝑙𝑜𝑤 < 𝜇 < 𝜇̂ℎ𝑖𝑔ℎ) 1

𝑛𝑠𝑖𝑚
∑ 1 (𝜇̂𝑙𝑜𝑤 < 𝜇 < 𝜇̂ℎ𝑖𝑔ℎ)

𝑛𝑠𝑖𝑚

𝑗=1

 √
𝐶𝑜𝑣𝑒𝑟̂ (1 − 𝐶𝑜𝑣𝑒𝑟̂ )

𝑛𝑠𝑖𝑚
 

Empirical 
SE √𝑉𝑎𝑟(𝜇̂) √

1

𝑛𝑠𝑖𝑚 − 1
∑(𝜇̂𝑗 − 𝜇̅)

2
 

𝑛𝑠𝑖𝑚

𝑗=1

 
𝐸𝑚𝑝𝑆𝐸̂

√2(𝑛𝑠𝑖𝑚 − 1)
 

False 
Negative 

Rate 

Pr(𝜒2 < 𝛼 |𝑀𝑜𝑑𝑒𝑙
= 𝑅𝑎𝑛𝑑𝑜𝑚) 

1

𝑛𝑠𝑖𝑚
∑ 𝟏(

𝑛𝑠𝑖𝑚

𝑗=1

𝜒2 < 𝛼, 𝑅𝑎𝑛𝑑𝑜𝑚) √
𝐹𝑁𝑅̂(1 − 𝐹𝑁𝑅̂)

𝑛𝑠𝑖𝑚
 

False 
Positive 

Rate 

Pr(𝜒2 > 𝛼 |𝑀𝑜𝑑𝑒𝑙
= 𝐹𝑖𝑥𝑒𝑑) 

1

𝑛𝑠𝑖𝑚
∑ 𝟏(

𝑛𝑠𝑖𝑚

𝑗=1

𝜒2 > 𝛼, 𝐹𝑖𝑥𝑒𝑑) √
𝐹𝑃𝑅̂(1 − 𝐹𝑃𝑅̂)

𝑛𝑠𝑖𝑚
 

Table 6: Performance measures used to evaluate and compare the naively corrected and variance 
corrected estimators. Notation:  𝑛𝑠𝑖𝑚 = number of iterations; 𝜇̂𝑙𝑜𝑤 , 𝜇̂ℎ𝑖𝑔ℎ = bounds of 95% CI; 𝛼 = 

significance level of 𝜒2 homogeneity test. 

  

4.5 Summary 

In order to address objective 1, to investigate the problem of between study 

variance in misclassification rates in the presence of between study variance in effect 

size, we implement a random effects estimation procedure that corrects the study 

specific log odds ratio variances for variance in misclassification rates. The procedure is 

modeled on that proposed for fixed effects estimation presented in (5). We compare 

this variance correction procedure to a naïve procedure in which the study-specific 
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variances are calculated directly from their respective contingency tables, after matrix 

method correction, using Woolf’s formula (63). The variance correction procedure relies 

upon a novel generalized Cochran between study variance statistic, and to meet 

objective 2, the performance of this novel statistic is compared to the corrected 𝜒2 

homogeneity test statistic proposed in (5). To address objective 3, we compare the fixed 

effects estimation procedure proposed in (5) to a corresponding naïve correction 

procedure that does not perform any variance correction. Finally, The impact of 

incorrectly specifying the true distribution of underlying effect sizes is determined for 

both variance correction procedures, thereby meeting objective 4.  
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5 Results 
 

5.1 Comparison of Variance Corrected and Naively Corrected Random Effects 

Estimators in Random Contexts 
 

Figure 3 compares the bias, coverage probability, and empirical standard error, 

along with corresponding Monte Carlo standard errors, of the naively corrected, 

misclassified, and variance corrected random effects estimates in Random contexts. It is 

clear from this figure that our proposed variance correction procedure yields random 

effects estimates that are more biased than the naively corrected estimates. The 

difference in bias between the two estimator types grows as the overall odds ratio gets 

larger. When the overall OR is 1.11, the bias of the variance correted estimator in fact 

approaches that of the uncorrected estimator.  

The relative performance in terms of coverage probability of the two estimation 

methods depends on the overall log odds ratio. When the overall OR is 1 or 1.11, the 

variance corrected estimator has a higher coverage probability, while the situation is 

reversed when the overall OR is 2.22 However, it is important to note that a higher 

coverage probability is not necessarily desirable. Ideally, the coverage probability would 

be equal to its nominal value of 95%, but the average coverage probability for the 

variance corrected estimate exceeds 95% when the overall OR is 1 and 1.11.  

Somewhat surprisingly, the variance corrected random effects estimates tend to 

have lower empirical standard error than the naively corrected estimates. In the long 

run, then, the variance corrected estimates have greater precision. However, the 
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variance correction procedure produces much less accurate estimates of its own 

empirical standard error than does naïve correction. Table 7 shows the percentage by 

which the estimated standard error (derived from the meta-analytic variance estimator) 

differs from the empirical standard error for the random effects estimators in Random 

contexts. The variance correction procedure consistently overestimates the true 

standard error by between 50% and 735%, depending on the level of between study 

variance in misclassification rates but with no apparent relation to the overall odds 

ratio. In contrast, the naive correction procedure consistently underestimates its true 

standard error (in DGCs where misclassification variance 𝑇 ≠ 0), and the range of the 

magnitude of the underestimation for the naïve procedure depends on the overall odds 

ratio. 
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Figure 3: Bias, coverage probability, and empirical standard error for the misclassified, naively corrected, 
and variance corrected methods of random effects estimation in Random contexts. Error bars represent 
Monte Carlo standard errors. 
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T 

OR = 1 OR = 1.11 OR = 2.22 

Naively 
Corrected 

Variance  
Corrected 

Naively 
Corrected 

Variance  
Corrected 

Naively 
Corrected 

Variance  
Corrected 

0 7.39%  56.29%  5.46%  50.69%  8.22%  51.94%  

0.1 -0.08%  96.91%  -1.9%  98.62%  -45.89%  87.52%  

0.2 -0.7%  133.33%  -8.72%  148.84%  -60.31%  88.25%  

0.3 -1.02%  204.13%  -11.47%  230.53%  -66.29%  196.95%  

0.4 -5.14%  237.65%  -15.94%  308.49%  -71.35%  266.01%  

0.5 -4.95%  288.22%  -19.02%  456.29%  -73.36%  367.24%  

0.6 -10.8%  436.92%  -19.35%  544.62%  -75.13%  393.64%  

0.7 -15.24%  439.94%  -17.22%  594.34%  -76.14%  489.04%  

0.8 -14.52%  498.42%  -23.77%  727.77%  -76.6%  537.62%  

0.9 -9.33%  561.79%  -24.33%  679.72%  -77.73%  614.37%  

1 -6.3% 630.52% -18.04% 734.93% -77.28% 635.84% 
Table 7: Percentage Error in estimated standard error relative to empirical standard error for the random 
effects estimators in Random contexts 

 

5.2 Comparison of Variance Corrected and Naively Corrected Fixed Effects 

Estimators in Fixed Contexts 
 

Similar results are observed for the variance corrected fixed effects estimator, 

which is equivalent to that proposed in (5). It is more biased and has greater standard 

error than the naively corrected fixed effects estimator. The superior performer with 

respect to coverage probability depends on the value of T and the overall OR. Figure 4 

plots the performance measures for the naively corrected, misclassified, and variance 

corrected fixed effects estimates in Fixed contexts, and Figure 6 presents bias and 

empirical standard error in contexts with overall OR=1 and OR=1.15. 
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Table 8 shows the percentage error in estimated standard error relative to 

empirical standard error for the fixed effects estimators in Fixed contexts. Like the 

above results for Random contexts, the naïve correction procedure consistently 

underestimates true standard error, and, when the overall odds ratio is 1 or 1.15, the 

variance correction procedure overestimates true standard error. The error in the 

variance corrected standard error estimates is not as high as in Random contexts, 

however, and the true standard error is in fact underestimated when 𝑇 ≥ 0.3 and the 

overall odds ratio is 2.3. 
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Figure 4: Bias, coverage probability, and empirical standard error of the misclassified, naively corrected, 
and variance corrected methods of fixed effects estimation in Fixed contexts. Error bars represent Monte 
Carlo standard error 
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T 

OR = 1 OR = 1.15 OR = 2.3 

Naively 
Corrected 

Variance  
Corrected 

Naively 
Corrected 

Variance  
Corrected 

Naively 
Corrected 

Variance  
Corrected 

0 -1.42%  52.46%  2.33%  57.04% 0.73%  51.28% 

0.1 -3.55%  103.47%  -9.4%  102.28%  -54.71%  46.35%  

0.2 -3.62% 144.71%  -18.09%  127.27%  -67.42%  29.41%  

0.3 -5.22%  161.68%  -22.51%  133.23%  -72.7%  -3.55%  

0.4 -11.7%  142.03%  -33.02%  106.62%  -76.06%  -15.47%  

0.5 -10.91%  155.58%  -32.26%  102.26%  -76.75%  -21.65%  

0.6 -6.39%  164.29%  -32.5%  102.8%  -79.96%  -34.68% 

0.7 -9.21%  136.07%  -34.59%  95.68%  -79.95%  -33.38%  

0.8 -7.31%  158.14%  -38.03%  82.05%  -80.64%  -36.14% 

0.9 -6.51%  166.58%  -32.98%  102.73%  -80.82%  -38.85% 

1 -8.03% 160.76% -36.94% 106.16% -82.12% -40.67% 
Table 8: Percentage error in estimated standard error relative to empirical standard error for the fixed 
effects estimators in Fixed contexts 

 

5.3 Performance of Homogeneity Test Statistics 
 

All homogeneity test statistics calculated in the simulation exhibit a high false 

negative rate, consistent with previous Monte Carlo simulation studies (70). The naively 

corrected, and generalized Cochran 𝜒2 statistics, as well as that proposed by in (5) are 

so high as to render them useless. On the other hand, all homogeneity test statistics 

other than the misclassified have a low false positive rate. Table 9 presents the average 

false positive and false negative rates of the various homogeneity test statistics over all 

values of T. 
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 Uncorrupted 

𝑄𝑈 

Misclassified 

𝑄𝑀 
Naïve 

Corrected 

𝑄𝑁𝐶 

Variance 

Corrected 𝑋ℎ
2 

Generalized 

Cochran 𝑄ℎ 

FNR (mean)      

 OR = 1 89.31% 65.47% 99.95% 100% 99.99% 

 OR = 1.11 89.47% 57.76% 99.96% 100% 99.96% 

 OR = 2.22 89.21% 11.54% 56.93% 96.75% 99.89% 

FPR (mean)      

 OR = 1 9.55% 33.12% 0.036% 0.0% 0.0% 

 OR = 1.15 9.83% 48.89% 0.0275 0.0% 0.073% 

 OR = 2.3 9.66% 89.93% 45.71% 3.63% 0.082% 

 

Table 9: Mean false negative rate (FNR) and false positive rate (FPR) of homogeneity test statistics across 
levels of T at a significance level of 0.1 

 

5.4 Impact of incorrect Model Choice 
 

The consequence of an incorrect model choice stemming from an erroneous 

homogeneity test is the use a fixed effects approach in Random contexts, or vice-versa. 

We call this incorrect usage “off-model” estimation in contrast to “on-model” 

estimation, where the estimation approach (fixed or random effects) matches the 

underlying distribution of study-specific effect sizes. 

Because qualitatively similar results are observed in all DGCs, Figures 5 and 6 

compare the bias, coverage probability, and empirical standard error only for the Fixed 

and Random DGCs mimicking those of Dormuth et al., which have overall ORs of 1.15 

and 1.11, respectively. Table 10 shows the relative percentage difference in 
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performance between the on-model and off-model estimators for all DGCs. 

 

Figure 5: Bias, coverage probability, and empirical standard error for the fixed and random effects 
estimators corresponding to the naively corrected and variance corrected procedures in the Fixed context 
with overall OR=1.15 
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Figure 6: Bias, coverage probability, and empirical standard error for the fixed and random effects 
estimators corresponding to the naive correction and variance correction methods in the Random context 
with overall OR=1.11 
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 Fixed Contexts 
 

Random Contexts 
 

 OR=1 OR=1.15 OR=2.3 OR=1 OR=1.11 OR=2.22 

Bias       

 VC 9.54% -22.05% -43.61% -10.14% 25.52% 101.26% 

 NC 14.58% 140.5% 99.17% -8.76% 18.95% 255.08% 

Coverage       

 VC 0.0% 3.37% 406.24% 0.0% -0.34% -65.0% 

 NC 0.48% 3.30% 19.08% -0.82% -2.38% -17.11% 

Emp SE       

 VC 14.62% 44.57% 35.99% -12.27% -24.17% -26.35% 

 NC 15.79% 11.53% 16.18% -12.21% -9.18% -12.68% 
Table 10: Relative percentage difference in performance measures between on-model and off-model 
estimators in Fixed and Random effects contexts. Difference calculated as (off-model value)-(on-model 
value)/(on model value). VC = Variance Corrected, NC = Naively Corrected. 
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6 Discussion 
 

6.1 Summary of Results 
 

In terms of estimation accuracy and precision, the naively corrected random 

effects estimator performs better than our proposed variance corrected random effects 

estimator. It has markedly lower bias and empirical standard error, and suffers none of 

the statistical issues involved with negative variance estimates. Further, the impact of an 

incorrect model specification is less severe with naïve correction, regardless of the true 

underlying model (Fixed or Random). However, under certain conditions, the coverage 

probability is higher for the variance corrected estimator than the naively corrected 

estimator. This is due to pathologically large variance estimates associated with the 

variance corrected estimator. Similar results are observed for the variance corrected 

fixed effects estimator. It too is more biased and less precise than its naïvely corrected 

counterpart.  

 The poor performance of the variance corrected estimators can be partially 

attributed to the multiple delta-method/Taylor series approximations involved in the 

variance correction procedure. The value of the Taylor series approximation of the 

expected study-specific misclassification rates, described in Section 2.7.1, is used as an 

input to the delta-method approximation of the covariance matrix of the corrected 

study-specific log odds ratios. Error therefore compounds upon error. Additionally, 

Taylor series approximations, being linear approximations, are known to be poor when 

the function being approximated is highly non-linear, and the logit transform of 
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sensitivity and specificity is highly non-linear when their values are close to 1. Because 

the overall sensitivity and specificity in the simulation are set at 0.9 and 0.92, 

respectively, a poor approximation may be unavoidable. 

Further contributing to this poor performance is the fact that the corrected 

variance estimates depend on the corrected and uncorrected probabilities of disease in 

both exposure groups (see Section 2.7.2) . Correlation between study-specific effect 

estimates and study weights is known to cause bias in the pooled meta-analytic effect 

estimate (38,71,72). Appendix 5 contains an analysis of this correlation in our results. 

Linear correlation exists when there is no between study variance in misclassification 

rates. The introduction of misclassification variance removes the linear correlation, but 

a clear relationship remains. The more different from 0 the effect estimate, the less 

likely it is to receive a large weight. 

Finally, generalized method of moments estimators for between study variance 

in effect size are often criticized for their reliance on the assumption that the study-

specific variances are known exactly, an assumption never met in practice (73–75). Error 

in study weights will bias the estimate of between study variance in effect size. By using 

a delta-method approximation to correct study-specific variances, an extra source of 

error is introduced into the estimation of the true variance of the study-specific effect 

sizes, exacerbating this issue.  

Other methods of estimating between study variance in effect size exist, and can 

outperform the Dersimonian and Laird estimator. See (6,72,76,77) for overviews and 
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comparisons of different between study variance estimators. Iterative approaches may 

be an especially fruitful area of future inquiry.  

A different approach to modeling between study variance in misclassification 

rates could model the distribution of misclassification rates using a beta-distribution. 

Beta-distributions are well known to be the conjugate prior of binomial distributions (1). 

Using a beta-distribution would remove the need for a delta-method approximation of 

the mean and variance of sensitivity and specificity, as these can be derived exactly from 

the parameters of the beta-distribution. This could potentially render the corrected 

study-specific variance estimate more precise.  Constructions of bivariate beta 

distributions exist that can model possible correlation between misclassification rates 

(2,3). The bivariate normal distribution of Reitsma and colleagues (4) was chosen in this 

thesis because it agrees with the most familiar meta-analytic assumptions – i.e. that 

data are normally distributed. It was my thinking that meta-analysis of validation studies 

would be most likely to use the techniques corresponding to the assumption of 

normality. However, techniques for meta-analysis of beta-distributed data do exist (5). 

All homogeneity test statistics investigated in this project have very high false 

negative rates, making the detection of heterogeneity in effect size unlikely. Caution 

should therefore be used before using the outcome of a homogeneity test to inform a 

decision about whether to use a fixed or random effects estimator. The best course of 

action is likely to present the results of both the random and fixed effects estimation 
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regardless of the outcome of the homogeneity test and explore potentially sources of 

heterogeneity qualitatively (78,79).  

While it has arguably become a commonplace to compare generalized Cochran 

Q statistics to a 𝜒2 distribution, this is based on a misunderstanding (38). A more 

accurate test would compare a Q statistic to a gamma distribution, as suggested in (80) 

when the effect measure is a log odds ratio. Beyond theoretical issues with the use of 

𝜒2 homogeneity statistics, the extra error introduced into the estimated study-specific 

variances by the delta-method correction procedure just described will also adversely 

affect the ability of these statistics to detect heterogeneity. In fact, this is the 

fundamental reason the estimate of between study variance in effect size is biased 

when study-specific variances are not known exactly. Finally, our choice of between 

study variance in effect size, which is derived from Dormuth et al. is small – 

approximately 0.017. This likely also contributes to the high false negative rate of the 

homogeneity statistics. 

The 𝐼2 statistic represents a way of quantifying the amount of heterogeneity 

between studies included in a meta-analysis (6,7). It represents the amount 

(percentage) of variation between studies that is due to heterogeneity rather than 

chance. This is in contrast to the Q statistic, which, when used in a statistical test for 

heterogeneity, is meant to reveal only whether or not there is heterogeneity. The Q 

statistic therefore does not give a measure of the extent of heterogeneity. However, 

because 𝐼2 = 100% ∗ (𝑄 − 𝑑𝑓)/𝑄 , where Q is Cochran’s between study variance 
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statistic, and 𝑑𝑓 is its degrees of freedom, it will also be affected by bias in the Q 

statistic induced by misclassification. 

6.2 Contextualization 
 

By showing that the naïve correction procedure – leaving study specific variances 

untouched – outperforms the variance correction procedure, we lay the groundwork for 

future quantitative analysis of misclassification-induced bias in the context of a meta-

analysis. Investigators wishing to conduct a quantitative bias analysis in their meta-

analysis can safely use the naïve procedure, which is simpler and more straightforward 

to implement. However, our results depend on a number of simplifying assumptions, 

and future work ought to consider more complex situations. The modified maximum 

likelihood approach to bias correction may yield better performance than the matrix 

method approach and warrants further investigation. Differential misclassification is 

common. Novel approaches to homogeneity testing may allow for better detection of 

heterogeneity in the presence of misclassification. 

It is our hope that this project will encourage more widespread use of 

quantitative bias analysis in meta-analysis. Despite focusing on meta-analyses of 

administrative health data, our results are generalizable to other forms of meta-analysis 

that are susceptible to misclassification. A fruitful direction for future work is the 

investigation of methods to correct other forms of bias affecting epidemiological effect 

estimates, such as selection biases and other forms of information bias than 

misclassification.  
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6.3 Strengths 
 

The main strength of this study is that it is an empirical investigation of 

sophisticated theoretical algebraic techniques for variance correction that shows their 

insufficiency under realistic conditions. While the numerous approximations used in the 

variance correction procedure may be theoretically justified, they fail upon empirical 

examination. We have thus demonstrated the importance of Monte Carlo simulation in 

the evaluation of proposed statistical techniques. 

6.4 Limitations 
 

A key limitation of this study is that we restricted ourselves to a fairly small set of 

controlled parameters – namely, only three overall odds ratios were used for each 

underlying data generating mechanism (e.g. Fixed or Random).  Our choice of values for 

the misclassification variance was limited in three ways: we assumed that sensitivity and 

specificity had identical variances, that there was no correlation between sensitivity and 

specificity, and, finally, we chose equally spaced values for the variance between 0 and 

1. Our motivation for the latter decision was to determine whether the estimation 

procedures investigated were robust to increasing misclassification variance. However, 

this may be at the expense of more realistic variances occurring near the lower end of 

this range. 

All simulation studies must make certain concessions by limiting themselves to a 

small subset of the whole parameter space. A quote attributed to Patrick Royston in (69) 



  

 58 

sums up the issue nicely: “Simulation studies reveal points of light on a landscape, but 

can not illuminate the entire landscape.”  

6.5 Directions for Future Research 
 

Future research should focus on determining a realistic prior distribution on the 

distribution of misclassification rates among epidemiological studies. Meta-analyses of 

validation studies can be consulted for this purpose. These may give a better 

representation of the range of between study variance in misclassification rates that 

could be used in a sensitivity analysis of misclassification in meta-analysis. This should 

include investigations of the case where sensitivity and specificity have different 

variances, and cases in which there is correlation between the two. 

Another direction would involve the evaluation of a different effect estimator – 

the arcsine difference – for its performance in a meta-analysis with between study 

variance in misclassification rates. The arcsine difference has been proposed for use in 

meta-analysis to accommodate studies with cell counts of 0 (81). However, its main 

interest to us would be its variance properties. In particular, the study-specific variance 

of the arcsine difference is given by  

1

4 ∗ (𝑎 + 𝑏)
+

1

4 ∗ (𝑐 + 𝑑)
 

 

where 𝑎, 𝑏, 𝑐, 𝑑 are entries in a contingency table. 
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Notice that, unlike the variance of the log odds ratio, the variance of the arcsine 

difference does not depend on the individual cell counts, but only on the row margins 

(𝑎 + 𝑏) and (𝑐 + 𝑑). Because misclassification of disease outcome leaves the row 

margins constant (assuming there is no additional misclassification of exposure status), 

the variance of the arcsine difference will be unaffected by misclassification. This may 

greatly simplify any variance correction procedures. 
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7 Conclusion 
 

Misclassification has the potential to severely bias an epidemiological effect 

estimate and render a study useless, or worse, misleading. A qualitative assessment of 

the appropriateness of a chosen case-identification algorithm should be complemented 

with a quantitative sensitivity analysis of bias due to misclassification when 

administrative health data is used. For organizations that prospectively plan meta-

analyses of administrative health data with the explicit aim of informing regulatory 

decision-making, such a sensitivity analysis is crucial. When conducting a sensitivity 

analysis of a meta-analysis of administrative health data in which disease 

misclassification is expected, variance correction should not be performed. The simpler, 

naïve correction method performs much better, and should be sufficient for such 

purposes.   
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Appendices 

Appendix 1: Baseline Characteristics of study population from Dormuth et al. 

 

Table 11: Baseline characteristics of study population in Dormuth et al. 2014 (reproduced from Dormuth et 
al. 2014) 
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Appendix 2: Fixed Parameters 
 

Parameter Name Level of 
Simulation 

Value(s) 

Probability of disease in 
unexposed / lower potency 

statin group 
Study-specific 

 

 Alberta  0.114 

 CPRD:   0.088 

       Manitoba:   0.095 

 Marketscan:   0.088 

 Nova Scotia:   0.126 

 Ontario:   0.082 

 Quebec:   0.086 

 Saskatchewan:   0.100 

 
 
 
 
 
 
 
 
 
 
 
 

Row Margins 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Study Specific 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Alberta 

Exposed:  1034 

Unexposed: 599 

 

CPRD 

 

Exposed:  2513 

Unexposed: 1167 

 

Manitoba 

 

Exposed: 1684 

Unexposed: 494 

 

Marketscan 

 

Exposed: 5154 

Unexposed:  2033 

 

Nova Scotia 

 

Exposed: 239 

Unexposed: 143 
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Parameter Name Level of 
Simulation 

Value(s) 

 
 
 
 
 
 
 
 
 

Row Margins 

 
 
 
 
 
 
 
 
 

Study Specific 
 

 

Ontario 

 

Exposed: 6871 

Unexposed:  2894 

 

Quebec 

 

Exposed: 5188 

Unexposed: 3035 

 

 

Saskatchewan 

 

Exposed: 1773 

Unexposed: 420 

 

Number of Sites 
Meta-analysis 

Level 
8 

Between study variance in 
effect size 

Meta-analysis 
Level 

𝜒2 = 13.32 ⇒ 𝜏𝑒𝑓𝑓
2 = .016 

Overall sensitivity and 
specificity 

Meta-analysis 
Level 

Sensitivity  90% 

Specificity 
 

 92% 

 

Table 12: Description of fixed parameters 

 

 

 

 

Appendix 3: Delta Method Approximation of Variance of Sensitivity and Specificity 

from Between Study Variance in Logit Sensitivity and Logit Specificity 
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Assume that the study-specific logit sensitivity and logit specificity, 𝜃𝑖
𝑠𝑒 and 𝜃𝑖

𝑠𝑝
, 

are bivariately normally distributed about an overall mean vector (𝜃𝑠𝑒 , 𝜃𝑠𝑝): 

(𝜃𝑖
𝑠𝑒 , 𝜃𝑖

𝑠𝑝
) ∼ 𝑁((𝜃𝑠𝑒 , 𝜃𝑠𝑝), 𝛵), 

where 𝑇 = [
𝜎𝑠𝑒
2 0

0 𝜎𝑠𝑝
2 ] – i.e. we are assuming no correlation between 𝜃𝑖

𝑠𝑒 and 𝜃𝑖
𝑠𝑝. 

We assumed no correlation between 𝜃𝑖
𝑠𝑒 and 𝜃𝑖

𝑠𝑝 so, 𝑉𝑎𝑟[𝑠𝑒𝑛𝑠] can be derived 

from the between-study variance in logit sensitivity, 𝜎𝑠𝑒
2 , by an application of the delta 

method as follows: 

𝜃𝑠𝑒 = logit(sens) → 𝑠𝑒𝑛𝑠 = 𝑔(𝜃𝑠𝑒) =
𝑒𝜃

𝑠𝑒

1 + 𝑒𝜃
𝑠𝑒 

𝑉𝑎𝑟[𝑠𝑒𝑛𝑠] = 𝜎𝑠𝑒
2 ∗ [𝑔′(𝜃𝑠𝑒)]2 

𝑉𝑎𝑟[𝑠𝑒𝑛𝑠] = 𝜎𝑠𝑒
2 (𝑠𝑒(1 − 𝑠𝑒))

2
 

A similar procedure can be performed for 𝑉𝑎𝑟[𝑠𝑝𝑒𝑐]. 

 

 

 

 

 

Appendix 4: Number of Negative Cell Counts 
 Number of Iterations with Negative Cell Counts 
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T 

 
OR = 1 

 
OR = 1.11 

 
OR = 2.22 

 0 0 0 0  

 0.1 0 0 0  

 0.2 4 3 7  

 0.3 33 28 28  

 0.4 102 106 94  

 0.5 306 233 221  

 0.6 533 456 459  

 0.7 796 765 751  

 0.8 1168 1042 1063  

 0.9 1621 1547 1374  

 1 2025 1886 1788 
Table 13: Number of iterations in each Random DGC for which negative cell counts were observed in at 
least one site after matrix method correction. 

 

 

 

 
 

T 

Number of Iterations with Negative Cell Counts 

 
OR = 1 

 
OR = 1.15 

 
OR = 2.3 

0 0 0 0  

0.1 0 0 0  

0.2 5 4 3  

0.3 36 37 32  

0.4 129 104 105  

0.5 277 254 254  

0.6 516 414 446  

0.7 809 729 712  

0.8 1287 1019 1053  

0.9 1610 1369 1397  

1 2121 1781 1833 
Table 14: Number of iterations in each Fixed DGC for which negative cell counts were observed in at least 
one site after matrix method correction 

 

 

Appendix 5: Correlation Between Study Weights and Corrected Site specific Effect 

Estimates 
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Figure 7: Correlation between fixed effects weights and corrected fixed effects estimates in three studies at 
three different levels of between study variance in misclassification rates T, when the context is Fixed. 
Note the linear correlation when T=0. When 𝑇 ≠ 0, corrected log ORs closer to 0 are more likely to receive 
high weight than those further away. 
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Figure 8: Correlation between random effects weights and corrected study-specific effect estimates in 
three studies at three different levels of between study variance in misclassification rates T, when the 
context is Random. Note the linear correlation when T=0. When 𝑇 ≠ 0, corrected log ORs closer to 0 are 
more likely to receive high weight than those further away. 
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Appendix 6: Simulation Code  
 

library(dplyr) 
library(ggplot2) 
 
do_fixed = TRUE 
do_random = TRUE 
 
#### 
#### 
#### --------------------------------- GENERATE FIXED PARAMETER VALUES AND DATA STRUCTURES ------------------------------ 
#### 
#### 
 
#---------------------- Create Set of Controlled Variable Parameters 
trueLogORs_fixed = log(c(1,1.15,2.3)) 
trueLogORs_random = log(c(1, 1.11, 2.22)) 
 
miscBetweenStudyVariances = seq(from=0, to=1, by=0.1) 
 
variableParameters_fixed = expand.grid(x=trueLogORs_fixed, y=miscBetweenStudyVariances) 
variableParameters_random = expand.grid(x=trueLogORs_random, y=miscBetweenStudyVariances) 
names(variableParameters_fixed) <- c("logOR", "T") 
names(variableParameters_random) <- c("logOR", "T") 
 
 
#----------------- Specify Fixed Parameters 
#All taken from Dormuth's forest plot 
casesExposed = c(90, 247, 170, 502, 23, 675, 507, 188) 
casesUnexposed = c(68, 103, 47, 180, 18, 236, 260, 42) 
numUnexposed = c(599, 1167, 494, 2033, 143, 2894, 3035, 420) 
numExposed = c(1034, 2513, 1684, 5154, 239, 6871, 5188, 1773) 
baselineProb = casesUnexposed/numUnexposed 
 
#calculate the study-specific variance of logORs. Use the confidence intervals and estimates provided in Dormuth et 
al's forest plot 
lbs = c(.44, .87, .85, .94, .24, 1.08, 1, .67) 
ubs = c(.98, 1.57, 1.88, 1.34, 1.21, 1.53, 1.46, 1.61) 
est = log(c(.66, 1.17, 1.27, 1.12, .54, 1.29, 1.21, 1.04)) 
 
variances = ((est - log(lbs))/1.96)^2 
w = 1/variances 
#Dormuth et al report a Q of 13.32, and has 7 df 
tauSqr = (13.32 - 7)/(sum(w) - (sum(w^2)/sum(w))) 
 
estimatedSensitivity = 0.9 
estimatedSpecificity = 0.92 
 
overallSensitivity = 0.9 
overallSpecificity = 0.92 
 
overallLogitSensitivity = log(overallSensitivity/(1-overallSensitivity)) 
overallLogitSpecificity = log(overallSpecificity/(1-overallSpecificity)) 
 
numMAs = 1000                      #Needs to be integer. controls how many instances are simulated 
 
numSites = rep(8, numMAs)            #Here, constant for every MA instance 
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numValidationSites = rep(1, numMAs)   #Here, constant for every MA instance 
siteNames = c("Alberta", "CPRD", "Manitoba", "MarketScan","NS", "Ontario","Quebec","Saskatchewan") 
 
QSigLevel = 0.1 
significanceLevel = 0.05 
 
 
#------------------- Generate empty data structures 
hom.df        = data.frame(corrupted=numeric(numMAs), 
                           corrected=numeric(numMAs), 
                           uncorrupted=numeric(numMAs), 
                           gCorrected=numeric(numMAs), 
                           genCochQ=numeric(numMAs)) 
 
df            = data.frame(corrupted=numeric(numMAs), 
                          corrected=numeric(numMAs), 
                          uncorrupted=numeric(numMAs), 
                          gCorrected=numeric(numMAs)) 
 
siteData.df = data.frame(matrix(0, ncol=length(siteNames), nrow=numMAs)); names(siteData.df) = siteNames 
 
siteLogORData = list(corrupted = siteData.df, 
                     corrected = siteData.df, 
                     uncorrupted = siteData.df) 
 
weightData    = list(corrupted=siteData.df, 
                     corrected=siteData.df, 
                     uncorrupted=siteData.df, 
                     gCorrected=siteData.df) 
  
contextStruct =   list(FP_Q                = hom.df,  
                       FN_Q                = hom.df, 
                       homStats            = hom.df, 
                       coveredTrueLogORFE  = df, 
                       coveredTrueLogORRE  = df, 
                       falseNegativesRE    = df, 
                       falseNegativesFE    = df, 
                       varFE               = df,  
                       varRE               = df, 
                       FE                  = df,  
                       RE                  = df,  
                       t2                  = df,  
                       numNegCellInstances = df, 
                       FEWeights           = weightData, 
                       REWeights           = weightData, 
                       siteLogORs          = siteLogORData, 
                       siteSens            = siteData.df, 
                       siteSpec            = siteData.df 
                       ) 
 
contextData_fixed = rep(list(contextStruct), nrow(variableParameters_fixed)) 
contextData_random = rep(list(contextStruct), nrow(variableParameters_random)) 
 
unlogit = function(x) {return(exp(x)/(1+exp(x)))} 
 
#### 
#### 
####---------------------------- FUNCTIONS FOR GENERATING SITE-LEVEL DATA ------------------------- 
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#### 
#### 
 
createSite = function(siteId, numUnexposed, numExposed, overallLogitSensitivity, overallLogitSpecificity, miscT,  
                      trueLogOR, baselineProb = NA, overallSens, overallSpec) 
{ 
  pDiseaseUnexposed = baselineProb 
   
   
  pDiseaseExposed = pDiseaseUnexposed * (exp(trueLogOR) / (1 - pDiseaseUnexposed + pDiseaseUnexposed * 
exp(trueLogOR))) 
   
   
  #Generate the vector of true observed diseased statuses in each group 
  trueStatusExp           = rbinom(numExposed, 1, pDiseaseExposed) 
  trueStatusUnexp         = rbinom(numUnexposed, 1, pDiseaseUnexposed) 
   
  site = list() 
   
  a = sum(trueStatusExp) 
  b = numExposed - a 
  c = sum(trueStatusUnexp) 
  d = numUnexposed - c 
   
  site$uncorruptedTable = matrix(c(a,b,c,d), nrow=2, ncol=2, byrow=TRUE) 
   
  #The expected value of the site-specific sensitivity and specificity is not simply the inverse logit of the overall 
  #logit misclassification rates. E[sens_i] != unlogit(trueOverallLogitSensitivity) - i.e. E[sens_i] != .9, and similarly 
  #for E[spec_i]. Therefore, we use as a correcting sensitivity a taylor approximation to the mean: 
  #E[sens_i] = unlogit(trueOverallLogitSensitivity) + .5*unlogit''(trueOverallSensitivity)*Var[trueOverallLogitSensitivity] 
  #where unlogit'' is the second derivative of the inverse logit transform. Similar for E[spec_i] 
  correctingSens = overallSens + .5*overallSens*(overallSens-1)*(2*overallSens-1)*miscT 
  correctingSpec = overallSpec + .5*overallSpec*(overallSpec-1)*(2*overallSpec-1)*miscT 
   
  negCellCountFlag = TRUE #negative cell counts for naively corrected 
   
  numNegCellInstances = 0 
  while(negCellCountFlag) 
  { 
    siteSpecificSens = unlogit(rnorm(1, overallLogitSensitivity, sqrt(miscT))) 
    siteSpecificSpec = unlogit(rnorm(1, overallLogitSpecificity, sqrt(miscT))) 
     
     
    site$corruptingM = matrix(c(siteSpecificSens, 1-siteSpecificSens,  
                                1-siteSpecificSpec, siteSpecificSpec),  
                              nrow=2, ncol=2, byrow=TRUE) 
     
    site$corruptedTable = site$uncorruptedTable %*% site$corruptingM 
     
    #### Matrix-method correction matrix formed from estimated sensitivity and specificity 
    site$correctingM = (1/(correctingSens+correctingSpec-1)) * matrix(c(correctingSpec, correctingSens-1,  
                                                                        correctingSpec-1, correctingSens),  
                                                                      nrow=2, ncol=2, byrow=TRUE) 
     
    #### Get and round the corrected table 
    site$correctedTable = round(site$corruptedTable %*% site$correctingM) 
    site$corruptedTable = round(site$corruptedTable) 
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    if(!any(site$correctedTable <= 0)) 
    { 
      negCellCountFlag = FALSE 
    } 
    else 
    { 
      numNegCellInstances = numNegCellInstances+1 
    } 
  } 
   
   
   
  #### The logOR actually observed - i.e. from the Corrupted Table 
  site$corruptedLogOR = with(site, 
log((corruptedTable[1,1]*corruptedTable[2,2])/(corruptedTable[1,2]*corruptedTable[2,1]))) 
  site$corruptedVariance = sum(1/site$corruptedTable) 
   
  #### The logOR that would have been observed absent misclassification - i.e. from the Uncorrupted Table 
  site$uncorruptedLogOR = with(site, 
log((uncorruptedTable[1,1]*uncorruptedTable[2,2])/(uncorruptedTable[1,2]*uncorruptedTable[2,1]))) 
  site$uncorruptedVariance = sum(1/site$uncorruptedTable) 
   
  #### The logOR observed after matrix-method correction - i.e. from the Corrected Table 
  site$mmCorrectedLogOR = with(site, 
log((correctedTable[1,1]*correctedTable[2,2])/(correctedTable[1,2]*correctedTable[2,1]))) 
  site$NCVariance = sum(1/site$correctedTable) 
   
  #### Get the corrected site-specific variance 
  site$gCorrectedVariance = getGreenlandCorrectedVariance(site$corruptedTable, site$correctedTable, overallSens, 
overallSpec, miscT) 
   
  site$sensitivity = siteSpecificSens 
  site$specificity = siteSpecificSpec 
  site$correctingSens = correctingSens 
  site$correctingSpec = correctingSpec 
   
  site$numNegCellInstances = numNegCellInstances 
  return(site) 
} 
 
getGreenlandCorrectedVariance = function(corruptedTable, correctedTable, overallSens, overallSpec, miscT) 
{ 
  #### Implements Equation 2 of Greenland 1988 
   
  correctingSens = overallSens + .5*overallSens*(overallSens-1)*(2*overallSens-1)*miscT 
  correctingSpec = overallSpec + .5*overallSpec*(overallSpec-1)*(2*overallSpec-1)*miscT 
  Dsqr = (correctingSens+correctingSpec-1)^2 
   
  #### Delta-method approximation to variance of sensitivity and specificity 
  vSens = miscT*(overallSens*(1-overallSens))^2 + (miscT^2)*(overallSens*(overallSens-1)*(2*overallSens-1))^2 
  vSpec = miscT*(overallSpec*(1-overallSpec))^2 + (miscT^2)*(overallSpec*(overallSpec-1)*(2*overallSpec-1))^2 
   
  m1 = corruptedTable[1,1] + corruptedTable[1,2] 
  m0 = corruptedTable[2,1] + corruptedTable[2,2] 
   
  f1 = correctedTable[1,2]/m1 # #non-cases classified as exposed after correction 
  f0 = correctedTable[2,2]/m0 # #non-cases classified as unexposed 
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  e1 = correctedTable[1,1]/m1 # #cases classified as exposed 
  e0 = correctedTable[2,1]/m0 # #cases classified as unexposed 
   
  f1_star = corruptedTable[1,2]/m1 
  f0_star = corruptedTable[2,2]/m0 
   
  e1_star = corruptedTable[1,1]/m1 
  e0_star = corruptedTable[2,1]/m0 
   
   
   
  c1 = (e1_star*f1_star)/(m1*e1^2*f1^2) 
  c0 = (e0_star*f0_star)/(m0*e0^2*f0^2) 
  gCorrectedVariance = (vSens*(1/f1-1/f0)^2 + vSpec*(1/e1-1/e0)^2 + c1 + c0)/Dsqr 
   
  return(gCorrectedVariance) 
} 
 
#### 
####   
####--------------------------------------FUNCTIONS FOR GENERATING META-ANALYSIS LEVEL DATA --------------------- 
#### 
#### 
 
getMACovMat = function(sites, vSens, vSpec, Dsqr) 
{ 
  #Creates covariance matrix of corrected study-specific log odds ratios. Implements equation (4) of Greenland, 1988 
  gCovMat = matrix(0, nrow=length(sites), ncol=length(sites)) 
   
  for(j in 1:length(sites)) 
  { 
    m1j = sites[[j]]$corruptedTable[1,1] + sites[[j]]$corruptedTable[1,2] 
    m0j = sites[[j]]$corruptedTable[2,1] + sites[[j]]$corruptedTable[2,2] 
     
    f1j = sites[[j]]$correctedTable[1,2]/m1j # #exposed classified as non-case after correction 
    f0j = sites[[j]]$correctedTable[2,2]/m0j # #unexposed classified non-case 
     
    e1j = sites[[j]]$correctedTable[1,1]/m1j # #exposed classified as cases  
    e0j = sites[[j]]$correctedTable[2,1]/m0j # #unexposed classified as cases   
    for(k in 1:length(sites)) 
    { 
      if(k==j) 
      { 
        gCovMat[j,k] = sites[[j]]$gCorrectedVariance 
      } 
      else 
      { 
        m1k = sites[[k]]$corruptedTable[1,1] + sites[[k]]$corruptedTable[1,2] 
        m0k = sites[[k]]$corruptedTable[2,1] + sites[[k]]$corruptedTable[2,2] 
         
        f1k = sites[[k]]$correctedTable[1,2]/m1k # #exposed classified as non-case after correction 
        f0k = sites[[k]]$correctedTable[2,2]/m0k # #unexposed classified non-case 
         
        e1k = sites[[k]]$correctedTable[1,1]/m1k # #exposed classified as cases  
        e0k = sites[[k]]$correctedTable[2,1]/m0k # #unexposed classified as cases   
         
        gCovMat[j,k] = (vSens/(f0j*f0k)+vSpec/(e0j*e0k))/Dsqr - (vSens/(f0j*f1k)+vSpec/(e0j*e1k))/Dsqr - 
          (vSens/(f1j*f0k)+vSpec/(e1j*e0k))/Dsqr + (vSens/(f1j*f1k)+vSpec/(e1j*e1k))/Dsqr 
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      } 
    } 
  } 
     
  return(gCovMat) 
} 
 
getGCorrectedQ = function(gCovMat_inv, logORs, FE, w_plus) 
{ 
  #Get corrected chi2 statistic as described by Greenland 1988 
  Q = 0 
  for(j in 1:nrow(gCovMat_inv)) 
  { 
    for(k in 1:ncol(gCovMat_inv)) 
    { 
      Q = Q + gCovMat_inv[j,k]*logORs[j]*logORs[k] 
    } 
  } 
  Q = Q - w_plus*FE^2 
   
  return(Q) 
} 
 
getGreenlandCorrectedPooledEstimates = function(sites, logORs, miscT, overallSens, overallSpec) 
{ 
  #Gets the pooled fixed and random effects estimates that use the corrected study specific variances 
   
  corrSens = overallSens + .5*overallSens*(overallSens-1)*(2*overallSens-1)*miscT 
  corrSpec = overallSpec + .5*overallSpec*(overallSpec-1)*(2*overallSpec-1)*miscT 
  Dsqr = (corrSens+corrSpec-1)^2 
  ret = vector("list") 
   
   
  #### Delta-method approximation to variance of sensitivity and specificity 
  vSens = miscT*(overallSens*(1-overallSens))^2 + (miscT^2)*(overallSens*(overallSens-1)*(2*overallSens-1))^2 
  vSpec = miscT*(overallSpec*(1-overallSpec))^2 + (miscT^2)*(overallSpec*(overallSpec-1)*(2*overallSpec-1))^2 
   
  gCovMat = getMACovMat(sites, vSens, vSpec, Dsqr) 
  gCovMat_inv = solve(gCovMat) 
   
  w = colSums(gCovMat_inv) 
  w_plus = sum(w) 
   
  ret$FE = sum(w*logORs)/w_plus 
  ret$var_FE = 1/w_plus 
   
  ret$gCorrQ = getGCorrectedQ(gCovMat_inv, logORs, ret$FE, w_plus) 
  ret$genCochQ = sum(w*(logORs-ret$FE)^2) 
  ret$FEWeights = w 
   
  v = diag(gCovMat) 
  num = ret$genCochQ - sum(w*v) + sum(w^2*v)/sum(w) 
  denom = sum(w) - sum(w^2)/sum(w) 
   
  ret$t2 = num/denom 
  if(ret$t2<0) 
    ret$t2 = 0 
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  diag(gCovMat) = diag(gCovMat) + ret$t2 
  gCovMat_inv = solve(gCovMat) 
  w_star = colSums(gCovMat_inv) 
  ret$RE = sum(w_star*logORs)/sum(w_star) 
  ret$var_RE = 1/sum(w_star) 
  ret$REWeights = w_star 
   
  return(ret) 
} 
 
getMetaAnalyticOutcomes = function(sites,  miscT, overallSens, overallSpec) 
{ 
  #Gets the outcomes for a given instance of a meta-analysis 
  variances = data.frame(corrupted=sapply(sites, function(x){return(x$corruptedVariance)}), 
                         corrected=sapply(sites, function(x){return(x$NCVariance)}), 
                         uncorrupted=sapply(sites, function(x){return(x$uncorruptedVariance)})) 
   
  logORs = data.frame(corrupted=sapply(sites, function(x){return(x$corruptedLogOR)}), 
                      corrected=sapply(sites, function(x){return(x$mmCorrectedLogOR)}), 
                      uncorrupted=sapply(sites, function(x){return(x$uncorruptedLogOR)})) 
   
  numNegCellInstances = sum(sapply(sites, function(x){return(x$numNegCellInstances)})) 
   
   
  w = 1/variances 
  FE = colSums(w * logORs)/colSums(w) 
  var_FE = 1/colSums(w) 
   
  s = cbind(logORs[,1]-FE[1], logORs[,2]-FE[2], logORs[,3]-FE[3]) 
  Q = colSums(w * s^2) 
   
  C = colSums(w) - (colSums(w^2)/colSums(w)) 
  t2 = (Q - length(sites)+1)/C 
   
   
  if(any(t2[!is.na(t2)]<0)) 
  { 
    t2[which(t2<0)] = 0 
  } 
   
  w_star = 1/(variances+t2) 
  RE = colSums(w_star * logORs)/colSums(w_star) 
  var_RE = 1/colSums(w_star) 
   
  gCorrectedEstimates = getGreenlandCorrectedPooledEstimates(sites, logORs$corrected, miscT, overallSens, 
overallSpec) 
   
  FE['gCorrected']     = gCorrectedEstimates$FE 
  RE['gCorrected']     = gCorrectedEstimates$RE 
  var_FE['gCorrected'] = gCorrectedEstimates$var_FE 
  var_RE['gCorrected'] = gCorrectedEstimates$var_RE 
  Q['gCorrected']      = gCorrectedEstimates$gCorrQ 
  Q['genCochQ']        = gCorrectedEstimates$genCochQ 
  t2['gCorrected']     = gCorrectedEstimates$t2 
   
   
  logORCI_FE = data.frame(ub=numeric(4), lb=numeric(4), Type=numeric(4)) 
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  logORCI_FE$Type = c("Corrupted", "Corrected", "Uncorrupted", "gCorrected") 
   
  logORCI_FE$lb = FE - qnorm(1-significanceLevel/2)*sqrt(var_FE) 
  logORCI_FE$ub = FE + qnorm(1-significanceLevel/2)*sqrt(var_FE) 
   
  logORCI_RE = data.frame(ub=numeric(4), lb=numeric(4), Type=numeric(4)) 
  logORCI_RE$Type = c("Corrupted", "Corrected", "Uncorrupted", "gCorrected") 
   
  logORCI_RE$lb = RE - qnorm(1-significanceLevel/2)*sqrt(var_RE) 
  logORCI_RE$ub = RE + qnorm(1-significanceLevel/2)*sqrt(var_RE) 
   
  FEWeights = list(corrupted=w$corrupted,  
                   corrected=w$corrected,  
                   uncorrupted=w$uncorrupted,  
                   gCorrected=gCorrectedEstimates$FEWeights) 
   
  REWeights = list(corrupted=w_star$corrupted,  
                   corrected=w_star$corrected,  
                   uncorrupted=w_star$uncorrupted,  
                   gCorrected=gCorrectedEstimates$REWeights) 
   
   
  sens = sapply(sites, function(x){return(x$sensitivity)}) 
  spec = sapply(sites, function(x){return(x$specificity)}) 
   
  return(list(FE, RE, Q, var_FE, var_RE, t2, logORCI_FE, logORCI_RE, numNegCellInstances, FEWeights, REWeights, 
logORs, sens, spec)) 
} 
 
#### 
#### 
####-------------------------------- FUNCTION FOR GENERATING CONTEXT-LEVEL OUTCOMES, E.G. PERFORMANCE 
MEASURES---------------- 
#### 
#### 
getContextOutcomes = function(params, contextData, maData, maNum, QSigLevel, fixed=FALSE) 
{ 
  #### Essentially just a function for taking the MA data that was just generated and putting into one of the  
  #### contextData structs 
  logOR = params$logOR 
   
  negCellInstances = 0 
  coversLogOR = function(logOR, CI) { 
    return(CI$lb <= logOR & logOR <= CI$ub) 
  } 
   
  coversNull = function(CI) { 
    return(CI$lb <= 0 & CI$ub >= 0) 
  } 
   
  contextData = within(contextData, { 
    p         = parent.env(environment()) 
    logOR     = p$logOR 
    maNum     = p$maNum 
    maData    = p$maData 
     
    coveredTrueLogORFE[maNum,] = coversLogOR(logOR, maData$logORCI_FE) 
    coveredTrueLogORRE[maNum,] = coversLogOR(logOR, maData$logORCI_RE) 
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    falseNegativesFE[maNum,]   = coversNull(maData$logORCI_FE) & (logOR != 0) 
    falseNegativesRE[maNum,]   = coversNull(maData$logORCI_RE) & (logOR != 0) 
     
    t2[maNum,] = maData$t2 
    FE[maNum,] = maData$FE 
    RE[maNum,] = maData$RE 
     
    varFE[maNum,] = maData$var_FE 
    varRE[maNum,] = maData$var_RE 
     
    FEWeights$corrupted[maNum,] = maData$FEWeights$corrupted 
    FEWeights$corrected[maNum,] = maData$FEWeights$corrected 
    FEWeights$uncorrupted[maNum,] = maData$FEWeights$uncorrupted 
    FEWeights$gCorrected[maNum,] = maData$FEWeights$gCorrected 
     
    REWeights$corrupted[maNum,] = maData$REWeights$corrupted 
    REWeights$corrected[maNum,] = maData$REWeights$corrected 
    REWeights$uncorrupted[maNum,] = maData$REWeights$uncorrupted 
    REWeights$gCorrected[maNum,] = maData$REWeights$gCorrected 
     
    siteLogORs$corrupted[maNum,] = maData$SiteLogORs$corrupted 
    siteLogORs$corrected[maNum,] = maData$SiteLogORs$corrected  
    siteLogORs$uncorrupted[maNum,] = maData$SiteLogORs$uncorrupted  
     
    siteSens[maNum,] = maData$SiteSens 
    siteSpec[maNum,] = maData$SiteSpec 
     
    homStats[maNum,] = maData$Q 
    negCellInstances = negCellInstances + maData$numNegCellInstances 
     
    sig = maData$Q > qchisq(1-p$QSigLevel, 7) 
    if(p$fixed) 
      FP_Q[maNum,] = sig 
    else 
      FN_Q[maNum,] = 1-sig 
  }) 
} 
 
 
#### 
#### 
####------------------------------- MAIN SIMULATION LOOP------------------------------- 
#### 
#### 
 
if(do_fixed) 
{ 
  for(curr_context in 1:nrow(variableParameters_fixed)) 
  { 
    for(i in 1:numMAs) 
    { 
      #---------------Specify MA-specific values------------------ 
      siteLogOR = variableParameters_fixed$logOR[curr_context] 
       
      #---------------Set Site Specific Values----------------------------- 
      sites = vector("list", numSites[i]) 
      for(j in 1:numSites[i]) 
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      { 
        sites[[j]] = createSite(j, numUnexposed[j], numExposed[j], overallLogitSensitivity, overallLogitSpecificity,  
                                variableParameters_fixed$T[curr_context], siteLogOR, baselineProb[j],  
                                overallSensitivity, overallSpecificity) 
      } 
      names(sites) <- siteNames 
       
      maData = getMetaAnalyticOutcomes(sites, variableParameters_fixed$T[curr_context], overallSensitivity, 
overallSpecificity) 
      names(maData) <- c("FE", "RE", "Q", "var_FE", "var_RE", "t2", "logORCI_FE", "logORCI_RE", 
"numNegCellInstances", 
                         "FEWeights", "REWeights","SiteLogORs", "SiteSens", "SiteSpec") 
       
      contextData_fixed[[curr_context]] = getContextOutcomes(variableParameters_fixed[curr_context,],  
                                                             contextData_fixed[[curr_context]], maData,  
                                                             i, QSigLevel, TRUE) 
       
      print(paste(paste("MA:", i), paste("Fixed Context:", curr_context))) 
    } 
  } 
} 
 
if(do_random) 
{ 
  for(curr_context in 1:nrow(variableParameters_random)) 
  { 
    for(i in 1:numMAs) 
    { 
      #---------------------- Set MA-specificy Values ----------------- 
      siteLogOR = rnorm(numSites[i], variableParameters_random$logOR[curr_context], tauSqr) 
       
       
      #-----------------------Specify Site-Specific Values ------------------------ 
      sites = vector("list", numSites[i]) 
      for(j in 1:numSites[i]) 
      { 
        sites[[j]] = createSite(j, numUnexposed[j], numExposed[j], overallLogitSensitivity, overallLogitSpecificity,  
                                variableParameters_random$T[curr_context], siteLogOR[j], baselineProb[j], .9, .92) 
      } 
      names(sites) <- siteNames 
   
      maData = getMetaAnalyticOutcomes(sites, variableParameters_random$T[curr_context], overallSensitivity, 
overallSpecificity) 
      names(maData) <- c("FE", "RE", "Q", "var_FE", "var_RE", "t2", "logORCI_FE", "logORCI_RE", 
"numNegCellInstances", 
                         "FEWeights", "REWeights","SiteLogORs", "SiteSens", "SiteSpec") 
       
      contextData_random[[curr_context]] = getContextOutcomes(variableParameters_random[curr_context,], 
                                              contextData_random[[curr_context]], maData, 
                                              i, QSigLevel, FALSE) 
      print(paste(paste("MA:", i), paste(", Random Context:", curr_context))) 
    } 
  } 
} 
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