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Abstract

The analysis of multivariate chemical data is often complicated by the presence of

errors which are correlated or have non-uniform variance (heteroscedastic). Of the

numerous methods used to address these issues, two promising techniques, weighted

scatter correction (WSC) methods and principal axis factoring (PAF), are considered

in this work.

In near-infrared (NIR) spectroscopy, multiplicative scatter noise occurs due to

pathlength changes in samples. This type of noise can obscure chemical informa-

tion and preprocessing through the use of multiplicative scatter correction (MSC)

or standard normal variate (SNV) are routinely applied to mitigate scatter noise.

Recently, WSC methods have been proposed as an improvement to MSC and SNV.

These methods use regions of a spectrum where the chemical variation is low relative

to the scatter variation to estimate the scatter coefficients, ideally resulting in better

noise removal.

For many datasets, heteroscedastic noise can be problematic for chemometric tools

that model chemical variance, such as principal components analysis (PCA). PAF is

an alternative to PCA that has been widely used in the social sciences, but has

rarely been applied to the analysis of chemical data. PAF is a decomposition method

which is ideally suited for data in which the variables exhibit different measurement

uncertainties. PAF tries to simultaneously model the data in a reduced space while

also estimating the measurement error variance.

This work critically examines the use of WSC methods and PAF through appli-

cation to simulated and experimental datasets. It is demonstrated, for multiplicative

scatter noise, WSC methods resulted in lower prediction errors than MSC and SNV

when the chemical background signal is low and the main chemical analyte signal is

large, but that even a modest amount of chemical background variation can be detri-

mental. In the study of PAF as an alternative to PCA it is shown that, when the

measurement errors are heteroscedastic, PAF results in improved subspace estimation

and reduced errors, and provides estimates of measurement uncertainties.
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Chapter 1

Introduction

Like other areas of science and technology, chemistry has entered the era of “big

data”, with multivariate analytical measurements being the norm rather than the

exception due to the capabilities of modern instrumentation. Measurement vectors

are generated naturally from techniques such as spectroscopy, mass spectrometry,

chromatography, electroanalytical methods, X-ray diffraction and many others. Vec-

tors of measurements are also realized through profiling experiments (elements, fatty

acids, proteins, nucleic acids, metabolites) and time series studies (kinetics, longi-

tudinal environmental and biological studies, etc.). Often measurement vectors are

combined along two dimensions (e.g. wavelength and time) to provide matrices of

measurements (two-way data), or further concatenated to provide higher order data

structures. Such data pervades all areas of chemical measurement including biology,

food science, the environment, industry, forensics, conservation, medicine, pharma-

ceuticals, diagnostics, and many others.

As a consequence of this evolution, chemometric tools have become increasingly

important in chemical analysis, providing access to information that would otherwise

be unavailable. For example, multivariate calibration enables the routine estimation

of chemical properties (e.g. protein content, octane number, concentrations, drug

activity) and are widely used in industry. These tools are used to visualize data

and classify data in areas such as proteomics, metabolomics, food science, forensics,

archaeology, and process monitoring. Such techniques also provide a better under-

standing of chemical systems in biology, medicine, the environment, and are widely

applied for diagnostics and imaging.

A focus of modern research in chemometrics is continuing to adopt the tools

available to better deal with the complex data structures presented by multivariate

measurements. One aspect of this is the measurement error structure in the data.

1
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Like all analytical methods, multivariate measurements have errors. Unlike univari-

ate measurements, however, the analysis of multivariate data is complicated by the

relationships among the measurement channels. For a variety of reasons, the errors

for different measurements may not have the same variance (uncertainty); that is,

they are heteroscedastic rather than homoscedastic. Likewise, there may be a statis-

tical relationship among the errors for different variables; that is, they are correlated

rather than independent. Chemometric methods are usually optimized assuming

that measurement errors are independent and identically distributed and follow a

normal distribution (iid normal noise). Errors which violate the assumptions of iid

noise (such as heteroscedastic and correlated errors), may result in suboptimal results

when using common chemometric methods. As a consequence a variety of strategies

have been developed to handle measurement errors.

For example, a common problem in near-infrared (NIR) spectroscopy is multi-

plicative offset noise [1, 2]. In NIR spectroscopy measured by diffuse reflectance,

multiplicative offset noise is effectively a change in the optical pathlength due to light

scattering, and it is difficult to distinguish a change in pathlength from a change in

the concentration. This is one manifestation of correlated and heteroscedastic noise

in analytical measurements. Various methods have been established for the purpose

of correcting multiplicative offset noise, including the standard normal variate (SNV)

method [3], and multiplicative scatter correction (MSC) [4], and these two meth-

ods have been used for over 30 years. Recent improvements have been proposed for

scatter correction, including weighted correction methods which seek to correct the

scatter based upon regions where the chemical signals are consistent and show little

variation.

Another common problem is heteroscedastic noise, which occurs when the errors

are independent, but do not have the same variance. Methods such as principal

components analysis (PCA), which is widely used in chemometrics, assume that the

errors are iid (homoscedastic). When the noise is heteroscedastic, the results of PCA

will be sub-optimal. Dealing with heteroscedastic noise typically necessitates scaling

of data, which is designed to make the noise in the scaled data behave in an iid man-

ner. However, optimal data scaling requires estimates of measurement uncertainties,

which are often not available. Factor analytic methods offer an alternative to estimate
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measurement uncertainties when information about the measurement error structure

is unknown or unavailable.

The purpose of this thesis is to investigate these alternative methods (weighted

scatter correction and factor analytic methods) in greater detail. Chapter 1 introduces

common multivariate methods and the problems created by non-iid measurement

errors. Chapter 2 investigates recently proposed improvements to correct for multi-

plicative offset noise in NIR spectroscopy. Chapter 3 examines factor analysis as an

alternative to principal components analysis for datasets that contain heteroscedastic

errors. The findings of this work are summarized in the final chapter.

1.1 Notation

Standard notation conventions will be used. Matrices and vectors are designated as

boldface symbols, with matrices capitalized and vectors in lowercase, while scalar

quantities are italicized. Using standard chemometric conventions, xi will denote a

row vector of dimensions 1×p representing the measurements of p variables for sample

i, also referred to as the measurement vector or (where appropriate) the spectrum of

sample i. A collection of such measurement vectors for n samples will be represented

as the n× p matrix X. A column of X, representing the measurements of n samples

for variable j, will be designated by the n × 1 column vector xj. The transpose of

a matrix or vector will be denoted by a superscript “T” (e.g. XT) and the matrix

inverse by a “-1” superscript (e.g. X−1). Where appropriate, a vector of properties

(e.g. component concentrations) associated with the n samples will be denoted by

the n× 1 vector y.

The sample mean, sample standard deviation, and sample variance of vector x

are denoted by µ
{

x
}

(or x̄), σ
{

x
}

, and var
{

x
}

, respectively. The elementwise

multiplication (Hadamard product) of matrices A and B will be denoted by A ◦B ,

whereas the matrix multiplication of A and B is given by AB.

Mean-centering is an operation in which the mean of each variable (column) of X

is subtracted, such that the columns of the mean-centered data XMC are zero.

xMC,j = xj − µ
{

xj

}

(1.1)



4

XSC will designate the autoscaled version of X, where the column means are sub-

tracted from X and then the result is divided by the column standard deviations of

X:

xSC,j =
xj − µ

{

xj

}

σ
{

xj

} (1.2)

The covariance matrix of X, which has dimensions of p× p and is denoted as R,

is given in Equation 1.3.

R =
XT

MCXMC

n− 1
(1.3)

The notation U(a, b) will be used to designate a random variable uniformly dis-

tributed in the range of a and b and M ∼ U(a, b) indicates that M is a matrix of

random variables drawn from this distribution. Likewise, N(µ = 0, σ = 1) indicates a

random variable from a normal distribution with a mean of µ and a standard deviation

of σ, and the elements of M ∼ N(µ = 0, σ = 1) are drawn from this distribution.

In Chapters 2 and 3, the term “Gaussian peak” is used to describe a scaled version

of the normal probability density function f
(

h, µ, σ
)

, which is described using the

notation in Equation 1.4, where ξ is a vector of wavelength channel indices (1,2,...,p),

µ is the mean, σ is the standard deviation, and h is a scale factor.

f
(

h, µ, σ
)

= h
( 1

σ
√
2π
e−(ξ−µ)2/(2σ2)

)

(1.4)

1.2 Multivariate Methods in Chemistry

There are many chemometric methods that are employed for the analysis of multi-

variate chemical data, including classification and clustering methods [5], multi-way

methods [6, 7], multivariate calibration and regression [8], and many others. In this

chapter, only three general classes most relevant to this work will be considered:

multivariate calibration, mixture analysis, and exploratory data analysis for classifi-

cation. These methods are described in the following subsections, with a a particular

emphasis on the implications of error structures..

1.2.1 Multivariate Calibration

The task of multivariate calibration is to use multivariate data (e.g. spectra, chro-

matograms, mass spectra) to predict some property (e.g. concentration). Multivari-

ate calibration is often based on linear prediction models, which are formulated in
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terms of a regression vector. For a matrix of data X that contains n samples and

p measured variables (such as a set of spectra) and a n × 1 property vector y, the

regression model is formulated as shown in Equation 1.5, where b is a p×1 regression

vector, and e is a n× 1 matrix of residuals.

y = Xb+ e (1.5)

The goal of linear calibration methods is to determine the regression vector b from

a set of training (calibration) data, to predict future samples. Different multivari-

ate calibration methods are characterized by the ways in which they determine the

regression vector, b, in Equation 1.5. The four most commonly used regression meth-

ods are Classical Least Squares (CLS), Multiple Linear Regression (MLR), Principal

Components Regression (PCR), and Partial Least Squares regression (PLS). CLS is

only useful when all components of a mixture are known, so it is of limited utility for

complex mixtures. The other three techniques are known as Inverse Least Squares

(ILS) methods. The most direct solution when the number of training samples, n,

is greater than or equal to the number of variables, p, is MLR, which employs the

pseudoinverse of X to minimize the sum of squared residuals (SSR) in e. The solution

is given in Equation 1.6, where Xcal and ycal represent the training data.

b̂ =
(

XT
calXcal

)−1
XT

calycal (1.6)

When the number of variables is larger than the number of samples (p > n), a

common situation in chemistry, the data matrix XTX is deemed to be singular or

rank-deficient, which means that the matrix inverse shown in Equation 1.6 will not

have an exact solution. Even when the condition n > p is met, the solution in Equa-

tion 1.6 can be unreliable due to overfitting unless the ratio of samples to variables

is high. Various solutions to this problem are commonly employed, including princi-

pal components regression (PCR) and partial least squares regression (PLS) [9], and

ridge regression (RR) [10]. PCR and PLS are referred to as latent variable methods,

since they reduce the number of variables in X to a smaller number, represented by

a scores matrix, X (n × r), where r < n, p. The scores are linear combinations of

the original variables that retain maximal information from X. The regression model

now becomes

y = Td+ e (1.7)
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where the least squares solution for the reduced regression vector, d (r × 1) is

d̂ =
(

TTT
)−1

TTy (1.8)

Through simple manipulation, the reduced regression vector d̂ can be transformed to

give a regression vector in the original space, b̂.

The principal difference between PCR and PLS is the manner in which the scores,

T, are calculated. PCR scores are calculated using Principal Components Analysis

(PCA), through a truncated Singular Value Decomposition (SVD) as described in

Chapter 3. The scores in PCA are intended to maximize the representation of variance

in X (i.e. they extract the maximum information from X). In contrast, PLS, which

is the most widely used calibration method in chemometrics, extracts the scores in

order to simultaneously maximize both the variation in X and the covariance between

X and y [11][9]. As a consequence, it is often the case that PLS requires fewer latent

variables than PCR.

Both PLS and PCR require selection of the number of latent variables to be used,

r. For the calibration (training) data, the estimation (fit) for y will generally improve

with increasing r, but this also increases the risk of overfitting, which means that the

regression vector will be good for fitting the calibration data but not for predicting

future samples because it is using too many variables. Generally r is determined

through a cross-validation procedure in which part of the calibration data is set aside

(not used to calculate the regression vector) and then used to evaluate prediction

ability for different values of r. Different strategies are used for model validation.

Multivariate calibration is affected by measurement errors in both X and y. Mea-

surement errors in y are determined by the reference method used for calibration and

set a lower limit on the errors that can be quantified by calibration. Measurement

errors in X have an impact on both the calibration and prediction stages. Measure-

ment errors that are non-iid (heteroscedastic and/or correlated) can lead to calibration

models that are suboptimal due to the ineffective extraction of latent variables and/or

spurious correlations. Some of these problems will be mitigated by the calibration

process itself, which tends to average out variations that are uncorrelated with y. In

the prediction step, however, any errors in the measurement vector xi for an unknown
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sample will be propagated through the regression model,

ŷi = xib̂ (1.9)

Multiplicative offset noise is particularly problematic in this regard because it is large,

difficult to distinguish from chemical signals, and is prevalent in NIR spectroscopy,

which is widely used. Therefore, this problem is the particular focus of Chapter 2.

1.2.2 Mixture Analysis

Mixture analysis is a common problem in chemical systems, and chemometrics has

provided new tools to address this issue. Given a set of measurements from a series of

mixtures, the goal is to determine the number of components, their response profiles

(e.g. spectra), and concentrations in each mixture. Mixtures can arise in chemical

equilibrium or kinetic studies [12], chromatography [13, 14], or in many other situ-

ations, such as source apportionment for environmental profiles [15]. The technique

known as multivariate curve resolution (MCR) [16] is widely used to address these

problems.

MCR uses linear relationships and mathematical constraints (e.g. non-negativity,

unimodality, and closure) [17] in an attempt to identify mixture components. In a typ-

ical problem involving r components, MCR assumes that a matrix of measurements,

X (n × p) consists of n mixtures measured at p variables and can be represented as

the product of a contribution matrix, C (n× r) and a profile matrix, P (r× p), along
with a matrix of residuals, E (n× p).

X = CP+ E (1.10)

This is referred to as a bilinear relationship, where typically C represents the con-

centrations of the r components in the n mixtures and P corresponds to the pure

component spectra for the r components. The columns of X define an r-dimensional

subspace within the n-dimensional row space of X, and the rows of p define an r-

dimensional subspace within the column space of X.

A common implementation of the MCR algorithm uses a matrix of data recon-

structed by principal components analysis (PCA) as an initial starting point, rather

than using the raw experimental data matrix [18]. PCA decomposes the original data
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matrix into a bilinear product of a scores matrix T (n× r) and a loadings matrix L

(r × p) such that

X = TL+ E (1.11)

While T and L are not the same as C and P, they represent optimal estimates of the

subspaces under conditions of iid normal measurement errors. PCA is used to project

the data from the original space into a subspace of reduced dimensionality. The

performance of the MCR algorithm is dependent on how closely the PCA subspace is

to the “true” subspace of the data that contains the chemical information about the

mixture components. Inaccurate subspace estimation will decrease the reliability of

the component estimates, which will harm the performance of the MCR algorithm.

The presence of heteroscedastic noise can have a negative impact on the PCA sub-

space estimation [19]. When the noise is iid normal, then PCA will provide optimal

estimates of the subspace, but the PCA subspace estimation will be suboptimal if the

noise is not iid normal. This problem has long been recognized in MCR, and a variety

of solutions have been proposed to optimize subspace estimation in the presence of

heteroscedastic errors. These include positive matrix factorization (PMF) [20], mul-

tivariate curve resolution with weighted alternating least squares (MCR-WALS) [21],

and maximum likelihood principal components analysis (MLPCA) [22]. However,

each of these methods requires reliable estimates of the measurement uncertainty to

be effective, and often such information is unknown.

In Chapter 3, principal axis factoring (PAF) is explored as an alternative to PCA

to simultaneously estimate the subspace of the data and the magnitude of the mea-

surement error variance. Although direct applications of MCR methods are not in-

cluded in the study, the ability of PCA and PAF to accurately estimate the subspace

of the relevant data is explored.

1.2.3 Exploratory Data Analysis

The term exploratory data analysis encompasses any chemometric methodology which

is used to examine the characteristics of multivariate data through various reduction

strategies, but in this work, the emphasis is on data visualization through linear

projection. In particular, PCA has become a data visualization tool that is used

extensively for multivariate data, especially in fields such as metabolomics. Typically,



9

the n × p data matrix X is decomposed into scores (T) and loadings (L), and the

scores for the first two or three components are plotted in a space of corresponding

dimensionality to visualize the relationships among the n objects (samples). Often

the goal is to identify clusters (groups of objects belonging to the same class) through

their spatial positions in the scores plot.

As with MCR, the results obtained from a PCA projection can be strongly influ-

enced by the presence of heteroscedastic errors. The spatial projection of objects is

influenced by measurement noise in two ways: (1) estimation of the subspace, and

(2) projection of objects into the subspace. Visualization can often be improved with

optimal scaling but, as for MCR, this requires prior knowledge of measurement error

variance, which may be unavailable or difficult to measure. In Chapter 3, it is shown

that PAF can improve the estimation of the subspace while also providing an estimate

of measurement uncertainty. Moreover, the use of a maximum likelihood projection

(as opposed to the orthogonal projection used for PCA) improves the projection of

objects into the subspace.

1.3 Error Structures in Multivariate Analysis

Multivariate analytical data can exhibit many error structures that deviate from

iid normal [23]. Measurement errors can exhibit heteroscedasticity, meaning that

different measurements show different (non-uniform) error variance. Errors can also

be correlated, meaning that the error from one variable (measurement channel) has

a statistical correlation with the errors from other variables. If x is a measurement

vector and x0 represents the error-free measurements, then the measurement errors e

are characterized by the error covariance structure, Σe, of dimensions p×p, as shown
in Equation 1.12.

Σe = E
(

(

x− x0
)T(

x− x0
)

)

= E
(

eTe
)

(1.12)

In Equation 1.12, the operator E
()

represents the expectation value. The struc-

ture of the error covariance matrix is often related to the nature of the analytical

measurement, and its characteristics are ultimately related to the analytical method-

ology, sample characteristics, and instrumentation. In the following sections, two

commonly encountered cases, multiplicative offset noise and heteroscedastic errors,

are examined in more detail, along with the methods commonly used to treat them.



10

1.4 Correlated Noise in Near-Infrared Spectroscopy

Near-infrared (NIR)spectroscopy is one of the most widely used analytical techniques

for multivariate calibration and other applications. It is commonly used for quanti-

tative analysis across a broad range of application areas to displace more tedious and

time consuming reference methods (e.g. Kjeldahl titrations). One advantage is that

it can be used to estimate not only concentration (e.g. alcohol content) but also other

variables related to chemical composition (e.g. octane number). It is widely used in

the food industry to estimate product quality parameters (e.g. protein, moisture and

fat content [24]), in the pharmaceutical industry to quickly assess active ingredients

and other parameters [25], in the petroleum industry to assess octane number, cetane

number and other empirical parameters, and in other industries worldwide for quality

control and process monitoring.

NIR spectroscopy measures the absorption or diffuse reflectance of a sample ir-

radiated by light in the NIR region. The NIR region is located between 780-2500

nm, with NIR absorbance arising from broad overtone and combination bands of

molecular vibrations [26]. The bonds which are most active in the NIR include O-H,

N-H, C-H, and C=O. The near infrared region is not very useful for chemical in-

terpretation, since it consists of broad combination and overtone bands and is quite

complex. However, it has several advantages that make it well-suited for quantitative

analysis, including simple and inexpensive instrumentation. It is often used in diffuse

reflectance mode, which allows it to be employed in a passive, non-invasive way for

solid and liquid samples that are non-transparent.

NIR also has the advantage that it is non-specific in its response, making it ap-

plicable to a wide variety of sample matrices, but because of the large number of

overlapping bands, quantitation using NIR is only possible using multivariate cali-

bration. In a typical application, the NIR spectrum is recorded for a set of calibration

samples for which a property of interest (e.g. concentration, protein content, octane

number) is measured by a reference method (e.g. Kjeldahl titration for protein con-

tent). A calibration model is then built using the spectra (X) and reference data

y. Nominally, NIR spectra are characterized by a high signal-to-noise ratio (S/N)

when one considers only the independent component of the measurement errors, but

correlated errors represent a serious limitation to the precision of calibration models.
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1.4.1 Multiplicative Offset Noise

The particular types of correlated noise observed in NIR spectroscopy are called multi-

plicative offset noise and baseline offset noise. Multiplicative offset noise is sometimes

referred to as multiplicative noise, but this does not make a clear distinction from in-

dependent proportional noise, which is generally not a problem in NIR spectroscopy.

Multiplicative offset noise can also occur for other types of measurements (e.g. IR

spectroscopy), but is a dominant source of variation in NIR spectroscopy. NIR re-

flectance of solid samples is dependent upon the particle shape, size, and chemical

composition [1]. Unwanted variation due to light scattering can occur, as a result

of scattering at the surface of particles, and due to changes in spectral pathlength

through the sample [3]. The variation in the scattering can often occur due to physical

effects, such as variation in sample thickness or particle size [2]. Because, by Beer’s

law, a change in pathlength is indistinguishable from a change in concentration, this

can lead to errors in prediction of the property of interest.

A model for multiplicative offset and baseline offset noise is given in Equation

1.13:

xi = αi1+ βixi,chem + xi,chem + εi (1.13)

where xi is the spectrum of the ith sample (i=
{

1, 2, ..., n
}

), αi is the coefficient of

the baseline offset of the ith sample, βi is the coefficient of the multiplicative offset of

the ith sample, xi,chem is the pure chemical response excluding scatter effects, and εi

is a vector of iid normal errors. In Figure 1.1, examples of baseline offset noise and

multiplicative offset noise added to a Gaussian peak are shown.

Multiplicative offset errors are a major complication to analysis and quantification

by NIR using multivariate tools. Because of this, a variety of solutions have been

proposed, with the most widely used (by far) being standard normal variate (SNV) [3]

and multiplicative scatter correction (MSC) [4], which are described in the following

sections.

1.4.2 Standard Normal Variate (SNV)

The fundamental underlying assumption of the SNV method is that the variation

among samples due to chemical sources is quite small relative to the multiplicative
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Figure 1.1: Example of baseline offset noise and multiplicative offset noise, added to
a Gaussian peak. (A) Gaussian peak with baseline offset noise added; (B) Gaussian
peak with multiplicative offset noise added;

offset effect. Taken to the extreme, if there were no chemical differences among

spectra and the noise conforms to the assumptions, each spectrum could be scaled to

make the SNV-corrected spectra identical, but of course for calibration no predictions

could be obtained if all of the spectra contain the same chemical information. SNV

assumes that, in the absence of multiplicative and baseline effects, each spectrum will

have the same “average magnitude”, i.e. the variations among spectra due to scatter

effects are much larger than those arising from chemical differences. On this basis, the

standard normal variate (SNV) correction subtracts the mean of each spectrum, and

divides the result by the standard deviation of each spectrum, as shown in Equation

1.14:

xi,SNV =
xi − µ

{

xi

}

σ
{

xi

} (1.14)

where xi,SNV is the correction for the spectrum of sample i (xi). When scaled, each

SNV-corrected spectrum will have a mean of zero and a variance of unity.

The effects of SNV can be examined by considering what would happen for a

set of spectra that have identical chemical signals, no independent errors, and differ-

ing amounts of baseline offset and multiplicative offset noise. For this hypothetical

case, the mean and standard deviation of each spectrum will be directly related to

the scatter coefficients. In such a case, the SNV-treated spectra will be identical.

Alternatively, for a hypothetical dataset in which there is no scattering, and the

chemical response differs between samples, then the SNV transformation will distort

the chemical information in the spectra.

For real chemical datasets, the chemical signals will differ among samples. SNV
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is most appropriate when the variation due to scattering effects is significantly larger

than the variation due to chemical effects. While SNV is widely used and can be an

effective tool to correct for multiplicative offset noise, it is based on the assumption

that the underlying, error-free spectra contain the same variance. Deviations from

this assumption will introduce bias in the results. However, the assumption is often

approximately valid in NIR applications that involve very complex mixtures where

the overall composition and chemical responses are not highly variable.

1.4.3 Multiplicative Scatter Correction (MSC)

Multiplicative scatter correction (MSC) is perhaps the most widely used correction

method for NIR spectra. MSC was proposed by Geladi et al [4]. Like SNV, MSC

assumes that the multiplicative offset effects dominate the variation among spectra.

Instead of normalizing each spectrum using its own variance, however, MSC normal-

izes each spectrum to a reference spectrum (typically chosen to be the mean spectrum)

by assuming the linear relationship, as shown in Equation 1.15.

xi,MSC =
xi − ai,MSC

bi,MSC

(1.15)

where the MSC coefficients ai,MSC and bi,MSC are obtained from the slope and in-

tercept respectively of a simple linear regression of spectrum xi against a reference

spectrum xref . The reference spectrum is typically the average spectrum for the

training/calibration set. The model for determining the MSC coefficients is given in

Equation 1.16:

xi = ai,MSC + bi,MSCxref + ei,MSC (1.16)

where xref is the reference spectrum, and ai,MSC and bi,MSC are the offset and mul-

tiplicative correction parameters specific to the sample. These parameters are deter-

mined by a regression of the elements of xi (as a “y”) against the elements of xref ,

which minimizes the sum of squares of the residual vector ei,MSC . The MSC-corrected

values are then obtained by Equation 1.15.

By comparing equation 1.15 with equation 1.13, it is readily apparent that MSC

assumes that the reference spectrum is a proxy for the chemical component of the
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signal xi,chem. For this assumption to be true, the majority of the difference between

spectrum xi and the reference spectrum xref must be due to effects of the scatter,

and the chemical component of the response and independent errors must be similar

between xi and xref . If there is a large amount of chemical variation in xi, then some

of that information will be removed when the MSC correction is performed.

The effect of the first step of the MSC correction (subtraction of the offset term) is

to correct the spectra for a variable baseline offset. The second step of the correction

consists of division by the slope of the regression of xi onto xref . The problem with

MSC, as discussed by Fearn [27], is that a spectrum that is nearly orthogonal to the

reference spectrum will have a slope that is close to zero. The MSC treatment for

samples that are nearly orthogonal to the reference will introduce distortion, and will

result in the spectra appearing as outliers.

The application of the regression in MSC assumes that the only difference between

the signal and the mean are the scale and offset and the residuals around the line will

be randomly distributed. As with SNV, deviations from this assumption are essential

for calibration to work, and it is assumed by the method that the errors introduced

through this correction are more than compensated for by a significant reduction in

the multiplicative offset noise.

1.4.4 Alternative Approaches

Numerous alternatives to SNV and MSC have been developed over the years, and

some are reviewed in the introduction section of Chapter 2. In particular, the present

work focuses on recent methods that select particular wavelength channels to deter-

mine corrections to be applied, or which use a weight vector which places greater

emphasis on certain variables when determining the scatter correction parameters.

These weighted correction methods are based on the premise that some regions of the

spectrum may be dominated by multiplicative offset with little chemical variation,

and therefore are more reliable in making corrections. These methods are especially

needed for data which contain variables where significant chemical signal is present.

The utility and limitations of weighted correction methods are investigated in greater

detail in Chapter 2.
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1.5 Heteroscedastic Noise

For certain types of multivariate measurements, errors may be independent (uncor-

related) but complicated by non-uniform variance in the measurement errors, which

is termed “heteroscedasticity”. Even in cases where correlated errors are present,

heteroscedastic noise may be a dominant factor in the data analysis. Heteroscedastic

noise is a particular problem when the range of error variance is quite large. This is

often the case when the variables in a measurement vector represent different types

of measurements and/or have different units. For example, a measurement vector for

an environmental sample may contain the concentrations of dozens of elements with

a wide dynamic range. Alternatively, a measurement vector used to predict the ac-

tivity of a drug may contain variables which represent various chemical and physical

properties with different units or ranges. In other instances, such as mass spectrom-

etry, measurements may have a wide dynamic range and be subject to proportional

noise (e.g. due to ion source variation), meaning that the relative standard deviation

(RSD) remains relatively constant, but the absolute uncertainty changes. Another

example of heteroscedastic errors is in “data fusion”, where measurement vectors are

constructed by concatenating variables from multiple techniques, such as infrared

and Raman spectra, where the measurements have different ranges and uncertainties.

Still another case is where some instrument measurement channels may have excessive

noise due to the nature of the measurement. For example, absorbance measurements

will become increasingly noisy at wavelengths where the source intensity becomes

low.

Heteroscedastic noise is often a problem for multivariate analysis methods that

seek to simultaneously reduce the dimensionality of the data and exclude the noise.

In PCA for example, data compression does not distinguish between chemical vari-

ance and noise variance, so it may over-emphasize variables with high noise over more

informative variables if the absolute signal is small. As a consequence, the subspace

of the measurements is more poorly estimated, resulting in less information and more

noise propagating into the compressed data. This has consequences for all multi-

variate data analysis methods, including multivariate calibration, mixture analysis,

classification, and visualization.
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1.5.1 Heteroscedastic Noise Structure

If we consider a data matrix X (n × p), there is only one way for the errors to be

homoscedastic (uniform variance in the errors), whereas there are infinite ways for

the measurement errors to be heteroscedastic. In general, however, several broad

categories of heteroscedastic noise can be distinguished, as described below.

1. Column heteroscedastic. In this case, the measurements can be considered

to have a uniform error variance within a column of data (same variable or

measurement channel), but the error variance is different among columns. This

could be the case, for example, if one column represented pH and another

conductivity. This situation, or at least an approximation of it, is fairly common.

2. Row heteroscedastic. Similar to case 1, this is a situation where the error

variance is constant within a row (sample), but varies among the rows. This

circumstance is fairly rare, but can occur if measurements with homoscedastic

errors are individually normalized for each sample to compare profiles (e.g.

chromatograms or mass spectra) resulting in different noise amplification.

3. Systematic heteroscedasticity. This is perhaps the most common case, where

each measurement has its own error variance, but these uncertainties have a

structure related in a predictable way to the measurement channel, sample,

and/or measurement. For example, source flicker noise in spectroscopy can

yield uncertainties that are proportional to the measurement, and shot noise

(Poisson noise) has a standard deviation proportional to the square root of the

signal. Often this type of noise is a composite function of several sources that

can also include a homoscedastic iid component If the range of signals for a

given channel is limited, this type of noise may be approximated by case 1.

4. General heteroscedastic. Although less common, certain measurements may be

heteroscedastic with no apparent structure. This is the case, for example, with

DNA microarray measurements [28], where the measurement is expressed as a

ratio of fluorescence signals, each of which has an uncertainty dependent on the

quantity of the particular sensor element and the amount of hybridized DNA.
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Several simple examples of different types of noise are shown in Figure 1.2. In

the case of iid normal noise (Fig. 1.2A), the standard deviation of the noise in

each column is the same. In Fig. 1.2B, the noise was generated such that the noise in

each column was normally distributed, but the standard deviation of the noise in each

column was chosen at random, and as a result the noise is column heteroscedastic and

non-systematic (case 1). In Fig. 1.2C, the standard deviation of the noise increases

with increasing channel number, and the noise is therefore classified as systematic

and column heteroscedastic (case 3).

Figure 1.2: Examples of different types of independent noise. (A) iid normal noise;
(B) Column heteroscedastic, non-systematic; (C) Systematic column heteroscedastic.

A variety of strategies have been developed to deal with heteroscedastic measure-

ment errors, the most common being transformations of the data. While non-linear

transformations (e.g. log-scaling [29]) are sometimes used, these can alter the linear

structure of the data, so linear transformations (i.e. scaling) are much more common,

as discussed in the following section.
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1.5.2 Data Scaling

In principle, when heteroscedastic errors are present, optimal subspace modeling can

be accomplished using a technique such as maximum likelihood principal components

analysis (MLPCA) [22], which incorporates measurement error information to better

separate noise variance from chemical variance in a manner analogous to weighted

least squares. In practice, however, this requires accurate information about the

measurement error structure (error covariance matrices), which is usually unavailable.

In the absence of measurement error information, most approaches resort to scaling

of the columns of X as a way to deal with heteroscedastic errors. This means that

each column of data is divided (or multiplied) by a specific normalization factor to

render the measurement error homoscedastic, or nearly so.

In scaling of the data, there are several assumptions that are made. The first

is that the measurement errors follow case (1) in the previous section (column ho-

moscedastic). Error variances can only be made homoscedastic across the matrix by

column scaling if they are homoscedastic within the column. While each measurement

could, in principle, be scaled independently to give homoscedastic errors, this would

destroy the linear structure of the data [30]. Column scaling retains the structure

of the data. Even if the data are not strictly column heteroscedastic, this is often

a reasonable approximation to remove the effects of gross heteroscedasticity among

columns.

A second assumption in scaling is that we know measurement uncertainty in each

column, or at least the values relative to each other. Assuming case (1) noise, optimal

scaling from a maximum-likelihood perspective (i.e. MLPCA) would involve dividing

each column by its measurement error standard deviation [22]. As already noted,

however, this information is generally not available. In the absence of measurement

error information, an implicit (and reasonable) assumption that is often made is that

the relative uncertainty in each column of a measurement is the same. Since the errors

also have to be homoscedastic within a column, however, this relative uncertainty

has to implicitly reference some measure of the magnitude of a column of data. The

value of the relative uncertainty is not required, however, since it is assumed to be the

same across all columns. Depending on the metric used for the magnitude, several

techniques can be employed:
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1. range scaling, where each column is divided by the range (maximum minus

minimum) of the measurements in the column.

2. Mean or median scaling, where the divisor is the mean or median of the column.

3. Variance scaling, where the measurements are divided by the standard deviation

around the mean (when used in conjunction with mean centering, this is called

autoscaling).

Of these methods, variance scaling is by far the most widely used. The reason

for this is unclear, since mean scaling would seem more practical for analytical mea-

surements with proportional errors, but it is likely that this practice was adopted

historically from other fields. In practice, the type of scaling used is likely to be of

far less consequence than the assumption of uniform relative errors. If one column of

measurements has a higher relative uncertainty than others (e.g. the baseline region

of a spectrum), scaling can actually amplify the effect of noisy variables and degrade

the quality of analysis. Based on the details discussed above, scaling to correct for

heteroscedasticity without a knowledge of measurement uncertainty can lead to un-

predictable results and is one of the reasons that data preprocessing is such a critical

step in most chemometric methods.

A simple dataset of periodic trends is used here to illustrate the effects of scaling,

and why it is so important. The dataset consists of 14 elements from groups 1, 15, and

17 (Li, Na, K, Rb, Cs, N, P, As, Sb, Bi, F, Cl, Br, I), and 9 properties for each element

(bonding radius, atomic radius, ionization potential, electronegativity, melting point,

boiling point, heat of vaporization, heat of fusion, specific heat). The raw data are

plotted in Figure 1.3, and the elements are colored by group (alkali metals, pnictogens,

halogens). The units for melting point and boiling point are significantly larger

than the units of the other variables, so some form of scaling is obviously necessary.

The periodic trends data were scaled using range scaling, mean scaling, variance

scaling, and autoscaling, and the results of each scaling are shown in Figure 1.4.

As can be seen from Figure 1.4, the different types of scaling result in different

variables being emphasized in different ways. For example, ionization potential (IP)

and electronegativity (EN) show large variation relative to the other variables when

range scaling is used, whereas, when mean scaling is used, the variation is not quite as
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typically expressed in terms of an error covariance matrix. However, this informa-

tion is often unavailable or unobtainable due to resource limitations or experimental

constraints restricting the acquisition of replicate data.

In certain specific applications, it may be possible to estimate the error characteris-

tics of the data (e.g. scattering coefficients in NIR, error variance for heteroscedastic

measurements) from the data itself. This thesis explores two such cases. One of

these, the use of weighted scatter correction methods, is based on a long standing

methodology recently reported in the literature. The other involves the introduction

of principal axis factorization, a technique widely used in other fields, as an alternative

to PCA in chemometrics.



Chapter 2

Comparison of Weighted Scatter Correction Methods For

Multivariate Calibration

As described in Chapter 1, in areas such as near-infrared (NIR) spectroscopy, light

scattering effects can introduce multiplicative and/or additive effects on the signal,

which can harm the predictive performance of resulting models. These effects are

commonly corrected using methods such as the standard normal variate (SNV) and

multiplicative scatter correction (MSC) transformations. However, SNV and MSC

assume that the majority of the variance in the observed spectra is due to scattering

effects, and that the amount of chemical variation is consistent across all variables.

Weighted scatter correction methods use a weight function to account for the fact that

scattering effects dominate some variables that are relatively unaffected by chemical

variation. In this chapter, the circumstances under which weighted correction meth-

ods are most useful are evaluated, and three simulated datasets and one experimental

dataset are used to investigate the characteristics of two weighted scatter correction

methods under different measurement conditions. These methods are compared to

each other, as well as conventional correction methods.

This chapter begins with a general review of scatter correction methods for NIR

that have been proposed in the literature, with an emphasis on modifications to the

standard SNV and MSC approaches. A more detailed theoretical discussion of two

recently proposed weighted correction methods, Variable Selection for Normalization

(VSN) [31] and Interferent Dominant Region Correction (IDRC) [32], are then pre-

sented. The data and methods used in this study are then described, followed by a

comprehensive analysis of the results obtained.

2.1 Scatter Correction Methods in NIR Spectroscopy

The two main families of preprocessing techniques for dealing with scattering effects

in NIR spectroscopy are derivative-based methods, and scatter-correction methods. A

23
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review of these preprocessing methods has been given by Rinnan et al [33]. Derivative-

based methods include a first-difference or second-difference of the measured spectra,

along with smoothing. The Norris-Williams method of derivatives [34] uses a smooth-

ing function such that the intensity at a given point is the weighted average of the

neighboring points. The Norris-Williams derivative uses a “gap derivative”, which

calculates the first or second difference based upon the smoothed values for points

that are separated by a gap distance from a given channel. The other method for

derivatives is the Savitzky-Golay [35] approach, which calculates the derivative of a

point (channel) i by using a polynomial function to fit a symmetric window of neigh-

boring points. The first derivative will remove all constant sources of variation, and

can therefore remove pure baseline offsets, and the second derivative can also remove

linear slope terms as well as baseline offsets. However, derivative-based methods

cannot remove multiplicative noise completely. completely.

The most common scatter correction methods for NIR spectra are the multiplica-

tive scatter correction (MSC) [4] and standard normal variate (SNV) [3]. MSC uses

a linear regression of each sample versus a reference spectrum (usually the average

spectrum), and the slope and intercept are obtained. The MSC correction subtracts

the intercept from the sample, and then divides by the slope. SNV subtracts the

mean of each spectrum and then divides by the standard deviation of the result. The

relationship between MSC and SNV has been explored from a theoretical perspec-

tive, and it has been found that, while SNV and MSC are generally quite similar, the

SNV transformation can introduce curved structures in scores plots, while MSC can

sometimes introduce outliers [27].

Scatter correction methods have been developed which extend beyond the frame-

work of MSC and SNV. The extended MSC (EMSC) [36] [37] method can account

for other effects beyond simple additive and multiplicative offset terms, such as linear

and quadratic wavelength-dependent terms, and the pure component spectra of the

main components (if available). The inverted scatter correction (ISC) method [38]

uses the estimate of the coefficients based upon a regression in which the reference

spectrum is projected onto the spectrum of a given sample (the “inverse” of the MSC,

where the sample spectrum is projected onto the reference). An ISC model which also

includes wavelength-dependent terms or pure components spectra is termed extended
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inverted scatter correction (EISC) [39]. In the least squares fitting, the ISC and EISC

methods both assume that the errors in the sample spectrum are smaller than the

errors in the reference spectrum, which is a questionable assumption. Loopy MSC

[40] is another variant which involves applying the MSC correction, then using the

MSC-corrected spectra to re-apply the MSC correction. The Robust normal variate

(RNV) [41] method calculates the mean and standard deviation using a percentile

of the values in a spectrum. All of these modifications of MSC and SNV have been

shown by the authors to produce improved or marginally improved results for the

specific applications presented in the corresponding papers. A commonality of these

approaches is that they utilize the full spectrum, with the assumption that scattering

effects dominate at all wavelength channels. Several alternative approaches have been

based on the premise that some regions of the spectrum may be better than others

for estimating scattering effects, and these are discussed below.

Piecewise MSC (PMSC) [42] is one method that does not assume that scattering

effects are uniform across all wavelengths. PMSC calculates the MSC scatter coeffi-

cients for a moving window of neighboring wavelength channels, and it is based upon

the assumption that the scattering coefficients can change in different wavelength re-

gions. A somewhat related method, localized SNV (LSNV) [43], entails dividing the

spectrum into several regions of equal width, and performing separate SNV corrections

on each region. In a 2018 paper by Grisanti et al [44], three new scatter correction

methods were proposed, termed Dynamic Localized SNV, Peak SNV (PSNV), and

Partial Peak SNV (PPSNV). DLSNV is based upon localized SNV, with a modifica-

tion that it varies the starting points of the SNV windows. PSNV and PPSNV are

based upon picking peaks which have a high correlation with y, combining picked

points that are near each other, and performing SNV across each region of interest.

The main difference between PSNV and PPSNV is that for PSNV, the spectrum is

subdivided based upon the points of interest, whereas for PPSNV, a fixed window of

neighboring points around each picked point are used. Overall, PSNV and PPSNV

are more closely related to piecewise MSC than to weighted correction methods, as

the corrections are performed at a local level rather than global level. All of these

methods are likely to be less effective if there are regions where chemical variance

dominates over the variance due to scatter. Their underlying assumptions differ from
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those of weighted scatter correction methods which assume uniform weighted scatter

coefficients, but also that those coefficients are best estimated using selected wave-

length regions or channels.

The SNV and MSC methods both depend upon the assumption that the dominant

source of variation among a set of spectra is due to scattering effects. If significant

chemical variation occurs, then SNV and MSC will not be able to completely dis-

tinguish the effects of the physical scattering from the chemical signals [37] [32]. To

address the issue of chemical variation confounding the scatter correction, methods

of weighted scatter correction, which seek to account for the presence of chemical

variation in datasets affected by scatter through the use of weighted normalization,

have been proposed. A weighted scatter correction involves the calculation of vector

of weights for the spectral channels, then the spectra are multiplied by the weights,

the scatter correction parameters are calculated using the weighted spectra, and fi-

nally the scatter correction is performed by applying the correction parameters to the

original spectra. These methods are discussed in the section that follows.

2.2 Weighted Scatter Correction Methods

Several methods of weighted scatter correction have been proposed in the literature,

and these methods differ based upon how the weights are calculated, and the under-

lying model used to perform the correction (SNV, MSC, EMSC, etc.). The original

EMSC paper proposed by Martens et al in 1991 [36] suggested that a weighted least

squares estimation of the EMSC solution could be used, although it did not suggest

a procedure for calculating the weights. In a 2005 paper by Gallagher et al [45], a

weighted EISC procedure was proposed where, for a given weight matrix, a weighted

EISC solution is calculated, spectral channels with high residuals are de-weighted, and

the procedure is iterated using the new weights until convergence. In a 2019 paper,

Wu et al proposed a method called Weighted Multiplicative Scatter Correction using

Variable Selection (WMSCVS) [46]. WMSCVS assumes an EMSC model and uses a

weighted bootstrap sampling method to perform variable selection and it is optimized

by trying to find the minimum prediction error for a PLS model using the corrected

spectra. WMSCVS uses an orthogonal projection to remove baseline offsets and

wavelength-dependent terms, and then solves for the coefficient of the multiplicative
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term. When wavelength-dependent terms are not present, the orthogonal projection

step is mathematically equivalent to subtracting the mean from each row of the spec-

tral matrix. The orthogonal projection does not use any weighting for the estimation

of the baseline and wavelength-dependent terms, so as formulated, the WMSCVS is

not a complete weighted scatter correction method. EISC, EMSC, and WMSCVS all

assume an “extended” scatter correction model in which wavelength-dependent scat-

ter parameters are assumed. In this work, a conventional scatter correction model is

assumed, and so the extended methods are not explored further.

In 2014, Bi et al proposed the Interference Dominant Region Correction (IDRC)

method [32]. In IDRC, the spectra are divided into evenly spaced regions. One of the

regions is selected, and a weighted SNV correction is performed using the mean and

standard deviation of the variables in the selected region. As with WMSCVS, a PLS

regression model is then built using the corrected spectra to predict a target variable

and the prediction errors are calculated. The process is repeated using different

regions of varying size. After all regions have been tested, the region which gives

the lowest prediction errors is selected, and a weighted SNV is performed, with the

weights equal to 1 in the selected region, and with weights of 0 for the variables

outside the selected region.

In a 2019 paper by Roger et al, a method termed Variable Selection for Normal-

ization (VSN) [31] was proposed. The VSN procedure calculates weights by using the

Random Sample Consensus (RANSAC) algorithm [47]. For the regression of a pair

of signals on one another, The RANSAC algorithm seeks to fit a line that maximizes

the number of points that lie within a tolerance from the line. The VSN approach

uses the RANSAC algorithm to fit random pairings of spectral samples, and deter-

mine how frequently each wavelength channel lies within the tolerance of the line.

The assumption behind VSN is that variables which have little chemical information

will follow the same relationship, and will therefore be more likely to lie within the

tolerance of the line. The VSN weights can be applied to an SNV or MSC model.

The VSN approach can also be used to solve an EMSC model, although the weights

must be calculated in a slightly different manner.

In this chapter, simulated datasets will be used to test the effectiveness of the

weighting used in the VSN and IDRC methods under a variety of conditions. The
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details of these methods are described in the following sections.

2.2.1 Theory of Weighted Scatter Correction

A weighted scatter correction method will typically use a diagonal weighting matrix

W of dimensions p × p, where p is the number of variables, such that the off-diagonal

elements (wjk) are 0, and 0 ≤ wjj ≤ 1. For a variable selection-based correction, the

diagonal elements wjj are equal to either 0 or 1. For weighted SNV, the mean and

standard deviation of xiW are used instead of the mean and standard deviation of

sample xi. The weights are structured such that the larger the weight, the more a

variable is assumed to be dominated by scatter.

There are two aspects of weighted scatter correction: the weighting procedure

used, and the correction itself. Building off of the principles of MSC and SNV, it

is possible to understand the circumstances in which weighted scatter correction will

be effective, and the circumstances in which it will be ineffective. Weighted scatter

correction methods are best suited for datasets which have regions with low chemical

signal, and are dominated by scatter, and also have regions where there is a significant

amount of chemical variation. The regions dominated by scatter are needed in order

for it to be possible to obtain an accurate estimate of the scatter coefficients. The

presence of regions that are dominated by chemical signal will cause major issues for

conventional MSC and SNV.

2.2.2 Variable Selection for Normalization (VSN)

The VSN algorithm uses the RANSAC (random sample consensus) [47] algorithm as

part of the procedure for estimating the weights. Given two spectra that are plotted

against one another, the RANSAC algorithm tries to find a line which maximizes the

number of points that lie within a certain distance (tolerance) from the line. The

points that lie within the tolerance of the line are termed “inliers”, and the points

that are outside the tolerance are the outliers. In the context of scatter correction,

the idea of using RANSAC is that, for variables which are dominated by scattering

effects, the same linear relationship will be obeyed and so those variables will be

inliers, whereas variables which contain significant chemical signals will be less likely

to be inliers.
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input : Data Matrix of Spectra (X) (n× p); Tolerance value, ε ;

Number of sample pairs, Ns ; Number of inner loop iterations, Nw;

output: A vector of weights, w

1 Initialize the weight vector w, a vector of zeros of dimension p× 1;

2 for nouter ← 1 to Ns do

3 Draw a pair of samples x1,x2;

4 bestninliers=0;

5 for ninner ← 1 to Nw do

6 Draw a random pair of variables k and `, where x1k 6= x1`;

7 Calculate the coefficients a and b such that x1 = ax2 + b for

variables k,`: ;

8 a=x2k−x2`

x1k−x1`
;

9 b=x2` − ax1;
10 δ =

∣

∣x2 − ax1 − b
∣

∣;

11 inliers=which(δ < ε);

12 n inliers=size(inliers) ;

13 if n inliers > best n inliers then

14 best n inliers = n inliers;

15 best inliers = inliers;

16 end

17 end

18 for j ← 1 to p do

19 if j ∈ best inliers then

20 wj = wj + 1;

21 end

22 end

23 end

24 w = w/Ns;

25 W = diag
(

w
)

Algorithm 1: Algorithm for the VSN weighting method based on the

RANSAC method
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The VSN algorithm has a version for calculating a weighted SNV correction, and

a version for calculation of a weighted EMSC correction. The weighting procedure for

the VSN algorithm proceeds as follows in Algorithm 1. The VSN weighting algorithm

is initialized by choosing a value of the tolerance threshold for distinguishing inliers

and outliers, ε. The algorithm consists of an outer loop, and an inner loop. The outer

loop is based upon the number of sample pairs (Ns). The authors recommend using

all possible pairings of the samples in the training set. For n training set samples,

the number of unique pairings is equal to

(

n
(

n − 1
)

)

/2. At each iteration of the

outer loop, a pair of samples x1 and x2 are used. In the inner loop, the purpose is

to optimize the parameters a and b to find the largest set of inliers for fitting the

equation x1 = ax2 + b to within the tolerance of ε. For each iteration in the inner

loop, a random pair of variables k and ` are drawn to calculate trial values for a

and b. The number of iterations in the inner loop is determined by the number of

variable pairs to test (Nw), which must be set by the user. The recommended Nw

is 500-1000. Using the pair of variables k and `, the slope (a) and intercept (b) of

a line to estimate x1 from x2 is calculated. Using the coefficients a and b, a vector

of absolute differences (δ) is used to store the absolute error in the fit of x1 onto x2

for each variable (wavelength channel). Next, the difference vector δ is tested to see

which elements are less than the tolerance ε, and the indices of the variables are stored

in the vector inliers. The number of inliers (n inliers) is calculated, and n inliers is

compared with the current largest number of inliers (best n inliers). If n inliers is

larger than best n inliers, then best n inliers and best inliers are updated. Then

the inner loop continues to iterate until Nw iterations are reached. If a variable j is

a member of best inliers, the weight wj is increased by 1. Then the next iteration

of the outer loop is run. After all Ns iterations of the outer loop are completed, the

weight vector is normalized by dividing by Ns, so that the weights are on a scale from

0-1. Finally, the weight vector w is converted to a diagonal weight matrix W.

For VSN, the value of the tolerance ε should be varied across several orders of

magnitude (for example, from 10−5 to 100). After calculating the weights for several

values of the tolerance, the authors of the VSN algorithm recommend choosing the

threshold value which results in the largest standard deviation of the weight vector.

The reasoning is that, for a weight vector where the weights are all nearly equal to
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one another, the standard deviation will be very small, whereas if the weights are all

either close to zero or close to unity, the standard deviation of the weights will be

large.

There are two different types of corrections that can be applied using VSN. One

version is to use a weighted SNV correction, and this version is termed “Selective

SNV”, or SSNV. A special case of SSNV, in which the weights are either unity or

zero, is termed here as “Binary SSNV”. SSNV is carried out in a three-step process:

µC,i = µ
{

xiW
}

(2.1)

xC,i = xi − µC,i (2.2)

σC,i = σ
{

xC,iW
}

(2.3)

xSSNV,i =
xC,i

σC,i

(2.4)

In these equations, xC,i is equal to the spectrum of sample i (xi) corrected by subtract-

ing the weighted mean (µC,i), σC,i is the weighted standard deviation of xi (calculated

using xC,i), and xSSNV,i is the SSNV-corrected spectrum.

The other variation of VSN employs a weighted projection, which can be used to

solve either an MSC or an EMSC model. The VSN solution for the MSC model is

hereby termed Selective MSC, or SMSC for short. For the SMSC solution, a projection

matrix M of size 2 × p, which consists of a row vector of ones of size 1 × p, and a

reference spectrum, xref is used. Using the projection matrix M, and the weights

matrix W, the SMSC coefficients ai,SMSC and bi,SMSC for the spectrum of sample xi

are solved using the following equation:

[

ai,SMSC

bi,SMSC

]

=
(

MWMT
)−1

MWxT
i (2.5)

Equation 2.5 is simply a weighted form of the regression used in ordinary MSC,

emphasizing the wavelength channels with high weights in performing the fit. If the

weights for the variables are all equal, the SMSC will result in exactly the same

coefficients as a conventional MSC.

In the paper proposing the VSN method, the MSC-based solution was not ex-

plored, and instead the primary focus was on the EMSC-based correction. In the

present study, the SMSC approach is investigated, to compare it with SSNV and
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Binary SSNV. For the sake of simplicity, and ease of comparison among methods, the

simulated datasets did not incorporate wavelength-dependent scattering, which is a

fundamental component of the EMSC model.

The authors who proposed VSN claimed that weighted SNV can improve the

model interpretation, and use the PLS regression vectors to illustrate this point [31].

However, direct interpretation of regression vectors is a hazardous undertaking for

even the most experienced chemometrician, as the shape of a regression vector is a

complex function of the pure-component spectra, the experimental design, and the

measurement error structure [48].

2.2.3 Interferent Dominant Region Correction (IDRC)

The IDRC method was proposed by Bi et al [32]. In the terminology of IDRC,

an interferent dominant region (IDR) is used to describe a region which has a low

noise level and low level of chemical variation, and which is therefore dominated by

scattering effects. An IDR is equivalent to what is termed a scatter dominant region

(SDR) in the work presented here. The objective of IDRC is to try to find a SDR

by testing corrections using the parameters from local spectral regions. The IDRC

algorithm begins by dividing the spectra into a series of k equally spaced regions,

where 1 ≤ k ≤ K, and K is the maximum number of regions (for example, when

K=10, the spectrum can be divided into at most 10 different sub-regions). Let a

given spectral region be denoted as R, and let XR be the part of the spectra X in

region R. The mean and standard deviation of sample i in region R are calculated,

and are used to perform an SNV-like correction to the spectra:

xi,IDRC =
xi − µ

{

xR

i

}

σ
{

xR

i

} (2.6)

This is equivalent to a weighted SNV correction, where the weights are 1 for all

variables in R, and the weights are 0 for all variables that are not in region R. The
next step in the IDRC algorithm is to calculate an index of differences among samples:

t =

p
∑

j=1

var
{

xj,IDRC

}

(2.7)

where p is the number of wavelength channels, xj,IDRC is the jth column of the IDRC-

corrected spectra (XIDRC). The index of differences among samples is also calculated
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using a conventional SNV correction, and is termed tSNV . The index of differences

is used to screen the regions, such that regions in which the t is larger than tSNV

are excluded from further consideration. If the t of a region is smaller than tSNV ,

then a PLS regression will be built using the corrected spectra XIDRC and a target

variable y. From the PLS regression, the root mean squared error of cross validation

(RMSECV) is calculated. The above process is repeated for all k spectral regions of a

given size, then the region size is changed to split the data into (k+ 1) regions, until

k = K. After testing out all regions from each possible region size, the region which

results in the lowest RMSECV is chosen as the optimal region, and is used for the

final IDRC correction. If there are multiple target variables, then a separate IDRC

analysis must be performed for each analyte of interest.

2.2.4 Objectives

In the work presented here, it is hypothesized that weighted scatter correction meth-

ods (VSN and IDRC) will be most appropriate when used to correct spectra that

exhibit two types of regions: a region in which the majority of the variance is due to

scatter (multiplicative offset and baseline offset), which is hereby referred to as the

scatter dominant region (SDR), and a region in which there is strong variation from

chemical signals, which will be called the chemical dominant region (CDR).

This theory is tested using three simulated datasets and one experimental dataset.

In the simulated datasets, only baseline offset and multiplicative offset noise are

assumed to be present (with a small amount of iid noise added), and it is assumed that

no wavelength-dependent scattering effects were present. The spectra were designed

to have a small amount of background chemical signal in a region that was dominated

by scatter while, in another region, the signal was dominated by chemical signals from

the analytes of interest. In each dataset, the pure spectra and noise characteristics

were the same, but the amounts of background signal and main chemical signals

were varied. The experimental dataset consisted of NIR spectra of wine musts. The

data contained significant amounts of scatter in some regions of the spectra, while

in other regions had significant amounts of chemical variation. For each dataset, the

effects of preprocessing using SNV, MSC, VSN, and IDRC were tested, and the PLS

regression was used to assess the effect of the different preprocessing methods on
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the prediction performance. Each of the preprocessing methods were also assessed

qualitatively based upon how well the methods preserved the chemical signal. It

was found that the results for the simulated datasets support the theory of weighted

scatter correction presented above, and recommendations regarding the usage of SNV

and IDRC are proposed on the basis of the results.

2.3 Data

Three simulated datasets and one experimental dataset of NIR spectra of wine musts

were used in the present study. The simulated datasets were designed to include

features that are present in experimental spectra, but in a somewhat simplified form,

and these datasets were also designed to test the assumptions of weighted scatter

correction methods by varying the levels of main chemical signal and the chemical

background level while holding all other parameters the same. Simulated Dataset 1

was designed to have the optimal setup for weighted scatter correction methods, as it

had a large main analyte signal level, and a low background level. Simulated Dataset

2 represents data for which the assumptions of SNV are not violated, as it had a low

main chemical signal level, and a low background level (the same level as for Dataset

1). Simulated Dataset 3 was designed to show that when the background level is too

high, the scatter correction parameters cannot be accurately estimated, resulting in

errors in the corrections, and for this dataset, the main chemical signal was the same

as for simulated Dataset 1, while the chemical background signal was significantly

larger.

2.3.1 Simulated Data

The three simulated datasets were generated as follows. Each dataset contained

n = 2100 total samples, and p = 200 variables, and was composed of a set of back-

ground spectra, chemical analyte spectra, and noise. 100 of the samples were used

for optimization of the scatter correction parameters (for VSN and IDRC), while the

remaining samples were used for regression (1000 samples for calibration, and 1000

samples for the test set). The large number of samples used for calibration and pre-

diction in these simulation studies far exceeds the number that would typically be

available in a real experimental calibration, but were intended to minimize the errors
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from these sources. The final prediction errors can be viewed as being a combination

of errors in building the calibration model, errors in the prediction step, and errors

arising from preprocessing. As the purpose of this study was to examine contributions

from preprocessing (scatter correction methods), the large number of calibration and

prediction samples minimizes those contributions. The number of samples used to

determine the weighting parameters (100) is more typical of what might be available

for experimental data.

The noise-free spectra Xchem were composed of the component spectra of the

main chemical analytes (Xmain), and of background components spectra (Xbg), and

of a base peak shape (Xbase), such that Xchem = Xmain + Xbg + Xbase. The base

spectrum, shown in Figure 2.1A, is intended to represent a common spectral profile

shared by all samples of a given experiment and represent an average of the broad

spectral features typical of NIR spectra. It can be viewed as a mixture of all of

the combination and overtone bands presented by the complex mixture. Ordinarily,

since the mean is removed prior to calibration, the base spectrum would have no

effect, but in the present simulations, it will effect the magnitude of the multiplicative

offset noise. The background spectra Xbg, exemplified in Figure 2.1C, represent the

multitude of chemical variations between samples not associated with the analyte

of interest. These are assumed to be random and uncorrelated with the analyte of

interest. Finally, Xmain will represent the spectra from the analyte of interest, for

which the measured property (e.g. concentration) has been determined. For the

purpose of this study, Xmain is composed of two chemical components, the analyte of

interest and an interfering compound with similar spectral properties. This was done

to more accurately represent a typical calibration scenario. Typical spectra of the

main analytes are shown in Figure 2.1D, with the noise-free spectra shown in Figure

2.1E.

All of the spectra simulated in this work were simulated using Gaussian functions

or combinations of Gaussians to represent the broad spectral features. In general, the

Gaussians can be described by a height scale factor (h), the position of the mean µ,

and a standard deviation σ, as given in Equation 2.8

fGauss

(

h, µ, σ, ξ
)

= h
( 1

σ
√
2π
e−(ξ−µ)2/(2σ2)

)

(2.8)
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In this equation, ξ represents the wavelength channel indices, and has the same units

as µ and σ. The maximum peak height will occur at µ, and the baseline width of

the peak will be approximately 4σ. Spectra are represented as row vectors for ξ =
[

1, 2, ..., 200
]

(or
[

1, 2, ..., 300
]

for the background spectra) and may be represented

by the addition of two or more Gaussians.

The base peak shape matrix Xbase shown in Figure 2.1A was the same for all

samples and resulted from the addition of three Gaussian functions, all with h = 20

and σ = 25. The mean positions of the three Gaussians were µ1 = 30, µ2 = 120, and

µ3 = 180. The resulting 1 × 200 vector was copied n times to give the base profile

matrix Xbase for subsequent calculations.

The objective for the chemical background spectra was to have a mixture of peaks,

with similar mean intensities. These background spectra were designed to model vari-

ation due to the presence of minor chemical components. The chemical background

spectra were generated as follows. First, the pure component spectra for 31 back-

ground components were generated over the range ξ =
[

1, 2, ..., 300
]

. Each spectrum

consisted of a Gaussian function with h = 200 and σ = 200, with the mean position

varying from µ = 0 to µ = 300 in steps of 10. These 31 spectra consisted of the pure

spectral profile matrix, Sbg (31×300). To introduce chemical variation, it is necessary

to incorporate concentration variations in the background components for each of the

2100 mixture spectra generated. To do this, a random concentration matrix, Cbg

(2100×31) was generated by drawing random values from a normal distribution with

a mean of µbg and a standard deviation of σbg. For all Datasets, µbg was set to 0.005,

but σbg was varied to improve different conditions for the simulations. For Datasets 1

and 2, σbg was set to 0.00002, while for Dataset 3 σbg was 0.001. The background con-

centrations and background spectral profiles were multiplied to give the background

spectra, such that (Xbg = CbgS
T
bg). The last step was that the background spectra

were truncated to only include channels 51-250 to remove edge effects. The back-

ground spectra Xbg for simulated Dataset 1 are shown in Figure 2.1B-C, which show

the spectra before truncation and after truncation, respectively. From examining the

plot, the motivation for using extra channels and then trimming becomes apparent, as

the full background spectra (before trimming) experienced a drop-off in the intensity

at each end of the spectrum, whereas the trimmed background spectra all have an
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average intensity of close to 0.1. The signal standard deviation of individual back-

ground components was about 0.00016 (for Datasets 1 and 2) and 0.008 (for Dataset

3), but the additive effect led to the values of about 0.0021 and 0.011, respectively,

in the final spectra.

The main chemical spectra consisted of two components representing the analyte

of interest and an interferent. Although the background spectra can also be considered

to represent interferences, the intent here was to include at least one interferent

that was constrained to be one of similar magnitude to the analyte to challenge the

calibration. The spectra of the analyte and interferent were designed to be similar,

each with peaks close to channels 120 and 180. These were on the right hand side

of the spectrum, with the potential for the channels on the left-hand side to be used

for scatter correction. The analyte spectrum was created by combining two Gaussian

functions with h=200, σ = 10 and µ1 = 115, µ2 = 175. The interferent (component 2)

was created in the same way, except with µ1 = 125 and µ2 = 185. This ensured some

overlap between the components. The combination of these two spectra provided the

2 × 200 spectral matrix, Smain. As with the background matrix, the concentration

matrix for the main components, Cmain (2100×2), was generated by sampling from a

random normal distribution with parameters N(µ = 0.10, σmain), where σmain is the

standard deviation of the background concentrations. For Datasets 1 and 3, σmain was

set to 0.03, while for Dataset 2 σmain was 0.001. The main analyte concentrations

and spectral profiles were multiplied to give the main analyte spectra, such that

(Xmain = CmainS
T
main). The main chemical analyte spectra Xmain for Dataset 1 are

shown in Figure 2.1D. The combination of the base profile Xbase, background spectra

(Xbg) and main component spectra Xmain results in the noise-free spectra Xchem,

typified in Figure 2.1E.

The model for the overall spectra, including the individual components of the

noise and the noise-free spectra, is shown in Equation 2.9:

xi =
(

αi1+ βixi,chem + εi
)

+ xi,chem (2.9)

where xi is the spectrum of the ith sample, αi ∼ N(µ = 0, σ = 0.1) is the coefficient

of the baseline offset, βi ∼ N(µ = 0, σ = 0.1) is the coefficient of the multiplicative

offset of the ith sample, xi,chem is the pure chemical response excluding scatter effects,

and εi ∼ N(µ = 0, σ = 0.0001) is a vector of iid normal errors. The result of adding
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randomly normally distributed (iid) numbers. This transformation gave a range of

Y of about 2%, a reasonable value for most reference methods. This transformation

also had the benefit of scaling Y to the same range across each dataset (making for

easier comparisons of RMSEP across datasets), and set a floor of approximately 0.1

for the RMSEP. The benefit of setting a non-zero floor to the RMSEP is that any

RMSEP values below 0.1 would be indicative that overfitting had occurred.

The three different datasets simulated represent different levels of signals and

noise, but because there are different sources of “noise”, it is useful to put these into

perspective. The simulations are summarized in Table 2.1 to provide this perspective

in terms of variations introduced by different sources. The first three rows give the

standard deviations of the three noise sources (baseline offset, multiplicative offset,

and iid noise. These were fixed for all three simulations. The baseline offset and

iid noise were in units of the measured signal and it is clear that the offset noise is

much larger than the iid noise by several orders of magnitude. This is typical for

NIR spectra and the iid noise has only been included here to provide a limit. The

multiplicative offset noise is expressed as a relative standard deviation (RSD), but

with the signal range given, this will vary from about 0.025 to 0.25, which is on

the same order as the offset noise. The fourth row gives the individual background

component variation in concentration units, but for greater utility, row five gives the

average background variability in signal units. The chemical background variability

is increased by a factor of fifty for Dataset 3, but is still about an order of magnitude

below the scatter effects. The analyte variability changes by about a factor of 30 over

the simulations in terms of concentration, but this is more challenging to quantify in

terms of the signal measurement domain because of the presence of the interferent.

The relevant quantity to express is the variability in the net analyte signal (NAS)

which is derived from multivariate calibration theory [49] using only the two main

components, where the selectivity for analyte is 0.62. The magnitude of the NAS

for each simulation is given in row seven. From this, we can calculate an operational

value for the ratio of the analyte signal to the chemical background signal, given in

row eight. The table shows more clearly how the simulations are intended to examine

the effectiveness under different conditions of background chemical noise and signal

to background ratio.
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Table 2.1: Parameters for Simulated Datasets

Parameter Dataset 1 Dataset 2 Dataset 3

σbase (signal units) 0.1 0.1 0.1
σmult (RSD) 0.1 0.1 0.1
σiid (Signal Units) 0.0001 0.0001 0.0001
σbg (Concentration Units) 0.00002 0.00002 0.001
σbg (Signal Units) 0.00214 0.00214 0.0106
σanalyte (Concentration Units) 0.03 0.001 0.03
σanalyte (Net Analyte Signal) 0.89 0.030 0.89
Signal to Background Ratio 4150 140 84

Figure 2.2: Simulated noise and simulated spectra Dataset 1. (A) Noise matrix
(including multiplicative offset, baseline offset, and iid noise); (B) Simulated spectra
matrix, X.

The noise matrix for simulated Dataset 1 is depicted in Figure 2.2A, the noise-free

spectra are shown in Figure 2.1E, and the spectra for Dataset 1 are shown in Figure

2.2B. These spectra were designed to cause problems for conventional SNV and MSC,

because in the region from channels 80-200, the majority of the variation is due to

chemical variation, whereas MSC and SNV assume that the majority of the variation

in X is due to scattering.

The simulated spectra for Dataset 2 and the noise-free spectra are shown in Figure

2.3A and 2.3B. The only feature of Dataset 2 that was different from Dataset 1 was

that in Dataset 2 the standard deviations of the pure concentrations were lower. The

amount of chemical variation was extremely low for Dataset 2, and as a result the

assumptions of SNV and MSC were not strongly violated.

The spectra for simulated Dataset 3 are depicted in Figure 2.4A, and the noise-free
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Figure 2.3: Simulated Spectra for Dataset 2. (A) Simulated spectra X; (B) Noise-free
spectra Xchem.

Figure 2.4: Simulated Spectra for Dataset 3. (A) Simulated spectra X; (B) Noise-free
spectra Xchem.

spectra for Dataset 3 are shown in Figure 2.4B. The only differences between Dataset 3

and Dataset 1 were that for Dataset 3 there was more chemical background variation,

as can be seen from the variation in channels 1-80 for the noise-free spectra of Dataset

3 in Figure 2.4B. The increased level of chemical background signal was used to assess

how much the background signal would introduce error in the corrections for both

weighted and unweighted scatter correction methods.

2.3.2 NIR Wine Must Data

The dataset of NIR wine must data was obtained courtesy of Jean-Michel Roger

(IRSTEA, France), and was used in the VSN paper [31]. NIR spectra of 621 samples

of wine musts were measured using a double beam JASCO V560 NIR spectrometer.

One beam passed through a 1 mm cell filled with water (as a reference), and the other
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beam passed through a 1 mm cell filled with must. The absorbance was recorded

on 750 wavelengths, located between 800 nm and 2298 nm in 2 nm intervals. The

property of interest (the y variable) was the alcohol by volume (ABV) content of the

musts. The wine must samples were measured during the entire wine making process,

including during the beginning of fermentation (when the must is grape juice, and

therefore has an alcohol by volume content of 0). As a result, there were 158 samples

in the dataset with y values of 0.

Figure 2.5: NIR spectra of wine musts. Samples are color-coded according to the
alcohol by volume (ABV) content such that samples with low ABV values are blue
and samples that have high ABV content are red.

The NIR spectra of the wine musts are depicted in Figure 2.5. The spectra of the

musts exhibit a baseline due to the turbidity of the musts [31]. Between 1900 nm and

2050 nm, where the major absorption band of water is located, there is a significant

amount of chemical variation, In the region between 2050 nm and 2298 nm, there is

variation due to ethanol absorption, which can clearly be observed when the samples
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are color-coded based upon the alcohol by volume (ABV) content.

2.4 Methods

2.4.1 Simulated Data

All simulations were carried out using MATLAB version R2017b (Mathworks, Natick,

MA, USA). The code for the variable selection for normalization (VSN) was obtained

courtesy of Jean-Michel Roger (IRSTEA, Montpellier, France). Small modifications

to the code were made, including a change that allows the user to use a random

fraction of all spectral couples, whereas the original code uses all spectral couples.

The code for IDRC was obtained courtesy of Yifan Wu (Chinese Academy of Sciences,

Beijing, China).

For VSN, 25 values of the threshold parameter were calculated. The values of the

thresholds ranged from 10−5 to 100, and used a sequence which sampled values in the

“middle” of the logarithmic range (10−3 to 10−2) more heavily than values closer to

the extremes, (see Figure 2.6 for an example of the threshold sequence). The threshold

selection criterion employed the threshold with the largest standard deviation of the

weights. Typical weight values for each of the three simulated datasets are shown in

Figure 2.7 Using the optimal VSN weights, both the SSNV and SMSC corrections

were applied to the spectra. Additionally, as a reference, a Binary SSNV correction

was calculated, with weights of 1 for channels 1-75 (where there is no absorbance

from the main chemical sources), and weights of 0 for channels 76-200 (where there

is variance from the main chemical sources). The Binary SSNV weight vector is also

shown in Figure 2.7. The Binary SSNV represents somewhat of a best-case scenario

for weighted SNV, since the scatter-dominant regions and chemical-dominant regions

are “known”.

For IDRC, the spectra were evaluated for k = 1 to k = 20 regions. The to-

tal number of regions evaluated was 210. PLS models with 25 components were

calculated, and five-fold cross validation with random splits was used to calculate

the root mean squared error of cross validation (RMSECV). To determine the op-

timal number of PLS components to select, an F-test [50] based upon the ratio of

RMSECV 2/min(RMSECV 2), with significance level α = 0.25 was performed. The
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computational parameters (five-fold cross validation and F-test) were suggested by

the authors of the IDRC method [32].

In addition to the VSN-based methods and IDRC, models were also created using

standard SNV and MSC, and using the original spectra (with no preprocessing) for

comparison.

The objective of the analysis was to assess how each preprocessing method affected

the prediction errors from multivariate calibration models. The challenge for such a

study is that the prediction errors are affected not just by the preprocessing technique,

as the prediction errors will also vary based upon the realization of the samples/noise

(due to statistical sampling error). The simulations were designed with the intent of

minimizing the prediction errors due to sampling effects, such that a realistic estimate

of the prediction errors based upon the preprocessing technique could be obtained.

Each dataset was split into 3 different sets: a training set with 100 samples, a

calibration set with 1000 samples, and a test (prediction) set with 1000 samples. The

parameters for the variable selection and weighting algorithms were determined using

the samples from the training set. Using the parameters that were found for the

training set, the corrections were applied to the calibration and test sets. To choose

the optimal number of PLS components, a 50/50 split of the calibration set was used,

and a 25-component PLS model was calculated using the first 500 samples of the

calibration set, and was used to predict the concentrations of samples 501-1000 of

the calibration set. In each PLS regression, the spectra were mean-centered, relative

to the mean of samples 1-500 of the calibration set. The root mean squared error

of validation (RMSEV ) was calculated using the prediction errors from samples

501-1000 of the calibration set. The number of components which resulted in the

minimum RMSEV were selected. A PLS model was built using the selected number

of components and all 1000 calibration set samples, and predictions were made using

the test set samples, to obtain the root mean squared error in prediction (RMSEPTest).

To assess the stability and robustness of both the preprocessing methods and

the prediction errors, and to obtain an estimate of the uncertainty in the prediction

errors, a Monte Carlo method was used. One hundred different realizations of the data

matrix X and the concentrations matrix Y were generated, with the same parameters

used to create each realization. For each realization, the preprocessing parameters
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were calculated, and the prediction errors were calculated.

2.4.2 Wine Must Data

For the analysis of the Wine Must Dataset, the dataset was split into a training

(calibration) set of 414 samples (2/3), and a test (prediction) set of 207 samples (1/3)

using the Duplex algorithm [51]. For VSN, 25 values of the threshold parameter were

calculated, using the same methodology as described above for the simulated data.

For IDRC, the spectra were evaluated for k = 1 to k = 50 regions for PLS models

with 25 components, using five-fold cross validation and an F-test with significance

level α = 0.25, to find the region which resulted in the lowest RMSECV.

The number of components for the PLS regressions for each variable selection

method were chosen using cross validation (CV) with 10 random 50/50 splits of the

training set. For each of the 50/50 splits, the root mean squared error of cross valida-

tion (RMSECV) was calculated. The number of components was selected based upon

an F-test based upon the RMSECV, with significance level α = 0.25 was performed,

as was done with IDRC. For both IDRC and for the Wine Must data, using the F-

test will result in fewer components selected than selecting the number of components

that results in the minimum RMSECV. Cross validation can result in overfitting if

too many components are used.

2.5 Results and Discussion

For the figures depicting the simulated spectra, the color of each spectrum corresponds

to the concentration of component 1 of (y1). The values of y1 were scaled so that

min(y1,scaled) = 0.1 and max(y1,scaled) = 0.95, and then the RGB (red, green, and

blue) values (on a 0-1 scale) were set equal to
[

y1,scaled, 0, (1−y1,scaled)
]

. Spectra with

larger values of y1 had higher red coloration, and the spectra with the lowest values

of y1 had more blue coloration. This color-coding scheme enables the viewer to more

readily discern the chemical information in the spectra.

The same color scheme described above was also applied to the Wine Must

Dataset, such that the samples were color coded based upon the y values (percent

alcohol by volume, ABV), such that red colors corresponded with high ABV content,

and blue corresponded with low ABV content.
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Figure 2.6 shows the standard deviation of the VSN weights versus the threshold

value for typical realizations of the three simulated datasets. Comparing these results

for the three datasets, the standard deviation of weights was larger for Dataset 1 than

for Datasets 2 and 3, and the optimal threshold (the threshold which resulted in the

largest standard deviation of the weights) for Dataset 3 was the largest (0.0155), while

the optimal threshold for Dataset 2 was the smallest (4.78 × 10−4). The threshold

value which resulted in the largest standard deviation of weights for Dataset 1 was

7.79 × 10−4. The similarity of the optimal thresholds for Datasets 1 and 2 is not

surprising since they have the same levels of background variation. In all three cases,

the threshold values are reasonably close to the background signal standard deviation

given in Table 2.1 (0.00021 for Datasets 1 and 2, 0.0105 for Dataset 3).

Figure 2.6: Results of the weighting procedure for VSN for each of the three simulated
datasets, showing standard deviation of the VSN weights for each threshold value.

Typical weight vectors for VSN which correspond to the optimal thresholds for

each simulated dataset, and the binary weight vector that was used, are plotted in
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Figure 2.7. For Dataset 1, in the scatter-dominant region (channels 1-80), the weights

for VSN were close to unity, while in the chemical-dominant region (channels 100-

200), the weights were close to zero. The weights for Dataset 1 were similar to the

binary weights. The weight vectors for Datasets 2 and 3 were similar to one another,

despite the threshold differences, and are characterized by lower weights (circa 0.9)

in the background region and higher weights in the analyte region. In particular,

there is an increase in weights around channel 150, which corresponds to the valley

between peaks in the analyte and interferent spectra, where the signal will be closer

to background. Compared to Dataset 1, this region is more likely to be detected as

background for Dataset 2 because of the lower analyte variability and for Dataset 3

because of a higher background signal. These weight vectors are somewhat less than

ideal compared to Dataset 1, as anticipated.

It should be noted that in the course of many Monte Carlo simulations using differ-

ent realizations of the parameters, the optimal weight vectors will change somewhat,

but Figures 2.6 and 2.7 are typical representations of the characteristics observed.

2.5.1 Simulated Dataset 1

Dataset 1 was designed to have low background signals in the scatter dominant region

and high analyte signals. Therefore, it represents the ideal case for weighted scatter

correction methods and the case in which whole spectrum methods are most likely to

fail.

The corrected spectra obtained by using SNV and MSC are shown in the top row

of Figure 2.8. The spectra that were processed by SNV and MSC both exhibit severe

distortion, as the variation in the peaks centered at channels 120 and 180 was much

smaller than the variation in that region for the noise-free spectra (see Fig. 2.1E),

and in the region from channels 1-90, artificial correlation with y were introduced as a

result of the corrections. The reason why SNV and MSC resulted in such problematic

corrections was that there was a significant contribution from chemical signals in the

calculation of the scattering coefficients.

Using the optimal VSN weights for Dataset 1, the SSNV (Fig. 2.8C) and SMSC
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Figure 2.7: Binary VSN weight vector (black), as well as optimal VSN weight vectors
for each simulated dataset.

(Fig. 2.8D) methods were used to correct the spectra. The spectra that were pro-

cessed by SSNV appeared to be similar to the Binary SSNV corrected spectra, al-

though in Fig. 2.8C it can be observed that there is still some variation present in

the baseline region, which indicates that the SSNV correction was not quite as ac-

curate at reproducing the behavior of the noise-free spectra. In contrast to SSNV,

the spectra processed by SMSC looked very similar to the spectra obtained by using

SNV and MSC, exhibiting a reduced amount of variation in the main chemical peak

regions when compared with the noise-free spectra. Thus, it appears that SMSC is

not as effective at correcting for scatter as SSNV, even though the same weights were

used.

The IDRC method resulted in the selection of channels 34-44 for this realization

of the data. For the optimal IDRC results, the RMSECV was 0.0914, and 2 latent

variables were used in the training phase. For this dataset, the spectra obtained
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Figure 2.8: Results for the preprocessed spectra for Dataset 1. (A) SNV; (B) MSC;
(C) SSNV; (D) SMSC; (E) Binary SSNV; (F) IDRC.

with IDRC were very similar to the spectra that were obtained by using the ideal

Binary SSNV. Both the Binary SSNV and IDRC were able to adequately correct for

the scattering effects, as can be seen by comparison of the Binary SSNV and IDRC-

processed spectra (Fig. 2.8E and 2.8F, respectively) with the noise-free spectra in

Fig 2.1E.

In the spectra that were processed using SMSC, information from the CDR leaked

into the other regions of the spectrum, as can be seen by the fact that there are clear
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Figure 2.9: Effects of VSN weights in simulated Dataset 1. Binary weights, [w1, w2]
were applied to channels 1-75 (w1) and channels 76-200 (w2). (A) SSNV with
weights=[1,0.10]; (B) SMSC with weights=[1,0.10]; (C) SSNV with weights=[1,0.01];
(D) SMSC with weights=[1,0.01]; (E) SSNV with weights=[1,0.001]; (F) SMSC with
weights=[1,0.001].

patterns of red and blue in the region from channels 1-80, which should not have

any chemical information. Since the information leaked from the chemical dominant

region to the scatter-dominant region, it can be concluded that even the small weights

in the CDR were large enough to have a significant effect on the scatter correction.

To test the effect of the magnitude of weights in the chemical-dominant region
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on the SSNV and SMSC processed spectra, a series of tests were performed using

a scheme similar to that used for binary weighted SNV. Using weight vectors that

consisted of weights of 1 for channels 1-75 (the SDR) and weights of either 0.100, 0.010,

or 0.001 for channels 76-200 (the CDR), SSNV and SMSC corrections were calculated

for each possible case. The results of the SSNV and SMSC corrections for each level

of weighting are shown in Figure 2.9. When the weights in the CDR were 0.10, both

SSNV (Fig. 2.9A) and SMSC (Fig. 2.9B) experienced significant distortion, and

appeared somewhat similar to the spectra obtained by using conventional SNV and

MSC. When the weights in the CDR were 0.01, using SSNV (Fig. 2.9C) resulted

in spectra which adequately corrected for the scattering effects, although a small

amount of baseline variation is evident. The shape of the spectra that resulted from

using SMSC (Fig. 2.9D) with weights of 0.01 in the CDR were somewhat improved

from when the weights were 0.10, with reduced signal variation in the SDR, and less

information loss in the chemical region, but the spectra were still not quite ideal in

their behavior. When the weights in the chemical-dominant region were 0.001, the

SSNV-processed spectra (Fig. 2.9E) were nearly perfect at correcting the scatter, and

to the naked eye appear to be the same as the Binary SSNV spectra in Fig 2.8C. For

the SMSC-processed (Fig. 2.9F) spectra which used weights of 0.001 in the CDR, it

can be observed that the scatter correction was still imperfect in the scatter-dominant

region although much improved. At each weight level, the SSNV correction was better

able to reproduce the behavior of the noise-free signal than SMSC.

Overall, the results of the tests that are displayed in Figure 2.9 indicate that

both SSNV and SMSC can be significantly affected by small weights in regions where

significant chemical absorbance occurs, with SMSC being more sensitive to this effect

than SSNV. The impact of the small weights on each method can be understood

by consideration of the equations used to calculate SSNV and SMSC. For SSNV,

the contribution of channel j to the weighted mean is equal to wjxj, and for the

weighted standard deviation the contribution is equal to wj

(

xj − x̄w

)2
. As a result,

the contribution of the impact of spectral channel j to the model is approximately

linearly proportional to the value of the weight wj. As far as the contribution to the

weighted mean is concerned, a channel with a measured absorbance of 1 and a weight

of 0.1 is equivalent to a channel with a measured absorbance of 0.1 with a weight of
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Table 2.2: PLS regression results for the various scatter correction
methods applied to simulated Dataset 1.

Method RMSEVa RMSEPb
Test NLVc

None 0.1413 (0.0062) 0.1417 (0.0044) 4.03 (0.17)
SNV 0.287 (0.028) 0.288 (0.030) 2.76 (0.82)
MSC 0.293 (0.031) 0.294 (0.035) 2.16 (0.66)
Binary SSNV 0.1006 (0.0035) 0.1006 (0.0019) 2.08 (0.27)
SSNV 0.1011 (0.0036) 0.1012 (0.0020) 2.60 (0.70)
SMSC 0.200 (0.016) 0.200 (0.013) 1.98 (0.43)
IDRC 0.1008 (0.0037) 0.1009 (0.0020) 2.92 (0.58)

Average values from 100 realizations of Monte Carlo Procedure
(standard deviations in parentheses)
a RMSEV=Root mean squared error from calibration
b RMSEPTest=Root mean squared error of prediction for test set
c NLV=number of latent variables

1. For SMSC, the picture is somewhat more complex, as SMSC uses a weighted least

squares projection to solve for the scatter parameters.

The PLS regression results from the Monte Carlo procedure for Dataset 1 are sum-

marized in Table 2.2. For each method, the difference between the average RMSEV

and the average RMSEPTest was negligible. The smallest prediction errors were ob-

tained by the models which used Binary SSNV, IDRC, and SSNV, which resulted

in nearly the same average RMSEPTest (to within their respective uncertainties) of

0.1006 (Binary SSNV) to 0.1012 (SSNV). These prediction errors were nearly as low

as could be obtained, as the the error in y set a floor of 0.10 for the RMSEP. The

data that were not preprocessed resulted in an average RMSEPTest of 0.1417. SMSC

led to a larger average RMSEPTest than the non-preprocessed data, with an average

RMSEPTest of 0.200. SNV and MSC had the largest prediction errors, with average

RMSEPTest values of 0.288 and 0.294, respectively. For each of the methods tested,

the number of latent variables used was very small, averaging between 2 and 4 com-

ponents. Due to the small level of the chemical background variation relative to both

the variation from the main chemical components, and also to the iid noise.

In Figure 2.10, the Monte Carlo procedure results for the variable selection and

weighting for IDRC and VSN are shown. For IDRC, for each run of the Monte Carlo

procedure, the optimal selected variables were stored. The indices of the selected

variables for IDRC for each of the 100 trials are shown in Fig. 2.10A. The IDRC
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Figure 2.10: Monte Carlo results for IDRC and VSN for Dataset 1. (A) Indices of
the variables selected by IDRC for each Monte Carlo run are shown using horizontal
lines; (B) Optimal VSN weight vectors for each run.

method did not consistently select the same regions each time, but for each trial the

selected variables were always in the scatter dominant region (channels 1-83). For

VSN, the optimal weight vectors for each of the 100 trials are shown in Fig. 2.10B.

The optimal VSN weights did not differ much from one trial to another. While

both methods led to accurate predictions, the VSN results were more consistently

reproducible for the conditions present for simulated Dataset 1.

The results for Dataset 1 were largely as anticipated, with the weighted methods

performing significantly better than the unweighted methods, with the exception of

SMSC. The standard correction methods (SNV and MSC) showed poorer prediction

than no preprocessing at all, which highlights the need for proper preprocessing.

2.5.2 Simulated Dataset 2

In contrast to Dataset 1, Dataset 2 was designed to represent a case where the analyte

signal approached that of the background and was lower than the effects of scattering.

Under these conditions, it was expected that traditional scatter correction methods

should be effective.

The spectra for Dataset 2 that were corrected by each of the preprocessing methods

are shown in Figure 2.11. Overall, the preprocessed spectra for each method were

very similar, as nearly all of the scatter was successfully removed.

The PLS regression results from the Monte Carlo procedure are summarized in

Table 2.3. The scatter correction methods (SNV, MSC, Binary SSNV, SMSC, and
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Figure 2.11: Results for the preprocessed spectra for Dataset 2. (A) SNV; (B) MSC;
(C) SSNV; (D) SMSC; (E) Binary SSNV; (F) IDRC.

IDRC) all resulted in nearly identical average prediction errors, both for the calibra-

tion set (RMSEV ) and the test set (RMSEPTest), with average RMSEPTest values

ranging between 0.1611 and 0.1618. As a result, it can be concluded that for Dataset

2, the weighted scatter correction methods did not result in any significant improve-

ments in the prediction performance over conventional SNV and MSC. In contrast,

the results with no preprocessing error had a prediction uncertainty of about 0.19.

It will also be noted that the number of latent variables used for the PLS models
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Table 2.3: PLS regression results for the various scatter cor-
rection methods applied to simulated Dataset 2.

Method RMSEVa,b RMSEPa,c
Test NLVa,d

None 0.1908 (0.0062) 0.1904 (0.0046) 7.1 (1.1)
SNV 0.1617 (0.0049) 0.1615 (0.0041) 5.6 (1.1)
MSC 0.1617 (0.0049) 0.1615 (0.0041) 5.6 (1.1)
Binary SSNV 0.1614 (0.0051) 0.1611 (0.0040) 6.4 (1.1)
SSNV 0.1616 (0.0050) 0.1615 (0.0041) 5.7 (1.1)
SMSC 0.1616 (0.0049) 0.1616 (0.0042) 5.4 (1.1)
IDRC 0.1617 (0.0049) 0.1618 (0.0042) 6.4 (1.2)

a Averages from Monte Carlo procedure
(standard deviations in parentheses)
b NLV=number of latent variables

was higher in all cases for Dataset 2 compared with the PLS models for Dataset 1.

This is expected since the chemical background poses a larger interference with the

smaller analyte signal and requires more components to account for the effects of the

background.

For the VSN results for Dataset 2, the effectiveness of some of the assumptions

of the VSN algorithm were also tested. The optimal VSN weights were chosen based

upon the standard deviation of the weights. In Figure 2.12A, the standard deviation

of the VSN weights are plotted for the various values of the threshold parameter, and

the points are plotted using a rainbow-color palette that goes from red at the smallest

threshold tested, to blue at the largest threshold tested. In Figure 2.12B, the VSN

weight vectors for various threshold values are shown, with the colors of the lines

corresponding to the color that was plotted for each threshold value in Fig 2.12A. For

the weight vectors that were calculated using the smallest threshold values (red and

orange lines), the weights remained small throughout the spectral range, whereas for

the larger values of the weights (cyan and blue lines), the weights were larger than

0.5 for all variables. At intermediate threshold values (yellow and green lines), the

weight values were consistently large (above 0.9) across channels 1-90, while from

channels 91-200 the weights varied significantly depending on the exact value of the

threshold that was used. From channels 91-200, the smallest weights were typically at

channels 120 and 180 (corresponding to analyte and interferent regions), while around

channel 150 the weights were larger (in the valley of the analyte/interferent spectra).
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Overall, the weight vectors which resulted in the largest standard deviations of the

weights were those which resulted in a contrast in the weights (large weights in some

regions, small weights in other regions), whereas the weight vectors which resulted

in smaller standard deviations were the ones in which the weights were similar for

all the variables. This suggests that using the standard deviation of the weights as a

criterion to choose which VSN threshold to use is a reasonable choice.

To test the effects of how the number of sample pairs used (Ns) impact the VSN

weights, the VSN weights for the optimal threshold value were calculated using all

possible sample couples, and the weights were also calculated by using a random

sample of 10%, and 1% of all sample pairs. The results of this test of the VSN

weighting procedure are depicted in Figure 2.13. Since there were 100 samples in the

training set, the number of combinations of sample pairs was
(

100(100−1)
)

/2 = 4950,

so 10% of possible sample pairs was 495 pairings, and 1% was obtained from using 49

pairings. Overall, it appears that varying the fraction of sample pairs used does not

have a significant impact on the overall trend of the VSN weights, although using a

larger fraction of sample pairings does result in a somewhat smoother weight vector.

Additionally, the computational times were calculated ten times for each of the three

fractions of sample pairings (100%, 10%, 1%), and the average computation times were

17.5 seconds for 100% of sample pairs, 2.43 s for 10% of sample pairs, and 0.259 s for

1% of sample pairs. It can reasonably be concluded that using a larger fraction of

sample pairs decreases the uncertainty in the weights due to the effects of statistical

sampling. However, using a smaller fraction of weights could result in a more efficient

algorithm, especially when the VSN weights are calculated for multiple values of the

threshold parameter.

In Figure 2.14, the Monte Carlo procedure results for the variable selection and

weighting for IDRC and VSN for Dataset 2 are shown. For IDRC, for each run of

the Monte Carlo procedure, the optimal selected variables were stored. The indices

of the selected variables for IDRC for each of the 100 trials are shown in Fig. 2.14A.

The IDRC method was highly inconsistent in the variables which where selected. The

three most common regions of the spectrum that were selected were channels 1-20,

channels 80-120, and channels 180-200. The large variation in the selected regions

may indicate that the choice of variables for IDRC did not significantly impact the
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Figure 2.12: Results of the weighting procedure for VSN for simulated Dataset 2.
(A) Standard deviations of VSN weights vs. threshold; (B) VSN weights for various
threshold values.

Figure 2.13: VSN weights for Dataset 2, calculated using different percentages of the
number of sample couples (Ns).

prediction errors at the optimization phase, and as a result the variable selections were

not very meaningful. For VSN, the optimal weight vectors for each of the 100 trials
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Figure 2.14: Monte Carlo results for IDRC and VSN for Dataset 2. (A)Variables
selected by IDRC for each run; (B)Optimal VSN weight vectors for each run.

are shown in Fig. 2.14B. The optimal VSN weights did not differ much from one trial

to another. For most of the wavelength channels, the range of VSN weights (largest

weight minus smallest weight) was 0.1 or less. As was the case with Dataset 1, both

VSN and IDRC methods led to accurate predictions, but the VSN weight vectors were

consistently reproducible for the conditions present for simulated Dataset 2 while the

IDRC variable selections were highly inconsistent.

Comparing the VSN weights for Dataset 2 with the VSN weights for Dataset 1,

some interesting observations can be made. For Dataset 2, the weights were larger

throughout the chemical-dominant region, while in the scatter-dominant region the

weights were not as large in that region as compared with the VSN weights for Dataset

1. Based upon the results for Dataset 1, in which it was observed that the value of the

weights in the chemical-dominant region can have a significant impact on the signal

shape for both SSNV and SMSC, in might be expected that the weights obtained

for Dataset 2 would result in a large amount of signal distortion. The fact that the

weights for Dataset 2 resulted in an accurate correction suggest that the interaction

of the signal characteristics and weight size matters. In Dataset 1, the chemical

component of the signal was very large, which meant that the weights for variables

with significant chemical signals need to be very small to counteract the influence of

such variables. For Dataset 2, the correction was still effective because there was less

of a chemical component of the signal.

The main conclusion that can be drawn from Dataset 2 is that, when traditional
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scatter correction methods (SNV, MSC) are appropriate, there are no particular dis-

advantages to the application of weighted methods.

2.5.3 Simulated Dataset 3

Dataset 3 was similar to Dataset 1, except that the level of chemical background

interference has been increased by a factor of 50. This makes it more difficult to

distinguish variation from scatter from chemical variation, so scatter correction will

be less reliable.

Figure 2.6, presented earlier, shows the standard deviation of the VSN weights

versus the threshold value for Dataset 3. The threshold value which resulted in the

largest standard deviation of weights was 2.53× 10−2, comparable to the background

signal variation (0.011). The weight vector for the VSN function with optimal weight-

ing is plotted in Figure 2.7. The smallest VSN weights were approximately 0.20, and

the largest VSN weights were roughly 0.90.

The spectra that were processed by using SNV and MSC are shown in Fig. 2.15A

and 2.15B, while the spectra that were processed by using SSNV and SMSC are shown

in Fig. 2.15C and 2.15D. These four methods resulted in highly similar looking spec-

tra. In each instance, the corrected spectra showed severe distortion of the original

signal shape.

The spectra that were processed by using Binary SSNV are shown in Figure 2.15E.

In the chemical-dominant region, the Binary SSNV appears at first glance to have

preserved the general shape of the noise-free spectra. Upon closer examination and

comparison with Fig. 2.4B, it can be observed that the samples which had the highest

intensity for the Binary SSNV spectra do not agree very closely with the relative

peak intensities of the noise-free spectra. Further, the patterns of signal shapes in the

scatter-dominant region differ slightly between the Binary SSNV processed spectra

and the noise-free spectra. Because the Binary SSNV represents the “ideal” case, this

suggests that the problem arises with the background variability, and not with the

implementation of the weighted scatter correction.

The spectra that were processed using IDRC used spectral channels 41-80 to

perform the correction. For the optimal IDRC results, the RMSECV was 0.274, and

4 latent variables were used in the training phase. The IDRC-processed spectra,
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Figure 2.15: Results for the preprocessed spectra for Dataset 3. (A) SNV; (B) MSC;
(C) SSNV; (D) SMSC; (E) Binary SSNV; (F) IDRC.

which are shown in Fig. 2.15F, were significantly better at preserving the signal

shape of the noise-free data as compared with the results for SSNV and SMSC, but

the IDRC-processed spectra did not perform quite as well as the spectra which were

processed using Binary SSNV. Compared with the noise-free spectra, the IDRC-

corrected spectra should have had relatively uniform levels of variation in channels

40-80, but instead the IDRC correction resulted in very small variance in channels

40-80, and larger variance in channels 1-40. This is no doubt a consequence of the



61

Table 2.4: PLS regression results for the various scatter
correction methods applied to simulated Dataset 3.

Method RMSEVa RMSEPa
Test NLVa,b

None 0.209 (0.008) 0.209 (0.005) 19.9 (2.0)
SNV 0.326 (0.029) 0.329 (0.022) 15.3 (4.1)
MSC 0.330 (0.031) 0.335 (0.025) 14.3 (4.2)
Binary SSNV 0.211 (0.008) 0.211 (0.006) 19.2 (1.6)
SSNV 0.282 (0.014) 0.284 (0.010) 17.1 (3.1)
SMSC 0.322 (0.028) 0.326 (0.022) 14.8 (3.9)
IDRC 0.224 (0.015) 0.223 (0.012) 18.5 (1.4)

a Averages from Monte Carlo procedure
(standard deviations in parentheses)
b NLV=number of latent variables

region selected, since the variance in the selected region is minimized.

The PLS regression results from the Monte Carlo procedure for Dataset 3 are sum-

marized in Table 2.4. For each method, the difference between the average RMSEV

and the average RMSEPTest was in the third decimal place. The lowest average

RMSEPTest values were for the non-preprocessed spectra, and for the Binary SSNV-

preprocessed spectra, for which the averages were 0.209 and 0.211, respectively. Be-

cause the analyte variation is relatively large, the results for no preprocessing are

better than all of the other methods, suggesting that the distortion in the data by the

other methods outweighs the errors introduced by scatter. Only the ”ideal” Binary

SSNV result approaches the raw data, indicating the deleterious effects that chemi-

cal background variation can have on scatter correction. The next lowest prediction

errors were obtained by IDRC, which had an average RMSEPTest of 0.223, which

is actually quite good under the circumstances. SMSC, SNV, and MSC produced

the worst average prediction errors, with average RMSEPTest values of 0.326, 0.329

and 0.335. SSNV resulted in intermediate prediction performance, with an average

RMSEPTest of 0.284. On average, the PLS models used 14-20 components. With

the variation due to the various chemical background components, more components

were needed to fully model the variation that was present.

In Figure 2.16, the Monte Carlo procedure results for the variable selection and

weighting for IDRC and VSN are shown. The indices of the selected variables for
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Figure 2.16: Monte Carlo results for IDRC and VSN for Dataset 3. (A)Variables
selected by IDRC for each run; (B)Optimal VSN weight vectors for each run.

IDRC for each of the 100 trials are shown in Fig. 2.16A. The IDRC method consis-

tently selected variables in one of two regions: between channels 1-20, and channels

40-70. The peak of the base spectrum was located at channel 30, and the peak was

somewhat symmetric, so it appears that only the channels on one side of the peak or

the other were needed. For VSN, the optimal weight vectors for each of the 100 trials

are shown in Fig. 2.16B. Within each channel, the range of VSN weights was between

0.06 and 0.17, and there was greater variance in the weights than for Datasets 1 and

2.

Based upon the results for simulated Dataset 3, it can be concluded that when

the chemical background variation exceeds a certain amount, then a weighted scatter

correction approach becomes less effective. Weighted scatter correction is dependent

upon a low background signal level, to accurately be able to estimate the scatter

coefficients. As the level of background signal and/or noise from independent sources

of error increase, the error in the correction due to the inaccuracy of the estimated

scatter coefficients will increase as well. When the background signal variation exceeds

a certain amount, any weighted scatter correction approach may be worse than doing

no correction at all.

The weighted scatter correction methods did not lead to improvements in RMSEP

compared with using the original spectra for Dataset 3 but they did lead to different

levels of improvements over unweighted methods, with significant improvements for

IDRC and only marginal improvements for VSN. This could have been predicted from

merely looking at the VSN weight vector. Dataset 3 contained a large amount of
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background signal, and as a result the variables in channels 1-90 were not completely

dominated by scattering effects. This would explain why the optimal threshold for

Dataset 3 was larger than the thresholds for Datasets 1 and 2, and why the VSN

weights had a very low standard deviation. VSN could still be somewhat helpful as a

diagnostic method, to check whether or not a set of spectra have consistent variables.

2.5.4 Wine Must Data

The Wine Must Dataset was included as an experimental example in this work since

it was employed in the original development of the VSN method [31] and exhibited

some of the characteristics that weighted scatter correction methods are intended to

address, namely a high analyte signal variability and (presumed) scatter dominant

region. Since all of the factors affecting real complex samples are difficult to include

in simulations, the examination of experimental signals can provide some context. It

also afforded the opportunity to evaluate IDRC and other modifications that were

not included in the original paper.

The spectra for the Wine Must Data were presented earlier in Figure 2.5. Unlike

the simulated data, the SDR, if it exists, was unknown, but it was presumed it could

be located below 1900 nm, since longer wavelengths show clear chemical variation

attributable to water and ethanol.

The spectra that were processed using SNV and MSC are shown in Fig. 2.17A

and 2.17B. Based on visual inspection alone, it is clear that SNV failed to remove the

scatter from the spectra, and instead the baseline variation was larger than it was

in the raw data, which suggests that SNV failed to adequately correct the scatter in

the data. The large peak located between 1900 nm and 2000 nm likely had a sizable

influence in the calculation of the mean and standard deviation of each sample, which

in turn likely corrupted the SNV correction parameters. The large baseline present

throughout the MSC-corrected spectra suggests that MSC was also ineffective at

correcting the scatter, likely for similar reasons.

Figure 2.18A shows the standard deviation of the VSN weights versus the thresh-

old value. The threshold value which resulted in the largest standard deviation of

weights was 1.97×10−3. The weight vector for the VSN function with optimal weight-

ing, and a “stepped” VSN weight vector, are plotted in Figure 2.18B. For the VSN
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Figure 2.17: Results for the preprocessed spectra for Wine Must Data. In each
subfigure, the samples were color-coded based upon the alcohol by volume (ABV)
content (red=high ABV content; blue=low ABV content). (A) SNV; (B)MSC; (C)
SSNV; (D) SMSC; (E) Binary SSNV; (F) IDRC.

weight vector, the variables in the region from approximately 800 nm to 1300 nm re-

ceived the largest weights (greater than 0.7), while the variables in the region between

approximately 1400 nm and 2298 nm received weights of less than 0.30. The stepped

VSN weight vector was used to calculate a stepped SSNV correction analagous to the

Binary SSNV for the simulated data, but with three levels of weights to reflect the

characteristics of the weight vector determined. The stepped VSN weights shown in
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Figure 2.18: Results of the weighting procedure for VSN for wine must data. (A)
Std. Dev. of VSN Weights vs. Threshold; (B) VSN weights for optimal threshold
value.

Figure 2.17B were used to test how a simpler version of the optimal VSN weights

would perform compared with SSNV using the optimal VSN weights. The stepped

weights were equal to 1 for channels 1-250 (between 800 nm and 1348 nm), in chan-

nels 251-500 (between 1350 nm 1798 nm) the weights were 0.3, and between channels

501-750 (from 1800 nm to 2298 nm) the weights were 0.

The spectra that were processed by using SSNV and SMSC are shown in Fig.

2.17C and 2.17D, while the spectra processed using stepped SSNV are shown in

Figure 2.17E. These spectra resulted in a decrease in the baseline variation between

800 nm and 1900 nm, but there may have been some information lost in the region

between 2050 nm and 2298 nm.

The spectra that were processed using IDRC used wavelength channels 251-500

(1300nm to 1798 nm) to perform the correction. The IDRC-processed spectra, are

shown in Fig. 2.17F. The IDRC-corrected showed some similarities with the spectra

corrected by SSNV and SMSC, with the biggest difference being that the variation in

the 1300-1900 nm region was smaller for IDRC than for the SSNV and SMSC, while in

the 800 nm-1300 nm region, the IDRC-corrected spectra exhibited greater variation

than the spectra corrected by SSNV and SMSC. This is not surprising given that

the VSN weight vector emphasized regions below 1300 nm, while the IDRC selected

channels between 1300 and 1798 nm.

The results for the prediction of ABV by each method are displayed in Table 2.5.

SNV and MSC both resulted in very large prediction errors. The lowest value of
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Table 2.5: PLS regression results for the various scatter
correction methods applied to wine must data.

Method RMSECVa RMSEPTest NLVb

None 0.240 (0.011) 0.239 8
SNV 0.903 (0.046) 0.962 5
MSC 0.68 (0.16) 0.63 5
Stepped SSNV 0.404 (0.025) 0.382 15
SSNV 0.428 (0.038) 0.407 10
SMSC 0.383 (0.022) 0.399 10
IDRC 0.322 (0.016) 0.325 13

a Mean RMSECV, (standard deviation in parentheses)
b NLV=Number of Latent Variables

RMSEPTest was 0.239, and was obtained by the spectra which were not corrected.

The next-lowest prediction errors were obtained by IDRC, which had a RMSEPTest

of 0.325. Binary SSNV, SSNV, and SMSC resulted in RMSEP values of between

0.38 and 0.41. The largest prediction errors were obtained using MSC, with an

RMSEPTest of 0.63, and SNV, which had a RMSEPTest of 0.962. MSC had a large

standard deviation in the RMSECV results, which was likely due to variation in

the reference (average) spectrum. As was the case with simulated Dataset 3, the

prediction errors for the weighted scatter corrections were lower than the prediction

errors for conventional MSC and SNV, but higher than the prediction errors for the

non-preprocessed spectra. This suggests that the selected scatter dominant regions

for the experimental data still contain a large amount of chemical background.

In the VSN paper, prediction results were reported for only SNV and SSNV [31].

It was reported that for SNV, the RMSECV was 0.890 and the RMSEP was 0.963,

while for SSNV the RMSECV was 0.653 and the RMSEP was 0.701, and both meth-

ods used five latent variables. The results for SNV reported in this chapter were in

close agreement with the results in the VSN paper, but the results for SSNV were sig-

nificantly different, as the prediction errors reported in this chapter were significantly

smaller (0.407 for the RMSEPTest). Through email correspondence with Jean-Michel

Roger, it was confirmed that the data splitting procedure was the same, and that the

test set prediction errors for SNV were the same. A PLS model was calculated using

an SSNV correction with the optimal parameters reported by Roger (threshold value

of 3.16×10−3, five components), and an RMSEPTest of 0.462 was obtained. However,
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it may be the case that there were differences in the VSN parameters used, such as

the number of inner loop iterations Nw.

In the region between 800 nm and 1300 nm, the spectra do exhibit a pattern which

is consistent with multiplicative scatter. However, the behavior of the spectra in the

regions from 1400 nm to 2298 nm do not follow the same patterns as in the 800 nm

- 1300 nm region. If the difference in spectral behavior was due to the presence of

significant chemical variation in addition to the scatter, one would expect that such

regions would have a greater variation than the scatter-dominant regions, but this is

not the case for the wine must spectra. In the region between 2050 nm and 2298 nm,

where a strong correlation with alcohol by volume is present, the variables do not

seem to be effected by scattering at all. Further, there is an isobestic-like point near

2230 nm where the range of values becomes very small, which would be impossible if

an additive baseline offset was present throughout the whole spectrum. Consequently,

any correction method that is applied to the wine must data will likely degrade the

strength of relationship between the spectra in the region between 2050 nm and 2298

nm and the ABV content, and such a degradation would likely harm the predictive

performance of the model.

2.6 Conclusions

In this chapter, the principles of weighted scatter correction methods were described,

and their characteristics were examined using three simulated datasets and one ex-

perimental dataset. The central premise of this study was that weighted scatter

correction methods will be maximally effective for spectral data featuring scattering

from baseline and multiplicative effects, with one or more regions exhibiting very low

levels of chemical signals and/or independent errors, and region(s) in which the vari-

ation due to chemical signal equals or exceeds the variation due to scattering. This

was supported by the findings from the three simulated datasets.

In simulated Dataset 1, SSNV, Binary SSNV, and IDRC were all effective at

correcting the scatter while preserving the chemical signals. When using VSN with

such a dataset, the exact values of the weights in the chemical-dominant region(s) may

be of great importance, and it may be beneficial to set the weights to zero for variables

that are obviously dominated by chemical variation. It was found for Dataset 1 that
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the SSNV method is less sensitive to the effects of variables with small weights than

the SMSC correction. In Dataset 2, it was shown that if the amount of chemical

variation is not sufficiently large, conventional SNV and MSC will work reasonably

well, and so weighted scatter correction can result in only marginal improvements,

even under otherwise ideal circumstances. In Dataset 3, it was shown that if the

chemical background variation is too large, then weighted scatter correction methods

will not be able to accurately estimate the scattering parameters.

The VSN method resulted in several interesting findings. In Dataset 1, the SMSC

correction performed poorly, whereas the SSNV correction resulted in low prediction

errors. To examine why this was the case, SSNV and SMSC corrections were per-

formed using different weight vectors. It was found that the SMSC correction is more

sensitive to the effects of small weights than SSNV. In practice, it may be beneficial

for any practitioners of VSN to employ a cutoff value for the weights, such that any

weights less than the cutoff (e.g. 0.10) will become zero. Variables with very small

weights can reasonably be considered to be uninformative for calculating the scatter

parameters, so it makes sense to zero the weights for such variables. The Binary

SSNV method appeared to result in improved corrections compared with SSNV for

each of the simulated datasets. However, due to the design of the simulated datasets,

it is unclear as to whether Binary SSNV is always better than SSNV, as in a hypo-

thetical dataset in which many variables contain weights between 0.3 and 0.7, using

completely binary weights might not make as much sense. In Dataset 2, the VSN

algorithm was tested to see the effect of the number of sample pairs used had on the

calculated weight vector, and it was found that using a random fraction of sample

pairs did not have a significant impact on the shape of the weight vector. For large

numbers of samples, a random fraction of sample pairs is recommended when trying

to optimize the threshold as it significantly reduces the computational time without

changing the weights very much. After choosing the threshold which results in the

largest standard deviation of weights, the weights can be re-calculated using all sam-

ple pairs. The last noteworthy point for VSN is that the weight vectors appear to

provide very interesting information about the structure of the spectra, especially

when different values of the threshold parameter are used. Examination of the VSN

weights may be useful by itself as a simple exploratory technique.
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The IDRC correction method had mixed results when compared with VSN-based

methods and traditional SNV and MSC. In Datasets 1 and 3, IDRC was only bested

by Binary SSNV as far as the shape of the corrected spectra, and prediction errors

were concerned, while for Dataset 2 IDRC performed slightly worse than all the other

scatter correction methods tested for both prediction errors and preservation of signal

shape. The findings from Dataset 2 indicated that the RMSECV is not guaranteed

to be a reliable index for choosing which variables to use to perform the weighted

correction. Further, the IDRC methodology as it currently exists cannot be used for

curve resolution or for exploratory analysis since validation is required. Also, since

only one region is selected in IDRC, there is no easy way for IDRC to be used for

datasets that have multiple scatter-dominant regions that are non-contiguous.

It is not presently clear to what extent weighted scatter corrections are relevant to

experimental NIR data. For these techniques to be useful the conditions for Dataset

1 (low chemical background variation, high analyte signal variation) need to be met.

Under conditions of Dataset 2, where the analyte signal is relatively low, traditional

SNV and MSC appear to be adequate. Higher chemical background variation, even

with high analyte signals, as in the case of Dataset 3, are problematic because errors in

the estimation of the scatter coefficients have a multiplicative effect. In other words,

higher analyte signals do not give better results because the errors are also bigger.

The Wine Must Dataset was the most prototypical dataset that could be accessed for

this study, but it appears to fall under the category of Dataset 3 rather than Dataset

1. It is therefore unclear how many experimental datasets meet the criteria to justify

weighted scatter correction methods.

The primary intent of this study was to illustrate fundamental concepts pertinent

to weighted scatter correction, and several points may require further study. The

following parameters, which were not accounted for, may impact the performance of

weighted scatter correction methods. The size of the training set, and the composition

of the samples in the training set, could have an impact on the accuracy of the

weights. The simulations used in the present study, as well as the simulations from

the VSN paper, both featured a scatter-dominant region that comprised about half

of the spectral channels. Given the mechanics of the RANSAC algorithm that is

used by VSN, it could be the case that if a scatter-dominant region is very small,
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then the algorithm may not weight the variables appropriately (since the RANSAC

seeks to find the largest subset of inliers). The pure spectral profiles of the two major

components were highly similar for the simulated data in this study, whereas real

chemical components may have highly different pure spectra.

The simulations here did not incorporate wavelength-dependent terms in the scat-

tering, and so the performance of EMSC-based weighted corrections was not able to

be assessed. Future work could investigate the factors which are most important for

using SEMSC and WMSCVS. Additionally, since second derivatives can remove con-

stant baseline offsets and linear slope components, a method could be developed which

would apply the second derivative correction, and then use a weighted correction to

remove the multiplicative component of the scattering.



Chapter 3

Comparison of Principal Components Analysis (PCA) and

Princpal Axis Factoring (PAF) in the Presence of

Heteroscedastic Noise

In Chapter 2, methods that correct for the effects of correlated errors, specifically

multiplicative offset noise and baseline offset noise, were investigated. Another is-

sue that occurs in the analysis of multivariate data is that of heteroscedastic noise.

As described in Chapter 1, PCA is commonly used to perform data compression

for purposes of curve resolution, classification, calibration, and exploratory analysis.

However, because PCA assumes iid normal errors, subspace estimation may be sub-

optimal when the data contain heteroscedastic noise. The issue of heteroscedastic

noise is typically addressed through the use of data scaling, where optimal scaling is

based on measurement error standard deviations. The main difficulty in scaling is

the unavailability of measurement error information. An alternative to data scaling

methods is to use exploratory factor analysis methods which seek to simultaneously

estimate the subspace and the measurement error variance.

This chapter seeks to evaluate the use of principal axis factoring (PAF), an ex-

ploratory factor analysis method, and PCA, under both iid normal and column het-

eroscedastic conditions, and examines the subspace estimation and estimation of the

measurement error uncertainties for each method. Three simulated datasets and two

experimental datasets were used to investigate the relative performance of PAF and

PCA. The chapter begins with a general review of PAF and PCA. A more detailed

theoretical discussion of PCA and PAF is then presented. The data and methods

used in this study are then described, followed by a thorough analysis of the results

obtained.

71
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3.1 Background

The method of Exploratory Factor Analysis (EFA) is nearly a century old, and traces

back to Spearman’s work on the topic of “general intelligence” in psychology [52, 53].

In broad terms, the goal was to relate the performances of a variety of measures of

intelligence (e.g. tests/exams) to a small number of underlying determinants of over-

all intelligence (e.g. mathematical and language ability). A number of approaches

were proposed, but it was not until Lawley and Maxwell’s development of the theory

of Maximum Likelihood Factor Analysis (MLFA) that the statistical foundations of

factor analysis were firmly established [54]. Principal Components Analysis (PCA)

originated with the work of Pearson (1901) [55] and Hotelling (1933) [56]. Its foun-

dations were somewhat different from other factor analysis methods, but, because

of a commonality of purpose, it was captured under the umbrella of factor analysis

methods. In the days before the widespread availability of computers, calculations

using any factor analytical method were difficult, but PCA was more tractable than

MLFA. Principal Axis Factoring (PAF) evolved as a more computationally accessible

alternative to MLFA. These three methods (PCA, PAF, and MLFA) are the three

most widely used factor analysis methods in the social sciences and other fields, but

in chemistry, PCA is used almost exclusively.

All of these factor analysis techniques seek to model latent variables (“hidden”

variables) that describe a larger set of variables, but they do so slightly differently.

The objective is to find latent variables that describe the variation in “common”

factors, and separate the variation due to “unique” factors. If we consider an n × p
matrix of measurements X, where the columns represent the variables, and the rows

correspond with different samples, the model for all factor analysis methods can be

represented in terms of the sample covariance matrix, R, as shown in Equation 3.1.

R = ΛΛT +Ψ2 + E (3.1)

In this equation, Λ is a p× r matrix (where r < p, n) whose columns give the linear

combinations of original variables making up the r latent variables. In factor analysis,

these are referred to as the common factors, while in PCA they are called loadings

(when normalized, they are also referred to as eigenvectors). The diagonal matrix Ψ2

(p × p) is the matrix of unique factors or unique variances, and E is a p × p matrix
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of residuals. For chemical measurements, Ψ2 can be viewed as representing the error

variance associated with each variable. Practically speaking, PCA does not make a

distinction between the unique variances and the residuals, and simply tries to find

the set of common factors that explain the greatest amount of variation in R, whereas

PAF and MLFA try to solve for the common factors and unique factors to minimize

the residuals. MLFA makes the assumption that the measurements in X follow a

multivariate normal distribution [57, 58], an assumption often violated for chemical

data.

In the context of this chapter, the term “factor analysis” is used to refer to describe

mathematical algorithms which perform a bilinear decomposition of data. This means

that the original data matrixX (n×p) can be expressed as the product of two matrices

of smaller dimensions, generally referred to as the scores, T (n × r), and loadings L

(p× r). Here r is the number of latent variables and L is consistent with the common

factor loadings Λ in Equation 3.1. The decomposition, including residuals E (n× p)
is represented in Equation 3.2.

X = TLT + E (3.2)

In the chemometrics literature, the term “factor analysis” often refers to the use of

PCA with rotated loadings. An early source of confusion may lie in the use of the

term factor analysis as a synonym for PCA [59]. To further add to the potential

confusion, there is the technique of evolving factor analysis, which is a method that

is commonly used in curve resolution [60], and parallel factor analysis (PAFAFAC)

[61, 62] is used for multiway data. Despite the names, both of these are more similar

to PCA than other factor analysis methods.

Although widely used in other fields, FA methods other than PCA have not been

widely applied in analytical chemistry and only a few examples were identified in

the course of this research. In 1995, Campisi et al [63] used PAF for the comparison

two different types of mandarin essential oils for a dataset composed of 17 volatile

compounds whose peak areas were obtained by gas chromatography. In 2002, Plet-

nev et al [64] used PAF for a dataset which consisted of stability constants for 25

cations, with approximately 4000 different ligands, to assess the similarity of different

classes of metal ions. The authors found that PAF “did not appear informative”

for clustering the cations. Factor analysis has been used in geochemistry for the
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purposes of identifying and mapping patterns of geochemistry across a broad survey

area [65]. Maximum-likelihood factor analysis (MLFA) was used in several papers

published between 1991 and 1995 by P. De Volder, which were in the research area

of Auger Electron Spectroscopy [66, 67, 68, 69] and electron paramagnetic resonance

spectroscopy [70]. The authors claimed that MLFA was superior to PCA, although

no definitive results were presented in this regard. Likewise, no comprehensive com-

parisons of FA methods were made in the other studies.

The principal motivation of this work is to investigate whether there are situations

in which other factor analysis methods, specifically PAF, have an advantage over PCA

and, if so, to what extent. Unlike PCA, PAF does not assume homoscedastic (iid

normal) measurement errors across all variables, although it does assume homoscedas-

ticity within variables (columns). Therefore, PAF may provide more reliable results

when heteroscedasticity is present. Moreover, PAF provides estimates of the variable

measurement uncertainty, which can be valuable information in the characterization

of a dataset.

3.1.1 Principal Components Analysis (PCA)

Principal components analysis (PCA) has been called “one of the most powerful tools

in chemometrics” [71]. Depending on the nature of the data, PCA can be applied to

the original data matrix, X, the column mean-centered data, XMC , or the autoscaled

data, XSC (autoscaling refers to centering columns around their mean followed by

division by the column standard deviation). PCA is generally implemented using

singular value decomposition (SVD) which represents X as the product of a n × n

matrix of left eigenvectors (U), a n × n diagonal matrix of singular values (D), and

a p× n matrix of right eigenvectors (V)

X = UDVT (3.3)

The PCA solution typically consists of truncating the SVD result to include only

the first r columns of U and V, and using only the first r singular values in D.

From the truncated left eigenvectors matrix and the singular values, a scores matrix

(T = UrDr) of dimension n× r is calculated and the truncated eigenvectors matrix

(Vr) is the same as the loadings matrix L (p × r) in Equation 3.2. The truncation
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of the scores and loadings means that some of the variance in X is not accounted

for in the scores and loadings, and as a result the unexplained parts are found in the

residuals matrix EPCA.

If the data have been mean-centered, which is often the case since the mean

vector does not contain information about the differences in the measurements, re-

construction of the original data involves the addition of the vector of column means,

x̄ (1 × p). The PCA reconstruction of the original data matrix is termed X̂PCA, as

shown in Equation 3.5.

XMC = TLT + EPCA (3.4)

X̂PCA = TLT + 1nx̄ (3.5)

Here, 1n indicates an n× 1 vector of ones. Likewise, autoscaling is often used when

it is expected that the relative standard deviation of the measurement errors in each

column of X are approximately the same. Reconstruction of the original data in this

case involves multiplication by the vector of column standard deviations, sx (1× p).

XSC = TPT + EPCA (3.6)

X̂PCA = TPT ◦
(

1nsx
)

+ 1nx̄ (3.7)

Here ◦ indicates the Hadamard (element-wise) product.

When measurement errors are iid normal and the assigned rank of the data r is

correct, PCA provides the maximum likelihood (unbiased, minimum variance) esti-

mate of the error-free data. The root-mean-squared error of the residuals provides an

estimate of the measurement error standard deviation.

σ̂meas =

√

∑n
i=1

∑p
j=1(xij − x̂ij)2

(n− r)(p− r) (3.8)

This equation is valid when the data have not been scaled. In cases where autoscaling

is used, or where heteroscedasticity is expected, the measurement uncertainty for each

column, σ̂PCA,j, can be calculated from individual column standard deviations of the

residuals.

σ̂PCA,j =

√

∑n
i=1(xij − x̂ij)2
(n− 1)

(3.9)
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It may be convenient to represent this as a relative standard deviation (RSD) by

dividing by the column means. The metrics mentioned above are used in the inter-

pretation of results in this work.

3.1.2 Principal Axis Factoring (PAF)

Exploratory factor analysis (EFA) is a family of methods which includes both PAF and

maximum-likelihood factor analysis (MLFA). The EFA model seeks to describe the

correlation matrix S. Because these methods do not assume iid errors across X and

estimate the measurement error variance associated with each column of data, scaling

is less important for PAF than for PCA. However, for mathematical convenience, EFA

methods are generally applied to autoscaled data. This means that the covariance

matrix, R, shown in Equation 3.1 becomes the correlation matrix, S. The elements

of the correlation matrix are simply the covariance matrix elements divided by the

product of the corresponding column standard deviations, σi and σj.

sij =
rij
σiσj

(3.10)

Equation 3.1 can now be modified to

S = ΛΛT +Ψ2 + E = Σ+ E (3.11)

A convenient property of the correlation matrix is that the diagonal elements are unity,

which simplifies calculations. Once a solution is obtained, it can be transformed back

to the original space of the data.

The PAF algorithm is solved in an iterative manner as shown in Algorithm 2 [72].

In step 2, the p× p eigenvectors matrix W and the p× p diagonal matrix of singular

values K are found by calculating the singular value decomposition of the reduced

correlation matrix (S − Ψ2). Initially (step 1), the Ψ2 is set to equal a matrix of

zeros. In step 3, the common factor loadings Λ are estimated by multiplying each of

the first r columns of W by the square root of the corresponding singular values in

K. In step 4, the unique factors Ψ2 are estimated using the approximated loadings

that were calculated in step 3. The equations in steps 2-4 are iterated until either a

stable solution is reached, or a maximum number of iteration have been performed.

The p× r matrix of loadings Λ, produced by this algorithm are analogous to the

loadings that would be produced from PCA on autoscaled data, L, in that they are
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input : Correlation Matrix (S) of dimension p× p, model rank, r

output: Factor loadings (Λ), unique variances Ψ2

1 Set Ψ2 to equal a p× p matrix of zeros;

2 Decompose (S−Ψ2) by SVD to give

(S−Ψ2) = WKWT;

3 Compute a rank r estimate of Λ using

Λ = WrK
1/2
r ;

4 Estimate the diagonal elements of Ψ2 as

ψ2
jj = 1− λjλ

T
j ,

for j =
{

1, 2, ..., j, ..., p
}

, where λi is the j
th row of Λ ;

5 Repeat from Step 2 until convergence, or until maximum number of

iterations
Algorithm 2: PAF algorithm

an orthogonal representation of the space containing the data. However, the two sets

of loadings will not be coincident because of the algorithmic differences.

Factor Scores

To estimate the measurements in the scaled or original spaces, it is necessary to

multiply the loadings matrix by the factor scores. The scores represent the coordinates

of the estimated measurements in the subspace defined by the loadings. For PCA, the

scores are obtained directly from SVD. Alternatively, the scores vector t (1 × r) for
a given sample can be estimated by orthogonal projection of a measurement vector,

x (1× p), onto the space defined by the loadings, L (p× r).

t = xL (3.12)

In PCA, the orthogonal projection provides a maximum likelihood estimate consistent

with an assumption of iid measurement errors. For PAF, the scores do not result

directly from Algorithm 2, but must be computed. Rather than using the orthogonal

projection as is used in PCA, PAF employs a maximum likelihood (ML) projection

based on the estimated measurement error variances for XSC .

F = XSCΨ
−2Λ

(

ΛTΨ−2Λ
)−1

(3.13)
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In Equation 3.13, F is analogous to the PCA scores (T), and Λ is analogous to the

PCA loadings L, but notational conventions consistent with the PAF literature have

been adopted here. The ML projection used by PAF should, in principle, lead to more

reliable estimates of the scores and, hence, the original data. However, it depends

on reliable estimates of the measurement errors, which can show a high variability,

especially for small datasets.

Once the scores have been obtained, the data can be estimated in the usual way

as discussed in Section 3.1.1. For the autoscaled data, the estimates are calculated

using Equation 3.14.

X̂SC = FΛT (3.14)

To transform the data back to the original space, a method similar to Equation 3.15

can be used.

X̂ = FΛT ◦
(

1nsx
)

+ 1nx̄ (3.15)

Heywood Cases

A complication that can sometimes occur with EFA methods (but not PCA) is that

one or more diagonal elements of Ψ2 can become negative. This is known as a

“Heywood case”, and is problematic because, of course, measurement error variances

cannot be negative. Such cases are also a problem in the reconstruction of the data

because the computed scores cannot be considered to be reliable. Heywood cases

are a consequence of the algorithms used and the stochastic nature of the data, i.e,

they represent a statistical anomaly. They are most often observed in cases where

the number of samples is small, the number of components is inaccurately estimated,

and/or the error variance is small.

When Heywood cases occur, they can be dealt with by several methods. One

approach is thresholding, in which a minimum allowable threshold for the diagonal

elements ofΨ2 is set. Thresholding is simple to implement, but the choice of threshold

value is likely to be somewhat arbitrary. Another possible solution is to use estimates

of the measurement error variances derived from PCA when any Heywood cases

occur. Resampling, which can entail using random subsets of samples, and/or random

subsets of variables, and calculating the PAF solution multiple times by using multiple

repetitions, could be used, although it is not guaranteed to work. In this work,
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Heywood cases were observed in one of the experimental datasets, but the presence

of these Heywood cases did not substantially effect the results, so no further actions

were needed.

3.1.3 Comparison Metrics

The purpose of this work is to compare the results of PCA and PAF. Several metrics

were used for comparison purposes and are described in the following subsections.

Subspace Angles

Many chemical datasets are bilinear in nature. For example, spectroscopic data of

chemical mixtures (Xpure, n×p) can be decomposed into a matrix of pure component

concentrations (Cpure, n× r) and a matrix of pure component spectra (Ppure, p× r).

Xpure = CpureP
T
pure (3.16)

PCA is often used to estimate the subspaces of Cpure and Ppure through the

scores T and loadings P. The mathematical values of the subspaces in the scores and

loadings is not important, but instead it is the angle between the estimated subspace

and the subspace of the noise-free data that is important. One method of comparing

how close the subspaces for PCA and PAF are to the original subspaces, is to compare

the subspace angles. The angle between the subspaces of Cpure and T is called the

scores subspace angle, while the angle between the subspaces of Ppure and L is called

the loadings subspace angle.

Imbedded Errors

Factor analysis methods will remove some of the errors in the data through the mod-

eling process. The difference between the experimental data X and the reconstructed

data X̂ is termed the “extracted error” [73]. However, some of the measurement

errors will remain imbedded in the data, which are termed “imbedded errors”. The

imbedded error (IE2) can be used as a performance metric, and is defined as the sum

of squared differences of the reconstructed data and the noise-free data, over the total
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number of elements in the data (np).

IE2 =
n

∑

i=1

p
∑

j=1

(

x̂ij − xpure,ij
)2

np
(3.17)

Measurement Error Estimates

The measurement error estimates derived from PAF and PCA can also be used as a

performance metric. For PAF, estimates of the measurement error variances are found

in the diagonal matrix Ψ2. The PAF estimate of the measurement error standard

deviation in the original measurement (unscaled) space of the jth column ofX (σ̂PAF,j)

is found by taking the square root of the jth diagonal element of Ψ2 and multiplying

by the standard deviation of the jth column of X. In this conversion, the square

root is used because the standard deviation is the square root of the variance, and

multiplication by sxi
is used to convert the estimate from the autoscaled space to the

original data space.

σ̂PAF,j =
(

√

ψ2
jj

)

sxj
(3.18)

For PCA, several metrics for the measurement uncertainty can be employed. Since

PCA is based on the assumption of iid errors, there is technically only one estimate

of the measurement uncertainty, which can be calculated from the data reconstructed

in the space of the decomposition,

σ̂PCA =

√

∑n
i=1

∑p
j=1(xij − x̂ij)2

(n− r)(p− r) (3.19)

If the PCA is carried out on scaled data, the individual variable standard deviations

in the original space can be estimated from the above result by multiplication by the

scaling factor

σ̂PCA,j = σ̂PCA(Scaled) · sxj
(3.20)

However, these results are predicated on the assumption that the errors (in the original

or scaled space) are iid normal. To better explore the heteroscedasticity of the errors,

an alternative approach is to estimate the measurement uncertainty in each variable

from the standard deviation of the residuals in each column for the reconstructed

data.

σ̂PCA,j =

√

∑n
i=1(xij − x̂ij)2
(n− 1)

(3.21)
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This calculation may be done in the original or scaled space, depending on the context

of the comparison. This was the equation used for the PCA uncertainties in this work.

For simulated data, the standard deviations of the added noise is known, while

for experimental data with replicates, the measurement error standard deviations in

each column can be estimated by pooling the standard deviation of the replicates in

each column. In other cases, empirical estimates of the measurement uncertainties

may be available from a knowledge of the nature of the measurement. The estimates

of the measurement error standard deviations in each column derived from using

PCA (σ̂PCA,j) and PAF (σ̂PAF,j) can be compared to each other, and to benchmark

estimates of the measurement errors derived from the added noise (for simulated data)

or from replicates or estimates (experimental data).

Scores and Loadings

The scores and loadings resulting from PAF and PCA can be compared in several

ways. The most direct method of comparison is to plot the scores and loadings using

scores plots and loadings plots. A “scores plot” is a scatter plot of the scores for the

first 2-3 components (factors) in two or three dimensions. For data where clustering

is expected, the clusters formed in the PAF scores plots can be observed with the

clusters for the PCA scores plots. Where Monte Carlo studies are done on simulated

data, uncertainty ellipses can also be plotted for each score value. For loadings, the

two methods can be compared by plotting the loadings for each factor/component,

like spectra, where the x-axis is the wavelength channel number (for spectral data),

the y-axis is the loading value, and the loadings for each component are plotted as a

separate line.

3.2 Data

To compare the performance of PAF and PCA, three simulated datasets and two

experimental datasets were used. All calculations were carried out using MATLAB

version R2017b (Mathworks, Natick, MA, USA).

Datasets 1 and 2 consisted of simulated spectra of chemical mixtures with three

components. The purpose of these datasets was to assess how PAF and PCA are

effected by the measurement error structure. To investigate this, the noise-free data
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were the same for both Dataset 1 and 2, while the noise structure was varied. In

Dataset 1, the noise added was heteroscedastic, while in Dataset 2 the noise was iid

normal. The third simulated dataset (the “Discrete Dataset”) was designed to model

data with discrete variables, such as elemental analysis data, where each column

corresponds to the concentration of an element or ion. Such datasets may include

major, minor and trace components measured in different units. With such large

range in the size of variables, scaling is often employed. The errors between variables

are likely to be heteroscedastic, even after scaling. PAF could be useful in such a

situation as an alternative to conventional data scaling methods.

The first of the two experimental datasets, referred to as the Metals Data, con-

sisted of visible spectra of mixtures of metal ions. The spectra were measured using

an optical filter which introduced heteroscedastic noise, which made the dataset suit-

able for testing the performance of PAF and PCA. The other experimental dataset,

referred to as the Obsidian Data, consisted of obsidian samples for which the concen-

trations of 10 elements were determined by X-ray fluorescence (XRF) spectroscopy.

This dataset is often employed as a benchmark for exploratory analysis.

3.2.1 Simulated Datasets 1 and 2

The simulated spectra for Dataset 1 consisted of n = 100 samples, p = 20 variables,

and r = 3 components. The noise-free data (Xpure) were generated by multiplying

a 100 × 3 matrix of pure concentrations (Cpure) by a 20 × 3 matrix of pure spectral

profiles (Spure). The choice of n = 100 samples was motivated by trying to balance

the competing interests of having enough samples to define the covariance/correlation

matrix, while having a number of samples that is realistic for datasets in the chemo-

metric literature (where the number of samples is often less than 100). The pure

concentration matrix Cpure was generated by sampling the normal distribution with

parameters N(µ = 0.20, σ = 0.040). The pure spectral profiles Spure consisted of

three Gaussian functions, all with a height constant h = 20, and standard deviation

σ = 2.5, for the wavelength channel indices ξ =
[

1, 2, ..., 20
]

. The pure spectral pro-

files, shown in Figure 3.1, were designed to be partially overlapping. If the profiles

were too close together, the number of components could have been more ambiguous,

as peaks that are too close together cannot be distinguished from one another. The
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noise-free spectra for the mixture are shown in Figure 3.2A.

Figure 3.1: Pure component spectra (S), used for Datasets 1 and 2.

The noise added for Datasets 1 and 2 consisted of a mixture of column het-

eroscedastic noise and iid noise. This noise composition reflects many physical mea-

surements where a proportional noise structure can dominate for large signals, but is

limited by a baseline noise as signals become smaller. The proportional (heteroscedas-

tic) component was represented by σhet, which gives the RSD of the noise with respect

to the mean of the noise-free data. The iid component was characterized by σiid, an

absolute standard deviation. The jth column of the error matrix, E (n×p), is defined
by Equation 3.22

ej = σhet · x̄pure,j · εhet,0,1 + σiid · εiid,0,1 (3.22)

Here, x̄pure,j is the mean of the jth column of the noise-free data matrix, and εhet,0,1

and εiid,0,1 both represent n × 1 vectors of random variables drawn from a normal

distribution with a mean of zero and a standard deviation of unity (N(0, 1)). For
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both datasets, σhet was set to 0.02 (2% RSD). In Dataset 1, σiid was 0.0002, mak-

ing proportional errors the dominant noise component, while σiid was set to 0.02

in Dataset 2, making the noise approximately homoscedastic. The theoretical and

observed standard deviation for the added errors in Datasets 1 and 2 are shown in

Figure 3.2B.

Figure 3.2: Figures for simulated Datasets 1 and 2. (A) Noise free spectra Xchem

used for Datasets 1 and 2; (B) Column standard deviations of noise matrix E that
was used for Dataset 1 and Dataset 2; (C) Matrix of spectra X for Dataset 1; (D)
Matrix of spectra X for Dataset 2.

The noise for Dataset 1 follows a column heteroscedastic structure, as the standard

deviation of the noise varies based upon the signal intensity. The noise for Dataset

2, however, can be characterized as approximately homoscedastic noise, since the

standard deviation of the noise is mostly consistent across the different channels,

with the standard deviations of the noise ranging from about 0.018 to 0.026. For

both Dataset 1 and Dataset 2, the simulated spectral matrix (X) was calculated by

simply adding the noise-free data (Xpure) and the noise (E). The spectra for Datasets

1 and 2 are shown in Figure 3.2C-D, respectively.
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3.2.2 Simulated Discrete Data

There were several objectives that influenced the decisions in making the Discrete

Dataset. One objective was to recreate the differences in range of variables that

often occur in compositional data (e.g. elemental analysis, metabolomics, fatty acid

profiles), such that the range of the variables differed by several orders of magnitude.

For the measurement errors, the goal was to add noise using realistic assumptions. A

third objective was to create the data in such a way that the variation in the scores

due to different realizations of the noise matrix could be calculated and visualized.

The data consisted of n = 50 samples, p = 20 variables, and r = 2 components.

The choice of using only 2 components was motivated by the objective of being able to

monitor and visualize the variation in the scores. With 2 components, a 2-dimensional

scatter plot of the scores, with the first column of the scores on the x-axis and the

second column of the scores on the y-axis, could be used.

In Simulated Datasets 1 and 2, the noise-free data (Xpure) were generated by

multiplying a pure concentration matrix (Cpure) times a pure spectral profile matrix

(Spure). The Discrete Data were generated in a similar manner, although for the

Discrete Dataset the matrix Cpure is called the “compositional profiles”, while Spure

is termed the “variable profiles”, which are more accurate descriptors of what these

matrices represent. The compositional profiles matrix (Cpure) was of dimension 50×2,
and was generated by sampling the normal distribution with parameters N(µ =

1.0, σ = 0.30). The variable profiles were generated in a two-step process. In the first

step, a 2 × 20 matrix of “base” variable profiles (Spure,0) was created by sampling

from a uniform distribution (U(0, 1)). In the second step, the variable profiles Spure

were calculated by multiplying the base profiles Spure,0 by a 1×20 vector of values

that were evenly spaced along the logarithmic scale from 101 to 104. The first step

was designed to ensure that the two components were independent of one another,

while the second step ensured that the variable profiles would differ by several orders

of magnitude, which was a main objective. A log-scale plot showing the pure spectral

profiles S is shown in Figure 3.3A.

For the noise generation, the goal was to add noise using realistic assumptions.

For real elemental data, the noise would likely be proportional to concentration, but
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Figure 3.3: Simulated Discrete Data. (A)log-scale plot of the pure spectral profiles;
(B) Proportional noise levels for each channel; (C) Log-scale plot of the standard
deviation of the noise for each element; (D) log-scale plot of the data.

depending on the measurement techniques used, some elements would have larger rel-

ative errors than other elements. This error assumption was implemented by making

proportional heteroscedastic noise, with randomness introduced so that the standard

deviation of the proportional noise was different for each element, and a small amount

of iid noise was added. For the heteroscedastic component of the noise, each column

of data (element) was assigned an individual noise RSD, designated as σhet,j in the

range of 0.01 to 0.10 (1% to 10% RSD) by sampling random numbers from a uniform

distribution, U(0.01, 0.10). The columns of the n× p noise matrix E were generated

according to Equation 3.23.

ej = σhet,j · x̄pure,j · εhet,0,1 + σiid · εiid,0,1 (3.23)

As before, x̄pure,j is the mean of column j of the noise-free data and εhet,0,1 and εiid,0,1

both represent n× 1 vectors of random variables drawn from N(0, 1). The values for

the RSD for each variable (σhet,j) are shown in Figure 3.3B. The value for σiid was
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set to 0.5 for all columns. For column j of X, this gives the theoretical (population)

error standard deviation of

σerr,j =

√

(

σhet,j · x̄pure,j
)2

+ σ2
iid (3.24)

These values are shown on a log scale in Figure 3.3C, along with the calculated

standard deviations for the data generated. The matrix of errors, E, was added to

the matrix of pure data, Xpure, to generate the simulated data, X, shown in Figure

3.3D.

For the Discrete Data, PCA was performed using the autoscaled data, as is the

norm in datasets in which the ranges of the variables are significantly different. For

the calculation of the measurement error comparison metrics, some modifications

to the procedure for calculating the metrics was necessary. Due to the data range

differences, using the unscaled raw data space to calculate the subspace angles and

other metrics would result in the variables with large values having significantly more

impact than the variables with small values. To facilitate comparison of different

methods (PCA, PAF) with the noise-free results, it is necessary to evaluate metrics

in a space of equivalent scaling and also one that accurately reflects the information

retained by each method. Although the scaled space would be better in this regard

than the original space, it is subject to variations in the scaling estimates and the

heteroscedastic RSDs in the errors. Instead the procedure used was to (1) calculate

the reconstructed data, (2) scale the reconstructed data to the original space (X̂), and

(3) rescale each column of X̂ by its theoretical measurement error standard deviation,

σerr,j, given in Equation 3.24. The columns of this rescaled matrix, X̂ESC , are given

by

X̂ESC,j =
X̂j

σerr,j
(3.25)

Note that this scaling method was applied for each set of results (PCA, PAF, error-

free data). By scaling the original data by the error standard deviation, optimal

scaling is applied so that each column has an equivalent error variance. This was

regarded as the most appropriate space to compare metrics.

A Monte Carlo approach was used to account for the variation in the relevant

comparison metrics due to the effects of noise realizations. In the Monte Carlo ap-

proach, 1000 different realizations of the noise matrix E were calculated using the
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same statistical parameters for the iid and heteroscedastic noise, and the noise ma-

trix E was added to the noise-free data matrix Xpure (which was the same for each

realization of the noise). For each realization of the noise, the comparison metrics

were calculated for both the PAF-reconstructed scaled data and PCA-reconstructed

scaled data, so that their statistical characteristics could be examined.

3.2.3 Metals Data

The Metals Dataset was originally described byWentzell et al [74]. The data consisted

of mixtures of the metal ions Co(II), Cr(III), and Ni(II) in solution, measured using

visible spectrophotometry. The solutions were made using a 3-level, 3-factor design,

such that 1, 3, or 5 mL aliquots of the stock solutions were added and diluted to 25

mL with 4% HNO3. The stock solutions of the metal nitrates were prepared in 4%

HNO3 with concentrations of 0.172 M Co(II), 0.0764 M Cr(III), and 0.393 M Ni(II).

The amount of Ni stock remaining was insufficient to prepare the solution with a 3:5:5

ratio of Co:Cr:Ni aliquots, so the dataset consisted of 26 solutions (rather than 27).

Five replicate spectra were obtained for each solution using five randomized blocks,

and a reference spectrum was measured prior to each new sample. The spectra were

measured using an HP 8452 diode array spectrophotometer (Hewlett-Packard, Palo

Alto, CA) using a 1 cm quartz cuvette. The measurements were made over the

wavelength range 300-650 nm in 2 nm intervals with a 1 s integration time. To

introduce nonuniform noise characteristics, a dichroic band-pass filter (green, no. 67)

was placed between the source and the sample to decrease the source intensity at

high and low wavelengths. Two spectra were removed as outliers.

The Metals Data was analyzed for two versions of the dataset. In the “Full”

version of the dataset, all 176 wavelength channels (300-650 nm) were used. In the

“Cut” version, only the 136 wavelength channels were used, in the wavelength range

350-620 nm. The two versions of the Metals Data are shown in Figure 3.4. Due to

the use of the band-pass filter, the noise in the channels at each end of the spectrum

(300-350 nm and 620-650 nm) contain a significant amount of heteroscedastic noise.

In fact, the heteroscedastic noise is a major source of variation, which poses a problem

for PCA. In the results section, it will be shown that PCA performs poorly for the

Full spectra, whereas PAF does not have major issues. For this dataset, the problems
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Figure 3.4: Plot showing the spectra for the two different versions of the Metals
Data. (A) Metals spectra with all wavelengths used (Full); (B) Metals spectra with
truncated wavelengths (Cut).

that arise from the noisy variables in PCA can be easily avoided by simply removing

the noisy variables, as can be seen with the Cut spectra. However, the choice of

which variables to remove (loss of information versus contamination of results) may

not always be readily apparent.

For analysis of the measurement errors, the replicate spectra were used to estimate

the measurement error standard deviations. For a given set of replicates (Xrep), the

error was calculated by subtracting the average replicate spectrum (x̄rep) from each

sample in Xrep. For both the Cut and Full versions of the Metals data, 3-component

PAF and PCA models were calculated, and the scores, loadings, and measurement

error estimates were determined.

3.2.4 Obsidian Data

The analysis of the Obsidian Dataset was originally described in a paper by Kowal-

ski et al [75]. The data originates from a study of archaeological sites in Northern

California, where 75 samples of obsidian were obtained. The obsidian samples were

analyzed using X-ray fluorescence (XRF) spectroscopy. The instrument used was a

General Electric XRD-6, with both a tungsten and chromium target, and a LiF crys-

tal. The concentrations of 10 elements were measured: Fe, Ti, Ba, Ca, K, Mn, Rb, Sr,

Y, and Zr. A more detailed description of the data collection can be found in a paper

by Stevenson et al [76]. The objective of the original study was to classify unknown
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(BL) site had levels of strontium and barium that were near the limit of detection

[76], and the strontium concentrations were below the limit of detection for the Glass

Mountain samples as well. Observations which were below the limit of detection were

reported using the measured value.

3.3 Results and Discussion

For each of the simulated datasets, the calculated subspace angles and imbedded

errors vary somewhat based on the exact realization of the noise. To account for the

variation in the relevant comparison metrics due to noise realization, a Monte Carlo

approach in which 1000 different realizations of the noise matrix E were calculated

while keeping the noise-free data matrix Xpure the same for each noise realization.

Imbedded errors, and the scores and loadings subspace angles were calculated from

PAF and PCA models for each realization of the noise. The measurement error

estimates were calculated for a single realization of the data.

3.3.1 Simulated Dataset 1

In simulated Dataset 1, the data consisted of a three-component mixture of Gaussian

peaks, with heteroscedastic noise added. PCA and PAF models with three compo-

nents were calculated, where the PCA models used the mean-centered data. The

amount of noise added was relatively small (the relative standard deviation was only

about 1%), and the noise was not dramatically heteroscedastic. It was expected that

there would be some overlap in the performance of PAF and PCA, but that PAF

would be slightly better due to the assumption of column heteroscedasticity.

The subspace angles and imbedded errors for PAF and PCA were calculated for

1000 realizations of the noise matrix. In Figure 3.6A, a histogram is used to visualize

the distribution of loading subspace angles for PCA and PAF relative to the true

subspace (of the error-free data) for 1000 realizations. The histogram shows the dis-

tribution of outcomes for both PAF and PCA, as well as the overlap of their respective

distributions (purple regions are the result of overlap). The loadings subspace angles

for PAF and PCA were almost completely overlapped for this dataset, and from this

it can be concluded that the PCA and PAF subspace angles were not significantly

different from each other. The overlap of the loading subspace angles is reasonable
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Figure 3.6: Summary of results for simulated Dataset 1. (A) Histogram of loading
subspace angles (in degrees); (B) Histogram of score subspace angles (in degrees); (C)
Histogram of imbedded errors; (D) Plot of the experimental noise standard deviations
for each variable, and the estimated noise standard deviations from PCA and PAF.
In subfigures A-C, the blue region of the histogram corresponds with PAF, the red
region corresponds with PCA, and the purple region is the result of overlap of PCA
and PAF.

because the measurement errors were not very large for Dataset 1, and the difference

between PCA and PAF loadings is expected to be small when the measurement errors

are small [72]. In contrast, histograms of the score subspace angles and imbedded

errors are shown in Figures 3.6B and 3.6C, respectively. On average, PAF resulted in

smaller score subspace angles and smaller imbedded errors than PCA, which makes

sense when the principles of PAF and PCA are considered. PAF and PCA calculate

the loadings in a rather similar manner, but for the calculation of the scores, PCA

uses an unweighted (orthogonal) projection (which implicitly assumes that the errors

are iid), whereas PAF uses the unique variances Ψ2 to calculate the scores via a
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maximum-likelihood (oblique) projection, such that noisier variables receive less em-

phasis in the calculation. The distributions of the score subspace angles for PAF and

PCA followed a highly similar pattern to the distributions of the imbedded errors.

In Figure 3.6D, the estimates of the standard deviation of each column of the noise

for PAF and PCA are plotted, along with the experimental standard deviation of the

noise. These noise standard deviations are equivalent to relative standard deviations

of approximately 1− 2%. The PCA model underestimated the standard deviation of

the noise in channels 4-17, although the estimates were not far off from the experi-

mental values. The lower values for PCA are not surprising since the goal of PCA is

to obtain the best fit of the data using a strictly least squares criterion. Consequently,

it adapts to capture the higher noise variance in the middle part of the spectrum.

Since the fit is better, the residual variance (and hence the estimated noise standard

deviation) is lower.

The differences in the histograms for the scores and loadings may appear at first

to be incongruous, but it is consistent with the fact that different spaces are being

modeled. One can think of the estimation of the loadings as fitting each column

of data. Because the errors within each column are homoscedastic, both methods

produce similar results. Likewise, the scores calculation is analagous to fitting the

rows. Since the errors in the rows are heteroscedastic, a weighted fit (analagous

to PAF) will be more reliable than an unweighted fit (analagous to PCA). These

differences are reflected in the histograms.

3.3.2 Simulated Dataset 2

The data in Simulated Dataset 2 used the same parameters as Dataset 1, except for

the noise structure. In both datasets, the data consisted of three-component spectral

mixtures, with noise added. In Dataset 1, the noise was a mixture of heteroscedastic

noise and iid noise, but the level of iid noise was small enough that the overall errors

followed a heteroscedastic structure. In Dataset 2, the level of heteroscedastic noise

was kept the same as for Dataset 1, while the standard deviation of the iid noise

was significantly increased. Overall, the standard deviation of the noise in each of

the columns was greater for Dataset 2 than for Dataset 1, but because most of the

noise added to Dataset 2 was iid noise, the overall noise structure was classified as
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Figure 3.7: Summary of results for simulated Dataset 2. (A) Histogram of loading
subspace angles (in degrees); (B) Histogram of score subspace angles (in degrees); (C)
Histogram of imbedded errors. (D) Plot of the experimental noise standard deviations
for each variable, and the estimated noise standard deviations from PCA and PAF.
In subfigures A-C, the blue region of the histogram corresponds with PAF, the red
region corresponds with PCA, and the purple region is the result of overlap of PCA
and PAF.

approximately homoscedastic. It was expected that, for Dataset 2, the subspace

angles and imbedded errors would be larger for both PAF and PCA compared with

the results for Dataset 1 due to the increased noise levels, but that the subspace angles

and imbedded errors for PAF and PCA would be similar due to the iid structure of

the noise.

The results for simulated Dataset 2 are summarized in Figure 3.7. In Figure 3.7A,

a histogram of the loading subspace angles for PCA and PAF for 1000 realizations

of the noise matrix. There was not a significant difference in the loadings subspace

angles of PAF and PCA but, as anticipated, the mean loading subspace angle was
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larger for PAF. In Figure 3.7B-C, histograms of the scores subspace angles and the

imbedded errors are shown, respectively. For both the scores subspace angles and

the imbedded errors, PCA actually resulted in a slightly smaller subspace angle than

PAF on average as well as slightly smaller imbedded errors, although both histograms

were highly overlapped. The slightly better results for PCA can be anticipated by

recognizing that it is constrained to assume that the measurement uncertainties are

uniform (which is approximately true) whereas PAF is also fitting the uncertainties

to improve the model. When the errors are significantly heteroscedastic, PAF has the

advantage, but when the errors are close to homoscedastic, PAF will show a higher

variance, which is reflected in the subspace angles.

In Dataset 1, the average score and loading subspace angles were approximately

1.5o and 4o respectively, whereas for Dataset 2 the average score subspace angle was

about about 2.9o, and the average loading subspace angle was about 7o. The overall

noise level was greater for Dataset 2, so it makes sense that the subspace angles were

larger. The estimates of the standard deviation of each column of the noise for PAF

and PCA, along with the experimental standard deviation of the noise, are plotted in

Figure 3.6D. The estimated noise standard deviations were mostly between 0.02 and

0.025, although within that range the PAF and PCA estimates differed somewhat

from one another, especially in channels 5 and 14.

The purpose of Simulated Datasets 1 and 2 was to investigate how the mea-

surement error structure effects the performance of PAF and PCA as determined

by subspace estimation, imbedded errors, and estimation of the noise. In simulated

Dataset 1, when the noise was column heteroscedastic, the PAF models resulted in

smaller score subspace angles, smaller imbedded errors, and more accurate measure-

ment error estimates, when compared with PCA. In simulated Dataset 2, where the

noise was distributed in a homoscedastic manner, PCA was (on average) slightly bet-

ter than PAF as far as the subspace angles and imbedded errors were concerned, an

the two methods resulted in estimates of the measurement errors that were similar

to the experimental values.
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3.3.3 Simulated Discrete Data

In the Discrete Dataset, the measured variables differed by several orders of magnitude

in intensity, and the errors were proportional to mean intensity, but the proportional-

ity constants were different for each variable. The reason for creating this dataset was

to investigate whether PAF could be used as an alternative to scaling for this type

of data, since proper scaling is difficult when there is both a difference in the range

and/or units of the variables and heteroscedasticity. The PCA and PAF models of

the Discrete Data used two components, and the PCA models were constructed using

the autoscaled data. As was the case with Datasets 1 and 2, 1000 realizations of

the noise were used to assess the variability in the subspace angles, imbedded errors,

and the scores of PAF and PCA. It was expected that, due to the heteroscedastic

errors, there would be a difference that would result in smaller score subspace angles

and imbedded errors for PAF, but it was unclear as to whether or not the loading

subspace angles and measurement error estimates would be significantly different.

The results for the simulated Discrete Data are summarized in Figure 3.8. Figure

3.8A shows a histogram of the loading subspace angles for the autoscaled PCA and

PAF for 1000 realizations of the noise matrix. On average, PAF resulted in slightly

smaller loading subspace angles than PCA, but the difference was not significant. In

Figure 3.8B a histogram of the scores subspace angles is shown, and in Figure 3.8B

depicts a histogram of the imbedded errors. For both the scores subspace angles

and the imbedded errors, PAF resulted in significantly lower values such that the

distributions for PAF and PCA were only partially overlapped. In Figure 3.8D, the

estimates of the %RSD for PAF and PCA are plotted, along with the “true” %RSD.

The PAF estimates were extremely close to the true values, whereas the estimates

obtained from scaled PCA were slightly less close to the true values, although the

scaled PCA estimates were still reasonable. Since PCA assumes that the errors are

homoscedastic, when autoscaled data (where the variables have unit variance and

zero mean) are used to calculate a PCA model, the assumption is that the relative

standard deviation of the noise is equal for all variables. For the Discrete Data, the

PCA assumption of equal relative standard deviations of the noise was not severely

violated. If several of the variables had large relative standard deviations of the noise,

a much larger difference between PCA and PAF might have been observed.
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Figure 3.8: Summary of results for Discrete Data. Using the same set of noise-free
data, 1000 different realizations of the noise were calculated, and PAF and autoscaled
PCA were calculated in each instance. (A) Histogram of loading subspace angles (in
degrees). (B) Histogram of score subspace angles (in degrees); (C) Histogram of
imbedded errors; (D)Plot of the percent RSD for each variable, and the estimated
%RSD values from PCA and PAF. In subfigures A-C, the blue region of the histogram
corresponds with PAF, the red region corresponds with PCA, and the purple region
is the result of overlap of PCA and PAF.

Another way to visualize the effect of the noise on the PAF and PCA scores is to

use a scores plot. In Figure 3.9, a scores plot depicting scores 1 and 2 for samples 1-20

of the Discrete Data is shown. In the scores plot, the average scores are marked using

the “+” symbol, and error ellipses of the scores are drawn, with PAF in blue and PCA

in red. The average scores and error ellipses were calculated from generating PAF and

PCA models for 1000 realizations of the noise, with the error ellipses representing the

variation for 95% of the noise realizations. The locations of the average scores for PAF

and PCA were nearly identical for each of the samples plotted. However, the error

ellipses of the PCA scores were larger than the confidence intervals of the PAF scores,
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Figure 3.9: Scores plot for samples 1-20 of the data reconstructed by both PAF and
PCA, over the course of 1000 different realizations of the noise. The average scores
are denoted using the + symbol, and the variation in the each score is shown with
the ellipsoids, which correspond to the 95% confidence interval. The PCA scores are
plotted in red, and the PAF scores are plotted in blue.

which means that the PCA scores were more sensitive to the effects of the noise. This

finding also indicates that the noise effected the variance in each of the scores, but

it did not introduce a significant systematic difference in the scores. If the data had

more noise, or if the models had inaccurately estimated the errors, the error ellipses

would have been larger. The variation in the scores is of interest in classification

problems, which often entails assigning boundaries to PCA scores for the purpose of

separating the samples into distinct groups. Since PCA appears to introduce more

variation in the scores than PAF when the errors are heteroscedastic, this suggests

that samples near the class boundaries would be more likely to be misclassified when

PCA scores are used.

The main findings for this dataset were that the measurement error estimates and
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loading subspace angles were not significantly different between scaled PCA and PAF,

whereas PAF resulted in improvements in the score subspace angles and imbedded

errors, and PAF also led to decreased score variability compared with PCA.

3.3.4 Metals Data

The Metals Dataset was included in this work since it contained significant amounts of

heteroscedastic noise, and had a measurement error structure that could be estimated

using replicate measurements. The wavelengths on the ends of the spectra (300-350

nm and 620-650 nm) were extremely noisy, while between 400 nm and 600 nm the

noise levels were small. This dataset presents a test for PCA, since PCA calculates the

components such that they have maximal explained variance, and for these spectra the

variation of the noise was comparable to the variation of the main chemical analytes.

It was expected that when PCA was calculated using the Full spectra, that the model

would be corrupted by the noise, whereas PAF would not result in significant issues.

PCA and PAF models were also calculated for the Cut Metals Data, where the noisiest

regions were removed. It was expected that for the Cut metals spectra, the differences

between PCA and PAF would be small, since the noise structure for the Cut spectra

was less severely heteroscedastic. All models were calculated using three components,

and the PCA models were calculated using the mean-centered spectra. Autoscaling

was not used for these data, because it generally has detrimental effects when used

on spectra, as it tends to decrease the importance of variables with large chemical

variation due to the presence of baseline regions.

For the experimental data, it is not possible to calculate subspace angles and

imbedded errors because the true measurement space is unknown. However, the

measurement error estimates can be compared to those from replicate data, and the

scores and loadings from the two methods can be compared. The measurement error

estimates for the Full Metals Data are shown in Figure 3.10A, while the measurement

error estimates for the Cut Metals Data are shown in Figure 3.10B. For the Full Metals

spectra, the noise standard deviation estimates for PAF were similar to the estimates

of the noise that were calculated using the replicates, although the PAF estimates of

the errors were slightly larger than the replicate-estimates in the regions from 300-

350nm and 620-650 nm. The estimates of the noise standard deviations from PCA
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Figure 3.10: Results for estimated standard deviations of noise for Metals Data. (A)
Full Metals Data; and (B) Cut Metals Data.

were slightly closer to the replicate-based estimates in the noisiest regions of 300-350

nm and 620-650 nm, but in the main chemical region of the spectra the PCA residual

variance was very large relative to the true pattern. Further, in the PCA estimates

of the errors, clear peak-like shapes in the estimates can be observed between 350 nm

and 600 nm, which indicates that there was chemical variation present in the residuals.

This is anticipated, since the principal components will attempt to model some of the

noise variance at the expense of the chemical variance, leading to larger residuals from

the latter. The PAF uncertainty estimates track the replicate values better in the low

noise region, except for a small peak around 400 nm where the uncertainty estimates

appear anomalously higher than the replicate estimates. Since this is coincident with

a peak maximum, it may be a consequence of nonlinear behavior, but this is only

speculation.

For the Cut Metals Data, the noise estimates of PAF, PCA, and the estimates from

the replicates, were nearly identical to one another. There were two Heywood cases

for the PAF model of the Full Metals spectra, such that the values ofΨ2 at wavelength

the channels at 572 nm and 578 nm were slightly negative. For the Cut Metals spectra,

the PAF model resulted in six Heywood cases, at the wavelength channels 478 nm,

480 nm, 482 nm, 552 nm, 564 nm, and 572 nm. For spectroscopic data, the Heywood

cases are somewhat less of an obstacle to deal with, because the measurement error

variance can be considered to be approximately homoscedastic over small intervals

of wavelength channels. As a result, for spectroscopic data, Heywood cases can be
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Figure 3.11: Loadings plots for Metals Data. (A) PCA (Full); (B) PAF (Full) (C)
PCA (Cut) (D) PAF (Cut).

dealt with using weighted averaging or smoothing of the measurement error estimates.

Both the PCA and PAF error estimates track the replicate estimates reasonably well,

but both are lower than the replicate values in the middle region and the anomalous

peak at 400 nm is still present for PAF. It is suspected that the higher value for the

replicates may be due to the presence of baseline offset noise, which is a source of

correlated noise that would be partly removed by PCA and PAF.

In Figure 3.11, loadings plots for PAF and PCA for both the Full and Cut Metals

Data are plotted. The PAF loadings were calculated in the autoscaled space, and were

scaled to the original space by multiplying by the column standard deviations ofX. In

a loadings plot, the first component corresponds to the largest source of variance, and

each successive component accounts for the remaining variance. Generally speaking,

for a given component, the importance of the variables is related to the magnitude

(positive or negative) of the loadings, such that variables with loadings close to zero

are less important. The PCA loadings for the Full Metals Data are shown in Figure
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3.11A. For component 1, the loadings were all positive, and the largest loading was

for the 400 nm wavelength channel. For component 2, the loadings in the noisy

region between 300 and 320 nm were of similar magnitude to the largest loadings in

the main chemical regions of the spectra. The PCA loadings for component 3 were

significantly impacted by the noise, as the loadings in the main chemical region were

all close to zero, while the loadings were quite large in the noisy regions. The PAF

loadings for the Full Metals Data are shown in Figure 3.11B. The loadings in the noisy

regions were not equal to zero for the PAF loadings, but they were generally smaller

relative to the loadings in the regions where the metals absorbed most intensely. In

Figure 3.11C, the PCA loadings for the Cut Metals Data are plotted. The sign of the

loadings for component 1 were reversed for this figure, to show the similarities with

the PAF loadings for the Cut spectra shown in Figure 3.11D. For the Cut Metals

Data, any remaining noisy variables do not have a significant impact on either the

the PAF or the PCA loadings. The PAF and PCA loadings visually look somewhat

different from one another, especially for component 3, but the spaces modeled by

the two methods are likely the same (or highly similar).

In Figure 3.12, scores plots for PAF and PCA for the Full and Cut versions of

the Metals Data are shown. In each of the scores plots, the samples are color-coded

based upon the concentrations of each of the three metals. Scores plots can be useful

for visualizing how the samples in a dataset are related to one another, with the

expectation that samples with similar chemical composition will have similar scores.

For the Metals data, the samples were created using a three-factor, three-level design,

with five replicate samples per mixture. Therefore, it is to be expected that the scores

of the samples will be related to their concentrations such that the design matrix

becomes apparent, and it is also expected that the scores of the replicate samples

should be highly similar. The PCA scores for the Full Metals Data are shown in

Figure 3.12A. The PCA scores appeared to be distributed in a random manner, and

the scores of replicates were not clustered at all. In Figure 3.12B, the factor scores

F from the Full Metals Data clearly form a pattern resembling a data cube that

reflects the experimental design, and one can even see where the “missing” mixture

component would have been (bottom level, middle column, back row of the cube

formed by the scores pattern). Further, the scores of replicate samples were highly
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similar to one another. For the PCA scores from the Cut Metals Data in Figure

3.12C, and the PAF scores from the Cut Metals Data in Figure 3.12D, the mixture

design is clearly evident as well. For the PAF scores, the design is somewhat more

difficult to see from a single perspective, but from rotating the perspective of the

scores plot it can be seen that the scores do form a 3D cube.

Figure 3.12: 3D scores plots for Metals Data. (A) PCA (Full); (B) PAF (Full) (C)
PCA (Cut) (D) PAF (Cut).

Overall, for the Full version of the Metals Data, PCA resulted in a significant

propagation of noise into both the scores and loadings, such that the mixture design

could not be identified in the scores plot. PAF, on the other hand, was able to give an

accurate estimate of the measurement errors, and the experimental design of the data

was clearly evident in the scores plot. For the Cut version of the Metals Data, PAF

and PCA performed similarly as far as the estimation of the measurement errors,

loadings, and scores were concerned. The results demonstrate that, on the one hand,

PAF can lead to a strong model performance even in the presence of extremely noisy

variables, while the PCA model will be corrupted by the noise. On the other hand,
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for this type of spectroscopic data, it is rather easy to identify and remove variables

with high noise levels, and after removing the noisiest variables, PCA and PAF will

behave similarly to one another.

3.3.5 Obsidian Data

The Obsidian Data consisted of measurements of trace elements for obsidian samples

from four quarry locations in California and in this respect can be representative of

the Discrete Data case studied in the simulations. This dataset was included in several

early chemometrics software packages, and as a result the dataset is well-known in

the field. PAF and PCA models with four components were calculated using the

samples from the training set, and scores of the test set samples were calculated by

projection. PCA models were calculated using both mean-centering and autoscaling.

The parameters of interest for this dataset were the scores, and the measurement

error estimates. For the scores, the objective was to see whether samples from the

same quarry had similar scores or not, and to see whether the scores of the test set

samples would cluster with the samples from the known quarries. The measurement

error estimates for PCA and PAF were compared with values for the data that were

reported by Duewer et al [78]. Given the wide range of the elemental concentrations,

it was expected that mean-centered PCA would be the worst of the methods. It was

also anticipated that PAF would fare slightly better than autoscaled PCA, since the

errors in the elements were likely to be somewhat heteroscedastic even after scaling.

The results for the Obsidian Data are summarized in Figure 3.13, where scores

plots of the first two components for each of the methods are shown, as well as the

estimates of the relative standard deviation of the noise. In Figure 3.13A, the scores of

mean-centered PCA are shown. The scores for the samples from the Anadel quarry

(purple squares) are clustered in the bottom right quadrant of the plot, while the

samples from the Glass Mountain quarry (green diamonds) cluster in the bottom left,

although one of the Glass Mountain samples was somewhat different than the rest.

The separation of the Anadel samples in the unscaled space is not surprising given

the high and differentiating concentrations of iron (see Figure 3.5). The samples

from the Konocti (K, red circles) quarry were somewhat closely clustered together,

although the scores were overlapped with the samples from the Borax Lake (BL, blue
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Figure 3.13: Results for the Obsidian Data. (A) Scores plot for mean-centered PCA;
(B) Scores plot for autoscaled PCA; (C) Scores plot for PAF (D) Plot of estimates of
the relative standard deviation of the noise for each method.

triangles), which had very weak clustering. Due to the overlap between the Borax

Lake and Konocti samples, it is somewhat difficult to assign the classes for several

of the test set samples. In Figure 3.13B, the scores plot from the autoscaled PCA

are shown. The scores of the samples from the four quarries all clustered in different

locations, such that the classes can be visually distinguished from each other. Of the

unknown samples, three samples clustered with class BL, six samples clustered with

class SH, one sample clearly clustered with Konocti, two samples were somewhat in-

between the centers of the K and BL classes but perhaps slightly closer to Konocti,

and one sample appears near the middle of the figure, and is considered to be an

“outlier” that does not belong to any of the other classes [71]. The scores for PAF are

shown in Figure 3.13C. For the PAF scores, the scores of the samples in each class were

much closer together, with the exception of the Borax Lake quarry samples. For the

test set samples, five clustered with the Glass Mountain samples, three were clustered

with the Borax Lake samples, three were clustered with the Konocti samples, and
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the “outlier” sample appeared near the middle of the plot. For this dataset, the PAF

model was better for clustering the samples than either scaled PCA or mean-centered

PCA.

In Figure 3.13D, the estimates of the percent relative standard deviation (%RSD)

of the noise are shown. The reference values of the percent relative standard devia-

tion (%RSD) of the noise %RSD were reported by Duewer et al [78], although the

authors did not describe how the measurement uncertainties were calculated. Further

details about the measurement errors were also found in a paper by Stevenson et al

[76], where the authors stated that for these data, the relative standard deviations

were, generally speaking, “on the order of 10%”. The mean-centered PCA estimates

of the measurement errors (shown in red) were very low for iron, titanium, and cal-

cium, which had some of the largest variances, whereas the estimated errors in barium

(which had low concentrations, and low variation) was larger than the estimates from

the other methods. These results are not surprising, since the unscaled PCA will

model the largest variances first so that, when proportional errors are present, it will

model the noise for the large variables before the chemical variance in the smaller

variables. Consequently, the (relative) residuals for larger variables are attenuated

and those for smaller variables are amplified. With the notable exceptions of stron-

tium and yttrium, the estimated measurement errors for PAF (blue) and scaled PCA

(green) were between about 4% RSD and 15% RSD, which means that the errors

generally were in the same range as both the estimates reported by Duewer, and

the “order of 10%” reported by Stevenson. Both sets of error estimates also track

the general behavior anticipated by Duewer, except for yttrium, which appears to be

much lower than expected. For the estimation of the uncertainty in the strontium

concentration, Duewer reported a relative standard deviation of 30.6%. Based upon

the data reported by Stevenson, that RSD seems accurate for the samples from the

Borax Lake and Glass Mountain sites, where the strontium concentration was near

the limit of detection, but the samples from Konocti and Anadel had uncertainties

of around 15%, so the overall uncertainty in strontium concentration is likely some-

where around 20%, which is what was reported by PAF. For the estimates of yttrium

concentration, it seems unclear as to why PAF and PCA both resulted in such low

estimates of the RSD.
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The main findings for the Obsidian Data were that PAF led to tighter clusters and

all the classes of the test set samples could be clearly identified (except for the outlier

sample), whereas with the mean-centered PCA and scaled PCA the clusters were less

well-defined and there were multiple test set samples whose class identity was unclear

based upon the projected scores. The measurement error estimates for both PAF and

scaled PCA were similar for most of the elements, and with the exception of yttrium,

the relative standard deviations were similar to values reported in the literature.

3.4 Conclusions

In simulated Datasets 1 and 2, the effects of the measurement error structure on the

relative performance of PAF and PCA were observed. When the measurement errors

were column heteroscedastic, PAF resulted in improved subspace estimation and error

estimation, whereas when the added noise was approximately homoscedastic, PCA

was actually marginally better than PAF at subspace estimation. These simulation

results were reinforced by the Metals Dataset, an experimental spectroscopic dataset

with extreme heteroscedasticity at the edges of the spectrum. It was found that PCA

performed significantly worse than PAF when all wavelength channels were used, but

when the noisy variables were removed, PCA and PAF performed similarly as far as

the estimation of the measurement errors, scores and loadings.

In the simulated Discrete Data, data with heteroscedastic errors and exponential

differences in the ranges of the measured variables were modeled. It was found that

PAF resulted in improvements in the score subspace angles, more accurate error

estimates, and decreased variation in the scores when compared with PCA on the

autoscaled data. These results were reflected in the experimental Obsidian Dataset,

which consisted of trace element concentrations of samples from different locations.

It was found that PAF resulted in improved clustering of samples when compared

with PCA.

The findings of this study suggest that using PAF instead of PCA could be bene-

ficial when the measurement errors are significantly heteroscedastic. While PAF gen-

erally resulted in more accurate measurement errors than PCA, the PCA estimates

of the measurement errors from the residuals were not wildly inaccurate. Further,

with the exception of the Full Metals Data, which were extremely heteroscedastic,
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the space of the loadings for PAF and PCA were similar. These findings suggest that

the primary advantage of PAF in the case of heteroscedastic data is in the use of the

estimates of the measurement errors to calculate a maximum-likelihood projection

of the scores. As a result, it is possible that the PCA residuals could be used to

estimate the measurement errors, and maximum-likelihood scores for PCA could be

calculated. Such a method would likely perform similarly to PAF in all but the most

extremely heteroscedastic cases.



Chapter 4

Conclusions

Broadly speaking, in the analysis of multivariate data, there are three families of

methods for non-iid measurement errors.

1. Presumptive methods, which assume that the measurement error follows a given

structure, and adopt the data to fit the structure.

2. Determinate methods, which use information about the measurement error

structure such as the error covariance matrix.

3. Empirical estimation methods, which try to both model the data and estimate

the measurement errors.

Most of the conventional approaches for handling non-iid errors, such as autoscaling,

fall into the first category. Autoscaling assumes that the relative standard deviation

of the measurement errors is the same across the variables, such that when the data

are scaled they become homoscedastic. methods may perform adequately when the

assumed error structure is valid (or approximately so), but real data are often messy

and have complex error structures, such that empirical methods may be inadequate

and/or sub-optimal. The second category, of methods include techniques such as

maximum likelihood principal components analysis (MLPCA) and multivariate curve

resolution with weighted alternating least squares (MCR-WALS). When accurate

information about the measurement error characteristics is available, such techniques

can be extremely powerful, but measurement error information is often unavailable

due to the added costs and time of collecting additional replicate measurements. The

methods investigated in this thesis, weighted scatter correction methods (IDRC and

VSN-based methods) and PAF, can be seen as belonging to the third category of

simultaneous estimation methods.

The effects of weighted scatter correction methods were tested using three simu-

lated datasets, and one experimental dataset of NIR spectra. It was found that when
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the level of chemical background signal variation was low, and the level of the main

chemical analyte variation was high, the corrections made by SSNV and IDRC re-

sulted in significant reductions in prediction errors when compared with conventional

SNV and MSC corrections. However, it was found that when the level of the chemi-

cal background signal was high, corrections using SSNV and IDRC resulted in larger

prediction errors than using no correction at all. It remains to be seen how useful

weighted correction methods will be for real data. The assumptions of SNV and MSC

(low chemical background variation relative to scatter variation) are frequently satis-

fied for measurements of samples that are mostly homogeneous in composition. For

weighted scatter correction methods, the assumptions are that a dataset contains a

region with significant chemical variation while also having low background chemical

variation, which are potentially contradictory. If spectra exhibit significant chemical

variation in at least one region, there must be variation in the chemical composition

of the samples, then there must be a certain amount of inhomogeneity in the samples.

When the chemical (or physical) variation in the composition varies significantly, the

effects on the spectra (especially those of NIR spectra) are often complex and nu-

anced, whereas the weighted correction methods still assume that a simple model of

scatter is still valid.

PAF was shown to have advantages over PCA for data with heteroscedastic errors.

PAF could potentially be extremely useful for a variety of problems in chemometrics.

There are multiple areas where the measured variables are discrete and heteroscedas-

tic, such as elemental analysis, metabolomics, and data fusion. One potential issue

for using PAF in real chemical datasets is that of rank ambiguity. A real complex

mixture, such as a gasoline sample or corn meal, may contain a small number of major

analytes but may also have dozens (or possibly hundreds) of minor or trace analytes.

As a result, there are often components with levels of variance at or around the noise

level, such that it is difficult to assess how many components are “chemical” and

how many are due to noise. For PAF, the number of components must be accurately

estimated, or the model will not be valid.

These studies only involved two types of noise. There are many other noise struc-

tures which exist, and at the moment there are few empirical estimation methods

which have been proposed that try to simultaneously estimate the errors while also
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modeling the data. Such methods have the potential to be extremely useful, as they

can potentially offer similar accuracy as known-error methods such as MLPCA in

circumstances where the measurement error characteristics are unknown.
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mond, and Nadine Jent. A review of near infrared spectroscopy and chemomet-
rics in pharmaceutical technologies. Journal of pharmaceutical and biomedical
analysis, 44(3):683–700, 2007.

[26] Jerry Workman Jr and Lois Weyer. Practical guide to interpretive near-infrared
spectroscopy. CRC press, 2007.

[27] Tom Fearn, Cecilia Riccioli, Ana Garrido-Varo, and José Emilio Guerrero-Ginel.
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