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Abstract

Combinatorial game theory has a beautiful algebraic structure. Games form an

abelian group under the disjunctive sum and the normal play winning convention.

However, not all games can be easily analyzed under this framework. In many cases,

we must restrict properties to subclasses of games in order to have any useful analysis.

In this thesis, exact values are either hard to obtain or they are so complicated

that they obscure the underlying structure. To aid with the analysis, techniques that

approximate the value are used. Tools used for approximations include the reduced

canonical form and outcome classes, particularly when values were challenging to

calculate. We also present a method to construct game boards for games where initial

positions are not naturally defined. Lastly, we develop a framework for simultaneous

play combinatorial games, which requires approximation tools from economic game

theory. We prove that the profile determines equality under extended normal play

and continued conjunctive sum, while the economic game value determines equality

for scoring play under the continued conjunctive sum.
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Chapter 1

Introduction

The study of combinatorial games has a well established and elegant theory. Games

form an abelian group under the disjunctive sum and the normal play winning con-

vention. Combinatorial game theory, though well structured, has its fair share of

very difficult problems. The full analysis of a game, G, involves finding its value. The

value of a game determines how G behaves in sums with all other possible games.

Finding the value is a hard problem. In this thesis, I examine analysis techniques

that stop short of obtaining the value.

Even within the general analysis of combinatorial games, sometimes values are

difficult to calculate. Not knowing game values can make it challenging for players

to have any reasonable idea of where to move or even which player has an advantage.

The reduced canonical form is a tool which allows for further simplifications to game

options, by dropping the infinitesimals, in order to get a better idea of the overall game

behaviour. This very powerful tool is utilized here to analyze the game thinning

thickets.

Not all games have opening positions defined by their rulesets. Chapter 4 gives

one method for constructing an opening position for such a game: the conjoined

rulesets. Conjoined rulesets involve two phases of game play: Phase 1 is played under

the ruleset of one combinatorial game, which lends itself to set up a board for Phase

2. Phase 2 is played under a second ruleset but is played on the terminal board from

Phase 1. Typically of most importance is who moves last in Phase 1; this allows for

a focus on outcome classes rather than game values. We explore two case studies.

In the first, we were able to determine values of games at the end of Phase 1, while

in the second we were able to use outcome classes of the Phase 2 game to determine

conditions for the Phase 1 board setup.

Combinatorial game theory (CGT) has expanded by exploring a different winning

convention based on scores. Typically for scoring play, a rational player would aim

1



2

to maximize their score. However, sometimes the structure of the game can be very

complex and determining scores is not feasible. This is the case with the orthog-

onal colouring game. We instead determine a drawing strategy for the second

player on a special family of graphs.

Another approach to expanding CGT is to consider simultaneous moves. The

main goal of this work is to combine aspects of combinatorial game theory and eco-

nomic game theory to explore the possibility of a unified algebraic framework for

combinatorial games played simultaneously. We quickly noticed that exact values

were not attainable. Instead we needed to use tools from economic game theory in

order to determine the game value. We have developed methods to test for equality of

simultaneous play combinatorial games under certain winning conventions and sums.

This thesis will proceed as follows. In Chapter 3, we will examine a combinatorial

game on a graph with in-degree constraints for players’ options. The reduced canon-

ical form is the main tool used. In Chapter 4, we take a different approach to ruleset

modification, imposing a new way to combine games, called the conjoined ruleset,

and examine two games within this framework, go-cut and sno-go.

Next, in Chapter 5 a scoring game called the orthogonal colouring game

is studied. We show that the second player has a strategy to, in the very least, force

a draw for any graphs that admit a strictly matched involution and we characterize

graphs with this property. In some special cases, we determine that the outcome is a

draw.

In Chapter 6, we define a philosophy for an algebraic framework of simultaneous

combinatorial game theory. Imposing simultaneous moves on combinatorial game

play, the goal of this chapter is to demonstrate the challenges associated with this

ruleset change, and offer a toolkit for future analysis. We follow with Chapter 7

which highlights, using case studies, some results under different sum and winning

convention combinations.

This thesis concludes with directions for future work in Chapter 8.

Combinatorial game rulesets can be found in Appendix B and simultaneous com-

binatorial game rulesets can be found in Appendix C. If a game is the focus of a

chapter, the ruleset will appear in-text as well.



Chapter 2

Combinatorial Game Theory: Background

In this chapter, we present the necessary background for combinatorial game theory.

Standard references used in this chapter are [2,66]. For other references with slightly

different notation, see [12,29]. Often, games can be represented by graphs. Necessary

graph theory background can be found in Appendix A.

To avoid repetition of background, the necessary background for Chapters 3, 4,

and 5 are combined here. Extra explanations and examples may have appeared

in [49], [48] or [4]. Permission to reprint appears in Appendix D.

Definition 2.0.1 [2] A combinatorial game is a two player game with perfect infor-

mation, no chance devices, and players move alternately.

A ruleset describes the legal moves, and a position is an instance of the game after

several (including zero) legal moves [2]. Throughout play, both players have complete

knowledge of the board, meaning they know all available moves for themselves and

their opponent at all times. We assume perfect (rational) play. The definition of a

combinatorial game allows for the possibility of completely solving games with these

properties; however, the game structure (size of a game tree) can sometimes prevent

this from occurring in any reasonable amount of time.

The two players are called Left (L) and Right (R). Traditionally Left is female and

Right is male, we will use this convention here as well. Due to specific considerations,

we will also introduce other characters in Chapter 4 (Alf and Betti), and in Chapter 5

(Alice and Bob). Short games are combinatorial games which have finite descent,

meaning the game terminates in a finite number of moves. As that is the primary

focus of this thesis, we cover only its background here.

Definition 2.0.2 [2] The Left options from a game G, denoted by GL, is the set of

game positions which arise after a move is made by Left. The Right options from a

game G, denoted by GR, is the set of game positions which arise after a move is made

by Right. All options are games. GL (GR) will denote a single Left (Right) option.

3
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Definition 2.0.3 [2] Let G be a combinatorial game. The game G is defined in terms

of its options. Formally,

G =
{
GL | GR} .

A game G is impartial if the options available to Left and Right throughout game

play are always the same. Otherwise, the game is said to be partizan.

For a partizan game tree, all left slanting arrows indicate Left options from a game

G. Similarly, right slanting arrows indicate Right options from a game G. For an

example see Figure 2.1, which shows a hackenbush position (first node of the game

tree), its options (second depth of the tree), and the full game tree (complete figure).

Definition 2.0.4 [2] Let G be a combinatorial game. The negative of G, −G, is

defined as

−G =
{−GR | −GL

}
.

The negative of a game G will be important throughout analysis as it reduces the

number of positions to study. The concept of the negative of a game will be relevant

for Chapter 3, parts of Chapter 6, and will be discussed in Chapter 8.

Definition 2.0.5 [2] The birthday of a game G =
{
GL | GR} is defined recursively

as 1 plus the maximum birthday of any game in GL ∪ GR. For the base case, if

GL = GR = ∅, then the birthday of G is 0.

An alternative way to think about a birthday is that a game G is born on day

k if its game tree has height k [2]. Notably, given a game G, the existence of the

options of G with game tree heights k− 1 or less allows for inductive reasoning about

properties of G. In the literature, this is called inducting on the options.

A game is over when a player cannot move on their turn. The winner of the

game is determined based on different criteria (predefined at the outset of the game).

To date the most well understood winning convention is normal play, that is, if you

cannot move on your turn you lose. The misère play winning convention is that if

you cannot move on your turn you win. Lastly, the scoring play winning convention

assigns scores to game positions based on the ruleset, and when the game is over the

player with the higher score wins the game.
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Figure 2.1: A hackenbush position with its full game tree.
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We first present the well established background for normal play. This thesis

does not investigate game play under the misère convention and so we omit this from

the background. For the interested reader, see [66]. Scoring play will be discussed

throughout later sections of the thesis as needed.

2.1 Outcomes

Ultimately when studying a combinatorial game, or any game, the goal is to know

with certainty which player will win. This is known as the outcome class of a game.

There are four outcome classes which are partially ordered (see Figure 2.2):

o(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L,Left can force a win regardless of who goes first (positive);

R,Right can force a win regardless of who goes first (negative);

N , the Next player can force a win (fuzzy);

P , the Previous player can force a win (zero).

L

N

R

P

Figure 2.2: The partial order of the normal play outcome classes.

Note that the outcome classes N and P are incomparable. That is, a player will

not always prefer moving first or moving second over all games; it will instead depend

on the game being played. Left will however always prefer a Left win over a Right

win, and she will always prefer a Left win over a first or second player win. Similar

comparisons hold for Right. Hence, all the other outcome classes are comparable, as

shown in Figure 2.2.
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The outcome classes for any particular game under normal play can be restricted

based on the options available to players. Recall that if both players have all the

same options at all times throughout game play, the game is said to be impartial. In

this case, there are only two possible outcomes: the game is either a first player win

(in N ) or a second player win (in P). If, however, at any point in game play there

are different options available to the players, the game is called partizan, and one (or

both) of L and R could also be possible outcomes.

Games are called placement games if tokens are placed on a board and thereafter

the tokens cannot be moved or removed [17]. The games col, domineering, nogo,

and snort are all placement games and appear often throughout later chapters.

However, the intuition for placement games does not hold true for all games, and

only thinking in terms of placement games can lead the reader astray for general

analysis.

2.2 Sums

The sum most commonly used in CGT is the disjunctive sum. Individual games

within a sum are often referred to as components.

Definition 2.2.1 [2] Let G and H be combinatorial games. In the disjunctive sum

of G and H, denoted by G + H, on their turn, a player must move in exactly one

component. Formally,

G+H =
{
GL +H,G+HL | GR +H,G+HR} .

Note that GL +H =
{
A+H : A ∈ GL

}
.

Example 2.2.2 Figure 2.3 provides an example of the options from a disjunctive

sum of two hackenbush positions.

Note that, in the disjunctive sum A + B, play no longer has to alternate in each

component and the whole game trees of A and B must be considered.

Later in the thesis, we will be examining many ways to extend CGT and thus, it

will be useful to define other possibilities for sums of games. We define here the sums

we are interested in exploring; for an exhaustive list see [29] or [66].
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+

+ + +

Figure 2.3: The disjunctive sum of two hackenbush positions.

Definition 2.2.3 [66] Let G and H be combinatorial games. In the conjunctive sum

of G and H, denoted by G ∧ H, a player moves in all components. The game ends

when any of the components terminate. Formally,

G ∧H =
{
GL ∧HL | GR ∧HR} ,

where GL ∧HL =
{
A ∧ B : A ∈ GL, B ∈ HL}, and is similarly defined for GR ∧HR.

In the conjunctive sum, if a player cannot move in all components on their turn,

the game is over. The components in which the player does not have a move are

called terminal and, based on a specified winning convention, determines the winner.

Example 2.2.4 Let G = subtraction({1, 2})(3) and H = nim(5). Consider G∧H

under the normal play winning convention. Then o(G ∧ H) = N since both G and

H are non-terminal games, but after the first turn, H will be terminal if Player 1

removes all tokens from the heap. Hence, in this example, the outcome of G ∧H is

determined by H as H is a first player win and can be terminal in one move by the

first player.

Definition 2.2.5 [66] Let G and H be combinatorial games. In the continued con-

junctive sum of G and H, denoted by G � H, a player moves in all non-terminal

components. The game ends when all components are terminal. Formally,

G�H =

⎧⎨
⎩G+H if G or H have no options;{

GL �HL | GR �HR} otherwise,
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where GL�HL =
{
A� B : A ∈ GL, B ∈ HL}, and is similarly defined for GR�HR.

In the continued conjunctive sum, the last terminal component ends the game and

determines the winner.

Example 2.2.6 Let G = subtraction({1, 2})(3) and H = nim(5). Then o(G �
H) = P since both G and H are non-terminal games, G is a second player win and

H can either terminate on the first turn or the second (depending on what Player

1 decides to remove). Hence, in this example, the outcome of G�H is determined

by G as G is a second player win, is terminal after the second turn, and the second

player can also terminate H, if necessary, on their turn.

To further emphasize the difference between Definition 2.2.3 and Definition 2.2.5,

let G be a combinatorial game. Then G ∧ ∅ = ∅, while G� ∅ = G.

Definition 2.2.7 [66] Let G and H be combinatorial games. In the sequential sum

of G and H, denoted by G → H, players alternate moves in G until it is terminal,

then they move in H. Formally,

G → H =

⎧⎨
⎩H if G has no options;{

GL → H | GR → H
}

otherwise,

where GL → H =
{
A → H : A ∈ GL

}
, and is similarly defined for GR → H.

Example 2.2.8 Let G = subtraction({1, 2})(3) and H = nim(5). Then o(G →
H) = N since Player 1 can force Player 2 to be the last player to move in G by

removing 2 from 3; thereafter, when in H, Player 1 removes the entire heap and wins.

An interesting part of the analysis of sequential sums (sometimes called the se-

quential join) is that a player may want to lose in G so that they are the first to play

in H, as shown in Example 2.2.8. For more analysis of such games, see [69,71].

The disjunctive sum is a natural sum to use as it has been successful to work

with throughout the study of combinatorial game theory. The sequential sum is very

similar to a new sum defined in Chapter 4. The conjunctive and continued conjunctive

sums both involve playing in all components at the same time, but game termination

in each case follow extremes: first terminal component and last terminal component,



10

respectively. We study these sums in Chapter 6 to explore these extreme cases. Other

sums fall somewhere in between these two extremes, where players select a certain

number of components to play in, and are left for future work.

For an examination of the twelve sum and winning convention combinations out-

lined in [29] applied to a specific game, see [42].

2.3 Algebraic Structure

Comparison of games is based on equality and we have the following:

Definition 2.3.1 [2] Let G and H be combinatorial games, and X ranges over all

short combinatorial games. The relations equality and greater than are defined as

follows:

• G = H if (∀X), o(G+X) = o(H +X).

• G ≥ H if (∀X), o(G+X) ≥ o(H +X).

From this, several algebraic properties hold.

Theorem 2.3.2 [2] Equality is an equivalence relation.

Note that the quotient of games modulo = will be considered after Definition 2.4.1

as more concepts need to be introduced.

Theorem 2.3.3 [2] The relation ≥ is a partial order on games.

Analyzing games can get cumbersome quickly. The branching factor of a game

tree can be very large and can make it difficult to determine the outcome of a game.

There are two tools for simplification, called domination and reversibility, which help

in reducing the computations to simpler (equivalent) game positions.

Definition 2.3.4 [66] Let G be a game and let GL1 and GL2 be two Left options. If

GL1 ≥ GL2 , we say that GL1 dominates GL2 or GL2 is dominated by GL1 for Left.

Definition 2.3.5 [66] A Left option, GL, in G is reversible if there exists GLR such

that GLR ≤ G . Then we can replace GL with the Left options of GLR.
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Similar definitions to Definitions 2.3.4 and 2.3.5 hold for Right. For game equiv-

alence associated with implementing domination and reversibility as reductions see

Theorem 2.3.6 and Theorem 2.3.7 respectively.

Theorem 2.3.6 [66] Let G be a combinatorial game and suppose G′ is obtained from

G by removing some dominated option GL1. Then G′ = G.

Theorem 2.3.7 [2] Fix a game

G = {A,B,C, . . . | H, I, J, . . .}

and suppose that for some Right option of A, call it AR, G ≥ AR. If we denote the

Left options of AR by {W,X, Y, . . .}:

AR = {W,X, Y, . . . | . . .}

and define the new game

G′ = {W,X, Y, . . . , B, C, . . . | H, I, J, . . .},

then G = G′.

A game which has no dominated or reversible options for either player is said to be

in canonical form. As equality is an equivalence relation on games, the representative

for each equivalence class is given by the canonical form for the games of that class.

Thus, the uniqueness of the representative is crucial. The canonical form is chosen

as the representative because it has the smallest game tree and tree with least depth

within the equivalence class. Within a sum of games, replacing a game H with its

canonical form H ′ allows for the possibility of computational simplification without

affecting the game outcome. The next theorem demonstrates that the canonical form

is indeed unique.

Theorem 2.3.8 [2] If G and H are in canonical form and G = H, then G is identical

to H.
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2.4 Values

Game values are a shorthand description of games and their properties.

Definition 2.4.1 [66] The game value of G is its equivalence class modulo =.

Theorem 2.4.2 [66] The set of game values form an abelian group under addition.

In partizan play, one set of values for games are characterized by numbers. Integers

can be thought of as the number of move advantage a player has over their opponent;

a positive integer n means that Left has n moves available to her which Right cannot

use. Similarly −n means that Right has n moves available to him which Left cannot

use. Naturally, Left prefers positive values and Right prefers negative values.

Note that ‘·’ will denote when a player does not have any options available.

Definition 2.4.3 [2] Let G be a game. If Left has n free moves available to her, and

Right has no moves, then G has value n. Formally,

G = {n− 1 | · }.

Example 2.4.4 In the game pictured in Figure 2.4, Left has two moves available to

her, and Right has no moves available to him. Formally,

G = {1, 0 | · }
= {1 | · } removing dominated options

= 2

Figure 2.4: A hackenbush position with value 2.

Equivalently, G = {{0 | · } | · } = {{{ · | · } | · } | · }. This notation is not

used in practice as using numbers is a more compact way to represent the set theory

notation.
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Given that we are considering only short games, the only numbers that occur are

dyadic rationals.

Definition 2.4.5 [66] A rational number is dyadic if its denominator is a power of 2

(in lowest terms).

Moreover, game theoretically, non-integer dyadic rationals can be written as shown

in Theorem 2.4.6; which highlights their most simplified form.

Theorem 2.4.6 [66] For n ≥ 1 and let m be an odd integer. Then

m

2n
=

{
m− 1

2n

∣∣∣∣∣ m+ 1

2n

}

is in canonical form.

In other words, let A and B be sets of dyadic rationals where a < b for all a ∈ A

and b ∈ B then either {A | B} is the integer, n, closest to 0 which satisfies a < n < b

over all a ∈ A, b ∈ B or, if no such integer exists, then {A | B} = 2p+1
2q

where q is the

smallest positive integer such that there is a unique p with a < 2p+1
2q

< b.

Example 2.4.7 Let G be the hackenbush position pictured in Figure 2.5. In G,

Left has an option to move to 0, while Right has an option to move to 1. Hence,

G = {0 | 1} = 1
2
.

Figure 2.5: A hackenbush position with value 1
2
.

Theorems 2.4.8 and 2.4.9 indicate how to test for equality and comparability

respectively. Recall −G =
{−GR | −GL

}
.

Theorem 2.4.8 [2] G = H if and only if G−H = 0.

Theorem 2.4.9 [2] G ≥ H if and only if Left wins moving second on G−H.
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Definition 2.4.10 [2] A follower of a game G is any game position H which can be

reached from G, including G itself.

Definition 2.4.11 [2] G is dicotic (all-small) if every follower H in G has the property

that Left can move from H if and only if Right can.

Two important examples of dicotic games are presented in Example 2.4.12.

Example 2.4.12 Let ∗ = {0 | 0}. Each player has exactly one option from ∗, and

thereafter the game terminates. Hence, ∗ is a dicotic game.

Now consider ↑= {0 | ∗} (see Figure 2.6 for its game tree). Each player has an

option at every node or the game is terminal. Hence ↑ is also a dicotic game.

↑

0 ∗

00

Figure 2.6: Game tree for ↑.

Definition 2.4.13 [2] The positions {y | z} for y and z numbers with y > z are

called switches.

2.5 Sprague-Grundy Theory

Recall impartial games are games where both players have the same options available

to them at all times. We have a different set of tools available to us to determine the

value of an impartial game. nim is the driving force of the theory of impartial games.

Analysis of this game is shown in [2] and originated from [16]. Values that arise in

impartial combinatorial game theory are called nimbers.

Definition 2.5.1 [2] The value of a nim-heap of size n, n > 0 is the nimber ∗n,

where
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∗n = {0, ∗, ∗2, . . . , ∗(n− 1) | 0, ∗, ∗2, . . . , ∗(n− 1)}.

Note: the game where neither player has a move is called 0 = {· | ·}.

Definition 2.5.2 [2] The minimum excluded value (or mex) of a set of non-negative

integers is the least non-negative integer which does not occur in the set.

Adding nimbers, denoted by ⊕, is called the nim-sum. Addition of nimbers a and

b, a ⊕ b, is done by writing a and b in binary and adding componentwise without

carrying. See Example 2.5.3.

Example 2.5.3 The nim-sum of ∗5 and ∗1, denoted by ∗5 ⊕ ∗1, is calculated as

follows:

∗5 1 0 1
⊕ ∗1 0 0 1

∗4 1 0 0

Hence, ∗5⊕ ∗1 = ∗4.

Note that these values are called Grundy values but more recently called nimbers

or nim-values. Both take on slightly different notation. Grundy values are denoted by

G(H) and omit ∗ notation, whereas nimbers utilize ∗ notation to distinguish nimbers

from positive integers. Both may be used, and it will be clear from the context.

Important results for impartial games are summarized in the next theorem.

Theorem 2.5.4 [2][Sprague-Grundy Theory]

1. If G is impartial, then G+G = 0.

2. For k > 0, the canonical form of ∗k is

∗k = {0, ∗, ∗2, . . . , ∗(k − 1) | 0, ∗, ∗2, . . . , ∗(k − 1)} .

3. For every impartial game G there is a non-negative integer n such that G = ∗n.

4. For non-negative integers k and j, ∗k + ∗j = ∗(k ⊕ j).

5. G(G) = mex {G(H) : His an option of G}



16

6. If G, H, and J are impartial games, then G = H + J if and only if G(G) =

G(H)⊕ G(J).
Example 2.5.5 Consider a two-pile game of nim, with piles of size 1 and 2, denoted

by nim(1, 2). Its game tree is shown in Figure 2.7. Its value can be calculated using

Theorem 2.5.4, part 5.

G(1 + 2) = mex {G(1 + 1),G(2),G(1)}
= mex {0, 2, 1}
= 3.

In order to calculate the value of an impartial game in practice, the idea is as

follows. We write out the game tree of a particular game position. All terminal

positions are assigned the value zero. Then, backtracking up the game tree, at each

node we take the mex of the values of that nodes’ children. Note that in a game tree

for an impartial game, all options at a given level are available to both players (i.e.,

left or right slanting arrows are no longer associated with a particular player). For an

example, see the game tree for nim(1, 2) in Figure 2.7. Note: the nodes of Figure 2.7

are generically denoted by G(G) = k which means the game G has Grundy value k.

G(1 + 2) = 3

G(0 + 2) = 2G(1 + 1) = 0 G(1 + 0) = 1

G(1 + 0) = 1 G(0 + 1) = 1 G(0 + 1) = 1 G(0 + 0) = 0 G(0 + 0) = 0

G(0 + 0) = 0 G(0 + 0) = 0 G(0 + 0) = 0

Figure 2.7: Game tree for nim(1, 2).

A long-standing open question is to determine which nimbers appear as domi-

neering positions [43]. The generalization of the question is to determine what is
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the largest n for which ∗n appears in a game. This is formalized with the following

definition.

Definition 2.5.6 [63] The nim-dimension of a game H is

max{k : ∗2k−1 occurs as a sub-position of H}.

Note that 0 = ∗0 and ∗ = ∗1. A ruleset has nim-dimension 0 if it never has

∗ as a position. Also, if ∗2k−1 occurs, then, using the disjunctive sum, all nimbers

up to ∗(2k − 1) occur. We consider the nim-dimension of thinning thickets in

Chapter 3.

Definition 2.5.7 [66] A game G is an infinitesimal if, for every positive number

x, we have −x < G < x. Let I denote the set of infinitesimals. When G − H is

infinitesimal, we say that G and H are infinitesimally close, and write G ≡I H. We

will sometimes say that H is G-ish (G Infinitesimally SH ifted).

Definition 2.5.8 [2] Let G be a game. The Left stop (LS(G)) and the Right stop

(RS(G)) are defined recursively by

LS(G) =

⎧⎨
⎩G, if G is equal to a number;

max(RS(GL)), otherwise;

RS(G) =

⎧⎨
⎩G, if G is equal to a number;

min(LS(GR)), otherwise.

Example 2.5.9 Consider the game G = {{1 | 0} | {−1 | −2}}. Using Definition 2.5.8

we obtain, LS(G) = max(RS({1 | 0})) = 0 and RS(G) = min(LS({−1 | −2})) =
−1.

An alternate definition of an infinitesimal is: G is an infinitesimal if LS(G) =

RS(G) = 0 [2]. This will be of use in the next chapter.



Chapter 3

thinning thickets

These results first appeared in [49]. Permission to reprint appears in Appendix D.

Sometimes games can appear to have a very complex structure. For example,

consider H = {{{{1 | 0} | 0} | 0} | {{1 | 0} | 0} , {1 | 0} , 1 , 0}. On the surface, H

looks like it could be a difficult game to analyze. Even after typical reductions, we

obtain canonical form H ′ = {{{{1 | 0} | 0} | 0} | 0}. In [20], Calistrate introduces a

reduction based on removing inf-dominated and inf-reversible options which allows

us to instead study a simpler version of the game. This theory is proven and further

developed in [40]. The reduction, called the reduced canonical form, denoted by

rcf(G), is an approximation tool in combinatorial game theory to allow for game

analysis which otherwise wouldn’t be possible. We can use the reduced canonical

form of the game to obtain values up to, but not including, infinitesimals so this

comes at a cost. It keeps the game outcome almost intact: for a game G, if G ≥ g,

where g is a dyadic rational, then the rcf(G) ≥ g. Similarly, for G ≤ g, but if

−g ≤ G ≤ g for all positive dyadic rationals g, the outcome is not known. For the

above example, rcf(H) = 0. Thus far, the reduced canonical form has been used to

study a special class of games called hereditarily transitive1, that is, a game G where

every GLL (GRR) is also a Left (Right) option of G [66]. Recently, in [52], a variant

on partizan subtraction has been studied using reduced canonical form.

Games with edge and vertex deletion constraints on undirected graphs have been

studied in [45] and [60] respectively. In this chapter, we explore a game on a directed

graph, where players’ options are based on in-degree of arc colourings. A natural and

important question to consider is the following: by implementing the reduced canon-

ical form, is the structure easier to understand than the canonical form structure?

This chapter is organized as follows. In Section 3.1 we provide additional back-

ground, specific to the reduced canonical form. Next, in Section 3.2 we develop

1Previously called option-closed.
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motivation for the game and outline the results. In Section 3.3 the concept of nim-

dimension is discussed and we prove that the nim-dimension of thinning thickets

is infinite. Next, in Section 3.4 we study red-blue cordons and red-blue stalks

to demonstrate the power of the reduced canonical form and show that the tempera-

ture is not bounded above. The chapter concludes with open questions.

3.1 Background

We first provide additional background required for our analysis of the game thin-

ning thickets. Recall from Chapter 2 that if games G and H are incomparable

(confused), then G � H and H � G; that is, G−H is a first player win [66].

Definition 3.1.1 [66] The confusion set of a game G is defined by

C(G) = {x : x is a number that is incomparable to G}.

The next theorem breaks down how to determine what the confusion set is for a

game G based on its Left and Right stops.

Theorem 3.1.2 [66] Let G be a game and x be a number.

• LS(−G) = −RS(G) and RS(−G) = −LS(G).

• If RS(G) > x, then G > x. Similarly, if LS(G) < x, then G < x.

• If LS(G) > x, then G is greater than or confused with x. Similarly, if RS(G) <

x, then G is less than or confused with x.

• If G ≥ x, then RS(G) ≥ x. Similarly, if G ≤ x, then LS(G) ≤ x.

• LS(G) and RS(G) are the endpoints of C(G).

Proposition 3.1.3 [66] Let G be a short game.

• LS(G) ≥ RS(G)

• RS(GL) ≤ LS(G) for every GL and LS(GR) ≥ RS(G) for every GR, even if G

is equal to a number.



20

• LS(G+ x) = LS(G) + x and RS(G+ x) = RS(G) + x, for all dyadic rationals.

By Theorem 3.1.2, the confusion set is actually an interval with the Left and

Right stops of G being the endpoints and is referred to as the confusion interval.

Now, LS(G) ∈ C(G) if and only if the move that results in reducing the game to the

number is a Left move. Left always prefers moving to LS(G) over letting Right move

there. The same is true for the Right stop. Consider G = {{3 | 1} | {−1 | −2}}.
The Left Stop of G is LS(G) = 1 and the Right Stop of G is RS(G) = −1. Hence

C(G) = (−1, 1). Determining whether the endpoints are included in the confusion

interval requires some effort. The reduced canonical form, however, allows us to

ignore the status of the endpoints of the confusion interval.

Definition 3.1.4 [40] G ≥I H if G ≥ H + ε for some infinitesimal ε; G ≤I H is

defined similarly.

The Number Translation Principle [2] states that if x is a number and G is not,

then G+ x =
{
GL + x | GR + x

}
. Recall from Section 2.5 that G is an infinitesimal

if LS(G) = RS(G) = 0 [2]. Together, these give the next result, which will be used

often in this chapter.

Lemma 3.1.5 Let G be a game. If LS(G) = RS(G) = x, for some number x, then

G ≡I x.

Proof. By Proposition 3.1.3, if LS(G) = RS(G) = x, then LS(G−x) = RS(G−x) =

0. By the alternative definition of infinitesimal, this implies G and x are infinitesimally

close. Since x is a number, we obtain G ≡I x.

Closely related is the Number Avoidance Theorem [2] which states: Suppose that

x is a number in canonical form with a Left option and that G is not a number. Then,

there exists a GL such that GL + x > G + xL. That is, in the disjunctive sum of a

number and a non-number, the best move is always in the non-number. This result

reduces the number of cases to be considered when looking for the best moves.

The next result is new but follows easily from existing results.

Theorem 3.1.6 Let G and H be games. If RS(G) � LS(H) then G − H � ε for

some infinitesimal ε.
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Proof. Case (i): If RS(G) > x > y > LS(H), for some numbers x, y, then G −
H > x − y and x − y is bigger than any infinitesimal. Case (ii): Assume that

RS(G) = LS(H) = x. By the Number Avoidance Theorem and Proposition 3.1.3, we

have RS(G− x) = 0 and LS(x−H) = 0 and therefore, by Lemma 6.4 [66], G− x � ε

and δ � H − x for some infinitesimals ε, δ. Together they yield G−H � ε− δ.

As a consequence, we obtain a result first found in [61].

Corollary 3.1.7 Let a and b be numbers with a � b then a �I {a | b} �I b.

Definition 3.1.8 [66] Let G be any game.

• A Left option GL is Inf-dominated if GL ≤I G
L′ for some other Left option GL′ .

• A Left option GL is Inf-reversible if GLR ≤I G for some GLR.

The definitions for Right options are similar.

For example, let G = {1, {1 | 0} | 0}. Then {1 | 0} is an Inf-dominated Left

option of G, since {1 | 0} ≤ 1+ ↑, where ↑= {0 | ∗}. In the reduced canonical form,

the Inf-dominated options are removed.

Definition 3.1.9 [66] A game G is said to be in reduced canonical form provided

that, for every sub-position H of G, either:

• H is a number in canonical form; or

• H is not a number or a number plus an infinitesimal, and contains no Inf-

dominated or Inf-reversible options.

Theorem 3.1.10 [66] For any game G, there is a game G′ in reduced canonical form

with G ≡I G
′.

Theorem 3.1.11 [66] Suppose that G and H are in reduced canonical form. If

G ≡I H, then G = H.

This then shows that the reduced canonical form of a game G is well-defined and

unique. In this chapter, we will use the ≡I notation instead of defining a function

rcf(G). Lastly, the following two results will be used often in the analysis of positions.
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Lemma 3.1.12 [66] If G is not a number and G′ is obtained from G by eliminating

an Inf-dominated option, then G′ ≡I G.

Theorem 3.1.13 [40] If G = {GL | GR} is not a number and G′ = {GL′ | GR′} is a

game with GL′ ≡I G
L and GR′ ≡I G

R, then G′ ≡I G.

The rest of this section is only relevant for Section 3.4.1.

In a sum of games, players would like to have a way of determining which com-

ponent to play in. The heat of a game is a way to measure the urgency of game

play.

One way to think about heat is via a taxation to play. How much is a player

willing to spend in order to move in a component? If GL > GR then subtracting t

from GL and adding t to GR brings them closer together. Eventually, t becomes too

large, and players will no longer want to play in G.

Definition 3.1.14 [66] Let t ≥ −1. We define G cooled by t, denoted by Gt, as

follows. If G is equal to an integer n, then simply Gt = n. Otherwise, put G̃t =

{GL
t − t | GR

t + t}. Then Gt = G̃t, unless there is some t′ < t such that G̃t′ is

infinitesimally close to a number x. In that case, fix the smallest such t′ and put

Gt = x.

Note: The guarantee of the existence of a smallest t′ is non-trivial and is shown

by Theorem 5.6 of [66].

Definition 3.1.15 [66] The temperature of G, denoted by t(G), is the smallest t ≥ −1

such that Gt is infinitesimally close to a number.

Definition 3.1.16 [66] Let G be a game. The trajectories λt(G) and ρt(G), for

t ≥ −1, are as follows. If G is equal to an integer n, then λt(G) = ρt(G) = n.

Otherwise, the scaffolds λ̃t(G) (Left scaffold) and ρ̃t(G) (Right scaffold) are given by

λ̃t(G) = maxGL(ρt(G
L)− t)) and ρ̃t(G) = minGR(λt(G

R) + t)).

Then λt(G) = λ̃t(G) and ρt(G) = ρ̃t(G), unless there is some t′ < t such that

λ̃t′(G) = ρ̃t′(G). In that case, let x = λ̃t′(G) for the smallest such t′, and put

λt(G) = ρt(G) = x.
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Temperature can be calculated using the definition, and can be shown graphically

using a thermograph. Both are shown in the next two examples. For more information

about thermographs see [66].

Example 3.1.17 Let G = {1 | −1}. Then Gt = {1 − t | −1 + t}, so if t = 1 we

obtain

G1 = {1− 1 | −1 + 1}
= {0 | 0}
= ∗

Since ∗ is infinitesimally close to 0, we obtain Gt = 0, for all t > 1. Hence, a player

is willing to spend 0 ≤ t ≤ 1 to play and so t(G) = 1. This is shown graphically in

Figure 3.1. Note that the Left scaffold corresponds to the left side of the graph and

the Right scaffold corresponds to the right side of the graph. The Left and Right

scaffolds meet at t ≥ 1.

Figure 3.1: Thermographs for {1 | −1} (left) and {1 | {−1 | −2}} (right).

Example 3.1.18 Let G = {1 | {−1 | −2}}. We need to compute the temperature

of G in two stages: first we compute the temperature for {−1 | −2}, then substitute

this value into the expression and calculate the temperature of what remains. Let
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H = {−1 | −2}. Then Ht = {−1− t | −2 + t}, so when t = 1
2

we obtain,

Ht =

{
−3

2

∣∣∣∣ − 3

2

}

= −3

2
+ ∗

Hence, from here and considering Definition 3.1.14,

Gt =

{
1− t

∣∣∣∣ − 3

2
+ t

}
, for t ≥ 1

2
.

When t = 5
4
, this expression becomes

=

{
1− 5

4

∣∣∣∣ − 3

2
+

5

4

}

=

{
−1

4

∣∣∣∣ − 1

4

}

= −1

4
+ ∗

By Definition 3.1.14, we obtain, Gt = −1
4
, for all t > 5

4
. Hence, t(G) = 5

4
. This is

shown graphically in Figure 3.1.

3.2 Motivation, definitions and concepts for thinning thickets

Thinning thickets is an offshoot of hackenbush. Both are played on graphs

with a set of distinguished vertices (the ground or roots), each arc/edge is coloured

red, blue or green. In both, there are rules as to what arcs/edges Left and Right can

delete, and also, any vertex not connected to the ground is also deleted.

The worth of a tree, and a game, is in the fruit that it bears. Hackenbush has

many nice features and interesting analyses as do many of its progeny. For example,

every red-blue hackenbush position is cold, that is, a number ([12], Chapter 7).

A long-standing, and difficult, problem is the analysis of sums of flowers (green stalks

with a blue or red flower at the top). Other variants include



25

• hackendot [74] which has been extended to partially ordered sets in [19, 36];

• timber [62] is an (impartial) variant played on directed graphs;

• toppling dominoes [37] in which every number occurs as exactly one position,

proved via ordinal sums, and the nimber ∗n occurs exactly n times.

We were in search of a ruleset which took on many of the properties of hacken-

bush but that had options which evolved throughout game play. thinning thick-

ets introduces a parity aspect to the game.

Definition 3.2.1 A directed graph G is a thicket if there is a subset of vertices

x1, . . . , xk called roots and every arc is on a directed path to some root.

We will always write an arc as
−→
ab, where a and b are the initial and terminal

vertices respectively. The in-degree of an arc
−→
ab is the number of arcs with terminal

vertex a.

Ruleset for thinning thickets

• Board: A finite thicket in which each arc is coloured blue (single solid),

red (dashed) or green (double solid).

• Moves: On a move, each player deletes an arc. Left removes a blue arc

or a green arc with even in-degree (including 0) or a red arc with odd

in-degree. Right removes a red arc or a green arc with even in-degree

(including 0) or a blue arc with odd in-degree. After the arc is deleted,

any arc and vertex not on a directed path to a root is also deleted.

In play, when the arc
−→
ab is deleted then the in-degree of b changes parity and so

the player that can delete the arcs directed out of b also changes. This dynamism

exists in only a few analyzed combinatorial games, see [45, 60, 65]. We sought out

a game where the dynamism of options would lend itself to interesting analysis. In

particular, thinning thickets has hot positions (games where players want to

move). Also, thinning thickets is not hereditarily transitive, so from an opening

position players are only aware of their current options. For example, in Figure 3.2,

if it is Right’s turn and he removes the top arc, he opens a move for himself. For



26

clarity, in Figure 3.2 the arcs are labelled with the player who can currently remove

it (L for Left and R for Right). The goal is to understand game play of thinning

thickets to highlight the game structure introduced by dynamic options.

L L

L R

R

(A) (B)

Figure 3.2: Evolving options of thinning thickets game play; (A) the initial
position and (B) the position after Right removes the top arc.

We present results for thinning thickets in the cases of cordons, which are tall,

thin, singly rooted graphs.

Definition 3.2.2 A cordon2 consists of i) two sets of vertices V1 = {v0, v1, . . . , vn},
where v0 is the root, vn is the top vertex and the others are called interior vertices,

and V2 = {l1, l2, . . . , lk}, ii) a strictly increasing sequence {a(1), a(2), . . . , a(k)}, where

0 < a(1), a(k) ≤ n − 1, and iii) the arcs are −−−→vivi−1, i = 1, 2, . . . , n and
−−−→
ljva(j), j =

1, . . . , k. We call the latter leaf arcs. The vertex va(i) is called an attachment vertex.

If V2 is empty then we call the cordon a stalk, hence −−−−→vnvn−1 is not considered to be a

leaf arc. The height of a cordon C, denoted h(C), is the number of arcs in the stalk.

Example 3.2.3 Consider the cordon pictured in Figure 3.3. This is an example of a

green cordons position, a thinning thickets cordon where all arcs are green.

By Definition 3.2.2 we have the following: V1 = {v0, v1, v2, v3}, V2 = {l1}. The interior

vertices are v1 and v2, the root is v0 and the top vertex is v3. Here, a(1) = 1 and is

the index for the only attachment vertex, v1, with leaf arc
−−−→
l1va(1). The height of the

cordon is 3.

2Horticultural definition: A cordon is a tree or shrub, especially a fruit tree, repeatedly pruned
and trained to grow on a support as a single rope-like stem.
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v0

v1 = va(1)

v2

v3

l1

Figure 3.3: A green cordons position.

General questions

For a given game, apart from ‘Who wins?’ and ‘How?’, it is interesting to know

which values can occur and which cannot. In general, this is a very hard question to

answer. This can be broken down into sub-questions:

1. What is the greatest number that can occur?

2. What temperatures can occur?

3. For what positive integers n can ∗n occur? (Nim-dimension.)

4. Are tinies, {0 | {0 | −n}}, and minies, {{n | 0} | 0}, present? These are called

threats because if a player is allowed to move consecutively in a component they

receive an advantage.

5. What infinitesimals can occur?

In the analysis, we find the value tiny(1) = {0 | {0 | −1}} occurs (see Figure 3.2

(A)) but were unable to provide any more insight. In addressing these subsidiary

questions, it became natural to consider restricted versions of thinning thickets.

To answer (3), we consider green cordons (all the arcs are green), which is

the impartial version of the game. In Section 3.3, Theorem 3.3.1, we show that the

nim-dimension is infinite (i.e., every ∗n occurs). In Theorems 3.3.2 and 3.3.3 we

characterize the green cordons positions with values 0 and ∗, and also show a

Fibonacci recurrence (Theorem 3.3.4).

Returning to questions (1) and (2), we consider red-blue cordons. Unlike

hackenbush, the values are not just numbers, indeed some are hot, and the canonical

forms can be quite complicated. However, if the infinitesimal values are ignored then
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Theorem 3.4.2 shows that red-blue stalks positions take on only eight values,

specifically 0, 1, −1, {1 | 0}, {0 | −1}, {1 | −1}, {{1 | 0} | −1}, {1 | {0 | −1}}.
Adding leaves gives a richer set of values. The set of values of blue cordons

positions is infinite but describable if, again, infinitesimal values are ignored. In

Theorem 3.4.1 we show that the value is either k or the switch {k + 1 | k} plus an

infinitesimal for any non-negative integer k. Their negatives will be found by the

corresponding red cordons.

In Theorem 3.4.4, we consider a family of cordons where all the arcs but one are

blue and the other is red and show that, for any positive integer n, there is a member

of this family with temperature greater than n, thereby answering question (2).

3.3 green cordons

Recall that a green cordons position is a game on a cordon where all arcs are

green and directed towards the ground. On a player’s turn, one may remove an arc

which has even in-degree. In Figure 3.4 do you want to play first or second?

+ +

A B C

Figure 3.4: The disjunctive sum of three green cordons positions.

Theorem 3.3.1 shows that a green cordons position can have arbitrarily high

nim-values. In Section 3.3.2, we characterize the positions with nim-values 0 and 1

and in Section 3.3.3 we show there is a Fibonacci recurrence associated with each.
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3.3.1 Nim-dimension

The value of any green cordons positions is a nimber by Theorem 2.5.4, since

green cordons positions are impartial. Also, recall from Section 2.5, nimbers are

calculated recursively using the mex function.

Let L(n) be the green cordons position with stalk vertices {v0, v1, . . . , vn} and

with a leaf arc at vi, for 1 � i � n− 2. Note that L(0), L(1) and L(2) are the stalks

with 0, 1 and 2 arcs, respectively (see Figure 3.5).

Figure 3.5: green cordons: L(1) (left) and L(2) (right).

Theorem 3.3.1 The nim-dimension of green cordons and thinning thickets

is infinite.

Proof. From L(n), cutting −−−→vivi−1, 2 � i � n− 1, results in L(i). As cutting stalk arcs

is an option from every L(i), 2 � i � n− 1, in particular all even height subpositions

L(i) appear as subpositions of all cordons of height i+2 or greater. Thus, they must

have distinct values. Hence, all L(k) where k = 2n for n = 1, 2, . . . are distinct.

Therefore, the nim-dimension of green cordons, and hence thinning thickets,

is infinite.

3.3.2 Characterizations for Positions of Value 0 and ∗

Leaves are ordered starting closest to the root. Recall a(i) is the index of the stalk

vertex to which the ith leaf arc is attached; that is, leaf li is attached to the stalk

vertex va(i). For example, in Figure 3.4, components A, B and C have a(1) equal to

2, 1, and 1 respectively.

Theorem 3.3.2 Let T be a green cordons position, of height n. Then G (T ) = 0 if

and only if either i) T is a stalk and n is even, or, ii) a(1) is even, and all a(i+1)−a(i),

1 ≤ i < k, and n− a(k) are odd, where k is the number of leaf arcs.
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Proof. Let T be a green cordons position with stalk vertices {v0, v1, . . . , vn}, thus

h(T ) = n. Let A be the set of green cordons positions with the following proper-

ties: If T is a stalk, then n is even, or, if there are leaves, a(1) is even, and a(i+1)−a(i),

1 ≤ i < k, and n − a(k) are all odd. To prove G(T ) = 0 only for T ∈ A, we must

show that any option from T is not in A and if S /∈ A then S has an option in A

(Theorem 2.13 of [2]).

Suppose T ∈ A. If T is a stalk, then the only move is to remove −−−−→vnvn−1, resulting

in a stalk T ′ and h(T ′) is odd. If T has a leaf arc, let T ′ be the resulting tree after a

move, then the moves are as follows.

i) Remove −−−−→vnvn−1 (where
−−−→
lkvn−1 /∈ E(T )) and thus in T ′ we have h(T ′) − a(k) =

n− 1− a(k) is even.

ii) Remove −−−−→vnvn−1 (where
−−−→
lkvn−1 ∈ E(T )). Then h(T ′) = h(T ) however, h(T ′)−a(k−

1) is even.

iii) Remove −−−−−−→va(i)va(i)−1, where i > 1. Now h(T ′)− a(i− 1) is even.

iv) Remove −−−−−−−→va(1)va(1)−1. Now T ′ is a stalk and h(T ′) is odd.

v) Remove
−−−→
liva(i), where 1 < i < k. Then a(i+ 1)− a(i− 1) is even.

vi) Remove
−−−→
l1va(1). Then a(2) (which is a(1) for T ′) is odd.

vii) Remove
−−−→
lkva(k). Then h(T ′)− a(k − 1) is even.

Now, consider S /∈ A. Then,

i) If S is a stalk, then h(S) is odd and we remove −−−−→vnvn−1 leaving h(S ′) even, i.e.,

S ′ ∈ A.

ii) If a(1) is odd then remove −−−−−−−→va(1)va(1)−1 to leave S ′, a stalk of even height.

iii) If a(1) is even and there exists a(i + 1) − a(i) even, where j is the least such i

which satisfies this property. Remove −−−−−−−−−−→va(j+1)va(j+1)−1, Then S ′ satisfies: a(1) even,

a(i+1)− a(i) odd, for 1 ≤ i < j, and h(S ′)− a(j) = a(j+1)− 1− a(j) which is odd.

iv) If a(1) is even, a(i + 1) − a(i), for all i, is odd but n − a(k) is even, then delete
−−−−→vnvn−1 to result in S ′ ∈ A.

The classification for cordons with nim-value 1 is similar to that for the classifica-

tion of cordons with nim-value 0 with the roles of nim-values 0 and 1 interchanged.

Thus, the details of Theorem 3.3.3 are left to the reader.
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Theorem 3.3.3 Let T be a green cordons position, of height n. Then G (T ) = 1

if and only if either (i) T is a stalk and n is odd; or (ii) all of a(1), a(i + 1) − a(i),

1 ≤ i < k, and n− a(k) are odd.

3.3.3 Fibonacci Connection

Let Fn be the set of green cordons positions of height n and nim-value 0. Let

fn = |Fn|. Note that f0 = 1, f1 = 0 and f2 = 1.

Theorem 3.3.4 The value fn is given by the recurrence relation fn = fn−1 + fn−2,

where f0 = 1 and f1 = 0.

Proof. Let An ⊂ Fn be the subset of positions of Fn with no leaf arc at height 2.

Let Cn ⊂ Fn be the subset of positions of Fn with the first leaf arc at height 2 (i.e.,

a(1) = 2). By Theorem 3.3.2, it follows that An ∩ Cn = ∅ and Fn = An ∪ Cn, since

a green cordons position of nim-value 0 either has its first attachment vertex at

height 2 or it does not. Stalks and all positions with a(1) > 2 (satisfying all other

conditions of Theorem 3.3.2 as well) are in An and all remaining positions satisfy

a(1) = 2 and are in Cn. We will show that there is a bijection between 1) An and

Fn−2, and 2) Cn and Fn−1.

1) Consider T ∈ Fn−2 of height n − 2 with G(T ) = 0. Add two arcs below the root

vertex of T , to get T ′. Since a(1) of T was even (or T was a stalk), adding these

two arcs below the root will result in the height of T ′ being n and a(1) for T ′ is even

at an attachment vertex value greater than 2 (or is a stalk of even height). Hence

T ′ ∈ An. See Figure 3.6. Hence we have a map φ : Fn−2 → An which is injective,

based on the characterization of positions with nim-value 0 given in Theorem 3.3.2.

Conversely, if T ∈ An then the induced subgraph starting at the stalk vertex of height

2 gives T ′ ∈ Fn−2. Hence we have a map ρ : An → Fn−2 which is injective, again by

Theorem 3.3.2. Moreover, ρ = φ−1 and so together this gives a bijection between An

and Fn−2.

2) Consider T ∈ Fn−1 of height n− 1 with G(T ) = 0, a(2)− a(1) is odd, and a(1) is

even. Consider T ′ which we define to be T with an additional arc emanating from

the root vertex of T and an arc at the second attachment vertex of T ′,
−→
bv′2. This

gives a(1) = 2 for T ′ and a(2) − a(1) is odd. Hence T ′ ∈ Cn. See Figure 3.7. Hence
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v′0

v′1

v0 = v′2

va(1) = v′
a(1)

vn−2 = v′n

v0

vn−2

va(1)

Figure 3.6: T ∈ Fn−2 (left) and T ′ ∈ An (right).

we have a map ψ : Fn−1 → Cn which is injective, based on the characterization of

positions with nim-value 0 given in Theorem 3.3.2. Conversely, consider T ∈ Cn with

stalk vertices {v0, v1, . . . , vn} and a(1) = 2 and let
−→
bv2 define the first leaf arc. Then

taking the induced subgraph on stalk vertices {v1, . . . , vn} (so v1 is the new root) and

all leaves without b we obtain a green cordons position T ′ of height n − 1 with

a(1) even. Hence T ′ ∈ Fn−1. Hence we have a map τ : Cn → Fn−1 which is injective,

based on the characterization of positions with nim-value 0 given in Theorem 3.3.2,

and τ = ψ−1. Together, we obtain a bijection between Cn and Fn−1.

Thus fn = |Fn| = |An|+ |Cn| = |Fn−2|+ |Fn−1| = fn−2 + fn−1, where |F0| = 1 and

|F1| = 0.

As the classification for nim-value 0 and nim-value 1 are symmetric, the following

theorem is immediate.

Theorem 3.3.5 Let Hn be the set of green cordons positions of height n with

nim-value 1. Then |Hn| = |Hn−1|+ |Hn−2|, where |H0| = 0, and |H1| = 1.

Consider Figure 3.4. Using Theorems 3.3.2 and 3.3.3, we see that the nim-values

for A, B and C are 0, 1 and 1 respectively. So G(A+B+C) = G(A)⊕G(B)⊕G(C) =

0⊕ 1⊕ 1 = 0. Hence this is a second player win.
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v′0

v0 = v′1

v1 = v′
a(1)

= v′2

b

va(1) = v′
a(2)

vn−1 = v′n

v1

v0

vn−1

va(1)

Figure 3.7: T ∈ Fn−1 (left) and T ′ ∈ Cn (right).

3.4 Multicoloured cordons

A blue (red) cordons position is a cordon where all the arcs are blue (red). We are

only required to analyze blue cordons positions because red cordons positions

are their negatives.

The stalks seem recursively simple. Let B(n) be a stalk with n blue arcs. Recall,

Left can only remove −−−−→vnvn−1 and Right can remove any of the others: for n > 1,

B(n) = {B(n− 1) | B(0), B(1), . . . , B(n− 2)}. The canonical forms are

B(0) = 0

B(1) = 1

B(2) = {B(1) | B(0)} = {1 | 0}
B(3) = {B(2) | B(0), B(1)} = {{1 | 0} | 0, 1} = {{1 | 0} | 0}
B(4) = {B(3) | B(0), B(1), B(2)} = {{{1 | 0} | 0} | 0}.

It is not too difficult to show that B(n) = {B(n− 1) | 0}3. The canonical forms will

get longer as n increases. However, starting at n = 3, the games are infinitesimal

3For those conversant with CGSuite [67] notation, B(n) = {−1 | 0n−2}.
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+ +

Figure 3.8: Sum of blue cordons and red cordons positions.

since LS(B(n)) = RS(B(n)) = 0. The reduced canonical forms are much simpler:

Rcf(B(n)) = B(n) for n = 0, 1, 2 and Rcf(B(n)) = 0 for n ≥ 3.

The analysis of blue cordons, in general, is made simpler by using the reduced

canonical forms since there are only a few cases to consider.

First, our notation. A position is denoted by a tuple, each entry of the tuple

represents the presence (1), or absence (0), of a leaf arc on vi, i > 0, where left to

right in the tuple is top to bottom on the cordon (though difficult, this notation allows

for succinct descriptions later on). A position will always start with a 0, since there is

no leaf arc at the top vertex (it would be part of the stalk instead) but it is useful to

indicate the moves. We don’t include the ground vertex so the empty game is G = [ ]

and the stalk with one arc is G = [0].

Suppose there is a leaf arc at vi for some i > 0. Our notation would have a 1 in

the ith place, as in [0 . . . 1 . . .] or, better, [α1β] for some arbitrary strings α and β.

Around this ith vertex, Left has several cases to consider. Left can move to [α0β]

(note that α starts with 0) by removing the leaf arc at vi. If the position is [α11β]

Left can remove the stalk arc vivi−1 to leave [00β]. Otherwise the position is [α10β]

and Left can remove the stalk arc vivi−1 to leave [0β]. For n > i > 0, if there is no

leaf arc at vi, the position can be expressed as one of [α00β], [α01β] or [α0], where α

has a leading 0. Right has the move to delete the arc below vi giving the positions,
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respectively, [0β], [00β] or [ ]. For a simple example, in Figure 3.8, reading from left

to right, we have [010] + [001]− [0101].

To emphasize, α indicates a section of the cordon which is arbitrary, and starts

with 0 (i.e., non-empty).

Theorem 3.4.1 The value of a blue cordons position is:

1. [0] = 1, [00] = {1 | 0}, [α10] ≡I {1 | 0}, [α00] ≡I 0

2. [α012k+1] ≡I k + 1, k ≥ 0

3. [α0012k] ≡I k, k ≥ 1

4. [α1012k] ≡I {k + 1 | k} , k ≥ 1

5. [0012k] ≡I {k + 1 | k} , k ≥ 1

6. [01] = 1, and in general we have [012k] = [012k+1] = k + 1, k ≥ 1

Proof. From the position [αγ], a move to [α′γ] is, in our notation, a move in α that

modifies, but does not completely eliminate, the string α. For example, let α = 0000.

Then in [α0] Right has the options [000], [00] both of which would be combined into

one symbol [α′0]. The option to [0] (and to [ ]) will be listed separately. β indicates a

non-empty string after a move has occurred (could be different from α′). The α′ and

β strings do not affect the values and so we use them as generic string representations.

If G is the empty cordon, G = 0 since neither player has a move. If G is [0] there

is only one move, for Left to move to [ ]. So G = {0 | ·} = 1. If G is [00] then Left

has a move to [0] and Right has a move to [ ]. Hence G = {1 | 0}. Our template for

the typical argument, where we have included the reasons for each step, is

[000] = {[00] | [0], [ ]}—options

= {{1 | 0} | 1, 0}—values

≡I 0 —reduced canonical form.

For the rest of the analysis we consider the moves in the order: 1) in α; 2) any moves

on the stalk (not in α); then 3) any leaf arc moves. Moves in 1) where at least one such

move exists are noted by †. A move which may or may not exist for a player is noted



36

by ‡. Options which do not have either † or ‡ are considered to be guaranteed options.

We go through Case 1 in detail. As Cases 2, 3 and 4 use similar reasoning, so we

omit extra explanations in these cases.

Case 1:

[α10] = {[α′10]†, [000]†, [0], [α00] | [α′10]‡, [000]‡, [ ]} (3.1)

≡I {{1 | 0}†, 0†, 1, 0 | {1 | 0}‡, 0‡, 0} (3.2)

≡I {1 | 0}, by Corollary 3.1.7. (3.3)

We obtain (3.1) by determining the options for each player. From here, we use

induction on the options to obtain their values in (3.2) up to infinitesimals. Applying

Corollary 3.1.7 we obtain the following: for the values of Left’s options, {1 | 0} is Inf-

dominated by 1 and 0 is dominated by 1, so the values of Left’s options are reduced

to 1. Similarly for Right, {1 | 0} is Inf-dominated by 0 and 1 is dominated by 0, so

the values of Right’s options are reduced to 0. Hence, [α10] ≡I {1 | 0}. Note also

that domination was based on guaranteed options, meaning that if x dominated y, x

came from a guaranteed option for that player.

Similarly,

[α00] = {[α′00]†, [00]† | [α′00]‡, [00]‡, [0], [ ]} (3.4)

≡I {0†, {1 | 0}† | 0‡, {1 | 0}‡, 1, 0} (3.5)

≡I 0, by Lemma 3.1.5. (3.6)

Similarly to the previous case, we obtain (3.4) by determining the options for each

player. From here, we use induction on the options to obtain their values in (3.5)

up to infinitesimals. For Left, even though it is unknown which of her options will

exist, at least one of them exists and in both cases the Left stop of this position is 0;

i.e., LS([α00]) = 0. For Right, 1 is dominated by 0 and {1 | 0} is Inf-dominated by

0. Regardless of whether either of the first two options exist, the Right stop of this

position is 0; i.e., RS([α00]) = 0. By Lemma 3.1.5 since LS([α00]) = RS([α00]) = 0,

we obtain [α00] ≡I 0.
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Case 2:

[α012k+1] = {[α′012k+1]†, [012k+1]†, [0012j+1]k−1j=0 , [001
2j]k−1j=1 , [00], [ ], [α001

2k],

[β012j+1]k−1j=0 , [β101
2j]k−1j=1 , [β10]

| [α′012k+1]‡, [012k+1]‡, [0012k]}
≡I {k + 1†, k + 1†, {j + 1}k−1j=0 , {j + 1 | j}k−1j=1 , {1 | 0}, 0, k,

{j + 1}k−1j=0 , {j + 1 | j}k−1j=1 , {1 | 0}
| k + 1‡, k + 1‡, {k + 1 | k}}

≡I k + 1, by Lemma 3.1.5.

Case 3:

[α0012k] = {[α′0012k]†, [0012k]†, [0012j]k−1j=1 , [001
2j+1]k−2j=0 , [00], [ ],

[α00012k−1], [β1012j]k−1j=1 , [β01
2j+1]k−1j=0 , [α001

2k−10]

| [α′0012k]‡, [0012k]‡, [012k], [0012k−1]}
≡I {k†, {k + 1 | k}† , {j + 1 | j}k−1j=1 , {j + 1}k−2j=0 , {1 | 0}, 0,

k − 1, {j + 1 | j}k−1j=1 , {j + 1}k−1j=0 , {1 | 0}
| k‡, {k + 1 | k}‡ , k + 1, k}

≡I k, by Lemma 3.1.5.

Case 4:

[α1012k] = {[α′1012k]†, [00012k]†, [012k], [0012j+1]k−2j=0 , [001
2j]k−1j=1 , [00], [ ],

[α0012k], [α10012k−1], [β1012j]k−1j=1 , [β01
2j+1]k−2j=0 , [β10]

| [α′1012k]‡, [00012k]‡, [0012k−1]}
≡I {{k + 1 | k}†, k†, k + 1, {j + 1}k−2j=0 , {j + 1 | j}k−1j=1 , {1 | 0}, 0,

k, k − 1, {j + 1 | j}k−1j=1 , {j + 1}k−2j=0 , {1 | 0}
| {k + 1 | k}‡ , k‡, k}

≡I {k + 1 | k} , by Corollary 3.1.7.
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Case 5:

[0012k] = {[012k], [0012j]k−1j=1 , [001
2j+1]k−2j=0 , [00], [ ],

[00012k−1], [β1012j]k−1j=1 , [β01
2j+1]k−2j=0 , [β10]

| [0012k−1]}
≡I {k + 1, {j + 1 | j}k−1j=1 , {j + 1}k−2j=0 , {1 | 0}, 0,

k, {j + 1 | j}k−1j=1 , {j + 1}k−2j=0 , {1 | 0}
| k}

≡I {k + 1 | k} , by Corollary 3.1.7.

In the next case, we claim that the canonical form is simple.

Case 6: We claim that [012k] = k + 1. Consider first the base case: k = 1,

[011] = {[001], [00], [ ], [010] | ·}
= {{1 | {1 | 0}}, {1 | 0}, 0, {1 | 0} | ·}
= 2

We need to show that [012k]− k − 1 = 0. If Right moves first, he only has one move

which is to [012k]−k. Left’s best move is to [0012k−1]−k (removing the top leaf arc).

From here, Right has two possibilities. He could move to [0012k−1] − k + 1 and Left

moves to [012k−1] − k + 1 but [012k−1] = k (by induction) and so [012k−1] − k + 1 =

k − k + 1 = 1 > 0. Otherwise, Right moves to [0012k−2] − k and Left moves to

[012k−2]− k = 0 (by induction). So Right loses going first.

Next we check Left moving first in [012k]− k− 1. Left can move to [ ]− k− 1 < 0

by taking −−→v1v0, and loses. Left could move to [00]− k − 1 and Right wins by moving

to −k−1 (deleting −−→v1v0). She could remove a stalk arc which results in a cordon with

an even number of leaves: [0012j] − k − 1 ≤I {k | k − 1} − k − 1 ≤I {−1 | −2} < 0

(j ≤ k − 1) and loses (by case 3). Or she could remove a stalk arc which results in a

cordon with an odd number of leaves, [0012j−1]− k− 1 ≤I k− k− 1 ≤I −1 < 0 (case

2), and Left loses. What remains to check are the options where Left removes a leaf

arc:

1) [β012j−1]− k − 1 ≤I k − k − 1 ≤I −1 < 0 (j ≤ k − 2); (case 2)
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2) [β1012j]− k − 1 ≤I {k | k − 1} − k − 1 < 0; (case 4)

3) [β10]− k − 1 ≡I {1 | 0} − k − 1 ≤ {−k | −k − 1} < 0, k ≥ 2. (case 1)

As all three options result in a negative value, Left loses moving first when removing

a leaf arc. Hence G = [012k] = k + 1.

Let k ≥ 1. We claim [012k+1] = k + 1. Consider first the base case: k = 1,

[0111] = {[0011], [001], [00], [ ], [0101], [0110] | ·}
= {{2 | {1 | {1 | 0}}}, {1 | {1 | 0}}, {1 | 0}, 0, {1 | {1 | 0}}, {1, {1 | 0} | 0} | ·}
= 2

We need to show that [012k+1]−k− 1 = 0. If Right moves first in [012k+1]−k− 1,

he only has one move which is to [012k+1] − k and Left responds to [0012k] − k.

Right moves to one of the following positions: 1) [0012k−1]− k and Left responds to

[012k−1]− k = 0 by induction; 2) [0012k−1]− k + 1 ≡I k − k + 1 > 0 (case 2). Hence,

in both cases Right loses moving first.

Now we consider Left moving first in [012k+1] − k − 1. All moves except −−−−→vnvn−1

and −−−−−→vn−1vn−2 are considered in the previous paragraph. The two extra cases are:

1) [0012k]− k − 1 and Right responds to [0012k−1]− k − 1 ≡I k − k − 1 < 0;

2) [0012k−1]− k − 1 ≡I k − k − 1 < 0,

both of which follow from case 2.

In all situations, Left loses moving first, so [012k+1] = k + 1.

In a red-blue stalks position, the top arc trivially has even in-degree (0) and all

other (interior) arcs have odd in-degree. Therefore, in a red-blue stalks position

Left can remove a blue top arc or any red interior arc and Right can remove a red

top arc or any blue interior arc.

The notation we use for red-blue stalks places emphasis on who can move

(Left (L) or Right (R)) rather than the colour of the arc. For example, in Figure 3.9,

the positions listed from top to bottom, in order from left to right, are RLLR +

RRLR + LRLL. Note that removing an arc changes the symbol immediately below

(to the right).
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+ +

Figure 3.9: A disjunctive sum of red-blue stalks positions.

Theorem 3.4.2 red-blue stalks has the following classification:

1. If G ∈ {
LRk, αLLRk, RLk, αRRLk, k ≥ 2

}
, then G ≡I 0.

2. (a) If G ∈ {
LR, αLLR, αLRLk, k ≥ 3

}
, then G ≡I {1 | 0}.

(b) If G ∈ {
RL, αRRL, αRLRk, k ≥ 3

}
, then G ≡I {0 | −1}.

3. (a) If G = Lk, k ≥ 1, then G = 1.

(b) If G = Rk, k ≥ 1, then G = −1.

4. If G ∈ {αLRL, αRLR}, then G ≡I {1 | −1}.

5. (a) If G = αRLRR, then G ≡I {{1 | 0} | −1}.
(b) If G = αLRLL, then G ≡I {1 | {0 | −1}}.

There are no restrictions on α.

Proof. For cases 1 and 4 (cases which encompass a position and its negative), we only

show the proof for some of the positions and leave the proof of negatives to the reader.

We also show cases 2a, 3a, and 5a. Cases which are not directly shown, namely 2b,

3b, 5b, are negatives of cases 2a, 3a, and 5a, respectively. For the rest of the analysis
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we consider the moves in the order: 1) in α; and 2) any moves on the stalk (not in α).

Options are marked by † if, among all such marked options for a player, at least one

such option exists for that player. A move which may or may not exist for a player

is marked by ‡.

Case 1:

LRk, k ≥ 2 = {LRk−1†, LR† | {
LRj

}k−2‡
j=2

, LR‡, L, ∅}
≡I {0†, {1 | 0}† | 0‡, {1 | 0}‡ , 1, 0}
≡I 0, by Lemma 3.1.5.

αLLRk, k ≥ 3 = {α′LLRk‡, RLRk‡, Rk+1, LRk−1

| α′LLRk‡, RLRk‡,
{
LRj

}k−2‡
j=2

, LR, L, ∅}
≡I {0‡, {0 | −1}‡ ,−1, 0

| 0‡, {0 | −1}‡ , 0‡, {1 | 0} , 1, 0}
≡I 0, by Lemma 3.1.5.

αLLRR = {α′LLRR‡, RLRR‡, RRR,LR | α′LLRR‡, RLRR‡, L, ∅}
≡I {0‡, {{1 | 0} | −1}‡,−1, {1 | 0} | 0‡, {{1 | 0} | −1}‡, 1, 0}
≡I 0, by Lemma 3.1.5.

Case 2a: Note that when α = ∅ we have equality:

LR = {L | ∅} = {1 | 0} and LLR = {RR,L | ∅} = {−1, 1 | 0} = {1 | 0}
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When α �= ∅ we do not have equality:

αLLR = {α′LLR‡, RLR‡, RR, L | α′LLR‡, RLR‡, ∅}
≡I {{1 | 0}‡ , {1 | −1}‡ ,−1, 1 | {1 | 0}‡ , {1 | −1}‡ , 0}
≡I {1 | 0}, by Corollary 3.1.7.

αLRLk, k ≥ 3 = {α′LRLk‡, RRLk‡, Lk+1,
{
RLj

}k−2
j=2

, RL,R, ∅
| α′LRLk‡, RRLk‡, RLk−1}

≡I {{1 | 0}‡ , 0‡, 1, 0, {0 | −1} ,−1, 0

| {1 | 0}‡ , 0‡, 0}
≡I {1 | 0}, by Corollary 3.1.7.

Case 3a: To prove that Lk = 1, we show that Lk−1 is a second player win, for k ≥ 1.

Left moving first takes the top arc from Lk leaving RLk−2−1 (if she takes anything

lower, she is only eliminating moves for herself). Right responds by playing in RLk−2

to RLk−3 − 1. As long as Left doesn’t play −−→v1v0, Right will always have a move in

RLj, for j < k − 2 and hence can run Left out of moves and saving −1 for his last

move, and wins. If Left plays −−→v1v0 (the bottom arc), Right responds in −1, and wins

the game.

Right moving first, he only has one option which is to move in −1 to 0. Then Left

takes the bottom arc on Lk leaving 0, and hence Left wins.

Case 4:

αLRL = {α′LRL‡, RRL‡, LL, ∅ | α′LRL‡, RRL‡, R}
≡I {{1 | −1}‡ , {0 | −1}‡ , 1, 0 | {1 | −1}‡ , {0 | −1}‡ ,−1}
≡I {1 | −1}, by Corollary 3.1.7.
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Case 5a:

αRLRR = {α′RLRR‡, LLRR‡, LR | α′RLRR‡, LLRR‡, RRR,L, ∅}
≡I {{{1 | 0} | −1}‡ , 0‡, {1 | 0} | {{1 | 0} | −1}‡ , 0‡,−1, 1, 0}
≡I {{1 | 0} | −1}, by Corollary 3.1.7.

3.4.1 Temperature

Let T (n) be the thinning thickets cordon of height n+1 where all internal vertices

have leaves, and every arc is blue, except for −−→v1v0 which is red. Right has only one

move, he can only delete −−→v1v0 which deletes the whole cordon. Left has many moves

but we only need to consider one.

Let S(n) be the thinning thickets cordon T (n) without a leaf arc on v1. Let

U(n) be defined as S(n) without a leaf arc on vn. thinning thickets positions

T (n), S(n), and U(n) are pictured in Figure 3.10. It follows that S(n) ≥ {U(n) | ·}
since Right has no move and Left can move to U(n). In U(n), Right’s only move is to

remove the arc −−−−→vnvn−1 and Left can move to S(n−1) by removing −−−−→vn+1vn. Therefore,

U(n) ≥ {S(n− 1) | U(n− 1)}.

Lemma 3.4.3 For n ≥ 1, both S(2n) and S(2n+ 1) are greater than or equal to n.

Proof. Our proof is by induction on the height of the cordon. First, both S(1), S(2) ≥
1 since Right has no move and Left can move to 0.

Consider S(2n + 1)− n, n > 0. Right only has one move, that is to S(2n + 1)−
(n − 1). From here, Left responds to U(2n) − (n − 1). Right has two options: (i)

U(2n)−(n−2) or (ii) U(2n−1)−(n−1). From (i), Left moves to S(2n−1)−(n−2) ≥ 0,

by induction. From (ii), Left responds to S(2n−2)−(n−1) ≥ 0, by induction. Hence

S(2n+ 1)− n ≥ 0.

In S(2n)−n, Right moves to S(2n)−(n−1) and Left responds to U(2n)−(n−1).

From here, either (i) Right moves to U(2n − 1) − (n − 1) and Left responds to

S(2n − 2) − (n − 1) ≥ 0, by induction, or (ii) Right moves to U(2n) − (n − 2) and

Left moves to S(2n− 1)− (n− 2) ≥ 0, by induction.
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Figure 3.10: Cordons T (n), S(n) and U(n).
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The next theorem follows from Lemma 3.4.3. For more information on Left and

Right scaffolds see [12].

Theorem 3.4.4 The temperature of T (2n) is at least n.

Proof. The Left options of T (2n) include S(2n) and the only Right option is 0. Since

S(2n) ≥ n then the Right stop of S(2n) ≥ n. It now follows that the Left scaffold of

T (2n) is at least S(2n)t − t ≥ 2n − t. The Right scaffold is 0 + t. The temperature

of T (2n) is at least the value of t when these two lines intersect, namely n.

Corollary 3.4.5 For any positive integer n there is a thinning thickets position

with temperature greater than n.

3.5 Conclusions

Since the nim-dimension is infinite, we know there are positions with value ∗n for all

n. Using CGSuite [67], we were able to find all the positions up to height 10 but

no clear patterns for other nim-values emerged. Using similar techniques, to those in

Section 3.3.2, we can show:

• A green cordons position with one leaf arc has nim-value 2 if and only if

n− a(1) is even.

• A green cordons position with two leaves has nim-value 2 if and only if

n− a(2) is odd and a(2)− a(1) is even.

• A green cordons position with two leaves has nim-value 3 if and only if

n− a(2) is even.

Question 1 Is there a characterization, similar to that for nim-values 0 and 1, for

green cordons with nim-value n for n ≥ 2?

Question 2 Are there thinning thickets positions with values {0 | {0 | −n}} for

all n?



Chapter 4

Conjoined Games

These results first appeared in [48]. Permission to reprint appears in Appendix D.

This chapter is about games that are played in two phases. For example, the games

ovid’s game, three-, six-, and nine-men’s morris [12], and also building nim

[31] are examples of combinatorial games that have two phases. Specifically, in Phase

1 the board is set up and in Phase 2 the game is played. There are many other games

in which Phase 1 is not even defined, but instances of Phase 2 are analyzed. For

example, boxcars [2], end-nim [1], hackenbush, push [2], thinning thickets

[49], toppling dominoes [37] and their variants. There are also recent commercial

games with two phases, such as Fjords [30] and Catan [72]. Though neither game is

purely combinatorial, such examples highlight the appeal of games with more than

one phase. Fano330-R-Morris [59] is a combinatorial game which has an initial

placement phase and game play phase, which is played under the misère play winning

convention.

Interest in combining games into phase play is not new. Early exploration included

the study of the sequential sum: given two games G and H, players play in G until all

moves are exhausted and then play H. The winner of H is the winner of the sequential

sum of G and H. Under the sequential sum, both game boards, G and H, are known

before game play begins. Stromquist and Ullman [71] studied impartial games under

this sum; examining the possible outcomes of game combinations and Grundy values.

Stewart [69] studied partizan games under the sequential sum, proving that all games

under the sequential join form a monoid.

Here, we consider playing Phase 1 as a combinatorial game as well as Phase 2 and

analyze two specific games. We were introduced to this concept by Kyle Burke and

Urban Larsson (personal communication).

Definition 4.0.1 Let F and H be two impartial rulesets. The conjoined ruleset

(F � H) is to play Phase 1 under the F ruleset and when play is no longer possible

46
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to start Phase 2 which is played under the ruleset of H.

Recently, push-button games have been studied [32]. Such games involve two

phases: Play the game from ruleset 1 until a player pushes a button to switch to

ruleset 2. The button can only be pushed once, at any time during game play, and

counts as a turn. The difference is that push-button games can change the rule from

ruleset 1 to ruleset 2 at any time during game play under ruleset 1, and if all moves

in ruleset 1 are exhausted, then the player whose move it is passes to get to ruleset 2.

For conjoined games, there are no pass moves and the main objective is to try to set

up the board under ruleset 1 to have a favourable outcome when playing in ruleset 2.

Forming a conjoined game allows for an interesting Phase 1 battle before the ‘real’

game begins. Since play in Phase 1 sets up the board, it is convenient to have the

corresponding game be a placement game [17] (recall, pieces are placed but not moved

or removed). The positions at the beginning of Phase 2 will have structure reflecting

the Phase 1 rules, and this allows for some partial analysis.

Here we indicate by gameImp a partizan game converted into an impartial game

by allowing both players to place any of the pieces. This chapter explores the following

two games with two-phase play.

go-cut = (nogoImp � cutthroatImp), and

sno-go = (snortImp � nogoImp).

Brief notes about the games: The game nogo is known as anti-atari go1, but was

independently invented by Neil McKay in 2011. (See also [23].) Cutthroat was

introduced in [57] and the full analysis when played on stars is given in [2]. Snort

is introduced in [12], Vol. 1, and is known as cats & dogs in Portugal.

Our results cover playing go-cut and sno-go on a path, where the first player

who cannot move loses. The general questions for CGT games presented in Section 3.2

are very challenging to answer within the context of conjoined games. We focus on

values and outcomes. In Section 4.1, we obtain the values for all the possible positions

of go-cut at the start of Phase 2 but we were not able to find the outcomes of an

uncoloured path of length n, as a function of n. By contrast, we find the outcome of an
1http://senseis.xmp.net/?AntiAtariGo
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uncoloured path for sno-go but were not able to find formulas for the corresponding

nim-values.

4.1 GO-CUT on a path

Due to a conflict between notation used for games and graphs, within this chapter

we use G for graphs and G for games.

We provide the generalized ruleset.

Ruleset for go-cut

• Board: A finite graph, with each vertex either uncoloured or coloured

blue or red.

• Moves:

– Phase 1: On a move a player chooses an uncoloured vertex (·) and

colours it either red (R) or blue (B) provided every maximal con-

nected monochromatic subgraph is adjacent to an uncoloured vertex.

When no moves are playable under Phase 1, delete all uncoloured

vertices and then delete all monochromatic components. The game

is now a disjunctive sum of components each of which contains both

red and blue vertices, that is, non-monochromatic components.

– Phase 2: A player chooses a component from the disjunctive sum,

deletes one of the vertices then deletes any resulting monochromatic

components.

As we restrict our analysis to paths, at the end of Phase 1, for example, we might

have the position [BB · RBB · RB · R · BB] which, after deleting the uncoloured

vertices leaves [BB] + [RBB] + [RB] + [R] + [BB]. Now deleting all monochromatic

components, gives the starting position for Phase 2 as [RBB] + [RB].

By the rules of nogo, at the start of Phase 2, a component will consist of i blue

vertices followed by j red vertices (or the reverse) for some i, j > 0. Call this an (i, j)-

component. To extend the notation, we also refer to (i, 0) and (0, j) components but

these correspond to empty components.
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Lemma 4.1.1 The nim-value of an (i, j)-component is ((i− 1)⊕ (j − 1)) + 1.

Proof. Clearly, the nim-value of a (0, j)- or (i, 0)-component is 0. We will refer to an

(i, j)-component by (i, j). If i and j are positive then, by induction,

G(i, j) = mex{G(r, j),G(i, s), 0 ≤ r ≤ i− 1, 0 ≤ s ≤ j − 1}
= mex{{(r − 1⊕ j − 1) + 1, (i− 1⊕ s− 1) + 1,

1 ≤ r ≤ i− 1, 1 ≤ s ≤ j − 1} ∪ {0}}.

Note that the set {(r− 1⊕ j − 1), (i− 1⊕ s− 1), 1 ≤ r ≤ i− 1, 1 ≤ s ≤ j − 1} is the

set of nim-values for nim played with heaps of size i− 1 and j− 1 and hence contains

0, 1, . . . , (i− 1⊕ j − 1)− 1 and does not contain (i− 1⊕ j − 1). Adding one to each

value gives that both 0 and (i − 1 ⊕ j − 1) + 1 are missing. Since 0 is an option of

(i, j) then

G(i, j) = mex{G(r, j),G(i, s), 0 ≤ r ≤ i− 1, 0 ≤ s ≤ j − 1} = (i− 1⊕ j − 1) + 1.

4.2 SNO-GO on a path

We were able to obtain winning strategies for the conjoined games of snortImp and

nogoImp on a path. We give the rules for an arbitrary graph so that a useful general

tool, Lemma 4.2.1, can be introduced.
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Ruleset for sno-go

• Board: A finite graph, with each vertex either uncoloured or coloured

blue or red.

• Moves:

– Phase 1: On a move a player chooses an uncoloured vertex (·) and

colours it red (R) or blue (B) provided that no red vertex is adjacent

to a blue vertex.

– Phase 2: When no moves are playable under Phase 1 rules, play-

ers can colour an uncoloured vertex red or blue provided that each

maximal connected monochromatic subgraph has at least one vertex

adjacent to an uncoloured vertex.

Thus, at the end of Phase 1, for example, we might have the position [BB ·RRR ·
BB ·R ·BB]. At the end of the game, the position may look like [BB ·RRRRBB ·R ·
BB]. Moving into Phase 2 of game play, we are only concerned with the adjacencies

to uncoloured vertices. Hence, at the end of Phase 1, if two vertices are coloured

the same colour and are adjacent, the edge between them can be contracted. For

example, [BB · RRR · BB · R · BB] is equivalent to [B · RRR · BB · R · BB]. The

next lemma justifies the game theoretic equivalence of the positions after contracting

such an edge.

Lemma 4.2.1 [Reduction.] Let G be a sno-go position on a graph G. Suppose x, y

are two adjacent vertices that are coloured the same. Let G ′ be the position on the

board resulting from the contraction of the edge xy, where the vertex resulting from

the contraction xy (call it z) has the same colour as x and all other vertices retain

their colour. Then the nim-values of G and G ′ are equal.

Proof. Consider G + G ′ (Note: since the rulesets are impartial this is the same as

considering G − G ′). By construction, there is a surjective mapping φ from G to

G ′ which is the identity mapping for uncoloured vertices and all coloured vertices

excluding x and y, and φ(x) = φ(y) = z, where x, y ∈ V (G) and z ∈ V (G′). If a

player moves in G (or G ′) by colouring a vertex v (or φ(v), respectively) colour X,
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where X ∈ {B,R}, then their opponent colours φ(v) (or v, respectively) with X.

Thus G − G ′ = 0, and hence G = G ′.

As a guide to intuition, consider a path with n vertices where we label the vertices

x1, . . . , xn. If two adjacent vertices are coloured the same then we can apply Lemma

4.2.1 so that each monochromatic subpath is reduced to size 1 after Phase 1. For

example, the position [BB · RRR · BB · R · BB] becomes [B · R · B · R · B] after

applying Lemma 4.2.1 repeatedly. As G is finite, the process terminates in a finite

number of steps. This notion is summarized in the next Lemma.

Lemma 4.2.2 A sno-go position on a path of n vertices at the beginning of Phase 2

is equal to a path of alternating coloured vertices, each separated by a single uncoloured

vertex.

Proof. At the end of Phase 1, after applying Lemma 4.2.1 repeatedly, all consecutive

single coloured vertices (red or blue) get amalgamated into a single representative

of that colour. If there is a pair of adjacent uncoloured vertices then either of them

can be coloured under Phase 1 rules. Also, if x1 or xn is uncoloured then Phase 1

play is still possible. Hence, after all reductions, the position will consist of vertices

alternating colours with a single uncoloured vertex between them and the end vertices

x1 and xn are also coloured.

At the end of Phase 1, we will call any uncoloured vertex a hole. Note that a hole

will be adjacent to exactly one red and one blue vertex. We relate this game, using

Lemma 4.2.1, to node kayles [14] or equivalently to dawson’s chess [12].

Ruleset for node kayles

• Board: A finite graph.

• Moves: On their turn, a player chooses a vertex and deletes it and all its

neighbours.

Lemma 4.2.3 Given a path on n vertices, let G be a sno-go position at the start

of Phase 2 play. Furthermore, suppose G has m uncoloured vertices. If m � 2 then

G is equivalent to node kayles played on a path with m− 2 vertices.
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Proof. It is possible that m = 0 or m = 1. In the first case, all the vertices were

coloured the same. In the second, the final position is B ·R. In both cases, there are no

moves in Phase 2. If m � 2 playing either of the two holes at the end, without loss of

generality [B ·R . . .] → [BXR . . .], X ∈ {B,R}, leaves an illegal Phase 2 position since

the leftmost coloured vertex is no longer adjacent to an uncoloured vertex. Playing

an interior hole, e.g., [B ·R ·B ·R ·B ·R] → [B ·R ·BXR ·B ·R], X ∈ {B,R} eliminates

playing in the two adjacent holes as legal moves. This is because the coloured vertices

adjacent to X are relying on the adjacent uncoloured vertex to satisfy the conditions

of nogo. This mirrors play in node kayles since players choose a vertex, delete it

and its neighbours. This shows that at the beginning of Phase 2, the position is now

equivalent to playing node kayles on a path of length m− 2.

For ease of referencing the players, we call the players Alf and Betti. We assume

that Alf plays first on the empty board and Betti plays second.

The outcome class of the sequence of node kayles on a path is periodic with

period length 34 after a pre-period of 52 and the only P positions are when n is even.

For exact values, see the nim-value sequence for dawson’s chess in Winning Ways

[12], volume 1. Our approach is to show that the winning player can ensure to play

first at the start at Phase 2, on the equivalent of an odd node kayles position, or

win if the opponent does not allow 3 or more holes.

Before proving the Main Theorem of this section, we need the following lemmas

and conventions.

We partition the path into two pieces: the outer vertices consisting of vertices

x1, x2, xn−1, xn, and the interior, consisting of vertices x3, . . . , xn−2.

Lemma 4.2.4 Let G be a Phase 1 sno-go position on a path of n vertices. If at

least one of {x1, x2} and one of {xn−1, xn} are the same colour then at the end of

Phase 1 there will be an even number of holes. If at least one of {x1, x2} and one of

{xn−1, xn} are opposite colours then at the end of Phase 1 there will be an odd number

of holes.

Proof. Let G be a Phase 1 sno-go position where at least one of {x1, x2} and one of

{xn−1, xn} are coloured. At the end of Phase 1, positions will be as in Lemma 4.2.2.

If at least one of {x1, x2} and one of {xn−1, xn} are the same colour, then given
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the alternating pattern of the colours, the number of coloured vertices is odd which

implies an even number of uncoloured vertices must be separating them. If at least

one of {x1, x2} and one of {xn−1, xn} of the position are different colours, again given

the alternating patterns of colours being separated by single uncoloured vertices,

this implies an even number of coloured vertices, separated by an odd number of

uncoloured vertices.

Note that Lemma 4.2.5 is referring to the original path before applying Lemma 4.2.1.

Lemma 4.2.5 Let G be a sno-go position on a path of 2k+1 vertices at the end of

Phase 1. Let h be the number of holes. If h = 0, 2 or h � 3 and is odd then Alf will

win the game.

Proof. If h = 0 then there has been an odd number of moves, the game is over and

Alf had the last move.

If h = 2 then Phase 2 has no moves but it is Betti’s turn to play and so she loses.

If h � 3 and is odd then there has been an even number of moves (2k + 1 − h)

in Phase 1 and thus Alf moves first in Phase 2. Node kayles on an odd number of

vertices, here h− 2, is a first player win [12] and so Alf can win the game.

Theorem 4.2.6 Consider sno-go played on a path of n vertices. The initial position

is in P if n is even and in N if n is odd.

Proof. First suppose n is odd. The strategy is for Alf to colour the centre vertex,

without loss of generality, blue. Now, until Betti colours an outer vertex (the first

outer vertex to be coloured), Alf always plays the same move reflected across the

centre vertex. When Betti finally colours an outer vertex there are now several cases

to consider. Since Betti’s last move was to colour an outer vertex, without loss of

generality, suppose Betti colours xn−1 or xn with X. If there are two red interior

vertices then Alf colours x1 with the opposite colour from Betti’s choice. By Lemma

4.2.4, at the end of Phase 1 there will be an odd number of holes, at least 3, and by

Lemma 4.2.5 Alf will win.

Thus we may suppose that at this point in play, all coloured interior vertices are

blue. There are several cases to consider.
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1. Suppose every uncoloured interior vertex is adjacent to at least one blue. That

is, it is now illegal to colour an interior vertex red. Alf colours x1 with X. The

number of holes will be 0 if X = blue and 2 if X = red. In both cases, by

Lemmas 4.2.4 and 4.2.5, Alf can force a win.

2. Suppose there are 4 interior uncoloured vertices with the following properties:

(i) any pair of these vertices are at least distance 3 apart and (ii) none of them

are adjacent to a blue vertex. Alf colours x1 with the opposite colour, hence

an odd number of holes, and Alf can force at least 3 holes by having two reds

separated by a blue vertex.

3. Suppose there is an interior uncoloured vertex that is not adjacent to any blue

vertex which has an interior blue vertex between it and the closest outer vertex.

By symmetry, the reflected vertex is uncoloured and not adjacent to a blue

vertex. Again, Alf colours x1 with the opposite colour, hence an odd number of

holes, and Alf can force at least 3 holes by colouring one of the two uncoloured

vertices red.

This leaves the situation where the outermost blue interior vertices are followed

by at most 5 uncoloured interior vertices and all other uncoloured interior vertices

are adjacent to a blue vertex. Since Alf will play symmetry following any Betti move

between the two outer blues we can condense the centre to a single blue vertex. The

positions that remain to analyze are one of the following, where it is Betti’s turn to

move. We suppose Betti will colour one of the leftmost two vertices; a symmetric

argument holds for the rightmost vertices.

(i) [· · B · ·]

(ii) [· · ·B · · ·]

(iii) [· · · ·B · · · ·]

(iv) [· · · · ·B · · · · ·]

(v) [· · · · · · B · · · · · ·]

(vi) [· · · · · · ·B · · · · · · ·].
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In cases (i) and (ii), Alf forces either 0 or 2 holes by playing symmetrically.

In (iii), if Betti plays xn−1, again Alf forces either 0 or 2 holes by playing symmet-

rically. Suppose Betti plays to [B · · ·B · · · ·]; then Alf plays to [B · · ·B · ·B·] forcing 0

or 2 holes. If she plays to [R · · ·B · · · ·], then Alf replies [R · · ·B · ·R·] forcing 2 holes.

In (iv) and (v) [· · · · ·B · · · · ·], Alf colours the fourth vertex from the end of the

side opposite to that of Betti’s last move. Alf can now force 2 or 3 holes.

In (vi), from [·X · · · · ·B · · · · · · ·] Alf plays to [·X · ·X · ·B · · · · · · ·] and can force 0 or 2

holes. From [X · · · · · ·B · · · · · · ·] Alf plays to [X · · · · · ·B · · · · · ·Y ]. Suppose without loss

of generality that X is red. Regardless of what Betti plays, Alf can colour a vertex

red, on the other side of the centre from X. This generates an odd number (> 1) of

holes.

If the board is of even length, Betti plays the reflection symmetry and a similar

analysis shows that she can force a win.

4.3 Conclusions

In this chapter we defined a method for combining games, where the termination of

the first game sets up the board for a second game. This provides a more structured

method of determining opening positions for a game which may not have a standard

board. Here we examined two games: go-cut and sno-go. Though other graphs

appear to be hard to study, it may be worthwhile exploring these games on grids or

cycles as an extension to this work. Another generalization is to extend this work to

partizan games.



Chapter 5

the orthogonal colouring game

After the theory from [53], [54], and [56] was developed, there was a search for a

scoring game that could be easily analyzed and highlight the theory. Nowakowski

suggested the Latin squares game.

Recall (see Brualdi [18]) that an n × n square, partially filled with entries taken

from {1, 2, . . . , n}, has the Latin property if each row and column does not contain

any repeated entries. A fully filled n × n square is a Latin square if each entry is

an integer between 1 and n (inclusive) and each row and each column contains all n

integers, which implies that the square has the Latin property. For a (partially filled)

n× n square, X, let cX(i, j) be the (i, j) entry and ∅ if (i, j) is unfilled. Let A and B

be (partially filled) n× n squares. Then A and B are orthogonal if in the list

((cA(i, j), cB(i, j)))1≤i≤n
1≤j≤n

every ordered pair of integers occurs at most once. If A and B are Latin squares, this

means that every pair of integers from {1, . . . , n}2 occurs exactly once in the list.

The Latin squares game is played as follows: given two n × n grids, one owned

by each player, and a set of integers {1, 2, . . . , n}, players must choose an integer

and choose where to place it in a grid such that individual grids maintain the Latin

property, and grids together are orthogonal. Players can move in either grid, but

their final score is the number of non-empty cells in their board.

After determining that 2 × 2 grids are second player wins, and speculating that

3×3 grids are draws, this was reintroduced at the Games and Graphs 2017 conference

in Lyon, France, where Huggan began collaboration on this project with Andres, Mc

Inerney and Nowakowski. The work in this chapter is from the ongoing collaboration

from that conference and has been accepted (with minor revisions) for publication in

Theoretical Computer Science. It is currently available on HAL1 (see [4]). Co-author
1Hyper Article en Ligne (HAL) [open archive] https://hal.archives-ouvertes.fr/ .
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permission to reprint can be found in Appendix D. Throughout this chapter, unless

stated otherwise, N will denote the set of non-negative integers.

Consider a graph G where two isomorphic copies of G are labelled GL and GR

and are partially coloured. A graph has a proper colouring if adjacent vertices have

distinct colours. Orthogonality of two isomorphic, partially coloured graphs, GL and

GR, means that if v, w are two different vertices in G whose copies vL, wL (in GL)

resp. vR, wR (in GR) are coloured, then

(c(vL), c(vR)) �= (c(wL), c(wR)) , (5.1)

where c(x) denotes the colour of a vertex x.

The problem has since been generalized as a graph colouring game, called the

orthogonal colouring game, denoted by MOCm(G).

Ruleset for the orthogonal colouring game, MOCm(G)

• Board: Two initially uncoloured disjoint isomorphic copies GA and GB of

a given finite graph G.

• Moves: Two players, Alice and Bob, with Alice beginning, alternately

choose one of the two graphs GA or GB and colour an uncoloured vertex of

this graph with a colour from the set {1, . . . ,m} such that the colouring is

proper and the orthogonality of the graphs is not violated. Alice owns GA

and Bob owns GB.

When no move is possible any more, the game ends. A player’s score is the number

of coloured vertices in the graph the player owns. If, at the end, the scores of both

players are equal, the game result is a draw ; otherwise, the player with the higher

score wins.

The main result of this chapter states that for a special class of graphs, graphs

admitting a strictly matched involution, the second player, Bob, can achieve at least

a draw.

This class of graphs includes many special cases where the game is to create

combinatorial objects such as orthogonal Latin rectangles, double diagonal Latin

squares, Latin squares, and sudoku squares. The double diagonal condition consists
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1 11 1

1 1 1 1

1 1

11 1 1 1

1

GA GB

GA GB GA GB

GA GB GA GB

GA GB

GA GB

Figure 5.1: Alice’s winning strategy for the game MOC1(2K1).

in demanding that the coloured entries of each of both diagonals in a square are

pairwise different. The sudoku condition for an n × n square with n = k2 and

k ∈ N forces the coloured entries of each of the k2 disjoint subsquares of size k ×
k to be pairwise different. These combinatorial objects are further considered in

Corollary 5.2.3. However, there exist graphs in which optimal play from both players

does not result in a draw. The smallest such example of a graph in which Alice wins is

the graph 2K1 consisting of two isolated vertices with m = 1 colour (see Figure 5.1).

An example of a case where Bob wins is MOC2(C4). He wins as follows: when Alice

plays her first move on a C4, Bob responds in the same C4 on the non-adjacent vertex,

colouring with the opposite colour if it is her C4 and the same colour if it his C4. Bob

will then win by 2 points. Note that Bob’s optimal strategy is not to play just in his

graph.

This chapter is structured as follows. In Section 5.1, we motivate our research by

the most prominent special case, the game played on the graph associated with Latin

squares, and give references to related games and to some results on orthogonal graph

colouring. In Section 5.2, we define graphs admitting a strictly matched involution

and prove the main result of this chapter. In Section 5.3, we study the graphs in

which the game is a draw and prove for the most important special case, orthogonal

Latin squares, that the game is a draw if m = 1. In Section 5.4, we provide a

characterization of the graphs that admit a strictly matched involution which allows

us to give an explicit construction for all such graphs. We follow this discussion by a

report in Section 5.5 of counting and complexity results from [4] and [3] (including

another co-author, Dross), which were primary contributions by co-authors. We
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conclude with future directions for research.

5.1 Motivation and Observations

The game MOCm(G) emanates from the overlap of two lines of research: combina-

torial and scoring games (specifically, colouring games) and orthogonality of Latin

squares or, more generally, of colourings of graphs.

Note that the drawing strategy for the second player in the orthogonal colouring

game implies that the second player always has a good response to the first player.

If the game is played under the normal play convention, using the drawing strategy

from scoring play, the second player can guarantee a win because they will always

be the last player to move in the game. Andres et al. [3] proved that it is PSPACE-

complete to determine the outcome of the game in the normal play convention when

m ∈ N≥1 is the number of colours (even if m is a fixed constant), and an initial partial

colouring is given.

The colouring game on graphs in the normal play convention, which was intro-

duced as the achievement game by Harary and Tuza [44] and called the proper

k-colouring game by Beaulieu et al. [10], is closely related to the orthogonal colour-

ing game on graphs. In the proper k-colouring game, two players take turns

colouring the vertices of a graph, while maintaining that the colouring is proper.

Beaulieau et al. [10] showed that this game is PSPACE-complete when k ∈ N≥1 is

the number of colours (even if k is a fixed constant), and an initial partial colouring

is given. For k = 1 colour, the proper k-colouring game is the well-studied game

node kayles. For specific classes of graphs, it is known which player wins the game

node kayles, e.g., for paths and cycles a complete characterisation was given by

Berlekamp et al. [12]. Harary and Tuza [44] characterised the winner in the proper

k-colouring game played with k = 2 colours on paths and cycles, and played with

any number k of colours on the Petersen graph. Astonishingly, as far as we know,

the proper k-colouring game seems to not have been studied on other classes of

graphs for k ≥ 2 colours.

Here, game-theoretic graph parameters are motivated by trying to get good ap-

proximations to graph parameters that are hard to calculate, e.g., chromatic number

[13, 35, 39] and domination number [47]. Seo and Slater [64] give generic examples
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of how such parameters can be defined. Typically, two players choose vertices (or

edges or other sub-objects) without violating a given property (e.g., independence).

The score is the number of vertices chosen where one player wants to maximise the

number and the other to minimise it. Within this context of scoring, since there is

no set boundary to determine the winner, it is unclear which player is winning at any

time in game play.

In particular, a game-theoretic version of the chromatic number, the game chro-

matic number, introduced by Bodlaender [13], and several of its possible variations

have been extensively studied in the last three decades in more than 100 papers (see

the partial surveys by Bartnicki et al. [9], Tuza and Zhu [73] or Dunn et al. [33] for

some references). Upper bounds for the game chromatic number of many classes of

graphs have been determined, e.g., for forests by Faigle et al. [35], outerplanar graphs

by Guan and Zhu [41], and planar graphs by Zhu [75]. However, the complexity of

determining the game chromatic number of a graph in general is still an open problem.

Larsson et al. [56] extended the Maximiser/Minimiser approach, to use two graphs,

G and H, usually, but not necessarily, isomorphic. One player, Left, is the maximiser

on G but the minimiser on H and the other player, Right, has the reverse goals. The

score is the number of pieces played on G minus the number played in H with Left

winning if the score is positive and Right winning if the score is negative, and it is a

draw if the score is 0.

Orthogonal colourings of graphs, i.e., proper colourings of two isomorphic copies

GA and GB of a graph respecting the orthogonality condition (5.1), have been studied

as well (e.g., by Archdeacon et al. [5], Ballif [7], or Caro and Yuster [22]). Caro and

Yuster [22] studied the minimum number of colours required such that there exist k

mutually orthogonal colourings of G. Specifically, the graph versions of combinatorial

objects associated with orthogonality were studied by Ballif [7] such as Latin squares

and Latin rectangles.

Orthogonal Latin squares are natural combinatorial objects where there are two

‘boards’ and these form the basis of a specific orthogonal colouring game played on

Latin squares. It is known that a Latin square of order n can be regarded as a proper

colouring of the cartesian product of Kn with itself. Thus, the concept of orthogonal

Latin squares translates easily to graph colourings and the orthogonal colouring game
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played on Latin squares is equivalent to MOCm(Kn�Kn). See Figure 5.3 for an

example of play.

5.2 Main Theorem

First, we fix some general notation. For n ∈ N, let [n] := {1, . . . , n}. We use standard

notation from graph theory. The disjoint union of two graphs H and H ′, denoted by

H ∪ H ′, is the graph (V ∪ V ′, E ∪ E ′) consisting of an isomophic copy (V,E) of H

and an isomorphic copy (V ′, E ′) of H ′ with V ∩ V ′ = ∅. The disjoint union H ∪H is

also denoted by 2H.

Recall that, for a graph G = (V,E), an automorphism is a bijective mapping

σ : V −→ V with the property that

∀v, w ∈ V : (vw ∈ E ⇐⇒ σ(v)σ(w) ∈ E).

An involution of G is an automorphism σ of G with the property

∀v ∈ V : (σ ◦ σ)(v) = v.

We define an involution of G to be strictly matched if

(SI 1) the set F ⊆ V of fixed points of σ (i.e., F = {v ∈ V | σ(v) = v}) induces a

complete graph (i.e., for every v, w ∈ F with v �= w we have vw ∈ E) and

(SI 2) for every v ∈ V \ F , we have the (matching) edge vσ(v) ∈ E.

If, for a graph G, there exists a strictly matched involution, we say that G admits

a strictly matched involution. Before proving the main result of this chapter, let’s

explore an example of a graph that admits a strictly matched involution.

Example 5.2.1 Consider the graph pictured in Figure 5.2. Let F = {x, y} and

V \F = {v, w}. Define σ explicitly as follows: σ(x) = x, σ(y) = y, σ(v) = w and

σ(w) = v. We need to check that σ is a strictly matched involution. First, we check

that σ is a automorphism (i.e., if uv ∈ E ⇐⇒ σ(u)σ(v) ∈ E). We check the edges

of E.

• Consider x, y ∈ V and note xy ∈ E. Then σ(x)σ(y) = xy so σ(x)σ(y) ∈ E.
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• Consider x, w ∈ V and note xw ∈ E. Then σ(x)σ(w) = xv so σ(x)σ(w) ∈ E.

• Consider x, v ∈ V and note xv ∈ E. Then σ(x)σ(v) = xw so σ(x)σ(v) ∈ E.

• Consider v, w ∈ V and note vw ∈ E. Then σ(v)σ(w) = wv so σ(v)σ(w) ∈ E.

w

v

x y

Figure 5.2: A graph which admits a strictly matched involution.

Hence, σ is an automorphism. Next we check that σ is an involution. We consider

each vertex v of G, and check that σ ◦ σ(v) = v.

• Consider v ∈ V ; σ ◦ σ(v) = σ(w) = v.

• Consider w ∈ V ; σ ◦ σ(w) = σ(v) = w.

• Consider x ∈ V ; σ ◦ σ(x) = σ(x) = x.

• Consider y ∈ V ; σ ◦ σ(y) = σ(y) = y.

Hence, σ is indeed an involution. Lastly, we check that σ is a strictly matched

involution. The induced subgraph of G by F is isomorphic to K2, the complete

graph on 2 vertices. Hence, the subgraph of G induced by the vertices from F is a

complete graph. We check that vσ(v) ∈ E for all v ∈ V \F . Consider v ∈ V \F :

vσ(v) = vw ∈ E. Similarly, w ∈ V \F and wσ(w) = wv ∈ E. Both conditions for

the involution being strictly matched hold. We have shown that σ is an involutive

automorphism which is strictly matched.

Theorem 5.2.2 Let G be a graph that admits a strictly matched involution and

m ∈ N. Then, the second player has a strategy guaranteeing a draw in the game

MOCm(G).
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Board 1 Board 2

1

Alice’s move 1
Board 1 Board 2

1 1

Bob’s response 1

Board 1 Board 2

1 1

2

Alice’s move 2
Board 1 Board 2

1 1

22

Bob’s response 2

Board 1 Board 2

1 1

221

Alice’s move 3
Board 1 Board 2

1 1

221 1
OSP
1,1

Bob’s response 3

Board 1 Board 2

1 1

221 1
OSP
1,1

2

Alice’s move 4
Board 1 Board 2

1 1

221 1
OSP
1,1

22,22

Bob’s response 4

Board 1 Board 2

1 1

221 1
OSP
1,1

2 22,2

1

Alice’s move 5
Board 1 Board 2

1 1

221 1
OSP
1,1

2 22,2

11

Bob’s response 5

Board 1 Board 2

1 1

221 1
OSP
1,1

2 22,2

112 2,1

Alice’s move 6
Board 1 Board 2

1 1

221 1
OSP
1,1

2 22,2

112 2,1 2

1,2

Bob’s response 6

Figure 5.3: Bob’s strategy from the proof of Theorem 5.2.2 guarantees a draw in the
orthogonal Latin squares colouring game: an example played on 3× 3 squares with 2
colours.
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In Figure 5.3, we illustrate Bob’s strategy given in the following proof of Theo-

rem 5.2.2 on K3�K3, where K3�K3 is represented by a 3×3 board and the involution

is given by the mirror symmetry around the middle column of each board. We prove

the result for a general graph.

Proof of Theorem 5.2.2. Let G1 and G2 be the two copies of G = (V,E). For k ∈
{1, 2}, we denote by ck(v) the colour of the vertex v ∈ V in Gk. In case the vertex v is

uncoloured in Gk, we write ck(v) = ∅. To simplify notation and differentiate between

the colour of a vertex in a certain copy of G and an actual colour, we refer to the

colours as symbols.

Let OSP be the set of orthogonal symbol pairs, i.e., the set of those pairs (s1, s2)

of symbols s1, s2 ∈ [m], such that there exists a vertex v ∈ V with

c1(v) = s1 and c2(v) = s2.

Let σ be a strictly matched involution, which exists by precondition. For m = 0

or |V | = 0, the theorem is trivially true. Thus, assume m, |V | ≥ 1. The strategy

of the second player, Bob, is to copy (in a certain sense) Alice’s moves in the other

copy of the graph. Copying the symbols using the same positions would, in many

cases, not be feasible because of orthogonality. Therefore, Bob couples the vertices

of a graph with its image under σ of the other graph. Bob always plays the same

symbol (=colour) as Alice just previously played.

For c ∈ {c1, c2} we define c to be the other partial colouring from {c1, c2} distinct

from c.

Consider the case that Alice assigns c(v) := s for some c ∈ {c1, c2}, some v ∈ V ,

and some symbol s ∈ [m]. Then, the copying strategy of Bob consists of assigning

c(σ(v)) := s.

We will prove that Bob will force a draw with this strategy.

We observe, as a key of our analysis, the following invariants which hold for every

c ∈ {c1, c2}, every v ∈ V , and every s, s1, s2 ∈ [m] after each of Bob’s moves:

1. Whenever c(v) = s, then c(σ(v)) = s.
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2. Whenever c(v) = ∅, then c(σ(v)) = ∅.

3. Whenever (s1, s2) ∈ OSP , then (s2, s1) ∈ OSP .

4. Whenever (s1, s2) /∈ OSP , then (s2, s1) /∈ OSP .

We will prove by induction on the number of moves that after each move of Alice,

Bob’s move assigning c(σ(v)) = s according to his strategy is possible, i.e.,

a) the vertex σ(v) is uncoloured in the colouring c;

b) the move keeps the partial colourings being proper;

c) the move does not contradict the orthogonality of the colourings c1 of G1 and

c2 of G2;

and that after each move of Bob, the invariants hold again.

At the beginning of the game, all invariants obviously hold.

Now consider a situation after a move of Alice, where she assigns c(v) = s. There-

fore, before the move, vertex v was uncoloured, i.e., we had c(v) = ∅. By invariant 2,

we had c(σ(v)) = ∅, thus, a) holds.

To prove b), assume to the contrary that the move of Bob would violate the

properness of the partial colouring c, i.e., assume that there exists w ∈ V with

w �= σ(v) and wσ(v) ∈ E such that

c(w) = s = c(σ(v)).

As Alice played on the vertex v with the partial colouring c, the assignment c(w) = s

must have been made before her move. Then, by invariant 1, we have c(σ(w)) = s.

But, since wσ(v) ∈ E and σ is an involutive automorphism, we have

σ(w)v = σ(w)σ(σ(v)) ∈ E,

which contradicts c(v) = s, since from w �= σ(v) follows v �= σ(w) by the properties

of σ.

To prove c), we remark the following. In the case Alice has created a new ele-

ment (s, x) ∈ OSP , then by invariant 4, (x, s) /∈ OSP before Alice’s move. Before

proceeding with the proof, we will observe the following two key results.
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We claim that for all x ∈ [m], at any time in the game, it is not possible for Alice

to create a new element (x, x) ∈ OSP . To prove this claim assume Alice created

a new element (x, x) ∈ OSP . Then, by the definition of OSP , at some point in

the game, a player has assigned c1(v1) = x and, at some other point in the game, a

player has assigned c2(v1) = x. At least one of these assignments was not performed

in the last move with respect to the turn we consider. Without loss of generality

the assignment c1(v1) = x was performed before the last move (the other case being

symmetrical by interchanging the roles of G1 and G2). Then, by the invariants, the

other player must have assigned in the same pair of moves

c2(σ(v1)) = x. (5.2)

If v1 ∈ F (i.e., v1 is a fixed point of σ), then Bob created the new element (x, x) ∈
OSP .

Otherwise, i.e., if v1 ∈ V \ F , as already mentioned above, by the definition of

OSP , at some point in the game a player has assigned

c2(v1) = x. (5.3)

But (5.2) and (5.3) contradict the facts that, by the definition (SI 2) of a strictly

matched involution, there is a matching edge v1σ(v1) and, since c2 is a proper partial

colouring, v1 and σ(v1) cannot be coloured the same colour.

Next we claim that in case Bob must create a new element (x, x) ∈ OSP by his

strategy, he is able to do so without violating orthogonality (i.e., (x, x) /∈ OSP before

Alice’s move). To prove this claim assume (x, x) ∈ OSP before Alice’s move. Let v′

be the vertex with c1(v
′) = x = c2(v

′). By invariant 1 and by orthogonality, v′ must

be a fixed point of σ (i.e., v′ ∈ F ). If Bob would have to create (x, x) ∈ OSP for the

second time, by his strategy, this would only be possible if Alice coloured a vertex

v′′ ∈ F , v′′ �= v′, with colour x. But this is impossible, since, by (SI 1), F induces a

complete graph, thus, there is an edge v′v′′ ∈ E, so that Alice could not have coloured

v′′ with the same colour as v′. Thus, the assumption is wrong. Therefore, Bob must

create a new element (x, x) at most once.
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We continue with the proof of c). By the first claim, after Alice’s turn, we have

(s, x) �= (x, s).

Therefore, also after Alice’s move, (x, s) /∈ OSP . Thus, the assignment

c2(σ(v)) = s

of Bob is allowed (does not contradict orthogonality) and, since we have c1(σ(v)) =

c2(v) = x, it will create a new element (x, s) ∈ OSP , satisfying invariant 3 and

invariant 4.

In case Alice has created a new element (x, s) ∈ OSP , the arguments are the same

(just interchange the roles of c1 and c2).

In case Alice does not create a new element in OSP on her move, Bob will have

a feasible move by invariant 3 and invariant 4. Also, by reasons of symmetry, Bob

will not create a new element in OSP unless Alice played some symbol s on a vertex

in F , in which case, Bob creates the new element (s, s) ∈ OSP , which maintains

invariant 3 and invariant 4. The latter move of player 2 is feasible because of the

second claim. This proves c).

Now consider a situation after the move of Bob and assume a), b), and c) to be

true before his move. We have to prove that the 4 invariants hold again.

Within the proof of c), we have shown that after Bob’s move, invariant 3 and

invariant 4 hold again. Invariants 1 and 2 follow from the definition of the assignment

in Bob’s move and the induction hypothesis.

This concludes the inductive step. We have shown that Bob’s strategy always

allows a reaction to Alice’s move. Therefore, the game will end before a move of

the first player. In such a situation, Bob’s copying strategy results in two partial

colourings c1 and c2 with exactly the same number of coloured vertices. Thus, the

game ends in a draw.

Corollary 5.2.3 The second player has a strategy to guarantee a draw in orthogonal

colouring games played on n × n squares satisfying the Latin property (and possibly

the double diagonal condition or the sudoku condition) or n1 × n2 rectangles.

Proof. For the graphs associated with such game boards, the assignment (i, j) �−→
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(i, n2 + 1 − j), which describes a vertical mirror symmetry, is easily seen to be a

strictly matched involution.

5.3 When the Game is a Draw

In this section, we look at graphs in general and also, at the special case of the graphs

associated with Latin squares. We show that both players trivially have a strategy

to draw if m is large enough. For the game MOCm(Kn�Kn), we show that Alice has

a strategy to draw if m = 1, thereby, showing that there exist graphs that admit a

strictly matched involution where the optimal result for both players is a draw for

some values of m.

First we note that, if m is large enough, both players have a strategy to force

a draw. In the following lemma, for a graph G, the number Δ(G) is the maximum

degree of a vertex in G and α(G) is the independence number (size of a maximum

independent set) of G.

Lemma 5.3.1 For any graph G and all m ∈ N with m ≥ Δ(G) + α(G), both players

have a strategy to draw in the MOCm(G) game.

Proof. We simply show that each of the players’ copies, G1 and G2, of the graph G

will be completely filled at the end of the game. To show this, we consider the worst

possible case scenario for an uncoloured vertex v that needs to be coloured with some

colour s in some copy Gk of G and show that it is possible to colour vertex v with

s in Gk. For k ∈ {1, 2}, consider an uncoloured vertex v in some copy Gk of the

graph G. Also, let k = 3− k. Thus, Gk is the other copy of the graph G that is not

Gk.

In the case of the proper colouring property, the worst case is that every other

vertex adjacent to v in Gk has been coloured with a distinct colour. Then, Δ(G)

colours are unavailable to be played on v in Gk by the proper colouring property. See

Figure 5.4 (a) for an example in the case G = Kn�Kn.

By the orthogonality conditions, the worst case is that vertex v in Gk is coloured

with some colour a and the forbidden pairs, (s1, s2) with b = sk and a = sk, exist for

some a ∈ [m] and α(G)− 1 values of b, where b ∈ [m].
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Figure 5.4: In the case the graph G is the graph Kn�Kn: the worst case in the proof
of Lemma 5.3.1 due to (a) the Latin property; (b) orthogonality, respectively.

Note that there cannot be more than α(G) − 1 colours unavailable for v by the

orthogonality conditions. This is because the colour a that appears in v of Gk, may

only appear at most α(G) times in Gk and hence, may only generate at most α(G)−1

forbidden pairs with Gk, since v is not coloured yet in Gk. See Figure 5.4 (b) for an

example in the case G = Kn�Kn.

To be precise, the worst case is that each of the α(G)− 1 unavailable colours by

the orthogonality conditions for v in Gk, differ from each of the Δ(G) colours that

are unavailable by the proper colouring property. Then, Δ(G)+α(G)− 1 colours are

unavailable for v in Gk in the worst case. Therefore, since m > Δ(G)+α(G)− 1, the

vertex v of Gk may always be coloured.

Corollary 5.3.2 For all m,n ∈ N with m ≥ 3n − 2, both players have a strategy to

draw in the MOCm(Kn�Kn) game.

Proof. By Lemma 5.3.1, the result follows from the facts that α(Kn�Kn) = n and

Δ(Kn�Kn) = 2n− 2.

Lemma 5.3.3 For all n ∈ N, both players have a strategy to guarantee a draw in the

MOC1(Kn�Kn) game.

Proof. By Theorem 5.2.2, Bob has a strategy to force a draw.

Now, we show that Alice has a strategy to force a draw. Let G be Kn�Kn and

let Gk, k ∈ {1, 2}, be one copy of G and Gk be the other copy of G that is not Gk.

We identify the graphs G1 and G2 with their underlying square boards. As we play

with only m = 1 colour, it is easy to see that the only possible scores of both players

are n and n− 1, regardless of strategy. This is due to the fact that the orthogonality
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condition can only block at most one vertex in a row or column from being coloured,

as otherwise, it would violate the Latin property. Therefore, as long as more than

one possible vertex exists for a row or column in Gk, then one of the vertices can be

coloured. Thus, the vertices of both Gk and Gk can be coloured until the point is

reached where two rows and two columns have no coloured vertices in them and at

least one of these vertices can be coloured, guaranteeing a score of at least n− 1.

Alice, who owns copy G1 of G, colours a vertex in Bob’s copy, G2 of G, initially.

Then, on every subsequent turn until there are n − 2 coloured vertices in G2, Alice

colours a vertex in Gk when Bob colours a vertex in Gk. Now, since Alice coloured a

vertex in G2 initially, eventually it is Bob’s turn and there are n− 3 coloured vertices

in G1 and n − 2 coloured vertices in G2. We show that Alice can force a draw from

here. There are 3 cases based on the next move for Bob.

Case 1 Bob colours a vertex in G2 and there are no possible moves left in G2.

In this case, Bob achieved a score of n − 1 and so Alice can at least draw if not

win.

Case 2 Bob colours a vertex in G2 and there is still a possible move left in G2.

In this case, Alice colours the last colourable vertex in G2 and Bob achieves a

score of n. Bob is then forced to colour a vertex in G1 and now it is Alice’s turn.

There are two rows and columns in G1 with no coloured vertices in them, and no

more vertices may be coloured in G2. If none of the 4 colourable vertices remaining in

G1 are already coloured in G2, then Alice will clearly achieve a score of n. Otherwise,

at most 2 of the 4 colourable vertices remaining in Alice’s board are already coloured

in G2 and, by the Latin property, they are not in the same row or column. Alice

colours one of the 4 remaining colourable vertices in G1 that is in the same row or

column (but not the exact same position) as one of those at most 2 already coloured

vertices in G2. Now it is not possible to stop Alice getting a score of n since the last

colourable vertex in G1 is not coloured in G2.

Case 3 Bob colours a vertex in G1.

Both G1 and G2 have two remaining rows and columns with no coloured vertices

in them. There are several cases of the possible situation. Let U1 (U2, respectively)
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be the set of the four possible remaining colourable vertices in G1 (G2, respectively).

Let [U1] and [U2] be the preimage of U1 and U2 in G, respectively. Note that at most

two of the copies of the vertices in U1 may already be coloured in G2 by the Latin

property.

Subcase 3.1 1 or 2 of the vertices in U1 have the property that their copies are

already coloured in G2.

If it is the case that two of the vertices in U1 have this property, then these two

vertices must be in different rows and columns since otherwise, the Latin property

would have been violated. Alice colours a vertex in U1 that is in the same row or

column (but not the exact same position) as one of these at most two already coloured

vertices in G2. It is clearly not possible to stop the last colourable vertex in G1 from

being coloured eventually which results in a score of n for Alice.

Subcase 3.2 None of the copies of the vertices in U1 have already been coloured in

G2.

• If [U1] ∩ [U2] = ∅, then clearly both players achieve a score of n.

• If |[U1] ∩ [U2]| ∈ {1, 2}, then clearly Alice has a strategy to get a score of n by

playing on a vertex in a position in [U1] ∩ [U2].

• The case |[U1] ∩ [U2]| = 3 is not possible.

• If [U1] = [U2], then Alice colours one of the vertices in U1. If Bob colours a

vertex in U1, then Alice achieves a score of n and so at least draws the game if

not wins. If Bob colours a vertex in U2 in the same position or same column or

row as the vertex Alice just coloured, then Alice can colour a vertex in U1 and

achieves a score of n and again, at least draws the game if not wins. Lastly, if

Bob colours a vertex in U2 but not in the same position nor the same column

or row as the vertex Alice just coloured, then either Alice may still colour a

vertex in U1 if there are no forbidden pairs due to orthogonality yet, in which

case Alice wins since Bob cannot colour a vertex in U2 on the next turn by the

orthogonality condition, or there is a forbidden pair due to orthogonality, in

which case they draw with scores of n − 1 each since no vertices in U1 nor U2

can be coloured by the orthogonality condition.
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5.4 Graphs that Admit a Strictly Matched Involution

We denote by MI the class of graphs that admit a strictly matched involution. See

Figure 5.5 for a list of all graphs with at most 5 vertices that admit a strictly matched

involution. This construction gives the order of the number of graphs on n vertices

that admit a strictly matched involution (including isomorphisms).

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

Figure 5.5: List of all graphs with ≤ 5 vertices that admit a strictly matched involu-
tion.

5.4.1 Characterising Graphs that Admit a Strictly Matched Involution

We first give an explicit characterization of all graphs G ∈ MI. We then use this

characterization to give an explicit construction for any graph G ∈ MI. We note

however that Andres et al. [3] proved that it is NP-complete to determine whether a

graph admits a strictly matched involution.



73

Theorem 5.4.1 A graph G admits a strictly matched involution if and only if its

vertex set V can be partitioned into a clique C and a set inducing a graph that has a

perfect matching M such that:

1. for any two edges vw, xy ∈ M , the graph induced by v, w, x, y is isomorphic to

(a) a 2K2 (2 disjoint copies of K2) or

(b) a C4 (there are two possibilities for this) or

(c) a K4;

2. for any edge vw ∈ M and any vertex z ∈ C, the graph induced by the vertices

v, w, z is isomorphic to

(a) a K1 ∪K2 or

(b) a K3.

Proof. First, we prove the forward implication of the theorem, that is, if a graph G

admits a strictly matched involution, then the vertices V can be partitioned into a

clique C and a matching M such that the properties (1.) and (2.) hold.

Thus, assume G ∈ MI. Recall from the definition of a graph that admits a

strictly matched involution, that (SI 1) and (SI 2) imply that the vertices V can be

partitioned into a clique C and a matching M . Now, for any two edges vw, xy ∈ M ,

the graph induced by v, w, x, y ∈ V is isomorphic to either:

• a 2K2 if no additional edges exist and note that this does not violate any

conditions in the definition of a graph that admits a strictly matched involution.

• or a C4 if vx and wy (vy and wx resp.) are edges in E or a K4 if vx, wy, vy, wx ∈
E. Indeed, we prove that vx ∈ E if and only if wy ∈ E and vy ∈ E if

and only if wx ∈ E(G), thereby proving that a C4 or a K4 are the only two

possibilities if additional edges exist. We prove the first case as the other is

analogous. Since G ∈ MI by assumption, and therefore, by (SI 2) and since

σ is an involution, σ(v) = w and σ(x) = y, and since σ is an automorphism,

vx ∈ E ⇔ σ(v)σ(x) = wy ∈ E.
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For any edge vw ∈ M and any vertex z ∈ C, the graph induced by v, w, z ∈ V is

isomorphic to either:

• a K1 ∪K2 if no additional edges exist and note that this does not violate any

conditions in the definition of a graph that admits a strictly matched involution.

• or a K3 if vz, wz ∈ E. Indeed, we prove that vz ∈ E if and only if wz ∈ E,

thereby proving that a K3 is the only possibility if additional edges exist. The

proof is analogous to the second case above and therefore, is omitted.

For the other implication, assume the vertices V can be partitioned into a clique

C and a set inducing a graph that has a perfect matching M such that the properties

(1.) and (2.) hold. We define a mapping σ as follows. For all vertices z ∈ C, let

σ(z) = z and for all edges vw ∈ M , let σ(v) = w and σ(w) = v. We will prove that

σ is a strictly matched involution.

Clearly, σ is involutive (i.e., σ(σ(v)) = v for every vertex v ∈ V ) and (SI 1) and

(SI 2) are satisfied. Now all that remains to show is that σ is a graph homomorphism.

That is, it remains to be proven that

vw ∈ E ⇐⇒ σ(v)σ(w) ∈ E. (5.4)

First, the forward direction of (5.4) is proven. Let vw ∈ E. If vw ∈ M , then

by our mapping, σ(v) = w and σ(w) = v and we are done. So, assume vw /∈ M .

If v, w ∈ C, then σ(v) = v and σ(w) = w and we are done. So, without loss of

generality, assume that v /∈ C and let vx ∈ M . Then, σ(v) = x.

If w ∈ C, then σ(w) = w. Then, by property (2.), the graph induced by the

vertices v, x, w is isomorphic to K3 (since vw ∈ E and w ∈ C) and hence, xw =

σ(v)σ(w) ∈ E.

If w /∈ C, then let wz ∈ M . Then, σ(w) = z. Since M is a matching, z /∈ {v, x}.
By property (1.), the graph induced by the vertices v, w, x, z is isomorphic to C4 or

K4 (since vw ∈ E and vw /∈ M) and in either case, σ(v)σ(w) = xz ∈ E.

Using the forward direction and the fact that σ is involutive, we immediately get

the backward direction of (5.4)

σ(v)σ(w) ∈ E =⇒ vw = σ(σ(v))σ(σ(w)) ∈ E.
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Thus, σ is strictly matched, i.e., G ∈ MI.

Theorem 5.4.1 immediately implies the following structural result.

Corollary 5.4.2 Any graph G on n vertices admitting a strictly matched involution

has a partition of its vertex set into three (possibly empty) vertex subsets inducing a

clique C of size n−2k and two isomorphic graphs H and H ′, each of size k, for some

k ∈ N with 0 ≤ k ≤ ⌊
n
2

⌋
, respectively. Moreover,

• for any pair (v, v′) of corresponding vertices v ∈ V (H) and v′ ∈ V (H ′) and any

vertex w ∈ C, either both vw and v′w exist or none of them exist;

• for any pair (v, v′) of corresponding vertices v ∈ V (H) and v′ ∈ V (H ′), we have

the existence of the matching edge vv′ ∈ E(G);

• for any two pairs (v, v′) and (w,w′) of corresponding vertices with v, w ∈ V (H)

and v′, w′ ∈ V (H ′), either both vw′ and v′w exist or none of them exist.

See Figure 5.6 for a sketch of the structure.

Graph H of order k

Clique
Matching

of size k

Copy of H

of size n−2k

Figure 5.6: The structure of graphs admitting a strictly matched involution.

According to Corollary 5.4.2, we can generate every graph on n vertices admitting

a strictly matched involution if we fix some integer k ≤ n
2

and take two copies of

an arbitrary graph on k vertices which are matched by an isomorphism and add

possible edges according to the rules given implicitly in Theorem 5.4.1 and explicitly in

Corollary 5.4.2. Note that this construction may create isomorphic and even identical

graphs.
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5.5 Reporting on Other Results

This section reports on results tangential to the orthogonal colouring game.

In particular, another question a graph theorist may be interested in is the number of

graphs which admit a strictly matched involution. A question of concern to computer

scientists is the complexity of the game. Both questions will be reported on here.

The counting arguments appear in [4] while the complexity results appear in [3].

5.5.1 Counting Results

Let g(n) be the number of isomorphism classes of graphs on n vertices. Let A(n) be

the number of isomorphism classes of graphs admitting a strictly matched involution

on n vertices.

We use the following well-known fact.

Fact 5.5.1 For any n ∈ N,
2(

n
2)

n!
≤ g(n) ≤ 2(

n
2).

Theorem 5.5.2 For any n ∈ N,

�n
2 �∑

k=0

1

k!
2(n−

1
2)k− 3

2
k2 −

⌊n
2

⌋(
n

2

)
≤ A(n) ≤ 1 +

⌊n
2

⌋
· 2(n−1

2 )
2

.

Corollary 5.5.3 A(n) = O
(
c(n)

√
g(n)

)
with log2(c(n)) = o

(
log2

3
√
g(n)

)
.

Corollary 5.5.4 A(n) = Ω
(
d(n) 3

√
g(n)

)
with log2

(
1

d(n)

)
= o

(
log2

3
√

g(n)
)
.

5.5.2 Complexity Results

Theorem 5.5.5 The problem of deciding whether a graph is in MI is NP-complete.

Theorem 5.5.6 Given an instance NorMOCm(G) of the orthogonal colouring game

that includes a partial colouring, the problem of determining the outcome of NorMOCm(G)

under optimal play is PSPACE-complete for all m ≥ 1.

Theorem 5.5.7 Given an instance MOCm(G) of the orthogonal colouring game that

includes a partial colouring, the problem of determining the outcome of MOCm(G)

under optimal play is PSPACE-complete for all m ≥ 3.
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5.6 Conclusions

Research within the context of the orthogonal colouring game allows for a

multitude of directions to pursue for future work. From a game theoretic point of

view, we are interested in the following:

Question 3 Determine the outcome for the orthogonal colouring game for

other classes of graphs.

Beyond the scope of this thesis, but there are game theorists interested in the

following:

Question 4 What is the strategy for the multiplayer version of the orthogonal

colouring game (3 or more players)?



Chapter 6

Simultaneous Combinatorial Game Theory

Research in the area of simultaneous combinatorial game theory began in 2007 under

the description of synchronized games1. There have been many variants of placement

games studied under simultaneous moves (see [21, 24–28]). Cincotti et al. studied

synchronized cutcake, synchronized domineering and several variants of

synchronized domineering, determining outcomes for certain grid sizes. They

also claimed values but do not provide any supporting theory for those claims. Bahri

and Kruskal [6] presented a new method for considering synchronized domineer-

ing which bounds the outcomes using combinatorial game theory techniques. More

recently, in 2016, some work has been done with regards to simultaneous cops

and robbers [51]. In particular, in [51] it was proven that the simultaneous cop

number is equal to the cop number under alternating play for all graphs, and opti-

mal strategies under simultaneous play are given. To date, no framework for general

rulesets or game values has been developed.

We begin our discussion of simultaneous combinatorial game theory with some

general definitions. The notation is adapted from a combination of combinatorial

game theory notation and economic game theory notation. Note that round and turn

will be used interchangeably throughout this chapter to mean that both players have

made a move in the game.

Definition 6.0.1 (Ruleset for simultaneous combinatorial games) Given a set of game

positions Ω, a ruleset over Ω consists of three functions L,R, S : Ω → 2Ω. For G ∈ Ω,

L(G) is the set of Left options, which we will denote as GL, R(G) is the set of Right

options, denoted GR, and S(G) is the set of simultaneous options, denoted GS .

1Cincotti et al. used synchronized to describe games where the moves were of a particular type.
Our scope is more general so we use the term simultaneous.
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We will represent the options from a combinatorial game G as,

G =
{
GL | GS | GR} .

The elements of GL and GR in Definition 6.0.1 are the Left and Right options from

the underlying combinatorial game. We need both GL and GR because in a sum,

G�H, players may be able to move in different components on a round. Our guiding

philosophy for simultaneous combinatorial games asserts that players know the moves

available to them. More importantly, based on this philosophy,

GL �= ∅ and GR �= ∅ ⇐⇒ GS �= ∅.

That is, if both Left and Right have a move, we insist there is a simultaneous move.

Conversely, if there is a simultaneous move, it must arise from a Left and a Right

option. In many games, a position obtained by a Left move followed by a Right move

can be reached by interchanging the moves. In these cases the moves can be played

simultaneously without further clarification. Sometimes however, GL and GR played

simultaneously may lead to a game board which is not attainable in a combinatorial

game under alternating play and so the game rulesets need to have an extra rule to

account for the possibility of player interference leading to an illegal CGT position.

We define the interference rule of a game in terms of the illegal CGT positions. The

simultaneous ruleset must deal with the possibility of illegal positions resulting from

Left and Right’s simultaneous choice of options, in such a way that the spirit of

combinatorial game theory is maintained. That is, players must know when they

have a move available to them, retain perfect information, and the game terminates

in a finite number of moves. This means that for the games in this chapter a position

G cannot occur as a follower of G because of the interference rules. A case where

a position may reoccur, yet still be analyzable, is presented in Section 7.2 where

the expected number of moves is finite. We adjust Definition 6.0.1 to follow our

philosophy.

Definition 6.0.2 (Ruleset for simultaneous combinatorial games following our phi-

losophy) Given a set of game positions Ω, a ruleset over Ω consists of three functions
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L,R, S : Ω → 2Ω. For G ∈ Ω, L(G) is the set of Left options, which we will denote as

GL, R(G) is the set of Right options, denoted GR, and S(G) is the set of simultaneous

options, denoted GS . Moreover, the game can be described in terms of a game ma-

trix, denoted M(G). Left’s options, the elements of GL, label the rows, and Right’s

options, the elements of GR, label the columns. An entry GSi,j will be the result of

Left playing option i and Right playing option j in G. A game G is called a terminal

position if GS = ∅.
Hence if Left has m options and Right has n options we have,

M(G) =

GR1 GR2 . . . GRn⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

GL1 GS1,1 GS1,2 . . . GS1,n

GL2 GS2,1 GS2,2 . . . GS2,n

...
...

... . . . ...

GLm GSm,1 GSm,2 . . . GSm,n

. (6.1)

Noteworthy, is that Definition 6.0.2 does not define the rule associated with an

interference of a simultaneous Left and Right option for all games, just that the

move is legal. An interference rule must be introduced within each game ruleset. In

addition to defining conditions on interference within a game ruleset, we also need

to be careful in how the interference is defined in order to avoid problematic game

properties. For example, if the interference rule is defined to be that each time

interference occurs, the players simply ignore that turn and resume the game with

the same game options, then the game can be loopy, meaning that it could involve

infinite play. A comprehensive overview of loopy games in CGT can be found in [66].

We will not explore loopy games in detail here, but we briefly examine a case study

with the possibility of infinite play, in Chapter 7, Section 7.2.

Depending on the type of game, the game interference can have a very intuitive

interpretation. For example, in [27] the interference rule in synchronized domi-

neering was defined as follows: if GL and GR are legal, then both dominoes played

simultaneously is also legal (i.e., overlapping dominoes on that turn is permitted).

Allowing interference could seem like an ideal method for determining a general def-

inition for dealing with the interference problem. However, for games like snort,

col, and nogo this interpretation is not sufficient to know how to play the game.
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Consider the game snort. Played simultaneously, players could interfere by both

colouring vertex v on any given turn, but allowing overlap does not determine the

consequence to the vertex colouring of the neighbours of v. Thus, this must be

considered as additional rules within individual game play rulesets, rather than an

overarching condition which applies to all games.

When defining the interference rule, we also need to ensure finite descent will

hold true and that other CGT rule violations are addressed within the interference

rule. An example of a combinatorial game where we need to take care in defining the

interference rule is nogo. Possible interference in simultaneous nogo includes (i)

players choosing the same vertex, and (ii) players choosing two different vertices which

leads to a maximal monochromatic connected subgraph not being adjacent to an

uncoloured vertex. The interference rule for simultaneous nogo is as follows: if the

resulting simultaneous move produced a legal nogo position, then the simultaneous

move is permitted. Otherwise, the vertices which players tried to colour on that round,

leading to an illegal nogo position, are converted to uncoloured, unplayable vertices

for the remainder of the game. The game tree of simultaneous moves can exceed the

depth of that of either player on their own (see Example 6.0.3), though based on the

interference rule defined above, the game will terminate in a finite number of moves

since the graph is finite and at least one vertex is no longer playable after each round.

Example 6.0.3 Consider the following position of simultaneous nogo. A star S4

where each leaf of the star has itself a new leaf attached and all leaves are coloured

blue, and black vertices are uncoloured (see Figure 6.1).

Figure 6.1: A simultaneous nogo position.

If Left were to move alone in this position, regardless of where she moves, she would
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have three moves remaining thereafter. If Right moves alone in this position, he only

has one option, which is to colour the centre vertex red. However, if both players move

in this component and choose the centre vertex, Left will have four moves remaining

in the component and Right will have none. Note that Left choosing a different

vertex on a simultaneous move is dominated, as both pieces would get removed and

she would have three moves remaining rather than four. Hence G = {3 | 4 | 0}.

A game we will refer to often is called subtraction squares. The ruleset is as

follows.

Ruleset for subtraction squares, SQ(SL, SR) on a strip of squares of length

n, denoted SQ(SL, SR)(n)

◦ Board: Let SL and SR be sets of positive integers. The board is a strip

of n squares, denoted n.

◦ Moves: For any p ∈ SL, p ≤ n, Left can remove p squares from the left or

right side of the strip. Similarly, if q ∈ SR, q ≤ n, then Right can remove

q squares from the left or right side of the strip.

◦ Interference rule: If they both take from the same side then max{p, q}
squares are removed. If they take from opposite sides then the move is to

n− p− q except if max{p, q} ≤ n ≤ p+ q then the move is to 0.

Note that if the interference rule is always to remove p+ q, without any reference

to the side played, then in SQ({1, 10}, {2, 10})(12) neither player knows if subtracting

10 is legal. The corresponding matrix is

2 10[ ]
1 3 1

10 0 ?

and has a non-entry. On the other hand, if the interference rule is to remove |p− q|
then the same game could last forever.

Ottaway’s card interpretation: illegal positions are never allowed



83

An alternative method to deal with interference is to not allow them, and the

Left and Right options which led to the interference get removed from game play.

A way to model this in actual game play is as follows: Consider the game board,

and each position of play is numbered. Then (a) Players receive cards with numbers

corresponding to their options. (b) Players each choose a card and place it face up on

the table. (c) If no interference occurs, players each take the action they chose. (d)

If there is interference, players choose a new card and place it on the table. (e) This

continues until either (i) players run out of cards and the game is over; or (ii) a legal

simultaneous move occurs and then players continue play starting from step (a).

Under this interpretation, GL and GR could exist but GS might not exist. Practi-

cally speaking, this is an easy way to play games simultaneously. However, in terms

of analysis, this does not simplify matters.

The focus of this chapter is to develop a general algebraic framework for simul-

taneous play in combinatorial games. Foundational questions originating from CGT

are examined here under simultaneous play, such as

1. What reductions exist for game analysis: within individual games and within

game sums?

2. Which game sum is natural for this framework?

3. Which winning convention is natural for this framework?

4. How do we test for game equality?

5. How are values defined?

The goal of this chapter is to establish the basic definitions and algebraic frame-

work for simultaneous combinatorial game theory by answering the questions above.

After basic definitions are established, other questions arise such as: (i) as in CGT,

is there a group structure? (ii) if not, what algebraic structure does exist in simulta-

neous combinatorial game theory?

Basic definitions from CGT (see Definition 2.3.1), that we adapt for simultaneous

games are as follows: Let G and H be games,

• Equality of games: G = H if (∀X) α(G�X) = α(H �X).
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• Greater than: G ≥ H if (∀X), α(G�X) ≥ α(H �X).

where � is a generic sum and α represents a generic measure of winning and if

α(G) > α(H) then Left has a greater chance of winning G than H.

To answer the questions above we need to be able to develop a test for equality,

similar to Theorem 2.4.8, which does not involve considering all games. We also

assume the players are rational.

This chapter will proceed as follows. First, in Section 6.1 we present tools from

economic game theory which we will need to analyze simultaneous combinatorial

games. In Section 6.2 three sums from CGT (disjunctive, conjunctive and continued

conjunctive) are redefined for simultaneous play, and several examples for game play

are examined. In Section 6.3, three winning conventions (extended normal, scoring,

and majority win) are defined under each of the three sums. Challenges and proposed

solutions for each combination of sum and winning convention are discussed. Case

studies for three games are explored in more detail in Chapter 7.

The rulesets for simultaneous combinatorial games can be found in Appendix C.

For some other approaches to combining combinatorial game theory and economic

game theory see [11,34,46].

6.1 Economic Game Theory: Background

Here we provide the basic background for two player zero sum games. See [8] for a

standard reference in economic game theory; for a light read, with many practical ap-

plications, see [70]. To be consistent with players’ names between combinatorial game

theory and economic game theory, in later sections we will adopt the combinatorial

game theory convention by letting

Row Player = Rose = Left

and

Column Player = Colin = Right.

A game matrix or payoff matrix is a matrix which summarizes the results of Rose

and Colin playing strategies available to them in a game G. Zero sum games are

games where a gain for one player is a loss for the other player. As we are only
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considering zero sum games, the matrix will be in terms of the payoffs to Rose, while

the payoffs to Colin will be the negatives of the game matrix entries. For a running

example, let’s consider the classical game of Rock-Paper-Scissors (see Example 6.1.1).

Example 6.1.1 Rock-Paper-Scissors is a simultaneous game, G, where each player,

on a round, chooses one of the three options {Rock, Paper, Scissors}. The rules are

that paper beats rock, rock beats scissors and scissors beats paper. The game matrix,

A, is as shown in (6.2).

A =

Rose\Colin Rock Paper Scissors⎡
⎢⎣

⎤
⎥⎦

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

(6.2)

Definition 6.1.2 [8] The pure strategies for Rose are the rows of the payoff matrix.

The pure strategies for Colin are the columns of the payoff matrix.

In Example 6.1.1, there are three pure strategies for each player and their pure

strategies are the same: Rock, Paper, and Scissors.

Definition 6.1.3 [8] Let An×m = (ai,j) be a matrix game. Row i strictly dominates

row k if aij > akj for all j = 1, 2, . . . ,m. Column j strictly dominates column k if

aij < aik for all i = 1, 2, . . . , n.

Recall that Rose is trying to win more of the time in matrix A, that is, get an

outcome of 1 more often than −1. While Colin is trying to do the reverse (get −1

more often than 1). In Definition 6.1.3 this is demonstrated by players having different

applications of domination.

A rational player will not choose a row or column that is strictly dominated,

hence we can delete it from the matrix. If equality holds on one or more of the

rows (columns, respectively), the domination is said to be weak. If concerned with

determining only the value of a game, weakly dominated rows (or columns) can be

deleted.

Definition 6.1.4 [8] If there exists a constant λ ∈ [0, 1] so that
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akj ≤ λapj + (1− λ)aqj, j = 1, . . . ,m.

then row k is dominated by a convex combination of rows p and q and row k can be

dropped.

Similarly, if there exists a constant λ ∈ [0, 1] so that

aik ≥ λaip + (1− λ)aiq, i = 1, . . . , n.

then column k is dominated by a convex combination of columns p and q and column

k can be dropped.

Definition 6.1.5 [8] A mixed strategy is a vector X = (x1, x2, . . . , xn) for Rose and

Y = (y1, y2, . . . , ym) for Colin, where

xi ≥ 0,
n∑

i=1

xi = 1 and yj ≥ 0,
m∑
j=1

yj = 1

and denote the set of mixed strategies with k components by

Sk = {(z1, z2, . . . , zk) | zi ≥ 0, i = 1, 2, . . . , k,
k∑

i=1

zi = 1}.

Definition 6.1.6 [8] Let An×m = (ai,j) be a matrix game. Given a choice of mixed

strategy X ∈ Sn for Rose and Y ∈ Sm for Colin, chosen independently, the expected

payoff of the game to Rose is

Ex(X, Y ) =
n∑

i=1

m∑
j=1

aijProb(Rose uses i andColin uses j)

=
n∑

i=1

m∑
j=1

aijProb(Rose uses i)Prob(Colin uses j)

=
n∑

i=1

m∑
j=1

xiaijyj = XAY T

Definition 6.1.7 [8] A matrix game with matrix An×m = (ai,j) has upper and lower

values of the mixed game as

v+ = min
Y ∈Sm

max
X∈Sn

XAY T and v− = max
X∈Sn

min
Y ∈Sm

XAY T
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Theorem 6.1.8 [8] For any n×m matrix A, we have

v+ = min
Y ∈Sm

max
X∈Sn

XAY T

= max
X∈Sn

min
Y ∈Sm

XAY T

= v−.

The common value is denoted v(A), or value(A), and that is the value of the game.

In addition, there are mixed strategies X∗ ∈ Sn, Y ∗ ∈ Sm so that

Ex(X, Y ∗) ≤ Ex(X∗, Y ∗) = v(A) ≤ Ex(X∗, Y ), ∀(X ∈ Sn, Y ∈ Sm).

Important Note: This chapter and the next chapter uses both CGT values and

economic game values. Hence to avoid ambiguity we will denote the value of a game

as calculated using Theorem 6.1.8 by EV(G).

In Example 6.1.1, there is no domination of any type. If a player always chose

the same pure strategy, over repeated plays their opponent would figure this out

and would be able to win. Thus players will instead use mixed strategies to play

this game. Using mixed strategies makes it difficult for players to take advantage

of their opponents’ strategy because there is randomness involved. In particular, if

both players choose their optimal mixed strategies neither player can do better by

changing their strategies. Based on the symmetries of the pure strategies, players

will play each pure strategy an equal number of times and based on the symmetries

of the matrix, the players have the same optimal mixed strategy. In particular, Rose

will use X∗ =
(
1
3
, 1
3
, 1
3

)
and Colin will use Y ∗ =

(
1
3
, 1
3
, 1
3

)
. This means that over many

plays, players will play each pure strategy a third of the time. By Theorem 6.1.8 we

obtain EV(G) = 0.

Note about notation: In sections to follow, we will omit the ‘∗’ from optimal strat-

egy notation. It will be clear from the context which strategies are being discussed.

6.2 Sums

Naturally, to extend combinatorial game theory, we are interested in simultaneous

games that have components, how these components are played, and extending the
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concepts of equality and inequality. Here we will consider three sums defined by

Conway [29]: disjunctive, conjunctive and continued conjunctive. In CGT, the dis-

junctive sum leads to rich algebraic structure, and thus is a natural starting point for

analysis of simultaneous combinatorial game theory. In conjunctive and continued

conjunctive sums, since both have a notion of moving simultaneously in components,

they appeared as natural choices for further exploration among the many sums de-

fined in [29]. For other literature exploring other sums, see [38], [50], and [68]. Before

redefining the sums for simultaneous play, we discuss some general properties of sums

and outcomes under simultaneous play.

First, there is an issue with determining what constitutes a component. A com-

ponent is defined at the outset of a game. At the beginning of each section, we will

discuss what we consider to be a component.

The notions of equality and greater than are defined similarly for the outcome

classes of any generic sum, �. Associativity and commutativity are also defined

similarly to CGT play since each game within a sum is considered to be played on

its own board and the placement of the board is irrelevant. First mentioned in the

introduction, we examine equality and greater than as to follow suit with CGT. We

formally restate the definitions here.

Definition 6.2.1 Let G and H be games,

◦ Equality of games: G = H if (∀X) α(G�X) = α(H �X).

◦ Greater than: G ≥ H if (∀X), α(G�X) ≥ α(H �X).

where � represented any generic sum and α represents a generic measure of winning

and if α(G) > α(H) then Left has a greater chance of winning G than H.

In the sums that we consider, it may be possible for the two players to play in

different components. Thus in a sum G�H, the definition of G�H may require all

of GL, GR, GS , HL, HR, and HS . All the sums have two common properties.

Theorem 6.2.2 Simultaneous combinatorial games, under a sum, form an equiva-

lence relation and the quotient is a partial order.
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Proof. From the definition of equality, it is clear that: (i) G = G for all G; (ii) if

G = H then H = G; and (iii) if G = H and H = K then G = K. Therefore equality

is an equivalence relation.

Equal games are identified to obtain the quotient by ‘=’, that is, the objects are

now the equivalence classes. The proof for a partial order is now similar to that for

equality.

An open question is what properties, if any, does the partial order have. In

alternating play CGT, the order is a distributive lattice [2]. Here we only know about

the continued conjunctive sum with the scoring winning convention, see Corollary

6.3.30.

1 2 3
GL { 0 } { 1 } { 2 }
GR − { 0 } { 1 }
GS − { 0 } { 0, 1 }

Table 6.1: Summary of options for positions of SQ({1}, {2})(1� 2� 3).

Table 6.1 illustrates the differences between the sums defined in the next three

sections. For examples pertaining to simultaneous hackenbush, see Section 7.1.

We focus on three main sums: disjunctive, conjunctive and continued conjunctive.

In later sections, the winning conventions will be defined. Here, we consider their

definitions in terms of options. For all definitions, consider G and H to be two

simultaneous combinatorial games. This can be extended to larger sums (games with

multiple components) by induction.

We need to introduce some notation. Let X and Y be sets of positions and �
be a sum. Define X � Y = {x � y : x ∈ X, y ∈ Y } and if z is a position, then

X � z = {x� z : x ∈ X}.

Disjunctive Sum

The disjunctive sum of two combinatorial games being played under simultaneous

moves, denoted by G+H, means that each player chooses a component and plays a

legal move in that component. Within the context of disjunctive sum, a component

is any board which has moves remaining.
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Definition 6.2.3 The set of options from G+H is

{
GL +H,G+HL | GS +H,G+HS , GL +HR, GR +HL | GR +H,G+HR} .

Using Table 6.1, consider G = SQ({1}, {2})(1 + 2+ 3). The game is not terminal

because Left has moves in 1, 2, and 3, while Right has moves in 2 and 3.

Let G be a game with m Left options and n Right options. Let H be a game with

k Left options and 
 Right options. The matrix of a game sum G+H is as in (6.3).

GR1 . . . GRn HR1 . . . HR�⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

GL1 GS1,1 +H . . . GS1,n +H GL1 +HR1 . . . GL1 +HR�

... . . . ...
... . . . ...

GLm GSm,1 +H . . . GSm,n +H GLm +HR1 . . . GLm +HR�

HL1 GR1 +HL1 . . . GRn +HL1 G+HS1,1 . . . G+HS1,�

...
... . . . ...

... . . . ...

HLk GR1 +HLk . . . GRn +HLk G+HSk,1 . . . G+HSk,�

. (6.3)

To get a better understanding of the representation of M(G+H) let’s look at an

example.

Example 6.2.4 Let G = SQ({1}{2})(4) and H = SQ({1}{2})(3). The matrix of

the disjunctive sum G + H is shown in (6.4). Note that X t means that the player

removed from side t (either left (
) or right (r)) from game X (either 4 or 3).

M(G+H) =

4� 4r 3� 3r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

4� 2 + 3 1 + 3 3 + 1 3 + 1

4r 1 + 3 2 + 3 3 + 1 3 + 1

3� 2 + 2 2 + 2 4 + 1 4 + 0

3r 2 + 2 2 + 2 4 + 0 4 + 1

(6.4)

Note that no matrix entries correspond to terminal games.



91

Conjunctive Sum

The conjunctive sum of two simultaneous combinatorial games, denoted by G ∧ H,

means that each player plays a legal move in all components. In the conjunctive sum,

unlike the disjunctive sum, the Left and Right options are only used for deciding

the winner, and are never used to determine the actual moves in the play of the

game. We only need to define the options coming from simultaneous moves. Also,

the components within a conjunctive sum is the initial set of boards within the sum.

Hence, if G = K1 ∧ K2 then K1 and K2 are the components of the sum G, and

will always constitute the boards in play. For example, if K1 breaks up into several

smaller games, it remains a single component.

Definition 6.2.5 The set of simultaneous options from G ∧H are:

G ∧H =
{
GS ∧ HS} .

Using Table 6.1, consider now G = SQ({1}, {2})(1 ∧ 2 ∧ 3). The game is over

because Right does not have a move in 1.

For an example of a matrix for this sum, see Example 6.2.6.

Example 6.2.6 Let G = SQ({1}{2})(4) and H = SQ({1}{2})(3). The matrix of

the conjunctive sum G ∧ H is shown in (6.5), where 
/r means that a player chose

left in G and right in H.

M(G ∧H) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 2 ∧ 1 2 ∧ 0 1 ∧ 1 1 ∧ 0


/r 2 ∧ 0 2 ∧ 1 1 ∧ 0 1 ∧ 1

r/
 1 ∧ 1 1 ∧ 0 2 ∧ 1 2 ∧ 0

r/r 1 ∧ 0 1 ∧ 1 2 ∧ 0 2 ∧ 1

(6.5)

Note that every matrix entry corresponds to terminal games.

Continued Conjunctive Sum

The continued conjunctive sum of two simultaneous combinatorial games, denoted by

G � H, means that each player plays a legal move in each component where they
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both have a move. In the continued conjunctive sum, similar to the conjunctive sum,

the Left and Right options are only used for deciding the winner, and are never used

to determine the actual moves in the play of the game. We only need to define the

options coming from simultaneous moves. Also, a component within a conjunctive

sum, is the initial set of boards within the sum. Hence, if G = K1 � K2 then K1

and K2 are the components of the sum G, and will always constitute the boards in

play. For example, if K1 breaks up into several smaller games, it remains as a single

component.

Definition 6.2.7 The set of simultaneous options from G�H is:

G�H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{GS � H}, if GS �= ∅ and HS = ∅;
{G � HS}, if HS �= ∅ and GS = ∅;
{GS � HS}, if GS and HS are non-empty;

∅, no move otherwise.

Using Table 6.1, consider G = SQ({1}, {2})(1 � 2 � 3). The game is not over

because both players have moves in 2 and 3.

To get a better handle on how the matrix of a game sum would be, let’s explore

an example.

Example 6.2.8 Consider the games G = SQ({1}{2})(4) and H = SQ({1}{2})(3).
The matrix of the continued conjunctive sum of G�H is shown in (6.6), where 
/r

means that a player chose left in G and right in H.

M(G�H) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 2� 1 2� 0 1� 1 1� 0


/r 2� 0 2� 1 1� 0 1� 1

r/
 1� 1 1� 0 2� 1 2� 0

r/r 1� 0 1� 1 2� 0 2� 1

(6.6)

Note that only entries in red correspond to terminal games.
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6.3 Winning Conventions

In simultaneous games, since the players move at the same time, the winning con-

ventions cannot be based purely on who moves last, as in CGT. We define three

conventions. The first depends on a non-losing condition: if a player has a move in a

component C then that player cannot lose the whole game because of C. If, in a sum,

a player has a move in each component then that player cannot lose on that turn.

This convention is called the extended normal play. The second winning convention

is determined by a score which is assigned at the end of the game, i.e., at a terminal

position. Lastly, we define a winning convention based on the number of components

a player wins, called the majority winning convention. All conventions allow a Draw

as an outcome. Each winning convention will need to be defined separately based on

the sum considered. Throughout the remainder of the chapter, we primarily focus on

extended normal play and scoring play winning conventions, as these are well studied

in combinatorial game theory.

6.3.1 Extended Normal Play

There are three possible outcomes of a terminal position of a simultaneous combina-

torial game, denoted by oS(G), played under extended normal play:

oS(G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
L,Left wins G if GL �= ∅ and GR = ∅;
D,Draw if GL = GR = ∅;
R,Right wins G if GR �= ∅ and GL = ∅.

In keeping with the two-player, zero sum conventions, the outcomes are partially

ordered L > D > R. Outcomes need to be extended because not all game positions

are L, D or R. Sometimes a game is not terminal but the combination of options

leading to a terminal game is non-deterministic. This was illustrated in Example 6.2.6;

regardless of the Left and Right moves, the game terminates immediately. Optimal

mixed strategies will depend on the particular game matrix. In many cases within

this chapter the optimal mixed strategies will correspond to pure strategies having

equal probability of being played, however this is due to the structure of the games we
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consider and is not true in all games. First we note that by definition of the ruleset,

the options of a game exist and have values. This allows for the next concept to be

well-defined.

Let M(G) be the matrix M(G) with each entry GSi,j replaced by EV(M(GSi,j)).

That is, each simultaneous option of G will be replaced by its value. As each GSi,j is

an option of G, they exist and have values.

Definition 6.3.1 Let G be a simultaneous combinatorial game, played under the

extended normal winning convention. The value of G, EV(G), is given recursively

EV(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if G is terminal and a Left win,

0, if G is terminal and a Draw,

−1, if G is terminal and a Right win,

EV(M(G)), otherwise.

This means that if EV(G) = 1 then Left can force a win in the game G. Similarly,

if EV(G) = −1 then Right can force a win in the game G. If EV(G) ∈ (0, 1) then Left

has a higher probability of winning G. Similarly, if EV(G) ∈ (−1, 0) then Right has

a higher probability of winning G. There are subtleties to consider when examining

draws, as well as with any EV(G) ∈ (−1, 1), and we will explore both in time.

If we assume that a player wants to maximize their expectation of winning, which

is precisely the goal of zero sum matrix games in EGT, then we obtain the following.

Theorem 6.3.2 Let G be a simultaneous combinatorial game. Then M(G) can be

reduced by eliminating dominated options (convex and strict).

Proof. The matrix M(G) is constructed recursively from the options of G. Thus it

has real valued entries, one player’s gain is the other player’s loss, and players want to

choose their strategies to maximize their overall return (which here is their probability

of winning).

Eliminating those dominated options also translates back to M(G) where the

corresponding options can also be eliminated. This is called the reduced game, Re(G).

Note that this is not a canonical form. As we will see shortly, we can’t replace G with

Re(G) in all situations (see Section 7.2 for an example).
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Let G = SQ({2}, {5})(8). The options, outcomes, and values of the options from

G are given in (6.7). From M(G) we calculate the value of the game as follows. The

symmetry of the matrix implies that both Left and Right will have the same optimal

strategy. Suppose Left will use strategy X = (x, 1 − x), where 0 ≤ x ≤ 1. Then

we can use the method of equalizing expectation (see [8], pp.35) across columns to

calculate the value of x, as shown in (6.8)-(6.10). Now that we have Left’s optimal

strategy (X = (1
2
, 1
2
), and recall in this case X = Y ), we can use it to determine the

value of the game. The value of the game can be calculated by matrix multiplication

as discussed in Section 6.1. Hence EV(8) = X ·M(G) · Y T = 1
2
. In k plays of 8, since

Right can never win, Left will expect to win half of the games and the other half will

be Draws.

M(G) =

l r[ ]
l 3 1

r 1 3

, oS(M(G)) =

l r[ ]
l L D

r D L
, M(G) =

l r[ ]
l 1 0

r 0 1
(6.7)

[ ]
x 1 0

1− x 0 1 ,
(1)(x) + (0)(1− x) = (0)(x) + (1)(1− x) (6.8)

x = 1− x (6.9)

x =
1

2
(6.10)

The challenge with this approach is, if the game is a sum of two other games, say G

is the sum of H and K, what reductions can be first applied to H and K individually

before considering their sum? This is a similar problem previously considered in

CGT. Even though games are played under alternating play, one cannot restrict the

study of components and insist that play alternates in each component.

Recall from Section 2.3, given a game G, in CGT, there are operations that, when

applied repeatedly, result in a game H where (i) G = H; (ii) H is in canonical form;

and (iii) o(G + X) = o(H + X). One of these operations is to eliminate dominated

strategies, or one of two equal strategies2. However, eliminating one of two equal

2The other, reversing reversible options, is particular to alternating play, and has no analogue in
simultaneous play.
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strategies can cause problems in sums of simultaneous games. Our goal in the next

several sections, as we define the winning convention under each sum, is to determine

how to test whether two games G and H are equal and which (if any) elimination

techniques of dominated options can be applied to M(G) to simplify calculations in

a sum.

Disjunctive sum

Players are moving at the same time, and thus all play combinations across com-

ponents must be considered when analyzing any particular game under disjunctive

sum. By the above value assignments, the value will enable us to determine a local

expectation for a player to win a particular game. As in CGT, Left prefers positive

values, and Right prefers negative values. However, if the value is zero, it does not

imply a Draw. Similarly, if an value is positive it does not guarantee that Left will

win.

Definition 6.3.3 The extended normal winning convention for the disjunctive sum

of simultaneous combinatorial games G+H is:

◦ Left wins if GL ∪HL �= ∅ but GR ∪HR = ∅.

◦ Right wins if GR ∪HR �= ∅ but GL ∪HL = ∅.

◦ Otherwise the game is a Draw.

Mimicking the additive nature of CGT, the hope for simultaneous play would be

that EV(G + H) = EV(G) + EV(H) or something equally simple. However, the

presence of GL +HR and GR +HL in the options of G +H makes this unlikely for

all but a few games as the next example shows.

Example 6.3.4 Consider the game SQ({1}, {2}) (n). Note, we will use EV(n) as

shorthand for EV(M(SQ({1}, {2})(n))). The position 2 is a Draw and EV(2) = 0.

Now consider 2+2. Playing in the same component always results in 0, regardless,

so we do not need to specify which side players are choosing within a component, only

which component they are moving in. In the analysis, l 2 and r 2 denotes playing in

the left or right component in 2+2. Right can never win so EV(2+2) ≥ 0. See (6.11).
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From M(2 + 2) we calculate the value, EV(2+ 2) = 1/2, which is not EV(2)+EV(2)

or EV(2)EV(2).

M(2 + 2) =

l 2 r 2[ ]
l 2 2 1

r 2 1 2

, M(2 + 2) =

l 2 r 2[ ]
l 2 0 1

r 2 1 0

(6.11)

Example 6.3.4 shows that the obvious test for G = H in simultaneous, extended

normal play cannot be just EV(G) = EV(H) even though this is a necessary condition.

Question 5 Is there a set of conditions which only involve options or possibly fol-

lowers of G and H to prove that G ≥ H in simultaneous, extended normal play with

disjunctive sum?

We also note that if GL = ∅ and GR = ∅ then G = 0 and the game is a draw.

The converse is not true for disjunctive sum.

Example 6.3.4 also shows that under extended normal play and disjunctive sum

there are games which are draws, but the sum of draw games is not necessarily a

draw. This suggests that knowing how to play individual components does not help

determine how to play in a sum. Given these challenges, we concluded that disjunctive

sum was not an ideal sum to use in simultaneous combinatorial game theory.

Conjunctive Sum

Consider the conjunctive sum of n components K1, K2, . . ., Kn. If K1∧K2∧. . .∧Kn =

∅, then this means that at least one of the components is terminal.

Definition 6.3.5 The extended normal play winning convention for the conjunctive

sum of simultaneous combinatorial games is:

◦ Left wins if she has an option in every terminal component, but Right does not

(i.e., KL
i �= ∅ for all i and there exists Ki such that KR

i = ∅).

◦ Right wins if he has an option in every terminal component, but Left does not

(i.e., KR
i �= ∅ for all i and there exists Ki such that KL

i = ∅).

◦ Otherwise the game is a Draw (i.e., there exist 1 ≤ i, j,≤ n such that KL
i = ∅

and KR
j = ∅).



98

Since players are moving simultaneously, we needed to adjust from the CGT in-

terpretation of who wins. More than one component can become terminal simultane-

ously, and the individual components can be won by different players. Definition 6.3.5

accounts for this by stating that in order for a player to win, they must have a move

remaining in all components at game termination.

Timing Issues

The game may terminate and some components may still have simultaneous moves

available. The game A∧B finishes when at least one component finishes. This brings

in a timing issue. A component could be the cause of game termination in one sum,

but not another. Hence, one cannot expect EV(A ∧ B) to be a simple combination

of EV(A) and EV(B).

A useful game for further examples is SQ′({1}, {2})(n), which is SQ({1}, {2})(n),
except Left is not allowed to move in 2. As in SQ({1}, {2})(n), 0 is a Draw and 1 is a

Left win but now 2 is a Right win. We use M(a∧b) to denote M(SQ′({1} , {2})(a∧b)).

Example 6.3.6 Consider SQ′({1}, {2})(5∧ 6). See Figure 6.2 for its game tree, and

M(5 ∧ 6) is shown in (6.15) where all red entries are terminal.

∧

1 0 1 0

6

43

5

32

1 2

Figure 6.2: Game tree for SQ′({1} , {2})(5 ∧ 6).

If Right’s move does not interfere with Left’s in 5, this guarantees that Right will

win the game 5 ∧ 6, hence EV(2 ∧ 3) = −1 and EV(2 ∧ 4) = −1. However, Right

cannot control this. The matrix for M(3 ∧ 3) is given in (6.12), and M(3 ∧ 4) is

given in (6.13). First note that every entry in both matrices are terminal. Also, any

position which has a 0 within the sum is a Draw. Both components must be 1 for a

Left win, and for a Right win, both components must be a 2 (this never occurs here).
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All other combinations lead to Draws and have value 0. From these facts, we were

able to completely fill in the matrices for M(3 ∧ 3) and M(3 ∧ 4), given in (6.14). In

both cases, the symmetry of the matrix tells us that both players will have the same

strategies and all pure strategies will be played equally. Hence, X = (1
4
, 1
4
, 1
4
, 1
4
) = Y

for both games 3 ∧ 3 and 3 ∧ 4. Calculating the value of each game, we obtain

EV(3 ∧ 3) = 1
4

and EV(3 ∧ 4) = 1
4
. These calculations allowed us to determine the

values of the matrix entries from M(5 ∧ 6) given by (6.15), as shown in M(5 ∧ 6),

given by (6.16).

M(3 ∧ 3) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 1 ∧ 1 1 ∧ 0 0 ∧ 1 0 ∧ 0


/r 1 ∧ 0 1 ∧ 1 0 ∧ 0 0 ∧ 1

r/
 0 ∧ 1 0 ∧ 0 1 ∧ 1 1 ∧ 0

r/r 0 ∧ 0 0 ∧ 1 1 ∧ 0 1 ∧ 1

(6.12)

M(3 ∧ 4) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 1 ∧ 2 1 ∧ 1 0 ∧ 2 0 ∧ 1


/r 1 ∧ 1 1 ∧ 2 0 ∧ 1 0 ∧ 2

r/
 0 ∧ 2 0 ∧ 1 1 ∧ 2 1 ∧ 1

r/r 0 ∧ 1 0 ∧ 2 1 ∧ 1 1 ∧ 2

(6.13)

M(3 ∧ 3) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 1 0 0 0


/r 0 1 0 0

r/
 0 0 1 0

r/r 0 0 0 1

, M(3 ∧ 4) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 0 1 0 0


/r 1 0 0 0

r/
 0 0 0 1

r/r 0 0 1 0

(6.14)
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M(5 ∧ 6) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 3 ∧ 4 3 ∧ 3 2 ∧ 4 2 ∧ 3


/r 3 ∧ 3 3 ∧ 4 2 ∧ 3 2 ∧ 4

r/
 2 ∧ 4 2 ∧ 3 3 ∧ 4 3 ∧ 3

r/r 2 ∧ 3 2 ∧ 4 3 ∧ 3 3 ∧ 4

(6.15)

M(5 ∧ 6) =


/
 
/r r/
 r/r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦


/
 1
4

1
4

−1 −1


/r 1
4

1
4

−1 −1

r/
 −1 −1 1
4

1
4

r/r −1 −1 1
4

1
4

(6.16)

From (6.16) we can determine the optimal strategies for each player. Again, by the

symmetry of the matrix, both players have the same optimal strategies. In this case,

there are several which will give the same value for the game, we consider one such

strategy. From Left’s perspective, we consider the optimal strategy where Left uses

all pure strategies equally likely, i.e., X = (1
4
, 1
4
, 1
4
, 1
4
). Suppose Right does the same

(using symmetry), Y = (1
4
, 1
4
, 1
4
, 1
4
). Then we can determine the value of the game as

EV(5∧ 6) = X ·M(5 ∧ 6) · Y T = −3
8
. Alternatively, since players are using strategies

with non-zero probability, one can also consider Left’s strategy against any pure

strategy of Right and the result will also equal the value of the game. For example,

Left playing X against column 1 gives the following: 1
4
(1
4
)+1

4
(1
4
)+1

4
(−1)+1

4
(−1) = −3

8
.

Now we compare this result to playing 5 and 6 in isolation. We require the matrices

for both games. These are given in (6.17). Recursively calculating the values of these

positions, we obtain the values for their entries as shown in (6.18).

M(5) =


 r[ ]

 3 2

r 2 3

, M(6) =


 r[ ]

 4 3

r 3 4

. (6.17)
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M(5) =


 r[ ]

 1

2
−1

r −1 1
2

, M(6) =


 r[ ]

 0 1

2

r 1
2

0

. (6.18)

In both cases, based again on the symmetry of the matrices, players will choose

each pure strategy with equal probability. Hence X = (1
2
, 1
2
) = Y for both games,

and we obtain EV(M(5)) = −1
4
, EV(M(6)) = 1

4
. Comparing these values to the

value of their sum, EV(M(5 ∧ 6)) = −3
8

we notice that the individual components do

not tell us anything about how the play will occur in the sum. Hence, in general,

EV(A ∧ B) �= EV(A)EV(B) and EV(A ∧B) �= EV(A) + EV(B).

The empty game under conjunctive sum is a zero, acts multiplicatively, and means

that the game is a draw. However, even if EV(G) = 0 it does not follow that

EV(G ∧H) = 0 (see Example 6.3.7).

Example 6.3.7 Consider SQ({1}, {2})(1∧2). Even though 2 is a draw under simul-

taneous play, the game 1 ∧ 2 is actually a Left win since 1 is terminal which forces

1 ∧ 2 to be terminal as well.

Recall for CGT, o(0 +X) = o(X), for all X and zero forms an important equiva-

lence class. Example 6.3.7 highlights an important distinction for zeros under simul-

taneous play, conjunctive sum and extended normal play.

Definition 6.3.8 A game G is a multiplicative zero if oS(G ∧ X) = oS(G) for all

games X.

In fact, this implies the following:

Proposition 6.3.9 The only multiplicative zero for simultaneous games, played under

conjunctive sum and extended normal play is the empty game.

Proof. By way of contradiction, suppose there exists another game H such that H =

0. A necessary condition on H is that HL �= ∅ and HR �= ∅ since otherwise, if only

one of the sets were non-empty, H would be a Left or Right win, respectively. Then

oS(0 ∧ X) = oS(H ∧ X), ∀X. Let X be a Left win where XR = ∅. Then 0 ∧ X is

terminal and a Draw (because 0 is terminal and a Draw), but H ∧X is terminal and
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a Left win (since X is terminal and Left has options in both H and X). Hence H

is not equivalent to the empty game and thus there are no other games which are

multiplicative zeros under this sum and winning convention.

The problems which arose here (zero being unique and timing issues) leads us

away from this sum. As we are in search of an algebraic structure which preserves as

much CGT structure as possible and remains general, we move on to another sum.

Continued Conjunctive Sum

Definition 6.3.10 The extended normal play winning convention for the continued

conjunctive sum of K1 �K2 � . . .�Kn is:

◦ Left wins if she has an option in every terminal component, but Right does not

(i.e., KL
i �= ∅ for all i and there exists Ki such that KR

i = ∅).

◦ Right wins if he has an option in every terminal component, but Left does not

(i.e., KR
i �= ∅ for all i and there exists Ki such that KL

i = ∅).

◦ Otherwise the game is a Draw (i.e., there exist 1 ≤ i, j,≤ n such that for KL
i = ∅

and KR
j = ∅).

Note that this is defined slightly differently from the CGT definition. For a player

to win, they must have a move remaining in all terminal components and the game

sum only terminates after all components are terminal (as opposed to the CGT version

where the last terminal component determines the winner). It is defined in this way

to avoid further problems with the timing of component termination as discussed for

the conjunctive sum.

For example, SQ({1}, {2})(1 � 2) is not terminal as there is still game play re-

maining in 2. To generalize, we obtain the following theorem.

Theorem 6.3.11 Let G = G1 � G2 � . . .� Gn. If any of the components, Gi, is a

Draw, then G is also a Draw.

Proof. This result follows immediately from the definition of continued conjunctive

sum under extended normal play.
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The values of G and H are not enough to determine the value of G�H. Several

different problems occur. We demonstrate each in sequence.

First, two games can have the same value, but not act the same in a sum.

Example 6.3.12 Consider the games G, H, and X which have the matrices M(G),

M(H) and M(X) respectively, as shown in (6.19).

The matrices M(G�X) and M(H �X) are shown in (6.20) and (6.21), respec-

tively, where a row indexed by r/s means that Left played r in K and s in Y of K�Y

(similarly for Right).

M(G) =

x y[ ]
a 0 0

b 0 0

, M(H) =

z w[ ]
c -1 1

d 1 -1
, M(X) =

s t[ ]
e 0 1

f 1 0

(6.19)

M(G�X) =

x/s x/t y/s y/t⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

a/e 0 0 0 0

a/f 0 0 0 0

b/e 0 0 0 0

b/f 0 0 0 0

(6.20)

M(H �X) =

z/s z/t w/s w/t⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

c/e 0 0 0 1

c/f 0 0 1 0

d/e 0 1 0 0

d/f 1 0 0 0

(6.21)

If knowing the values of M(G) and M(H) were enough to understand their com-

bination in a sum, then we would obtain EV(M(G�X)) = EV(M(H �X)), since

EV(M(G)) = EV(M(H)) = 0. However, this is not the case. Instead we obtain

EV(M(G�X)) = 0 and EV(M(H �X)) = 1
4
, and thus G and H do not act the

same in a sum and so G �= H, even though they have the same values as individual
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games. Hence knowing the values of components is not enough to know what will be

the result of a sum, and thus we cannot simply use value as a test for equality.

Even worse, dominated strategies for a game G may be the best for G�H. For

example, let H be a terminal game in which HL = ∅ and HR �= ∅ and let G have the

values

M(G) =

a b c d[ ]
x 1 -1 -1/2 1/4

y -1 1 1/4 -1/2
(6.22)

where, further, Right has no chance of winning in the positive options, and Left has no

chance of of winning in the negative options. Clearly Left plays (x, y) = (1/2, 1/2).

The value of G is −1/4 and is achieved when (a, b, c, d) = (0, 0, 1/2, 1/2). Right

playing (a, b, c, d) = (1/2, 1/2, 0, 0) has value 0. Therefore (0, 0, 1/2, 1/2) strictly

dominates (1/2, 1/2, 0, 0) when G is played in isolation.

However, in G�H, Left can never win since Left always loses in H. Therefore,

Right achieves the value −1/2 with (a, b, c, d) = (1/2, 1/2, 0, 0), as he would only

achieve value −1/4 with (a, b, c, d) = (0, 0, 1/2, 1/2).

This example shows that in evaluating G � H, we cannot replace G and H by

their reduced forms, that is, EV(G�H) �= EV(Re(G)�Re(H)).

Testing for Equality: Extended Normal Play and Continued Conjunctive

Sum

Testing for equality is non-trivial and needs to be examined with care. In particular,

for extended normal play, we need to know more about the probabilities of winning,

drawing and losing rather than simply the values of G and H.

To capture this additional information, we define the profile of a game. The profile

describes the details about of a player’s probability of winning and their control over

the resulting game sum.

Definition 6.3.13 Let G be a game. The profile of G, written Pro(G) = [
G, rG]

describes players’ probabilities of winning the game G, 
G for Left, and rG for Right.
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Note that dG is the probability of a draw, which can be determined from 
G and

rG since 
G + dG + rG = 1. Also, EV(G) = 1(
G) + 0(dG) + (−1)(rG) = 
G − rG.

Given the terminal position value assignments for Left win, Right win, and Draw,

and the fact that within continued conjunctive sum the components are played inde-

pendently, we obtain the following general results.

Lemma 6.3.14 Let G, H be games then

(i) 0 ≤ rG, lG ≤ 1 and 0 ≤ 
G + rG ≤ 1;

(ii) Pro(G�H) = [
G
H , rGrH ].

Proof. For any game, G, since 
G and rG are probabilities of mutually exclusive

outcomes then 0 ≤ rG, 
G ≤ 1 and 0 ≤ 
G + rG ≤ 1.

Play in G and play in H are independent which gives 
G�H = 
G
H . Similarly for

Right, rG�H = rGrH . Hence, Pro(G�H) = [
G
H , rGrH ].

In many cases, the profile will be comprised of functions, which could be controlled

by Left, Right, or both players. Next we examine an example, then proceed to discuss

some more general theory. Let Pro(M(G)) be the matrix M(G) with entries replaced

by their respective profiles.

Example 6.3.15 Consider the game G = SQ′({1, 4} , {2})(4). The matrix of terminal

game values and the matrix with profiles and strategies is shown in (6.23).

M(G) =

2l 2r⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1l −1 1

1r 1 −1

4l 0 0

4r 0 0

, Pro(M(G)) =

y 1− y⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

x [0, 1] [1, 0]

w [1, 0] [0, 1]

z [0, 0] [0, 0]

t [0, 0] [0, 0]

(6.23)

where 0 ≤ x, w, z, t, y ≤ 1 and x+w+ z+ t = 1. Then the calculations for 
G and

rG are as follows:


G = x(1− y) + wy = x− xy + wy

and
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rG = xy + w(1− y) = xy + w − wy

With the goal of maximizing the value for Left and minimizing for Right, we

calculate:

EV(G) = 
G − rG

= x− xy + wy − (xy + w − wy)

= x+ 2wy − 2xy − w

= x(1− 2y) + w(2y − 1)

= (2y − 1)(w − x)

Following an EGT approach, since the calculation of the value is dependent on

both the choices of Left and Right, it is important to note that neither player can be

taken advantage of if their respective factors equal zero. Hence we obtain w = x and

y = 1
2
. Now, we can simplify the profile to the following:

Pro(G) = [
G, rG] = [x, x], for 0 ≤ x ≤ 1
2
, where Left controls x.

The last example highlights the fact that the profile can be a challenging tool to

implement. If a game G is being played on its own, then the game value is computed

as usual from EGT. However, if the game is comprised of a sum of two or more

components, it is not straightforward. We cannot optimize a profile until we know

what other games are within the sum. Consider the game G from Example 6.3.15 and

consider games H and K which have matrices M(H) and M(K) as shown in (6.24).

M(H) =

[ ]
1 0

0 1 , M(K) =

[ ]
−1 0

0 −1 (6.24)

Pro(G) = [x, x] ,where 0 ≤ x ≤ 1/2, Pro(H) = [1/2, 0] , Pro(K) = [0, 1/2] .

(6.25)

Suppose further that the profiles corresponding to each game are as shown in

(6.25). By Lemma 6.3.14, we obtain the profiles of the sums G�H and G�K as
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shown in (6.26).

Pro(G�H) = [x/2, 0] , Pro(G�K) = [0, x/2] . (6.26)

Since EV(G�H) = x
2
−0, Left controls the value of x, and Left wishes to maximize

the resulting value, she assigns x = 1
2

to give EV(G�H) = 1
4
. While for G�K we

have EV(G�K) = 0− x
2

where Left controls x. In order to maximize this expression,

Left chooses x = 0 which gives EV(G�K) = 0. In conclusion, Left decides the value

of x after knowing which games are within the sum.

Depending on the games within a sum, the profile can involve functions of several

variables, controlled by either or both players. An important direction for future work

is to determine techniques to simplify the profile in such cases.

Using the profile, we developed a test for equality of games under continued con-

junctive sum and extended normal play. Note that when the profiles involve functions,

equality is determined based on the profiles involving exactly the same functions, up

to permutation of the variables, and the ranges of corresponding variables in the

functions of G and H must be equal.

Theorem 6.3.16 Let G and H be simultaneous games played under continued con-

junctive sum with the extended normal play winning convention. Then

(1) G = H if and only if Pro(G) = Pro(H); and

(2) G ≥ H if and only if 
G ≥ 
H and rG ≤ rH .

Proof. Proof of (1)

G = H (6.27)

⇐⇒ EV(G�X) = EV(H �X), for allX (6.28)

⇐⇒ 
G�X − rG�X = 
H�X − rH�X (6.29)

⇐⇒ (
G − 
H)
X = (rG − rH)rX (6.30)

As (6.30) holds for all games X, we consider two specific cases. (i) Let X be a Left

win. Then Pro(X) = [1, 0] and so (6.30) gives 
G − 
H = 0 which implies 
G = 
H .

(ii) Let X be a Right win. Then Pro(X) = [0, 1] and (6.30) gives rG − rH = 0 which

implies rG = rH . Together this means that the expression (6.30) holds for all X if
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and only if Pro(G) = Pro(H).

Proof of (2)

G ≥ H (6.31)

⇐⇒ EV(G�X) ≥ EV(H �X), for allX (6.32)

⇐⇒ 
G�X − rG�X ≥ 
H�X − rH�X (6.33)

⇐⇒ (
G − 
H)
X ≥ (rG − rH)rX (6.34)

As (6.34) holds for all games X, we consider two specific cases. (i) Let X be a Left

win. Then Pro(X) = [1, 0] and so (6.34) gives 
G − 
H ≥ 0 implying that 
G ≥ 
H .

(ii) Let X be a Right win. Then Pro(X) = [0, 1] and (6.34) gives rG − rH ≤ 0 which

implies rG ≤ rH . Together this means that the expression (6.34) holds for all X if

and only if 
G ≥ 
H and rG ≤ rH .

Corollary 6.3.17 Let G and H be simultaneous games played under continued con-

junctive sum with the extended normal play winning convention. Then

Pro(G) = Pro(H) ⇐⇒ EV(G�X) = EV(H �X), for all games X.

Proof. First assume Pro(G) = Pro(H) then we have the following implications

⇒Pro(G�X) = Pro(H �X), for allX

⇒ 
G�X = 
H�X and rG�X = rH�X

⇒ 
G
X − 
H
X = rGrX − rHrX

⇒ 
G
X − rGrX = 
H
X − rHrX

⇒ 
G�X − rG�X = 
H�X − rH�X

⇒ EV(G�X) = EV(H �X)

Next assume EV(G � X) = EV(H � X), for allX then we have the following

implications

⇒ 
G�X − rG�X = 
H�X − rH�X , for allX (6.35)

⇒ 
G
X − rGrX = 
H
X − rHrX , for allX (6.36)
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As (6.36) holds for all games X, in particular consider two cases. (i) Let X be a

Left win. Then Pro(X) = [1, 0] and so (6.36) gives 
G = 
H . (ii) Let X be a Right

win. Then Pro(X) = [0, 1] and (6.36) gives rG = rH . Together this means that the

expression (6.36) holds for all X if and only if 
G = 
H and rG = rH . This means

that the expression holds only when Pro(G) = Pro(H).

Even though the description of the profile is relatively straightforward, the strategy

of a player cannot always be determined by comparing the profiles. For example,

consider the games G and H where M(G) and M(H) are given in (6.37) and their

matrices of profiles are given in (6.38).

M(G) =
[
−1

4

]
, M(H) =

[
1
4

− 1
64

]
(6.37)

Pro(M(G)) =
[[

1
4
, 1
2

]]
, Pro(M(H)) =

[[
5
8
, 3
8

] [
4
64
, 5
64

]]
(6.38)

G is completely determined, while Right has choice in H. Let Right’s probability

vector for M(H) be Y = (y, 1− y). There is no domination in H, so we are interested

in determining what Right will do and whether we can say anything about how he

will play a game sum, G � H. In this example, the value of G is −1
4
, and hence

in favour of Right. Will he then choose a component in H which also has negative

value? Or will he always be concerned with his highest probability of winning? We

now show that neither are true. Consider EV(G�H) = 
G
H−rGrH . Right wants to

minimize this expression. First, we need to calculate Pro(H). To do so, we consider

the mixed strategy for Right, Y = (y, 1− y), and multiply across the Left and Right

probabilities respectively in Pro(M(H)) as follows.

Pro(H) =

[
5

8
y +

4

64
(1− y),

3

8
y +

5

64
(1− y)

]
(6.39)

=

[
40− 4

64
y +

4

64
,
24− 5

64
y +

5

64

]
(6.40)

=

[
36

64
y +

4

64
,
19

64
y +

5

64

]
(6.41)
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EV(G�H) = 
G
H − rGrH (6.42)

=
1

4

(
36

64
y +

4

64

)
− 1

2

(
19

64
y +

5

64

)
(6.43)

=
1

256
(−2y − 6) (6.44)

To minimize the expression (6.44) Right chooses y = 1, which could seem counter-

intuitive since the value of that component in M(H) is positive. One may argue that

the reason for this choice is to maximize his overall chances of winning. However, if

we let Pro(M(H)) =
[[

5
8
, 3
8

]
,
[

1
16
, 2
16

]]
, let Right’s strategy be Y = (y, 1 − y), and G

be as before we obtain the following:

Pro(H) =

[
5

8
y +

1

16
(1− y),

3

8
y +

2

16
(1− y)

]
(6.45)

=

[
10− 1

16
y +

1

16
,
6− 2

16
y +

2

16

]
(6.46)

=

[
9

16
y +

1

16
,
1

4
y +

1

8

]
(6.47)

EV(G�H) = 
G
H − rGrH (6.48)

=
1

4

(
9

16
y +

1

16

)
− 1

2

(
1

4
y +

1

8

)
(6.49)

=
1

64
(y − 3) (6.50)

In order for Right to minimize (6.50), he lets y = 0. In this case, he chooses the

option in H where he has a lower probability of winning, but it minimizes the overall

value in the sum.

The above example demonstrates the challenges with the profile. Even though

we have proven that game equality under continued conjunctive sum and extended

normal play can be determined by the game profiles, working with the profile is a

non-trivial task. Further exploring the properties of the profile to gain better insight
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into potential simplifications is an important continuation of this research.

This work can be modified to account for a draw game being just as good as a

win; in other words, players just don’t want to lose. As the analysis for the goal of

winning has been convoluted, we leave the change in goals as a direction for future

work. We believe that the profile can be changed to include the probability of a draw

for each player and, with a rescaling, most analysis would still hold. However, this

means that both players could win under the assumption that both are happy with

a draw. This means that the game would be a nonzero sum game and different tools

from economic game theory would likely need to be used.

6.3.2 Scoring Play

A different winning convention to consider is scoring play. Under scoring play, the

player with the larger score at the end of the game wins. If the scores are the same,

the game is a draw.

We can think of the values as in the economic game theory interpretation since

players are always trying to maximize their score throughout game play, thus typical

domination outlined in Section 6.1 holds here. However, for terminal positions, scores

can be assigned in many possible ways. This is determined by the ruleset.

Definition 6.3.18 Let G be a game, played under the scoring play winning conven-

tion. The value, EV(G), is given recursively

EV(G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
score(G), if G is terminal;

EV(M(G)), otherwise;where M(G) is M(G) in which each GSi,j is

replaced by EV(M(GSi,j)).

From Definition 6.3.18 we see that if the score is an expectation rather than a

guarantee, there is really a range on the possible values based on the matrix entries.

See Example 6.3.19 to better understand how positions can lead to non-deterministic

scores (values).
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Ruleset for simultaneous clobber

• Board: A finite graph, with each vertex unoccupied or occupied by an

X or an O (typically played on an m × n grid, alternating X’s and O’s,

where m, n ∈ N).

• Moves: Left moves an X onto an adjacent O. The O is removed, and is

said to be ‘clobbered’ by the X. Right move an O onto an adjacent X.

The X is removed, and is said to be ‘clobbered’ by the O.

• Interference Rule: If players choose to clobber their opponent’s piece

which their opponent is also using to clobber theirs, both pieces disappear.

If the position is OXO, labelled as ABC, and Left moves to C and Right

moves the O in A to B, then Left is said to have clobbered the O in C,

but Right merely occupies B (did not clobber the X).

Example 6.3.19 Consider the game G of simultaneous clobber on [OXO] with

the scoring rule that the number of pieces players clobber is their score. The matrix

for this scoring game is shown in (6.51), where 
 means that a player moved a piece

left, and r means a player moved a piece right. There is exactly one possibility of

each, for each player, in this example.


 r[ ]

 1 0

r 0 1

(6.51)

From this, we can see that the EV(G) = 1
2

and hence games under the scoring

winning convention can have values stemming from mixed strategies.

For score assignment, we follow a CGT approach.

Definition 6.3.20 Let G be a terminal game. The score of G is the value of G in

the underlying CGT rules.

Note that in a terminal game, at most one player has a move, thus the value of

G in the underlying CGT rules is an integer, non-negative if Right cannot move and



113

non-positive if Left cannot move (this follows from Definition 2.4.3). Intuitively, the

value of G equals the maximum number of moves one player can make before opening

new moves for their opponent or finishing the game. For example, in Figure 6.3 the

hackenbush position has a score of 2.

Figure 6.3: A hackenbush position with a score of 2.

When G is re-interpreted as a simultaneous game, under a particular sum, then

G is terminal and each terminal component will have a CGT value associated with

it. The score of G will depend on the termination rules for that sum. Following the

CGT approach, we obtain the following for terminal positions.

Definition 6.3.21 For the scoring play winning convention, the outcome of a terminal

component, G, is:

oSS(G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
L, if score(G) > 0

R, if score(G) < 0

D,Draw otherwise.

Disjunctive Sum

The scoring play winning convention for the disjunctive sum of G+H is the number

of moves remaining when the game has terminated, denoted by score(G +H). The

score of G +H is positive if the game is in favour of Left, negative if the game is in

favour of Right and zero if the game is a Draw.

Example 6.3.22 Consider the games A = {−5 | ·} and B = {· | 7}. Under

simultaneous play, A is a Left win, since she has an option but Right does not.

Similarly, B is a Right win since Right has an option but Left does not. So A ≥ B.

Now consider A+B under disjunctive sum. On the first turn, Left plays in A to −5

and Right plays in B to 7. From here, Right will run out of moves before Left, and
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thus, the game A + B is a Left win. Hence, individual components do not tell us

what will happen in a disjunctive sum.

If GL = ∅ and GR = ∅, then G = 0 and the game is a Draw. However, the

converse is not true. For example, let G = SQ({1}, {2})(2) then EV(G) = 0 and the

game is a Draw, but both Left and Right have moves.

Conjunctive Sum

Definition 6.3.23 The scoring play winning convention for conjunctive sum, G∧H,

of a terminal game is

• score(G), if GL or GR = ∅ and HS is non-empty

• score(H), if HL or HR = ∅ and GS is non-empty

• score(G) + score(H), otherwise.

Similar timing problems occur under scoring play as we saw in extended normal

play with conjunctive sum.

Continued Conjunctive Sum

Definition 6.3.24 The scoring play winning convention for the continued conjunctive

sum, G � H, of a terminal position is score(G) + score(H), where Left wins if the

score is positive, Right wins if the score is negative and a Draw if the score is zero.

Certain conventions need to be adapted here, as we consider the sum of games.

We focus on continued conjunctive sum because playing in components is indepen-

dent, so the score of each component is independent. Also by definition of continued

conjunctive sum, timing is no longer an issue. Thus the overall score of a sum can be

determined by the sum of the component scores. Hence, the convention of long term

play of components from EGT applies here.

Testing for Equality: Scoring Play and Continued Conjunctive Sum

Theorem 6.3.25 Let G and H be simultaneous combinatorial games. Then
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1. EV(G�H) = EV(G) + EV(H)

2. G ≥ H ⇐⇒ EV(G) ≥ EV(H).

Proof. 1. In G� H, play in the two games is independent and the final score in

each is counted for the sum. Hence EV(G�H) = EV(G) + EV(H).

2. Suppose G ≥ H, then for all X, we have

G ≥H

⇐⇒ EV(G�X) ≥EV(H �X), for all X

⇐⇒ EV(G) + EV(X) ≥EV(H) + EV(X), for all X

⇐⇒ EV(G) ≥EV(H).

Definition 6.3.26 A game G is an additive zero if EV(G � X) = EV(X) for all

games X.

Immediately, by definition, we obtain the following result.

Theorem 6.3.27 A game G is an additive zero under continued conjunctive sum

and scoring play winning convention if and only if G is a draw.

Sticking with the interpretation of CGT scores, maximizing the score is the only

concern for the players. Hence, EGT domination applies here. Also, we obtain a

simplification tool using the negative of a game G. In CGT, the negative is defined

in terms of switching the positions for Left and Right, and negating them. We take

this approach here as well.

Definition 6.3.28 Let G be a simultaneous combinatorial game. Then

−G = {−GR | −GS | −GL},

where −GS means all Left and Right options are interchanged.
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The effect on the game matrix is as follows: since all Left options become Right

options, and vice versa, the row indices become column indices and vice versa. Since

the matrix is zero sum, the effect is to take the transpose of matrix and negate the

entries. Remember, what was originally favourable to Left will now be favourable to

Right, which is why we negate the entries.

By Theorem 6.3.25 and the definition of continued conjunctive sum, we obtain

the following:

Theorem 6.3.29 Simultaneous combinatorial games under continued conjunctive

sum and scoring winning convention form an abelian group.

Proof. We need to show that the following hold: (i) commutativity, (ii) associativity,

(iii) additive zero, (iv) inverses, (v) closure. Some properties are immediate but, for

completeness, the proofs are included here. Note first that equivalence classes can be

represented as follows: [x] = {G : EV(G) = x}, and [x] is in canonical form.

i. We need to show that G � H = H � G. As games are identified with their

value, we can show the result holds based on whether their values are equal.

EV(G�H) = EV(G) + EV(H)

= EV(H) + EV(G)

= EV(H �G).

ii. We need to show that G � (H � K) = (G � H) � K. Again, as games are

identified with their value, we can show the result holds based on whether their

values are equal.
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EV(G� (H �K)) = EV(G) + EV(H �K)

= EV(G) + (EV(H) + EV(K))

= EV(G) + EV(H) + EV(K)

= (EV(G) + EV(H)) + EV(K)

= EV(G�H) + EV(K)

= EV((G�H)�K)).

iii. If G = ∅, then EV(G) = 0 and since this is a score, this does not change a value

in a sum of games. As game equivalence under this sum and winning convention

is by value, we note that G = ∅ is the canonical form of games with value zero.

Thus zero is the additive identity of this group. In particular, for any game G

in [0] = {G : EV(G) = 0}, we obtain the following for all games H,

EV(G�H) = EV(G) + EV(H)

= 0 + EV(H)

= EV(H).

iv. The inverse of G is −G as

EV(G� (−G)) = EV(G) + EV(−G)

= EV(G)− EV(G)

= 0.

v. By Theorem 6.3.25, game play is independent and each game produces a ra-

tional score. Thus their sum will also be rational and games are closed under

summation.
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Since terminal games are integer valued, the value of any game matrix will be a

rational number. Indeed we obtain all rational numbers as shown in the next result.

Corollary 6.3.30 The quotient of simultaneous games played with the continued

conjunctive sum and the scoring winning convention is a total order isomorphic to

the rationals.

Proof. By Theorem 6.3.25, two games are equal if they have the same value; therefore

the equivalence classes are indexed by the common value. A terminal game has a CGT

integer value and thus the value of any game is a rational number. Moreover, G ≥ H

if EV(G) ≥ EV(H) thus the quotient forms a total order.

To obtain any rational number, p
q
, where p, q ∈ Z, q > 0, as a game value consider

the game matrix to be the identity matrix of size q × q, Iq (or −Iq if p is negative).

The value of this matrix is 1
q

(or −1
q

respectively) and adding |p| copies of this game

will yield a score of p
q
. Thus, using identity matrices and sums, we can obtain any

rational number.

Even though we can abstractly construct a matrix to produce any rational number,

it is of interest to determine which values can be obtained within specific rulesets.

6.3.3 Majority Play

An alternative winning convention, not studied in combinatorial game theory, is called

the majority winning convention. It doesn’t have a natural analogue under disjunctive

sum, but it does have an interpretation under restrictions to games for conjunctive

and continued conjunctive sum.

Definition 6.3.31 Consider a conjunctive or continued conjunctive sum of games.

The majority winning convention states that the overall score of a game is the number

of components Left wins minus the number of components Right wins, at the time

the game is terminal. Thus, if the final score is positive then Left wins the overall

game, negative then Right wins the overall game, and a score of zero is a Draw.

As this winning convention is not rooted in CGT, and does not show to have any

immediate benefits over scoring play, we decided to only pursue further exploration
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in a case study (see Section 7.1.4). It appears to be a hybrid winning convention, in

between extended normal play and scoring play. We decided to focus on the extremes

(extended normal play and scoring play), and perhaps once those are better under-

stood, the majority play winning convention will be an avenue for future research.

6.4 Conclusions

The goal of this chapter was to present our philosophy for simultaneous combinatorial

game theory and its implications. Players were assumed to be rational and have the

goal of maximizing their resulting game outcome or score. From this discussion, there

are several key points to recall moving forward. The ruleset must carefully define

interference rules which take into consideration CGT game constraints, as well as

illegal positions stemming from simultaneous moves. This approach guarantees that

players know exactly what their legal moves are at all times and imposes constraints

on the games to have the finite descent property.

Returning to our original questions, we summarize the results. Domination will

depend on the sum and winning convention. Within single games, as players are

concerned with maximizing the value, EGT domination applied. However, in a sum

under the extended normal play winning convention, we can no longer simply look

at individual components. We need to consider all components at the same time and

based on the play rules within the sum, develop a game matrix, and then consider how

the players will play. In the disjunctive sum, any G and H under consideration must

be calculated from scratch, and thus disjunctive sum is an impractical sum for this

framework. In the conjunctive sum, there was a timing issue and thus games do not

act the same in all sums. In continued conjunctive sum, we defined a notion of game

equality based on the profile. Similarly for scoring play, the continued conjunctive sum

allowed for more analysis that any other sum. Simultaneous games under continued

conjunctive sum and scoring play form an abelian group, and thus have the clearest

structure as compared to all other combinations of sums and winning conventions

studied here. Play under the continued conjunctive sum and extended normal play

winning convention is a worthwhile direction for future work. In particular, better

understanding simplifications of the profile and determining whether it is always

optimal to choose an extreme of each function range are directions of interest.
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Case Studies

Throughout this chapter, we present several case studies to demonstrate different

combinations of sums and winning conventions defined in Chapter 6. In particular,

the following table details the section in which a case study is examined. A ‘−’ indi-

cates that the combination was discussed in Chapter 6, but was deemed an unnatural

approach to develop algebraic foundations for simultaneous play. A ‘†’ beside a sec-

tion number indicates that it is simply a discussion regarding particular problems

associated with the sum. An ‘X’ indicates that it was not explored within the case

studies.
ExtendedNormal Scoring Majority⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 7.1.1† 7.2 −

∧ 7.1.2 X X

� 7.1.2 7.1.3 7.1.4

Sometimes, we are able to obtain more results by restricting analysis based on

properties or to certain game classes/rulesets. In CGT, a universe has been used to

describe the space in which the restriction is considered; however, there is no standard

definition for universe. It has been defined under scoring play [55] and examined under

misère play [58]. Here, we define it in terms of simultaneous games adapting most

notation from [55].

Definition 7.0.1 A universe, U , is a subset of games which satisfy the following

properties:

• Closed under addition �: if A and B are in U then A� B ∈ U .

120
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• Closed under options: if A in U , and B is an option of A then B ∈ U .

• Closed under inverses: if A ∈ U then −A ∈ U .

Often players are interested in the universe created by a single game. The next

sections focus on specific universes, which allowed us to obtain more results.

First, we look at simultaneous hackenbush, which has properties that allow

for easy computation of score(G) for particular restricted graph classes. We exam-

ine this game under conjunctive sum and continued conjunctive sum with extended

normal play and scoring play winning conventions respectively. We also explore the

majority play winning convention here under continued conjunctive sum.

Secondly, we look at simultaneous clobber, a dicot game. Now, all simulta-

neous dicot games studied under extended normal play, under any of the three sums

are draws and are therefore trivial. However, if we consider a different metric, we can

continue to study dicot games under simultaneous moves. One interpretation is to

assign a value to one player’s actions, as exemplified in this study. Here, we explore

small positions under the disjunctive sum and scoring winning convention.

Lastly, we analyze subtraction squares, specifically SQ({a}, {b})(n) on gen-

eral strips. A recurrence relation is given for their values.

7.1 simultaneous hackenbush

The game simultaneous hackenbush is a game on a graph in which the interfer-

ence rule is easily describable, useful for demonstrating many concepts, and we were

able to prove some results while restricting the universe.
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Ruleset for simultaneous hackenbush

• Board: A finite graph with edges coloured blue (single solid), red (dashed)

or green (double solid). There is a ground, usually depicted by a thicker

horizontal line, and a set of special vertices called roots (connected to the

ground).

• Moves: Left cuts a blue edge or a green edge. If it is a cut-edge then the

component which is not connected to the ground is also deleted. Right

cuts a red edge or a green edge. If it is a cut-edge then the component

which is not connected to the ground is also deleted.

• Interference Rule: Both Left and Right’s options are removed and any

connected component no longer connected to the ground is also removed.

All simultaneous hackenbush positions described within this chapter will have

a standard root, that is, a graph rooted at a single vertex.

7.1.1 Examples

Example 7.1.1 For H (in Figure 7.1) the outcomes, extended normal play value

assignments, and scores are as shown in Figures 7.2, 7.3, and 7.4, respectively.

+

H =H1 + H2

x

z w

y

Figure 7.1: A sum of simultaneous red-blue hackenbush stalks positions.

One observation regarding the game H is that, if playing under extended normal

play, Left is indifferent to her choices, as she will always win. However, for the scoring

version of the game, Hy is less favourable than both other options.

Example 7.1.2 Consider G1 ∧ G2 pictured in Figure 7.5. On the first turn, Right

can guarantee a win in G1 by playing Gc
1. Left knows this and hence rather than
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Hz⎡
⎣

⎤
⎦Hx L

Hy L
Hw L

Figure 7.2: Outcomes.

Hz⎡
⎣

⎤
⎦Hx 1

Hy 1
Hw 1

Figure 7.3: Values.

Hz⎡
⎣

⎤
⎦Hx 2

Hy 1
Hw 2

Figure 7.4: Scores.

losing the game by playing Gf
2 , she will play Gd

2 and force the overall game to be a

Draw rather than a Right win.

g

f

e

d

∧

c

b

a

G1 G2

Figure 7.5: Timing Issues.

7.1.2 Results for Extended Normal Play

We call a simultaneous hackenbush position which has one blue edge incident

with the root followed by anything else a blue-based position. We call a position a blue*

based position if it is blue-based with at least one other edge somewhere else in the

position (see Figure 7.7). A two-blue based position starts with two consecutive blue

edges followed by anything above it, and no additional edge at v1 (see Figure 7.6). In

both figures, A is a generic completion to the simultaneous hackenbush position.

Lemma 7.1.3 Consider a simultaneous hackenbush position, G. If G is a two-

blue based position, then Left has a winning strategy.

Proof. Either all the edges are blue and Right has no move, or there are moves for

Right, but Left can always remove the second edge from the bottom which eliminates

all of Right’s moves. Then Left wins.
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A

v1

Figure 7.6: Two-blue based position.

A

Figure 7.7: Blue* based position.

Based on Lemma 7.1.3 we conclude with the following results:

Proposition 7.1.4 In a conjunctive sum of simultaneous red-blue hacken-

bush positions, where at least one component is two-blue based and all other compo-

nents are blue* based, then Left wins.

Proof. Consider the first move within the conjunctive sum of simultaneous red-

blue hackenbush positions satisfying the given properties. Within a two-blue

based position (see Figure 7.6), Left will remove the second blue edge from the root.

This move guarantees that she will win this component since Right does not have a

move on the next round and she does. Now, we need to ensure that Left has a move

in all other components as well. Given the properties, there are at least two Left

options in all other components: the bottom blue edge, and another edge somewhere

else in the connected component. She chooses the latter option, to ensure that the

components don’t terminate (with her as the loser). In the conjunctive sum, she ends

the overall game on the first turn and is the winner.

If we consider only simultaneous red-blue hackenbush stalks we have a

combination of the following positions to consider: (i) two-blue based, (ii) two-red

based, (iii) alternating starting with blue, ending alternation with blue, (iv) alternat-

ing starting with blue ending with red, (v) alternating starting with red, ending with

red, and (vi) alternating starting with red, ending with blue.

In a continued conjunctive sum, we claim that if comprised of only components

from (i) and (iii) then the game is a Left win. If the components are from (ii) and
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(v) then the game is a Right win. Otherwise the game is a Draw. The following

propositions outline the cases (iii) - (vi). Cases (i) and (ii) are restrictions (and the

negative respectively) of Proposition 7.1.4 restricted to stalks.

Proposition 7.1.5 For simultaneous red-blue hackenbush stalks which are

purely alternating, starting with a blue edge and ending with a red edge, Right cannot

lose.

Proof. For every blue edge, there is a red edge directly above it. Right’s strategy is to

play the highest red edge available. When Left removes the last blue edge (rooted),

Right will have an option to remove the red edge directly above it, the game is over

and it is a Draw.

Proposition 7.1.6 For simultaneous red-blue hackenbush stalks which are

purely alternating, starting with a blue edge and ending with a blue edge, Right cannot

use this component to force a Draw.

Proof. Consider the induced subgraph on the vertices {v1, . . . , vn}. This is the nega-

tive of the position described in Proposition 7.1.5. Left will have one edge remaining

after the game on the subgraph has terminated (Right has no move) and thus she

will win this component.

Proposition 7.1.7 For simultaneous red-blue hackenbush stalks which

starts by alternating and after alternation ends in two red edges, Right cannot lose

this component.

Proof. Right can guarantee a Draw in this component by choosing the second red

edge after alternation. Even if Left has chosen an edge above Right’s choice on this

round, the resulting position is either (i) as in Proposition 7.1.5, or (ii) starts and

ends with red edges. In (i) by Proposition 7.1.5 Right cannot lose. In (ii), consider

the induced subgraph on {v1, . . . , vn}, this is as in Proposition 7.1.5. If Right ignores

the edge connected to the ground v0v1, after simultaneous play ends in the subgraph,

Right still has a move in the game (namely v0v1), and Left does not, and hence Right

cannot lose.
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7.1.3 Results for Scoring Play

Definition 7.1.8 The score of a simultaneous red-blue hackenbush position

is defined as the number of blue or red edges remaining after simultaneous play has

ended. If there are n blue edges remaining, the score of the position is n. If there are

n red edges remaining, the score is −n.

Lemma 7.1.9 Consider a simultaneous hackenbush stalk with alternating blue

and red edges. An optimal play has players moving furthest away from the ground.

Proof. We prove this claim for alternating blue and red edges, starting with a blue

edge. Symmetric proofs hold true if the stalk started with a red edge. There are two

cases to consider: 1) ending with a blue edge; 2) ending with a red edge. Label the

edges l1, . . ., ln+1 for Left’s options which l1 being the edge closest to the ground,

and r1, . . ., rn for Right’s options. In both cases, consider their pure strategies as the

labels of the following matrix rows and columns respectively.

Case 1: Applying the simultaneous moves recursively, the final matrix is the following

(n+ 1)× n matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

1 0 0 . . . 0

1 1 0 . . . 0
... . . . ...

1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

All pure strategies for Left are dominated by the final row (ln+1) and hence the

score of the game is 1 and thus a Left win.

Case 2: Applying the simultaneous moves recursively, the final matrix will be the

following n× n matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

1 0 0 . . . 0

1 1 0 . . . 0
... . . . ...

1 1 1 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

All pure strategies for Right are dominated by the final column (rn) and hence the
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score of the game is 0 and thus is a Draw.

Note: Lemma 7.1.9 does not hold in all sums, as demonstrated in Example 7.1.2.

Theorem 7.1.10 The score of a simultaneous red-blue hackenbush stalk is

the number, n, of blue (or red, respectively) edges before the first alternation between

red and blue edges. If the alternation begins and ends with the same colour, then

the score is n (or −n respectively). If the alternation begins and ends with different

colours, then the score is n− 1 (or −n+ 1 respectively).

Proof. We show the proof for the stalk of score n and n− 1. It is a similar proof for

−n and −n+ 1.

Consider a stalk where there are n blue edges followed by a series of alternating

red and blue edges, ending in two blue edges, followed by a string of α edges. There

are six cases to consider:

◦ Case 1: Both players move in α. By induction, this game has value n.

◦ Case 2: Left moves in α, Right moves in the first alternating part. We are left

with the position, of n blue edges, and an alternating red-blue stalk above that,

ending in blue. By Lemma 7.1.9, both players will play their furthest edges

and hence, in each turn the top two edges will be chosen. Right will run out of

moves and Left will have n edges remaining.

◦ Case 3: Right moves in α and Left moves in the first alternating part. The

remaining stalk will have n blue edges followed by alternating red-blue stalk

above, ending in red. Again by Lemma 7.1.9, both players will choose the

furthest edges from the ground. This will result in n− 1 blue edges at the end

of simultaneous game play and thus is a dominated option (Case 1 and 2 are

better options for Left).

◦ Case 4: Both players move in the first alternating part. By Lemma 7.1.9,

both players will play at the top of this section of the stalk. Hence we are left

with the position, of n blue edges, and an alternating red-blue stalk above that,

ending in blue. Thus this falls into Case 2, and ends with a score of n.
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◦ Case 5 and 6: Left moving in the all blue string while Right moves in either α

or the first alternating part. These options are dominated because it will result

in a value less than n.

Under alternating play, the CGT values of alternating red-blue hackenbush

stalks (starting with a blue edge) are approaching 2/3 as the height of the stalk

approaches infinity. Alternating red-blue hackenbush stalks (starting with a

blue edge) with value less than 2/3 are Draws in simultaneous hackenbush, while

positions with values greater than 2/3 are Left wins in simultaneous hackenbush.

This fact, and Lemma 7.1.9, lead us to the following conjecture.

Conjecture 7.1.11 Let G be a hackenbush tree. If the CGT value of G is greater

than 2/3, then oS(G) is a Left win.

Similar results hold for Right if the roles of red and blue edges are interchanged.

Next we present a theorem which highlights a specific example of a universe which

forms a subgroup under continued conjunctive sum and the scoring play winning

convention. The scores within this subclass are special as they are in fact CGT

scores.

Theorem 7.1.12 simultaneous red-blue hackenbush stalks form a subgroup

under continued conjunctive sum and scoring play.

Proof. The identity element is the game of score zero. Equivalence classes are by

CGT score and given the types of positions considered, all scores are integer valued.

The inverse of G is −G. Associativity and commutativity follows immediately.

Consider cordons (see Definition 3.2.2) which are undirected. The leaf arcs corre-

spond to leaf edges in the undirected graph.

Theorem 7.1.13 A simultaneous red-blue hackenbush cordon of height n

with all stalk edges blue and a blue leaf edges and b red leaf edges has score n+a−b > 0.
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Proof. On a stalk, by Lemma 7.1.9, we know players will play furthest away from the

ground. Consider now a cordon, where all stalk edges are blue and there are a blue

leaf edges and b red leaf edges. First let’s consider Right’s strategy. He only has leaf

edges to play. If he chooses a leaf edge closer to the ground, and Left cuts a stalk

edge below some red leaf edges, Right loses options. Hence Right will play leaf edges

furthest away from the ground, to have minimal interference with Left. Left on the

other hand, can either match Right’s option by taking the stalk edge corresponding

to the edge incident to a red leaf edge, or she could take a blue leaf edge. She is

guaranteed all moves (since Right cannot interfere with any of Left’s options), hence

it is in her best interest to play leaf edges one at a time (including the nth stalk edge),

and thus Left has a total of n+ a moves, and, if Left plays optimally, Right will have

b moves. Hence the value of the cordon is the number of extra moves Left has when

Right runs out of moves, which is precisely n+ a− b.

The negatives of the positions in Theorem 7.1.13, obtained by interchanging the

roles of red and blue edges, result in a score of −n− a+ b < 0.

7.1.4 Results for Majority Play

The classification of simultaneous hackenbush stalks under continued conjunc-

tive sum and majority play winning convention is quite simple. An empty game is a

draw.

Theorem 7.1.14 The score of a sum of simultaneous hackenbush stalks under

continued conjunctive sum and majority play winning convention is as follows:

B −R + AB − AR

where B is the number of stalks within the sum that start with at least two blue edges

plus the number of blue stalks of height 1, R is the number of stalks within the sum

that start with at least two red edges plus the number of red stalks of height 1, AB

is the number of stalks starting with a blue edge and the alternation ends with a blue

edge, and AR is the number of stalks starting with a red edge and the alternation ends

with a red edge.
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Proof. The proof is immediate from scoring play results. Rather than a score of a

component, say for Left, contributing 2 or more to the overall score, the component

contributes to the sum of the number of component wins for Left. Similarly for Right.

Then the tally is added (or subtracted) accordingly.

7.2 simultaneous clobber

Recall the ruleset for simultaneous clobber.

Ruleset for simultaneous clobber

• Board: A finite graph, with each vertex unoccupied or occupied by an

X or an O (typically played on an m × n grid, alternating X’s and O’s,

where m, n ∈ N).

• Moves: Left moves an X onto an adjacent O. The O is removed, and is

said to be ‘clobbered’ by the X. Right moves an O onto an adjacent X.

The X is removed, and is said to be ‘clobbered’ by the O.

• Interference Rule: If players choose to clobber their opponent’s piece

which their opponent is also using to clobber theirs, both pieces disappear.

If the position is OXO, labelled as ABC, and Left moves to C and Right

moves the O in A to B, then Left is said to have clobbered the O in C,

but Right merely occupies B (did not clobber the X).

For example, [OX] played simultaneously, after one move becomes [ ]. If it was

defined simply as a placement swap then the game would be loopy (both players could

insist on only choosing that move and the game would never end).

The scoring variant that we consider here is the number of O’s clobbered. This

is an asymmetric game since the best Right can do is hope for a Draw. So we know

that the outcome classes are restricted to Left wins and Draws.

First, we looked at simultaneous clobber played on the complete graph on n

vertices, Kn, where each vertex has an O except for one which has an X. There are

two possibilities: Left and Right choose matching vertices, and hence the game goes
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to zero. This can happen in (n− 1) ways. Or they don’t match in their choices (i.e.,

Left clobbers one of Right’s pieces and a different piece of Right takes the place of

Left’s piece which moved). This can happen in (n− 1)× (n− 2) ways. Hence

Theorem 7.2.1 The value of simultaneous clobber with one piece for Left on

Kn is defined by the following recurrence relation with initial value EV(K2) = 0:

EV(Kn) =
1

n− 1
(0) +

n− 2

n− 1
(1 + EV(Kn−1)) (7.1)

which implies for n ≥ 2,

EV(Kn) =
n

2
− 1. (7.2)

Proof. We prove by induction that the closed-form solution (7.2) is indeed correct

given the recurrence relation (7.1). First let an = EV(Kn) and we rewrite both

expressions and simplify as follows.

an =
n− 2

n− 1
(1 + an−1) (7.3)

where a2 = 0 which implies for n ≥ 2,

an =
n

2
− 1. (7.4)

To prove the claim, we first check the base case: Let n = 2 then substituting

in (7.4) gives

a2 =
2

2
− 1 = 0 (7.5)

The base case holds.

The induction hypothesis is that the expression (7.4) holds for n = k, for some

k > 2. Now we will show that the expression (7.4) holds for n = k + 1.

Let n = k + 1. We substitute this into the expression (7.3) and obtain
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ak+1 =
(k + 1)− 2

(k + 1)− 1

(
1 + a(k+1)−1

)
(7.6)

=
k − 1

k
(1 + ak) (7.7)

Furthermore, by the induction hypothesis, we can also substitute an expression in

for ak to obtain

ak+1 =
k − 1

k

(
1 +

(
k

2
− 1

))
(7.8)

We simplify (7.8) as follows

ak+1 =
k − 1

k

(
1 +

(
k

2
− 1

))
(7.9)

=
k − 1

k

(
k

2

)
(7.10)

=
k − 1

2
(7.11)

=
k − 1

2
+ 1− 1 (7.12)

=
k + 1

2
− 1 (7.13)

The expression (7.13) is precisely the result for n = k + 1 in (7.4). Given the

recurrence relation, we showed by induction that ak+1 =
k+1
2
−1. Hence, equation (7.2)

is the closed-form solution for the recurrence relation (7.1), with the given initial

condition.

Next, we look at this game on an infinite path, starting with one piece for Left

H = [. . . OOXOO . . .]. Then we place two Left pieces adjacent to one another,

J = [. . . OXXO . . .]. The analysis of subsequent positions which involve increasing

the distance between Left pieces and where she only has two pieces on the infinite

path, are left to the interested reader. Preliminary values are shown in Table 7.1,

calculations follow immediately afterward.
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Positions Values
E = [. . . OOO] 0
F = [. . . OOX] 0

G = [. . . OOXO] (−1 +
√
5)/2

H = [. . . OOXOO . . .] (1 +
√
5)/4

J = [. . . OOXXOO . . .] 1/2

Table 7.1: Values for some simultaneous clobber positions.

Case 1: Let E = [. . . OOO]. There are no moves for Left, and under this scoring

ruleset, the value of this game is 0.

Case 2: Let F = [. . . OOX]. From this position, each player only has one option:

Left can move left and Right can move right. Hence, no O is clobbered and the value

is 0.

Case 3: Let G = [. . . OOXO]. From G both players have two options available

to them, involving moving a piece left (
) or right (r). The matrices of options and

scores are given in (7.14).

M(G) =


 r[ ]

 G+1 E

r E [XO] + 1

, M(G) =


 r[ ]

 EV(G) + 1 0

r 0 1

(7.14)

Note that the only play remaining in [XO] + 1 is in [XO] because 1 is a score.

So EV([XO] + 1) = 1. Let EV(G) = q and suppose Left’s strategy is X = (x, 1− x)

then we can determine the mixed strategy for Left by equalizing expectations across

Right’s pure strategies (note: he will use each strategy with non-zero probability since

there is no domination). Hence we obtain the following:
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(q + 1)(x) + (0)(1− x) = (0)(x) + (1)(1− x) (7.15)

qx+ x = 1− x (7.16)

qx+ 2x = 1 (7.17)

(q + 2)x = 1 (7.18)

x =
1

q + 2
(7.19)

Now, this gives X = ( 1
q+2

, q+1
q+2

). Again, we can consider any pure strategy used

with non-zero probability in Right’s mixed strategy to determine the value of the

game. EV(G) = q = ( 1
q+2

)(q + 1). This gives a quadratic in q which we solve as

follows:

q =

(
1

q + 2

)
(q + 1) (7.20)

q (q + 2) = q + 1 (7.21)

q2 + 2q = q + 1 (7.22)

q2 + q − 1 = 0 (7.23)

(7.24)

By the quadratic formula, we obtain that EV(G) = q = −1+√5
2

(taking the positive

value since the values are non-negative under this scoring ruleset).

Case 4: Let H = [. . . OOXOO . . .]. From H both players have two options avail-

able to them, involving moving a piece left (
) or right (r). The matrices M(H) and

M(H) is given in (7.25).

M(H) =


 r[ ]

 G+ 1 E

r E G+ 1

, M(H) =


 r[ ]

 −1+√5

2
+ 1 0

r 0 −1+√5
2

+ 1

. (7.25)



135

The strategies to play in M(H) are the same for both Left and Right because of

the matrix symmetry. Also, players will play each strategy equally. Hence X = (1
2
, 1
2
)

and the value of the game is EV(H) =
(
1
2

) (
1+
√
5

2

)
= 1+

√
5

4
.

Case 5: Let J = [. . . OOXXOO . . .]. From J both players have two options

available to them, involving moving a piece left (
) or right (r). The matrices M(J)

and M(J) is given in (7.26).

M(J) =


 r[ ]

 F + 1 F

r F F + 1

, M(J) =


 r[ ]

 1 0

r 0 1

. (7.26)

As before, by symmetry of the matrix, both players will play each strategy with

equal probability, hence X = (1
2
, 1
2
) = Y and EV(J) = 1

2
(1) + 1

2
(0) = 1

2
.


 r[ ]

 1 0
r 0 1

Figure 7.8: M([. . . OX] + [XO . . .]).

Consider the position G = [. . . OX] + [XO . . .]. If we calculate EV(G) by using

the reduced values (see Table 7.1) we find the expected value is 0. But actually

calculating the expected value of the disjunctive sum, we obtain the value 1
2

(see

Figure 7.8, applying the same strategies discussed in Case 5); i.e.,

EV(G+H) �= EV(Re(G) +Re(H)). (7.27)

This exemplifies once again that under disjunctive sum, we encounter problems with

using previously defined values in a different sum.
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7.3 subtraction squares SQ({a}, {b})(n)

subtraction squares SQ({a}, {b})(n) is a special case of SQ(SL, SR)(n) intro-

duced in Chapter 6. In this section, Left and Right each respectively only have one

element in their subtraction set, SL = {a} and SR = {b}.

Theorem 7.3.1 In the game SQ({a}, {b})(n), where a < b, under extended normal

play, the value of n is given by

EV(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0, if n < a;

1, if a ≤ n < b;

(EV(n− b) + EV(n− b− a))/2, if a+ b ≤ n.

Proof. If n < a then neither player has a move and the game is a draw. If a ≤ n < b

then only Left has a move and the game is a Left win. Suppose n ≥ b. With equal

probability the players play on the same side, leaving n−b squares, or play on opposite

sides leaving max{0, n− a− b} giving EV(n) = (EV(n− b) + EV(n− b− a))/2.

For given a, b, solving the game SQ({a}, {b})(n) means solving the recurrence

2EV(n) = EV(n− b) + EV(n− b− a) with the initial conditions. For example, in

SQ({1}, {2})(n), we have 2EV(n) = EV(n− 2)+EV(n− 3). Letting an = EV(n), we

can rewrite this equation as an = 1
2
an−2 + 1

2
an−3 and solve it using the characteristic

equation as follows:

λn =

(
1

2

)
λn−2 +

(
1

2

)
λn−3 (7.28)

λ3 =

(
1

2

)
λ+

1

2
(7.29)

λ3 −
(
1

2

)
λ− 1

2
= 0 (7.30)

Solving for λ will give us the roots of the characteristic equation and help us determine

a generalized closed-form for EV(n). Hence, we first recognize that λ = 1 is a root

of the equation (7.30). Then, we factor the expression λ3 − (
1
2

)
λ− 1

2
= (λ− 1)(λ2 +
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λ+ 1
2
) = 0 and futhermore, using the quadratic formula we obtain the following:

(λ− 1)

(
λ− −1 + i

2

)(
λ− −1− i

2

)
= 0.

Hence, a general solution for an is as follows:

an = C1(1)
n + C2

(−1 + i

2

)n

+ C3

(−1− i

2

)n

.

As we want a closed-form based on the initial conditions, we now solve for C1,

C2, and C3. Using initial conditions a0 = 0, a1 = 1, a2 = 0 (these correspond to an

empty board (0) being a Draw, a single square (1) being a Left win and two squares

(2) being a Draw, respectively), we obtain the following linear equations respectively.

C1 + C2 + C3 = 0

C1 +

(−1 + i

2

)
C2 +

(−1− i

2

)
C3 = 2

C1 +

(−i

2

)
C2 +

(
i

2

)
C3 = 0

Solving the system of linear equations allows us to solve for the constants of the

closed-form for EV(n), with given initial conditions. We obtain C1 =
2
5
, C2 = −1

5
− 2

5
i

and C3 = −1
5
+ 2

5
i. Putting everything together, we solve the recurrence relation:

EV(n) =
1

5

(
2− (1 + 2i)

(
−1

2
+

i

2

)n

− (1− 2i)

(
−1

2
− i

2

)n)
.

Since all the terms which are raised to the power n are less than 1 in modulus,

then limn→∞EV(n) = 2/5.

With regards to the profile (see Section 6.3.1), we have the following.

Corollary 7.3.2 For the subtraction game SQ({a}, {b})(n), where a < b, ln =

EV(n).
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Proof. Since Right cannot win, rn = 0.

7.4 Conclusions

One of the most important results within the theory of combinatorial games is that

we understand how to sum games under different rulesets. Naturally, as we extend

the theory to simultaneous play, we would like to have a similar theory developed

here. For example, let

G = OXO � SQ′({1} , {2})(4) � .

Figure 7.9: A sum of three games.

Where do players want to move in G under different sums and models? Table 7.2

gives the game results. Initially, however, it is unclear which option is best given

a particular sum and model. Ultimately, we would like to determine a method for

combining sums of different rulesets to know the overall result for simultaneous play.

+ ∧ �
Extended Normal Play -1/2 R D

Scoring -1/2 -1 -1/2

Table 7.2: Outcomes and values for G from Figure 7.9 based on different sums.



Chapter 8

Conclusion

8.1 Summary

First, we exemplified the importance of the simplification tool, reduced canonical

form, in the analysis of an otherwise complex game, thinning thickets. Next

we introduced a method of combining games, using conjoined rulesets, to develop

a method for constructing an opening position for games which otherwise wouldn’t

have one. This highlighted a unique challenge for players: the need to play the first

game in a way which sets up the second game board favourably. Both Chapters 3

and 4 focused on games under the normal play winning convention. In Chapter 5,

we shifted gears to study the orthogonal colouring game, a scoring game, and

demonstrated a strategy for the second player to guarantee a draw when the game is

played on a graph which admits a strictly matched involution.

In Chapter 6 we provided a philosophy for simultaneous combinatorial game the-

ory, the initial framework for combinatorial games where players move at the same

time. This was followed by Chapter 7 which gave insight into analysis of simultaneous

games using case studies. From this work, we concluded that the most natural ap-

proach to studying simultaneous combinatorial games is under continued conjunctive

sum and the scoring play winning convention. Under this framework games form an

abelian group, using values as a measure of game equality.

We conclude this thesis by considering future directions for research.

8.2 Future Directions

Potential for future work within the area of combinatorial game theory is abundant.

Directions to extend upon the philosophies and results presented within this thesis is

the focus of this section. We reiterate previous problems mentioned earlier, as well as

connect across sections, when appropriate, to get a broader view of future research

139
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for this body of work.

One may be curious about the potential for simultaneous versions of games pre-

sented in Chapters 3, 4, and 5. First, we would need a concept of simultaneous

versions of the games. simultaneous thinning thickets takes on a similar inter-

ference rule to simultaneous hackenbush: Both players remove their respective

arcs and any arc no longer on a directed path to a root gets removed. It isn’t hard

to classify stalks based on their colouring, prove that all stalks have deterministic

outcomes, and to determine the outcome of sums of stalks under conjunctive and

continued conjunctive sums.

Now consider scoring play. In order for a stalk to have non-zero score, the position

needs to only have options for one player (called a mono-player component). The score

of a stalk can be at most 1 since a move in a mono-player component opens moves for

their opponent. Under conjunctive sum, the timing issue described in Section 6.3.1

still applies here. With regards to continued conjunctive sum, the score will simply be

the number of mono-player Left components minus mono-player Right components.

If the score is positive the game is a Left win, negative it is a Right win, and a Draw

otherwise.

The study of cordons is not nearly as straightforward. Unless the cordon is a mono-

player position, the game could involve mixed strategies. Thus, we end this analysis

here and leave the rest of the analysis of simultaneous thinning thickets as an

open question.

Question 6 What general analysis can be done for simultaneous thinning thick-

ets?

Another natural question, within the context of this thesis, is how to play simulta-

neous conjoined games and what that analysis would entail. The analysis of conjoined

games demonstrated that determining how to play the first phase, in order to best

set up the second phase, is a non-trivial task. Under simultaneous play, depending

on the game, not only is it non-trivial, but it can also be non-deterministic. Thus, at

this time, we believe that understanding the basic properties of conjoined games un-

der purely combinatorial analysis would be more fruitful for future research. Pushing

forward with game classifications (for example, placement games for the first phase)

is a natural next step, which leads to the following question.
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Question 7 Which game classes lend themselves to well structured conjoined game

combinations?

We extended combinatorial game theory with alternating play to allow simultane-

ous moves and develop the basic concepts required to analyze these games. We then

introduced and investigated three types of sums and two winning conventions. In the

disjunctive sum, under alternating play, the outcome of G+H can be found by first

reducing G and H then considering the sum of the resulting games. However, for

simultaneous play, we have shown that this only holds in the continued conjunctive

sum under the scoring winning convention.

In the case studies, we examined a weaker form of equality and inequality, where

positions from the same game (for example) are compared. We formalize that ap-

proach. Given a sum �, let an �-system, S� be a set of positions closed under options

and sums. That is, if G ∈ S� then (i) every position obtainable from G are also in

S�; (ii) also, if H ∈ S� then G �H ∈ S�. Equality and inequality in S�, are given

as in Definition 6.2.1, except now X ∈ S�. Recall that Re(G) is the reduced game of

G.

Question 8 What S� have reductions so that EV(G�H) = EV(Re(G)�Re(H))?

An interesting and important class of CGT games are the dead-ending games,

D, which are defined by the property that if a player has no moves in a particular

position then there is no sequence of moves that the opponent may make that will

allow the player to move again, see [58]. For example, in domineering, if there is

no space for Left to place a vertical domino then allowing Right to place any number

of horizontal dominoes will not create space for a vertical domino. tridomineering

and quadromineering belong to this class.

Question 9 For each sum, investigate D�.

In the study of simultaneous combinatorial games, we encountered the need for

mixed strategies to determine game values, which changes how we can interpret the

results, and restricts our analysis to a certain extent. An approach to mitigate the

non-determinism is to consider one player to be superior in the sense that they can

see their opponents move and react to it on the simultaneous move. This was first
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outlined within the context of placement games by Bahri and Kruskal [6], as the

relaxation principle. Here, as a future direction for analysis, we suggest a general

version of this, not restricted to placement games, which we call the Cheating Robot

approach. We consider Right to be the ‘superior being’ who can see Left’s move and

respond to it on the simultaneous turn.

The Cheating Robot approach is deterministic which makes it an intriguing future

direction for research in simultaneous combinatorial game theory. We do however have

evidence that the theory will not be straightforward to develop.

Definition 8.2.1 Let G = {GL | GS | GR} be a combinatorial game played under

the Cheating Robot approach. Then −G = {−GR | −GS | −GL}, where the cheating

robot is always Right.

In misère play, an important question regarding inverses is: when is −G the inverse

of G? In most cases, G−G �= 0. We considered the same question under the Cheating

Robot framework, and noticed that here too G − G �= 0 for all G. We demonstrate

this with the game simultaneous toppling dominoes.

Ruleset for simultaneous toppling dominoes

• Board: A row of black (B), white (W) and gray (G) dominoes.

• Moves: Left topples a black or gray domino either to the left or the right.

Right topples a white or gray domino either to the left or the right. All

dominoes in the direction of the toppling also gets removed.

• Interference Rule: If players topple in the same direction, all dominoes

in the same direction of the toppling also gets removed. If players topple

towards one another, all dominoes between the two chosen dominoes are

removed (including the ends).

Consider a game G under the Cheating Robot approach. Consider the game sum

to be disjunctive sum. Let G be a toppling dominoes position G = BWB and

consider G−G, where the negative of G is switching the colours of the dominoes and

Right is the cheating robot. We can’t change the role of the robot for −G because

then we arrive at an impasse where no player could ever make a move because the
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reasoning is circular. Hence G−G = BWB+WBW and Right is the cheating robot.

If −G were the inverse of G, then the game would always be a draw. However, one

can check that this isn’t the case under the Cheating Robot approach. This means

that no matter what Left does, Right has a good response. Let’s check. Left has six

options from the position G − G. We list them with overarrows demonstrating the

domino choice and direction of toppling along with a best response for Right. In all

cases, Right’s response will force a Right win. The cases are as follows:

(i)
←−
B
−→
WB +WBW

(ii)
−→
B
−→
WB +WBW

(iii) B
←−
W

←−
B +WBW

(iv) B
←−
W

−→
B +WBW

(v) BWB +
←−
W

←−
BW

(vi) BWB +W
−→
B
−→
W .

Notice that in cases (i-iv) the first component will be terminal after the first

turn. For the second turn, Right can play a similar strategy to what was played in

cases (v-vi) to guarantee that there will be one of his pieces remaining, while Left

will not have any dominoes remaining. For cases (v-vi) Right has a move remaining

in the second component, and thus on the second round follows Left into the first

component, playing one of four strategies as seen in the first components of (i-iv).

Cheating Robot is a novel way to look at a difficult problem of non-deterministic

outcomes for simultaneous combinatorial game theory, to approximate results using

deterministic methods. This is a general future direction for simultaneous combina-

torial game theory.

Question 10 Is there a theory of reductions and canonical forms for the Cheating

Robot model similar to that of CGT under disjunctive sum and normal play?

Question 11 How good of an approximation is the Cheating Robot version of simul-

taneous CGT games?

Sometimes, game players are more interested in exploring specific universes. This

interest may come out of necessity (the entire space doesn’t allow for algebraic struc-

ture), or the interest in knowing complete information about a single game of study

is their only concern. In either case, the question is the same:
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Question 12 When does restricting to a specific game universe under simultaneous

play allow for complete analysis of a game?

Overall, the most interesting (and promising) future direction is the Cheating

Robot approach to simultaneous combinatorial game theory. It generalizes the con-

cept of the ‘relaxation principle’ from [6] and opens the doors to a deterministic

approach for the study of simultaneous combinatorial games. It is much closer to the

original CGT analysis and allows for the possibility of expanding the scope of simulta-

neous games to pursuit-evasion games, as well as studying simultaneous combinatorial

games in more depth.
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Appendix A

Graph Theory

Here we present basic graph theory definitions required for this thesis. For a standard

reference for graph theory, see [15].

Definition A.0.1 [15] A graph G is an ordered pair (V (G), E(G)) consisting of a

set V (G) of vertices and a set E(G), disjoint from V (G), of edges, together with an

incidence function ψG that associates with each edge of G an unordered pair of (not

necessarily distinct) vertices of G.

Definition A.0.2 [15] The ends of an edge are called incident with the edge. Two

vertices which are incident to a common edge are called adjacent, and two distinct

adjacent vertices are called neighbours.

Definition A.0.3 [15] An edge with identical ends is called a loop. Two or more

edges with the same pair of ends are called parallel edges. A graph is simple if it has

no loops or parallel edges.

Definition A.0.4 [15] A complete graph on n vertices, denoted Kn, is a graph in

which any two vertices are adjacent.

Definition A.0.5 [15] A path on n vertices, denoted Pn, is a simple graph whose

vertices can be arranged in a linear sequence in such a way that two vertices are

adjacent if they are consecutive in the sequence, and are nonadjacent otherwise.

Figure A.1: K4. Figure A.2: P3.
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Definition A.0.6 [15] A cycle on n vertices, denoted by Cn, is a simple graph

whose vertices can be arranged in a cyclic sequence in such a way that two vertices

are adjacent if they are consecutive in the sequence, and nonadjacent otherwise.

Definition A.0.7 [15] An acyclic graph is a graph that contains no cycles, also

called a forest. A connected acyclic graph is called a tree. A rooted tree is a tree with

a specified root vertex, x.

Throughout the thesis we do not specify the root by name; it will be clear from

the context based on the game and not necessary to associate a label to the root.

Definition A.0.8 [15] A directed graph D, is an ordered pair (V (D), A(D)), con-

sisting of a set V (D) of vertices and a set A(D) of arcs, together with an incidence

function ψD that associates with each arc of D an ordered pair of (not necessarily

distinct) vertices of D. If a is an arc and ψG(a) = (u, v), then u is the tail of a and v

is the head of a.

If u and v are vertices of a graph G, we will write an arc ψG(a) = (u, v) as −→uv,
where u and v are the tail and head vertices respectively. The in-degree of an arc −→uv
is the number of arcs with head vertex u.

Definition A.0.9 [15] To identify nonadjacent vertices x and y of a graph G is to

replace these vertices by a single vertex incident to all the edges which were incident

in G to either x or y. To contract an edge e of a graph G is to delete the edge and

then identify its ends.

Definition A.0.10 [15] A matching, denoted by M , in a graph is a set of pairwise

nonadjacent edges. A vertex incident with an edge of M is said to be covered by M .

A perfect matching is one which covers every vertex of the graph.

Definition A.0.11 [15] A k-colouring is an assignment of k colours to its vertices.

A colouring is proper if no two adjacent vertices are assigned the same colour.

Definition A.0.12 [15] An independent (stable) set is a set of vertices no two of

which are adjacent. An independent set in a graph is maximum if the graph contains

no larger independent set.
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Combinatorial Game Rulesets

clobber

• Board: A finite graph, with each vertex unoccupied or occupied by an

X or an O (typically played on an m × n grid, alternating X’s and O’s,

where m, n ∈ N).

• Moves: Left moves an X onto an adjacent O. The O is removed, and is

said to be ‘clobbered’ by the X. Right move an O onto an adjacent X.

The X is removed, and is said to be ‘clobbered’ by the O.

col

• Board: A finite graph, with each vertex either uncoloured or coloured

blue or red.

• Moves: Left colours an uncoloured vertex, with no blue neighbours, blue.

Right colours an uncoloured vertex, with no red neighbours, red.

cutthroat

• Board: A finite graph, where each vertex is coloured red or blue.

• Moves: Left removes a blue vertex. Right removes a red vertex. All

incident edges and any monochromatic connected components are also

removed.

The impartial version, where a player can remove a vertex of either colour on

their turn, is denoted by cutthroatImp.
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domineering

• Board: A subset of the squares of a finite grid.

• Moves: Left places a 2 × 1 domino on the grid in two unoccupied verti-

cally adjacent squares. Right places a 1 × 2 domino on the grid in two

unoccupied horizontally adjacent squares.

go-cut

• Board: A finite graph, with each vertex either uncoloured or coloured

blue or red.

• Moves:

– Phase 1: On a move a player chooses an uncoloured vertex (·) and

colours it either red (R) or blue (B) provided every maximal con-

nected monochromatic subgraph is adjacent to an uncoloured vertex.

When no moves are playable under Phase 1, delete all uncoloured

vertices and then delete all monochromatic components. The game

is now a disjunctive sum of components each of which contains both

red and blue vertices, that is, non-monochromatic components.

– Phase 2: A player chooses a component from the disjunctive sum,

deletes one of the vertices then deletes any resulting monochromatic

components.
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hackenbush

• Board: A finite graph with edges coloured blue (single solid), red (dashed)

or green (double solid). There is a ground, usually depicted by a thicker

horizontal line, and a set of special vertices called roots (connected to the

ground).

• Moves: Left cuts a blue edge or a green edge. If it is a cut-edge then the

component which is not connected to the ground is also deleted. Right

cuts a red edge or a green edge. If it is a cut-edge then the component

which is not connected to the ground is also deleted.

nim

• Board: n heaps of counters of size ki, i = 1, . . . , n, where ki ≥ 1.

• Moves: A player can choose a heap, say heap i, and the player removes

up to ki counters from heap i.

node kayles

• Board: A finite graph.

• Moves: On their turn, a player chooses a vertex and deletes it and all its

neighbours.
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nogo

• Board: A finite graph, with each vertex either uncoloured or coloured

blue or red.

• Moves: Left colours an uncoloured vertex, (·), blue provided that each

maximal connected monochromatic subgraph has at least one vertex ad-

jacent to an uncoloured vertex. Right colours an uncoloured vertex, (·),
red provided that each maximal connected monochromatic subgraph has

at least one vertex adjacent to an uncoloured vertex.

The impartial version, where a player can colour a vertex red or blue on their

turn, is denoted by nogoImp.

orthogonal colouring game, MOCm(G)

• Board: Two initially uncoloured disjoint isomorphic copies GL and GR of

a given finite graph G.

• Moves: Two players, Left and Right, with Left beginning, alternately

choose one of the two graphs GL or GR and colour an uncoloured vertex

of this graph with a colour from the set {1, . . . ,m} such that the colouring

is proper and the orthogonality of the graphs is not violated. Left owns GL

and Right owns GR.
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sno-go

• Board: A finite graph, with each vertex either uncoloured or coloured

blue or red.

• Moves:

– Phase 1: On a move a player chooses an uncoloured vertex (·) and

colours it red (R) or blue (B) provided that no red vertex is adjacent

to a blue vertex.

– Phase 2: When no moves are playable under Phase 1 rules, play-

ers can colour an uncoloured vertex red or blue provided that each

maximal connected monochromatic subgraph has at least one vertex

adjacent to an uncoloured vertex.

snort (also known as cats & dogs)

• Board: A finite graph, with each vertex either uncoloured or coloured

blue or red.

• Moves: Left colours an uncoloured vertex, with no red neighbours, blue.

Right colours an uncoloured vertex, with no blue neighbours, red.

The impartial version, where a player can colour a vertex red or blue on their

turn, is denoted by snortImp.

subtraction(SL, SR)(n)

• Board: A non-negative integer n.

• Moves: Left subtracts some element of SL from n. Right subtracts some

element of SR from n. The result of the subtraction must be non-negative.

The impartial version is subtraction(S)(n), where both players are choosing

from the same subtraction set, S.
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thinning thickets

• Board: A finite directed graph where each arc is coloured blue (single

solid), red (dashed) or green (double solid). The graph has a subset of

vertices x1, . . . , xk called roots and every arc is on a directed path to some

root.

• Moves: On a move, each player deletes an arc. Left removes a blue arc

or a green arc with even in-degree (including 0) or a red arc with odd

in-degree. Right removes a red arc or a green arc with even in-degree

(including 0) or a blue arc with odd in-degree. After the arc is deleted,

any arc and vertex not on a directed path to a root is also deleted.
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Simultaneous Combinatorial Game Rulesets

simultaneous clobber

• Board: A finite graph, with each vertex unoccupied or occupied by an

X or an O (typically played on an m × n grid, alternating X’s and O’s,

where m, n ∈ N).

• Moves: Left moves an X onto an adjacent O. The O is removed, and is

said to be ‘clobbered’ by the X. Right moves an O onto an adjacent X.

The X is removed, and is said to be ‘clobbered’ by the O.

• Interference Rule: If players choose to clobber their opponent’s piece

which their opponent is also using to clobber theirs, both pieces disappear.

If the position is OXO, labelled as ABC, and Left moves to C and Right

moves the O in A to B, then Left is said to have clobbered the O in C,

but Right merely occupies B (did not clobber the X).

simultaneous domineering

• Board: A subset of the squares of a finite grid.

• Moves: Left places a 2 × 1 domino on the grid in two unoccupied verti-

cally adjacent squares. Right places a 1 × 2 domino on the grid in two

unoccupied horizontally adjacent squares.

• Interference Rule: If players overlap on a turn, the overlap is allowed.

Players cannot overlap previously placed pieces.
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simultaneous hackenbush

• Board: A finite graph with edges coloured blue (single solid), red (dashed)

or green (double solid). There is a ground, usually depicted by a thicker

horizontal line, and a set of special vertices called roots (connected to the

ground).

• Moves: Left cuts a blue edge or a green edge. If it is a cut-edge then the

component which is not connected to the ground is also deleted. Right

cuts a red edge or a green edge. If it is a cut-edge then the component

which is not connected to the ground is also deleted.

• Interference Rule: Both Left and Right’s options are removed and any

connected component no longer connected to the ground is also removed.

simultaneous thinning thickets

• Board: A finite directed graph where each arc is coloured blue (single

solid), red (dashed) or green (double solid). The graph has a subset of

vertices x1, . . . , xk called roots and every arc is on a directed path to some

root.

• Moves: On a move, each player deletes an arc. Left may delete a blue arc

with an even in-degree (including 0) or a red arc with an odd in-degree.

Similarly, Right may delete a red arc with an even in-degree (including

0) or a blue arc with an odd in-degree. Both may delete a green arc

with even in-degree. After the arc is deleted, any arc and vertex not on

a directed path to a root is also removed.

• Interference Rule: Both players remove their respective arcs. Any arc no

longer on a directed path to a root gets removed.
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simultaneous toppling dominoes

• Board: A row of black (B), white (W) and gray (G) dominoes.

• Moves: Left topples a black or gray domino either to the left or the right.

Right topples a white or gray domino either to the left or the right. All

dominoes in the direction of the toppling also gets removed.

• Interference Rule: If players topple in the same direction, all dominoes

in the same direction of the toppling also gets removed. If players topple

towards one another, all dominoes between the two chosen dominoes are

removed (including the ends).

subtraction squares, SQ(SL, SR) on a strip of squares of length n, denoted

SQ(SL, SR)(n)

• Board: Let SL and SR be sets of positive integers. The board is a strip

of n squares, denoted n.

• Moves: For any p ∈ SL, p ≤ n, Left can remove p squares from the left or

right side of the strip. Similarly, if q ∈ SR, q ≤ n, then Right can remove

q squares from the left or right side of the strip.

• Interference Rule: If they both take from the same side then max{p, q}
squares are removed. If they take from opposite sides then the move is to

n− p− q except if max{p, q} ≤ n ≤ p+ q then the move is to 0.



Appendix D

Copyright Release Forms
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