Disulfide Bond Formation and Methionine Sulfoxide Reduction in
Streptococcus gordonii

by

Naif A. Jalal

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia
August 2019

© Copyright by Naif A. Jalal, 2019
Table of Contents

List of Tables ... vi
List of Figures .. vii
Abstract ... ix
List of Abbreviations ... x
Acknowledgments ... xii
Chapter 1. Introduction ... 1
 1.1 Disulfide Bonds .. 1
 1.2 Disulfide Bond Formation in Eukaryotic Cells ... 1
 1.3 Disulfide Bond Formation in Bacteria ... 3
 1.3.1 Disulfide Bond Formation in Gram-Negative Bacteria .. 4
 1.3.1.1 The Oxidation Pathway in E. coli ... 4
 1.3.1.2 The Isomerization and Reduction Pathways in E. coli .. 7
 1.3.1.2.1 The Isomerization Pathway ... 8
 1.3.1.2.2 The Reduction Pathway .. 11
 1.3.1.3 Disulfide Bond Formation in Other Gram-Negative Bacteria 15
 1.3.2 Disulfide Bond Formation in Gram-Positive Bacteria .. 17
 1.3.2.1 The Oxidation Pathway ... 18
 1.3.2.1.1 Actinobacteria ... 18
 1.3.2.1.2 Firmicutes .. 22
 1.3.2.1.2.1 Streptococcus gordonii .. 25
 1.3.2.1.2.1.1 Disulfide Bond Forming Enzyme in S. gordonii 27
 1.3.2.1.2.1.2 Other TDORs in S. gordonii .. 30
 1.3.2.2 The Reduction Pathway ... 30
 1.4 Rationale, Hypothesis, and Objectives of this Study ... 37
Chapter 2. Materials and Methods .. 39
 2.1 Bacterial Strains and Growth Conditions ... 39
 2.2 Genetic Manipulation of E. coli ... 44
 2.2.1 Isolation of Plasmid DNA from E. coli ... 44
 2.2.2 Transformation of E. coli ... 44
2.3 Genetic Manipulation of S. gordonii

2.3.1 Isolation of Genomic DNA from S. gordonii

2.3.2 Transformation of S. gordonii

2.3.3 Polymerase Chain Reaction (PCR)

2.3.4 Construction of Knockout Mutants

2.3.5 Construction of Complemented Strains

2.4 Site Directed Mutagenesis

2.4.1 SdbA

2.4.2 SdbB

2.5 Reverse-Transcription PCR

2.6 Phenotypic Assays

2.6.1 Extracellular (e)DNA Release

2.6.2 Bacteriocin Activity

2.6.3 Genetic Competence

2.6.4 Autolysis

2.6.5 Zymographic Analysis

2.6.6 H$_2$O$_2$ Sensitivity Assay

2.6.7 Methionine Sulfoxide Sensitivity Assay

2.6.8 Copper Sensitivity Assay

2.6.9 Level of MsrAB, SdbB, and Sgo_1177 in Response to Aeration and in Biofilms

2.7 SDS-PAGE and Western Immunoblotting

2.8 Protein Alkylation

2.8.1 AtlS

2.8.2 Anti-CRI scFv

2.8.3 SdbA

2.9 DNA Cloning, Protein Expression, and Isolation of Recombinant Proteins

2.9.1 SdbA, SdbB, Sgo_1177, MsrAB, Trx-2, and TrxB

2.9.2 CcdA1 and CcdA2

2.9.3 DsbC

iii
2.10 Antibody Production and Purification .. 64
2.11 Preparation of Oxidized and Reduced Recombinant Proteins 65
2.12 DTNB Assay ... 66
2.13 Enzyme Assays .. 66
2.13.1 Oxidase Assay .. 66
2.13.2 Reductase Assay .. 67
2.13.3 Isomerase Assay .. 68
2.13.4 Methionine Sulfoxide Reductase Assay ... 68
2.14 Enzyme Kinetics .. 69
2.14.1 SdbA .. 69
2.14.2 MsrAB .. 69
2.15 Disulfide Exchange Reactions .. 70
2.16 SdbA-SdbB Complex Formation in S. gordonii and Immunoprecipitation ... 71
2.17 In vitro SdbA-SdbB Complex Formation .. 72
2.18 Sequence Analysis ... 72
2.19 Statistical Analysis .. 73

Chapter 3. Results ... 74

3.1 Identification and Characterization of Redox Partners of the Thiol-
Disulfide Oxidoreductase SdbA in S. gordonii .. 74
3.1.1 Identification and Genetic Organization of SdbA Redox Partners 74
3.1.2 Confirmation of the Knockout and Complemented Mutant Strains 79
3.1.3 The sdbBccdA2 Double-Gene Mutant Exhibits a Pleiotropic Mutant
Phenotype Identical to the sdbA Mutant ... 83
3.1.4 AtlS in sdbBccdA2 Mutant Lacks Activity and a Disulfide Bond 87
3.1.5 SdbB and CcdA2 Possess Oxidase Activities 89
3.1.6 SdbA is in a Reduced State in the sdbBccdA2 Mutant 94
3.1.7 SdbA_{C89A} Variant Forms Mixed Disulfide with SdbB In vivo 94
3.1.8 SdbBCcdA2 Homologs Exist in Other Gram-Positive Bacteria 97
3.1.9 Summary ... 102

3.2 Identification and Characterization of a Reducing Pathway in S. gordonii ... 102
3.2.1 The Genetic Locus of MsrAB in S. gordonii ... 103
3.2.2 MsrAB, SdbB, Sgo_1177, and CcdA Proteins are Involved in Oxidative Stress Resistance ... 105
3.2.3 MsrAB, SdbB, and Sgo_1177 Production are Induced by Aeration 108
3.2.4 SdbB and Sgo_1177 are Able to Reduce MsrAB ... 111
3.2.5 Methionine Sulfoxide Reductase Activity of MsrAB with SdbB and Sgo_1177 as Partners ... 114
3.2.6 Summary ... 117
3.3 SdbB is a Putative Disulfide Bond Isomerase in S. gordonii 118
3.3.1 SdbB Exhibits Reductase and Isomerase Activities ... 118
3.3.2 SdbB-CcdA2 are Required for the Production of Anti-CR1 scFv 120
3.3.3 Anti-CR1 is Oxidized and Misfolded in sdbBccda2 Mutant 124
3.3.4 SdbB and CcdA2 are Involved in Copper Resistance in S. gordonii 126
3.3.5 Summary ... 126
3.4 Preliminary Investigations of Structure and Function of SdbA 128
3.4.1 Role of the Active-Site Cysteines in SdbA-SdbB Interaction 128
3.4.2 Role of Surface-Exposed Amino Acid Residues in SdbA Enzyme

Kinetics ... 131

3.4.3 Role of Surface-Exposed Amino Acid Residues in SdbA-SdbB

Interaction .. 137

Chapter 4. Discussion ... 139

4.1 Oxidative Protein-Folding Pathway in S. gordonii .. 139
4.2 The Reducing Pathway in S. gordonii .. 143
4.3 Disulfide Bond Isomeration Pathway in S. gordonii .. 148
4.4 Structural Determinants of SdbA Protein and Evidence of SdbA-SdbB

Interaction Through their Active Site Cysteines ... 151

4.5 General Conclusion .. 155
4.6 Future Direction .. 157

Reference .. 160

Appendix: Copyright Release for Published Material ... 177
List of Tables

Table 1.1 TDORs in other Gram-negative bacteria.. 16
Table 2.1 Bacterial strains and plasmids used in this study 40
Table 2.2 PCR conditions .. 48
Table 2.3 Primers used in this study ... 49
Table 3.1 Kinetic parameters of parent SdbA and SdbA point mutants....................... 136
List of Figures

Figure 1.1 The DsbA/DsbB disulfide bond formation pathway in E. coli. 6
Figure 1.2 The DsbC/DsbD disulfide bond isomerization pathway in E. coli. 10
Figure 1.3 The reducing pathway in E. coli. .. 12
Figure 1.4 Disulfide bond formation pathways in Mycobacterium and Actinomyces 20
Figure 1.5 Disulfide bond formation in Bacillus and Staphylococcus. 23
Figure 1.6 Disulfide bond formation in S. gordonii. ... 28
Figure 1.7 The reducing pathways in Gram-positive bacteria.................................... 32
Figure 3.1 Genetic organization and amino acid sequences analysis for redox partners of SdbA in S. gordonii. .. 76
Figure 3.2 Reverse Transcription (RT)-PCR analysis of sgo_1177ccdA1 and
dbbBccdA2 operons in S. gordonii. ... 78
Figure 3.3 PCR and RT-PCR confirmation of ccdA mutants.. 80
Figure 3.4 Immunoblot analysis of SdbB, Sgo_1177, and MsrAB in the parent,
knock-out mutant, and complemented mutant strains. .. 81
Figure 3.5 Immunoblot analysis of SdbB, Sgo_1177, and MsrAB in the parent and
ccdA mutant strains.. 82
Figure 3.6 Phenotypic analysis of single- and double-gene mutants of S. gordonii. 84
Figure 3.7 RT-PCR confirmation of sdbBccdA1 and sdbBccdA2 mutants. 86
Figure 3.8 The major autolysin AtlS is inactive in the sdbBccdA2 and sdbBccdA2degP mutants .. 88
Figure 3.9 The major autolysin AtlS lacks a disulfide bond in the sdbBccdA2 and
dbbBccdA2degP mutants. .. 90
Figure 3.10 SdbB and CcdA2 exhibit oxidase activity. .. 92
Figure 3.11 Oxidation of SdbA by oxidized SdbB or CcdA2 ... 93
Figure 3.12 The redox state of SdbA in S. gordonii parent and mutant strains. 95
Figure 3.13 SdbB forms a disulfide-linked complex with SdbA_C89A in S. gordonii. 98
Figure 3.14 SdbBCcdA2 and Sgo_1177CcdA1 homologs are present in other Gram-positive bacteria that possess SdbA homolog... 99
Figure 3.15 Sequence alignment of S. gordonii MsrA, MsrAB, and S. pneumoniae

MsrAB2. ... 104

Figure 3.16 Sensitivity to H₂O₂ and methionine sulfoxide by S. gordonii.......................... 106

Figure 3.17 Immunoblot analysis of the level of MsrAB, SdbB, and Sgo_1177 in

S. gordonii.. 109

Figure 3.18 Disulfide exchange between MsrAB, SdbB, Sgo_1177, CcdA1, and

CcdA2 ... 112

Figure 3.19 Enzymatic activities of MsrAB.. 115

Figure 3.20 SdbB exhibits isomerase activity. .. 119

Figure 3.21 SdbB and CcdA2 are required for the production of anti-CR1 scFv protein

in S. gordonii. ... 122

Figure 3.22 SdbB and CcdA2 are required for the proper folding of anti-CR1 scFv

in S. gordonii. ... 125

Figure 3.23 Growth of S. gordonii strains in the presence of CuSO₄................................. 127

Figure 3.24 Reactivity of SdbB cysteines with DTNB. ... 129

Figure 3.25 SdbA-SdbB complex formation. .. 130

Figure 3.26 Crystal structure and sequence alignment of SdbA and ResA....................... 132

Figure 3.27 Oxidation of parent SdbA and SdbA variants by SdbB................................. 138

Figure 4.1 A proposed model for oxidative protein-folding pathway in S. gordonii..... 144

Figure 4.2 A proposed model for the reducing pathway in S. gordonii. 149

Figure 4.3 A proposed model for the disulfide bond isomerase pathway in

S. gordonii... 152

Figure 4.4 A proposed model for SdbA reoxidation by SdbB. .. 154

Figure 4.5 A proposed model for the oxidation, reduction, and isomerization

pathways in S. gordonii. .. 156
Abstract

Disulfide bonds are important for proper folding and activity of extracytoplasmic proteins. These bonds are formed, reduced, and isomerized by thiol-disulfide oxidoreductases (TDORs). TDORs also catalyze the reduction of methionine sulfoxide to repair oxidatively damaged proteins. A TDOR, named SdbA, which catalyzes disulfide bonds in Streptococcus gordonii, was previously identified. The objectives of this study were to identify the redox partners of SdbA, characterize the methionine sulfoxide reduction pathway, and identify the disulfide bond isomerization pathway in S. gordonii.

Using mutational, phenotypic, and biochemical approaches, SdbB and CcdA2 were identified as the redox partners of SdbA. sdbBccdA2 mutants recapitulated the sdbA mutant phenotype and produced inactive AtfS, the natural substrate of SdbA, which lacked a disulfide bond. SdbA was found in a reduced state in the sdbBccdA2 mutant. In S. gordonii, SdbB formed a disulfide-linked complex with SdbA. Using SdbA and SdbB active site variants, we showed that SdbA-SdbB interacts through their N-terminal cysteines.

MsrAB was identified as a key enzyme in the methionine sulfoxide reduction pathway with SdbB and another TDOR, Sgo_1177, as immediate redox partners and two membrane proteins, CcdA1 and CcdA2, as downstream partners. The CcdA proteins likely played a role in relaying electrons from the cytoplasm to the pathway. In the cells, MsrAB, SdbB, Sgo_1177, CcdA1, and CcdA2, are needed for protection against oxidative stress.

Lastly, SdbB was identified as a potential disulfide bond isomerase with CcdA2 as its redox partner. Both SdbB and CcdA2 are required for the stability and production of a protein with two disulfide bonds and protection against copper stress in S. gordonii.

In conclusion, this study advances the understanding of disulfide bond formation and methionine sulfoxide reduction in Gram-positive bacteria. This study gives the first example of a complex oxidative protein-folding pathway in Gram-positive bacteria that consists of an enzyme that uses multiple redox partners to function. It also provides an insight into the extracytoplasmic methionine sulfoxide reduction pathway in S. gordonii. Finally, to the best of my knowledge, this study presents the first evidence that Gram-positive bacteria have a disulfide bond isomerization pathway.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHI</td>
<td>Brain heart infusion</td>
</tr>
<tr>
<td>CcdA</td>
<td>Cytochrome c biogenesis protein A</td>
</tr>
<tr>
<td>CSP</td>
<td>Competence-stimulating peptide</td>
</tr>
<tr>
<td>cCMP</td>
<td>Cytidine 2’:3’-cyclic monophosphate monosodium salt</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylaminoethyl</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl pyrocarbonate</td>
</tr>
<tr>
<td>DPC</td>
<td>N-dodecylphosphocholine</td>
</tr>
<tr>
<td>Dsb</td>
<td>Disulfide bond</td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5’-dithio-bis(2-nitrobenzoic acid)</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>eDNA</td>
<td>Extracellular DNA</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FMN</td>
<td>Flavin mononucleotide</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl β-D-1-thiogalactopyranoside</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>Mal</td>
<td>Maleimide</td>
</tr>
<tr>
<td>Met</td>
<td>Methionine</td>
</tr>
<tr>
<td>MetO</td>
<td>Methionine sulfoxide</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-morpholino) propanesulfonic acid</td>
</tr>
<tr>
<td>Msr</td>
<td>Methionine sulfoxide reductase</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NADPH</td>
<td>Reduced form of NADP⁺</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PBST</td>
<td>Phosphate buffered saline Tween 20</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDI</td>
<td>Protein disulfide isomerase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>rdRNase A</td>
<td>Reduced and denatured RNase A</td>
</tr>
<tr>
<td>RNase A</td>
<td>Ribonuclease A</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription PCR</td>
</tr>
<tr>
<td>scFv</td>
<td>Single chain variable fragment</td>
</tr>
<tr>
<td>SdbA</td>
<td>Streptococcus disulfide bond protein A</td>
</tr>
<tr>
<td>SdbB</td>
<td>Streptococcus disulfide bond protein B</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>sRNase A</td>
<td>Scrambled RNase A</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate and EDTA</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TDOR</td>
<td>Thiol-disulfide oxidoreductase</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>Trx</td>
<td>Thioredoxins</td>
</tr>
<tr>
<td>TrxR</td>
<td>Thioredoxin reductase</td>
</tr>
<tr>
<td>VKOR</td>
<td>Vitamin K epoxide reductase</td>
</tr>
</tbody>
</table>
Acknowledgments

First, I would like to express my deep respect and sincere gratitude to my supervisor and mentor Dr. Song Lee for his continuous support, patience, and motivation throughout the different phases of this work. His help and encouragement were, indeed, the main support to me throughout this work. A very special sincere thanks to my committee members: Dr. Nikhil Thomas, Dr. John Rodhe, and Dr. Neale Ridgeway for their great advice and valuable feedback. I am very grateful to Dr. Scott Halperin for his advice and feedback throughout this work. Thank you to our collaborators, Dr. Alexi Shevchenko, and Peter Stogios. Very special gratitude goes to my external examiner Dr. Hung Ton-That (University of California). A special thanks to my external advisor Dr. Jason Leblanc. I would also like to thank all the current and past members of Dr. Lee’s lab for their support with a special thanks to Lauren Davey for her valuable remarks and advice throughout this work.

Also, I would like to express my greatest appreciation to my sponsor, The Ministry of Higher Education represented by the Saudi Cultural Bureau in Canada and Umm Al-Qura University in Saudi Arabia, for giving me the opportunity to continue my postgraduate study. Many thanks also to my friends in Umm Al-Qura University, Department of Medical Microbiology, for their support, cooperation, and encouragement. A special thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding this work.

Lastly, I would like to give special thanks to my lovely parents, my parents-in-law, my brother, and my sister in Saudi Arabia for their support and encouragement. A very special sincere thanks to my soulmate, Abrar Alem, who had to live with this work from the beginning, for her support, encouragement, love, and patience. Finally, I would like to give special thanks and love to my children (Yusof, Ayah, Ibrahim, and Israa) for making my life important.
Chapter 1. Introduction

1.1 Disulfide Bonds

Proper protein folding is essential for functions and crucial for all living organisms (Hatahet and Ruddock, 2009; Landeta et al., 2018). Both prokaryotic and eukaryotic cells use a group of enzymes named thiol-disulfide oxidoreductases (TDOR) to catalyze the formation, reduction, and isomerization of disulfide bonds (Hatahet and Ruddock, 2009; Landeta et al., 2018).

In bacteria, disulfide bond formation takes place in the periplasmic space or the cell envelope (Davey et al., 2016b; Landeta et al., 2018), while in eukaryotic cells, oxidative protein folding occurs in the endoplasmic reticulum (Hatahet and Ruddock, 2009). The exception to the above is in some thermophilic archaea where disulfide bonds can be formed in the cytoplasm (Mallick et al., 2002). These intracellular disulfide bonds are thought to help in protein-stabilization in these thermophilic archaea to assist their survival in the harsh environment (Beeby et al., 2005).

The cytoplasm in both bacteria and eukaryotes is a reducing environment. Cells maintain this reducing environment using two major anti-oxidant systems, the glutathione and the thioredoxin anti-oxidant system (Fernandes and Holmgren, 2004; Lu and Holmgren, 2014). This reducing environment is important for cells to protect their proteins and other macromolecules against oxidative stress and assist in several cellular processes such as DNA synthesis and DNA repair (Sengupta and Holmgren, 2014).

Below, the current understanding of disulfide bond formation, reduction, and isomerization are discussed.

1.2 Disulfide Bond Formation in Eukaryotic Cells

In 1963, Anfinsen and colleagues reported the first disulfide bond formation catalyst, named protein disulfide isomerase (PDI), in a microsomal component of rat liver
(Goldberger et al., 1963). Since then, multiple studies indicate that oxidative protein folding takes place in several compartments, including the endoplasmic reticulum (ER) (Ohba et al., 1977), the mitochondrial intermembrane space (i.e., IMS) (Mesecke et al., 2005), and plant chloroplasts (Feng et al., 2011).

In the ER, PDI is the primary TDOR that catalyzes disulfide bond formation and isomerization. PDI is a thioredoxin family protein consist of 4 domains (a, b, b’, and a’), a highly acidic C-terminal extension “c” (possesses ER retention sequence KDEL), and an x-linker sequence between the b’ and a’ domains (Alanen et al., 2003; Darby et al., 1996). PDI has two catalytic active CGHC sites, one in the “a” domain and the other in the “a’” domain (Darby and Creighton, 1995). Interestingly, the a and a’ domains each possesses oxidase activity similar to the whole PDI, but the two domains have very low isomerase activity (Darby and Creighton, 1995).

In vivo, PDI occurs as a mixture of oxidized and reduced forms (Appenzeller-Herzog and Ellgaard, 2008). Oxidized PDI catalyzes disulfide bond formation in nascent polypeptides in the ER lumen. The initial reaction is the formation of a mixed disulfide bond between the active site of PDI and the reduced substrate. The substrate then folds into a “near-native” state, followed by the resolution of the mixed disulfide leading to the formation of a disulfide bond in the substrate (Kosuri et al., 2012). In contrast, disulfide isomerization requires PDI in a reduced form. The results from experiments using active site cysteine point mutants suggest two possible mechanisms for disulfide isomerization (Walker et al., 1996; Walker and Gilbert, 1997). The first mechanism involves the N-terminal cysteine in the active site of PDI attacking the substrate disulfide bond. This is followed by an intramolecular rearrangement of the disulfide bond within the substrate itself. The second mechanism involves the completed reduction of the substrate, followed by the reoxidation of the substrate by the mixed reduced/oxidized PDI (Walker et al., 1996; Walker and Gilbert, 1997).

To maintain a portion of PDI in an oxidized state, PDI needs to be recharged after oxidation of the substrates. Ero1, an integral membrane flavoprotein, is the main redox partner of PDI in vivo (Mezghrani et al., 2001). During the reoxidation of PDI, electrons are transferred from PDI to Ero1 via disulfide exchange reactions. Ero1 utilizes O2 as the
final electron acceptor to oxidize its active site in a reaction that generates \(\text{H}_2\text{O}_2 \) as a by-product (Gross et al., 2006). \(\text{H}_2\text{O}_2 \) produced by Ero1 can be utilized by peroxiredoxin 4 (Prx4) and glutathione peroxidases 7 and 8 (GPx7/8) to reoxidize PDI (Wang et al., 2014; Zito et al., 2010). In addition, oxidized glutathione and vitamin K epoxide reductase (VKOR) can reoxidize PDI by direct interaction with its active site cysteines (Lappi and Ruddock, 2011; Rutkevich and Williams, 2012).

In addition to the ER, oxidative protein folding takes place in the mitochondrial intermembrane space (i.e., IMS). In IMS, Mia40 is the TDOR involved in disulfide bond formation (Mesecke et al., 2005). Mia40 is a non-thioredoxin TDOR that contains a hydrophobic substrate binding groove and a CPC active site motif (Banci et al., 2009). Once it introduces a disulfide bond into the substrate, Mia40 transfers electrons to its redox partner Erv1 (Rissler et al., 2005). Erv1 shuttles electrons directly into the respiratory chain by reducing cytochrome \(c \), and thus avoids the production of \(\text{H}_2\text{O}_2 \) (Bihlmaier et al., 2007). Similar to PDI, Mia40 has both oxidase and isomerase activity; however, the isomerase activity of Mia40 is restricted to its natural substrates. For example, when scrambled RNase A was used as a substrate, Mia40 showed minimal isomerase activity, but when Mia40 natural substrate Cox17 (a mitochondrial copper-binding protein with 2 disulfide bonds) was used, Mia40 was able to rescue scrambled (mis-disulfide bonded) Cox17 (Hudson and Thorpe, 2015; Koch and Schmid, 2014).

1.3 Disulfide Bond Formation in Bacteria

Bacteria also use TDOR to accelerate the process of protein folding. However, TDOR in bacteria are more diverse, possibly due to the differences in the structure of the bacterial cell envelope where oxidative protein folding occurs (Davey et al., 2016b; Landeta et al., 2018). In both Gram-negative and Gram-positive bacteria, disulfide bond forming systems are important for cell physiology and virulence. In addition, disulfide bond forming systems play essential role in biotechnology by enhancing recombinant protein production (Heras et al., 2009; Kouwen and van Dijl, 2009a). Therefore, understanding the TDOR systems in bacteria has the potential to allow the development
of new anti-virulence agents or enhance recombinant protein production (Kouwen and van Dijl, 2009a; Smith et al., 2016).

1.3.1 Disulfide Bond Formation in Gram-Negative Bacteria

Disulfide bond formation in Gram-negative bacteria occurs in the periplasmic space. In this compartment, enzymes involved in disulfide bond formation, reduction, and isomerization cooperate to allow proper folding of the newly translocated proteins (Landeta et al., 2018). Among these enzymes, the *Escherichia coli* Dsb system is the best-characterized.

1.3.1.1 The Oxidation Pathway in *E. coli*

DsbA was the first disulfide bond-forming enzyme discovered in bacteria. In 1991, Jon Beckwith’s laboratory described DsbA as a periplasmic protein with a C$_{30}$P$_{31}$H$_{32}$C$_{33}$ motif that catalyzes disulfide bond formation in *E. coli* (Bardwell et al., 1991). Two years later, a membrane protein DsbB was identified as the DsbA redox partner (Bardwell et al., 1993).

DsbA is a 21-kDa, monomeric oxidase, with a redox potential of -120 mV (Kadokura et al., 2003). In the periplasm of *E. coli*, DsbA exists in an oxidized state and the reduced state can only be detected in the *dsbB* mutant (Kishigami et al., 1995a). The structure of DsbA shows the presence of a thioredoxin fold containing the active site C$_{30}$P$_{31}$H$_{32}$C$_{33}$ motif with an α-helical domain that occurs at the middle of the thioredoxin fold. In addition, the structure shows a hydrophobic groove flanking the active site of the enzyme and a conserved cis proline$_{151}$ residue in a loop at the end of a long helix, which links the α-helical domain and the thioredoxin domain (Martin et al., 1993; Schirra et al., 1998). The N-terminal C$_{30}$ of the active site has a low pKa value of 3.5, and therefore, it will be in a thiolate anion state (RS$^-$) under physiological conditions. This makes the oxidized form of DsbA less stable and more reactive than the reduced form (Nelson and Creighton, 1994).
E. coli produces more than 300 periplasmic proteins that contain at least two cysteines and thus are potential substrates of the DsbAB system (Kadokura and Beckwith, 2010). Since the discovery of the DsbAB system, more than 30 periplasmic proteins have been identified as natural substrates of this system. *dsbAB* mutants displayed pleiotropic phenotypes (Depuydt et al., 2011). For example, inactivation of *dsbA* or *dsbB* resulted in a non-motile phenotype due to a defect in flagellar assembly. This defect was due to the inability to form a disulfide bond in the flagellar P-ring motor protein FlgI (Dailey and Berg, 1993). Many of the DsbA substrates were identified using the *cis* P*\textsubscript{151}* point mutant. P*\textsubscript{151}*T point mutant slowed down the resolution of DsbA-substrate, which caused accumulation of DsbA-substrate complexes in the cell that can be detected. Interestingly, only the P*\textsubscript{151}*T mutation resulted in the accumulation of DsbA-substrate complexes. Other proline point mutations, such as proline to serine or histidine, resulted in accumulation of DsbA-DsbB complex (Kadokura et al., 2004; Kadokura et al., 2005).

The crystal structure of DsbA in complex with a peptide derived from its natural substrate, the autotransporter protein SigA, sheds light on how DsbA interacts with its substrate. The structure shows that the substrate interacts with surface residues at the interface between the α-helical domain and the thioredoxin domain of DsbA. These residues include V*\textsubscript{150}* and R*\textsubscript{148}* that are located within the *cis* P*\textsubscript{151}* loop and P*\textsubscript{31},* H*\textsubscript{32}*, and Q*\textsubscript{35}* (Paxman et al., 2009).

The interaction between DsbA and its substrate is initiated by the attack of the first cysteine of the substrate to C*\textsubscript{30}* of the oxidized DsbA. This results in the formation of a mixed disulfide between the substrate and DsbA. Next, the second cysteine of the substrate attacks the first cysteine of the substrate. The result is the generation of a disulfide-bonded substrate and the release of DsbA, which is now in a reduced form (Figure 1.1) (Depuydt et al., 2011; Kadokura and Beckwith, 2009).

To perform another round of reaction, the reduced DsbA needs to be reoxidized, and this is achieved by donating electrons to its redox-partner DsbB, which then transfers the electrons to the electron transport chain (Depuydt et al., 2011). DsbB is a 20-kDa cytoplasmic membrane protein with four-transmembrane α-helices, and two periplasmic loops each contains a redox active site, namely C*\textsubscript{41}XXC*\textsubscript{44} and C*\textsubscript{104}-C*\textsubscript{130}, respectively.
Figure 1.1 The DsbA/DsbB disulfide bond formation pathway in *E. coli*.

DsbA is a periplasmic oxidase that forms disulfide bonds in substrate proteins using its active site (C₃₀P₃₁H₃₂C₃₃). Following substrate oxidation, DsbA is reoxidized by the membrane protein DsbB. DsbB then transfers the electrons to the electron transport chain. Arrows indicate the flow of electrons; IM: inner membrane; OM: outer membrane; UQ: ubiquinones. Adapted from Landeta *et al.* (2018) and Inaba *et al.* (2006).
DsbB also possesses a quinone-binding site located in a groove between transmembrane helices 1 and 4 and close to the C₄₁XXC₄₄ active site (Bader et al., 1999). Interestingly, the crystal structure of the DsbA-DsbB complex showed that DsbB binds to the hydrophobic groove of DsbA, which is different from the substrate binding site (Inaba et al., 2006).

Structural studies of DsbB and DsbB-DsbA complex proposed a mechanism of how DsbB reoxidizes DsbA. Briefly, C₃₀ of the reduced DsbA attacks C₁₀₄ of the C₁₀₄-C₁₃₀ disulfide bond of DsbB (Kishigami et al., 1995b; Zhou et al., 2008). This results in a mixed disulfide complex between DsbA and DsbB. This is followed by a rapid disulfide rearrangement within the DsbB, in which DsbB C₁₃₀ attacks C₄₁, which is disulfide bonded to C₄₄. This results in the formation of C₁₃₀-C₄₁ disulfide bond. This disulfide rearrangement within the DsbB prevents the backward resolution of the DsbA₃₀-DsbBₙ₁₀₄ complex. Finally, C₃₃ of DsbA attacks the DsbA₃₀-DsbBₙ₁₀₄ disulfide bond. This results in the release of DsbA, which is now reoxidized (Figure 1.1) (Inaba et al., 2006; Zhou et al., 2008).

DsbB is regenerated by transferring two electrons to a quinone. Under aerobic conditions, DsbB transfers electrons to ubiquinone, which will then transfer the electrons to the respiratory chain via cytochromes and ultimately to oxygen as the final electron acceptor. Under anaerobic conditions, DsbB reduces menaquinone and uses alternative electron acceptors, such as fumarate or nitrate reductase (Figure 1.1) (Bader et al., 1999).

1.3.1.2 The Isomerization and Reduction Pathways in E. coli

DsbA is a powerful oxidant and it introduces disulfide bonds indiscriminately, resulting in non-native disulfide bonds in substrates that have more than two cysteines. This occurs because DsbA can bind to its substrate during protein translocation across the membrane. Consequently, disulfide bonds will be formed in the substrate as cysteines appear sequentially, resulting in non-native disulfide bonds (Kadokura and Beckwith, 2009).
In addition, H$_2$O$_2$ and other reactive oxygen species (ROS) can react with proteins, causing damage (Ezraty et al., 2017). Specifically, cysteine and methionine are susceptible to oxidation by ROS. In the case of cysteine, the thiol (-SH) is oxidized to highly reactive sulfenic acid (-SOH). Sulfenic acid can react with another cysteine residue to form a native or non-native disulfide bond (Ezraty et al., 2017). ROS can also oxidize the sulfur atom in methionine giving methionine sulfoxide (MetO), which if it is not repaired, can lead to protein inactivation and degradation. Oxidation of methionine results in two diastereomeric forms of MetO, Met-R-O, and Met-S-O. MetO can be further oxidized to the irreversible methionine sulfone (Met-O$_2$) (Cho and Collet, 2013; Ezraty et al., 2005a).

To correct the non-native disulfide bonds, E. coli possesses a disulfide bond isomerization system that consists of DsbC and DsbD, where DsbC functions as an isomerase and DsbD as a redox partner (Denoncin and Collet, 2013). In addition, the periplasmic reductases (DsbG and CcmG) and the methionine sulfoxide reductase (Msr) protect cysteine and methionine residues from oxidation, respectively (Cho and Collet, 2013).

1.3.1.2.1 The Isomerization Pathway

DsbC is also a periplasmic TDOR involved in disulfide bond formation (Missiakas et al., 1994; Shevchik et al., 1994). It is a 23-kDa protein with a C$_{98}$G$_{99}$Y$_{100}$C$_{101}$ active site and a thioredoxin domain (Zapun et al., 1995). The protein forms a V-shaped homodimer. The crystal structure of DsbC shows that the thioredoxin domains are linked through hinged linker α-helices to an N-terminal dimerization domain (McCarthy et al., 2000). This dimerization is essential for DsbC isomerization activity. DsbC mutants that failed to form dimers were oxidized by DsbB. These DsbC monomers will act as an oxidase and can complement $dsbA$ mutation (Bader et al., 2001).

In the cell, the active site of DsbC is maintained in the reduced state, which is needed for the interaction with mis-disulfide bonded proteins. In vivo, DsbC is reduced by DsbD, which receives electrons from the cytoplasmic thioredoxin (Joly and Swartz, 1997;
Rietsch et al., 1997). Two mechanisms have been proposed for the isomerase activity of DsbC (Kadokura and Beckwith, 2010). In both mechanisms, C98 of the reduced DsbC attacks the incorrect disulfide bond in the substrate. This results in a mixed-disulfide bond between DsbC and the substrate that can be resolved by two mechanisms. In the first mechanism, a second cysteine in the substrate attacks the mixed-disulfide bond. This will result in the formation of the correct disulfide bond in the substrate and the release of reduced DsbC. The second proposed mechanism is that C101 in DsbC attacks the mixed-disulfide bond. This will result in the release of a reduced substrate and an oxidized DsbC. In this case, DsbC acts as a reductase to give the substrate another chance to be oxidized by DsbA. The latter mechanism is supported by the finding that a thioredoxin-like protein with only reductase activity can complement dsbC mutant in E. coli (Shouldice et al., 2010). In both mechanisms, DsbC must be maintained in a reduced state and this is achieved by acquiring electrons from its redox partner DsbD (Rietsch et al., 1997).

DsbD is a 59-kDa cytoplasmic membrane protein, which consists of three domains: DsbDa (N-terminal periplasmic domain with an immunoglobulin-like fold), DsbDb (eight transmembrane segments), and DsbDγ (C-terminal periplasmic domain with a thioredoxin fold). Each domain contains a pair of cysteines (DsbDaC109-C103, DsbDbC163-C285, DsbDγC461-C644) that are essential for DsbD activity (Chung et al., 2000; Missiakas et al., 1995; Stewart et al., 1999). The reduction of periplasmic proteins by DsbD involves the transfer of electrons from the thioredoxin system [thioredoxin, thioredoxin reductase, and nicotinamide adenine dinucleotide phosphate (NADPH)] in the cytoplasm. In this process, the cytoplasmic thioredoxin transfers electrons to DsbDbC163-C285. The result is DsbDbC163-C285 becomes reduced. Electrons are then transferred from DsbDbC163-C285 to DsbDγC461-C644 and from there to DsbDaC109-C103. DsbDaC109-C103 then donates the electrons to DsbC in the periplasm resulting in the reduction of DsbC (Figure 1.2) (Katzen and Beckwith, 2000; Krupp et al., 2001).

Oxidized thioredoxin generated from the above reactions is then reduced by thioredoxin reductase (TrxR) in a NADPH-dependent manner. The thioredoxin system in E. coli has one thioredoxin reductase encoded by trxB and two thioredoxins, Trx1 and
Figure 1.2 The DsbC/DsbD disulfide bond isomerization pathway in E. coli.
DsbC is a homodimeric periplasmic isomerase that catalyzes disulfide bond rearrangement in mis-disulfide bonded substrates. DsbC is maintained in its active, reduced form by the membrane protein DsbD. Electrons are transferred from thioredoxin in the cytoplasm to the β domain and then to the γ domain and finally to the α domain in DsbD. Arrows indicate the flow of electrons; IM: inner membrane; OM: outer membrane; TrxA: thioredoxin; TrxB: thioredoxin reductase. Adapted from Cho and Collet (2013) and Ezraty et al. (2017).
Trx2 encoded by \textit{trxA} and \textit{trxC}, respectively (Lu and Holmgren, 2014; Potamitou \textit{et al}., 2002). Although both Trx1 and Trx2 are able to reduce DsbD, Trx1 is more efficient. In addition to DsbD, thioredoxin also reduces cytoplasmic methionine sulfoxide reductase, ribonucleotide reductase, and 3’-phosphoadenosyl sulfate (PAPS) (Rietsch \textit{et al}., 1997; Ritz \textit{et al}., 2000).

1.3.1.2.2 The Reduction Pathway

In addition to DsbC, \textit{E. coli} possesses two other DsbD-dependent periplasmic reductases, DsbG and CcmG (DsbE) (Cho and Collet, 2013). Similar to DsbC, DsbG (26-kDa) is a homodimeric V-shaped soluble periplasmic protein with a C\textsubscript{109}P\textsubscript{110}Y\textsubscript{111}C\textsubscript{112} active site. The two-thioredoxin domains on the dimer are linked through linker helix to an N-terminal dimerization domain (Heras \textit{et al}., 2004). In the cell, the active site of DsbG is maintained in a reduced state by DsbD (Bessette \textit{et al}., 1999). Although overexpression of \textit{dsbG} can complement \textit{dsbC} mutant (Bessette \textit{et al}., 1999), the main function of DsbG in \textit{E. coli} is to protect single cysteine residues from oxidation in the periplasm. YbiS, ErfK, and YnhG are substrates of DsbG and belong to the family of L,D-transpeptidases that catalyze the crosslinking of the outer membrane lipoprotein to the peptidoglycan. YbiS, ErfK, and YnhG each possess a single cysteine that can be oxidized to sulfenic acid in the absence of DsbG (Figure 1.3A) (Depuydt \textit{et al}., 2009).

CcmG (DsbE) is a membrane-bound thioredoxin-like protein with a conserved active site C\textsubscript{80}P\textsubscript{81}T\textsubscript{82}C\textsubscript{83} motif. CcmG has disulfide reductase activity, which is essential for cytochrome \textit{c} maturation (Throne-Holst \textit{et al}., 1997). To form a mature cytochrome \textit{c}, heme needs to be ligated to the reduced thiols of the CXXC motif of apocytochrome. Interestingly, DsbA forms a disulfide bond in the apocytochrome, presumably to prevent irreversible cysteine oxidation by reactive oxygen species (ROS) (Stirnimann \textit{et al}., 2005). CcmG reduces the disulfide bond in apocytochrome. \textit{ccmG} deletion mutants and cysteine active site mutants were defective in cytochrome \textit{c} maturation (Fabianek \textit{et al}., 1998; Throne-Holst \textit{et al}., 1997). DsbD maintains CcmG in a reduced state, which allows CcmG to act as a reductase (Figure 1.3A) (Reid \textit{et al}., 2001; Stirnimann \textit{et al}., 2005).
Figure 1.3 The reducing pathway in *E. coli*.

A. DsbE/DsbD and DsbG/DsbD disulfide bond reduction pathway. DsbE (CcmG) is a disulfide bond reductase that specifically reduces disulfide bond in apocytochrome. DsbG is a homodimeric periplasmic disulfide bond reductase that protects single cysteine residues from oxidation. Both DsbE and DsbG are maintained in the reduced form by DsbD. B. Methionine sulfoxide reductases and their regeneration systems. Cytoplasmic Msr involves in the reduction of MetO. Oxidized Msr is then reduced by the thioredoxin system in the cytoplasm. MsrP/MsrQ system repairs methionine sulfoxide in *E. coli* periplasm. MsrP is a periplasmic Msr that reduces MetO. MsrP is maintained in its active, reduced form by the membrane protein MsrQ, a *b*-type heme-containing membrane protein. Arrows indicate the flow of electrons; IM: inner membrane; OM: outer membrane; TrxA: thioredoxin; TrxB: thioredoxin reductase; Apo-Cyt *c*: apocytochrome *c*; ROS: reactive oxygen species; MetO: methionine sulfoxide; Met: methionine; FMN: flavin mononucleotide. Adapted from Cho and Collet (2013) and Ezraty *et al.* (2017).
In addition to the above-mentioned periplasmic TDORs that protect the periplasmic proteins from oxidative damage, the thioredoxin system in *E. coli* also reduces cytoplasmic enzymes such as methionine sulfoxide reductase (Msr). In the cells, Msr can reduce MetO to Met (Brot *et al.*, 1981). Two classes of Msrs have been described, MsrA and MsrB, which are specific for the Met-S-O and Met-R-O, respectively.

Because MsrA and MsrB have strict stereospecificity, cells need both MsrA and MsrB (Ezraty *et al.*, 2005a). In general, MsrA and MsrB use a three-step catalytic mechanism to reduce MetO to Met. First, a nucleophilic cysteine residue in MsrA or MsrB attacks the MetO residue in the substrate. This leads to the formation of a sulfenic acid (–SOH) on the catalytic cysteine of MsrA/B and MetO is reduced in the substrate. The sulfenic acid containing cysteine attacks a second catalytic cysteine of MsrA/B leading to the formation of an intramolecular disulfide bond, which is then reduced by thioredoxins. Msr enzyme is regenerated at the end of these reactions (Boschi-Muller *et al.*, 2000).

E. coli encodes four cytoplasmic Msrs: MsrA, biotin sulfoxide reductase BisC, MsrB, and fRMsr (MsrC). MsrA reduces both free and protein-bound Met-S-O, BisC reduces free Met-S-O, MsrB reduces protein-bound Met-R-O, and fRMsr (MsrC) reduces free Met-R-O (Figure 1.3B) (Brot *et al.*, 1981; Etienne *et al.*, 2003; Ezraty *et al.*, 2005b; Grimaud *et al.*, 2001). *msrA* was induced during the stationary phase of growth and in biofilm cells but not in the presence of exogenous H$_2$O$_2$. Inactivation of *msrA* led to an increase in sensitivity to H$_2$O$_2$, and reduction in type I fimbriae-mediated binding to eukaryotic cell receptors (Moskovitz *et al.*, 1995; Wizemann *et al.*, 1996). The expression of *msrB* is regulated by the small non-coding RNA (sRNA) RyhB, which controls the expression of more than 50 genes in response to iron limitation. Under iron-limiting conditions, RyhB represses *msrB* expression, suggesting that MsrB is not needed under this condition (Bos *et al.*, 2013).

An exception to the stereospecificity and thiol-dependent MetO reduction mechanisms has been identified recently in *E. coli*. MsrP, a periplasmic Mr, is able to reduce both diastereoisomer forms of MetO. MsrP uses molybdopterin-based reactions to
reduce MetO. MsrP acquires electrons from its redox partner MsrQ, a b-type heme-containing membrane protein (Gennaris et al., 2015). MsrQ acquires electrons from the cytosolic flavin reductase, which uses NADPH to reduce FMN and transfers electrons to MsrQ (Figure 1.3B) (Juillan-Binard et al., 2017).

1.3.1.3 Disulfide Bond Formation in Other Gram-Negative Bacteria

Homologs of DsbAB and DsbCD have been identified in other Gram-negative bacteria. Some variations in substrate specificity and the number of copies of TDORs were found (Dutton et al., 2008). For example, Salmonella enterica serovar Typhimurium encodes a homolog of DsbAB named DsbLI. dsbLI form an operon with its natural substrate assT, which encodes the periplasmic arylsulfate sulfotransferase (AssT) that catalyzes the transfer of sulfate group between phenolic compounds. DsbL forms a disulfide bond in AssT that is essential for activity (Lin et al., 2009). In addition to DsbLI, S. enterica serovar Typhimurium also has two additional disulfide oxidases, DsbA and SrgA. Although both DsbA and SrgA catalyze disulfide bond formation in SpiA (SsaC), an outer membrane protein and structural component of type III secretion system (Miki et al., 2004), only SrgA catalyzes disulfide bond formation in PefA, a major structural protein subunit of the adhesion fimbriae (Table 1.1) (Bouwman et al., 2003). This substrate specificity explains the need for more than one TDOR in S. enterica serovar Typhimurium.

In addition to the difference in substrate specificity, DsbA homologs in Gram-negative bacteria also differ in cellular location. For instance, one of the three DsbA homologs of Neisseria meningitidis is located in the periplasm (DsbA3) while two of them are lipoproteins anchored to the inner membrane (DsbA1 and DsbA2) (Tinsley et al., 2004). Interestingly, inactivation of all three DsbA homologs is required to give a defect in growth at 37 °C, suggesting that they can complement each other. Only DsbA1 and DsbA2 are involved in type IV pili biogenesis by catalyzing the proper folding of the outer-membrane secretin PilQ (Sinha et al., 2008; Tinsley et al., 2004). Although it
<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>TDOR</th>
<th>Redox partner</th>
<th>Substrate</th>
<th>Substrate(s) function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. enterica serovar Typhimurium</td>
<td>DsbL</td>
<td>DsbI</td>
<td>AssT</td>
<td>Catalyses the transfer of a sulfate group among phenolic compounds</td>
<td>(Lin et al., 2009)</td>
</tr>
<tr>
<td></td>
<td>DsbA</td>
<td>DsbB</td>
<td>SpiA (SsaC)</td>
<td>Outer membrane protein and structural component of T3SS</td>
<td>(Miki et al., 2004; Bouwman et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>SrgA</td>
<td>DsbB</td>
<td>SpiA (SsaC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PefA</td>
<td>Major structural subunit of the adhesion fimbriae</td>
<td>(Bouwman et al., 2003)</td>
</tr>
<tr>
<td>N. meningitidis</td>
<td>DsbA1</td>
<td>DsbB</td>
<td>PiQ</td>
<td>Outer-membrane secretin of type IV pili</td>
<td>(Lafaye et al., 2009; Tinsley et al., 2004; Sinha et al., 2008)</td>
</tr>
<tr>
<td></td>
<td>DsbA2</td>
<td>DsbB</td>
<td>?</td>
<td>?</td>
<td>(Lafaye et al., 2009)</td>
</tr>
<tr>
<td></td>
<td>PilB</td>
<td>DsbD</td>
<td>MetO (Undefined substrate)</td>
<td>?</td>
<td>(Olry et al., 2002; Quinternet et al., 2009)</td>
</tr>
<tr>
<td>L. pneumophila</td>
<td>DsbA2</td>
<td>DsbB1 DsbB2 DsbD1 DsbD2</td>
<td>DotG DotC</td>
<td>Components of the Dot/Icm T4SS</td>
<td>(Jameson-Lee et al., 2011; Kpadeh et al., 2015)</td>
</tr>
<tr>
<td>H. pylori</td>
<td>DsbK</td>
<td>DsbI</td>
<td>HcpE</td>
<td>Protein involved in the modulation of the H. pylori interaction with its host</td>
<td>(Lester et al., 2015; Bocian-Ostrzycka et al., 2015)</td>
</tr>
</tbody>
</table>
possesses three DsbA homologs, *N. meningitidis* has only one DsbB, one DsbD, and one DsbC (Table 1.1) (Tinsley *et al.*, 2004).

N. meningitidis also has a periplasmic methionine sulfoxide reductase PilB. PilB consists of three domains, an N-terminal thioredoxin-like domain, a central MsrA domain, and a C-terminal MsrB domain. PilB is regenerated by acquiring electrons from DsbD. The electrons originated from the cytoplasmic thioredoxin system (Table 1.1) (Quinternet *et al.*, 2009; Olry *et al.*, 2002). Interestingly, the inactivation of *dsbD* in *N. meningitidis* can only be achieved in the *dsbA1A2* double mutant or the *dsbA1A2A3* triple mutant, suggesting a connection between the oxidation and reduction/isomerization pathway (Kumar *et al.*, 2011).

Another variation among DsbA homologs in Gram-negative bacteria is the enzyme activity. For example, *Legionella pneumophila* has a dimeric DsbA named DsbA2 that possesses both disulfide oxidase and isomerase activity. DsbA2 is maintained in a mixture of reduced and oxidized form by DsbB1/DsbB2 and DsbD1/DsbD2. DsbA2 is essential for *L. pneumophila*, and DsbA2_{P198T} point mutant resulted in a loss of intracellular multiplication and loss of functional Dot/Icm Type IV secretion system (Jameson-Lee *et al.*, 2011; Kpadeh *et al.*, 2015). A similar bi-functional DsbA was found in a number of Gram-negative bacteria that lack DsbC homolog such as Brucella, Coxiella, and Rickettsiae (Kpadeh *et al.*, 2015). Not all homodimeric DsbA possesses oxidase and isomerase activity. For example, *Helicobacter pylori* DsbK, a homodimeric DsbA homolog, possesses oxidase but not isomerase activity (Bocian-Ostrzycka *et al.*, 2015). DsbK contributes to virulence and colonization to gastric mucosa in *H. pylori* (Table 1.1) (Zhong *et al.*, 2016).

1.3.2 Disulfide Bond Formation in Gram-Positive Bacteria

Disulfide bond formation in Gram-positive bacteria has not been investigated to the same extent as in Gram-negative bacteria (Davey *et al.*, 2016b; Reardon-Robinson and Ton-That, 2015). This is due to the lack of prototypical DsbA homolog in many Gram-positive bacteria. In addition, Gram-positive bacteria lack the periplasmic space,
which represents a defined and enclosed compartment for oxidative protein folding to occur, and thus disulfide bond formation, reduction, and isomerization is catalyzed at the cell wall using cell membrane-anchored TDOR instead of soluble TDOR. (Daniels et al., 2010; Davey et al., 2016b; Landeta et al., 2018). Nonetheless, evidence indicate that disulfide bonds exist, and are important in numerous virulence factors in Gram-positive bacteria, including toxins produced by Clostridium botulinum (neurotoxin botulinum) (Simpson et al., 2004), Clostridium tetani (tetanospasmin) (Schiavo et al., 1990), and Corynebacterium diphtheriae (diphtheria toxin) (Reardon-Robinson et al., 2015b). A few Gram-positive TDOR enzymes have now been identified in the last ten years (Davey et al., 2013; Dumoulin et al., 2005; Ke et al., 2018; Reardon-Robinson et al., 2015a). Many of these are disulfide bond oxidases, and some are disulfide bond reductases, but no disulfide bond isomerase has been identified to date (Daniels et al., 2010; Davey et al., 2013).

1.3.2.1 The Oxidation Pathway

1.3.2.1.1 Actinobacteria

Several disulfide bond-forming enzymes have been identified and characterized in Mycobacterium, Actinomyces, and Corynebacterium. Mycobacterium tuberculosis produces five extracytoplasmic TDOR and some are essential for growth. It was predicted that M. tuberculosis produces more than 160 secreted proteins and more than 60% of them may contain disulfide bonds (Goulding et al., 2004; Chim et al., 2010).

The first TDOR identified in M. tuberculosis was DsbE. The crystal structure of MtbDsbE shows that it has a typical thioredoxin-like domain with the conserved active site C36P37F38C39. The N-terminal cysteine (C36) is exposed on the protein surface, whereas the C-terminal cysteine (C39) is buried. Interestingly, unlike E. coli DsbE, MtbDsbE is an oxidase with a redox potential of -128 ± 12 mV. MtbDsbE is able to refold reduced hirudin (Goulding et al., 2004). The second TDOR identified in M. tuberculosis
was DsbF. Similar to MtbDsbE, the crystal structure of MtbDsbF reveals the presence of a conserved thioredoxin-like domain and an active site C81P82T83C84. MtbDsbF is also an oxidase able to refold reduced hirudin. MtbDsbF has a redox potential of -89 ± 9 mV (Chim et al., 2010).

The third TDOR identified in M. tuberculosis was DsbA. MtbDsbA is required for optimal growth. An in vitro oxidation assay using a fluorescently labeled peptide as a substrate showed that MtbDsbA has oxidase activity. MtbDsbA has a redox potential of -99 mV (Premkumar et al., 2013). MtbDsbA was unable to refold the reduced hirudin or rdRNase A (reduced and denatured RNase A) and showed no reductase activity in the insulin precipitation assay (Wang et al., 2013; Premkumar et al., 2013; Chim et al., 2013). The crystal structure of MtbDsbA reveals the presence of two domains: a conserved thioredoxin-like domain with a typical active site C89P90A91C92, and an α-helical domain containing a second pair of cysteines (C140 - C192) that form a structural disulfide bond required for stability of MtbDsbA (Wang et al., 2013; Premkumar et al., 2013; Chim et al., 2013).

MtbDsbA uses VKOR as the redox partner (Ke et al., 2018). vkor mutants showed a severe growth defect. The growth of M. tuberculosis was also inhibited by warfarin, an anticoagulant that targets human VKOR (Dutton et al., 2010). MtbVKOR is a cytoplasmic membrane protein with five-transmembrane α-helices, and two extracytoplasmic loops and each loop contains a redox active site (C57-C65 and C139-C142) (Wang et al., 2011). When MtbVKOR and MtbDsbA were co-expressed in the E. coli dsbAB mutant, they were able to restore motility, a phenotype that is dependent on a functional disulfide bond formation pathway (Genevaux et al., 1999; Dailey and Berg, 1993; Hiniker and Bardwell, 2004; Ke et al., 2018). The oxidation of MtbDsbA in the E. coli dsbAB mutant was found to be dependent on the presence of MtbVKOR. The co-expression of MtbDsbA and MtbVKORC65A in the E. coli dsbAB mutant resulted in a MtbVKOR-MtbDsbA complex formation, supporting the notion that specific interaction occurred between MtbVKOR and MtbDsbA (Figure 1.4A) (Ke et al., 2018).
Figure 1.4 Disulfide bond formation pathways in *Mycobacterium* and *Actinomyces*.
A. Disulfide bond formation pathway in *M. tuberculosis*. Three TDORs were identified in *M. tuberculosis* *MtbDsbA*, *MtbDsbE*, and *MtbDsbF*. Both *MtbDsbE* and *MtbDsbF* have oxidase activity *in vitro*, but no phenotypes were identified yet. *MtbDsbA* is a membrane-associated TDOR that catalyzes disulfide bond formation and uses VKOR as its redox partner. B. Disulfide bond formation pathway in *A. oris*. MdbA is a membrane-associated TDOR that catalyzes disulfide bond formation in multiple substrates. MdbA is reoxidized by VKOR. Arrows indicate the flow of electrons. Adapted from Landeta et al. (2018) and Reardon-Robinson and Ton-That (2015).
The disulfide bond-forming enzyme has also been identified in *Actinomyces oris*. In this bacterium, MdbA (monoderm disulfide bond-forming protein A) is a TDOR that cooperates with its redox partner, VKOR, to form disulfide bonds in the pilus shaft proteins, FimP and FimA, of types 1 and 2 fimbriae, respectively. FimP and FimA contain two disulfide bonds, which are essential for pilus assembly, biofilm formation, and coaggregation with *Streptococcus oralis* (Reardon-Robinson *et al*., 2015a; Persson *et al*., 2012). The deletion of either *vkor* or *mdbA* resulted in a defect in pilus formation and coaggregation with *S. oralis*. The crystal structure of *A. oris* MdbA shows the presence of a thioredoxin-like domain with a typical active site C139S140H141C142, and an extended α-helical domain. *A. oris* MdbA structure also shows the presence of the conserved cis-Proline (P286) (Reardon-Robinson *et al*., 2015a). *A. oris* VKOR is a cytoplasmic membrane protein with five-transmembrane α-helices and two extracytoplasmic loops; each loop contains a redox active site, C93XXC101 and C175XXC178. Mutation of any of these cysteine residues to alanine abolishes pilus formation and coaggregation with *S. oralis*. Interestingly, C101A mutation resulted in VKOR-MdbA complex formation (Luong *et al*., 2017). The reoxidation of MdbA by VKOR in *A. oris* was linked to the electron transport chain (Figure 1.4B) (Sanchez *et al*., 2017).

Corynebacterium diphtheriae has multiple TDOR, including MdbA, DsbF, and DIP0397. CdMdbA plays an essential role in cell division, pilus assembly, and diphtheria toxin production (Reardon-Robinson *et al*., 2015b). The pilus shaft protein SpaA contains a disulfide bond between C383 and C443 (Kang *et al*., 2009). This disulfide bond is essential for pilus assembly (Reardon-Robinson *et al*., 2015b). Diphtheria toxin contains two disulfide bonds (C186 - C201 and C461 - C471). While the first disulfide bond connects the active domain A to the binding domain B, the second disulfide bond is located within the domain B (Choe *et al*., 1992; Reardon-Robinson *et al*., 2015b).

CdMdbA has a thioredoxin-like domain with a typical active site C91P92H93C94, and an extended α-helical domain. The thioredoxin domain consists of 6-strand β-sheet and 2 flanking α helices. CdMdbA structure also possesses a conserved cis-Pro loop (P222) (Reardon-Robinson *et al*., 2015b). The redox partner(s) of CdMdbA has not been identified yet.
C. diphtheriae also possesses a second TDOR termed CdDsbf. The enzymatic activity and biological functions of CdDsbf have not been investigated. Nevertheless, the crystal structure of a CdDsbf reveals the presence of a thioredoxin-like domain with a typical C\textsubscript{54}XXC\textsubscript{87} active site (Um et al., 2014).

1.3.2.1.2 Firmicutes

Unlike Actinobacteria, Firmicutes are predicted to exclude cysteines from extracytoplasmic proteins (Daniels et al., 2010). Nevertheless, disulfide bond-forming enzymes have been identified in Bacillus subtilis, Staphylococcus, and Streptococcus (Davey et al., 2016b; Reardon-Robinson and Ton-That, 2015).

B. subtilis BbdD-BdbC, homologs of DsbA-DsbB, are needed for the stability and secretion of proteins containing disulfide bonds, such as the E. coli alkaline phosphatase PhoA (contains two disulfide bonds) and β-lactamase (contains one disulfide bond) (Bolhuis et al., 1999). In B. subtilis, induction of PhoA production causes secretion stress. Accordingly, deletion of bdbC causes an increase in the secretion stress in B. subtilis (Darmon et al., 2006). BbdD-BdbC also catalyzes the formation of disulfide bonds in the competence protein, pseudopilin ComGC, and the DNA translocation channel ComEC. Cells lacking BbdD-BdbC produced a lower amount of ComGC and ComEC, leading to a defect in genetic competence development (Figure 1.5A) (Bolhuis et al., 1999; Meima et al., 2002).

The results of a proteomic study revealed that 15 membrane-associated proteins required BbdD-BdbC for their stability and production. One of them was the osmoprotection membrane protein ProA, which contains two disulfide bonds and requires BbdD-BdbC for stability. Consistent with the defect in the stability of ProA, the bdbCD mutant was sensitive to osmotic shock (Goosens et al., 2013).

BdbC is an integral membrane protein, whereas BbdD is a membrane-associated protein (Bolhuis et al., 1999; Crow et al., 2009a). The crystal structure of BbdD shows that it is similar to E. coli DsbA, with a thioredoxin domain containing the active site C\textsubscript{69}P\textsubscript{70}S\textsubscript{71}C\textsubscript{72}, and an inserted α-helical domain.
Figure 1.5 Disulfide bond formation in Bacillus and Staphylococcus.

Unlike DsbA, BdB has a Ca$^{2+}$ binding site located between the thioredoxin and helical domains. This Ca$^{2+}$ binding site is not required for BdB folding as revealed by the crystal structure of Ca$^{2+}$-depleted BdB. However, Ca$^{2+}$ was found to affect the redox potential of BdB, with a shift from -75 ± 5 mV for the Ca$^{2+}$-containing protein to -95 ± 5 mV for the Ca$^{2+}$-depleted protein, indicating that Ca$^{2+}$ may act to enhance the oxidizing power of BdB (Crow et al., 2009a).

B. subtilis also possesses two other TDOR, termed BdB and BdbB (Bolhuis et al., 1999). BdbB is an integral membrane protein and is required for the stability of PhoA (Bolhuis et al., 1999). BdbA and BdbB form an operon with genes encoding for the bacteriocin, sublancin 168, and the ABC (ATP-binding cassette) transporter SunT. Sublancin 168 contains two disulfide bonds and requires BdbB and BdbC for its production. The natural substrate and enzymatic activity of BdbA have not been investigated (Figure 1.5A) (Dorenbos et al., 2002).

For *S. aureus*, the disulfide bond formation pathway has not been well-investigated. So far, only one TDOR has been identified in *S. aureus*. It is called SaDsbA (Figure 1.5B). SaDsbA is a membrane-bound lipoprotein, which can functionally replace BdB-BdbC for PhoA production, sublancin 168 production, and competence development in *B. subtilis* (Kouwen et al., 2007). *B. subtilis* expressing SaDsbA showed a 2-fold increase in the secretion of the disulfide bond-containing protein PhoA (Kouwen et al., 2008). When SaDsbA was expressed in the *E. coli* dsbA mutant, it restored the motility phenotype (Dumoulin et al., 2005). This complementation of the *E. coli* dsbA mutant by SaDsbA is independent of EcDsbB, and biochemical assays show that SaDsbA does not interact with EcDsbB (Heras et al., 2008). SaDsbA is an oxidase with a redox potential of -131 mV (Dumoulin et al., 2005).

SaDsbA is unable to reduce insulin and shows no isomerase activity in the scrambled RNase A refolding assay (Heras et al., 2008). The crystal structure of SaDsbA reveals the presence of two domains: a thioredoxin domain with a typical active site C$_{26}$P$_{27}$Y$_{28}$C$_{29}$ located at the N terminus of the first helix in the thioredoxin fold, and an extended α-helical domain (Heras et al., 2008; Heras et al., 2007). However, unlike oxidized EcDsbA that has an unstable disulfide bond, the oxidized and reduced forms of
SaDsbA show identical stabilities. This suggests that the reoxidation of the SaDsbA can be carried out by extracellular oxidants and a redox partner is not required (Heras et al., 2008). Similar to B. subtilis, SaDsbA catalyzes the formation of a disulfide bond in the pseudopilin ComGC. Consistent with this, S. aureus dsbA mutants produce a reduced amount of ComGC (van der Kooi-Pol et al., 2012).

Unlike Bacillus and Staphylococcus, streptococci lack EcDsbA homologs and their disulfide bond forming catalysts are not known. The one TDOR identified in Streptococcus thermophilus LMD-9 is BlpG_{st}, which is needed for the production of thermophiline 9, a multi peptide bacteriocin. BlpG_{st} was able to restore the motility phenotype of the E. coli dsbA mutant (Fontaine and Hols, 2008). However, the enzymatic activity of BlpG_{st} has not been tested, and direct interaction with thermophiline 9 has not been shown.

Recently, our laboratory identified a TDOR in Streptococcus gordonii named SdbA (Streptococcus disulfide bond protein A) that forms disulfide bonds in substrate proteins and affects multiple cellular processes (Davey et al., 2013).

1.3.2.1.2.1 Streptococcus gordonii

S. gordonii is a facultative anaerobic bacterium. It inhabits the human oral cavity and is a pioneer colonizer of the tooth surface (Gross et al., 2010). S. gordonii produces multiple cell surface-associated proteins, which allows it to interact with the host and other oral bacteria during biofilm formation and colonization (Jakubovics et al., 2005; Nobbs et al., 2007; Jakubovics et al., 2009; Rogers et al., 2001). In the oral cavity, S. gordonii plays a key role in the formation of dental plaque, a multispecies biofilm community (Kuramitsu et al., 2007). In this complex community, S. gordonii competes with other bacterial species by producing H₂O₂ as a by-product during the conversion of pyruvate to acetyl phosphate under aerobic growth condition (Barnard and Stinson, 1999).

In addition to H₂O₂, S. gordonii produces two bacteriocins, Sth1 and Sth2, that are secreted by the ComAB transporter and inhibit the growth of other oral bacteria, such as
Streptococcus mitis and *Streptococcus oralis* (Heng et al., 2007). These factors play important roles in the interspecies competition, where *S. gordonii* antagonizes the growth of other oral bacteria (Kreth et al., 2008).

In *S. gordonii*, the production of Sth1 and Sth2 is under the control of the competence regulon (Heng et al., 2007). During genetic competence, *S. gordonii* produces a small autoinducer termed competence-stimulating peptide (CSP), which is secreted by ComAB (Vickerman et al., 2007; Heng et al., 2007). Natural transformation is activated by the two-component system ComDE (ComD is a histidine kinase and ComE is a response regulator) when the extracellular level of CSP reaches the threshold level (Heng et al., 2006). ComDE induces the expression of two alternative sigma factor, *comR1* and *comR2*, which activate the expression of over 100 genes, including those encoding for the DNA uptake machinery and bacteriocin production (Heng et al., 2006; Heng et al., 2007; Vickerman et al., 2007).

In addition to DNA uptake, *S. gordonii* also releases DNA into the surrounding environment. The process of extracellular DNA (eDNA) release is thought to be important for biofilm formation and DNA exchange. eDNA release is independent of cell lysis; however, it depends on H₂O₂ release and the activity of the murein hydrolase LytF (Xu and Kreth, 2013; Kreth et al., 2009). The mechanism of H₂O₂-induced eDNA release depends on chromosomal DNA damage, which is thought to act as an intrinsic signal for the eDNA release. In *S. gordonii*, the process of eDNA release is coupled to the induction of natural transformation and thus facilitates horizontal gene transfer that can lead to the acquisition of new traits such as antibiotic resistance (Itzek et al., 2011).

In addition to exogenous H₂O₂ and LytF, effective eDNA release in *S. gordonii* also required the presence of the major autolysin AtlS (Liu and Burne, 2011). AtlS is a 130-kDa protein with a β1,4-N-acetylmuramidase domain. The expression of *atlS* increased when the bacterium enters the stationary phase of growth (Liu and Burne, 2011).
1.3.2.1.2.1.1 Disulfide Bond Forming Enzyme in S. gordonii

Recently, a TDOR named SdbA was discovered in S. gordonii. In contrast to other Gram-positive TDORs, SdbA affects multiple cellular processes. sdbA mutants display a pleiotropic phenotype, namely enhanced biofilm formation (thick, multilayered biofilm), loss of eDNA release, absence of autolytic activity, defective bacteriocin production, and impaired genetic competence (Figure 1.6) (Davey et al., 2013). Interestingly, the finding that sdbA mutant showed a defect in eDNA release but enhanced biofilm formation suggest that eDNA release is not essential for biofilm formation in S. gordonii (Davey et al., 2013; Kreth et al., 2009).

The major autolysin AtlS is the natural substrate of SdbA. AtlS has two cysteines (C_{1048} – C_{1069}) that form a single intramolecular disulfide bond, which is essential for activity. In sdbA mutants, AtlS lacks the intramolecular disulfide bond. Accordingly, AtlS isolated from sdbA mutants is enzymatically inactive. In S. gordonii, SdbA-AtlS complex was detected in the SdbAc89A point mutant indicating a direct interaction between SdbA and its natural substrate AtlS (Davey et al., 2013; Davey et al., 2015a).

SdbA is also needed for the production of anti-CR1 scFv, a single chain variable fragment antibody that requires two disulfide bonds for its stability. Inactivation of sdbA results in the production of reduced and misfolded anti-CR1 scFv that rapidly degraded by the extracellular serine protease DegP (Davey et al., 2013; Davey et al., 2015a).

Although AtlS is a natural substrate of SdbA, AtlS alone cannot explain all the phenotypic changes associated with sdbA inactivation. Recent studies showed that inactivation of sdbA causes a general stress response in S. gordonii (Davey et al., 2016a; Davey et al., 2015b). This response causes an upregulation of the CiaRH two-component regulatory system, which leads to the repression of the Com pathway and subsequently the bacteriocin gene. Thus, sdbA mutant showed no bacteriocin activity. The addition of synthetic CSP to sdbA mutant cultures or inactivation of ciaRH restores the bacteriocin activity of the sdbA mutant (Davey et al., 2015b).
Figure 1.6 Disulfide bond formation in *S. gordonii*.

SdbA is an oxidase that catalyzes disulfide bond formation in *S. gordonii*. Inactivation of *sdbA* affects multiple phenotypes including, autolytic activity, eDNA release, genetic competence, bacteriocin production, and biofilm formation. Arrows indicate the flow of electrons. Question mark indicated unknown redox partner(s). Adapted from Davey *et al.* (2016b).
The upregulation of the CiaRH system in the \(sdbA \) mutant also plays a role in the enhanced biofilm formation phenotype. The addition of synthetic CSP or the inactivation of \(ciaRH \) reverses the biofilm phenotype (Davey et al., 2016a). Although the mechanism by which the CiaRH system modulates the biofilm formation remain unclear, these findings suggest cooperation between the CiaRH system and the Com system in modulating biofilm formation, especially under stress conditions in \(S. gordonii \). This enhanced biofilm phenotype of the \(sdbA \) mutant is paralleled with increased oral colonization in mice in which the \(sdbA \) mutant outcompeted the parent strain when tested in a competitive assay (Davey et al., 2016a).

\(\text{SdbA contains a C}_{86}\text{PDC}_{89} \) active site motif and a conserved \(\text{cis} \)-proline (\(P_{156} \)) residue. However, SdbA shares little sequence homology to \(\text{EcDsba} \) and BdbD. SdbA is an oxidase able to refold reduced, denaturated RNase A (Davey et al., 2013). The crystal structure of SdbA revealed that the N-terminal cysteine (\(C_{86} \)) is solvent exposed and the C-terminal cysteine (\(C_{89} \)) is buried (Davey et al., 2015a; Stogios and Savchenko, 2015). SdbA\(_{C86P/C89A}\) mutants showed a pleiotropic phenotype identical to the \(sdbA \)-knockout mutants. SdbA\(_{C86P/C89A}\) showed no enzymatic activity when tested in the RNase A refolding assay (Davey et al., 2015a).

Interestingly, SdbA single cysteine point mutant (SdbA\(_{C86P}\) or SdbA\(_{C89A}\)) exhibited oxidase activity. The activity of SdbA single cysteine point mutant depends on the presence of glutathione, suggesting that both single cysteine variants can use low molecular weight thiols to catalyze disulfide bond formation (Davey et al., 2015a). A similar observation was reported previously in \(\text{EcDsba} \), in which the single N-terminal cysteine of \(\text{EcDsba} \) can catalyze disulfide bond formation \textit{in vitro} using low molecular weight thiols. Unlike SdbA, the C-terminal cysteine of \(\text{EcDsba} \) was inactive even in the presence of low molecular weight thiols (Walker and Gilbert, 1997). In \(S. gordonii \), only SdbA\(_{C86P}\) can introduce a disulfide bond into AtlS and complement the \(sdbA \) mutant phenotypes. These findings further suggest that SdbA is quite different from \(\text{EcDsba} \). SdbA\(_{C89A}\) forms multiple mixed disulfide complexes with cellular proteins. SdbA\(_{C89A}\) was only active \textit{in vivo} when the endogenous \(\text{H}_2\text{O}_2 \) production was eliminated by inactivation the pyruvate oxidase gene \(\text{spxB} \) (Davey et al., 2015a).
Homologs of SdbA appear to be present in a range of Gram-positive bacteria that lack DsbA, including *C. tetani, S. pneumoniae, S. pyogenes, S. sanguinis, S. mutans*, and *S. mitis*, suggesting that this enzyme could be responsible for disulfide bond formation in this group of bacteria (Davey *et al.*, 2013).

1.3.2.1.2 Other TDORs in *S. gordonii*

In addition to SdbA, *S. gordonii* possesses four other putative TDORs, namely Sgo_1171, Sgo_1177, Sgo_1216, and Sgo_1267 (Davey *et al.*, 2013; Vickerman *et al.*, 2007). These proteins contain the characteristic CXXC active site motif and the conserved *cis*-proline residue. Sgo_1171, Sgo_1177, and Sgo_1267 are SdbA homolog, whereas Sgo_1216 is predicted to be homologous to BlpG$_{st}$ from *S. thermophilus* LMD-9.

Previous investigations did not find any phenotype associated with these four TDROs except for sgo_1216 and sgo_1267 that showed a moderate defect in autolysis compared to the parent. Although Sgo_1216 is annotated as a bacteriocin transporter accessory protein, inactivation of sgo_1216 did not affect bacteriocin activity in *S. gordonii* (Davey *et al.*, 2013). However, the level of Sgo_1216 increased significantly when *S. gordonii* was grown in a mixed culture with *Porphyromonas gingivalis* or *Fusobacterium nucleatum* (Hendrickson *et al.*, 2012). It is possible that Sgo_1216 affects the production of a new and unidentified bacteriocin that inhibits different strains of bacteria.

It is worth noting that sgo_1177 is located in an operon with genes for a methionine sulfoxide reductase (*msrAB*), cytochrome *c* biogenesis protein A (*ccdA1*), and a two-component system (*sgo_1180* and *sgo_1181*) (Haase *et al.*, 2015).

1.3.2.2 The Reduction Pathway

There is evidence that Gram-positive bacteria also possess a reducing pathway important for cell physiology and pathogenesis (Kouwen and van Dijl, 2009b; Davey *et al.*, 2016b). For example, *C. diphtheriae* has a DsbA homolog (*CdDsbA*) that acts as a
disulfide bond reductase (Um et al., 2015). The crystal structure of CdDsbA shows that it is a monomeric TDOR with a typical thioredoxin fold, an inserted \(\alpha \)-helical region, and unique N-terminal extended region. CdDsbA has a typical \(\text{C}_{128}\text{PFC}_{129} \) active site with the conserved \textit{cis}-Proline (P\textsubscript{249}). CdDsbA maintains CueP (copper-binding protein) in the reduced, active form in \textit{C. diphtheriae} (Figure 1.7A) (Um et al., 2015).

To deal with methionine oxidation, \textit{C. diphtheriae} uses a cytoplasmic CdMsrA to reduce methionine sulfoxide (Tossounian et al., 2015). A unique feature of CdMsrA is its flexible ability to receive electrons from two independent pathways, the thioredoxin and the mycothiol pathways (Figure 1.7A). After MetO reduction, CdMsrA is regenerated by one of two pathways. In the thioredoxin pathway, the second cysteine in CdMsrA (either C\textsubscript{206} or C\textsubscript{215}) attacks C\textsubscript{52} forming an intramolecular disulfide bond between C\textsubscript{52} - and C\textsubscript{206} or C\textsubscript{215}. The third cysteine (either C\textsubscript{206} or C\textsubscript{215}) attacks the intramolecular disulfide bond regenerating C\textsubscript{52} and forming a C\textsubscript{206} - C\textsubscript{215} intramolecular disulfide bond. This disulfide bond is then reduced by the thioredoxin system.

In the mycothiol pathway, mycothiol attacks the sulfenic acid of C\textsubscript{52} and forms a mixed disulfide (C\textsubscript{52} - mycothiol). Next, C\textsubscript{215} attacks the C\textsubscript{52} - mycothiol complex, regenerating C\textsubscript{52} and forming a C\textsubscript{215} – mycothiol complex. Mycothiol is then transferred to C\textsubscript{206} before it is released from CdMsrA by the mycothiol/mycoredoxin-1/mycothione reductase pathway (Tossounian et al., 2015).

Similar to \textit{C. diphtheriae}, \textit{Corynebacterium glutamicum} MsrA also uses both thioredoxin and mycothiol pathways for its regeneration (Si et al., 2015). Unlike MsrA, \textit{C. glutamicum} MsrB utilized the thioredoxin system only for regeneration and showed a limited role in oxidative stress resistance (Si et al., 2017).

In \textit{B. subtilis}, the reducing pathway consists of an integral membrane protein CcdA (cytochrome \(c \) defective protein A), and two extracytoplasmic TDORs, StoA and ResA. CcdA is homologous to the membrane portion (\(\beta \)-domain) of the \textit{E. coli} DsbD, but it lacks the \(\alpha \) and \(\gamma \) domains of DsbD. CcdA is a 26-kDa integral membrane protein that was first identified as a protein required for cytochrome \(c \) synthesis in \textit{B. subtilis} (Schiott et al., 1997a; Schiott et al., 1997b). A few years later, CcdA was also found to play a role in spore synthesis (Schiott and Hederstedt, 2000).
Figure 1.7 The reducing pathways in Gram-positive bacteria.

A. The reducing pathway in *C. diphtheriae*. CdDsA is a reductase that reduces CueP. Question mark indicates unidentified redox partner(s) (Um et al., 2015). Reduction of Met-S-O by cytoplasmic MsrA. The oxidized MsrA is reduced by the thioredoxin or mycothiol pathways in the cytoplasm (Tossounian et al., 2015). B. The reducing pathway in *B. subtilis*. CcdA transfers electrons from the thioredoxin system in the cytoplasm to the extracytoplasmic reductase, ResA and StoA. ResA and StoA are membrane-associated TDORs involved in cytochrome c maturation and sporulation by reducing apocytochrome c and the membrane-bound penicillin-binding protein SpoVD, respectively. Adapted from Kouwen and van Dijl (2009b). C. The reducing pathway in *S. pneumoniae*. Extracytoplasmic *Sp*MsrAB2 involves in the reduction of MetO. *Sp*MsrAB2 is regenerated by two thioredoxin-like lipoproteins Etrx1 and Etrx2 that receive electrons from CcdA1 and CcdA2. Cytoplasmic *Sp*MsrAB1 involves in the reduction of MetO. Adapted from Saleh et al. (2013) and Kim et al. (2009). D. The reducing pathway in *S. gordonii*. MsrA reduces Met-S-O in the cytoplasm and cell envelope. Question mark indicated unidentified MsrA redox partner(s). *S. gordonii* also processes MsrAB, but its role in MetO reduction is unknown. Arrows indicate the flow of electrons.
Unlike *B. subtilis*, *Bacillus anthracis* possesses two CedA proteins, CedA1 and CedA2. While both are involved in cytochrome *c* maturation and virulence regulation, only CedA2 is required for sporulation (Han and Wilson, 2013).

CedA was found to cooperate with ResA in cytochrome *c* maturation (Figure 1.7B). ResA is involved in the reduction of the apo-cytochrome *c*, which counteracts the oxidation of apo-cytochrome *c* by BdbCD (Erlendsson and Hederstedt, 2002; Erlendsson et al., 2003; Le Brun et al., 2000). ResA is an extracytoplasmic, membrane associated, TDOR in *B. subtilis*. The crystal structure of ResA shows that it is a monomeric TDOR with a thioredoxin domain containing the active site C74E75P76C77. ResA is a reductase with a very low redox potential of -256 mV, and it preferentially reduces an oxidized CXXCH motif within apo-cytochrome *c* (Lewin et al., 2008; Crow et al., 2004).

An interesting feature of ResA is that it undergoes a redox-dependent conformational change between its oxidized and reduced states. Reduced ResA assumes a surface cavity near the active site that recognizes the oxidized apo-cytochrome *c*. This confirmation requires the movement of multiple amino acids. For example, E80 residue is buried in the oxidized ResA, but surface exposed in the reduced protein. In addition to E80, other amino acids such as E75, K79, D136, P139, L140, P141, and T159 also rearranged during ResA reduction (Crow et al., 2004; Hodson et al., 2008; Lewin et al., 2006).

CedA also cooperates with StoA (sporulation thiol-disulfide oxidoreductase A) in endospore production in *B. subtilis* (Figure 1.7B) (Schiot and Hederstedt, 2000; Erlendsson et al., 2004). StoA is a 17-kDa, extracytoplasmic, and membrane-associated TDOR. StoA has reductase activity with a low redox potential -248 mV (Tanaka et al., 2004; Crow et al., 2009b). The crystal structure of StoA shows a typical thioredoxin fold with the active site C65P66P67C68 motif. Both cysteines in the active site are needed for the activity of StoA. Unlike ResA, the reduction of StoA did not result in a rearrangement of the protein structure (Crow et al., 2009b). StoA also counteracts the oxidation effect of BdbD on extracytoplasmic proteins. Thus, inactivation of *bdbD* suppresses the sporulation defect of *stoA* mutant (Erlendsson et al., 2004).

Recently, it has been shown that StoA reduces a disulfide bond in the membrane-bound penicillin-binding protein SpoVD, which is required for endospore cortex.
synthesis in *B. subtilis* (Liu *et al.*, 2010; Bukowska-Faniband and Hederstedt, 2017). Oxidized SpoVD contains a disulfide bond (C\textsubscript{332} - C\textsubscript{351}) closed to the active site of the penicillin-binding domain. This disulfide bond is formed by BdbD. The disulfide bond blocks the function of SpoVD in cortex synthesis. Thus, the reduction and formation of this disulfide bond in SpoVD act as an on/off switch that regulates SpoVD activity in *B. subtilis*. The SpoVD\textsubscript{C332D} variant was able to suppress the effect of ccdA or stoA mutants on spore cortex synthesis (Liu *et al.*, 2010; Bukowska-Faniband and Hederstedt, 2017).

Another example of reducing pathways in Gram-positive bacteria is the reduction of methionine sulfoxide in *Streptococcus pneumoniae*. *S. pneumoniae* has both intracellular and extracellular methionine sulfoxide reductases, *Sp*MsraB1 and *Sp*MsraB2, respectively (Figure 1.7C). Both proteins contain the MsrA and MsrB domains allowing the reduction of the two isoforms of Met-O (Saleh *et al.*, 2013; Kim *et al.*, 2009; Andisi *et al.*, 2012). The crystal structure of *Sp*MsraB1 shows that it consists of an N-terminal MsrA domain, a C-terminal MsrB domain, and a linker region. Interestingly, the *K*_\textsubscript{m} of *Sp*MsraB1 for Met-S-O is 20-fold higher than that for Met-R-O, suggesting that the MsrB domain has a much higher affinity for the substrate than the MsrA domain (Kim *et al.*, 2009).

Unlike intracellular methionine sulfoxide reductases that can be reduced directly by thioredoxin, the extracytoplasmic *Sp*MsraB2 is regenerated by two surface-exposed thioredoxin-like lipoproteins Etrx1 and Etrx2. Etrx1 can reduce MsrA domain of *Sp*MsraB2, whereas Etrx2 is capable of reducing both domains (Figure 1.7C). Crystal structures of Etrx1 and Etrx2 are quite similar with a thioredoxin-like fold containing the active site CXXC motif (C\textsubscript{84}SIC\textsubscript{87} in Etrx1 and C\textsubscript{83}GPC\textsubscript{84} in Etrx2), and a conserved cis-proline residue (P\textsubscript{156} in Etrx1 and P\textsubscript{153} in Etrx2), which is located near the active site. Some of the key differences between Etrx1 and Etrx2 structures including the presence of eight extra residues forming a coil at the C-terminus of Etrx2, and the hydrophobic cavity close to the active site observed in Etrx2 but not Etrx1. The redox potentials of Etrx1 and Etrx2 were -191 ± 6mV and -282 ± 16.5mV, respectively (Saleh *et al.*, 2013).
Etrx1 and Etrx2 acquire electrons from CcdA1 and CcdA2, which receive the electrons from the cytoplasmic thioredoxins (Figure 1.7C). This reducing pathway is required for virulence and oxidative stress resistance in *S. pneumoniae*. Loss of either SpMsrAB2 or both Etrx1 and Etrx2 accelerated phagocytosis and killing of *S. pneumoniae* (Saleh et al., 2013; Andisi et al., 2012).

S. gordonii produces more than 1 mM of H$_2$O$_2$ and it lacks catalase (Zheng et al., 2011), but does have a superoxide dismutase and a methionine sulfoxide reductase (Msr) (Jakubovics et al., 2002; Lei et al., 2011). The genome of *S. gordonii* contains two *msr* genes, *msrA* and *msrAB*. MsrA, a 36-kDa protein, was found mostly in the cytoplasm and only a trace amount was detected on the cell surface (Lei et al., 2011). MsrA protects cellular proteins by converting MetO back to Met (Figure 1.7D) (Lei et al., 2011). *msrA* mutants showed increased sensitivity to H$_2$O$_2$, and a defect in biofilm formation in the presence of exogenous H$_2$O$_2$ (Lei et al., 2011; Vriesema et al., 2000). In contrast, the role of MsrAB in oxidative stress resistance in *S. gordonii* has not been investigated (Figure 1.7D).
1.4 Rationale, Hypothesis, and Objectives of this Study

Bacterial disulfide oxidases are known to require redox partners for regeneration (Rietsch and Beckwith, 1998; Landeta et al., 2018). The recent discovery of SdbA in S. gordonii provided an important first step to understand the mechanism of disulfide bond formation in this organism (Davey et al., 2013). However, there are questions that remain unanswered, including how SdbA is reoxidized after it introduces a disulfide bond into its substrate.

Hypothesis: SdbA uses a redox partner for regeneration.

Objectives:
- Identify the potential redox partner(s) of SdbA in S. gordonii.
- Investigate the effects of inactivation of these redox partners on sdbA-associated phenotypes in S. gordonii.
- Investigate the enzymatic activity of these redox partners and their roles in SdbA reoxidation.
- Investigate the mechanisms of SdbA interaction with its redox partner and its substrate.

S. gordonii is constantly exposed to H$_2$O$_2$, which can oxidize and damage proteins (Barnard and Stinson, 1999; Zhu and Kreth, 2012; Ezraty et al., 2017). How *S. gordonii* deal with this problem is not well studied. The genome of *S. gordonii* has two msr genes, msrA and msrAB (Vickerman et al., 2007). Previous work showed that MsrA is required for oxidative stress resistance (Lei et al., 2011). However, the role of MsrAB in oxidative stress resistance has not been investigated. In addition, the pathway that regenerates MsrAB is unknown.

Hypothesis: MsrAB is part of a reducing pathway that protects *S. gordonii* from oxidative stress.
Objectives:
- Investigate the role of MsrAB in protection against oxidative stress.
- Investigate the enzymatic activity of MsrAB.
- Identify the redox partners of MsrAB and examine the role of MsrAB redox partner in oxidative stress resistance and MsrAB regeneration.

Both prokaryotic and eukaryotic cells use disulfide bond isomerase to correct the non-native disulfide bonds and protect proteins from oxidative damage. To date, no disulfide bond isomerization pathway has been identified in Gram-Positive organisms (Gleiter and Bardwell, 2008; Depuydt et al., 2011; Cho and Collet, 2013). Thus, the last goal of this work is to use S. gordonii as a model organism to investigate the disulfide bond isomerization pathway.

Hypothesis: S. gordonii has a disulfide bond isomerization pathway.

Objectives:
- Identify the disulfide bond isomerasers and its redox partner in S. gordonii.
- Investigate the enzymatic activity of the disulfide bond isomerase.
- Examine the role of the disulfide bond isomerization pathway in the production and redox state of anti-CR1 single chain antibody, a protein with two disulfide bonds.
- Investigate the role of the disulfide bond isomerization pathway in protection against copper-induced oxidative stress in S. gordonii.
Chapter 2. Materials and Methods

2.1 Bacterial Strains and Growth Conditions

Bacterial strains and plasmids used in this study are listed in Table 2.1. *S. gordonii* SecCR1 was used as the parent strain (Knight et al., 2008). Unless otherwise indicated, *S. gordonii* strains were grown at 37°C, 5% CO₂ in HTVG (per ml: 5 mg of glucose, 35 mg of tryptone, 0.04 μg of *p*-aminobenzoic acid, 0.2 μg of thiamine-HCl, 1 μg of nicotinamide, and 0.2 μg of riboflavin, 100 mM HEPES, pH 7.6) (Burne et al., 1999). For bacteriocin production, *S. gordonii* and *S. mitis* 118 strains were grown in brain heart infusion (BHI, WISENT) with 5% heat-inactivated calf serum (Invitrogen). *S. gordonii* strains were also grown in BHI with 5% heat-inactivated calf serum for genetic competence assays and in tryptic soy broth (TSB, WISENT) for methionine sulfoxide sensitivity assay. For H₂O₂ sensitivity assay, *S. gordonii* strains were plated on TYG agar (per 100 ml: 1 g of tryptone, 0.5 g of yeast extract, 0.2 g of glucose, 0.3 g of K₂HPO₄).

For biofilm formation, *S. gordonii* was grown in biofilm medium containing 58 mM K₂HPO₄, 15 mM KH₂PO₄, 10 mM (NH₄)₂SO₄, 35 mM NaCl, 0.8% (wt/vol) glucose, 0.2% (wt/vol) casamino acids, and 10 μM MgCl₂ (pH 7.4). The biofilm medium was made fresh and supplemented with vitamins (0.04 mM nicotinic acid, 0.1 mM pyridoxine HCl, 0.01 mM pantothenic acid, 1 μM riboflavin, 0.3 μM thiamin HCl, and 0.05 μM D-biotin), and amino acids (4 mM L-glutamic acid, 1 mM L-arginine HCl, 1.3 mM L-cysteine HCl, and 0.1 mM L-tryptophan), and 2 mM MgSO₄·7H₂O and filter-sterilized (Loo et al., 2000). *Escherichia coli* was grown at 37°C in Luria-Bertani broth (per 100 ml: 1 g tryptone, 1 g NaCl, 0.5 g yeast extract) with shaking (180 rpm).

When needed, antibiotics (BioShop) were used at the following concentrations: for *S. gordonii*, spectinomycin (250 μg/ml); kanamycin (250 μg/ml); tetracycline (10 μg/ml); erythromycin (10 μg/ml); chloramphenicol (5 μg/ml); rifampin (100 μg/ml); and for *E. coli*, ampicillin (100 μg/ml); kanamycin (50 μg/ml); chloramphenicol (25 μg/ml); and tetracycline (10 μg/ml).
Table 2.1 Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strains/plasmids</th>
<th>Relevant characteristics</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus gordonii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SecCR1</td>
<td>Challis DL-1, hppG:tet, secretes anti-CR1 scFv, Tet<sup>R</sup>, Spec<sup>R</sup></td>
<td>(Knight et al., 2008)</td>
</tr>
<tr>
<td>degP</td>
<td>SecCR1, degP::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup></td>
<td>(Davey et al., 2016a)</td>
</tr>
<tr>
<td>sdbA</td>
<td>SecCR1, sdbA::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup></td>
<td>(Davey et al., 2013)</td>
</tr>
<tr>
<td>sdbAdegP</td>
<td>SecCR1, sdbA::ermAM, degP::aphA3, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup>, Kan<sup>R</sup></td>
<td>(Davey et al., 2016a)</td>
</tr>
<tr>
<td>ccdA1</td>
<td>SecCR1, ccdA1::aphA3, Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>ccdA2</td>
<td>SecCR1, ccdA2::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>ccdA2degP</td>
<td>SecCR1, ccdA2::ermAM, degP::aphA3, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sdbB</td>
<td>SecCR1, sgo_1171::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup></td>
<td>(Davey et al., 2013)</td>
</tr>
<tr>
<td>sdbB</td>
<td>SecCR1, sgo_1171::aphA3, Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sdbBdegP</td>
<td>SecCR1, *sgo_1171::ermAM, degP::aphA3; Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sgo_1177</td>
<td>SecCR1, sgo_1177::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup></td>
<td>(Davey et al., 2013)</td>
</tr>
<tr>
<td>msrAB</td>
<td>SecCR1, sgo_1176::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sgo_1177ccdA1 complement</td>
<td>SecCR1, sgo_1177::ermAM, ccdA1::aphA3, Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup>, Erm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sgo_1177ccdA1 complement</td>
<td>SecCR1, *ccdA1sgo_1177 complemented on the chromosome, Tet<sup>R</sup>, Spec<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sdbBccdA2</td>
<td>SecCR1, sgo_1171::aphA3, ccdA2::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup>, Erm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sdbBccdA2degP</td>
<td>SecCR1, *sgo_1171::aphA3, ccdA2::ermAM, degP::cat Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup>, Erm<sup>R</sup>, Cat<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sdbBccdA2 complement</td>
<td>SecCR1, *ccdA2sgo_1171 complemented on the chromosome, Tet<sup>R</sup>, Spec<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sdbBccdA1</td>
<td>SecCR1, sgo_1171::ermAM, ccdA1::aphA3, Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup>, Erm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>sgo_1177ccdA2</td>
<td>SecCR1, sgo_1177::aphA3, ccdA2::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup>, Erm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>ccdA1ccdA2</td>
<td>SecCR1, ccdA1::aphA3, ccdA2::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Kan<sup>R</sup>, Erm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Strains/plasmids</td>
<td>Relevant characteristics</td>
<td>Source</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>sdbAC89AdegP</td>
<td>SecCR1, sdbAC89A::aphA3, degP::ermAM, Tet<sup>R</sup>, Spec<sup>R</sup>, Erm<sup>R</sup>, Kan<sup>R</sup></td>
<td>(Davey et al., 2016a)</td>
</tr>
<tr>
<td>Streptococcus gordonii Wicky WK1</td>
<td>S. gordonii Wicky, Rif<sup>R</sup>, source of gDNA for genetic competence assay</td>
<td>(Lunsford and London, 1996)</td>
</tr>
<tr>
<td>Streptococcus mitis I18</td>
<td>Indicator strain for bacteriocin activity</td>
<td>(Heng et al., 2007)</td>
</tr>
</tbody>
</table>

Escherichia coli

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant characteristics</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>M15</td>
<td>Protein expression host, pRE4, Kan<sup>R</sup></td>
<td>Qiagen</td>
</tr>
<tr>
<td>SdB<sub>B</sub></td>
<td>M15 carrying pQE-30-sdbB, Kan<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Sgo_1177</td>
<td>M15 carrying pQE-30-sgo_1177, Kan<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>XL-1 Blue</td>
<td>Cloning host, Tet<sup>R</sup></td>
<td>Stratagene</td>
</tr>
<tr>
<td>SdB<sub>A</sub></td>
<td>XL-1 Blue carrying pQE-30-sdbA, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Davey et al., 2013)</td>
</tr>
<tr>
<td>CcdA1</td>
<td>XL-1 Blue carrying pQE-30-ccdA1, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>CcdA2</td>
<td>XL-1 Blue carrying pQE-30-ccdA2, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>MsrAB</td>
<td>XL-1 Blue carrying pQE-30-msrAB, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Trx-2</td>
<td>XL-1 Blue carrying pQE-30-trx-2, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>TrxB</td>
<td>XL-1 Blue carrying pQE-30-trxB, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>SdB<sub>B</sub>C81A</td>
<td>XL-1 Blue carrying pQE-30-*sdbB<sub>C81A</sub>, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>SdB<sub>B</sub>C84A</td>
<td>XL-1 Blue carrying pQE-30-*sdbB<sub>C84A</sub>, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>SdB<sub>A</sub>C86A</td>
<td>XL-1 Blue carrying pQE-30-*sdbA<sub>C86A</sub>, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Davey et al., 2016a)</td>
</tr>
<tr>
<td>SdB<sub>A</sub>C89A</td>
<td>XL-1 Blue carrying pQE-30-*sdbA<sub>C89A</sub>, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Davey et al., 2016a)</td>
</tr>
<tr>
<td>SdB<sub>A</sub>K91E</td>
<td>XL-1 Blue carrying pQE-30-*sdbA<sub>K91E</sub>, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>SdB<sub>A</sub>R119E</td>
<td>XL-1 Blue carrying pQE-30-*sdbA<sub>R119E</sub>, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>SdB<sub>A</sub>V152A</td>
<td>XL-1 Blue carrying pQE-30-*sdbA<sub>V152A</sub>, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>Strains/plasmids</td>
<td>Relevant characteristics</td>
<td>Source</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>SdbAP156T</td>
<td>XL-1 Blue carrying pQE-30-SdbAP156T, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>SdbAT172E</td>
<td>XL-1 Blue carrying pQE-30-SdbAT172E, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>SdbAS154E</td>
<td>XL-1 Blue carrying pQE-30-SdbAS154E, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>SdbAF174E</td>
<td>XL-1 Blue carrying pQE-30-SdbAF174E, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>SdbAQ92A</td>
<td>XL-1 Blue carrying pQE-30-SdbAQ92A, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>SdbAQ92E</td>
<td>XL-1 Blue carrying pQE-30-SdbAQ92E, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>SdbAQ92E/S154E</td>
<td>XL-1 Blue carrying pQE-30-SdbAQ92E/S154E, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>SdbAQ92E/S154E</td>
<td>XL-1 Blue carrying pQE-30-SdbAQ92E/S154E, Tet<sup>R</sup>, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JM83/pDsbC</td>
<td><i>E. coli</i> JM83 carrying pTrc99a-<i>dsbC</i>, Amp<sup>R</sup></td>
<td>(Maskos et al., 2003)</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Relevant characteristics</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQE-30-SdbA</td>
<td>pQE-30::<i>sdbA</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>(Davey et al., 2013)</td>
</tr>
<tr>
<td>pQE-30-SdbB</td>
<td>pQE-30::<i>sdbB</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-Sgo 1177</td>
<td>pQE-30::<i>sgo 1177</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-CcdA1</td>
<td>pQE-30::<i>ccdA1</i>, N- and C-terminal His<sub>6</sub> and C-terminal HA-tag, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-CcdA2</td>
<td>pQE-30::<i>ccdA2</i>, N- and C-terminal His<sub>6</sub> and C-terminal HA-tag, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-MsrAB</td>
<td>pQE-30::<i>msrAB</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-Trx-2</td>
<td>pQE-30::<i>trx-2</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-TrxB</td>
<td>pQE-30::<i>trxB</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-SdbAC86A</td>
<td>pQE-30::<i>sdbAC86A</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>(Davey et al., 2016a)</td>
</tr>
<tr>
<td>pQE-30-SdbAC89A</td>
<td>pQE-30::<i>sdbAC89A</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>(Davey et al., 2016a)</td>
</tr>
<tr>
<td>pQE-30-SdbBC81A</td>
<td>pQE-30::<i>sdbBC81A</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-SdbBC84A</td>
<td>pQE-30::<i>sdbBC84A</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-SdbAK91E</td>
<td>pQE-30::<i>sdbAK91E</i>, His<sub>6</sub>-tag, Amp<sup>R</sup></td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>Strains/plasmids</td>
<td>Relevant characteristics</td>
<td>Source</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>pQE-30-SdbA_{R119E}</td>
<td>pQE-30::sdbA_{R119E}, Histag, AmpR</td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-SdbA_{V152A}</td>
<td>pQE-30::sdbA_{V152A}, Histag, AmpR</td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-SdbA_{P156T}</td>
<td>pQE-30::sdbA_{P156T}, Histag, AmpR</td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-SdbA_{T172E}</td>
<td>pQE-30::sdbA_{T172E}, Histag, AmpR</td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-SdbA_{S154E}</td>
<td>pQE-30::sdbA_{S154E}, Histag, AmpR</td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-SdbA_{F174E}</td>
<td>pQE-30::sdbA_{F174E}, Histag, AmpR</td>
<td>(Lee et al., Unpublished)</td>
</tr>
<tr>
<td>pQE-30-SdbA_{Q92A}</td>
<td>pQE-30::sdbA_{Q92A}, Histag, AmpR</td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-SdbA_{Q92E}</td>
<td>pQE-30::sdbA_{Q92E}, Histag, AmpR</td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-SdbA_{Q92A/S154E}</td>
<td>pQE-30::sdbA_{Q92A/S154E}, Histag, AmpR</td>
<td>This study</td>
</tr>
<tr>
<td>pQE-30-SdbA_{Q92E/S154E}</td>
<td>pQE-30::sdbA_{Q92E/S154E}, Histag, AmpR</td>
<td>This study</td>
</tr>
</tbody>
</table>
2.2 Genetic Manipulation of *E. coli*

2.2.1 Isolation of Plasmid DNA from *E. coli*

Plasmids were isolated from *E. coli* by the alkaline lysis method (Birnboim and Doly, 1979). A 1.5 ml culture of *E. coli* was centrifuged (12 000 x g, 5 min). The pellet was resuspended in 100 μl of GTE buffer (50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl, pH 8.0), 186 μl *Milli-Q* water, and 2 μl RNase A (10 mg/ml). Cells lysis were then achieved by the addition of 10 μl 20% (w/v) sodium dodecyl sulfate (SDS) and 4 μl 10 M NaOH followed by gentle inversions and incubation for 5 min at room temperature. The lysate was then neutralized with 150 μl of cold potassium acetate solution [60% (v/v) 5 M potassium acetate, 28.5% (v/v) *Milli-Q* water and 11.5% (v/v) glacial acetic acid] followed by incubation on ice for 10 minutes. Precipitates were removed by centrifugation (14 000 x g, 10 min, 4°C). The supernatant was transferred to a new 1.5 ml tube and extracted with chloroform. The aqueous layer was transferred to a new tube, and the plasmid DNA was precipitated with ice cold ethanol. The resulting pellets were resuspended in 15 μl of TE buffer (10 mM Tris, 10 mM EDTA, pH 8.0).

For sequencing, plasmids were isolated from 5 ml cultures using the QIAprep Spin miniprep kit (QIAGEN, Mississauga, Ontario, Canada) according to the manufacturer’s instructions. Agarose gel electrophoresis (see PCR section below) was used to estimate the concentration of isolated plasmid by comparing the intensity of the plasmid band to the intensity of the DNA markers using ImageJ.

2.2.2 Transformation of *E. coli*

Plasmid DNA was transformed into competent *E. coli* cells using the protocol described by Sambrook *et al.* (1989). Competent *E. coli* cells were prepared by inoculating 99 ml of LB with 1 ml of overnight culture and incubated until OD₆₀₀ reached 0.3. The cells were harvested by centrifugation (10 000 x g, 10 minutes, 4°C). The cell pellet was washed with 100 ml of cold transformation buffer 1 (10 mM Tris, 150 mM
NaCl, pH 7.5) and then gently resuspended in 100 ml of cold transformation buffer 2 (50 mM CaCl₂) and incubated on ice for 45 minutes. The cells were collected by centrifugation and resuspended in 10 ml of cold transformation buffer 2 containing 20% (v/v) glycerol. The competent cells were stored in aliquots at -80°C.

For transformation, 200 µl of competent cells were thawed on ice for 10 minutes and an aliquot of DNA and 100 µl transformation buffer 3 (10 mM Tris, 50 mM CaCl₂, and 10 mM, MgSO₄, pH 7.5) were added. The cell suspension was gently mixed and incubated on ice for 45 minutes. The cells were then heated at 37°C for 2 minutes and then incubated at room temperature for 10 minutes. Then, 500 µl of LB was added to the cell suspension and incubated for 60 minutes at 37°C. The culture was then plated on LB agar plates containing the appropriate antibiotics and incubated for 24 h.

2.3 Genetic Manipulation of *S. gordonii*

2.3.1 Isolation of Genomic DNA from *S. gordonii*

To isolate the genomic DNA from *S. gordonii*, 1.5 ml of overnight culture was centrifuged at 12 000 x g for 5 minutes. The pellet was re-suspended in 100 µl TE buffer, 100 µl chloroform, and 200 mg glass beads (500 µm, VWR International). The suspension was vortexed vigorously for 1 minute and then centrifuged. The aqueous layer was transferred to a new tube, and 1 µl was used as DNA template for polymerase chain reaction (PCR).

For experiments to assess transformation frequency, the genomic DNA was isolated from *S. gordonii* Wicky WK1 (Lunsford and London, 1996). A 100 ml of overnight culture was added to 100 ml of fresh BHI and the culture was grown for 2 h. The cells were harvested by centrifugation and re-suspended in 1 ml of TE buffer containing 1% (w/v) lysozyme (Sigma), 20 U/ml mutanolysin (Sigma), and 10 µl of 10 mg/ml RNase A (Sigma). The cell suspension was incubated for 60 minutes at 37°C and 2% (w/v) SDS (BioShop) was added. The mixture was incubated at 37°C for 30 minutes to lyse the cells. The lysate was vortexed and then centrifuged at 14 000 x g for 10
minutes. The supernatant containing the DNA was extracted with two volumes of chloroform. The aqueous layer was transferred to a new tube and the DNA was precipitated by incubation with 95% ethanol containing 2.5 \% potassium acetate for 1 hour at -80°C. The DNA was washed with 70% ethanol, air-dried and dissolved in 3 ml TE buffer and stored in 200 µl- aliquots at -20°C.

2.3.2 Transformation of *S. gordonii*

Genetic transformation of *S. gordonii* was performed as described previously with modifications (Perry and Kuramitsu, 1981). Briefly, 100 µl of an overnight culture was sub-cultured into 4 ml of pre-warmed BHI containing 5\% (v/v) heat-inactivated calf serum (BHIS). The culture was incubated for 1 to 2 hours (OD\textsubscript{600} ≈ 0.15). DNA was then added to 750 µl of the culture and further incubated for 30 minutes. A fresh 750 µl of pre-warmed BHIS was then added and the culture was incubated for an additional 90 minutes. The culture was centrifuged at 10 000 x g for 2 minutes and 1 ml of the supernatant was discarded. The cell pellet was re-suspended in the remaining 0.5 ml liquid and aliquots (100 µl) were plated on BHI agar containing the appropriate antibiotics. The agar plates were incubated for 48 h.

2.3.3 Polymerase Chain Reaction (PCR)

Primers used in this study were designed based on the sequenced genome of *S. gordonii* Challis (Vickerman et al., 2007). Primers were synthesized by Alpha DNA (Montreal) and diluted into 10 µM working concentration in *Milli-Q* water. A typical PCR reaction was a 50 µl reaction mixture containing 1 µl template DNA (50 ng/µl), 1 µl 10 µM forward primer, 1 µl 10 µM reverse primer, 5 µl 10 x PCR buffer (New England Biolabs, NEB), 1 µl 10 mM dNTP (10 mM dATP, 10 mM dGTP, 10 mM dCTP, 10 mM dTTP) (Green BioReseach), and 0.25 µl 5 U/µl Taq DNA polymerase (NEB). To generate a blunt-ended PCR product, phusion-HF (High Fidelity) DNA polymerase (NEB) was used. PCR were carried out in an Eppendorf Mastercycler EP S thermo-module.
(Eppendorf) with conditions described in Table 2.2. Electrophoresis was used to analyze the PCR products in agarose gels (0.8 %, w/v) prepared in TAE (0.04 M Tris-acetate and 0.001 M EDTA) buffer. Electrophoresis was performed at 110 volts in TAE buffer containing 0.5 μg/ml ethidium bromide.

2.3.4 Construction of Knockout Mutants

The single- and double-gene knockout mutants of *S. gordonii* were constructed by insertional inactivation using the erythromycin resistance cassette (*ermAM*) (Claverys *et al.*, 1995), the kanamycin resistance cassette (*aphA3*) (Dunny *et al.*, 1991), or the chloramphenicol resistance cassette (*cat*) (Vats and Lee, 2001). The antibiotic resistance cassette and the upstream and downstream regions of the target gene were separately amplified by PCR using primers listed in Table 2.3. PCR products were digested with the appropriate restriction enzymes. The digested DNA was electrophoresed on an agarose gel and purified using the DNA Fragment Extraction Kit (DNALand Scientific) according to the manufacturer’s instructions. The DNA fragments were ligated using T4 DNA ligase (New England Biolabs). The ligated products were amplified using the outside primers, and the resulting PCR products were used to transform *S. gordonii* SecCR1. The insertion of the *aphA3*, *ermAM*, or *cat* cassette was confirmed by PCR.

2.3.5 Construction of Complemented Strains

To construct the *sdbBccdA2*-complemented mutant, a functional copy of *sdbB* and *ccdA2* genes was introduced back into the chromosome of the *sdbBccdA2* mutant. To achieve this, the *sdbBccdA2* operon plus a portion of the upstream gene (*sgo_1174*) was amplified using primers SL1061/SL1235 and the PCR product was digested with SphI. A downstream fragment carrying a portion of *sdbB* and *sgo_1170* was amplified using primers SL869/SL1226 and digested with BamHI. Next, the *cat* resistance cassette was cut from pCopCAT/pUC18 using SphI and BamHI (Vats and Lee, 2001).
Table 2.2 PCR conditions

<table>
<thead>
<tr>
<th>Steps</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq DNA polymerase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial denaturation</td>
<td>95°C</td>
<td>1 minute</td>
</tr>
<tr>
<td>35 cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denaturation</td>
<td>94°C</td>
<td>20 seconds</td>
</tr>
<tr>
<td>Annealing</td>
<td>48-50°C</td>
<td>20 seconds</td>
</tr>
<tr>
<td>Extension</td>
<td>72°C</td>
<td>1 minute/kb</td>
</tr>
<tr>
<td>Final extension</td>
<td>72°C</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Hold</td>
<td>4°C</td>
<td></td>
</tr>
<tr>
<td>Phusion DNA polymerase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial denaturation</td>
<td>98°C</td>
<td>1 minute</td>
</tr>
<tr>
<td>35 cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denaturation</td>
<td>98°C</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Annealing</td>
<td>48-55°C</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Extension</td>
<td>72°C</td>
<td>30 seconds/kb</td>
</tr>
<tr>
<td>Final extension</td>
<td>72°C</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Hold</td>
<td>4°C</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.3 Primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Gene</th>
<th>Description*</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL609</td>
<td>ermAM</td>
<td>For Erythromycin</td>
<td>EcoRV</td>
</tr>
<tr>
<td>SL729</td>
<td>ermAM</td>
<td>Rev Erythromycin</td>
<td>BamHI</td>
</tr>
<tr>
<td>SL801</td>
<td>aphA3</td>
<td>For Kanamycin</td>
<td>BamHI</td>
</tr>
<tr>
<td>SL823</td>
<td>aphA3</td>
<td>Rev Kanamycin</td>
<td>KpnI</td>
</tr>
<tr>
<td>SL1050</td>
<td>ccdA1</td>
<td>For Knockout</td>
<td></td>
</tr>
<tr>
<td>SL1051</td>
<td>ccdA1</td>
<td>For Knockout</td>
<td>KpnI</td>
</tr>
<tr>
<td>SL1052</td>
<td>ccdA1</td>
<td>Rev Knockout</td>
<td></td>
</tr>
<tr>
<td>SL1053</td>
<td>ccdA2</td>
<td>For Knockout</td>
<td></td>
</tr>
<tr>
<td>SL1054</td>
<td>ccdA2</td>
<td>Rev Knockout</td>
<td>EcoRV</td>
</tr>
<tr>
<td>SL1055</td>
<td>ccdA2</td>
<td>For Knockout</td>
<td>BamHI</td>
</tr>
<tr>
<td>SL1056</td>
<td>ccdA2</td>
<td>Rev Knockout</td>
<td></td>
</tr>
<tr>
<td>SL1061</td>
<td>sgo_1174</td>
<td>For Complementation</td>
<td></td>
</tr>
<tr>
<td>SL1235</td>
<td>sdbB</td>
<td>Rev Complementation</td>
<td>SphI</td>
</tr>
<tr>
<td>SL666</td>
<td>pUC19 MCs</td>
<td>For Complementation</td>
<td>SphI</td>
</tr>
<tr>
<td>SL869</td>
<td>sdbB</td>
<td>For Complementation</td>
<td>BamHI</td>
</tr>
<tr>
<td>SL1226</td>
<td>sgo_1170</td>
<td>Rev RT-PCR/complementation</td>
<td></td>
</tr>
<tr>
<td>SL1227</td>
<td>sgo_1170</td>
<td>For RT-PCR</td>
<td></td>
</tr>
<tr>
<td>SL1151</td>
<td>sdbB</td>
<td>For RT-PCR</td>
<td></td>
</tr>
<tr>
<td>SL1152</td>
<td>sdbB</td>
<td>Rev RT-PCR</td>
<td></td>
</tr>
<tr>
<td>SL1065</td>
<td>ccdA2</td>
<td>For RT-PCR</td>
<td></td>
</tr>
<tr>
<td>SL1072</td>
<td>ccdA2</td>
<td>Rev RT-PCR</td>
<td></td>
</tr>
<tr>
<td>SL1153</td>
<td>sgo_1177</td>
<td>For RT-PCR</td>
<td></td>
</tr>
<tr>
<td>SL1094</td>
<td>ccdA1</td>
<td>For RT-PCR</td>
<td></td>
</tr>
</tbody>
</table>

49
<table>
<thead>
<tr>
<th>Primer</th>
<th>Gene</th>
<th>Description*</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL1095</td>
<td>ccdA1</td>
<td>Rev RT-PCR</td>
<td>GATATGGATAAGTCCCCATC</td>
</tr>
<tr>
<td></td>
<td>sgo_1174</td>
<td>For RT-PCR</td>
<td>GTCAGAATCAAGAAAGCA</td>
</tr>
<tr>
<td></td>
<td>16S rRNA</td>
<td>For RT-PCR</td>
<td>CACCAAGATTCTGCCCTG</td>
</tr>
<tr>
<td>SL1225</td>
<td>sgo_1174</td>
<td>Rev RT-PCR</td>
<td>ATTTATTGGCGTAAAGCG</td>
</tr>
<tr>
<td>SL697</td>
<td>16S rRNA</td>
<td>For RT-PCR</td>
<td>AGCGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GAAATACCAACATGCTCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACCGC</td>
</tr>
<tr>
<td>SL1157</td>
<td>sdbB</td>
<td>For Expression/RT-PCR</td>
<td>BamHI TTAGGATCCGAAAACAAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AGCAGTAGC</td>
</tr>
<tr>
<td>SL1158</td>
<td>sdbB</td>
<td>Rev Expression</td>
<td>HindIII TGAAGGCTTTTTACCTTATT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CTTAAAGG</td>
</tr>
<tr>
<td>SL1159</td>
<td>sgo_1177</td>
<td>For Expression</td>
<td>BamHI TTAGGATCCCTCCAACAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATAAAAAGCAG</td>
</tr>
<tr>
<td>SL1160</td>
<td>sgo_1177</td>
<td>Rev Expression</td>
<td>HindIII TGAAGGCTTTTTACCTAATT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCTTTCACTG</td>
</tr>
<tr>
<td>SL1096</td>
<td>ccdA2</td>
<td>For Expression</td>
<td>BamHI TAGGATCCGAAAGCTTACK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TTTCCTCAG</td>
</tr>
<tr>
<td>SL1295</td>
<td>ccdA2</td>
<td>Rev Expression</td>
<td>SpeI TAGACTAGTTCCAAATAGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCGACAAG</td>
</tr>
<tr>
<td>SL334</td>
<td>ccdA2</td>
<td>Rev Expression</td>
<td>EcoRI CGGAATTCCGTTAAGAAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GTAGTCCGAAAGTC</td>
</tr>
<tr>
<td>SL1307</td>
<td>ccdA1</td>
<td>For Expression</td>
<td>BglIII TACAGATCTCAACAAAGTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TTTTGTTCCTTA</td>
</tr>
<tr>
<td>SL1308</td>
<td>ccdA1</td>
<td>Rev Expression</td>
<td>SpeI TACAAGATTTCCGAATAAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GATGCTAAAGC</td>
</tr>
<tr>
<td>SL1316</td>
<td>msrAB</td>
<td>For Expression</td>
<td>BamHI TACGGAATTCGGGTAATCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATCTGGC</td>
</tr>
<tr>
<td>SL1319</td>
<td>msrAB</td>
<td>Rev Expression</td>
<td>HindIII TACAAGCCTTTAAACATAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCCAAAGATAAC</td>
</tr>
<tr>
<td>SL1322</td>
<td>sdbB</td>
<td>For Expression</td>
<td>BglIII TGGGCTTCTTGGTGCTGGC</td>
</tr>
<tr>
<td></td>
<td>C81A</td>
<td></td>
<td>CATGTAAG</td>
</tr>
<tr>
<td>SL1323</td>
<td>sdbB</td>
<td>Rev Expression</td>
<td>HindIII TGGGCTTCTTGGTGCTGGC</td>
</tr>
<tr>
<td></td>
<td>C81A</td>
<td></td>
<td>CATGTAAG</td>
</tr>
<tr>
<td>SL1324</td>
<td>sdbB</td>
<td>For Expression</td>
<td>BglIII TGGGCTTCTTGGTGCTGGC</td>
</tr>
<tr>
<td></td>
<td>C84A</td>
<td></td>
<td>CATGTAAG</td>
</tr>
<tr>
<td>SL1325</td>
<td>sdbB</td>
<td>Rev Expression</td>
<td>HindIII TGGGCTTCTTGGTGCTGGC</td>
</tr>
<tr>
<td></td>
<td>C84A</td>
<td></td>
<td>CATGTAAG</td>
</tr>
<tr>
<td>SL764</td>
<td>sdbA</td>
<td>For Expression</td>
<td>BamHI TACGGAATTCGGTGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AACATGACG</td>
</tr>
<tr>
<td>SL1331</td>
<td>sdbA</td>
<td>Rev Expression</td>
<td>BamHI TACGGAATTCGGTGAAG</td>
</tr>
<tr>
<td></td>
<td>Q92A</td>
<td></td>
<td>AACATGACG</td>
</tr>
<tr>
<td>SL1330</td>
<td>sdbA</td>
<td>For Expression</td>
<td>BamHI TACGGAATTCGGTGAAG</td>
</tr>
<tr>
<td></td>
<td>Q92A</td>
<td></td>
<td>AACATGACG</td>
</tr>
<tr>
<td>Primer</td>
<td>Gene</td>
<td>Description*</td>
<td>Sequence</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>SL763</td>
<td>sdbA</td>
<td>Rev</td>
<td>Expression HindIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TACAAGCTTAAGCTCTCCC TTCTCTTTCTTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GATTGTCAAAAAAGAGTTAC CAG</td>
</tr>
<tr>
<td>SL1328</td>
<td>sdbA<sub>Q92E</sub></td>
<td>For</td>
<td>Expression</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CTGGTAACTCTTTTTTGACA ATC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL1329</td>
<td>sdbA<sub>Q92E</sub></td>
<td>Rev</td>
<td>Expression</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CTGGTAACTCTTTTTTGACA ATC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL1146</td>
<td>m<sub>r</sub>AB</td>
<td>For</td>
<td>Knockout</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GACACATATTGGCTACATG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TACGGATCCGAAGTACGAT</td>
</tr>
<tr>
<td>SL1147</td>
<td>m<sub>r</sub>AB</td>
<td>For</td>
<td>Knockout BamHI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AAAACCTCTAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL1148</td>
<td>m<sub>r</sub>AB</td>
<td>Rev</td>
<td>Knockout</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAGATACTCATCCTCTAC</td>
</tr>
</tbody>
</table>

* For: Forward primer, Rev: Revers primer
The three fragments were then ligated using T4 DNA ligase, and the ligation product was amplified using the outside primers SL1061/SL1226. The resulting PCR product was used to transform the sdbBccda2 mutant. Transformation resulted in replacing the ermAM and aphA3 cassettes by the functional sdbBccda2 genes and the cat cassette. Transformants were selected on BHI agar containing chloramphenicol and replica-plated to identify kanamycin- and erythromycin-sensitive colonies. The reintroduction of the sdbBccda2 genes was verified by PCR.

sgo_1177ccda1-complemented mutant was constructed using a similar strategy. First, the downstream fragment of ccda1sgo_1177msrAB operon carrying a portion of msrAB and sgo_1175 was amplified using primers SL1147/SL1148 and digested with BamHI. The cat resistance cassette was cut from pCopCAT/UC18 using SphI and BamHI. The downstream fragment was then ligated to the cat resistance cassette and the ligation product was amplified using phusion DNA polymerase and the outside primers SL666/SL1148. The PCR product of the cat-downstream fragment was then digested with HindIII. Next, the msrAB entire gene was amplified using primers SL1319/SL1146 and digested with HindIII. The cat-downstream and msrAB entire gene were ligated together using T4 DNA ligase. The ligation product was amplified using phusion DNA polymerase and the outside primers SL1146/SL1148 and digested with XbaI, a unique restriction site within msrAB gene. Next, the sgo_1180ccda1sgo_1177msrAB operon was amplified using primers SL1050/SL1319 and digested with XbaI. Following gel purification, the sgo_1180ccda1sgo_1177msrAB operon was ligated with msrAB-cat-downstream fragment using T4 DNA ligase, and the ligation product was amplified using SL1050/SL1148. The PCR product was transformed into the sgo_1177ccda1 mutant, and the transformants were selected on BHI agar containing chloramphenicol and replica-plated to identify kanamycin- and erythromycin-sensitive colonies and confirmed by PCR.
2.4 Site Directed Mutagenesis

Single amino acid substitution mutants were generated using overlapping PCR with the primers indicated in Table 2.3. The K91E, R119E, V152E, P156T, T172E, S154E, and F174E sdbA point mutants were kindly provided by our collaborators at the University of Toronto/Calgary (Savchenko and Stogios), which were subsequently sub-cloned into pQE30 (Lee et al., unpublished). The sdbA point mutants Q92A, Q92E, Q92A/S154E, and Q92E/S154E were constructed in this study. All point mutations were confirmed by DNA sequencing (The McGill University and Génome Québec Innovation Centre).

2.4.1 SdbA

Based on the crystal structure of SdbA (Stogios and Savchenko, 2015), a number of surface-exposed amino acids were identified, and single amino acid substitution mutants were constructed. For example, SdbA_{Q92A} was constructed by introducing a mutation to replace the codon for glutamine at position 92 (CAG) to alanine (GCA). To achieve this, the upstream and downstream regions of sdbA were amplified from the <i>S. gordonii</i> SecCR1 genome using primer pairs (SL764/SL1331 and SL1330/SL763) respectively. Primers SL1331 and SL1330 carried the mutated codon. The upstream and downstream fragments for SdbA_{Q92A} were combined as the template for a second PCR using the outside primers SL763/SL764 to generate SdbA_{Q92A} DNA fragment. The resulting PCR product was cloned into the BamHI and HindIII sites of pQE30. The plasmid was transformed into <i>E. coli</i> XL-1. A similar approach was used to construct sdbA_{Q92E} point mutant. To construct a double point mutant (SdbA_{Q92A/S154E}), SdbA_{S154E} DNA was used as the template to amplify the upstream and downstream regions of sdbA using primer pairs for SdbA_{Q92A} as described above. The PCR product was similarly cloned into a pQE30 plasmid as described above. A similar approach was used to construct sdbA_{Q92E/S154E} point mutant.
2.4.2 SdB

Overlapping PCR was also used to construct cysteine point mutants in the active site (CGPC) of SdB. First, sdb_{C81A} was constructed by replacing the codon for cysteine at position 81 (TGT) to alanine (GCT). To achieve this, the upstream and downstream regions of $sdbB$ were first amplified with the primer pairs SL1157/SL1323 and SL1322/SL1158, respectively. Next, the two fragments were combined and used as a template for an overlapping PCR and amplified with the outside primers SL1157/SL1158 to generate sdb_{C81A} DNA fragment. The resulting PCR product was cloned into pQE30 plasmid via the BamHI and HindIII sites. A similar approach was used to construct sdb_{C84A} cysteine point mutant.

2.5 Reverse-Transcription PCR

Total RNA was extracted from *S. gordonii* using the hot acid phenol method (Tremblay *et al.*, 2009). Overnight cultures of *S. gordonii* (15 ml) were added to 100 ml of pre-warmed TYG and incubated until the cultures reached mid-exponential phase of growth (OD$_{600}$ = 0.6). Cells were collected by centrifugation (10 000 x g, 10 minutes, 4°C) and resuspended in 500 µl diethyl pyrocarbonate (DEPC) treated-water and 1.5 ml of pre-warmed phenol, which contained 0.1% (w/v) SDS and saturated with citric acid buffer (0.05 M sodium citrate and 0.05 M citric acid, pH 4.3). The cell suspension was boiled for 10 minutes and cooled on ice for 3 minutes. The aqueous phase (500 µl) containing the RNA was then separated by centrifugation (5000 x g, 10 minutes) and extracted once with citric acid-phenol (500 µl) and chloroform (500 µl), followed by two volumes of chloroform. The RNA was precipitated with 2 volumes of isopropyl alcohol containing 0.3 M sodium acetate and incubation on ice for 30 minutes. The precipitated RNA was pelleted by centrifugation (15,000 x g, 20 minutes), washed with 75 % ethanol, and dissolved in 50 µl DEPC-treated water. RNA concentrations were estimated by measuring the A_{260} of 1:500 diluted RNA samples in DEPC-treated water and calculated using the following equation: RNA concentration = A_{260} reading × 500 (dilution factor) ×
40 μg/ml (A₂₆₀ of 1 corresponds to 40 μg of RNA per ml). To remove contaminating DNA, 1 μg of RNA was treated with 1 μl of amplification-grade DNase I (Life Technologies) in 10 μl of DNase I buffer for 15 minutes at room temperature. Following incubation, 1 μl of 25 mM EDTA was added and DNase I was inactivated at 65°C for 10 minutes.

The removal of DNA in the RNA samples was assessed by PCR using primers specific for the S. gordonii 16S rRNA gene (SL525/SL697). The lack of PCR products observed by agarose gel electrophoresis was considered as DNA-free RNA samples and were used for complementary DNA (cDNA) synthesis using random primers and SuperScript II reverse transcriptase (Life Technologies) according to the manufacturer’s instructions. Briefly, 1 μg of RNA was mixed with 1 μl of dNTPs (10 μM) and 1 μl of random primers (5 μM) in a 15 μl reaction volume. The sample was incubated at 65°C for 5 minutes, followed by 2 minutes on ice. After incubation, 4 μl of FS buffer (5X) was added and the sample was incubated at 25°C for 2 minutes and Superscript ssRT enzyme (1 μl) was then added. The reaction mixture was incubated for 10 minutes at 25°C, 50 minutes at 42°C, 15 minutes at 70°C to synthesize cDNA. The resulting cDNA (2 μl) was used as the template for the amplification of sgo_1170, sdbB, ccdA2, sgo_1174, sgo_1177, and ccdA1 using primers listed in Table 2.3. In addition, reverse transcription PCR (RT-PCR) was used to determine if ccdA2 and sdbB form an operon using cross-gene primers SL867/SL868.

2.6 Phenotypic Assays

2.6.1 Extracellular (e)DNA Release

Extracellular (e)DNA release was assayed as described previously with modifications (Kreth et al., 2009). Stationary phase cultures (24 h) grown in HTVG were standardized to an OD₆₀₀ of 1.0, and 1 ml volumes were centrifuged (13,000 x g, 5 minutes, 4 °C). The supernatant containing the eDNA (750 μl) was mixed with an equal volume of cold acetone and incubated on the ice. The next day, the precipitated eDNA
was pelleted (14 000 x g, 10 minutes) and dissolved in 50 μl of TE buffer. The samples were analyzed on 0.8% agarose gels.

2.6.2 Bacteriocin Activity

Bacteriocin activity was tested using a liquid culture method as described previously (Heng et al., 2007; Tompkins et al., 1997). Briefly, 50 μl of overnight cultures of S. gordonii were inoculated to 5 ml pre-warmed BHIS without antibiotics. Cultures were incubated to an OD600 of 0.2, and the cells were pelleted by centrifugation (14 000 x g, 5 minutes). The supernatant was filter-sterilized (0.2 μm) and 1 ml of the filtrate was added to 1 ml of fresh pre-warmed BHIS. After 15 minutes at 37°C, the medium was inoculated with 20 μl of an overnight culture of the indicator strain S. mitis 118. The culture was incubated for 10 h and OD600 was read using a spectrophotometer (Shimadzu UV-1700, Kyoto, Japan). Cultures that displayed growth of the indicator strain (OD600 > 1.0) following incubation were considered as having a defect in bacteriocin activity.

2.6.3 Genetic Competence

Genetic competence of S. gordonii strains was assessed using the genomic DNA (gDNA) of S. gordonii Wicky WK1, which contains a mutation in the β-subunit of RNA polymerase conferring resistance to rifampin (Davey et al., 2013; Lunsford and London, 1996). Briefly, 300 μl of overnight cultures of S. gordonii grown in BHIS were added to 12 ml of pre-warmed BHIS and incubated. When the OD600 reached 0.2, DNA (1 μg) was added to 750 μl aliquots of the cultures. Cultures were incubated for 30 minutes, then 750 μl fresh pre-warmed BHIS was added and further incubated at 37°C. After 90 minutes of incubation, the cultures were serially diluted and plated on BHI agar with and without 100 μg/ml rifampin. The plates were incubated for 48 hours and colonies counted. Transformation frequency was calculated as the percentage of rifampin-resistant colonies divided by the total CFU/ml.
2.6.4 Autolysis

Autolysis was performed as described previously with modifications (Ahn and Burne, 2007). One ml of an overnight culture of *S. gordonii* was added to 10 ml of pre-warmed HTVG and grown to an OD$_{600}$ of 1.0. The cells were harvested by centrifugation (3 000 x g, 10 minutes) and resuspended in pre-warmed (44°C) autolysis buffer (20 mM potassium phosphate buffer, pH 6.5, 1 M KC1, 1 mM CaCl$_2$, 1 mM MgCl$_2$, 0.4% (w/v) sodium azide and 0.2% (v/v) Triton X-100). The cell suspensions were incubated at 44°C in a water bath and autolysis was monitored by measuring the OD$_{600}$ every hour for four hours.

2.6.5 Zymographic Analysis

Zymogram analysis of autolysin was performed as described previously (Liu and Burne, 2011). Overnight cultures of *S. gordonii* were diluted 1:5 in 50 ml pre-warmed HTVG and grown to an OD$_{600}$ of 1.0. The cells were harvested by centrifugation (10 000 x g, 10 minutes, 4°C), resuspended in 0.5 ml of 4% SDS, and incubated at room temperature. After 1 hour, the cells were removed by centrifugation (15 000 x g, 15 minutes), and the supernatant mixed with an equal volume with 50 mM Tris buffer (pH 6.5) containing 10% glycerol and served as the autolysin sample.

To prepare the substrate for the zymogram, cells from 800 ml of an overnight culture of *S. gordonii* SecCR1 grown in BHI was collected by centrifugation (5 000 x g, 10 minutes) and washed four times with *Milli-Q* water. The cells were then resuspended in 60 ml of 4% SDS, boiled for 30 min, and then washed five times with *Milli-Q* water. The heat-killed cells (zymogram substrate) were then resuspended in 5 ml of *Milli-Q* water and stored as 1 ml aliquots at -80°C. The heat-killed cells (1% wet weight) was incorporated into 10% SDS-PAGE gels. Following electrophoresis, the gel was washed twice with *Milli-Q* water and then incubated for 12 h at room temperature in 200 mM sodium phosphate buffer (pH 7.0) to allow for the renaturation of the autolysin and
development of the autolytic bands. Gels were scanned with an EPSON Expression 1680 scanner and the zymogram was presented as an inverted image of the scan.

2.6.6 H$_2$O$_2$ Sensitivity Assay

The H$_2$O$_2$ sensitivity assay was performed as described previously (Saleh et al., 2013). *S. gordonii* strains were grown in HTVG. Next day, the cultures were diluted 1:40 in 4 ml of pre-warmed HTVG and grown to OD$_{600} = 0.2$. The cultures were then treated with 10 mM H$_2$O$_2$ (Sigma) at 37°C, 5% CO$_2$. Cultures not treated with H$_2$O$_2$ were included as controls to determine the total number of CFU. After 30 minutes, the cultures were serially diluted and drop-plated in triplicates onto TYG agar. CFU was determined after 24 h incubation. The percentage of survival was calculated as follow: (CFU of H$_2$O$_2$ treated sample / CFU of untreated sample) x 100.

2.6.7 Methionine Sulfoxide Sensitivity Assay

Overnight cultures were diluted 1:20 into 5 ml of pre-warmed TSB and grown to OD$_{600} = 0.1$. Aliquots (4 μl) of the culture were added to 200 μl of pre-warmed TSB containing DL-methionine sulfoxide (Sigma) in a 96-well flat bottom plate (Corning Costar, Fisher Scientific, Ontario, Canada). Wells without methionine sulfoxide were included as controls. Cultures were incubated at 37°C, 5% CO$_2$ and OD$_{600}$ was recorded using a microplate reader after 24 h incubation (Synergy HT; BioTeK, USA).

2.6.8 Copper Sensitivity Assay

Overnight cultures were diluted 1:5 into 5 ml of pre-warmed BHI and grown to OD$_{600} = 1.0$. Cultures were 10-fold diluted and 20 μl aliquots were drop-plated onto BHI plates with or without CuSO$_4$. The plates were incubated for 48 hours at 37°C, 5% CO$_2$.

58
2.6.9 Level of MsrAB, SdbB, and Sgo_1177 in Response to Aeration and in Biofilms

One ml of an overnight culture of *S. gordonii* SecCR1 grown stationary in HTVG under anaerobic conditions (GasPak, anaerobic gas generating system, BD) was added to 9 ml of pre-warmed HTVG and incubated at 37°C under anaerobic conditions. A second overnight culture of *S. gordonii* SecCR1 grown stationary in HTVG in a CO₂ incubator was added to 9 ml of pre-warmed HTVG and incubated in ambient atmosphere on a shaker (20 rpm). When the cultures reached OD₆₀₀ = 0.8, cells were harvested by centrifugation and analyzed by western blotting for MsrAB, SdbB, and Sgo_1177.

To examine the level of MsrAB, SdbB, and Sgo_1177 in biofilm and planktonic cells, overnight cultures of *S. gordonii* SecCR1 grown in HTVG were centrifugated (3000 x g for 10 min). The cells were resuspended in biofilm medium to an OD₆₀₀ = 0.25. The cell suspensions (1 ml/well) were added to 24-well flat bottom plates (Costar). The plates were incubated for 24 h at 37 °C, 5% CO₂. The next day, 1 ml of the liquid above the biofilm was collected as planktonic cells. The wells were then washed once with 1 ml of phosphate-buffered saline (PBS) to remove loosely attached cells. One ml of biofilm medium was added to the well and the biofilm cells were resuspended by vigorous pipetting. The planktonic and biofilm cell suspensions were adjusted to an OD₆₀₀ of 0.8 and cells were then harvested by centrifugation and analyzed by western blotting.

2.7 SDS-PAGE and Western Immunoblotting

Cells from overnight cultures (1 ml of *E. coli* or 3 ml of *S. gordonii*) were pelleted by centrifugation (13 000 x g, 5 minutes, 4°C) and resuspended in 50 µl of 1 x sample buffer (250 mM Tris-HCl, pH 6.8, 2% sodium dodecyl sulfate, 10% glycerol, 0.01% bromophenol blue) containing 5% 2-mercaptoethanol. A second sample was prepared in sample buffer without 2-mercaptoethanol. The suspensions were boiled for 5 minutes and cells were removed by centrifugation (12 000 x g, 10 minutes). For membrane protein (CcdA1 and CcdA2) detection, *E. coli* cells were pelleted by centrifugation and
resuspended in 300 µl TE buffer. The cells were sonicated (3 x 30 seconds on ice) and centrifuged (15 000 x g, 10 minutes, 4°C). The pellet was then resuspended in 100 µl of 1x sample buffer containing 4.5 mM n-dodecylphosphocholine (DPC, Anatrace), warmed at 37°C for 5 minutes, and centrifuged (10 000 x g, 5 minutes).

SDS-PAGE was performed as described by Laemmli (1970). SDS-PAGE gels were stained with Coomassie blue R-250. For western blotting, proteins in SDS-PAGE gels were transferred to nitrocellulose membranes (Bio-Rad) at 200 mA for 60 minutes (Mini Trans-Blot, Bio-Rad) in a transfer buffer (2.9% Tris, 1.45% glycine, and 0.185% SDS; w/v, 20% methanol v/v). After transfer, the membranes were blocked with 1% (w/v) gelatin in PBST (phosphate-buffered saline with 0.1% Tween 20) for 1 hour with gentle rocking at room temperature. The membranes were incubated with primary antibodies in PBST at 4°C. The next day, the membranes were washed 4 times with PBST and incubated with alkaline phosphatase-conjugated secondary antibodies for 1 hour. Membranes were washed and developed with the substrates 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) and 4-nitro blue tetrazolium chloride (NBT) in the alkaline phosphatase buffer (100 mM Tris-HCl, 100 mM NaCl, 10 mM MgCl₂, pH 9.5).

2.8 Protein Alkylation

2.8.1 AtlS

The redox state of AtlS was determined as described previously (Davey et al., 2013). Proteins were extracted from S. gordonii cells with 4% SDS as described for autolysin above. Proteins were precipitated with 9% (w/v) trichloroacetic acid (TCA) on ice for 30 minutes and pelleted by centrifugation (15 000 x g, 10 minutes). The pelleted proteins were washed twice with cold acetone and dissolved in 100 mM Tris-HCl (pH 7.0) containing 1% (w/v) SDS, and 5 mM maleimide-PEG₂-biotin (525 Da, American Peptide Co.). Proteins in the samples were alkylated by incubation at room temperature for 30 minutes, followed by 10 minutes at 37°C. Excess maleimide-PEG₂-biotin was then removed by TCA precipitation and acetone wash. The protein pellets were dissolved in
100 mM Tris-HCl (pH 7.0), 1% (w/v) SDS, and 8 M urea. Positive controls were prepared by incubating the samples with 100 mM dithiothreitol (DTT, BioShop) in 10 mM Tris-HCl (pH 8.1) for 30 minutes at room temperature. Proteins were precipitated with TCA on ice for 30 minutes prior to alkylation with maleimide-PEG$_2$-biotin. The samples were analyzed by western blotting and reacted with extravidin-alkaline phosphatase (1:60 000; Sigma-Aldrich) to detect biotinylated proteins, and duplicate samples reacted with anti-AtlS antiserum (1:2000) (Davey et al., 2013) to determine the total AtlS in the sample. The level of alkylated AtlS was analyzed by densitometry using Image J (Schneider et al., 2012).

2.8.2 Anti-CR1 scFv

The redox state of anti-CR1 scFv was determined as described previously (Davey et al., 2016a). First, anti-CR1 scFv was isolated from *S. gordonii* using affinity chromatography. Cells from a 500 ml overnight culture (HTVG) were pelleted by centrifugation (12 000 x g, 10 minutes) and resuspended in 50 ml Ni-column binding buffer A (50 mM sodium phosphate buffer, 300 mM NaCl, 20 mM imidazole, 8 M urea; pH 7.4). The sample was then incubated overnight at 4°C with slow rotation to extract the anti-CR1 scFv. Cells were then removed by centrifugation (20 000 x g, 15 min), and the clear supernatant was passed through a nickel affinity column (His60 Ni Superflow; Clontech) three times. The column was then washed with 20 ml buffer A followed by 20 ml buffer B (50 mM sodium phosphate buffer, 8 M urea, 300 mM NaCl, 40 mM imidazole; pH 7.4). Anti-CR1 scFv were eluted with 20 ml elution buffer C (50 mM sodium phosphate buffer, 8 M urea, 300 mM NaCl, 300 mM imidazole; pH 7.4) and collected as 1 ml fractions.

To determine the redox state, the anti-CR1 scFv was precipitated with 9% (v/v) TCA plus 0.18% (v/v) sodium deoxycholate, collected by centrifugation (15 000 x g, 10 min, 4°C), washed twice with acetone, and then alkylated with 5 mM maleimide-PEG$_2$-biotin as described above. Excess maleimide was removed by TCA precipitation and acetone wash, and the resulting pellets were dissolved in 100 mM Tris (pH 7.0), 1% (v/v)
SDS, and 8 M urea. To prepare positive controls, anti-CR1 scFv were reduced with DTT prior to alkylation. Samples were analyzed by western blotting and reacted with extravidin alkaline phosphatase (Sigma-Aldrich) for detection of alkylated proteins and anti-HA monoclonal antibodies for the detection of total anti-CR1 scFv.

2.8.3 SdbA

Overnight cultures (0.5 ml) of *S. gordonii* grown in HTVG were added to 4.5 ml of pre-warmed HTVG and grown to an OD$_{600}$ of 0.8. The cells from a 2 ml culture were collected by centrifugation (4000 x g, 10 minutes) and resuspended in 100 µl of 100 mM sodium phosphate buffer (pH 7.5) containing 2% SDS with 10 mM maleimide-PEG$_2$-biotin. Another aliquot of cells was incubated without maleimide-PEG$_2$-biotin. The cells were incubated for 30 minutes at room temperature, followed by 10 minutes at 37°C. The cell suspensions were then boiled for 5 minutes and centrifuged (12 000 x g, 10 minutes). The supernatant fluids, which contained the extracted SdbA, were analyzed by western blotting using anti-SdbA (1:1000) as the probe. To prepare for positive control, cells were incubated with 100 mM DTT in 10 mM sodium phosphate buffer (pH 7.5) for 1 hour at room temperature, and excess DTT was removed by centrifugation followed by washing with 10 mM sodium phosphate buffer. The cells were then treated with maleimide-PEG$_2$-biotin and processed as above.

2.9 DNA Cloning, Protein Expression, and Isolation of Recombinant Proteins

2.9.1 SdbA, SdbB, Sgo_1177, MsrAB, Trx-2, and TrxB

The expression vector pQE-30 (Qiagen) was used to express recombinant proteins with an N-terminal His$_6$-tag. Briefly, DNA coding for the mature SdbB, Sgo_1177, and MsrAB was PCR amplified using primers SL1157/SL1158, SL1159/SL1160, and SL1316/SL1319, respectively. The PCR products and pQE30 were digested with BamHI
and HindIII and ligated with T4 DNA ligase. The ligation DNA were transformed into
\textit{E. coli} XL1-Blue or M15 (Table 2.1). Recombinant His\textsubscript{6}-SdbB, His\textsubscript{6}-Sgo_1177, and His\textsubscript{6}-MsrAB represented the portion of proteins without the predicted N-terminal lipoprotein motif and signal sequence. SdbA was produced in \textit{E. coli} XL1-Blue as described previously (Davey \textit{et al.}, 2013). Trx-2 and TrxB were cloned from \textit{Streptococcus pyogenes} M18 into pQE30 and produced in \textit{E. coli} XL1-Blue and were kindly provided by Lee (Unpublished) (Table 2.1). The expression of the recombinant proteins was induced by the addition of 1 mM IPTG and the proteins were purified from cell lysates using affinity chromatography on His\textsubscript{66} Ni Superflow columns (Clontech Laboratories Inc.) following the manufacturer’s instructions similar to the purification of anti-CR1 scFv described above.

\subsection*{2.9.2 CcdA1 and CcdA2}

Recombinant CcdA2 were produced in \textit{E. coli} XL-1 Blue. The DNA coding for the entire CcdA2 was amplified by PCR using primers SL1096/SL1295, and the PCR product was digested with Spel and ligated to similarly digested pSecCR1 (Knight \textit{et al.}, 2008). The ligation product was amplified using phusion DNA polymerase (New England Biolabs) with the primers SL1096/SL334. The PCR product was digested with BamHI and cloned into the BamHI-EcoRV site of pQEDegP (pQE30 with a \textit{degP} insert, Lee, unpublished) generating pQE30-CcdA2. The cloning placed \textit{ccdA2} behind a His\textsubscript{6} tag and before a second His\textsubscript{6} and an HA tag sequences. The expression of recombinant CcdA2 was induced with 1 mM IPTG, and the protein was found to localize to the cytoplasmic membrane. The isolation of CcdA2 was performed as described previously with modifications (Williamson \textit{et al.}, 2015). Briefly, cells from a 500 ml culture were resuspended in 10 ml of buffer 1 (50 mM sodium phosphate buffer, 300 mM NaCl, pH 8) and were broken by sonication. Intact cells were removed by centrifugation at 5 000 x g for 10 minutes. The cell fragments were subsequently pelleted by centrifugation (29, 000 x g, 1 h, 4°C) and washed once with buffer 1. The resulting pellet was resuspended in buffer 1 containing 1% (w/v) \textit{n}-dodecylphosphocholine and incubated at 4°C for 2 h with
gentle rotation. Insoluble material was removed by centrifugation (27 000 x g, 1 h). The solubilized proteins were applied to a His\textsubscript{60} Ni Superflow column, which was equilibrated with buffer 1 containing 15 mM imidazole and 4.5 mM DPC. Following washing, the recombinant CcdA2 was eluted in 1 ml fractions using buffer 2 (20 mM sodium phosphate buffer, 40 mM NaCl, 200 mM imidazole and 4.5 mM DPC, pH 7.5).

For CcdA1, the DNA coding for the entire CcdA1 was amplified using primers SL1307/SL1308. The PCR product was digested with BglII-SpeI and ligated to BamHI-SpeI digested pQE30-CcdA2. Recombinant CcdA1 was then isolated as described above for CcdA2.

2.9.3 DsbC

DsbC was prepared as described previously with minor modifications (Maskos \textit{et al.}, 2003). Briefly, a 2.5 L culture of \textit{E. coli} JM83/pDsbC was grown at 30°C with shaking to an OD\textsubscript{600} = 1.0, followed by induction with 1 mM IPTG and further grown for 16 hours at 30°C with shaking. Cells were collected by centrifugation (5 000 x g, 10 minutes, 4°C). The pellet was resuspended in 100 ml of cold 150 mM NaCl, 50 mM Tris-HCl (pH 8.0), 5 mM EDTA containing 1 mg/ml polymyxin B and stirred for 90 minutes at 4°C to isolate DsbC. Cells were removed by centrifugation (27 000 x g, 15 minutes, 4°C) and the supernatant was dialyzed against 10 mM 3-(N-morpholino) propanesulfonic acid (MOPS) (pH 7.0). The supernatant was then applied to a diethylaminoethyl (DEAE) sepharose (GE Healthcare) column (50 ml, 1.5 x 30 cm) and DsbC was eluted with a 500 ml linear NaCl gradient (0 mM to 400 mM) collected as 5 ml fractions. Fractions were analyzed by SDS-PAGE.

2.10 Antibody Production and Purification

Purified recombinant SdbB was used to raise an anti-SdbB antibody in mice using a protocol similar to that described for SdbA previously (Davey \textit{et al.}, 2013). Briefly, SdbB was incubated with 10% aluminum hydroxide gel (Sigma) at 4°C for 24 h. The
mixture (10 μg SdbB) was injected into the peritoneal cavity of 4 weeks old, female, BALB/c mice (n = 5) on days 1, 14, and 21. On day 48, the animals were euthanized, and blood was collected by cardiac puncture. Blood samples were incubated at 37°C for 1 h and then at 4°C overnight. Samples were centrifuged (10 000 x g, 10 minutes) and serum was collected and stored at -20°C. Anti-Sgo_1177 and anti-MsrAB were produced using the same protocol.

To prepare the antibody for immuno-precipitation, anti-SdbB antiserum (3 ml) was precipitated with 40% saturation of (NH₄)₂SO₄ and the precipitated antibodies were dialyzed against PBS (phosphate buffered saline, pH 7.4). The antibodies were then affinity purified using SdbB-coupled cyanogen bromide (CNBr)-activated Sepharose 4B beads (GE Healthcare, Life Sciences, Mississauga, ON, Canada), which were prepared as follows. Purified recombinant SdbB (5 mg) was coupled to CNBr-activated Sepharose (0.3 g) at 4°C with slow rotation for 18 h. Following coupling, the beads were washed once with coupling buffer (0.1 M NaHCO₃, 0.5 M NaCl, pH 8.3) and excess reactive sites were blocked with 0.1 M Tris-HCl, pH 8.0. The beads were then washed five times with 0.1 M acetic acid, 0.5 M NaCl, pH 3.5 followed by another five times with 0.1 M Tris-HCl, 0.5 M NaCl, pH 8.8. The SdbB-Sepharose beads were packed into a 3 ml syringe and used to affinity-purify the anti-SdbB antibodies prepared above (Ed Harlow, 1988). Briefly, anti-SdbB antibodies were passed through the column 3 times followed by two washes each with 20 ml (10 mM Tris-HCl, pH 7.5) and 20 ml (10 mM Tris-HCl, pH 7.5, 0.5 M NaCl). The anti-SdbB antibodies were eluted from the column with 20 ml of 100 mM glycine (pH 2.5) and neutralized immediately with 1 ml of 1 M Tris-HCl (pH 8). The quality and quantity of eluted anti-SdbB antibodies were assessed using SDS-PAGE and showed 95% purity and had a protein concentration of 276 μg/ml.

2.11 Preparation of Oxidized and Reduced Recombinant Proteins

To prepare fully oxidized proteins, samples were incubated in the oxidation buffer (50 mM oxidized glutathione, 100 mM Tris-HCl, pH 8.8, 200 mM KCl, 1 mM EDTA) for 1 hour at room temperature. Samples were then dialyzed against 100 mM sodium
phosphate buffer (pH 7) to remove the unreacted glutathione. CcdA1 and CcdA2 were oxidized similarly but in the presence of 3 mM DPC. Excess glutathione was removed from CcdA1 and CcdA1 using PD-10 desalting columns (Sephadex G-25 column; GE Life Sciences) equilibrated with 50 mM sodium phosphate buffer (pH 7) containing 3 mM DPC.

To fully reduce the purified proteins, samples were incubated with 50 mM DTT for 30 minutes on ice. After incubation, DTT was removed by passing the samples through PD-10 columns (Inaba and Ito, 2002). Reduced CcdA1 and CcdA2 were similarly prepared but in the presence of 3 mM DPC. The complete oxidation and reduction of the recombinant proteins were confirmed by reaction with Ellman’s reagent 5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB) (Sigma) and by alkylation with maleimide-PEG2-biotin (Winther and Thorpe, 2014).

2.12 DTNB Assay

To test the complete oxidation and reduction of the recombinant proteins and to determine the solvent accessibility of the active site cysteines of SdbB, Ellman’s reagent 5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB) was used as described previously (Davey et al., 2016a). Briefly, 1 ml sample containing 15 μM recombinant protein in 0.1 M sodium phosphate buffer (pH 8.0), and 200 μM DTNB was mixed and the absorbance was recorded at 412 nm. For the denatured SdbB_{C81A} sample, the protein was denatured with 6 M guanidine-HCl in 0.1 M sodium phosphate buffer (pH 8.0) at room temperature for 24 h. Guanidine-HCl was removed by PD-10 column chromatography. The recovered denatured SdbB_{C81A} was assayed as described above.

2.13 Enzyme Assays

2.13.1 Oxidase Assay

Oxidase activity of TDORs was analyzed in the RNase A refolding assay as
described previously (Daniels et al., 2010; Davey et al., 2013). To prepare the substrate, 5 mg/ml of RNase A (Sigma) was reduced and denatured at room temperature in 100 mM Tris-acetate buffer (pH 8) containing 2 mM EDTA, 6 M guanidine-HCl, and 0.14 M DTT. The next day, DTT and guanidine-HCl were removed using a PD-10 column. Oxidase assay was performed in 1 ml volumes containing 10 µM of oxidized recombinant TDORs (SdbA, SdbB, Sgo_1177, CcdA1, or CcdA2) and 10 µM of the reduced, denatured RNase A in a redox buffer (100 mM Tris-acetate pH 8, 20 mM oxidized glutathione, 100 mM reduced glutathione, 2 mM EDTA). The sample was incubated for 2 minutes at room temperature followed by the addition of 4.5 mM cCMP. The cleavage of cCMP by the refolded RNase A was monitored at absorbance 296 nm. A second sample was prepared by omitting the TDORs from the reaction mixtures.

2.13.2 Reductase Assay

Reductase activity of TDORs was assessed using the insulin precipitation assay (Daniels et al., 2010). First, 2 mg/ml of insulin stock was prepared by adding 20 mg of insulin to 7 ml of 100 mM potassium acetate, pH 7.5. The pH was adjusted to 2.5 using 1 M HCl and rapidly titrated to pH 7.5 with 1 M KOH. The volume of the solution was adjusted to 10 ml with potassium acetate and stored in aliquots at -80°C. Reductase assay was performed in 1 ml volumes containing 10 µM of the reduced TDORs (DsbC, SdbA, SdbB, Sgo_1177, CcdA1, CcdA2) and 1 mg/ml of insulin, 350 µM DTT, and 2 mM EDTA. Reductase activity was assayed by monitoring the turbidity of the solution at OD₆₀₀ nm due to precipitation of the reduced β chain of insulin. Heat inactivated controls were prepared by boiling the recombinant proteins for 10 minutes before applying them in the assay. A second control sample was prepared by omitting the TDORs from the reaction mixtures.
2.13.3 Isomerase Assay

Isomerase activity of TDORs was assessed using scrambled RNase A as the substrate (Hiniker et al., 2005). First, 5 mg/ml of reduced, denatured RNase A (rdRNase A) was prepared as described above. The scrambled RNase A (sRNase A) was prepared by adding 50 µM of rdRNase A to 50 µM copper sulfate in the presence of 2 mM H₂O₂ and 50 mM sodium phosphate buffer, pH 7.0. After 30 minutes at room temperature, copper sulfate and H₂O₂ were removed using a PD-10 column. Isomerase assay was performed in 1 ml volumes containing 10 µM of the reduced recombinant TDORs and 10 µM of the sRNase A in 100 mM sodium phosphate buffer (pH 8) and 2 mM EDTA. The sample was incubated for 2 minutes at room temperature followed by the addition of 4.5 mM cCMP. The cleavage of cCMP by the refolded RNase A was monitored at absorbance 296 nm. Heat inactivated controls and samples without TDOR were prepared as described above.

2.13.4 Methionine Sulfoxide Reductase Assay

Methionine sulfoxide reductase assay was evaluated by monitoring the oxidation of NADPH (Si et al., 2015). Briefly, 10 µM of reduced MsrAB was added to a solution containing 4 µM reduced thioredoxin reductase (TrxB), 250 µM NADPH (Sigma), 100 mM methionine sulfoxide (MetO, Sigma), 1 mM EDTA, 50 mM Tris-HCl (pH 7.5) and 40 µM of the test TDOR. The assays were performed at room temperature in 100 µl volumes in a 96-well plate (model 3635, UV transparent flat bottom microplate, CORNING). NADPH oxidation was monitored at A₃₄₀ nm using a microplate reader (Synergy HT; BioTeK, USA). Samples with no TDORs, no MsrAB, or no MetO were used as controls. The activity of MsrAB with SdbB or Sgo_1177 was determined by calculating the decrease in A₃₄₀ nm per minute. The amount of oxidized NADPH was calculated using the following equation: nmol NADPH/min/mg of MsrAB = (A₃₄₀ nm/min)/0.00622.
2.14 Enzyme Kinetics

2.14.1 SdbA

The enzyme kinetics of RNase A refolding by SdbA was performed in 96-well plates (model 3635, UV transparent flat bottom microplate, CORNING). In a 100 µl, the reaction contained 5 to 30 µM of reduced denatured RNase A substrate, 10 µM of oxidized recombinant SdbA, 100 mM Tris-acetate (pH 8), 0.2 mM oxidized glutathione, 1 mM reduced glutathione, 2 mM EDTA, and 4.5 mM cCMP. The reactions were started by the addition of cCMP and monitored over 30 minutes at absorbance 296 nm. The activity was determined after subtracting the readings in control wells in which SdbA was omitted. The concentration of CMP was then calculated using the extinction coefficients ($\varepsilon = 0.38$ mM$^{-1}$ cm$^{-1}$) at 296 nm, pH 8.0. The concentration of cCMP was obtained by subtracting the calculated CMP from the initial cCMP concentration (4.5 mM). Next, the concentration of active, renatured RNase A (E_t in µM) at each time point was calculated using the equation described by Lyles and Gilbert (1991): $E_t = vt\{k_{cat}[cCMP_i]/([cCMP]_i + K_{me} (1 + [CMP]_i/K_i))\}$, where vt is the reaction velocity at time point t, k_{cat} is the turnover number for fully active RNase A [196 µmol of cCMP min$^{-1}$ (µmol of RNase)$^{-1}$], K_{me} is the K_M for cCMP under these conditions (8.0 ± 0.5 mM), and K_i is the inhibition constant for CMP (2.1 ± 0.4 mM). The calculated concentration of active, renatured RNase (Ei in µM) was plotted against the time for each substrate concentration (5 to 30 µM of reduced denatured RNase A) and linear regression was performed. The resulting slopes (initial velocity) were plotted against the concentration of substrate and analyzed by the Michaelis Menten analysis using GraphPad Prism 7 (GraphPad Prism Software Inc.).

2.14.2 MsrAB

The enzyme kinetics of methionine sulfoxide reductase was also performed in 96-well plates. In a 100 µl reaction, it contained 20 to 160 µM of reduced SdbB or
Sgo_1177, 10 μM of reduced MrsAB, 4 μM reduced thioredoxin reductase (TrxB), 250 μM NADPH (Sigma), 100 mM MetO (Sigma), 1 mM EDTA, and 50 mM Tris-HCl (pH 7.5) (Si et al., 2015). The reaction was started by the addition of MetO and the oxidation of NADPH was monitored at 340 nm for 30 minutes at room temperature. The activity was determined after subtracting the readings in control wells where MrsAB was omitted. The concentration of NADPH was then calculated using the extinction coefficient (ε = 6220 M⁻¹ cm⁻¹) at 340 nm. The concentrations of NADP were obtained by subtracting the calculated NADPH from the initial NADPH concentration (250 μM) and were plotted against the time for each substrate concentration (20 to 160 μM of reduced TDOR) and linear regression was performed. The resulting slopes (initial velocity) were plotted against the concentration of substrate and analyzed by the Michaelis Menten analysis using GraphPad Prism 7 (GraphPad Prism Software Inc.).

2.15 Disulfide Exchange Reactions

Disulfide exchange reactions between proteins were performed as described previously with modifications (Inaba and Ito, 2002). Briefly, oxidized and reduced proteins (10 μM each) were added to 1 ml solutions containing 50 mM sodium phosphate buffer (pH 8.0), 100 mM NaCl, and 0.5 mM EDTA and incubated at room temperature. Aliquots (200 μl) of the reaction were removed at indicated times and the reaction was terminated by TCA precipitation. Proteins were then alkylated with 5 mM maleimide-PEG₂-biotin (525 Da) as described above and excess maleimide-PEG₂-biotin was removed by TCA precipitation and acetone wash. Pellets were then resuspended in 100 mM Tris- HCl (pH 7.0) containing 1% (w/v) SDS and analyzed by western blotting.

Disulfide exchange reactions between CcdA and other TDORs (SdbA, SdbB, and Sgo_1177) or MrsAB were performed as described above except the protein concentration was decreased to 1 μM and 4.5 mM DPC was included in the reaction.
2.16 SdbA-SdbB Complex Formation in *S. gordonii* and Immunoprecipitation

To prepare samples containing the SdbA-SdbB complex, cells from 500 ml HTVG overnight cultures of *S. gordonii SdbAC89A4degP* mutant (Davey *et al.*, 2016a) were pelleted by centrifugation (12,000 x g, 10 minutes), resuspended in 5 ml of 4% SDS and incubated for 1 h at room temperature with slow rotation. The cell suspension was centrifuged (20,000 x g, 15 minutes) and the clear supernatant was saved. SDS was removed by the addition of 50 mM KCl on ice for 30 minutes followed by centrifugation at 15,000 x g, 15 minutes, 4°C (Zhou *et al.*, 2012). The sample was chromatographed onto a gel filtration column (Sephadex G-50, 2.5 x 100 cm, Life Sciences, Mississauga, ON, Canada) using 10 mM Tris-HCl (pH 7.5) containing 100 mM NaCl as the eluent. Fractions of 5 ml volumes were collected and analyzed by western blotting using anti-SdbA antibodies as the probe. Fractions containing SdbA mixed disulfide complexes were pooled and used as the source for SdbA-SdbB complex analysis and immunoprecipitation (described below).

The affinity purified anti-SdbB antibodies were used to prepare an antibody-protein A magnetic beads (Sure Beads, Bio-Rad Laboratories, Mississauga, ON, Canada) following the manufacturer’s instructions with modifications. Briefly, 36 µl of anti-SdbB (10 µg) was rotated with 1 mg of protein A magnetic beads in 200 µl of PBST for 1 hour at room temperature. Beads were magnetized and washed 3 times with PBST. Triton X-100 (1% v/v) and EDTA (1 mM final concentration) were added to 500 µl of the sample containing SdbA-SdbB complex, and the mixture was rotated with the beads at 4°C. The next day, the beads were magnetized and washed. SdbA-SdbB complex was eluted with 20 µl of 20 mM glycine (pH 2.0) at room temperature and neutralized immediately with 2 µl of 1 M sodium phosphate buffer (pH 7.4). The eluted SdbA-SdbB complex was analyzed by SDS-PAGE and immunoblotting.
2.17 *In vitro* SdbA-SdbB Complex Formation

An equimolar (10 μM) of purified recombinant cysteine point mutant variants of SdbA (SdbAC86A or SdbAC89A) and SdbB (SdbBC81A and SdbBC84A) were incubated at 37°C for 30 minutes in 50 mM sodium phosphate buffer (pH 7.5) containing 10 mM K₃Fe(CN)₆. SdbA or SdbB variants were also incubated individually as controls. Samples were analyzed by SDS-PAGE.

2.18 Sequence Analysis

To identify SdbA redox partners in *S. gordonii*, the *Bacillus subtilis* 168 ccdA was used as the query for a BLASTP search in *S. gordonii* Challis DL-1. For promoter analysis, the sequences were analyzed for transcriptional start site using the Neural Network Promoter Prediction tool at the Berkeley Drosophila Genome Project (http://www.fruitfly.org/seq_tools/promoter.html) (Reese, 2001). Rho-independent terminators were analyzed using TransTermHP prediction tools (http://transterm.cbcb.umd.edu/tt/Streptococcus_gordonii_Challis_substr_CH1.tt) (Kingsford *et al.*, 2007).

For prediction of membrane-spanning regions in proteins, the sequences were analyzed using TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0/), and the data were visualized using PROTTER (http://wlab.ethz.ch/protter/start/) (Omasits *et al.*, 2014; Sonnhammer *et al.*, 1998). For prediction of protein subcellular localization, the sequences were analyzed using protein-sorting tools such as LipoP (http://www.cbs.dtu.dk/services/LipoP/), SignalP (http://www.cbs.dtu.dk/services/SignalP/), and PSORTdb database (http://db.psort.org) (Juncker *et al.*, 2003; Nielsen *et al.*, 1997; Peabody *et al.*, 2016). To identify homologs of SdbB, Sgo_1177, CcdA1, and CcdA2 in other Gram-positive species, a DELTA-BLAST search was carried out using either SdbB (WP_008808639.1), Sgo_1177 (WP_012000580.1), CcdA1 (WP_012000582.1), or CcdA2 (WP_012000576.1) as the query sequence. Clustal Omega was used to generate the multiple sequence alignment.
data and identity percentage (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 2011).

2.19 Statistical Analysis

The results were analyzed by one-way ANOVA, followed by Tukey post-tests using GraphPad Prism version 7 (GraphPad Software Inc., La Jolla, California).
Chapter 3. Results

3.1 Identification and Characterization of Redox Partners of the Thiol-Disulfide Oxidoreductase SdbA in *S. gordonii*

Previously, our laboratory identified a TDOR in *S. gordonii* named SdbA (*Streptococcus* disulfide bond protein A) that forms disulfide bonds in substrate proteins (Davey *et al.*, 2013). *sdbA* mutants were defective in autolysis, extracellular DNA (eDNA) release, bacteriocin production, and genetic competence, but formed more biofilm (Davey *et al.*, 2013). SdbA shares little sequence homology to DsbA or BdbD. Homologs of SdbA appear to be present in a range of Gram-positive bacteria that lack DsbA (Davey *et al.*, 2013). SdbA is able to introduce a disulfide bond into its natural substrate, the major autolysin AtlS, with a single C-terminal cysteine in its CPDC active site; further suggesting SdbA is quite different from DsbA (Davey *et al.*, 2015a).

Interestingly, inactivation of *sdbA* up-regulated the CiaRH two-component regulatory system in *S. gordonii* leading to the repression of the ComDE quorum sensing system, which resulted in the enhanced biofilm formation and the lack of bacteriocin production (Davey *et al.*, 2016a; Davey *et al.*, 2015b).

In the following section, the identification and characterization of the SdbA redox partners SdbB and CcdA2 in *S. gordonii* will be described. The results indicate that SdbB together with CcdA2 constitutes the main pathway for SdbA reoxidation (Jalal *et al.*, 2019).

3.1.1 Identification and Genetic Organization of SdbA Redox Partners

The initial approach to find the redox partner(s) of SdbA was to blast-search the sequenced genome of *S. gordonii* using *E. coli* DsbB and *B. subtilis* BdbC as queries. The search yielded no potential candidates even under low stringency conditions. Because SdbA has homology to ResA in *B. subtilis* and ResA interacts with the integral membrane protein CcdA (Erlendsson *et al.*, 2003), additional search using *B. subtilis* CcdA as the
query was performed. The search found two CcdA proteins, CcdA1 and CcdA2, in S. gordonii. CcdA1 and CcdA2 show 23.7% and 27.1% sequence identity to the transmembrane domain of E. coli DsbD, respectively (Missiakas et al., 1995). CcdA1 and CcdA2 proteins also show 21.43% and 18.3% sequence identity to the E. coli membrane protein DsbB (Missiakas et al., 1993). CcdA1 and CcdA2 are predicted to be integral membrane proteins with six transmembrane regions. CcdA1 and CcdA2 both consist of 236 amino acids and are highly homologous with 69.8% sequence identity (Figures 3.1A, C, and D).

Examination of the genetic locus of ccdA1 revealed that it has two genes located immediately downstream, namely sgo_1177 and sgo_1176 (msrAB), which are annotated as a TDOR and a methionine sulfoxide reductase (MsrAB), respectively (Figure 3.1E). The ccdA2 locus contains one gene, sgo_1171 (sdbB), immediately downstream that is annotated as another TDOR (Figure 3.1E). Sgo_1171 (SdbB) and Sgo_1177 was previously identified as homologs of SdbA that contained the characteristic CXXC active site of TDORs and the conserved cis-proline residue (Figure 3.1B) (Davey et al., 2013). Both Sgo_1171 (SdbB) and Sgo_1177 are predicted to be lipoproteins consisting of 185 and 187 amino acids, respectively, with 41.62% sequence identity (Figure 3.1B).

In silico analysis identified predicted promoters and rho-independent transcription terminators on the ccdA1 and ccdA2 loci. For the ccdA1 locus, the promoter and terminator were located upstream of sgo_1181 and downstream of sgo_1176 (msrAB), respectively (Figure 3.1E). The promoter and terminator of the ccdA2 locus were located upstream and downstream of sgo_1175 and sgo_1171 (sdbB), respectively.

A recent study showed that sgo_1180, ccdA1, sgo_1177, and msrAB were co-transcribed, suggesting these genes together with sgo_1181 form a five-gene operon (Haase et al., 2015). The same study also showed that sgo_1175, sgo_1174, and ccdA2 were also co-transcribed (Haase et al., 2015). In the current work, transcript analysis confirmed these findings and also showed that ccdA2 and sgo_1171 (sdbB) were co-transcribed (Figure 3.2), suggesting that the ccdA2 locus is a four-gene operon. Based on the findings described below, we named Sgo_1171 as SdbB (Streptococcus disulfide bond protein B).
Figure 3.1 Genetic organization and amino acid sequences analysis for redox partners of SdbA in *S. gordonii*.

A. Sequence alignment of the integral membrane proteins CcdA1 and CcdA2. **B.** Sequence alignment of the thioredoxin-like lipoproteins Sgo_1171(SdbB) and Sgo_1177 of *S. gordonii*. The conserved cysteines and *cis*-proline are indicated in the box, and the six transmembrane regions are underlined. **C** and **D.** A hypothetical topology model of CcdA1 and CcdA2 proteins in *S. gordonii*. The membrane-spanning domain of CcdA1 and CcdA2 proteins from *S. gordonii* is predicted to form six transmembrane segments (TMSs) with three cytoplasmic loops and two extracytoplasmic loops. The conserved cysteine residues located in TMS 1 and 4 (CcdA1: C_{32} and C_{147}; CcdA2: C_{22} and C_{147}) as well as the conserved *cis*-proline residue (P_{183}) are indicated. The hypothetical topology model was obtained based on the data from TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0) and visualized using PROTTER (http://wlab.ethz.ch/protter/start/). **E.** A schematic diagram describing the genetic locus of the two thioredoxin-like lipoproteins, Sgo_1171 (SdbB) and Sgo_1177, and their integral membrane proteins, CcdA1 and CcdA2. Sequence analyses of these two genetic loci indicate two potential promoter-like regions, upstream of *sgo_1181* and *sgo_1175* gene, and two rho-independent transcriptional terminator regions downstream of *sgo_1176* and *sgo_1171*. Arrowhead indicates the location of the primers used for RT-PCR. HK, histidine kinase; RR, response regulator.
Figure 3.2 Reverse Transcription (RT)-PCR analysis of *sgo_1177ccdA1* and *sdbBccdA2* operons in *S. gordonii*.

A. RT-PCR analysis of the sgo_1177ccdA1 transcripts. B. RT-PCR analysis of the sdbBccdA2 transcripts. Primers used are indicated at the bottom of the gels and indicated in Figure 3.1E. C. Amplification of 16S rRNA. Primer pairs 679:525, which amplify the 16S rRNA, was used for the positive control (the genomic (g)DNA), negative control (the DNA-free RNA), and test sample (the complementary (c)DNA). M: 1 kb DNA ladder; bp: base pairs.
3.1.2 Confirmation of the Knockout and Complemented Mutant Strains

To help determine whether genes in the *ccdA1* and *ccdA2* loci play a role in disulfide bond formation in *S. gordonii*, single-gene and double-gene inactivation mutants were constructed by insertional inactivation. This method enables the inactivation of a target gene by an antibiotic resistance cassette without interruption of the upstream or downstream genes. These mutants are listed in Table 2.1. The inactivation of *ccdA1*, *ccdA2*, and *ccdA1ccdA2* was verified by PCR or RT-PCR (Figure 3.3). The *ccdA1* mutant was used as the background strain to construct *sdbBccdA1* and *sgo_1177ccdA1* mutants, and the *ccdA2* mutant was used as a background strain to construct *ccdA1ccdA2*, *sdbBccdA2*, and *sgo_1177ccdA2* double mutants.

To further confirm gene inactivation, western blotting was performed. The *sdbB*, *sdbBccdA2*, and *sdbBsgo_1177* mutants showed a complete absence of SdbB protein that was restored in the *sdbBccdA2*-complemented mutant (Figure 3.4). Interestingly, *ccdA2* and *ccdA1ccdA2* mutants produced more SdbB protein compared to the parent strain (Figure 3.5). The *sgo_1177*, *sdbBsgo_1177*, and *sgo_1177ccdA1* mutants also showed a complete loss of Sgo_1177 production that was restored in the *sgo_1177ccdA1*-complemented mutant (Figure 3.4). The level of Sgo_1177 in the *ccdA1* and *ccdA1ccdA2* mutants appeared to be more than that in the parent strain (Figure 3.5).

The production of MsrAB was abolished in the *msrAB* mutant. The production of MsrAB by the *ccdA1* mutant was markedly increased compared to the parent strain (Figure 3.4 and 3.5). The *msrAB* mutant will be studied in section 3.2.
Figure 3.3 PCR and RT-PCR confirmation of *ccdA* mutants.

A. Schematic diagram depicting the genetic loci of *ccdA1* and *ccdA2*. Arrowheads indicate the location of the primers used for PCR or RT-PCR in B, C, and D. The sizes of the PCR products are shown. The size of the PCR product from primer pair 1160:1050 from the parent strain is 1835 bp. B. PCR confirmation of *ccdA1* mutant using templates of DNA from the *ccdA1* mutant and parent SecCR1. C. RT-PCR using cDNA from the *ccdA2* mutant and the parent strain SecCR1 as templates. D. PCR confirmation of *ccdA1ccdA2* double mutant. M: 1 kb DNA ladder; kb: kilobases.
Figure 3.4 Immunoblot analysis of SdbB, Sgo_1177, and MsrAB in the parent, knock-out mutant, and complemented mutant strains.

The production of SdbB, Sgo_1177, and MsrAB in *S. gordonii* strains was probed with anti-SdbB (1:1000), anti-Sgo_1177 (1:1000), and anti-MsrAB (1:500) antisera. Duplicate samples were stained with Coomassie brilliant blue (CBB) or reacted with the anti-PrsA antisera (1:4000) to show equal protein loading.
Figure 3.5 Immunoblot analysis of SdbB, Sgo_1177, and MsrAB in the parent and ccdA mutant strains.

Detection of SdbB, Sgo_1177, and MsrAB in the parent and mutant strains of *S. gordonii* using antisera described in Figure 3.4 above. Equal loading of proteins between samples was indicated by the reaction to the anti-PrsA antisera and Coomassie blue (CBB) staining.
3.1.3 The sdbBccdA2 Double-Gene Mutant Exhibits a Pleiotropic Mutant Phenotype Identical to the sdbA Mutant

I reasoned that inactivation of the SdbA redox partner would produce mutants with the same phenotypes as the sdbA mutant. Thus, the mutants were tested for sdbA-associated phenotypes, namely autolysis, eDNA release, bacteriocin production, and genetic competence. None of the single-gene mutants displayed any observable defect in eDNA release, bacteriocin production, and genetic competence with the exception of ccdA1 and ccdA2 single-gene mutants, which were partially defective in autolysis, and the sdbB mutant, which was slightly defective in autolysis (Figures 3.6). Interestingly, five of the double-gene mutants displayed some phenotypes similar to the sdbA mutant. In particular, the sdbBccdA2 mutant produced all of the phenotypes displayed by the sdbA mutant (Figures 3.6).

The sdbBsgo_1177 mutant was defective in eDNA release and bacteriocin production but not autolysis and genetic competence (Figures 3.6). The sdbBccdA1 mutant was defective in autolysis but not eDNA release, bacteriocin production, and genetic competence. RT-PCR analysis showed that the mutation in sdbBccdA1 was non-polar (Figure 3.7). The sgo_1177ccdA2 mutant was partially defective in autolysis but not in other phenotypes. The ccdA1ccdA2 mutant was only defective in bacteriocin production. Thus, it is clear from the above results that the only mutant that duplicated phenotypes observed in the sdbA mutant is the sdbBccdA2 mutant suggesting that SdbB and CcdA2 may be redox partners of SdbA. The phenotypes exhibited by the sdbBccdA2 mutant were reversed by sdbBccdA2 complementation (Figures 3.6). RT-PCR analysis of the sdbBccdA2 mutant showed that the genes immediately upstream and downstream of the mutated genes were transcribed, indicating that the mutations had no polar effect (Figure 3.7). The above results established that SdbB and CcdA2 are responsible for the sdbA-associated phenotypes.
Figure 3.6 Phenotypic analysis of single- and double-gene mutants of *S. gordonii*.
A. Autolysis of the single-gene mutants. The parent strain and *sdbA* mutant serve as controls. B. Autolysis of the double gene mutants compared to the parent and *sdbA* mutant. Autolysis of stationary phase *S. gordonii* cells was monitored by measuring the OD_{600} every hour for four hours. Each point represents the mean ± SD of three independent experiments. C. Extracellular DNA (eDNA) release from stationary phase cultures of the parent and mutant strains analyzed on a 0.8% agarose gel. D. Bacteriocin production as assessed by growth inhibition of the target strain *S. mitis*. Filter-sterilized supernatant of *S. gordonii* strains was inoculated with the indicator strain *S. mitis* and the growth of the indicator strain was assessed by measuring the OD_{600} after 10 h. E. Transformation frequency of *S. gordonii* strains. Transformation frequency was calculated as the percentage of rifampin resistant transformants divided by the total CFU/ml. In panels A, B, D, and E, results are means ± SD of three independent experiments. *: P<0.001; one-way ANOVA. SecCR1: parent strain. *sdbBccda2* compl.: *sdbBccda2*-complemented mutant.
Figure 3.7 RT-PCR confirmation of *sdbBcedA1* and *sdbBcedA2* mutants.

A. Schematic diagram describing the genetic locus of *sdbB*, *ccdA1*, and *ccdA2* with the upstream and downstream genes. Arrowheads indicate the location of the primers used for RT-PCR. The lengths of PCR products are shown. B. Confirmation of *sdbBcedA1* and *sdbBcedA2* mutants by RT-PCR using combinations of primers described in A and templates of cDNA from *sdbBcedA1* and *sdbBcedA2* mutants or the parent strain.
3.1.4 AtlS in sdbBccda2 Mutant Lacks Activity and a Disulfide Bond

Previously, the major autolysin AtlS was shown to be a natural substrate of SdbA (Davey et al., 2013). SdbA forms an intra-molecular disulfide bond between the two cysteine residues in AtlS that is required for proper folding and autolytic activity (Davey et al., 2013). Thus, examination of the activity and redox state of AtlS would provide evidence of the role of redox partners in protein oxidation by SdbA.

The activity of AtlS was examined by the zymogram assay. The parent strain showed AtlS activity bands at 130 kDa (intact) and 90 kDa (processed), and the sdbA mutant showed a much-diminished activity band consistent with previous findings (Davey et al., 2013; Davey et al., 2015a). The sdbBccda2 and sdbBccda2degP mutants also showed a reduced activity (Figure 3.8). The reason for including the triple mutant sdbBccda2degP in the analysis was to ensure that the results were not due to the different levels of SdbA in the mutants. My results below (Section 3.1.6; Figure 3.12) showed that the level of SdbA in the sdbBccda2 mutant was reduced, and in the sdbBccda2degP mutant, it was comparable to that in the parent strain. Western blotting results confirmed that AtlS was produced by the sdbBccda2, sdbBccda2degP, and sdbA mutants. Western blotting results also revealed that the AtlS protein in the sdbBccda2 and sdbBccda2degP mutants was not processed similar to that in the sdbA mutant (Figure 3.8). When sdbB and ccdA2 were returned to the sdbBccda2 mutant, AtlS activity and processing were restored (Figure 3.8). These results confirmed that the lack of autolysis in the sdbBccda2 mutant was due to a defect in the activity of AtlS.
Figure 3.8 The major autolysin AtlS is inactive in the \textit{sdbBccdA2} and \textit{sdbBccdA2degP} mutants.

Zymogram analysis (left) of the autolytic activity of the major autolysin AtlS. The zymogram is shown as an inverted image of a digital scan. Western blotting shows the total AtlS in samples used in zymogram analysis. \textit{sdbBccdA2} compl.: \textit{sdbBccdA2}-complemented mutant.
Next, the redox state of AtlS was investigated. AtlS from the parent strain was alkylated by maleimide-PEG₂-biotin and detected as a 130 kDa protein with either anti-AtlS or extravidin-AP to detect biotinylated proteins. The intensity of the AtlS band detected with extravidin-AP was markedly increased in samples reduced with dithiothreitol (DTT) prior to alkylation indicating that AtlS from the parent strain contains a disulfide bond (Figure 3.9A and B). In contrast, the intensity of the 130 kDa AtlS band from the sdbB_{CcdA2} and sdbB_{CcdA2degP} mutants remained the same with or without DTT treatment (Figure 3.9A and B), suggesting that AtlS from these mutants lacked a disulfide bond. The same was observed in the sdbA mutant (Figure 3.9A and B). The above results showed that SdbB and CcdA2 are required for disulfide bond formation in AtlS, the natural substrate of SdbA.

3.1.5 SdbB and CcdA2 Possess Oxidase Activities

The above results collectively suggest that SdbB and CcdA2 are redox partners of SdbA. For these proteins to function as a redox partner of SdbA, they must possess oxidase activities. To provide support of this notion, recombinant SdbB and CcdA2 were produced and purified from *E. coli* (Figure 3.10A) and assayed in the RNase A refolding assay (Figure 3.10B). Recombinant SdbA was also purified and assayed as a positive control. The results clearly showed that SdbB and CcdA2 were able to refold denatured and reduced RNase A indicating oxidase activities (Figure 3.10B).

The ability of SdbB and CcdA2 to reoxidize SdbA in a disulfide exchange reaction was further examined. The results showed that SdbB could reoxidize reduced SdbA (Figure 3.11A). Similarly, CcdA2 was able to reoxidize SdbA (Figure 3.11B). This reoxidation of SdbA required oxidized SdbB or CcdA2 and was not a result of spontaneous oxidation since reduced SdbA alone (Figure 3.11C) or incubation with reduced SdbB (Figure 3.11D) or reduced CcdA2 (Figure 3.11E) did not result in the reoxidation of SdbA. Collectively, these results indicate that SdbB and CcdA2 possess the enzymatic capability to reoxidize SdbA.
Figure 3.9 The major autolysin AtlS lacks a disulfide bond in the *sdbBccdA2* and *sdbBccdA2degP* mutants.

A. Alkylation of AtlS. AtlS in samples were alkylated with maleimide-PEG$_2$-biotin and detected by either extravidin-alkaline phosphatase (AP) or anti-AtlS for the total amount of AtlS. From each strain, positive control was prepared by reducing the sample with DTT prior to alkylation. **B.** Densitometry analysis of AtlS alkylation using Image J. The intensity of the 130 kDa AtlS band detected by extravidin-AP is divided by that detected by anti-AtlS. Results are means ± SD of three independent experiments. NS: not significant; $P \geq 0.05$.
A.

<table>
<thead>
<tr>
<th></th>
<th>Anti-AtlS</th>
<th>Extravidin-AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTT</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Maleimide</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Parent SecCR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdbA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdbBccdA2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdbBccdA2degP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.

![Graph](graph.png)

Relative intensity (extravidin-AP/anti-AtlS)

- SecCR1
- sdbBccdA2
- sdbA
- sdbBccdA2degP

p = 0.0089

NS
Figure 3.10 SdbB and CcdA2 exhibit oxidase activity.
A. SDS-PAGE of recombinant SdbA, SdbB, and CcdA2 purified from *E. coli*. M: prestained protein markers. B. Oxidative folding of reduced, denatured RNase A by SdbB and CcdA2. SdbA was included as a positive control, and reduced, denatured RNase A alone was used as a negative control. The data are means ± SD of three experiments.
Figure 3.11 Oxidation of SdbA by oxidized SdbB or CcdA2.

Disulfide exchange reactions between SdbA and its redox partners, SdbB or CcdA2. Oxidized and reduced proteins were incubated at room temperature and the reaction was terminated at indicated times. Proteins were alkylated with maleimide-PEG2-biotin (525 Da) and analyzed by western blotting. A. Reoxidation of SdbA by SdbB. B. Reoxidation of SdbA by CcdA2. C. Lack of reoxidation of reduced SdbA alone. D. Lack of reoxidation of reduced SdbA by reduced SdbB. E. Lack of reoxidation of reduced SdbA by reduced CcdA2. Reduced and oxidized SdbA alone served as a control.
3.1.6 SdB A is in a Reduced State in the sdbBccdA2 Mutant

Next, the redox state of SdB A in S. gordonii was examined. I reasoned that the inactivation of the redox partners of SdB A would have a direct impact on the redox state of SdB A in the cells. Proteins from the parent and mutant strains were prepared, alkylated, and analyzed in immunoblotting. The results showed that SdB A from the parent strain was present as an oxidized protein and it became reduced after DTT treatment (Figure 3.12A). In contrast, SdB A from the sdbBccdA2 mutant was present in a reduced form. sdbBccdA2 complementation restored SdB A to the oxidized form (Figure 3.12A). It was noted that the amount of SdB A in the sdbBccdA2 mutant was low when compared to the parent and complemented strains. Previous studies showed that the serine protease DegP degraded misfolded anti-CR1 single chain antibody, a protein required two disulfide bonds for stability, in S. gordonii (Davey et al., 2013; Davey et al., 2015a). Thus, degP was mutated in the sdbBccdA2 mutant and also in the parent strain as a control. Inactivation of degP in the sdbBccdA2 mutant returned SdB A to a level similar to that in the parent and complemented strains (Figure 3.12B). Importantly, SdB A in the sdbBccdA2degP mutant remained reduced. The degP mutation in the parent strain did not change the redox state of SdB A, indicating that the alteration of SdB A redox state in the sdbBccdA2degP mutant was not due to degP mutation (Figure 3.12B). SdB A in the single-gene mutants (sdbB and ccdA2 mutants) was present as an oxidized protein (Figure 3.12C).

3.1.7 SdBAC89A Variant Forms Mixed Disulfide with SdB B In vivo

To provide direct evidence that SdB A and SdB B interacted in S. gordonii, the sdbAC89AdegP mutant was used for the detection of SdB A-SdB B complex. Previous study reported that the single cysteine active site variant, SdBAC89A, formed a number of mixed disulfide complexes in this mutant (Davey et al., 2015a). Proteins were extracted from the cells and analyzed by western blotting using anti-SdB A and anti-SdB B antibodies as probes.
Figure 3.12 The redox state of SdbA in *S. gordonii* parent and mutant strains. SdbA in *S. gordonii* strains was alkylated with maleimide-PEG2-biotin (Mal) and analyzed by immunoblotting using anti-SdbA antibody as the probe. Alkylation adds 0.5 kDa per thiol to reduced SdbA, causing an upshift in migration, while oxidized SdbA will not be alkylated and migrated faster during electrophoresis. A. The redox state of SdbA in parent strain, *sdbBccdA2* mutant, and *sdbBccdA2*-complemented mutant. B. The redox state of SdbA in parent, *degP* mutant of parent, *degP* mutant of *sdbBccdA2*, and *sdbBccdA2*-complemented mutant. C. The redox state of SdbA in *sdbB*, and *ccdA2* mutants. SecCR1, parent strain, SdbA_{oxi}: oxidized form of SdbA, SdbA_{red}: reduced form of SdbA. DTT: dithiothreitol. Arrowheads indicate the position of reduced or oxidized SdbA. Results are representative of three independent experiments.
As shown in Figure 3.13 A, a number of complexes were detected by the antibodies. A band of ~40 kDa, the expected size of the SdbA (21.9 kDa)-SdbB (17.8 kDa) complex, was detected by both antibodies. This 40 kDa band as well as other complexes dissociated under reducing conditions indicating that they were disulfide-linked proteins (Figure 3.13B).

To provide further evidence that the 40 kDa band was a SdbA-SdbB complex, immuno-precipitation using anti-SdbB antibody-coupled beads was performed. The eluate was analyzed by western blotting. The results showed that eluate contained the 40 kDa band that was recognized by both the anti-SdbA and anti-SdbB antibodies (Figure 3.13C). The eluate also contained the SdbB monomer and a weak 37 kDa band, which might be the SdbB homodimer. The blot detected with anti-SdbA showed the 40 kDa band as well as an unknown 28 kDa band. Nonetheless, the recovery of the 40 kDa band by immuno-precipitation strongly indicates that it was a SdbA-SdbB complex.

3.1.8 SdbBCcdA2 Homologs Exist in Other Gram-Positive Bacteria

Homologs of *S. gordonii* SdbA were found in a number of Gram-positive bacteria that lack DsbA (Davey *et al.*, 2013). I speculated that these organisms might also have homologs of SdbBCcdA2. Because SdbB/Sgo_1177 and CcdA1/CcdA2 share high sequence homology, I searched for homologs of these proteins in Gram-positive bacteria that lack DsbA. Indeed, a blast-search identified homologs of SdbBCcdA2 and Sgo_1177CcdA1 in other Gram-positive bacteria that lacked a DsbA homolog (Figure 3.14A-C). These bacteria can be placed into two groups, one (for example, *S. pneumoniae*, *S. sanguinis*, and *Clostridium botulinum*) with both SdbBCcdA2 and Sgo_1177CcdA1, and the other (for example, *S. mutans*, and *S. pyogenes*) with only SdbBCcdA2 or Sgo_1177CcdA1 underlining diversity among these bacteria. The role of these proteins in these bacteria is largely unknown, except in *S. pneumoniae* where they are involved in a reducing pathway coping with oxidative stress (Saleh *et al.*, 2013).
Figure 3.13 SdbB forms a disulfide-linked complex with SdbAC_{89A} in S. gordonii.
A. Non-reducing blots of proteins prepared from *S. gordonii* SdbAC_{89A} probed with anti-SdbA and anti-SdbB antibodies. B. Reducing blots of proteins prepared from *S. gordonii* SdbAC_{89A} probed with anti-SdbA and anti-SdbB antibodies. C. Proteins recovered from immuno-precipitation (IP) were analyzed by western blotting. M: prestained protein markers. *: SdbA-SdbB complex. >: SdbA monomer. o: SdbB monomer. ?: unknown protein.
Figure 3.14 SdbBCcdA2 and Sgo_1177CcdA1 homologs are present in other Gram-positive bacteria that possess SdbA homolog.

A. Genetic organization of *sdbBccdA2* and *sgo_1177ccdA1* in *S. gordonii* and other Gram-positive bacteria. B. Alignment of homologs to *S. gordonii* SdbB (WP_008808639) and Sgo_1177 (WP_012000580) using Clustal Omega. The CXXC active site and conserved *cis*-proline residue are highlighted. Etrx: *Streptococcus pneumoniae* R6 (NP_358498, NP_358170); Ssa: *Streptococcus sanguinis* SK36 (YP_001035083, YP_001035078); Cbo: *Clostridium botulinum* ATCC 3502 (YP_001252806, YP_001254320). C. Alignment of homologs to *S. gordonii* CcdA2 (WP_012000576) and CcdA1 (WP_012000582). The two conserved cysteine residues are highlighted. SpCcdA, *Streptococcus pneumoniae* R6 (NP_358497, NP_358169); Ssa, *Streptococcus sanguinis* SK36 (YP_001035082, YP_001035076); Cbo: *Clostridium botulinum* A str. ATCC 3502 (YP_001252805, YP_001254319).
3.1.9 Summary

In summary, the above results showed that SdbA has two redox partners, SdbB and CcdA2. The phenotypic analysis of the single- and double-gene mutants showed that sdbBcccdA2 mutant was able to reproduce sdbA mutant phenotypes with a defect in autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release. Complementation of sdbBcccdA2 mutant restores the parental phenotypes. AtIS, the natural substrate of SdbA, was inactive and lacked a disulfide bond in the sdbBcccdA2 mutant. Both SdbB and CcdA2 possess oxidase activity and were able to reoxidize SdbA in vitro. SdbA was in a reduced state in the sdbBcccdA2 mutant and complementation restored the redox state of SdbA to the oxidized state. In sdbB or ccdA2 single-gene mutants, SdbA remains in an oxidized state. Finally, SdbA_{C89A} formed a mixed disulfide with SdbB in S. gordonii. Collectively, these results strongly support the notion that SdbB and CcdA2 are independent redox partners of SdbA and that SdbA, SdbB, and CcdA2 represent the oxidative protein folding pathway in S. gordonii.

3.2 Identification and Characterization of a Reducing Pathway in S. gordonii

In the dental plaque, S. gordonii competes with other bacterial species by producing up to 1.6 mM of hydrogen peroxide (H_2O_2) (Barnard and Stinson, 1999; Liu et al., 2011). In addition to S. gordonii, other oral bacteria, such as Streptococcus sanguinis and Streptococcus oralis, also produce H_2O_2 (Zhu and Kreth, 2012). H_2O_2 and other reactive oxygen species (ROS) can damage proteins by oxidizing cysteines and methionines (Ezratty et al., 2017). S. gordonii has a superoxide dismutase but lacks catalase (Zheng et al., 2011; Jakubovics et al., 2002). Thus, oxidation by H_2O_2 and other ROS is a problem for S. gordonii to deal with. In this section, I will focus on methionine oxidation and repair in S. gordonii.

During oxidation, methionine (Met) is converted to methionine sulfoxide (MetO), which can be further oxidized to an irreversible modification methionine sulfone (MetO_2). Methionine sulfoxide reductase (Msr) is an enzyme that reduces MetO to Met
(Lu and Holmgren, 2014). *S. gordonii* has a methionine sulfoxide reductase A (MsrA) (Lei et al., 2011). MsrA is 36 kDa protein without a predicted signal sequence (Figure 3.15). Western blotting and immunofluorescent analysis showed that only trace amount of MsrA was detected in the cell wall fraction and cell surface, respectively, and the majority of the protein was located in the cytoplasm (Lei et al., 2011). The expression of *msrA* is induced in biofilms and in response to a shift from acidic to neutral pH, and to exogenous H$_2$O$_2$. *msrA* mutants showed increased sensitivity to H$_2$O$_2$, and a defect in adhesion and biofilm formation in the presence of exogenous H$_2$O$_2$ (Vriesema et al., 2000; Lei et al., 2011).

In addition to MsrA, the genome of *S. gordonii* also encodes another Msr named MsrAB (SgMsrAB) (Haase et al., 2015). SgMsrAB is a 42.5 kDa protein with a predicted signal sequence and consists of both the MsrA and MsrB domain. MsrAB shares 62% sequence identity to MsrA (Figure 3.15). *msrAB* was down-regulated in mutants lacking amylase-binding protein A (Haase et al., 2015). However, the role of MsrAB in oxidative stress resistance in *S. gordonii* has not been investigated. In addition, little is known about the pathway(s) that catalyzes the regeneration of Msrs in *S. gordonii*. In the following section, the role of MsrAB in protecting *S. gordonii* from oxidative stress is shown and the pathway that regenerates MsrAB is described. This pathway represents a reducing pathway in *S. gordonii*.

3.2.1 The Genetic Locus of MsrAB in *S. gordonii*

The extracytoplasmic Msr of *S. pneumoniae* (SpMsrAB2) was previously shown to be involved in oxidative stress resistance (Saleh et al., 2013; Kim et al., 2009; Andisi et al., 2012). Therefore, experiments were set forth to determine if *S. gordonii* utilize a similar antioxidation mechanism to *S. pneumoniae*. *In silico* analysis showed that SgMsrAB is highly homologous to SpMsrAB2 with a 75% sequence identity. Similar to SpMsrAB, SgMsrAB appears to be an extracytoplasmic protein with a predicted signal sequence, suggesting a possible role in protecting extracytoplasmic proteins under oxidative stress conditions (Figure 3.15).
Figure 3.15 Sequence alignment of *S. gordonii* MrsA, MrsAB, and *S. pneumoniae* MrsAB2.

Conserved amino acid residues are indicated with an asterisk. Putative catalytic cysteines are boxed. The predicted signal sequences of *S. gordonii* MrsAB and *S. pneumoniae* MrsAB2 are underlined (SignalP).
As shown in section 3.1.1, msrAB is located in the ccdA1 locus forming an operon with ccdA1, sgo_1177, and a two-component regulatory system (sgo_1180 and sgo_1181) (Figure 3.1E and 3.2A) (Haase et al., 2015; Jalal et al., 2019). Further downstream of msrAB is the sdbBccdA2 operon. The genetic organization of these two loci resembles those in S. pneumoniae (Saleh et al., 2013). In S. pneumoniae, SpMsrAB2 is regenerated by two thioredoxin-like lipoproteins Etrx1 and Etrx2. These lipoproteins were said to acquire electrons from the integral membrane protein SpCcdA1 and SpCcdA2, which receive electrons from the cytoplasmic thioredoxins system (Saleh et al., 2013). CcdA1 and CcdA2 share 57% and 69% sequence identity to SpCcdA1 and SpCcdA2, respectively, while, Sgo_1177 and SdbB share 53% and 75% sequence identity to Etrx1 and Etrx2, respectively.

3.2.2 MsrAB, SdbB, Sgo_1177, and CcdA Proteins are Involved in Oxidative Stress Resistance

In both Gram-positive and Gram-negative bacteria, inactivation of msr renders the cells more sensitive to oxidative stress (Ezraty et al., 2005a). To assess if msrAB and other genes in the ccdA1 and ccdA2 loci play a similar role in S. gordonii, single- and double-gene mutants were constructed and described in section 3.1.2 (Table 2.1). The mutants were tested for sensitivity to H2O2 by determining the percentage of survival of the strains following exposure to 10 mM H2O2. The results showed that the msrAB mutant was significantly more sensitive to H2O2 compared to the parent strain (Figure 3.16A). Interestingly, the sdbB, sgo_1177, ccdA1, and ccdA2 single-gene mutants were also more sensitive to H2O2 compared to the parent strain (Figure 3.16A). Among them, the msrAB and sdbB mutants were the most sensitive showing a ~100-fold reduction in survival (Figure 3.16A). For the double-gene mutants, sgo_1177ccdA1 and sdbBccdA2 were sensitive to H2O2. Complementation of sgo_1177ccdA1 and sdbBccdA2 restored the level of sensitivity to that of the parent strain. sdbBsgo_1177 and ccdA1ccdA2 double mutants were the most sensitive showing a ~1000-fold reduction in survival (Figure 3.16A).
Figure 3.16 Sensitivity to H₂O₂ and methionine sulfoxide by *S. gordonii*.

A. Sensitivity of *S. gordonii* parent and mutants to H₂O₂. *S. gordonii* were challenged with 10 mM H₂O₂ for 30 minutes and the percentage of survival was determined by CFU counts. Data are means ± SD of three independent experiments with triplicate in each experiment. **B, C, and D.** Sensitivity of *S. gordonii* parent and mutants to methionine sulfoxide. *S. gordonii* were grown for 24 hours in the presence or absence of methionine sulfoxide. Results are means ± SD of two independent experiments with duplicates in each experiment. (**P < 0.01; ***P < 0.001; ****P < 0.0001; one-way ANOVA).
Next, the sensitivity of the mutants to methionine sulfoxide was assessed. All
S. gordonii strains grew to a similar optical density in media alone (Figure 3.16B), but in
the presence of 10 mM methionine sulfoxide, the *msrAB* mutant showed an impaired
growth (Figure 3.16C). The *sdbBsgo_1177* and *ccdA1ccdA2* mutants also showed a
defect in growth in the presence of 10 mM methionine sulfoxide compared to the parent
strain. At 20 mM methionine sulfoxide, all the single- and double-gene mutants showed
reduced growth (Figure 3.16D). Complementation of *sgo_1177ccdA1* and *sdbBccdA2*
restored the sensitivity in the double-gene mutants to that of the parent strain (Figure
3.16D). Collectively, these results indicated that MsrAB, SdbB, CcdA2, Sgo_1177, and
CcdA1 are involved in protection against H$_2$O$_2$ stress and methionine sulfoxide toxicity
in *S. gordonii*.

3.2.3 MsrAB, SdbB, and Sgo_1177 Production are Induced by Aeration

The above results suggest that MsrAB, SdbB, CcdA2, Sgo_1177, and CcdA1 are
involved in resistance to H$_2$O$_2$ and MetO. During aerobic growth, *S. gordonii* produces
H$_2$O$_2$ from the conversion of pyruvate to acetyl phosphate (Barnard and Stinson, 1999).
Therefore, I hypothesize that the level of MsrAB, SdbB, Sgo_1177, CcdA1, and CcdA2
are affected by aerobic growth. To test this, *S. gordonii* was grown under aerobic and
anaerobic conditions, and the level of MsrAB, SdbB, and Sgo_1177 was examined by
immunoblotting. Due to the lack of antibody to CcdA1 and CcdA2, western blotting of
these two proteins were not performed. The results showed that the level of MsrAB was
two-fold higher when *S. gordonii* was grown aerobically compared to anaerobically. The
same was observed for SdbB and Sgo_1177 (Figure 3.17A-C).
Figure 3.17 Immunoblot analysis of the level of MsrAB, SdbB, and Sgo_1177 in *S. gordonii*.

A. The level of MsrAB, SdbB, and Sgo_1177 in *S. gordonii* SecCR1 under aerobic and anaerobic growth conditions. Proteins were probed with specific polyclonal antisera. The detection of PrsA was used as a loading control. B. SDS-PAGE gel showing equal total protein loading. C. Densitometry analysis of the MsrAB, SdbB, and Sgo_1177 immuno-reactive band using Image J. The results are expressed as the intensity of the band from the aerobic sample divided by that from the anaerobic sample. D. The level of MsrAB, SdbB, and Sgo_1177 in *S. gordonii* SecCR1 planktonic and biofilm cells. Proteins were probed with specific polyclonal antisera. The detection of PrsA was used as a loading control. E. SDS-PAGE gel showing equal total protein loading. F. Densitometry of the MsrAB, SdbB, and Sgo_1177 immuno-reactive band using Image J. The results are expressed as the intensity of the band from the planktonic sample divided by that from the biofilm sample. Results are means ± SD of two independent experiments.
It has been shown in other bacteria that the expression of *msr* is modulated in the biofilm lifestyle (Beloin *et al.*, 2004). Because biofilm and planktonic cells are exposed to different O₂ levels, the expression of *msrAB*, *sdbB*, and *sgo_1177* may be altered in biofilms. To test this, the level of MsrAB, SdbB, and Sgo_1177 in planktonic and biofilm cells was examined. The results showed that planktonic cells displayed a two-fold increase in the level of MsrAB, SdbB, and Sgo_1177 compared to the biofilm cells (Figure 3.17D-F).

3.2.4 SdbB and Sgo_1177 are Able to Reduce MsrAB

Following the reduction of MetO, Msr is oxidized with the cysteines in the active site become disulfide bonded (Ezraty *et al.*, 2005a; Lowther *et al.*, 2000). To perform another round of reaction, the oxidized Msr needs to be regenerated to the reduced form, and this is achieved by accepting electrons from its partners in the reducing pathway (Lu and Holmgren, 2014). How MsrAB is regenerated in *S. gordonii* is not known. I hypothesize that electrons are transferred from cytoplasmic thioredoxins to CcdA and then to MsrAB directly or via SdbB or Sgo_1177. To test this, the ability of CcdA1, CcdA2, SdbB, and Sgo_1177 to reduce MsrAB in disulfide exchange reactions was examined. In these reactions, recombinant MsrAB, SdbB, Sgo_1177, CcdA1, and CcdA2 were produced and isolated from *E. coli* (Figure 3.18A). Both the reduced and oxidized forms of MsrAB were detected by the anti-MsrAB antibody, which showed no cross-reaction to SdbB or Sgo_1177 (Figure 3.18A). When oxidized MsrAB was incubated with reduced SdbB, MsrAB was rapidly reduced (Figure 3.18B). MsrAB was also reduced by Sgo_1177 (Figure 3.18C). Neither CcdA1 nor CcdA2 were able to reduce MsrAB (Figure 3.18D). These results provided evidence that SdbB and Sgo_1177 have the enzymatic capability to reduce MsrAB.
Figure 3.18 Disulfide exchange between MsrAB, SdbB, Sgo_1177, CcdA1, and CcdA2.

A. SDS-PAGE gels stained with Coomassie brilliant blue (CBB) and western blots (WB) of purified recombinant MsrAB, SdbB, Sgo_1177, CcdA1, and CcdA2. M: prestained protein markers. B. Reduction of MsrAB by SdbB. C. Reduction of MsrAB by Sgo_1177. D. Lack of reduction of MsrAB by CcdA1 or CcdA2. E. Reduction of SdbB by CcdA1 or CcdA2. F. Reduction of Sgo_1177 by reduced CcdA1 or CcdA2. In panels B to F, proteins reduced by DTT or oxidized by glutathione were run alongside to serve as reduced and oxidized protein controls. Disulfide exchange reactions in panels D, E, and F were incubated for 30 minutes.
The above results also showed that CcdA1 and CcdA2 were incapable of reducing MrAB. However, they could play a role in MrAB regeneration by reducing SdbB and Sgo_1177. To test this, disulfide exchange reactions were performed between these proteins. The results showed that CcdA1 and CcdA2 could reduce SdbB and Sgo_1177 (Figure 3.18E and F).

3.2.5 Methionine Sulfoxide Reductase Activity of MrAB with SdbB and Sgo_1177 as Partners

The above results suggest that SdbB and Sgo_1177 play a direct role in MrAB regeneration. To provide further evidence, methionine sulfoxide reductase assay was conducted. In this assay, MrAB activity was determined using MetO as a substrate and NADPH as a source of electrons. In the assay, thioredoxin reductase (TrxB) transfer the electrons from NADPH to TDOR (e.g., thioredoxin, SdbB, Sgo_1177, CcdA1, or CcdA2) and then to MrAB, which then reduces MetO (Figure 3.19A). First, I tested the validity of the assay by using thioredoxin (Trx-2), a known TDOR in the reaction (Lu and Holmgren, 2014; Si et al., 2015). The results showed that MrAB was able to reduce MetO. This activity was abolished when MetO or MrAB was omitted from the reaction (Figure 3.19B). In the presence of SdbB, the reduction of MetO by MrAB was observed. The same was observed in the presence of Sgo_1177 (Figure 3.19C). The specific activity of MrAB with SdbB or Sgo_1177 was 27.5 and 28.5 nmol NADPH/mg MrAB/min ($P = 0.1154$), respectively. This activity was not observed when SdbB or Sgo_1177 was omitted from the reaction indicating the flow of electrons was interrupted (Figure 3.19C). No MrAB activity was detected when CcdA1 or CcdA2 was used in place of Sgo_1177 or SdbB (Figure 3.19D and E). This last finding is consistent with the disulfide exchange reaction results (section 3.2.4) where neither CcdA1 nor CcdA2 were able to reduce MrAB.
Figure 3.19 Enzymatic activities of MsrAB.

A. Schematic diagram depicting the methionine sulfoxide reductase assay. Electrons are funneled from NADPH to MsrAB by TrxB via TDOR. MsrAB converts MetO to Met. B. The reduction of methionine sulfoxide by MsrAB in the presence of thioredoxin (Trx-2), a known TDOR in this assay (Lu and Holmgren, 2014; Si et al., 2015). Reactions without MsrAB or MetO served as controls. C. The reduction of methionine sulfoxide by MsrAB in the presence of SdbB or Sgo_1177. Reactions without SdbB and Sgo_1177 (no TDOR) served as controls. D and E. The reduction of methionine sulfoxide by MsrAB in the presence of CcdA1 or CcdA2. Reactions without CcdA1 and CcdA2 (no TDOR) served as controls. Results are mean ± SD of three independent experiments with duplicates in each experiment. F and G. Michaelis-Menten enzyme kinetics of MsrAB activity with SdbB and Sgo_1177 as a redox partner. The data are representative of three independent experiments.
A. NADPH → TrxB
 NADP⁺ → TDOR
 MetO
 Met

B. A 340 nm SdbB
 No TDOR
 Time (min)

C. A 340 nm MsrAB
 No MsrAB
 No MetO
 Time (min)

D. A 340 nm CcdA1
 No CcdA1
 CcdA1
 Time (min)

E. A 340 nm CcdA2
 No CcdA2
 Time (min)

F. Turnover (min⁻¹)
 Reducing power [µM]
 \(K_m = 4.025 \text{ µM} ± 0.86 \)
 \(K_{cat} = 0.22 \text{ min}^{-1} \)
 \(R^2 = 0.98 \)

G. Turnover (min⁻¹)
 Reducing power [µM]
 \(K_m = 2.94 \text{ µM} ± 0.88 \)
 \(K_{cat} = 0.16 \text{ min}^{-1} \)
 \(R^2 = 0.98 \)
The above results showed that SdbB and Sgo_1177 were required for MsrAB activity. To help to determine if the two proteins have different ability to aid MsrAB activity, enzyme kinetics experiments were performed. The K_m, k_{cat}, and catalytic efficiencies of MsrAB with SdbB were $4.025 \pm 0.861 \, \mu\text{M}$, $0.22 \pm 0.0035 \, \text{min}^{-1}$, and $0.057 \pm 0.0023 \, \mu\text{M}^{-1} \, \text{min}^{-1}$, respectively, while that with Sgo_1177 were $2.94 \pm 0.88 \, \mu\text{M}$, $0.16 \pm 0.0026 \, \text{min}^{-1}$, and $0.058 \pm 0.0094 \, \mu\text{M}^{-1} \, \text{min}^{-1}$, respectively (Figure 3.19F and G). The K_m of MsrAB with SdbB or Sgo_1177 was similar ($P = 0.098$). Interestingly, the turnover number (K_{cat}) between MsrAB with SdbB or Sgo_1177 was significantly different ($P = 0.0001$). There was no significant difference in the catalytic efficiencies ($K_{cat}/K_m, p = 0.91$) between MsrAB with SdbB or Sgo_1177.

3.2.6 Summary

The above results indicated that MsrAB was able to use both SdbB and Sgo_1177 as a redox partner to reduce MetO. Disulfide exchange reactions showed that both SdbB and Sgo_1177 were able to reduce MsrAB. CcdA1 and CcdA2 were not able to reduce MsrAB but were able to reduce SdbB and Sgo_1177. The phenotypic analysis showed that growth of $msrAB$, $sdbBsgo_1177$, and $ccdA1ccdA2$ mutants was impaired in the presence of 10 mM methionine sulfoxide. At 20 mM methionine sulfoxide, the growth of all single- and double-gene mutants were impaired. Similarly, all single-gene mutants, including $msrAB$, $sdbB$, sgo_1177, $ccdA1$, and $ccdA2$ were sensitive to exogenous H$_2$O$_2$. Among the double-gene mutants, $sdbBsgo_1177$ and $ccdA1ccdA2$ showed the highest sensitivity to H$_2$O$_2$. Consistent with their role in oxidative stress resistance, the level of MsrAB, SdbB, and Sgo_1177 was two-fold higher when S. gordonii was grown aerobically and in planktonic cells. Collectively, the results indicate that S. gordonii has a reducing pathway that consists of MsrAB, SdbB, CcdA2, Sgo_1177, and CcdA1. In this pathway, electrons from the cytoplasmic thioredoxin flow to CcdA1 or CcdA2 and then to SdbB or Sgo_1177 and finally to MsrAB. Reduced MsrAB can actively convert MetO to Met. The activity of this pathway in S. gordonii protects it from oxidative stress.
3.3 SdbB is a Putative Disulfide Bond Isomerase in *S. gordonii*

Disulfide bond formation is not a perfect process, especially for proteins with multiple cysteine residues. In *E. coli*, DsbA is known to preferentially introduce a disulfide bond between two consecutive cysteine residues; thus, it will form incorrect disulfide bonds in proteins with more than 2 cysteines if the native disulfide bond is between two distant cysteines (Kadokura and Beckwith, 2009). In addition, the thiols (-SH) in cysteines are susceptible to oxidation to sulfenic acids (-SOH), which are highly reactive and can react with other cysteines forming incorrect disulfide bonds (Ezraty *et al.*, 2017). To deal with this problem, bacteria are equipped with disulfide bond isomerases to correct these mis-disulfide bonds (Ezraty *et al.*, 2017; Cho and Collet, 2013).

As mentioned earlier, *S. gordonii* is exposed to H$_2$O$_2$ and other oxidative agents that damage proteins (Zheng *et al.*, 2011; Zhu and Kreth, 2012). *S. gordonii* is predicted to produce extracytoplasmic proteins with multiple cysteine residues (Davey *et al.*, 2013). In the following section, the presence of a disulfide bond isomerase in *S. gordonii* was investigated. The results showed that SdbB possesses disulfide isomerase activity and cooperates with CcdA2 to facilitate the production of proteins with multiple disulfide bonds and protect *S. gordonii* from copper stress.

3.3.1 SdbB Exhibits Reductase and Isomerase Activities

Disulfide bond isomerases possess both oxidase and reductase activity (Gleiter and Bardwell, 2008). As shown earlier in section 3.1.5, SdbB and CcdA2 possess oxidase activity (Figure 3.10). Here, the oxidase activity of Sgo_1177 and CcdA1 was examined. The RNase A refolding assay showed that Sgo_1177 and CcdA1 also have oxidase activity (Figure 3.20A).
Figure 3.20 SdbB exhibits isomerase activity.

A. Oxidase activity. Reduced RNase A was used as a negative control, and SdbA was used as a positive control. B. Reductase activity. DsbC was used as a positive control and insulin alone was used as a negative control. C. Isomerase activity. DsbC was used as a positive control, and scrambled RNase A alone was used as a negative control. D. The activity of test samples compared to that of the native RNase A (100%) for the 30 minutes incubation time points. The data are means ± SD of three experiments with two replicates in each experiment. Heat inactivation of DsbC (HI DsbC) and SdbB (HI SdbB) were prepared by boiling the protein sample for 10 min prior to the reaction.
Next, the insulin precipitation assay was performed to test if these proteins possess reductase activity. DsbC was included as a positive control because it is known to have reductase activity (Shevchik et al., 1994) and the oxidase SdbA was used as a negative control (Davey et al., 2013). The results showed that SdbB was able to catalyze insulin reduction, and this activity was abolished by heat inactivation (Figure 3.20B). In contrast, Sgo_1177, CcdA1, and CcdA2 were not able to reduce insulin (Figure 3.20B). As expected, DsbC was able to catalyze insulin reduction, whereas SdbA was not able to reduce insulin (Figure 3.20B). These results showed that SdbB possesses reductase activity.

The finding that SdbB possesses both oxidase and reductase activity suggests that it may act as a disulfide bond isomerase. To investigate this, SdbB was tested in the isomerase assay using scrambled RNase A as the substrate. DsbC was included as a positive control. The results showed that SdbB was able to refold scrambled RNase A (Figure 3.20C). DsbC also rescued the scrambled RNase A (Figure 3.20C). About 76% and 38% of the scrambled RNase A were refolded by DsbC and SdbB, respectively (Figure 3.20D). The above results support the notion that SdbB is a disulfide bond isomerase.

3.3.2 SdbBCcdA2 are Required for the Production of Anti-CR1 scFv

To further investigate SdbB as a disulfide bond isomerase, the production of a protein with multiple disulfide bonds was examined in S. gordonii. Due to the lack of a known natural substrate of SdbB, the anti-CR1 single-chain variable fragment antibody (scFv) was chosen as the target protein. Anti-CR1 scFv secreted by S. gordonii contains two intramolecular disulfide bonds that are essential for proper folding and stability (Knight et al., 2008; Davey et al., 2013). Previous studies showed that the level of anti-CR1 scFv production is a good indicator of the cell’s ability to produce disulfide-bonded proteins (Davey et al., 2013; Davey et al., 2015a). Inactivation of sdbA leads to the misfolding and degradation of anti-CR1 scFv (Davey et al., 2013).
Western blotting analysis showed that anti-CR1 scFv produced by the \(sdbB \) mutant contained many smaller size bands suggesting extensive degradation due to misfolding (Figure 3.21A). These smaller size bands were absent in the sample from the parent strain. Inactivation of the serine protease gene \(degP \) reduced the number of smaller size bands of anti-CR1 scFv in the \(sdbB \) mutant (Figure 3.21A).

Interestingly, the level of anti-CR1 scFv produced by the \(ccdA2 \) mutant was almost undetectable and was restored by \(degP \) mutation (Figure 3.21B). Similar results were observed in the \(sdbBccdA2 \) mutant (Figure 3.21C). Consistent with previous reports, the \(sdbA \) mutant showed a marked reduction in anti-CR1 scFv production and the level was restored in the \(sdbAdegP \) mutant (Davey et al., 2013; Davey et al., 2015a) (Figure 3.21D). Other mutants, namely \(sgo_1177, ccdA1, sgo_1177ccdA1, \) and \(msrAB, \) showed no reduction in anti-CR1 scFv production (Figure 3.21E).

To exclude the possibility that inactivation of \(sdbBccdA2 \) might have affected the general \(sec \) pathway that led to the reduction in the anti-CR1 scFv production, the level of production of the extracytoplasmic peptidyl-prolyl \(cis\)-\(trans \) isomerase PrsA that lacks a disulfide bond was examined (Davey et al., 2015a). The results showed that the level of PrsA was similar between the parent strain and mutants, suggesting that the \(sec \) pathway was functional in all these mutants (Figure 3.21).

Taken together, these results suggested that SdbB and CcdA2 are required for the proper folding and production of anti-CR1 scFv, a protein with two disulfide bonds, in \(S. \) \textit{gordonii}.

121
Figure 3.21 SdbB and CcdA2 are required for the production of anti-CR1 scFv protein in *S. gordonii*.

A. Production of the 33-kDa anti-CR1 scFv protein from the parent strain SecCR1, *sdbB*, and *sdbBdegP*. B. Anti-CR1 scFv from SecCR1, *ccdA2*, and *ccdA2degP*. C. Anti-CR1 scFv from SecCR1, *sdbBccdA2*, and *sdbBccdA2degP*. D. Anti-CR1 scFv from SecCR1, *sdbA*, and *sdbAdegP*. E. Anti-CR1 scFv from SecCR1, *sgo_1177*, *ccdA1*, *sgo_1177ccdA1*, and *msrAB*. Duplicate samples were stained with Coomassie brilliant blue (CBB) and probed with anti-PrsA to show equal protein loading.
3.3.3 Anti-CR1 is Oxidized and Misfolded in \textit{sdbBccdA2} Mutant

Because inactivation of \textit{degP} stabilized the anti-CR1 scFv in the \textit{sdbB} and \textit{ccdA2} mutants, the \textit{degP} mutants were used for the determination of the redox state of scFv. Previous studies showed that the inactivation of \textit{degP} has no effect on the redox state of anti-CR1 scFv (Davey \textit{et al.}, 2015a). Anti-CR1 scFv was isolated from the parent strain (properly folded oxidized control), \textit{sdbAdegP} mutant (unfolded reduced control), \textit{sdbB}, \textit{sdbBdegP}, \textit{ccdA2degP}, and \textit{sdbBccdA2degP} mutants. The free thiols in the scFv protein were alkylated with maleimide-PEG\textsubscript{2}-biotin before or after dithiothreitol (DTT) treatment.

As expected, the results showed that anti-CR1 scFv from the parent strain was fully oxidized. Free thiols were only detected when the sample was reduced with DTT prior to alkylation. The total amount of anti-CR1 in the samples was detected with the anti-HA antibody, and the results indicated equal loading between the DTT treated and untreated samples (Figure 3.22). Anti-CR1 scFv from the \textit{sdbAdegP} mutant was in a reduced state, whereas that from the \textit{sdbB}, \textit{sdbBdegP}, \textit{ccdA2degP}, and \textit{sdbBccdA2degP} mutants were fully oxidized (Figure 3.22). These results suggest that anti-CR1 scFv in these mutants were oxidized but mis-disulfide bonded and thus susceptible to degradation by DegP.

Collectively, these data suggest that SdbB and CcdA2 are needed for the proper folding and stability of protein with multiple disulfide bonds and DegP is responsible for the degradation of the misfolded protein in the \textit{sdbBccdA2} mutant.
Figure 3.22 SdbB and CcdA2 are required for the proper folding of anti-CR1 scFv in *S. gordonii*.

The redox state of anti-CR1 scFv from the parent strain SecCR1, *sdbAdegP, ccdA2degP, sdbB, sdbBdegP,* and *sdbBccdA2degP* mutants were determined by alkylation with maleimide-PEG2-biotin and detected using extravidin alkaline phosphatase (Extravidin-AP). Duplicate samples were reacted with anti-HA to detect the total anti-CR1 scFv protein as a loading control.
3.3.4 SdbB and CcdA2 are Involved in Copper Resistance in *S. gordonii*

In bacteria, disulfide bond isomerization systems are known to play a role in protection against copper stress. This is because copper catalyzes the formation of non-native disulfide bonds in proteins. In *E. coli*, inactivation of the disulfide bond isomerase DsbC or its redox partner DsbD renders the bacterium more sensitive to copper (Denoncin *et al.*, 2014; Hiniker *et al.*, 2005). Thus, I hypothesized that SdbB and CcdA2 play a similar role in copper stress resistance in *S. gordonii*. To test this hypothesis, the effect of inactivation of *sdbB*, *ccdA2*, and *sdbBccdA2* in *S. gordonii* on copper sensitivity was investigated. The results showed that the *sdbB*, *ccdA2*, and *sdbBccdA2* mutants were more sensitive to CuSO₄ than the parent (Figure 3.23). Complementation of *sdbBccdA2* restored the level of sensitivity to that of the parent strain (Figure 3.23B). The colonies of *sdbB*, *ccdA2*, and *sdbBccdA2* mutants were slightly smaller than the parent strain colonies when grown in the presence of 2.5 mM CuSO₄. The effect was more dramatic for the *ccdA2* and *sdbBccdA2* mutant, which failed to grow at 3.5 mM CuSO₄ (Figure 3.23). These results suggest that SdbB and CcdA2 are involved in protection against copper stress in *S. gordonii* and support the notion that SdbBCcdA2 is a potential disulfide bond isomerization system in *S. gordonii*.

3.3.5 Summary

The above results showed that SdbB possesses disulfide bond isomerization activity. *In vitro*, SdbB was able to refold mis-disulfide bonded RNase A (sRNase A). In the cells, SdbB plays a role in the stability and production of anti-CR1 scFv. The results showed that CcdA2 is also needed for the production of anti-CR1 scFv. Anti-CR1 scFv from the *sdbB*, *sdbBdegP*, *ccdA2degP*, and *sdbBccdA2degP* mutants were fully oxidized, suggesting that anti-CR1 scFv in these mutants were mis-disulfide bonded. In addition, SdbB and CcdA2 protect *S. gordonii* from copper-induced oxidative stress and mis-disulfide bond formation. Collectively, the results suggest that SdbB is a disulfide bond isomerase and CcdA2 is likely the redox partner.
Figure 3.23 Growth of *S. gordonii* strains in the presence of CuSO₄.

A. Growth of *S. gordonii* parent strain SecCR1, *ccdA2*, and *sdbB* in the presence or absence of CuSO₄. B. Growth of *S. gordonii* SecCR1, *sdbBccdA2*, and *sdbBccdA2* complemented mutant in the presence or absence of CuSO₄.
3.4 Preliminary Investigations of Structure and Function of SdbA

3.4.1 Role of the Active-Site Cysteines in SdbA-SdbB Interaction

Thiol-disulfide oxidoreductases (TDORs) are known to interact with their redox partners through the active site cysteines (Kishigami et al., 1995b). Typically, these TDORs have a CXXC active site motif where the N-terminal cysteine is solvent-exposed and the C-terminal cysteine is buried (Zapun et al., 1994). The reoxidation of TDORs by their redox partners involves the formation of a mixed disulfide bond between the solvent-exposed cysteines on the TDOR and the redox partner (Inaba et al., 2006). SdbA also has a solvent-exposed N-terminal cysteine C₈₆ and a buried C-terminal cysteine C₈⁹ (Davey et al., 2015a; Stogios and Savchenko, 2015). To determine if SdbB has a solvent-exposed N-terminal cysteine and a buried C-terminal cysteine, single cysteine point mutants (SdbB₈₁A and SdbB₈₄A) were constructed, produced, and purified from *E. coli*. The reactivity to dithionitrobenzoic acid (DTNB) by the single cysteine mutants was tested. The result showed that the parent SdbB (SdbB WT) reacted strongly to DTNB (Figure 3.24) whereas SdbB₈₄A gave about half the reactivity compared to the parent SdbA. In contrast, SdbB₈₁A did not react with DTNB. When SdbB₈₁A was denatured, the protein reacted rapidly with DTNB, indicating that C₈₄ is buried in the structure of SdbB (Figure 3.24). It is notable that the reactivity of SdbB₈₄A was a bit higher than that of denatured SdbB₈₁A, which was likely due to the amounts of proteins were a bit off from estimation.

To investigate the mechanism of interaction, SdbA and SdbB active-site variants were tested in complex formation. The results showed that when SdbA₈₆A was incubated with either SdbB₈₁A or SdbB₈₄A, no hetero-complex was detected and only SdbB₈₄A homodimer was observed (Figure 3.25A). Similarly, no complex was detected between SdbA₈₉A and SdbB₈₁A. However, SdbA₈₉A formed a complex with SdbB₈₄A, SdbB₈₄A homodimer was also detected (Figure 3.25B). Collectively, these results suggest that SdbA-SdbB interacts through their solvent-exposed N-terminal cysteines.
Figure 3.24 Reactivity of SdbB cysteines with DTNB.

Reduced SdbB, SdbB single cysteine point mutants (SdbB\textsubscript{C81A} and SdbB\textsubscript{C84A}) and denatured SdbB\textsubscript{C81A} were reacted with excess DTNB, and the absorbance was monitored at 412 nm.
Figure 3.25 SdB-A-SdB complex formation.
A. SdB\textsubscript{A}C\textsubscript{86A} with cysteine point mutant variants of SdB (SdB\textsubscript{B}C\textsubscript{81A} and SdB\textsubscript{B}C\textsubscript{84A}). B. SdB\textsubscript{A}C\textsubscript{89A} with cysteine point mutant variants of SdB (SdB\textsubscript{B}C\textsubscript{81A} and SdB\textsubscript{B}C\textsubscript{84A}). SdB\textsubscript{A} and SdB\textsubscript{B} point mutant variant alone was used as a control for homodimer detection. All samples were incubated for 30 minutes at 37°C with 10 mM K\textsubscript{3}Fe(CN)\textsubscript{6}.

130
3.4.2 Role of Surface-Exposed Amino Acid Residues in SdbA Enzyme Kinetics

The crystal structure of SdbA showed that it has a thioredoxin fold and the conserved cis-proline (P_{136}) residue is in close proximity to the C_{86}PDC_{89} active site (Stogios and Savchenko, 2015). Similar to other thioredoxin enzymes, the structure of SdbA has four-stranded β-sheet with three flanking α-helices in β-α-β-α-β-α configuration and an isoleucine residue closed to the active site (Figure 3.26A). It is known in other TDOR that the conserved cis-proline affects the interactions of TDOR with its substrates and redox partners, whereas the isoleucine adjacent to the cis-proline has been reported to influence enzymatic activity (Ren et al., 2009; Kadokura et al., 2004; Kadokura et al., 2005). The structure of SdbA also showed that the C_{86} is surface-exposed, whereas C_{89} is buried (Figure 3.26A). However, SdbA was shown to be active with the single buried C_{89} (Davey et al., 2015a). This suggests that SdbA might undergo a conformational change that allows access to the buried C_{89} upon binding to its substrate.

This notion of conformational change has been reported in ResA (Crow et al., 2004; Colbert et al., 2006), a TDOR from B. subtilis that is structurally similar to SdbA. In ResA, the reduction of the active site resulted in a movement of the buried C_{77}. This is accompanied by the formation of a cavity close to the active site with E_{80} at its base. The E_{80} residue in ResA alters between buried, when the protein is oxidized, to surface-exposed, when the protein is reduced. Other amino acids such as E_{75}, K_{79}, D_{136}, P_{139}, L_{140}, P_{141}, and T_{159} also rearranged during the conformational change to line the cavity in reduced ResA (Figure 3.26B and C) (Crow et al., 2004; Hodson et al., 2008; Lewin et al., 2006).
Figure 3.26 Crystal structure and sequence alignment of SdbA and ResA.

A. Left, SdbA structure showing the active site. Right, the surface representation showing the surface-exposed amino acids, including the N-terminal cysteine (C86) of the active site. The conserved *cis*-proline (P156) and adjacent isoleucine (I155) localize adjacent to the active site (Stogios and Savchenko, 2015). B. Structure of reduced and oxidized ResA from *B. subtilis*. The structures show the active site (yellow) and the key Glu80 (purple) located within the substrate-binding pocket. Positions involved in substrate interaction are labeled in red (Colbert *et al.*, 2006). C. Sequence alignment of *S. gordonii* SdbA and *B. subtilis* ResA. The active site CXXC motif is indicated in the box. In ResA, amino acids involved in substrate interaction are highlighted in red. In SdbA, amino acids that are mutated are highlighted in red. D. The structure of reduced SdbA shows the active site cysteines (yellow), and the solvent-exposed Glu92 (purple). Highlighted in red are the amino acids that showed changes in K_m ($p < 0.1$). Amino acids that showed no change in K_m or K_{cat} ($p > 0.1$) are highlighted in black (Stogios and Savchenko, 2015).
A.

B. subtilis ResA (reduced) - PDB 1SU9

redox-responsive pocket is open

Glu80 (solvent exposed)

B. subtilis ResA (oxidized) - PDB 1ST9

pocket = closed

Glu80 (buried)
C.

<table>
<thead>
<tr>
<th>SdbA</th>
<th>MLKEMFLPFLTVGVILVAYVAFALFYAGAPRHKSTQKGSSAVEHELTOQQLPEFEVM 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResA</td>
<td>--MKRRRFLRTIGILVLICALGTYT1YAYFA----------GKESISEGSDAPNFVL 48</td>
</tr>
</tbody>
</table>

Active site

<table>
<thead>
<tr>
<th>SdbA</th>
<th>DQAQYQKEFYNKMLYVVKSNFQQLPEIQQVYEKYKKSQVHEV-LKLDKSLKKE 119</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResA</td>
<td>DTNKRRELSLKLQKLNYVQNLWGPILW-EDEFYVANQYKSHFSQGGVEIVAVNV---G 104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SdbA</th>
<th>ETKERAQYISEKDTHPFPYVDQTEDAAVILYQSIPTYIYLVQKQVHS---DFHEEAA 179</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResA</td>
<td>ESKIAVHMSYVGVPVVDQTDQVLADYVFLPTPLNFEVQKVQKQMTESN 164</td>
</tr>
</tbody>
</table>

D.

S. gordonii SdbA (reduced)

Pocket = open

Gln92 (solvent exposed)
The structure of SdbA suggests the presence of a similar substrate binding pocket that is formed by a number of surface-exposed amino acids (Figure 3.26C and D). Using this information, I attempt to explore the structural basis of SdbA-substrate interaction. Variants of SdbA with single or double amino acid substitution to the surface-exposed amino acids that line and surround the suspected substrate-binding pocket of SdbA were constructed. These were P87A, D88K, K91E, Q92E, Q92A, L115D, R119E, E144K, D148K, H151E, V152A, Q153K, S154E, I155A, P156T, T172E, F174E, Q92E/S154E, and Q92A/S154E (Lee et al., Unpublished). Recombinant SdbA variants were expressed and purified from E. coli XL-1. Through the help of a summer student (C. Guinard), 15 SdbA variants (P87A, D88K, K91E, L115D, R119E, E144K, D148K, H151E, V152A, Q153K, S154E, I155A, P156T, T172E, F174E) were screened for activity using the RNase A refolding assay. Seven SdbA variants (K91E, R119E, V152A, S154E, P156T, T172E, and F174E) showed an altered oxidase activity (Guinard et al., Unpublished). K91E, T172E, and R119E showed an increase in oxidase activity, whereas V152A, S154E, P156T, and F174E showed a decrease in oxidase activity. To further investigate the findings, enzyme kinetics of RNase A refolding were performed for the seven SdbA variants and additional four variants (Q92E, Q92A, Q92E/S154E, and Q92A/S154E). The \(K_m\), \(k_{cat}\), \(V_{max}\), and catalytic efficiencies of SdbA were determined (Table 3.1).

The results showed that five of the mutants, namely K91E, R119E, S154E, T172E, and F174E, showed an increase in \(K_m\) values compared to the parent SdbA, indicating a reduction in the affinity of SdbA to RNase A (Table 3.1). None of the point mutants showed a change in the \(k_{cat}\), \(V_{max}\), or the catalytic efficiencies. Interestingly, when the mutation (Q92A or Q92E) was introduced into SdbAS154E, the \(K_m\) of these double point mutants (S154E/Q91A or S154E/Q91E) returned to values similar to that of the parent SdbA (Table 3.1). Collectively, these results suggest that five surface-exposed amino acids, namely K91E, R119E, S154E, T172E, and F174E, play a role in SdbA-substrate interaction.
Table 3.1 Kinetic parameters of parent SdbA and SdbA point mutants

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>K_m (µM)</th>
<th>$K_{cat} \times 10^{-3}$ (min$^{-1}$)</th>
<th>$K_{cat}/K_m \times 10^{-3}$ (µM$^{-1}$ min$^{-1}$)</th>
<th>V_{max} (nmol min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>13.2 ± 3.97a</td>
<td>17.7 ± 9.45a</td>
<td>1.34 ± 0.66a</td>
<td>177 ± 94.55a</td>
</tr>
<tr>
<td>K91E</td>
<td>20.51 ± 3.56b</td>
<td>22.65 ± 1.63b</td>
<td>1.18 ± 0.22b</td>
<td>215.1 ± 33.0b</td>
</tr>
<tr>
<td></td>
<td>(P=0.012)c</td>
<td>(P=0.14)c</td>
<td>(P=0.78)c</td>
<td>(P=0.22)c</td>
</tr>
<tr>
<td>R119E</td>
<td>18.49 ± 1.90b</td>
<td>9.20 ± 1.41b</td>
<td>0.52 ± 0.01b</td>
<td>91.7 ± 14.4b</td>
</tr>
<tr>
<td></td>
<td>(P=0.03)c</td>
<td>(P=0.38)c</td>
<td>(P=0.06)c</td>
<td>(P=0.59)c</td>
</tr>
<tr>
<td>V152A</td>
<td>14.85 ± 0.55b</td>
<td>8.95 ± 2.90b</td>
<td>0.63 ± 0.23b</td>
<td>89.5 ± 28.9b</td>
</tr>
<tr>
<td></td>
<td>(P=0.29)c</td>
<td>(P=0.36)c</td>
<td>(P=0.12)c</td>
<td>(P=0.52)c</td>
</tr>
<tr>
<td>P156T</td>
<td>10.75 ± 1.50b</td>
<td>8.6 ± 0.21b</td>
<td>0.83 ± 0.13b</td>
<td>86.5 ± 1.5b</td>
</tr>
<tr>
<td></td>
<td>(P=0.49)c</td>
<td>(P=0.33)c</td>
<td>(P=0.34)c</td>
<td>(P=0.29)c</td>
</tr>
<tr>
<td>T172E</td>
<td>27.59 ± 1.54b</td>
<td>23.50 ± 6.22b</td>
<td>0.89 ± 0.26b</td>
<td>147.2 ± 62.2b</td>
</tr>
<tr>
<td></td>
<td>(P=0.0002)c</td>
<td>(P=0.13)c</td>
<td>(P=0.45)c</td>
<td>(P=0.81)c</td>
</tr>
<tr>
<td>S154E</td>
<td>24.88 ± 5.52b</td>
<td>24.95 ± 2.19b</td>
<td>1.09 ± 0.36b</td>
<td>249.5 ± 22.1b</td>
</tr>
<tr>
<td></td>
<td>(P=0.0026)c</td>
<td>(P=0.076)c</td>
<td>(P=0.96)c</td>
<td>(P=0.10)c</td>
</tr>
<tr>
<td>F174E</td>
<td>18.84 ± 4.87b</td>
<td>18.00 ± 6.08b</td>
<td>0.95 ± 0.06b</td>
<td>223.0 ± 120.8b</td>
</tr>
<tr>
<td></td>
<td>(P=0.043)c</td>
<td>(P=0.50)c</td>
<td>(P=0.58)c</td>
<td>(P=0.24)c</td>
</tr>
<tr>
<td>Q92A</td>
<td>14.44 ± 7.63b</td>
<td>29.2 ± 0.8b</td>
<td>2.2 ± 1.4b</td>
<td>291.9 ± 8.4b</td>
</tr>
<tr>
<td></td>
<td>(P=0.089)c</td>
<td>(P=0.5)c</td>
<td>(P=0.99)c</td>
<td>(P=0.5)c</td>
</tr>
<tr>
<td>Q92A/S154E</td>
<td>16.15 ± 9.27b</td>
<td>33.6 ± 3.7b</td>
<td>2.6 ± 1.7b</td>
<td>336 ± 36.7b</td>
</tr>
<tr>
<td></td>
<td>(P=0.99)c</td>
<td>(P=0.34)c</td>
<td>(P=0.55)c</td>
<td>(P=0.34)c</td>
</tr>
<tr>
<td>Q92E</td>
<td>18.59 ± 2.01b</td>
<td>30.7 ± 12.2b</td>
<td>1.7 ± 0.8b</td>
<td>306.8 ± 121.6b</td>
</tr>
<tr>
<td></td>
<td>(P=0.63)c</td>
<td>(P=0.99)c</td>
<td>(P=0.166)c</td>
<td>(P=0.99)c</td>
</tr>
<tr>
<td>Q92E/S154E</td>
<td>16.17 ± 12.04b</td>
<td>30.1 ± 0.6b</td>
<td>2.6 ± 2b</td>
<td>300.9 ± 5.9b</td>
</tr>
<tr>
<td></td>
<td>(P=0.99)c</td>
<td>(P=0.4)c</td>
<td>(P=0.64)c</td>
<td>(P=0.4)c</td>
</tr>
</tbody>
</table>

a Mean ± SD of nine independent experiments of parent SdbA with triplicate in each experiment.

b Mean ± SD of two independent experiments of point mutant with triplicate in each experiment.

c Student t's test between parent and point mutant.
3.4.3 Role of Surface-Exposed Amino Acid Residues in SdbA-SdbB Interaction

Next, I explored the structural basis of SdbA-redox partner interaction. The interaction of seven SdbA variants (K91E, L115D, R119E, H151E, V152A, Q153K, and S154E) with SdbB was examined. The ability of SdbB to reoxidize SdbA variants was examined in disulfide exchange reactions. The results showed that SdbA_{S154E} exhibited a delay in reoxidation by SdbB after 10 minutes of interaction. However, after 20 minutes, the majority of both parent SdbA and SdbA_{S154E} was reoxidized by SdbB (Figure 3.27A). Other SdbA variants, including K91E, L115D, R119E, H151E, V152A, and Q153K showed no difference in reoxidation by SdbB compared to the parent SdbA (Figure 3.27B-G). However, K91E, L115D, R119E, and Q153K were tested at different time points (15 min and 30 min), which might be too late to detect any differences. Collectively, these results suggest that S154E plays a role in SdbA-redox partner interaction, but further in-depth investigations should be performed.
Figure 3.27 Oxidation of parent SdbA and SdbA variants by SdbB.

A. Oxidation of reduced parent SdbA and SdbA$_{S154E}$ by oxidized SdbB. B. Oxidation of reduced parent SdbA and SdbA$_{K91E}$ by oxidized SdbB. C. Oxidation of reduced parent SdbA and SdbA$_{Q153K}$ by oxidized SdbB. D. Oxidation of reduced parent SdbA and SdbA$_{L115D}$ by oxidized SdbB. E. Oxidation of reduced parent SdbA and SdbA$_{R119E}$ by oxidized SdbB. F. Oxidation of reduced parent SdbA and SdbA$_{V152A}$ by oxidized SdbB. G. Oxidation of reduced parent SdbA and SdbA$_{H151E}$ by oxidized SdbB. Reduced and oxidized parent SdbA and SdbA variants alone was used as a control.
Chapter 4. Discussion

Despite several TDORs having now been identified in a number of Gram-positive species (Davey et al., 2016b; Reardon-Robinson and Ton-That, 2015), the pathways of disulfide bond formation and reduction in Gram-positive bacteria remain poorly understood. To date, no disulfide isomerization pathway has been identified in Gram-positive organisms.

S. gordonii is a good model organism for studying disulfide bond formation, reduction, and isomerization because *S. gordonii* produces disulfide bonded proteins and has many testable phenotypes (Davey et al., 2013). The recent discovery of SdbA, a TDOR that introduces disulfide bonds in substrate proteins and plays a role in multiple phenotypes, indicates that this organism has a disulfide bond formation pathway (Davey et al., 2013). Despite these advances, there are still many questions surrounding the mechanisms of disulfide bond formation in this organism. In addition, nothing is known about the disulfide bond reduction and isomerization pathways in *S. gordonii*.

4.1 Oxidative Protein-Folding Pathway in *S. gordonii*

In the first part of this study, the redox partners of SdbA were identified (Jalal et al., 2019). The results show that SdbB and CcdA2 are the primary redox partners of SdbA. Several lines of evidence support this statement. First, mutational results showed that the *sdbBccda2* mutant duplicated phenotypes exhibited by the *sdbA* mutant, and *sdbBccda2*-complemented mutant restored the parental phenotypes. Second, SdbA was locked in a reduced state when *sdbB* and *ccda2* were inactivated, and complementation returned SdbA to the oxidized state as in the parent strain. Third, SdbB formed a mixed disulfide with SdbA_{C9A} in the cells. Fourth, AtIS, the natural substrate of SdbA, was in a reduced state in the *sdbBccda2* mutant. Fifth, SdbB and CcdA2 possess oxidase activities capable of refolding RNase A and reoxidizing SdbA *in vitro*. Collectively, these results strongly support that SdbB and CcdA2 are the redox partners of SdbA.
The results showed that mutation of sdbB or ccdA2 alone did not result in sdbA mutant phenotypes; mutation of both genes is needed to reproduce the sdbA mutant phenotypes. This suggests that SdbB and CcdA2 can both serve as independent redox partners of SdbA. Accordingly, SdbA remains in an oxidized state in the sdbB and ccdA2 single-gene mutants. In vitro, both SdbB and CcdA2 could reoxidize SdbA independently, supporting the notion that SdbB and CcdA2 are independent redox partners of SdbA. These results indicate that the protein-folding pathway in S. gordonii is quite complex and very different from the two-protein pathway (DsbA-DsbB) of E. coli (Landeta et al., 2018) or the MdbA-VKOR pathway of A. oris (Reardon-Robinson et al., 2015a). A similar complex protein-folding pathway was reported previously in L. pneumophila, where DsbA2 interacts with multiple redox partners, including DsbB1/2 and DsbD1/2 (Jameson-Lee et al., 2011; Kpadeh et al., 2015).

It is interesting that the second set of proteins, Sgo_1177 and CcdA1, which are homologous to SdbB and CcdA2, respectively, appear to have limited ability to serve as redox partners of SdbA. The sgo_1177ccdA1 mutant fails to reproduce the sdbA mutant phenotypes except for bacteriocin production. However, it remains possible that Sgo_1177 and CcdA1 can serve as minor partners of SdbA in the absence of SdbB or CcdA2. Because of this cross-interaction, the phenotypes of some of the cross-operon mutants are difficult to explain.

SdbB and Sgo_1177 are predicted to belong to the thioredoxin family of redox proteins with a typical active site CXXC motif. As demonstrated in this study, SdbB exhibited oxidase activity and the ability to reoxidize SdbA. Sgo_1177 also has the ability to refold denatured and reduced RNase A, however, it seems to play a minor role in SdbA reoxidation. The genetic organization of the sgo_1177 operon closely resembles the recently characterized ccdA1-etrX1 (sgo_1177 homolog)-msrAB2 operon in S. pneumoniae. In S. pneumoniae, the etrX1 operon plays an important role in oxidative stress resistance (Saleh et al., 2013).

CcdA1 and CcdA2 are annotated as cytochrome c biogenesis protein A. In B. subtilis, CcdA was part of the reducing pathway required for cytochrome c maturation and sporulation (Schiot et al., 1997b; Schiot and Hederstedt, 2000). Given that
streptococci lack cytochrome c and do not sporulate (Brooijmans et al., 2009), it is unlikely that they play a role in these two processes. Both CcdA1 and CcdA2 contain two conserved cysteines separated by two transmembrane domains, a feature that is similar to the β domain of the E. coli DsbD. In E. coli, electrons from thioredoxin flow to the β domain of DsbD initially during the reduction of DsbC in the isomerization pathway (Gleiter and Bardwell, 2008; Landeta et al., 2018). Recent studies showed that CcdA from the archaea Archaeoglobus fulgidus (AfCcdA) and the Gram-negative bacteria Thermus thermophilus (TtCcdA) is capable of relaying electrons from thioredoxins across the cytoplasmic membrane (Williamson et al., 2015; Zhou and Bushweller, 2018). Unlike AfCcdA and TtCcdA that act as a reductase, S. gordonii CcdA2 acts as an oxidase and has, in addition to the two conserved cysteines (C$_{22}$ and C$_{147}$), a second pair of cysteines (C$_{61}$ and C$_{68}$) in its second transmembrane domain. Hence, it is conceivable that CcdA2 is capable of receiving electrons from SdbA or SdbB, although these are extracytoplasmic proteins. In agreement with this notion, the results showed that CcdA2 is able to reoxidize reduced SdbA. The novelty of these results is the oxidase activity possessed by CcdA2. To the best of my knowledge, this is the first report of such an activity displayed by CcdA-like proteins. This suggests a potential role of CcdA proteins as interchangeable modules in different disulfide exchange pathways connecting the oxidation and the reduction pathways.

The role of SdbB and CcdA2 in oxidative protein folding is further demonstrated in the examination of the redox state and activity of AtlS, the natural substrate of SdbA. The results showed that AtlS from the sdbBccdA2 mutant lacked a disulfide bond and was inactive. These results suggest that SdbB and CcdA2 play a critical role in working with SdbA in the oxidative folding of AtlS. The results showed that SdbB and CcdA2 are required to maintain SdbA in an oxidized state in the cell. This statement is supported by the findings that inactivation of sdbB and ccdA2 resulted in a reduced SdbA, and SdbA was restored to the oxidized form upon the return of sdbB and ccdA2 genes back into the mutant. The conversion of SdbA from an oxidized to a reduced state is only achieved by the inactivation of sdbB and ccdA2 simultaneously, but not individually, lends support to the notion that SdbB and CcdA2 are independent redox partners of SdbA. It is
interesting to note that the level of SdbA was lowered in the *sdbBccdA2* mutant than in the parent and complemented mutant strains. Inactivation of the serine protease DegP restored SdbA level in the *sdbBccdA2* mutant to a level similar to that of the parent and complemented mutant strains. These results suggest that the reduced form of SdbA is unstable and prone to degradation in the cell and may explain why only oxidized SdbA was detected in the parent strain. This stability issue helps to explain the need for multiple redox partners to ensure SdbA is maintained in the most stable (i.e., oxidized) form in *S. gordonii*.

To provide further evidence that SdbB is a redox partner, the formation of disulfide-linked complexes between SdbB and the active site variant SdbA_{C89A} in the cell was investigated. Previous study showed that SdbA_{C89A} formed mixed disulfide complexes, and one of the complexes was SdbA_{C89A} and its natural substrate AtlS (Davey et al., 2015a). Here the results show that SdbA_{C89A} formed a disulfide-linked complex with SdbB. Oxidoreductases with mutations to the C-terminal cysteine of the CXXC motif, including DsbA (Kishigami et al., 1995b; Guilhot et al., 1995), protein disulfide isomerase PDI (Walker et al., 1996) and thioredoxin (Balmer et al., 2003), can form disulfide-linked complexes with their redox partners and substrates respectively. Thus, the results are consistent with the literature. I was not able to investigate complex formation between CcdA2 and SdbA because of the lack of a specific anti-CcdA2 antibody. CcdA2 and CcdA1 share high sequence homology and to distinguish reactions to CcdA2, not CcdA1, would require a highly specific antibody such as a monoclonal antibody.

A question remained is where electrons are flown to from SdbB and CcdA2 after SdbA reoxidation. *S. gordonii* lacks a respiratory chain, cytochrome c, quinone, menaquinone, and fumarate reductase (Brooijmans et al., 2009; Kakinuma, 1998; Vickerman et al., 2007). This means that the mechanism of CcdA2 and SdbB reoxidation is different from DsbB in *E. coli* (Bader et al., 1999). One possibility is that CcdA2 and SdbB shuttle electrons to the reducing pathway in *S. gordonii*. It is also possible that a yet to be identified downstream redox partner(s) is present in SdbB and CcdA2 reoxidation.
Homologs of SdbBCedA2 and Sgo_1177CedA1 are found in other Gram-positive bacteria (*S. pneumoniae*, *S. sanguinis*, and *C. botulinum*) that lacked a DsbA homolog. The role of these proteins in these bacteria is largely unknown, except in *S. pneumoniae* where they are involved in a reducing pathway coping with oxidative stress (Saleh *et al.*, 2013).

In conclusion, the results showed that SdbA has multiple redox partners forming a complex oxidative protein-folding pathway in *S. gordonii* (Figure 4.1). I propose that SdbA is the oxidase that introduces disulfide bonds in protein substrates. This results in a disulfide-bonded substrate protein (e.g., AtlS) and a reduced SdbA. SdbB pairs up with CcdA2 to reoxidize SdbA, allowing SdbA to continue its function. The SdbA-SdbB and SdbA-CcdA2 pathways represent the main oxidative pathway affecting autolysis, bacteriocin production, genetic competence, and eDNA release.

4.2 The Reducing Pathway in *S. gordonii*

The exposure of bacterial cells to ROS can damage DNA, lipid, and proteins. Thus, bacteria are equipped with specialized enzymes such as catalase and superoxide dismutase to neutralize ROS (Cho and Collet, 2013; Ezraty *et al.*, 2017). In proteins, cysteine and methionine are vulnerable to oxidation by ROS, which can lead to misfolding and even degradation. Therefore, enzymes such as disulfide bond reductase, disulfide bond isomerase, and methionine sulfoxide reductase are important in oxidative stress resistance in bacteria (Cho and Collet, 2013; Gleiter and Bardwell, 2008; Ezraty *et al.*, 2017). Methionine sulfoxide reductases are enzymes that reduce MetO to Met and, by doing so, alleviates damages caused by oxidation (Ezraty *et al.*, 2005a). In the second part of this study, I identified and characterized MsrAB and related proteins as a reducing pathway in *S. gordonii*. The results showed that MsrAB possesses the enzymatic capability to reduce MetO. Accordingly, inactivation of *msrAB* lead to impaired growth of *S. gordonii* in the presence of MetO. This is consistent with that reported in *S. pneumoniae*, where the loss of MsrAB2 resulted in impaired growth in the presence of exogenous MetO (Saleh *et al.*, 2013).
Figure 4.1 A proposed model for oxidative protein-folding pathway in *S. gordonii.*

SdbA is the oxidase that introduces a disulfide bond in substrate proteins. The reduced SdbA can be oxidized by CcdA2 or SdbB. This SdbA-CcdA2 or SdbA-SdbB pathway is the main oxidative pathway affecting autolysis, bacteriocin production, genetic competence, and eDNA release. The downstream partner of CcdA2 and SdbB is unknown and is depicted as question marks.
The phenotypic analysis showed that inactivation of msrAB increased the susceptibility of S. gordonii to H₂O₂. This is also consistent with the literature that msr mutants are sensitive to ROS. For example, inactivation of msrA in E. coli and Corynebacterium glutamicum lead to increase sensitivity to H₂O₂ (Si et al., 2015; Moskovitz et al., 1995). Collectively, these results support the notion that MsrAB is a methionine sulfoxide reductase that reduces MetO and protects S. gordonii from oxidative damages.

Bacteria are known to have more than one Msr to reduce the two isoforms of MetO (Met-S-O and Met-R-O) and to protect cytoplasmic and extracytoplasmic proteins from oxidation (Ezraty et al., 2005a; Ezraty et al., 2017). S. gordonii has, in addition to MsrAB, a second Msr named MsrA. Previous report showed that MsrA reduces MetO and protects S. gordonii from oxidative damage (Lei et al., 2011). However, unlike MsrAB, MsrA lacks a signal sequence and thus, the majority of the protein localized in the cytoplasm (Lei et al., 2011), suggesting that MsrA protects cytoplasmic proteins, whereas MsrAB reduces MetO in extracytoplasmic proteins.

The reduction of MetO results in the formation of a disulfide bond within the active site of Msr (Ezraty et al., 2005a; Lowther et al., 2000). To perform another round of reaction, Msr needs to be reduced by a reducing pathway such as the thioredoxin/thioredoxin reductase/ NADPH (Lu and Holmgren, 2014). For extracytoplasmic Msr, electrons need to cross the cytoplasmic membrane to an extracytoplasmic TDOR and then to Msr (Cho and Collet, 2013; Saleh et al., 2013; Quinernet et al., 2009). The results presented here suggested that SdbB and Sgo_1177 are independent redox partners of MsrAB. This statement is supported by the findings that showed both SdbB and Sgo_1177 are able to reduce MsrAB in disulfide exchange reactions and the results of the methionine sulfoxide reductase assay. The enzyme kinetic data showed that SdbB and Sgo_1177 have the same ability to reduce MsrAB. In S. pneumoniae, Etrx1 (Sgo_1177 homolog) preferentially reduces the A2 domain of SpMsrAB2, whereas Etrx2 (SdbB homolog) is able to reduce both MsrA2 and MsrB2 domains. Thus, further investigation is required to determine if SdbB or Sgo_1177 has a preferential partner as well.
In bacteria, it is known that extracytoplasmic TDORs can receive electrons from the cytoplasm via membrane proteins, such as DsbD and CcdA (Cho and Collet, 2013; Williamson et al., 2015; Zhou and Bushweller, 2018). Here, the disulfide exchange results showed that CcdA1 and CcdA2 are able to reduce SdbB and Sgo_1177, suggesting that the two CcdA proteins can functionally replace each other in reducing SdbB and Sgo_1177. This finding is consistent with the previously reported role of CcdA protein in bacteria (Williamson et al., 2015; Zhou and Bushweller, 2018; Saleh et al., 2013). The two CcdA proteins were unable to reduce MsrAB as shown in the methionine sulfoxide reductase assay and disulfide exchange reactions. Collectively, these results suggest a sequential flow of electrons from CcdA1 or CcdA2 to SdbB or Sgo_1177 and finally to MsrAB. In bacteria, the cytoplasmic thioredoxin system fuels electrons to the reducing pathway. In this system, thioredoxin donates the electrons to the membrane associated TDOR such as CcdA or DsbD, which funnel the electrons to the extracytoplasmic TDORs. Oxidized thioredoxin is then reduced at the expense of NADPH by the thioredoxin reductase (Lu and Holmgren, 2014; Cho and Collet, 2013; Gleiter and Bardwell, 2008). Recent studies showed that CcdA protein is able to transfer electrons from thioredoxins across the cytoplasmic membrane (Williamson et al., 2015; Zhou and Bushweller, 2018). To do so, CcdA undergoes an outward-to-inward conformational change to transfer electrons across the cytoplasmic membrane. This conformational change allows the reactive cysteines to shuttle across the cytoplasmic membrane in an elevator-type movement (Williamson et al., 2015; Zhou and Bushweller, 2018). Thus, it is feasible that the thioredoxin system donates the electrons to CcdA1 and CcdA2 in S. gordonii, which then funnel the electrons to MsrAB via SdbB or Sgo_1177. However, further investigation is required to address the interaction between CcdA1 or CcdA2 and thioredoxin in S. gordonii.

It is interesting that the single sdbB, sgo_1177, ccdA1, or ccdA2 mutants did not display an impaired growth in the presence of 10 mM MetO, compared to the double sdbBsgo_1177 and ccdA1ccdA2 mutants. These double gene mutants had a similar growth defect phenotype like the msrAB mutant. Therefore, only the deficiency of both SdbB and Sgo_1177 or both CcdA1 and CcdA2 or MsrAB significantly impaired the
growth of *S. gordonii* in the presence of 10 mM MetO. This result further suggests that SdbB/Sgo1177 and CcdA1/CcdA2 proteins can functionally replace each other in MsrAB regeneration and that the two pathways (SdbBCcdA2 and Sgo_1177CcdA1) are interconnected with SdbB interacting with CcdA1 and Sgo_1177 with CcdA2. At 20 mM MetO, all the single- and double-gene mutants showed impaired growth compared to the parent strain, suggesting that MsrAB, SdbBCcdA2, and Sgo_1177CcdA1 are required for optimal protection from oxidative stress.

In agreement with their role in the reducing pathway, *sdbB*, *sgo_1177*, *ccdA1*, and *ccdA2* single gene mutants exhibited higher sensitivity to H₂O₂ compared to the parent strain. *sdbBccdA2* and *sgo_1177ccdA1* double mutants were even more sensitive to H₂O₂ than the single gene mutants. *sdbBsgo_1177* and *ccdA1ccdA2* double mutants were the most sensitive to H₂O₂. This is consistent with previous reports from *S. pneumoniae* and *N. meningitidis*, where the loss of Msr redox partner increases the susceptibility to H₂O₂ (Kumar et al., 2011; Saleh et al., 2013).

The level of MsrAB, SdbB, and Sgo_1177 under different growth conditions was examined. The results showed that the level of MsrAB, SdbB, and Sgo_1177 increased under aerobic growth condition and planktonic lifestyle, which is in agreement with findings reported in other bacteria (Moskovitz et al., 1995; Beloin et al., 2004; Si et al., 2015; Lei et al., 2011). Because H₂O₂ is produced under aerobic conditions (Barnard and Stinson, 1999), it is logical that *S. gordonii* produces more MsrAB, SdbB, and Sgo_1177 to help to resist oxidative stress. In *S. gordonii*, *msrAB* is part of a five-gene operon including *ccdA1*, *Sgo_1177* and a two-component system *sgo_1180* (histidine kinase) and *sgo_1181* (response regulator), whereas *sdbB* is part of a four-gene operon including *ccdA2*, and a two-component system *sgo_1174* (histidine kinase) and *sgo_1175* (response regulator). The results showed that the level of MsrAB and Sgo_1177 was markedly increased in the *ccdA1* mutant, whereas the level of SdbB was increased in the *ccdA2* mutant, suggesting an active regulation of these two operons in response to oxidative stress or defect in the reducing pathway. In *E. coli*, the expression of *msrPQ* operon is regulated by the two-component system YedVW in response to oxidative stress such as exogenous H₂O₂ (Gennaris et al., 2015; Urano et al., 2015). Thus, it is possible that the
expression of these operons in S. gordonii is regulated by the two-component system located within each operon; however, further investigation is required to confirm this.

In conclusion, the data suggest that S. gordonii possesses reducing pathways and one of these pathways consists of MsrAB, two thioredoxin-like lipoproteins (SdbB and Sgo_1177), and two integral membrane proteins (CcdA1 and CcdA2). The results highlight the important role of MsrAB and other components of the pathway in resistance to oxidative stress. I propose that CcdA1 and CcdA2 funnel electrons to SdbB and Sgo_1177, which in turn reduce MsrAB. MsrAB reduces MetO to Met (Figure 4.2).

4.3 Disulfide Bond Isomerization Pathway in S. gordonii

Disulfide bond isomerase can serve two functions for the cell: corrects non-native disulfide bonds and protects the cell from oxidative damage (Cho and Collet, 2013). To date, no disulfide-isomerization pathway has been identified in Gram-positive organisms despite Gram-positive bacteria face oxidative stress during their life cycle and produce extracytoplasmic proteins with more than one disulfide bond (Baker et al., 2004; Davey et al., 2016b; Landeta et al., 2018; Ezraty et al., 2017). In the third part of this study, the results showed that SdbB can function as a disulfide bond isomerase. One of the hallmarks of disulfide bond isomerases is that they have oxidase and reductase activity (Rietsch et al., 1996; Darby et al., 1996). The results showed that of all the tested TDORs from S. gordonii, SdbB is the only TDOR that showed reductase activity in addition to oxidase activity. Although Sgo_1177, CcdA1, and CcdA2 did not exhibit reductase activity in the insulin precipitation assay, these proteins were able to act as a reductase in the disulfide exchange reaction. For example, CcdA1 and CcdA2 are able to reduce SdbB and Sgo_1177, whereas Sgo_1177 is able to reduce MsrAB. This could be due to the narrow substrate specificity for these proteins, such as its redox partner(s) not insulin. Collectively, these results suggest that SdbB can act as a disulfide bond isomerase. In agreement with this notion, the results showed that SdbB was able to rescue the scrambled RNase A in the isomerase assay.
Figure 4.2 A proposed model for the reducing pathway in *S. gordonii*.

MsrAB reduces MetO to Met. Next, SdbB and Sgo_1177 reduce MsrAB, allowing MsrAB to perform another round of reaction. CcdA1 and CcdA2 reduce SdbB and Sgo_1177. The electrons likely come from the thioredoxin system in the cytoplasm, which is depicted as question marks.
In bacteria, disulfide bond isomerase plays an important role in the proper folding and stability of many extracytoplasmic proteins by correcting the non-native disulfide bonds. Consequently, loss of this isomerase results in accumulation of mis-disulfide bonded proteins and subsequent degradation of these proteins (Rietsch et al., 1996; Sone et al., 1997). DsbC is known to be required for the proper folding of periplasmic proteins with multiple disulfide bonds such as RNase I (contains four disulfide bonds) and murein endopeptidase (contains three disulfide bonds) (Hiniker and Bardwell, 2004; Denoncin et al., 2010). Here, the notion of SdbB is a disulfide bond isomerase in S. gordonii was investigated for the production of anti-CR1 scFv, a protein with two disulfide bonds. The results showed that the anti-CR1 scFv was degraded in the sdbB mutant. Interestingly, the anti-CR1 scFv was also degraded in the ccdA2 mutant. The level of anti-CR1 scFv produced by the sdbB and ccdA2 mutant was restored to the parental level by degP mutation, indicating that anti-CR1 scFv is misfolded and degraded by DegP. In the sdbA mutant, anti-CR1 scFv is misfolded and degraded by DegP due to the lack of a disulfide bond (Davey et al., 2015a). The alkylation experiments showed that anti-CR1 scFv isolated from sdbB, sdbBdegP, and ccdA2degP were fully oxidized. Collectively, these results support that SdbB is a disulfide bond isomerase. In addition, these results also suggest that CcdA2 may be a redox partner of SdbB in the disulfide bond isomerization pathway. In agreement with this notion, the disulfide exchange results showed that CcdA2 is able to reduce SdbB.

The role of SdbB and CcdA2 in the disulfide bond isomerization pathway was further demonstrated by investigating their role in copper stress resistance in S. gordonii. Copper is an oxidant that can catalyze the formation of non-native disulfide bonds, which lead to protein misfolding and degradation. In bacteria, disulfide bond isomerization systems are known to counteract copper toxicity by correcting these non-native disulfide bonds (Kachur et al., 1999; Hiniker et al., 2005). This study revealed that SdbB and CcdA2 are crucial for protecting S. gordonii from copper toxicity. The sdbB, ccdA2, and sdbBccda2 were more sensitive to CuSO4 than the parent. This sensitivity is consistent with that reported for the E. coli dsbC and dsbD mutants that showed an increased sensitivity to copper (Denoncin et al., 2014; Hiniker et al., 2005).
It is important to identify the natural substrates of the SdbB in order to understand the role of the disulfide bond isomerization pathway in *S. gordonii*. Previous study identified 20 potential extracytoplasmic proteins with more than two cysteines in *S. gordonii* (Davey *et al.*, 2013), which could be potential natural substrates for SdbB. These proteins include transporters, protease, hydrolase, and some with unknown function (Davey *et al.*, 2013). In addition, proteomics analysis could be used to identify possible SdbB substrates as described previously for BdbCD in *B. subtilis* (Goosens *et al.*, 2013).

In conclusion, the data suggest that SdbB is a disulfide bond isomerase that corrects the non-native disulfide bonds and protects *S. gordonii* from oxidative damage. The results also suggest that CcdA2 is a redox partner of SdbB in the disulfide bond isomerization pathway. I propose that SdbB corrects the non-native disulfide bonds, which results from cysteine oxidation by ROS, copper, or as a result of incorrect disulfide bond formation by SdbA or other TDORs. SdbB can isomerize the non-native disulfide bonds or can reduce these bonds and give SdbA another chance to introduce the correct disulfide bonds to facilitate protein folding and prevent protein degradation. Preliminary results suggest that CcdA2 is a redox partner of SdbB (Figure 4.3).

4.4 Structural Determinants of SdbA Protein and Evidence of SdbA-SdbB Interaction Through their Active Site Cysteines

The role of the active-site cysteines in SdbA-SdbB interaction was investigated to explore the mechanism of SdbA reoxidation. The results showed that SdbA-SdbB interacts through their active site cysteines. The initial interaction between SdbA and SdbB involved the solvent-exposed N-terminal cysteine. Previous studies showed that the N-terminal cysteine of SdbA (C₈₆) of the active site is solvent-exposed (Davey *et al.*, 2015a; Stogios and Savchenko, 2015). Here the results suggest that the N-terminal cysteine of SdbB (C₈₁) is also solvent exposed. SdbA₈₉A forms a disulfide complex with SdbB in vivo (Figure 3.13). This finding is supported by the in vitro interaction between SdbA and SdbB active site variants. The results showed that SdbA₈₉A formed a stable complex with SdbB₈₄A.
Figure 4.3 A proposed model for the disulfide bond isomerase pathway in *S. gordonii*.

Disulfide bond oxidase such as SdbA and ROS can form mis-disulfide bonds in the extracytoplasmic proteins, which, if not corrected, can cause protein degradation. SdbB is the disulfide bond isomerase that corrects these non-native disulfide bonds either directly or by reducing the disulfide bonds and give SdbA another chance to introduce the correct disulfide bonds in the target protein. CcdA2 acts as a redox partner of SdbB. The electrons may come from the thioredoxin system in the cytoplasm, which is depicted as question marks or from the oxidation pathway after SdbA reoxidation.
This is in agreement with the mechanism of DsbA reoxidation that involves the formation of a mixed disulfide bond (DsbAC30–DsbB104) between the two solvent exposed cysteines (Inaba et al., 2006; Kishigami et al., 1995b). Collectively, the results suggest that SdbA-SdbB interacts through their solvent-exposed N-terminal cysteines. I propose that during DsbA reoxidation, C86 of the reduced SdbA attack C81 in the C81-C84 disulfide bond of SdbB. This resulted in a mixed disulfide complex between SdbA C86 and C81 of SdbB. This is followed by the attack of SdbA C89 to SdbAC86–DsbBC81 disulfide bond. This results in the release of oxidized SdbA from the complex and SdbB is reduced (Figure 4.4).

The structural basis of SdbA-substrate interaction was explored using the information provided from the crystal structure of SdbA (Stogios and Savchenko, 2015). The SdbA structure showed a thioredoxin fold containing a conserved active site C86PDC89 and a cis-proline (P156) residue in close proximity to the active site. Interestingly, the enzyme kinetic results showed that the point mutation of the P156T did not cause a change to the enzyme activity. This was unexpected since similar mutants in other TDOR displayed defects in TDOR-substrate interaction (Kadokura et al., 2004; Kadokura et al., 2005). However, it was reported previously in E. coli DsbA that only P151T cause an accumulation of DsbA-substrate complexes, whereas P151S or P151H cause an accumulation of DsbA-DsbB complex. Thus, further investigation is required, including testing the effect of multiple P156 point mutants before excluding the role of P156 in SdbA-substrate interaction.

SdbA is highly similar in structure to ResA of B. subtilis. ResA is known to undergo a redox-dependent conformational change that is accompanied by a rearrangement of multiple surface-exposed amino acids (Crow et al., 2004; Colbert et al., 2006). The enzyme kinetic results of SdbA showed that point mutations in three-surface exposed amino acids K91, S154, and F174, which correspond to K79, P139, and T159 in B. subtilis ResA, causes a significant increase in the Km value of SdbA compared to the parent enzyme. The results suggest a role for K91, S154, and F174 in SdbA-substrate interaction.
Figure 4.4 A proposed model for SdbA reoxidation by SdbB.

The process starts with oxidized SdbB with a C₈₁-C₈₄ disulfide bond in the resting state and a reduced SdbA (step 1). C₈₆ of SdbA attacks C₈₁ of SdbB forming SdbA-SdbB mixed disulfide complex (step 2). C₈₉ of SdbA attacks the intermolecular SdbA₈₆–SdbB₈₁ disulfide bond resulting in an oxidized SdbA and a reduced SdbB (Step 3).
It is worthy to note that K_{79}, P_{139}, and T_{159} in *B. subtilis* ResA undergo redox-dependent rearrangement, which is essential for ResA-substrate interaction (Crow *et al*., 2004; Colbert *et al*., 2006). The enzyme kinetic results further suggest that R_{119} and T_{172} may also play a role in SdbA-substrate interaction. It is interesting to note that mutation of Q_{92} in SdbA, which correspond to E_{80} in *B. subtilis* ResA, did not affect the enzyme’s kinetic properties. E_{80} in *B. subtilis* ResA alters between buried, when the protein is oxidized, to surface exposed, when the protein is reduced, and located at the base of the substrate binding cavity close to the active site (Crow *et al*., 2004; Colbert *et al*., 2006). Surprisingly, when Q_{92}A or Q_{92}E was introduced into SdbA_{S154E}, the K_{m} of these double point mutants (S154E/Q91A or S154E/Q91E) returned to values similar to that of the parent SdbA.

In addition to its effect on SdbA-substrate interaction, S_{154} appears to play a role in SdbA-redox partner interaction. The disulfide exchange results showed that SdbA_{S154E} exhibited a delay in reoxidation by SdbB. However, further in-depth investigations should be performed to fully examine the role of this amino acid and to explore the role of other surface exposed amino acids in SdbA-SdbB interaction.

4.5 General Conclusion

The work presented in this study provides new insight into the oxidation, reduction, and isomerization pathways in *S. gordonii*. In the oxidation pathway, the results of this study indicate that SdbB and CcdA2 are the independent redox partners of the disulfide bond catalyst SdbA (Figure 4.5). In the reduction pathway, the results indicated that MsrAB, the two thioredoxin-like lipoproteins (SdbB and Sgo_{1177}), and the two integral membrane proteins (CcdA1 and CcdA2) form a reducing pathway that is important in protecting *S. gordonii* from oxidative stress. The results suggest that the activity of MsrAB depends on the presence of its redox partners, SdbB and Sgo_{1177}. Both SdbB and Sgo_{1177} may receive the electrons from the integral membrane proteins CcdA1 and CcdA2 (Figure 4.5).
Figure 4.5 A proposed model for the oxidation, reduction, and isomerization pathways in *S. gordonii*.

SdbA is the oxidase that introduces the disulfide bonds into substrate proteins. SdbB and CcdA2 reoxidize the reduced SdbA. SdbA and ROS may form non-native disulfide bonds in the extracytoplasmic proteins, which can be corrected by the disulfide bond isomerase SdbB. For the reducing pathway, electrons likely come from the thioredoxin system in the cytoplasm and via the CcdA proteins to SdbB or Sgo_1177. Both SdbB and Sgo_1177 can reduce MsrAB, which in turn reduces MetO.
Finally, the results suggest that *S. gordonii* has a disulfide bond isomerization pathway that corrects the non-native disulfide bonds and protects *S. gordonii* from oxidative damage. This isomerization pathway consists of SdbB as a disulfide bond isomerase and CcdA2 as the redox partner (Figure 4.5). Collectively, these findings significantly advanced the knowledge of disulfide bond formation, methionine sulfoxide reduction, and disulfide bond isomerization in Gram-positive bacteria.

4.6 Future Direction

The work presented here answered a number of questions about the oxidation, reduction, and isomerization pathways in *S. gordonii*. At the same time, many questions remained, which require further investigation.

In the disulfide bond formation pathway, the results indicated that SdbB and CcdA2 are independent redox partners of SdbA. However, it is still unknown how electrons flow from SdbB and CcdA2 after SdbA reoxidation. Given that *S. gordonii* lacks in a respiratory chain, cytochrome c, quinone, menaquinone, and fumarate reductase (Brooijmans et al., 2009; Kakinuma, 1998; Vickerman et al., 2007), suggesting that the mechanism of CcdA2 and SdbB reoxidation is different from DsbB in *E. coli* (Bader et al., 1999). One possibility is that SdbB and CcdA2 channel electrons to the disulfide bond reduction or isomerization pathway. However, it is also possible that downstream redox partners are involved in SdbB and CcdA2 reoxidation. One approach for finding the downstream components of the SdbA oxidative pathway is to screen a transposon mutant library for *sdbA*-associated phenotype (Loo et al., 2000). Mutants that reproduce the *sdbA*-associated phenotype can be further examined to determine its effect on the oxidative protein folding pathway and the redox state of SdbA and its redox partners. Another question in the disulfide bond formation pathway is, does SdbA has other natural substrates. Previous study identified a list of potential substrates for SdbA that can be used as a starting point to identify additional natural substrates (Davey et al., 2013).

A key question in the MetO reducing pathway is how electrons are funneled to the CcdA proteins. One possibility is that the cytoplasmic thioredoxin funnels electrons to
SdbB or Sgo_1177 via the CcdA proteins. Thus, investigating the CcdA-thioredoxin interaction in *S. gordonii* may elucidate the source of electrons for this pathway.

A second question in the MetO reducing pathway is what are the natural substrates of MsrAB in *S. gordonii*. Previous study showed that MsrA could reduce MetO in adhesins SspB (Lei et al., 2011). However, MsrA occurs mainly in the cytoplasm and SspB is a surface protein (Kerrigan et al., 2007; Lei et al., 2011); thus it is likely that MsrAB also involves in the reduction of MetO in SspB. In addition, screening for other Met-rich cell envelope-associated proteins (e.g., amylase-binding protein B) may yield a new substrate for MsrAB. The results from this study indicated that SdbB and Sgo_1177 are the immediate redox partners of MsrAB and CcdA1 and CcdA2 are a part of the pathways. Thus, it is important to determine the redox state of MsrAB in the parent and TDORs mutant strains. This will shed light on the role of each TDOR in the reducing pathway.

In the isomerization pathway, one of the key questions remained is the identity of the natural substrate of SdbB. The previously identified list of 20 potential extracytoplasmic proteins with more than two cysteines in *S. gordonii* (Davey et al., 2013) may have potential natural substrates for SdbB. In addition, because SdbB plays a role in oxidative stress and copper stress resistance, one cannot rule out the possibility that SdbB may also involve in protecting single cysteine residues from oxidation. Therefore, it will be prudent to include all extracytoplasmic protein with one or more cysteine residues during the search for natural substrates of SdbB, which can be performed using proteomics analysis as described previously for BdbCD in *B. subtilis* (Goosens et al., 2013).

One of the most interesting findings of this study is the role played by SdbB and CcdA2 as interchangeable modules in different thiol-disulfide exchange pathways in *S. gordonii*. The results of this study suggest that SdbB acts as an electron hub, connecting the oxidation, reduction, and isomerization pathway in *S. gordonii*. This makes SdbB a unique TDOR; however, further investigations are required to understand how SdbB is able to perform this multifunction. In Gram-negative bacteria, TDOR with multifunction is maintained in a mixture of reduced and oxidized form by multiple redox
partners (Jameson-Lee et al., 2011; Kpadeh et al., 2015). Thus, determining the redox state of SdbB is important to understand how SdbB is able to perform these multifunctions.
Reference

Simpson, L. L., Maksymowycz, A. B., Park, J. B. and Bora, R. S. 2004. The role of the interchain disulfide bond in governing the pharmacological actions of botulinum toxin. *J Pharmacol Exp Ther*, 308, 857-64.

Appendix: Copyright Release for Published Material

Title: Identification of Redox Partners of the Thiol-Disulfide Oxidoreductase SdbA in Streptococcus gordonii
Author: Naif A. Jalal, Lauren Davey, Scott A. Halperin, Song F. Lee
Publication: Journal of Bacteriology
Publisher: American Society for Microbiology
Date: Apr 24, 2019

Copyright © 2019, American Society for Microbiology

Permissions Request

Authors in ASM journals retain the right to republish discrete portions of his/her article in any other publication (including print, CD-ROM, and other electronic formats) of which he or she is author or editor, provided that proper credit is given to the original ASM publication. ASM authors also retain the right to reuse the full article in his/her dissertation or thesis. For a full list of author rights, please see: http://journals.asm.org/site/misc/ASM_Author_Statement.xhtml

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement, Terms and Conditions. Comments? We would like to hear from you. E-mail us at customercare@copyright.com