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Abstract

The independence polynomial of a graph is a polynomial whose coefficients give the

number of independent sets of each size. Its roots are called independence roots.

This thesis explores the analytic properties of independence polynomials and the

interactions between these properties and the structure of the corresponding graphs.

We begin by applying results that relate the independence roots to the coefficients

of independence polynomials of very well-covered graphs. We will explore families

of graphs whose independence roots all lie to the left of the imaginary axis (which

appears to be most graphs at a first glance) and other families of graphs that have

independence roots to the right of this line. We then prove exponential bounds on

the maximum modulus of an independence root that a graph of order n can attain.

Finally, we find graphs that are independence equivalent, that is have equivalent

independence polynomial, to a path or a cycle of certain orders.
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Chapter 1

Introduction

Graph polynomials and their roots have arisen in a variety of applied and theoretical

settings. Chromatic polynomials were introduced in 1912 by Birkhoff [8]; these are

functions that count, for each positive integer λ, the number of ways to assign one

of λ colours to each vertex such that adjacent vertices receive different colours (the

interest arose out of what was known then as the Four Colour Conjecture, which

claimed that any planar graph could be coloured with four colours).

Another graph polynomial, all-terminal reliability, was introduced to model ro-

bustness of a network. The salient model had vertices that were always operational,

but edges that failed independently with probability q ∈ [0, 1], and asks the proba-

bility that the spanning subgraph of operational edges forms a connected graph, that

is, that all the vertices can communicate. The literature on all-terminal reliability is

vast (see [32] for an early book on the topic).

Other graph polynomials have been introduced as generating polynomials to

deeply explore counting sequences related to various graph parameters. The dom-

ination polynomial [3] has been proposed to study dominating sets in graphs. The

clique polynomial [50] has been introduced to explore the number of complete sub-

graphs of different orders in a graph. Similarly, the neighbourhood polynomial [25]

has been advanced to investigate subsets of vertices that have a common neighbour.

Moreover, there has been much recent interest in independence polynomials of graphs,

the generating polynomials for the sequence of numbers of independent sets of each

size. Gutman and Harary [46] were the first to explore this generalization when they

defined the independence polynomial in 1983. The independence polynomial is also

known as the partition function for the hard-core self-repulsion and pair interaction

model in statistical physics, an application explored by Scott and Sokal [78] using a

surprising connection between the Lovász Local Lemma and the roots of independence

polynomials of graphs.
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In all cases, the roots of graph polynomials have been a centre of study, both

for what they imply directly about the polynomial and their importance as to what

they say about the sequence of coefficients. Birkhoff’s motivation was to prove, with

purely analytical methods, that 4 was never a root of the chromatic polynomial of a

planar graph. This method was ultimately unsuccessful in proving the Four Colour

Theorem, but the chromatic polynomial has proved to be one of the best-studied

objects in graph theory [37]. Indeed the roots encode the chromatic number of the

graph as the least positive integer that is not a root. In 1992, the roots of reliability

polynomials were explored [15], leading to the well-known Brown-Colbourn conjecture

that the roots of reliability polynomials all lie in the unit disk centred at 0. In spite

of considerable evidence [15, 87, 30], the conjecture was shown to fail, but only by

the slimmest of margins [76].

Work on the roots of domination, clique, and neighbourhood polynomials can be

found in [26, 50, 25]. The research literature on the roots of independence polyno-

mials (that is, on independence roots) is extensive. What follows in this thesis is our

contributions to the study of independence polynomials and their roots.

1.1 Graph Theory Background

Throughout this thesis a graph G is the pair (V (G), E(G)), where V (G) is the vertex

set and E(G) is the edge set. Each edge consists of unordered pairs of vertices. All

graphs considered in this thesis are finite, undirected, and simple (that is, with no

loops or parallel edges). The order of G is |V (G)| and the size of G is |E(G)|. If two
vertices u and v are joined by an edge, i.e. if uv ∈ E(G), then we say u and v are

adjacent and we write u ∼ v (equivalently v ∼ u since our graphs are undirected).

A vertex that is the endpoint of an edge is said to be incident with the edge. For

v ∈ V (G), the set N(v) = {u ∈ V (G) : v ∼ u} is the open neighbourhood of v and

N [v] = N(v)∪{v} is the closed neighbourhood of v. The degree of a vertex v, denoted

deg(v), is defined by deg(v) = |N(v)|. A vertex of degree 0 is called an isolated vertex

and a vertex of degree 1 is called a leaf. The maximum degree of a graph is denoted

∆(G), and the minimum degree is denoted by δ(G).

A graph H = (V ′, E ′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E ′.

The graph H is an induced subgraph of G if the further condition that for all u, v ∈ V ′,
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u and v are adjacent in H if and only if they are adjacent in G. Subgraphs may be

thought of as choosing vertices and edges, whereas induced subgraphs may be thought

of as choosing vertices with no choice for edges. For S ⊆ V (G), let G − S be the

graph obtained from G by deleting all vertices of S as well as their incident edges,

i.e. the induced subgraph of G with vertex set V (G) \ S. If S = {v}, we will use the

shorthand G− v to denote G− {v}. A subset S of the vertex set of a graph G with

m = |S| that induces a graph with all
(︁
m
2

)︁
possible edges is called a clique. On the

other hand, if S induces a subgraph with no edges, then S is called an independent set

(much more on these soon). A graph is bipartite if its vertex set can be partitioned

into one or two independent sets.

A graph is connected if there is a path between every pair of vertices in its vertex

set and disconnected otherwise. A disconnected graph has at least two maximal

connected induced subgraphs called components.

Two graphs G and H are isomorphic if there is a bijection f : V (G) → V (H) such

that u ∼ v if and only if f(u) ∼ f(v). Such a function is called an isomorphism and

we write G ∼= H for G being isomorphic to H. We distinguish between isomorphic

graphs only if the labelling of the vertices has some importance. The labels are

not usually of concern for us as the independence polynomial does not take vertex

labellings into account, so we consider isomorphic graphs essentially equal and hence

sometimes write G = H. Isomorphism will play a role in Chapter 5.

The complement of G, denoted G, is the graph on the same vertex set with u

and v adjacent in G if and only if they are nonadjacent in G. The disjoint union of

two graphs G and H on disjoint vertex sets, denoted G ∪H, is the graph G ∪H =

(V (G)∪V (H), E(G)∪E(H)) (if G and H are not disjoint, we use disjoint isomorphic

copies of each). The lexicographic product (or graph substitution) is defined as follows.

Given graphs G and H such that V (G) = {v1, v2, ..., vn} and V (H) = {u1, u2, ..., uk},
the lexicographic product of G and H, which we will denote G[H], is the graph such

that V (G[H]) = V (G) × V (H) and (vi, ul) ∼ (vj, um) if vi ∼G vj or i = j and

ul ∼H um. The graph G[H], can be thought of as substituting a copy of H for each

vertex of G. This intuitive way of understanding the product is why it is sometimes

referred to as graph substitution. Other graph products and operations, like the join

and corona will be used throughout but will be defined as needed.
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Figure 1.1: The lexicographic product P3[K2].

Common graphs that we will use in this thesis include the complete graph on n

vertices, denoted Kn (the graph whose vertex set is a clique), the cycle on n vertices,

denoted Cn, the path on n vertices, denoted Pn, and the complete k-partite graph

Kn1,n2,...,nk
. One special case is the graph K1,n−1, the star on n vertices. The empty

graph on n vertices is the graph with no edges and is equal to Kn. A forest is an

acyclic graph (one without Ck subgraphs) and a connected forest is called a tree.

(a) K4 (b) C4 (c) P4 (d) K1,3

Figure 1.2: All connected graphs of order 4.

The reader is referred to [89] for any graph theory definitions or background

omitted in this brief section.

1.2 Sequences, Polynomials, and Roots

As our objects of study are polynomials, we shall need to rely on various definitions

and notions from algebra and analysis. The coefficients, degree, and leading and

constant terms should be well-known to the reader. A real polynomial is one whose

coefficients are all real, and such a polynomial is standard if it is either identically

0 or has positive leading coefficient. The discriminant of a polynomial with roots

r1, r2, . . . , rn is defined by
∏︁

i<j (ri − rj). The discriminant is useful when considering

small degree polynomials as there are expressions for it as a function of the coefficients

of the polynomial [53].

A root (or zero) r of a polynomial p(z) is a complex number such that p(r) = 0.

The left half-plane (LHP) is the set of complex numbers whose real part is at most

0 (the right half-plane is defined analogously). A polynomial is stable if and only if

all of its roots are in the left half-plane. Such polynomials are important in many
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applied settings [30]. The name “stable” comes from the fact that if a polynomial

associated with a system of ordinary differential equations has all roots in the LHP,

then the system is stable, that is the solution converges to an equilibrium [41].

A sequence ⟨a1, . . . , al⟩ of real numbers is unimodal if there is a positive integer k

such that a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ al and it is log-concave if a2k ≥ ak−1ak+1

for all k = 1, 2, . . . , l−1 (the sequence is strictly log-concave if strict inequality always

holds). Any log-concave sequence of positive numbers is unimodal. We say that a real

polynomial is unimodal, log-concave or strictly log-concave if and only if its sequence

of coefficients has the salient property.

1.3 A Retrospective of Independence Polynomials and Their Roots

Given a (finite, undirected) graph G, we formally define the independence polynomial

of G, denoted i(G, x), by

i(G, x) =

α(G)∑︂
k=0

ikx
k,

where ik is the number of independent sets of size k in G, that is, the number of

subsets of size k that do not contain any edge of G (by convention, every graph has

i0 = 1, as the empty set is always trivially independent). For every graph G of order n,

it is clear that 0 ≤ ik ≤
(︁
n
k

)︁
. As any subset of an independent set is also independent

by definition so there cannot be any “internal zero coefficients” in an independence

polynomial. More precisely, if ik ≥ 1, then ik−j ≥ 1 for all j = 0, 1, . . . k.

For all n ≥ 1, the complete graph, Kn, has i(Kn, x) = 1 + nx since any subset of

V (Kn) on at least two vertices will induce a subgraph with an edge. At the opposite

end of the spectrum we have i(Kn, x) =
∑︁n

k=0

(︁
n
k

)︁
xk = (1 + x)n. In both cases, the

independence polynomials were easy to compute and we can easily see that − 1
n
and

−1 are the independence roots of Kn and Kn respectively.

Independence polynomials are not always straightforward to compute; in general

it is an NP -hard problem to determine the independence number of a graph [43] (i.e.

the degree of the independence polynomial) and therefore it is an NP -hard problem

to compute the independence polynomial of a graph (even at any nonzero complex

number c [48]).

One very important tool for studying independence polynomials is the following
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result that allows for independence polynomials to be computed recursively (but not

efficiently).

Proposition 1.3.1 ([46]). If G and H are graphs and v ∈ V (G), then

i) i(G, x) = i(G− v, x) + x · i(G−N [v], x), and

ii) i(G ∪H, x) = i(G, x)i(H, x).

Hoede and Li [50] generalized this formula to the deletion of a clique of any size

and also gave a version for the deletion of an edge. Gutman [44] gave a recursive

identity for the independence polynomial of a tree in terms of paths between two

vertices in the tree.

v1

v2

v3

v4

Figure 1.3: The graph K1,3.

As an application of Proposition 1.3.1, let’s calculate the independence polynomial

of the star K1,3. Let K0 denote the graph with empty vertex set and note that

i(K0, x) = 1. From Proposition 1.3.1,

i(K1,3, x) = i(K1,3 − v1, x) + x · i(K1,3 −N [v1], x)

= i(K3, x) + x · i(K0, x)

= (1 + x)3 + x · 1

= 1 + 4x+ 3x3 + x3.

Proposition 1.3.1 will be very important for our results in Chapters 4 and 5.

The proof of this result is intuitive and instructive, so we outline the idea here. An

independent set in G either contains or does not contain v. All independent sets not

containing v are be counted by i(G− v, x). All independent sets containing v consist
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of the union of {v} and an independent set in G that does not contain any neighbour

of v, so these are enumerated by x · i(G−N [v], x).

Even in cases when we can compute the polynomial, their roots are often difficult

to find. From above, i(K1,3, x) = 1+4x+3x2+x3. The roots of i(K1,3, x) can be found

using the cubic formula, but it is messy. Instead we will remark on the nature of these

roots as they differ from the independence roots that we found for the complete and

empty graphs. The Rational Roots Theorem says that any rational independence

root of K1,3 must have numerator and denominator that divide 1. Therefore, the

only possible rational independence roots of K1,3 are 1 and −1, but neither are roots.

Therefore, K1,3 has no rational roots. Since i(K1,3, x) is a polynomial with real

coefficients, every root comes with its complex conjugate pair, so K1,3 either has

three irrational roots, or one irrational root and two nonreal roots. Moreover, in

chapter 10 of [53], the discriminant of a cubic polynomial is given as a function of its

coefficients and it is shown that if this value is negative, then the polynomial has one

real root and two nonreal roots. The discriminant of i(K1,3, x) is −31 so K1,3 has two

nonreal roots and one real (but irrational) root. Plots of independence roots suggest

much intriguing structure (see Figures 1.4 and 1.5).

Figure 1.4: Independence roots of all graphs of order at most 8.

Interest in the independence polynomial since its introduction 36 years ago has

focused on problems related to
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Figure 1.5: Independence roots of all trees of order at most 14.

• computing the independence polynomial [4, 50, 46, 48, 63, 19, 44],

• properties of the coefficient sequence [1, 69, 16, 47, 57, 58, 60, 62, 67],

• properties of the independence roots [16, 18, 19, 23, 24, 31, 34, 63, 71], and

• determining nonisomorphic graphs with equivalent independence polynomials

[29, 50, 83, 66, 20, 72, 63, 64, 90].

Questions arise about the nature and location of independence roots in the complex

plane. Brown and Nowakowski [24] use random graphs to show that almost all graphs

have a nonreal independence root. Although almost all graphs have a nonreal inde-

pendence root, no graph has all nonreal independence roots since the independence

root of smallest modulus in every graph is real [16]. It was shown in [63] that the

independence roots of a graph on n vertices lie in |z| > 1
2n−1

.

The independence roots of largest modulus have been considered as well. For a

graph of order n with independence number α, a tight bound on the largest modulus

of an independence root is
(︁

n
α−1

)︁α−1
+O(nα−2) [23]. When restricted to well-covered

graphs, however, independence roots lie in the disk |z| ≤ α(G) [16].

In a beautiful paper, Chudnovsky and Seymour [31] extended the work done in

both [49] and [47], showing that G has all real independence roots for every claw-free

graph G. In general though, Brown et al. [19] showed that the set of independence

roots of all graphs is dense in C and the set of all real independence roots is dense in

(−∞, 0], even when the set is restricted to the independence roots of comparability

graphs or well-covered graphs. If restrictions are put on different graph parame-

ters their collection of independence roots may no longer be dense in C. Sokal [81]
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conjectured that there exists a neighbourhood around the interval[︃
0,

(∆(G)− 1)∆(G)−1

(∆(G)− 2)∆(G)

)︃
such that no graph G has an independence root in this neighbourhood. This was

recently shown to be true by Peters and Regts [73].

Inspired by all of the work that has come before on the independence polynomial,

we will focus entirely on the independence polynomial throughout this thesis. The

structure is as follows: In Chapter 2, we consider the log-concavity conjecture for very

well-covered graphs using the independence roots and a generalization of Newton’s

result on polynomials with all real roots. Computations on the roots led us to become

interested in graphs with independence roots with positive real part, so in Chapter 3,

we undertake the first exploration of stable and nonstable independence polynomials.

In Chapter 4, we bound the maximum modulus of an independence root of a graph

on n vertices. The last chapter with original results is Chapter 5, where we look at

independence equivalence classes of paths and cycles, extending the known results

listed in this introduction. We end with Chapter 6, where we include open problems

and ideas for future research. We also include four appendices with plots of indepen-

dence roots of small graphs and trees of small order and graphs of small order whose

independence roots have (imaginary part with) maximum modulus.



Chapter 2

On the Log-Concavity Conjecture for Independence
Polynomials of Very Well-Covered Graphs

For many graph polynomials such as matching [49], chromatic [75, 51] and relia-

bility [32, 52] polynomials, the absolute value of the coefficient sequence, have long

been conjectured to be (or proven to be) unimodal, that is, nondecreasing then non-

increasing. In some cases, unimodality was proven by showing the stronger property

of log-concavity. Problems on unimodality and log-concavity are not only of interest

for graph polynomials; in fact, they permeate the literature in combinatorics, algebra,

and geometry (see Stanley’s survey [82] and Brenti’s update [9]).

What can we say about the coefficients of independence polynomials – are they

always unimodal or log-concave (a stronger property)? Unfortunately, the answer

is no. For example, if G = K70 + (K3 ∪ K3 ∪ K3 ∪ K3), then i(G, x) = 1 + 82x +

54x2 + 108x3 + 81x4 which is not unimodal. In fact, Alavi et al. [1] showed that

independence polynomials can be as far from unimodal as possible, in that for every

permutation π on {1, 2, . . . , α}, there exists a graph with independence number α such

that iπ(1) < iπ(2) < · · · < iπ(α). They refer to this property as being unconstrained

Despite this strong result against unimodality holding in general, there are many

families of graphs that are conjectured to be or proved to be unimodal or log-concave.

In the same paper where they showed independence polynomials are unconstrained

in general, Alavi et al. [1] conjecture that i(T, x) is unimodal for all trees T . This

conjecture remains open with little progress, but the conjecture is reasonable, as

their construction for unconstrained graphs forces many cycles. The conjecture was

extended to all bipartite graphs in [61], but Bhattacharyya and Kahn [7] showed that

there are bipartite graphs with nonunimodal independence polynomials.

Another highly structured family of graphs with respect to independence is the

family of well-covered graphs, those whose maximal independent sets all have the same

size, i.e. all maximal independent sets are maximum independent sets. Examples in-

clude complete graphs and the 5-cycle. Well-covered graphs were first introduced in

10
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[74] and their structure has attracted considerable attention in the literature, includ-

ing characterizations for those of high girth [40]. In [16], Brown et al. conjectured

that the independence polynomials of well-covered graphs were unimodal, and showed

that every graph G can be embedded as an induced subgraph of such a well-covered

graph. Three years later, Michael and Traves proved that i0 ≤ i1 ≤ · · · ≤ i⌊α/2⌋

for every well-covered graph with independence number α, which seems to provide

more evidence for Brown et al.’s [16] conjecture. However, despite this partial result,

Michael and Traves [69] also provided counterexamples for independence numbers

4, 5, 6, and 7 and counter-conjectured the so called Roller-Coaster Conjecture. The

Roller-Coaster Conjecture states that there exist well-covered graphs such that their

independence polynomials are unconstrained from i⌊α/2⌋ to iα. The Roller-Coaster

Conjecture was verified by Michael and Traves [69] for α ≤ 7, which was extended

by Matchett [67] to α ≤ 11. Levit and Mandrescu [60] eventually extended the set

of independence numbers for which there are well-covered graphs with nonunimodal

independence polynomials to include all positive integers greater than or equal to

4. After Levit and Mandrescu’s result, there was a period where little progress was

made on the Roller-Coaster Conjecture until very recently when Cutler and Pebody

[36] finally proved that the conjecture is indeed true.

At this point, the reader may be starting to question if there are any substantial

families of graphs with unimodal independence polynomials. While the Roller-Coaster

Conjecture is now the Roller-Coaster Theorem and much of the work on unimodality

in other families of graphs consists of partial or negative results, there is a very

important positive result. Hamidoune [47] showed that i(G, x) is log-concave and

therefore unimodal for every claw-free graph G, those are, graphs that do not contain

a claw (the star K1,3) as an induced subgraph.

The original unimodality conjecture on well-covered graphs was then amended as

follows. A very well-covered graph G of order n is a well-covered graph for which

every maximal independent set has size n/2; for example, the complete bipartite

graphs Kn
2
,n
2
are very well-covered. Other examples are afforded by the graph star

construction that we present in the next section. Very well-covered graphs were

first considered in [39]. Levit and Mandrescu [59, 60] noted that the unimodality

conjecture is still open for the independence polynomials of very well-covered graphs
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and eventually extended the conjecture to log-concavity in [62].

To date, the conjecture remains open. Some partial results have been proven

on the tail of independence sequences of very well-covered graphs [62], and the first

⌈α
2
⌉ terms have been shown to be nondecreasing for well-covered graphs [69]. The

conjecture is known to hold when α(G) ≤ 9 [62] and for the star extension of any

graph G where α(G) ≤ 8 [28], or where G is a path or star [58] (we will talk more

about such extensions shortly).

There are many techniques for proving that a sequence is log-concave and therefore

unimodal (see for example, [9] and [82]). One that has been frequently applied is

due to Newton (c.f. [33, pp. 270-271]), who proved that if a polynomial p(x) =

a0 + a1x + · · · + anx
n with positive coefficients has all real roots, then the sequence

⟨a0, a1, . . . , an⟩ satisfies
a2i ≥

i+ 1

i

n− i+ 1

n− i
ai−1ai+1,

and hence is log concave. Newton’s elegant theorem has been used to prove that a

variety of sequences (and polynomials) are unimodal, such as matching polynomials

[49] and an alternate proof for the independence polynomials of claw-free graphs [31].

In this chapter, we shall show that for any graph G there exists a very well-covered

extension Gk∗ such that the independence polynomial of Gk∗ is log-concave. We do

this by using the independence roots and a generalization of Newton’s Theorem. This

provides some evidence for Levit and Mandrescu’s [62] log-concavity conjecture for

very well-covered graphs. It should be noted that this chapter contains and extends

our work in [14].

2.1 Log-Concavity of Independence Polynomials of Graph k-stars and
Sectors in the Complex Plane

Let G be any graph. Form G∗, the graph star of G [85, 59] from G by attaching,

for each vertex v of G a new vertex v∗ to v with an edge (such an edge is called a

pendant edge). The construction is the special case of a more general graph product

called the corona (more specifically, the corona of G with K1) which we will define

and use in Section 3.2. The graph star operation can also be iterated to form the

graph k-star of G, denoted Gk∗. For a graph G and positive integer k, let Gk∗ denote

the graph k-star of G, that is, the graph formed by iteratively attaching pendant
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vertices, k times:

Gk∗ =

{︄
G∗ if k = 1,

(G(k−1)∗)∗ if k ≥ 2.

Figure 2.1 shows the graphs P4, P
∗
4 , and P 2∗

4 .

(a) P4 (b) P ∗
4 (c) P 2∗

4

Figure 2.1: The graphs P4, P
∗
4 and P 2∗

4 .

We start by justifying the claim that the graph star G∗ of any graph G = (V,E)

of order n is always very well-covered. Clearly, α(G∗) ≤ n, as the graph has a

perfect matching and no independent set can contain two vertices that are matched.

Moreover, α(G∗) = n as any independent set I of G can be extended to one in

G∗ by adding in any subset of (V − I)∗ = {v∗ : v ∈ V − I}. Therefore, every

maximal independent set has size n = |V (G∗)|/2. It follows (see also [63]) that if

i(G, x) =
∑︁

ikx
k, then

i(G∗, x) =
∑︂

ikx
k(1 + x)n−k

= (1 + x)n · i
(︃
G,

x

1 + x

)︃
. (2.1)

We can extend formula (2.1) to higher iterations of the ∗ operation as follows.

Proposition 2.1.1. For any graph G of order n and any positive integer k,

i(Gk∗, x) = i(G, x
kx+1

)(kx+ 1)n
k−1∏︂
ℓ=1

(ℓx+ 1)n2
k−ℓ−1

.

Proof. We proceed by induction on k, the number of iterations of the ∗ operation.

The base case follows directly from (2.1), so we can assume that the result holds for

some k ≥ 1, i.e.,

i(Gk∗, x) = i(G, x
kx+1

)(kx+ 1)n
k−1∏︂
ℓ=1

(ℓx+ 1)n2
k−ℓ−1

.



14

A trivial induction shows that Gk∗ has order n2k. From this, formula (2.1), and the

fact that G(k+1)∗ = (Gk∗)∗ we obtain the desired result as follows:

i(G(k+1)∗, x) = (1 + x)n2
k

i(Gk∗, x
x+1

)

= (1 + x)n2
k

i

(︃
G,

x
x+1
kx
x+1

+1

)︃(︁
k
(︁

x
x+1

)︁
+ 1
)︁n k−1∏︂

ℓ=1

(︁
ℓ
(︁

x
x+1

)︁
+ 1
)︁n2k−ℓ−1

= (1 + x)n2
k

i
(︂
G, x

(k+1)x+1

)︂(︂
(k+1)x+1

x+1

)︂n k−1∏︂
ℓ=1

(︂
(ℓ+1)x+1

x+1

)︂n2k−ℓ−1

=
(1 + x)n2

k

(1 + x)n2
k−1 i

(︂
G, x

(k+1)x+1

)︂
((k + 1)x+ 1)n

k−1∏︂
ℓ=1

((ℓ+ 1)x+ 1)n2
k−ℓ−1

= (1 + x)n2
k−1

i
(︂
G, x

(k+1)x+1

)︂
((k + 1)x+ 1)n

k−1∏︂
ℓ=1

((ℓ+ 1)x+ 1)n2
k−ℓ−1

= i
(︂
G, x

(k+1)x+1

)︂
((k + 1)x+ 1)n

k−1∏︂
ℓ=0

((ℓ+ 1)x+ 1)n2
k−ℓ−1

= i
(︂
G, x

(k+1)x+1

)︂
((k + 1)x+ 1)n

k∏︂
ℓ=1

(ℓx+ 1)n2
(k+1)−ℓ−1

.

From Proposition 2.1.1 we see at once that for any k ≥ 1, all independence roots of

Gk∗ are real if and only if the same is true of G. Since most independence polynomials

have a non-real root [24], we won’t be able to use Newton’s Theorem to show that for

any graph G the independence polynomial of Gk∗, for some graph k, is log-concave.

However, Newton’s theorem is only a sufficient condition for the coefficient sequence

to be log concave. Brenti et al. [10] weakened the conditions as follows:

Proposition 2.1.2 ([10]). If all the roots of the polynomial f(x) ∈ R[x] are in the

region

{z ∈ C : |arg(z)| < π
3
},

then the sequence of coefficients of f(x) is strictly log concave and alternates in sign.

Replacing f(x) by f(−x), we derive that:
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Corollary 2.1.3. If all the roots of the polynomial f(x) ∈ R[x] are in the region

R = {z ∈ C : 2π
3
< |arg(z)| < 4π

3
},

then the sequence of coefficients of f(x) is strictly log concave (and the sequence of

coefficients of f(x) is either all positive or all negative).

We shall make use of this corollary to prove our main result on log-concavity of

independence polynomials of graph k-stars.

Theorem 2.1.4. For all graphs G let

M = max

{︄
1√
3
| Im(z)|+ |Re(z)|

|z|2
: z is a root of i(G, x)

}︄
.

If k > M , then i(Gk∗, x) is strictly log concave.

Proof. From Proposition 2.1.1, we can partially factor i(Gk∗, x) as

i(Gk∗, x) = i(G, x
kx+1

)(kx+ 1)n
k−1∏︂
ℓ=1

(ℓx+ 1)n2
k−ℓ−1

=
(︁
i(G, x

kx+1
)(kx+ 1)α(G)

)︁
(kx+ 1)n−α(G)

k−1∏︂
ℓ=1

(ℓx+ 1)n2
k−ℓ−1

.

From this, it follows that if r1, . . . , rm are the roots of i(G, x), then the roots of

i(Gk∗, x) are ri
1−kri

for i = 1, 2, . . . ,m along with the rational numbers −1
ℓ

for ℓ =

1, 2, . . . , k − 1 (and ℓ = k if α(G) ̸= n, i.e. G ̸= Kn).

Let r be any root of i(G, x), and set a = Re(r) and b = Im(r). Note that either a

or b is nonzero (since 0 is not the root of any independence polynomial) and likewise,

r ̸= 1/k for all k ≥ 0 (as no independence root is positive). We expand a root of
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i(Gk∗, x) to obtain,

r

1− kr
=

a+ ib

1− k(a+ ib)

=
a+ ib

(1− ka)− ikb
· (1− ka) + ikb

(1− ka) + ikb

=
a(1− ka) + iakb+ ib(1− ka)− kb2

(1− ka)2 + k2b2

=
a(1− ka)− kb2 + i(akb+ b(1− ka))

(1− ka)2 + k2b2

=
(a− ka2 − kb2) + ib

(1− ka)2 + k2b2
. (2.2)

We now wish to show that for sufficiently large k, the root z = r
1−kr

of i(Gk∗, x)

lies in the sector {z ∈ C : 2π
3
< |arg(z)| < 4π

3
}; the result will then follow immediately

from Corollary 2.1.3 (as the negative rational roots obviously lie in the sector). It is

clear to see that z lies in the sector if and only if Re(z) < 0 and
⃓⃓⃓
Im(z)
Re(z)

⃓⃓⃓
<

√
3. Now,

Re(z) = a−ka2−kb2

(1−ka)2+k2b2
and (1 − ka)2 + k2b2 > 0 since if b = 0 then a ̸= 1/k. We also

have a − ka2 − kb2 = −k(a2 + b2) + a and so for k > (1/
√
3)|b|+|a|

a2+b2
≥ |a|

a2+b2
, it follows

that Re(z) < 0. We note as well that for k > |a|
a2+b2

, k(a2 + b2) − a is positive and

increasing, as a function of k, and that (1/
√
3)|b|+|a|

a2+b2
≥ |a|

a2+b2
. We now compute the

ratio of the imaginary and real part of z for k > (1/
√
3)|b|+|a|

a2+b2
:

⃓⃓⃓⃓
Im(z)

Re(z)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
b

k(a2 + b2)− a

⃓⃓⃓⃓
<

|b|(︂
(1/

√
3)|b|+|a|

a2+b2

)︂
(a2 + b2)− a

=
|b|

(1/
√
3)|b|+ |a| − a

≤
√
3.

The result now follows from Corollary 2.1.3.

Corollary 2.1.5. Every graph G on n vertices is an induced subgraph of a very well-

covered graph H such that the sequence of coefficients of i(H, x) is log-concave.
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2.2 Discussion

While Theorem 2.1.4 shows that for any graph G, the independence polynomial of

some graph k-star of G is log-concave, the question remains as to whether this is true

for the graph k-star for every k ≥ 1, and, in particular, for G∗.

The next result uses the properties of Möbius transformations (also called linear

fractional transformations) which are rational functions of the form

T (z) =
az + b

cz + d

where a, b, c, d, z ∈ C and ad − bc ̸= 0. Möbius transformations are one-to-one map-

pings of C∪∞ onto itself and they map every circle onto another circle or a line and

every line onto another line or a circle [41]. Therefore, the image of a line or a circle

under a Möbius transformation is completely determined by the image of three points.

Moreover, the interiors/exteriors of circles and half-planes are mapped onto the same

set under a Möbius transformation. More background on Möbius transformations

can be found in any complex analysis book, for example, in section 3.3 of Fisher’s

book [41]. From the properties of these functions, we can explicitly state where the

independence roots of G need to lie to ensure its graph star has a log concave (and

hence unimodal) independence polynomial.

Theorem 2.2.1. If the roots of i(G, x) lie outside of the region bounded by the union

of circles with radii
√
3
3

centred at 1
2
+

√
3i
6

and 1
2
−

√
3i
6
, respectively, then i(G∗, x) is

strictly log-concave.

Proof. We will find the image of the region R = {z ∈ C : 2π
3

< |arg(z)| < 4π
3
}

under the Möbius transformation f(z) = z
1+z

(the inverse of r
1−r

). As noted, such

a transformation sends lines and circles to lines and circles, and interiors/exteriors

of circles and half-planes are sent to the same set of regions. We need only find the

image of three points on the two line segments bounding the sector. The images of

−1 +
√
3i, 0, and ∞ are 1 +

√
3i
3
, 0, and 1 respectively, yielding the circle C1, centred

at 1
2
+

√
3i
6

with radius
√
3
3
. As −1

2
is below the line arg(z) = 2π

3
and gets mapped to

−1, which is outside C1, the half-plane below the line arg(z) = 2π
3

gets mapped to

the exterior of C1.
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Similarly, the images of −1 −
√
3i, 0, and ∞ are 1 −

√
3i
3
, 0, and 1 respectively,

yielding the circle C2, centred at 1
2
−

√
3i
6

with radius
√
3
3
. As −1

2
is above the line

arg(z) = 4π
3
and gets mapped to −1, which is outside C2, the half-plane above the line

arg(z) = 4π
3

gets mapped to the exterior of C2. Therefore, if we take a point above

the line arg(z) = 4π
3

and below the line arg(z) = 2π
3

( i.e. in the region R), then its

image under f will be an exterior point to the union of C1 and C2. Therefore, by

Corollary 2.1.3, i(G∗, x) is strictly log-concave.

Figure 2.2: Region that ends up outside the sector R = {z ∈ C : 2π
3
< |arg(z)| < 4π

3
}

under the Möbius transformation f(z) = z
1+z

.

Theorem 2.2.1 assures us that as long as the roots of i(G, x) are outside of a

region in C with an area 4π
9
+

√
3
6

≈ 1.6849, then i(G∗, x) will be strictly log-concave.

Although this result works for many graphs, Brown et al. [19] showed that the

set of independence roots of all graphs is dense in C, even when restricted to well-

covered graphs. Therefore, there exist graphs with independence roots in the union

of the interior of the two circles specified in the statement of Theorem 2.2.1 and

hence graphs that have graph stars with independence roots outside of R. Using the

methods outlined in [19] to find independence roots throughout C, we have found

that i(G∗, x) has a root outside of R for G = P5[K6] since G has independence roots

in the two circle as shown in Figure 2.4 (recall G[H] is the lexicographic product of G

with H). Although the independence roots of G∗ do not lie in R in this case, i(G∗, x)

is still log-concave so the conjecture stands.

Another point to note is that there exist graphs that are very well-covered but are

not the graph k-star of another graph: some examples which were already pointed out
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Figure 2.3: The graph P5[K6].

Figure 2.4: The independence roots of P5[K6] with two in the region in Figure 2.2.

are the bipartite graphs Kn,n among others [39]. Our techniques do not encompass

these graphs; however, Finbow et al. [40] showed that, with the exceptions of K1 and

C7, a graph G with girth(G) ≥ 6 is well-covered if and only if its pendant edges form

a perfect matching. It is easy to see that the pendant edges of G forming a perfect

matching is equivalent to G = H∗ for some graph H and therefore, in graphs with

high girth the only (very) well-covered graphs are graph stars (or K1 or C7).

At the start of our work on log-concavity and graph stars, we plotted the in-

dependence roots of many graphs to see if they land in the sector that guarantees

log-concavity. While many graphs have their independence roots contained in the

sector R, all independence roots lie in the open left half-plane. This observation

leads to our next problem.



Chapter 3

Stability of Independence Polynomials

While Brown et al. [19] showed that the collection of the independence roots of all

graphs is dense in the complex plane, plots of the independence roots of small graphs

show a very different story (see Figures 1.4 and 1.5). All lie to the left of the imaginary

axis, so we are left to wonder: how ubiquitous are graphs with stable independence

polynomials, that is, with all their independence roots in the left half-plane (LHP)

{z ∈ C : Re(z) ≤ 0}? Can there be any independence roots on the imaginary

axis? Graphs with stable independence polynomials are a natural extension of graphs

with all real independence roots as the LHP contains precisely the real numbers with

negative real part, and all real independence roots must be negative as the coefficients

are all positive. One important result on independence polynomials, that is considered

a crown jewel of the field, is the Chudnovsky-Seymour result [31] that claw-free graphs

have all real independence roots.

We shall call a graph itself stable if its independence polynomial is stable. It is

known that the independence root of smallest modulus is always real and therefore

negative (see [16]), so no independence polynomial has all its roots in the RHP, but

it is certainly possible for it to have all roots in the LHP.

In this chapter, we shall consider the stability of independence polynomials, pro-

viding some families of graphs whose independence polynomials are indeed stable,

while showing that graphs formed under various constructions have independence

polynomials that are not only nonstable but have independence roots with arbitrarily

large (positive) real part. We shall first consider stability for graphs with small inde-

pendence number, and show that while all graphs with independence number at most

3 are stable, it is not the case for larger independence number. Then we shall turn

to producing stable graphs as well as nonstable graphs. Graph operations will play

key roles in both. We conclude with a discussion on purely imaginary independence

roots, that is, independence roots that lie on the boundary of the left half-plane. It

20
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should be noted that this chapter contains and extends our work in [13].

3.1 Stability for Small Independence Number

We begin by proving that all graphs with independence number at most three are

indeed stable. To do so, we shall utilize a necessary and sufficient condition, due to

Hermite and Biehler, for a real polynomial to be stable. Prior to introducing the

theorem, we shall need some notation.

Given a polynomial P (x) =
d∑︂

i=0

aix
i, let

P even(x) =

⌊d/2⌋∑︂
i=0

a2ix
i,

and

P odd(x) =

⌊(d−1)/2⌋∑︂
i=0

a2i+1x
i;

P even(x) and P odd(x) are the even and odd parts of the polynomial, with

P (x) = P even(x2) + xP odd(x2).

For example, if P (x) = i(K3,3, x) = 1 + 6x + 6x2 + 2x3, then P even(x) = 1 + 6x and

P odd(x) = 6 + 2x.

Finally, let f(x) and g(x) be two real polynomials with all real roots, say s1 ≤
s2 ≤ . . . ≤ sn and t1 ≤ t2 ≤ . . . ≤ tm being their respective roots. We say that

• f interlaces g if m = n+ 1 and t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ sn ≤ tn+1, and

• f alternates left of g if m = n and s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn.

We write f ≺ g for either f interlaces g or f alternates left of g. A key result that

we shall rely on is the Hermite-Biehler Theorem which characterizes when a real

polynomial is stable (see, for example, [87]).

Theorem 3.1.1 (Hermite-Biehler). Let P (x) = P even(x2) + xP odd(x2) be stan-

dard. Then P (x) is stable if and only if both P even and P odd are standard, have only

nonpositive real roots, and P odd ≺ P even. �
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For example, i(P5, x) = x3+6x2+5x+1, so ieven(P5, x) = 1+6x and iodd(P5, x) =

5 + x. Both of which clearly have all real and nonpositive roots and −5 < −1
6
, so

iodd(P5, x) ≺ ieven(P5, x). Therefore, P5 is stable, by the Hermite-Biehler Theorem.

(Note that we also know P5 is stable since it is claw-free, so by the Chudnovsky-

Seymour [31] result, all of its independence roots are real and therefore in the LHP.)

On the other hand,

i(K6 +K9, x) = x6 + 6x5 + 15x4 + 20x3 + 15x2 + 15x+ 1

so

ieven(K6 +K9, x) = x3 + 15x2 + 15x+ 1

iodd(K6 +K9, x) = 6 x2 + 20x+ 15.

The roots of ieven(K6+K9, x) are−13.928,−1, and−0.0718, and the roots of iodd(K6+

K9, x) are −2.194 and −1.14. Both iodd(K6 + K9, x) and ieven(K6 + K9, x) have all

nonpositive real roots, but iodd(K6 + K9, x) does not interlace ieven(K6 + K9, x), so

K6 +K9 is nonstable by the Hermite-Biehler Theorem.

We are now in a position to prove stability for small independence number.

Proposition 3.1.2. If G is a graph with α(G) ≤ 3, then i(G, x) is stable.

Proof. For graphs with independence number 1 (that is, a complete graph), the inde-

pendence polynomial is of the form 1 + nx. These polynomials are obviously stable

for all n. For graphs with independence number 2, the independence polynomial has

the form 1 + nx + i2x
2. The complement of a graph with independence number 2 is

triangle-free, and hence by Turán’s famous theorem (see [89, pp. 30] for example), has

at most ⌊n
2
⌋⌈n

2
⌉ ≤ n2

4
many edges. However, the number of edges in the complement

is precisely i2, so that i2 ≤ n2

4
, which implies that the independence polynomial’s dis-

criminant is n2−4i2, which is nonnegative, so the roots are real (and hence negative).

Therefore, the independence polynomial of a graph with independence number 2 is

necessarily stable.

For graphs with independence number 3, it is again the case that all independence

polynomials are stable. To show this, we utilize the Hermite-Biehler Theorem. If
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α(G) = 3, then

i(G, x) = 1 + nx+ i2x
2 + i3x

3 = P even(x2) + xP odd(x2)

where P even = 1 + i2x and P odd = n + i3x. It is clear that P even and P odd each

have only one real root, but we must show that P odd ≺ P even, i.e. that −n
i3

≤ −1
i2
.

Equivalently, we need to show that ni2 ≥ i3, but this follows as every independent

set of size 3 contains an independent set of size 2, so adjoining an outside vertex to

each independent set of size 2 will certainly cover all independent sets of size 3 at

least once (in fact, our argument shows that (n− 2)i2 ≥ i3). Thus by Theorem 3.1.1,

i(G, x) is stable for all α(G) = 3.

We now turn to independence number at least 4, and show, in contrast, that there

are many graphs whose independence roots lie in the RHP – in fact, we can find roots

in the RHP with arbitrarily large real part. We begin with a lemma. This lemma

will be pivotal for many of the results in the remainder of this section as well as in

Section 3.3.

Lemma 3.1.3. Let R > 0 and f(x) ∈ R[x] be a polynomial of degree d with positive

coefficients. Then:

1. If d ≥ 4, then for m sufficiently large f(x)+mx has a root with real part greater

than R.

2. If d ≥ 3, then for ℓ sufficiently large f(x) + ℓ has a root with real part greater

than R.

Proof. We consider the polynomial g(x) = f(x + R). As per the Hermite-Biehler

Theorem, let geven(x) and godd(x) denote the even and odd part of g(x), respectively,

so that

g(x) = geven(x2) + xgodd(x2).

For the proof of part 1, consider the polynomial Pm(x) = m(x+R) + g(x). Hence,

P even
m (x) = mR + geven(x)
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and

P odd
m (x) = m+ godd(x).

Clearly deg(geven(x)) ≥ 2, since d ≥ 4. The leading coefficient of P even
m (x) is positive

(as f has all positive coefficients and R > 0), so it follows that limx→∞ geven(x) = ∞.

Let

M = max{|geven(z)| : (geven)′(z) = 0},

that is, M is the maximum absolute value of the function gevenm (x) at the latter’s

critical points (which are the same as the critical points of P even
m (x), as the two

functions differ by a constant). Thus, for any m ≥ ⌊M
R
⌋ + 1, P even

m (r) > 0 for all

of its real critical points r. It follows that the roots of P even
m (x) = mR + geven(x)

are simple (that is, have multiplicity 1), as if a root r of P even
m (x) had multiplicity

larger than 1, then it would also be a critical point of P even
m (x), but for the chosen

value of m, P even
m (r) > 0. Moreover, P even

m (x) has at most one real root, as if it had

two roots a < b, then by the simpleness of the roots, either the function P even
m (x) is

negative at some point between a and b, or to the right of b, but in either case P even
m (x)

would have a critical point c at which P even
m (c) < 0, a contradiction. In any event, as

P even
m (x) has at most one real root (counting multiplicities) and deg(P even

m (x)) ≥ 2,

P even
m (x) must have a nonreal root. By the Hermite-Biehler theorem, it follows that

Pm(x) = m(x+R) + f(x+R) has a root in the RHP. Note that x = a+ ib is a root

of Pm(x) if and only if x+R = (a+R)+ ib is a root of f(x)+mx. Since there exists

a root x with Re(x) > 0 of Pm(x), x+R is a root of f(x) +mx with Re(x+R) > R.

Therefore, for sufficiently large m, f(x) + mx has roots with real part greater than

R.

A similar (but slightly simpler) argument holds for part 2, provided d ≥ 4 and

considering the even part of Pℓ(x) = ℓ+ g(x). Therefore, all that remains is the case

d = 3. In this case, let f(x) = a0 + a1x+ a2x
2 + a3x

3. Set

g(x) = f(x+R)

= a0 + a1R + a2R
2 + a3R

3 + (a1 + 2Ra2 + 3R2a3)x+ (3Ra3 + a2)x
2 + a3x

3.
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Now let Pℓ = ℓ+ g(x). By Theorem 3.1.1, Pℓ is stable if and only if

−a1 + 2Ra2 + 3R2a3
a3

≤ −a0 + a1R + a2R
2 + a3R

3 + ℓ

3Ra3 + a2
,

that is, if and only if

a1 + 2Ra2 + 3R2a3
a3

≥ a0 + a1R + a2R
2 + a3R

3 + ℓ

3Ra3 + a2
,

but clearly this fails if ℓ is large enough. Therefore, for ℓ sufficiently large, P odd
ℓ ̸≺

P even
ℓ and therefore, f(x) has a root with real part greater than R.

We shall shortly show that there are nonstable graphs of every independence

number greater than 3 by combining the previous lemma with another tool from

complex analysis, the well known and extremely useful Gauss–Lucas Theorem, see

for example [41, pp. 381]. In particular, we will apply its contrapositive.

Theorem 3.1.4 (Gauss–Lucas). If every root of the polynomial f lies in the half-

plane Re(Az +B) > 0, then so does every root of its derivative f ′. �

We are now able to provide, for each α ≥ 4, infinitely many examples of graphs

with independence number α that are nonstable. Moreover, we can embed any graph

with independence number α ≥ 4 into another nonstable one with the same indepen-

dence number, and we can even do so with a (nonreal) independence root as far to

the right as we like. To do this, we use the join operation. The join of two graphs

G and H, denoted G + H, is the graph obtained by joining all vertices of G with

all vertices of H. For example, Kn,m is just the join of Km and Kn. Note that

i(G+H, x) = i(G, x) + i(H, x)− 1.

Proposition 3.1.5. Let G = H + F + F + · · ·+ F⏞ ⏟⏟ ⏞
k

, the join of a graph H and k

copies of F . If α(H) ≥ α(F ) + 3, then for k sufficiently large, i(G, x) has roots with

arbitrarily large real part.

Proof. Let R > 0 be given. Assume α(H) ≥ α(F )+ 3. Also let c be the coefficient of

xα(F ) in i(F, x) (it is the number of independent sets of F of maximum cardinality).
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We take the α(F )-th derivative of i(G, x), denoted i(α(F ))(G, x). Since

i(G, x) = i(H, x) + k · i(F, x)− (k − 1),

we have

i(α(F ))(G, x) = i(α(F ))(H, x) + c · k · α(F )!

Since α(H) ≥ α(F ) + 3, the polynomial i(α(F ))(H, x) has degree at least 3. We

also know that c and α(F )! are both at least 1 so we may choose a sufficiently large k

and apply Lemma 3.1.3 to show that i(α(F ))(G, x) has (nonreal) roots with arbitrarily

large real parts. By the Gauss-Lucas Theorem, the same is true of i(G, x).

Since the independence number of a complete graph is 1, the following corollary

follows immediately by taking F = K1.

Corollary 3.1.6. Let G be a graph with independence number at least 4, and let

R > 0. Then for all m sufficiently large, i(G + Km, x) has a root with real part

greater than R.

Corollary 3.1.7. If G is a graph with α(G) ≥ 4, then G is an induced subgraph of a

graph with independence number α(G) that is not stable.

Proof. From Corollary 3.1.6, H = G+Km is not stable form sufficiently large. Joining

a clique does not change the independence number of the graph, so α(H) = α(G)

and G is a subgraph of H.

We have shown that every graph with independence number at most 3 is sta-

ble, and there are nonstable graphs of all higher independence numbers. A complete

characterization (in terms of the coefficients of i(G, x)) follows as a corollary of the

Hermite-Biehler Theorem when α(G) = 4, although it is difficult to extract meaning-

ful information about the graph from it.

Proposition 3.1.8. If G is a graph of order n with α(G) = 4 , then G is stable if

and only if i22 − 4i4 ≥ 0 and

−i2 −
√︁
i22 − 4i4

2i4
≤ −n

i3
≤ −i2 +

√︁
i22 − 4i4

2i4
.
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Proof. Let G be a graph of order n with α(G) = 4, so i(G, x) = 1 + nx + i2x
2 +

i3x
3 + i4x

4. Therefore, ieven(G, x) = 1 + i2x + i4x
2 and iodd(G, x) = n + i3x. By

the Hermite-Biehler Theorem, i(G, x) is stable if and only if ieven(G, x) and iodd(G, x)

have only nonpositive roots and iodd(G, x) ≺ ieven(G, x). The only nonpositive roots

condition is always satisfied for iodd(G, x) and is satisfied for ieven(G, x) if and only

if its roots are real, which occurs if and only if i22 − 4i4 ≥ 0. Provided that the even

and odd parts have all nonpositive roots, the interlacing condition is satisfied if and

only if
−i2 −

√︁
i22 − 4i4

2i4
≤ −n

i3
≤ −i2 +

√︁
i22 − 4i4

2i4
.

For example, K19 +K4, with independence polynomial x4 +4x3 +6x2 +23x+1,

is stable since i22 − 4i4 = 36− 4 · 1 = 32 > 0 and the inequality

−i2 −
√︁

i22 − 4i4
2i4

≤ −n

i3
≤ −i2 +

√︁
i22 − 4i4

2i4

is satisfied as −3 − 2
√
2 ≤ −23

4
≤ −3 +

√
2. However, if we increase the size of the

clique by one vertex, we obtain the nonstable graph K20 + K4 with independence

polynomial x4 + 4 x3 + 6 x2 + 24 x + 1. In this case, i22 − 4i4 is still equal to 32, but,

we have the inequality

−n

i3
<

−i2 −
√︁
i22 − 4i4

2i4
<

−i2 +
√︁
i22 − 4i4

2i4

as −6 < −3− 2
√
2 < −3 +

√
2.

We can provide complete characterizations for stability of graphs with indepen-

dence number 5 and 6, but these start to lose meaning as the roots of the even and

odd parts of the independence polynomials become more complicated, so instead we

give a result with conditions for a nonstable graph with independence number 5 or 6

in terms of only a few coefficients.

Proposition 3.1.9. Let G be a graph of order n and α denote its independence

number. If α = 5, then G is nonstable if conditions i) or ii) are satisfied and if

α = 6, then G is nonstable if condition ii) is satisfied. The conditions are:
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i) i22 − 4i4 < 0

ii) i23 − 4ni5 < 0.

For example, for the graph K6 +K11 with independence polynomial x6 + 6x5 +

15x4 +20x3 +15x2 +17x+1, we have 202 − 4 · 17 · 6 = −8 < 0. Hence the graph is

nonstable.

3.2 Graphs with Stable Independence Polynomials

While we have seen that graphs with small independence number are stable, what

other families of graphs are stable? By direct calculations, graphs on up to at least 10

vertices and trees on up to at least 20 vertices have all their independence roots in the

LHP. As noted earlier, a graph with all real independence roots is necessarily stable

since the real independence roots must be negative (as independence polynomials

have all positive coefficients). The Chudnovsky-Seymour result therefore implies that

all claw-free graphs are stable. What about families of stable graphs with whose

independence polynomials do not have all real roots? We begin by showing that stars

(which include the claw K1,3) are examples of such graphs. We make use of another

well-known result from complex analysis, Rouché’s Theorem (see, for example, [41]).

Theorem 3.2.1 (Rouché’s Theorem). Let f and g be analytic functions on an

open set containing γ, a simple piecewise smooth closed curve, and its interior. If

|f(z) + g(z)| < |f(z)| for all z ∈ γ, then f and g have the same number of zeros

inside γ, counting multiplicities. �

Proposition 3.2.2. The roots of i(K1,n, x) are in the left half-plane, and more pre-

cisely, in the rectangle shown in Figure 3.2.

Proof. Let G = K1,n; then i(G, x) = x + (1 + x)n. Let f(z) = −(1 + z)n and

g(z) = (1 + z)n + z and set

• γ1 = {z : Re(z) = 0 and − 2 ≤ Im(z) ≤ 2},

• γ2 = {z : −3 ≤ Re(z) ≤ 0 and Im(z) = 2},

• γ3 = {z : Re(z) = −3 and − 2 ≤ Im(z) ≤ 2}, and
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Figure 3.1: The independence roots of K1,n for 1 ≤ n ≤ 30.

• γ4 = {z : −3 ≤ Re(z) ≤ 0 and Im(z) = −2}.

Let γ be the curve consisting of four line segments γ1, γ2, γ3, γ4, i.e. γ = γ1+γ2+γ3+γ4,

see Figure 3.2. The functions f and g are clearly analytic on C which contains γ and

its interior. The curve γ is a simple piecewise smooth closed curve so the hypotheses

of Rouché’s Theorem are satisfied.

We now show that |f(z) + g(z)| < |f(z)| for all z ∈ γ (we actually consider their

squares to simplify computations). Note that |f(z)+g(z)| = |z|. As i(K1,1, x) = 1+2x

has only one root at −1/2, we will assume n ≥ 2.

Case 1: If z ∈ γ1, then z = ki where −2 ≤ k ≤ 2. Now, |z|2 = k2 and |f(z)|2 =

|1+x|2n = (1+k2)n. Clearly k2 < (1+k2)n, so it follows that |f(z)+g(z)|2 < |f(z)|2,
and hence |f(z) + g(z)| < |f(z)| for all z ∈ γ1.

Case 2: If z ∈ γ2, then z = k + 2i where −3 ≤ k ≤ 0. In this case |z|2 = k2 + 4 and

|(1 + x)n|2 = ((1 + k)2 + 4)n. As in case 1, it suffices to show ((1 + k)2 + 4)2 > k2 + 4

since n ≥ 2. Now h(k) = ((1 + k)2 + 4)2 − k2 − 4 takes on the value 59 at k = 1 and
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Figure 3.2: The region γ in Proposition 3.2.2.

it is easy to show that h(k) has no real roots. Therefore, ((1 + k)2 + 4)2 > k2 + 4 for

all k and hence |f(z) + g(z)| < |f(z)| for all z ∈ γ2.

Case 3: If z ∈ γ3, then z = −3 + ki where −2 ≤ k ≤ 2. Now, |z|2 = 9 + k2 and

|(1 + z)n|2 = (4 + k2)n. It suffices to show that 9 + k2 < (4 + k2)2 since n ≥ 2.

Evaluating at k = 0, (4 + k2)2 − k2 − 9 takes on the value 7 and it has no real roots.

Hence the inequality holds for all k, and so |f(z) + g(z)| < |f(z)| for all z ∈ γ3.

Case 4: If z ∈ γ4, then z = k− 2i where −3 ≤ k ≤ 0. If we set w = z̄ = k+2i, then

|z|2 = |w|2 = k2 + 4 and |(1 + z)n| = |(1 + w)n| = ((1 + k)2 + 4)2 so the rest of the

argument is the same as that for case 2.

All cases together show that for all z ∈ γ, |f(z) + g(z)| < |f(z)|. Hence, by

Rouché’s Theorem, we know that f and g have the same number of zeros inside γ

counting multiplicities. We know that f has one root of multiplicity n at z = −1

which is inside γ. Therefore g(z) = i(G, z) has all n of its roots in γ which is contained

in the (open) left half-plane.

We now extend the star family to a much larger family of graphs that are also

stable. The corona of a graph G with a graph H, denoted G◦H, is defined by starting

with the graph G, and for each vertex v of G, joining a new copy Hv of H to v.

The graph G ◦H has |V (G)|+ |V (G)||V (H)| vertices and |E(G)|+ |V (G)||E(H)|+
|V (G)||V (H)| edges. For example, the star K1,n can be thought of as K1 ◦ Kn.
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See Figure 3.3 for an example of the corona of two other graphs. There is a nice

relationship between the independence polynomials of G, H, and G◦H that was first

described by Gutman [45].

Figure 3.3: The graph K3 ◦K2

Theorem 3.2.3 ([45]). If G and H are graphs with G on n vertices, then

i(G ◦H, x) = i
(︂
G, x

i(H,x)

)︂
i(H, x)n.

One special case of the corona product that is particularly useful is the corona

with K1, or the graph star that we have already seen in Chapter 2. Recall that

i(G∗, x) = i
(︁
G, x

1+x

)︁
(1 + x)n.

We now show that the graph star operation preserves the stability of independence

polynomials. Similarly to the proof of Theorem 2.2.1, the argument uses properties

of Möbius transformations.

Proposition 3.2.4. If the roots of i(G, x) lie outside of the region bounded by the

circle with radius 1
2
centred at 1

2
, then i(G∗, x) is stable.

Proof. Let C be the circle with center z = 1/2 and radius 1/2. Note that the image

of the imaginary axis, {z : Re(z) = 0}, under the Möbius transformation f(z) = z
1+z

is C (one need only observe that the image of the points 0, i, and −i are 0, 1
2
+ 1

2
i,

and 1
2
− 1

2
i, respectively). Moreover, as Möbius transformations send lines and circles

to lines and circles, and the interiors/exteriors of circles and half-planes of lines to

the same set, we find that the open right half-plane gets mapped to the interior of the

circle C (as 1
2
, which is in the open RHP, gets mapped to 1

3
, which is in the interior

of C). It follows that the open LHP gets mapped to the exterior of C.
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The roots of i(G∗, x) are −1 and the roots found by solving f(z) = r for every

root r of i(G, x) since i(G∗, x) = (1+ x)ni(G, x
1+x

) by Proposition 3.2.3. Therefore, if

i(G, x) has roots outside of C, then i(G∗, x) is stable.

Figure 3.4: Region in Proposition 3.2.4.

In Section 3.1 we showed that for α(G) ≤ 3, i(G, x) is always stable. This together

with Proposition 3.2.4 and Theorem 3.2.2 proves the following corollary.

Corollary 3.2.5. If G is a claw-free graph, G = K1,n, or α(G) ≤ 3, then the graph

k–star of G is stable for all k ≥ 1.

Corollary 3.2.5 provides more families of stable graphs, but can the k–star be used

to construct more families? It turns out it can be used to show that every graph is

eventually stable after iterating the star operation enough times. Since the sector in

Theorem 2.1.4 is contained in the LHP, we already know that this is true. We can

however, get away with a smaller k if we only care about getting into the LHP and

not necessarily in the sector. Our next result is proved in an analogous manner to

Theorem 2.1.4, and the k in question is clearly smaller in some cases. We first recall

that for any G or order n and any positive integer k,

i(Gk∗, x) = i(G, x
kx+1

)(kx+ 1)n
k−1∏︂
ℓ=1

(ℓx+ 1)n2
k−ℓ−1

).
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Proposition 3.2.6. Let G be a graph and S be the set of its independence roots. If

k > max
r∈S

{︃
Re(r)

|r|2

}︃
,

then Gk∗ is stable.

Proof. Let |V (G)| = n and

k > max
r∈S

{︃
Re(r)

|r|2

}︃
.

Then by Proposition 2.1.1,

i(Gk∗, x) = i(G, x
kx+1

)(kx+ 1)n
k−1∏︂
ℓ=1

(ℓx+ 1)n2
k−ℓ−1

.

We know that the rational roots of the form −1
ℓ
will surely all lie in the LHP so we

must only consider the roots of i(G, x
kx+1

)(kx+ 1)α(G) which can be found by solving

for z in r = z
kz+1

where r ∈ S, that is, r is an independence root of G. Let r ∈ S,

with r = a+ ib and consider the independence root of Gk∗ of the form z = r
1−kr

. Now

a calculation shows that

Re(z) =
(a2 + b2)(−k) + a

(1− ka)2 + k2b2
(3.1)

Thus the sign of Re(z) is the sign of (a2 + b2)(−k) + a = |r|2(−k) + Re(r) and

|r|2(−k) + a < |r|2
(︃
− a

|r|2

)︃
+ a

= −a+ a

= 0.

Therefore, Re(z) < 0 for all independence roots z of Gk∗. Hence Gk∗ is stable.

The next corollary provides an interesting contrast with different graph operations

when compared with Corollary 3.1.7.

Corollary 3.2.7. Every graph is an induced subgraph of a stable graph.
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3.3 Nonstable Families of Graphs

We have seen that joining a large clique to a graph with independence number at

least 4 produces a nonstable graph. In this section we provide more constructions

that will produce families of nonstable graphs, using the lexicographic product and

the corona product. The last construction preserves acyclicity (as G ◦Km preserves

acyclicity) and therefore provides families of nonstable trees, which the construction

of the previous section does not (and is surprising, given that we have noted that

there are no roots in the RHP for trees of order at most 20).

We note that there are families of complete multipartite graphs that are stable.

For example, we have shown that stars are stable and they are complete bipartite

graphs. As well, it is not hard to see that

i(Kn,n,...,n, x) = k(1 + x)n − (k − 1).

The roots of this are zk =
(︁
k−1
k

)︁1/n
e2kπ/n−1 for k = 0, 1, . . . , n−1. Since

(︁
k−1
k

)︁1/n
< 1

for all k ≥ 1, it follows that Re(zk) < 0 for all k. Therefore, Kn,n,...,n is stable for all

n and k.

It may seem that all complete multipartite graphs are stable, but such is not the

case. We will consider the graphs K1,2,3,...,n, the complete multipartite graph with one

part of each of the sizes 1, 2, . . . , n, and use Corollary 3.3.2 to prove that these graphs

are not stable if n ≥ 15. The graph K1,2,...,n can be thought of as taking the graph

Kn and replacing vertex vi with a copy of Ki and joining all vertices in this copy of

Ki to all vertices in the copy of Kj for all i ̸= j. See Figure 3.5 for the graph K1,2,3.

Figure 3.5: The graph K1,2,3 with vertices coloured according to their part in the
partition.

To prove that for large n, K1,2,3,...,n is not stable, we use Sturm’s sequences. For a

real polynomial f , the Sturm sequence of f is the sequence f0, f1, . . . , fk where f0 = f ,
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f1 = f ′, fi = −rem(fi−1, fi−2) for i ≥ 2, where rem(fi−1, fi−2) is the remainder when

fi−1 is divided by fi−2, and fk is the last nonzero term in the sequence of polynomials

of strictly decreasing degrees. Sturm sequences are a very useful tool for determining

the nature of polynomial roots due to the following result (see [54]).

Theorem 3.3.1 (Sturm’s Theorem). Let f be a polynomial with real coefficients

and (f0, f1, . . . , fk) be its Sturm sequence. Let a < b be two real numbers that are not

roots of f . Then the number of distinct roots of f in (a, b) is V (a)−V (b), where V (c)

is the number of changes in sign in (f0(c), f1(c), . . . , fk(c)).

The Sturm sequence (f0, f1, . . . , fk) of f is said to have gaps in degree if there

is a j ≤ k such that deg(fj) < deg(fj−1) − 1. If there is a j ≤ k such that fj has

a negative leading coefficient, the Sturm sequence is said to have a negative leading

coefficient. We now have the terminology to state the corollary of Sturm’s Theorem

(see [17]) that will be useful for our purposes.

Corollary 3.3.2. Let f be a real polynomial whose degree and leading coefficient are

positive. Then f has all real roots if and only if its Sturm sequence has no gaps in

degree and no negative leading coefficients.

We are now ready to prove that infinitely many complete multipartite graphs are

nonstable.

Theorem 3.3.3. i(K1,2,...,n, x) is not stable for n ≥ 15.

Proof. The cases where n = 15 and n = 16 require different arguments than the

general ones we will apply for n ≥ 17, so we will handle these two cases directly first.

If n = 15, then

iodd(K1,2,...,15, x) = x7+120x6+1820x5+8008x4+12870x3+8008x2+1820x+120

and

ieven(K1,2,...,15, x) = 16x7+560x6+4368x5+11440x4+11440x3+4368x2+560x+1,

which have roots (found with at least 15 decimal points of accuracy using Maple)
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− 103.086868919817448,−10.8672960124875662,−3.50015487115602886,

− 1.48449017876442602,−0.676272827195300907,−0.273430546648278205,

− 0.111486643930936116

and

− 25.2741423636056801,−5.82844291180558383,−2.23870542516616533,

− 1.01405263705034243,−0.332554659001808528,−0.310290823327695198,

− 0.00181118004271995899

respectively. Writing the roots of iodd(K1,2,...,15, x) in bold and ieven(K1,2,...,15, x) in

normal font, the roots are ordered as follows:

-103.08686891981744 < −25.2741423636056801 < -10.8672960124875662 <

− 5.8284429118055838 < - 3.50015487115602886 < −2.23870542516616533

-1.48449017876442602 < −1.01405263705034243 < - 0.676272827195300907 <

− 0.332554659001808528 < −0.310290823327695198- 0.273430546648278205 <

-0.111486643930936116 < −0.00181118004271995899.

These roots do not interlace and therefore K1,2,...,15 is not stable by the Hermite-

Biehler Theorem.

If n = 16, let f0 = ieven(K1,2,...,16, x) = x8+136x7+2380x6+12376x5+24310x4+



37

19448x3 + 6188x2 + 680x+ 1 and we compute the Sturm sequence:

f1 = 8x7 + 952x6 + 14280x5 + 61880x4 + 97240x3 + 58344x2 + 12376x+ 680

f2 = 1428x6 + 25704x5 + 119340x4 + 194480x3 + 119340x2 + 25704x+ 1444

f3 =
6528x5

7
+

141440x4

21
+

282880x3

21
+

65280x2

7
+

776864x

357
+

48928

357

f4 =
335920x4

27
+

1136960x3

27
+

1932839x2

51
+

4782274x

459
+

375395

459

f5 =
404843256x3

272935
+

643306536x2

272935
+

240797448x

272935
+

5360760

54587

f6 =
8061789836625532969x2

1612423062955779
+

17860889835109097738x

4837269188867337
+

3198476546318302015

4837269188867337

f7 =
1605591051908936354139888530418498162848x

6537702611175257624330967220569238073
+

448724424709717204730435088898474807072

6537702611175257624330967220569238073

f8 = −1577448937796744128202619637524087852027658290220375925735260560

79627136162551065499783779429209235652424929298356031742670249

Since f8 has negative leading coefficient, Theorem 3.3.1 gives that ieven(K1,2,...,16, x)

has nonreal roots and therefore K1,2,...,16 is not stable by Theorem 3.1.1.

Now let n ≥ 17 and G = K1,2,...,n. The independence polynomial of G can be



38

written as

i(G, x) =
n∑︂

k=1

(1 + x)k − (n− 1)

=
(1 + x)n+1 − (1 + x)

x
− (n− 1)

=
(1 + x)n+1 − nx− 1

x
.

Since i(G, 0) = 1, it follows that the nonzero roots of g = (1 + x)n+1 − nx − 1 are

precisely the roots of i(G, x). Let godd be the odd part of g as in the Hermite-Biehler

Theorem, so godd = 1 +
(︁
n+1
3

)︁
x+

(︁
n+1
5

)︁
x2 + · · ·+

(︁
n+1
ℓ

)︁
x(ℓ−1)/2 where

ℓ =

{︄
n if n is odd

n− 1 if n is even

is the largest odd number for which G has an independent with that size. Note that

godd(0) = 1 as well so 0 is not a root of godd, therefore, the roots of godd are all real if and

only if the roots of f = xngodd
(︁
1
x

)︁
= xn+

(︁
n+1
3

)︁
xn−1+

(︁
n+1
5

)︁
xn−2+ · · ·+

(︁
n+1
ℓ

)︁
xn−(ℓ−1)/2

are all real. We will find the Sturm sequence of f and show that it has a negative

leading coefficient to prove that f has nonreal roots.

For our calculation of the Sturm sequence of f , we first note that for general

polynomials h(x) = axn+bxn−1+cxn−2+· · · and j(x) = a′xn−1+b′xn−1+c′xn−3+· · · ,
we only require the two leading coefficients to fill in the equation h(x) = q(x)j(x) +

r(x) as,

a
a′
x+

(︂
b− b′

a′

)︂
a′

a′xn−1+ b′xn−2 + · · ·
)︁
axn+ bxn−1 + · · ·

axn+ bxn−1 + · · ·(︂
b− b′

a′

)︂
a′

xn−1 + · · ·(︂
b− b′

a′

)︂
a′

xn−1 + · · ·

r(x)
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Therefore,

r(x) = h(x)− q(x)j(x) = h(x)−

(︄
a

a′
x+

(︁
b− b′

a′

)︁
a′

)︄
j(x). (3.2)

Let the Sturm sequence of f be (f0, f1, . . . , fk) ( where f0 = f and f1 = f ′). Both f0

and f1 are nonzero and have positive leading coefficient. For the calculation of f2, f3,

and f4, we use (3.2) and Maple as the calculations become quite involved. This allows

us to obtain the leading coefficients of the first 5 terms in the Sturm sequence of f .

The leading coefficient of f2 is calculated as

c2 =
n5

36
− 2n4

45
+

n3

36
− n2

36
− n

18
+

13

180
,

a polynomial in n. This polynomial has its largest real root at approximately 1.454,

so c2 > 0 for n ≥ 2. The third term in the sequence, f3, has leading coefficient

c3 =
(n−2)(n−3)(105n8+5719n7−34103n6+63299n5−79478n4+34046n3+5068n2−15584n+55488)n

35280 (5n3−8n2+10n−13)2
.

The denominator of c3 is defined and positive for all n as it has no integer roots

(easily verified by the Rational Roots Theorem). The numerator’s largest real root

is approximately 3.587037796, and thus c3 > 0 for n ≥ 4.

We now consider the term f4. The leading coefficient of this term is

c4 = − γ(n+1)(n−1)(n−4)(n−5)(5n3−8n2+10n−13)
2
(n+2)

40772160 (105n8+5719n7−34103n6+63299n5−79478n4+34046n3+5068n2−15584n+55488)2

where

γ = 1036035n14 − 18710307n13 + 60715080n12 − 1252685357n11 + 16301479454n10

− 71027287359, n9 + 150542755560n8 − 194411482671n7 + 73908295527n6

+ 81621340094n5 − 183113161400n4 + 127579216128n3 − 28712745216n2

+ 24221417472n+ 78617640960.

The denominator of c4 has its largest root at approximately 3.587037796, so for
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n ≥ 4, the denominator is defined and positive. The largest root of the numerator is

approximately 16.22715983, therefore c4 < 0 for n ≥ 17.

There are no gaps in degree in the Sturm sequence of f as we have ensured c2, c3,

and c4 are nonzero, but there is a negative leading coefficient, c4. Hence, it follows by

Corollary 3.3.2 that f , and therefore godd, has a nonreal root. Thus, by the Hermite-

Biehler Theorem g, and therefore i(G, x), is not stable.

The join has given us much to discuss in terms of nonstable graphs, but we turn

now to another graph operation, the lexicographic product, for constructing other

nonstable graphs. The reason the lexicographic product has been so important to the

study of the independence polynomial is due to the way the independence polynomials

interact.

Theorem 3.3.4 ([19]). If G and H are graphs, then i(G[H], x) = i(G, i(H, x) − 1).

In [19] it was shown that the independence roots of the family {Pn}n≥1 are dense

in (−∞,−1
4
]. This leads to another application of Lemma 3.1.3.

Proposition 3.3.5. If H is a graph with α(H) ≥ 3, then for some n sufficiently

large, Pn[H] has independence roots with arbitrarily large real part.

Proof. Suppose H is a graph with α(H) ≥ 3. By Theorem 3.3.4, we know that

i(Pn[H], x) = i(Pn, i(H, x) − 1) and therefore the independence roots of Pn[H] are

found by solving i(H, x) − 1 = r, that is, i(H, x) − r − 1 = 0 for all independence

roots r of Pn. Since we know that the independence roots of {Pn}n≥1 are dense

in (−∞, 1
4
], it follows that we can make −r − 1 as large as we like. Finally, since

α(H) ≥ 3, Lemma 3.1.3(2) applies and i(Pn[H], x) has roots with arbitrarily large

real parts for n sufficiently large.

Finally, we consider the stability of trees (we recall that all trees of order 20 and

less have been found to be stable by computations in Maple). Could this be true in

general? As we have learned from the Chudnovsky-Seymour result on independence

roots of claw-free graphs, a small restriction in the graph structure can have a large
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impact on the independence roots. Our previous constructions for producing graphs

with roots arbitrarily far in the RHP did not turn up any trees, and it would be

reasonable to speculate that perhaps all trees are stable, but this, in fact, turns out

to be false. Before we can provide a family of trees with nonstable independence

polynomials, we first must show that there exist trees with real independence roots

arbitrarily close to 0.

Lemma 3.3.6. Fix ε > 0. Then for n sufficiently large, there exists a real root r of

i(K1,n, x) with |r| < ε.

Proof. From Theorem 8 in [26], it was shown that the polynomial f(x) = xn+x(1+x)n

has a real root in the interval (−2n,− ln(n)) for n sufficiently large. Note that

xn+1f

(︃
1

x

)︃
= x+ xn

(︃
x+ 1

x

)︃n

= x+ (1 + x)n

= i(K1,n, x).

Therefore, i(K1,n, x) has a real root in the interval
(︂
− 1

ln(n)
,− 1

2n

)︂
for sufficiently

large n. The result follows.

It is interesting to note that the polynomial f(x) in the previous proof is the

domination polynomial of K1,n, which we will discuss more in Chapter 6.

We can now prove that trees do not necessarily have stable independence polyno-

mials (and in fact can have independence roots with arbitrarily large real part).

Proposition 3.3.7. If G is a graph with α(G) ≥ 4 and R > 0, then for sufficiently

large n, K1,n ◦G has independence roots in the RHP with real part at least R.

Proof. Set H = K1,n ◦G. By Theorem 3.2.3,

i(H, x) = (i(G, x))n+1 i

(︃
K1,n,

x

i(G, x)

)︃
so the independence roots of H are the roots of i(G, x) together with the roots of the

polynomials f(x) = −x
r
+i(G, x) for all independence roots r of i(K1,n, x). By Lemma

3.3.6, there exist real roots r that are negative and arbitrarily close to 0 for sufficiently
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large n. In this case, −x
r
= px for some p > 0, and by choosing r sufficiently close

to 0, we can make p as large as we like. Since α(G) ≥ 4, we can apply Lemma 3.1.3

to show that for any R > 0 and sufficiently large n, f(x) has a root with real part

greater than R, and so the same holds for i(H, x).

This proposition implies that trees are not necessarily stable as K1,n ◦ Km is a

tree for all m ≥ 1, and will have independence roots in the RHP for all m ≥ 4 and

sufficiently large n. Thus independence roots of trees can be found with arbitrarily

large real parts. For example, the tree T = K1,25 ◦K6 (order 182) is nonstable as can

be seen from the plot of its roots in Figure 3.6.

Figure 3.6: The independence roots of K1,25 ◦K6

3.4 Graphs with Purely Imaginary Roots

In generating nonstable graphs of small order, we came across K6 + K8, which has

independence polynomial

x6 + 6x5 + 15x4 + 20x3 + 15x2 + 14x+ 1 =
(︁
x2 + 1

)︁ (︁
x4 + 6x3 + 14x2 + 14x+ 1

)︁
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and therefore has independence roots at i and −i. This is interesting because Brown,

Mol, and Oellermann [22] note that it is not known if independence roots could

be purely imaginary. In fact, there are very few graph polynomials known to have

nonzero purely imaginary roots (chromatic and reliability polynomials fall into this

class). We first show that there are infinitely many connected graphs that have inde-

pendence roots at i and −i (of course, we can construct infinitely many disconnected

graphs with a purely imaginary independence roots by taking disjoint unions of any

graph with one that is known to have roots at i and −i).

Figure 3.7: The graph K6 +K8.

Proposition 3.4.1. If n = 8k − 2 for some integer k ≥ 1, then the graph G =

Kn +K
2
n
2
has independence roots at i and −i.
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Proof. Let n = 8k − 2 for some integer k ≥ 1. Now,

i(Kn +K
2
n
2
, i) = (1 + i)n + 2

n
2 i

=
(︂√

2ei
π
4

)︂8k−2

+ 24k−1ei
π
2

= 24k−1ei
(4k−1)π

2 + 24k−1ei
π
2

= 24k−1
(︂
ei(

−π
2

+2kπ) + ei
π
2

)︂
= 24k−1 (−i+ i)

= 0.

Since complex roots of polynomials with real coefficients come in conjugate pairs,

Kn +K
2
n
2
has independence roots at i and −i.

Corollary 3.4.2. There are infinitely many connected graphs with i and −i as inde-

pendence roots.

The following is a result that may be useful to search for other purely imagi-

nary independence roots. Note the similarities between it and the Hermite-Biehler

Theorem.

Proposition 3.4.3. If p(x) is a polynomial with real coefficients and b ∈ R (b ̸= 0),

then p(x) has a root at bi if and only if peven(x) and podd(x) both have roots at −b2.

Proof. Let p(x) =
∑︁n

k=0 akx
k ∈ R[x] and b ∈ R be nonzero. Suppose that p(bi) = 0.

Let ne be the largest even power of x in p(x) and no be the largest odd power of x in

p(x). Note that n is one of ne or no, depending on its parity. Therefore,

0 = p(bi) =
n∑︂

k=0

ak(bi)
k

= a0 + a1(bi) + a2(−b2) + a3(−ib3) + a4(b
4) + · · ·+ an(ib)

n

= a0 − a2(b
2) + a4(b

4)− a6(b
6) + · · ·+ (−1)ne/2ane(b

ne)+

a1(bi)− a3(b
3i) + a5(b

5i)− a7(b
7i) + · · ·+ (−1)(no−1)/2ano(b

n0i)

= peven(−b2) + bi · podd(−b2).
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Therefore, both Re(p(bi)) = peven(−b2) and Im(p(bi)) = b · podd(−b2) must equal

zero.

A corollary of Proposition 3.4.3 and our arguments in the proof of Proposition 3.1.2

is that is that no graph G with α(G) ≤ 3 can have any purely imaginary independence

roots. This is because the proof of Proposition 3.1.2 actually showed that if α(G) ≤ 2,

then G has all real independence roots, and if α(G) = 3, then r < s where r is the

root of iodd(G, x) and s is the root of ieven(G, x). Another corollary rules out certain

kinds of purely imaginary independence roots for graphs in general.

Corollary 3.4.4. If b ∈ Z, b ̸= 1, and b ̸= −1, then bi is not an independence root

of any graph.

Proof. From Proposition 3.4.3, if bi is an independence root of G, then −b2 is a

root of ieven(G, x). By the Rational Roots Theorem, any rational root must have

numerator which divides the constant term of ieven(G, x), which is 1 for every graph

G. Therefore, bi is not an independence root of any graph if b is an integer and b ̸= 1,

b ̸= −1.

Proposition 3.4.3 does give us an idea of how to find many graphs with inde-

pendence roots at i and −i even when the calculations are not quite as nice as in

Proposition 3.4.1. Since joining a large clique to a graph only changes the first co-

efficient of its independence polynomial and the change is an increase by a positive

integer, graphs G for which G+Km has independence roots at i and −i for some m

must have −1 as a root of ieven(G, x). Moreover, iodd(G,−1) must equal a negative

integer.

Corollary 3.4.5. If G is a graph such that ieven(G,−1) = 0 and iodd(G,−1) = −m

for some positive integer m, then G+Km has independence roots at i and −i.

To generate further families of graphs with independence roots at i and −i, places

to look are graphs with palindromic independence polynomial and independence num-

ber congruent to 2 mod 4. By palindromic independence polynomial, we mean that

ik = iα−k for all k. This problem was first considered by Stevanović in [84], where

constructions for graphs with palindromic independence polynomials were provided.
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Observation 3.4.6. If G is a graph with palindromic independence polynomial with

α(G) ≡ 2 mod 4, then ieven(G,−1) = 0.

Therefore, looking at such graphs is a good idea if more families of graphs with

i and −i as independence roots are desired. It should be noted however, that the

conditions in the above observation do not guarantee iodd(G,−1) will be negative.

Consider G = K10. This is a graph with palindromic independence polynomial and

α(G) ≡ 2 mod 4, but i is not an independence root of K10 + Km for any m since

iodd(K10,−1) = 32 > 0. One construction that always results in a palindromic inde-

pendence polynomial is to take the corona product of any graph with K2 [84]. We

checked for i and −i as independence roots in G◦K2 for all graphs of order at most 9

and found that (G ◦K2) +Km has independence roots at i and −i for all G of order

7. However, this construction has only worked for graphs of order 7 so far.

We were unable to find bi as an independence root for any value of b other than

1 or −1, but, other than integers, it is not known if other values of b will result in

independence roots. We have also been unable to find a graph without a universal

vertex that has a purely imaginary independence root.



Chapter 4

Maximum Modulus of Independence Roots of Graphs and
Trees

In the preceding chapters, we have looked very closely at independence roots.

The roots of other graph polynomials have also been of interest and the location

in C of these roots can vary considerably depending on the polynomial (see [65]).

Determining bounds on the moduli of these roots is an important question. In 1992,

Brown and Colbourn [15] conjectured that the roots of reliability polynomials lie

in the unit disk. The Brown-Colbourn conjecture stood for 12 years until it was

shown to be false (although just barely) in [76]. It was later shown that if G is a

connected graph on n vertices and q is a reliability root, then |q| ≤ n − 1, yet the

largest known modulus of a counterexample to the Brown-Colbourn Conjecture is

just approximately 1.113486 [21]. The reliability roots may still be bounded by some

constant. A polynomial that is more closely related to the independence polynomial

is the edge cover polynomial and it was recently shown that its roots are bounded,

in fact contained in the disk |z| < (2+
√
3)2

1+
√
3

[35].

In contrast, the collection of all roots of independence polynomials [19], domina-

tion polynomials [26], and chromatic polynomials [80] are each known to be dense

in C. Although these polynomials have roots with arbitrarily large moduli, an inter-

esting question to ask is: for fixed n, how large can the modulus of a root of one of

these polynomials be for a graph of order n? Sokal [79] showed that all simple graphs

on n vertices have their chromatic roots contained in the disk |z| ≤ 7.963907(n− 1),

so that the maximum modulus of chromatic roots grows at most linearly in n. The

growth rate of domination roots is unknown. There has been work done on bound-

ing the independence roots; for example, it was shown in [23] that for fixed α, the

largest modulus of an independence root of a graph with independence number α on

n vertices is
(︁

n
α−1

)︁α−1
+ O(nα−2). Appendix C shows the graphs up to order 9 with

independence roots of maximum modulus .

In this paper, we consider the problem determining the maximum modulus of an

47
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independence root over all graphs on n vertices. We will show that the growth rate

is indeed exponential. To that end, let maxmod(n) denote the maximum modulus

of an independence root over all graphs on n vertices and maxmodT (n) denote the

maximum modulus of an independence root over all trees on n vertices. We show that,

in contrast to Sokal’s linear bound for chromatic roots, maxmod(n) and maxmodT (n)

are both exponential in n: in Section 4.1, we prove that

3
n−r
3 ≤ maxmod(n) ≤ 3

n
3 + n− 1,

where 1 ≤ r ≤ 5, while in Section 4.2, we prove that

2
n−1
2 ≤ maxmodT (n) ≤ 2

n−1
2 +

n− 1

2

if n is odd, and

2
n−6
2 ≤ maxmodT (n) ≤ 2

n−2
2 +

n

2

if n is even. The results of this chapter have appeared in [12].

We shall need some notation. The number of maximum independent sets in G

is denoted by ξ(G), while the number of maximal independent sets in G is denoted

µ(G). Note that ξ(G) ≤ µ(G) and that ξ(G) = iGα(G), the leading coefficient of the

independence polynomial of G. We will deal with multiple independence polynomials

in various calculations throughout this chapter. Thus when necessary, we will distin-

guish the coefficients with a superscript to avoid confusion, so that iGk is the number

of independent sets of size k in G.

4.1 Bounds on the Maximum Modulus of Independence Roots

To bound the roots of independence polynomials, we will make extensive use of the

classical Eneström-Kakeya Theorem which uses the ratios of consecutive coefficients

of a given polynomial to describe an annulus in C that contains all its roots.

Theorem 4.1.1 (Eneström-Kakeya [38, 56]). If f(x) = a0 + a1x + · · · + anx
n has

positive real coefficients, then all complex roots of f lie in the annulus r ≤ |z| ≤ R

where

r = min

{︃
ai
ai+1

: 0 ≤ i ≤ n− 1

}︃
and R = max

{︃
ai
ai+1

: 0 ≤ i ≤ n− 1

}︃
.
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We will also need to make extensive use of Proposition 1.3.1, which we recall now:

If G and H are graphs and v ∈ V (G), then

i) i(G, x) = i(G− v, x) + x · i(G−N [v], x), and

ii) i(G ∪H, x) = i(G, x)i(H, x).

Note that from Proposition 1.3.1, for the disjoint union G∪H of G and H, ξ(G∪H) =

ξ(G) · ξ(H). Our proofs are inductive and often require upper bounds ξ(G) for all

graphs on n vertices (a larger collection of these can also can be found in [55]).

Theorem 4.1.2 ([70]). If G is a graph of order n ≥ 2, then

ξ(G) ≤ µ(G) ≤ g(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
n
3 if n ≡ 0 mod 3

4 · 3n−4
3 if n ≡ 1 mod 3

2 · 3n−2
3 if n ≡ 2 mod 3

.

An easy corollary of this is that for a graph on n vertices, ξ(G) ≤ µ(G) ≤ 3
n
3 .

We are now ready to prove a lower bound on the maximum modulus of an inde-

pendence root of a graph of order n.

Theorem 4.1.3. For all n ≥ 1,

maxmod(n) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
n−3
3 if n ≡ 0 mod 3

3
n−1
3 if n ≡ 1 mod 3

3
n−5
3 if n ≡ 2 mod 3

.

Proof. The proof is in three cases depending on n mod 3. Each relies on independence

polynomials of graphs Gk
0, G

k
1, and Gk

2, respectively, shown in Figure 4.1, where Gk
1

is obtained by joining a central vertex to all but one vertex in each of k copies of

K3, G
k
0 is obtained by joining one vertex in K2 to the central vertex in Gk

1, and Gk
2

is obtained by joining one vertex in another copy of K2 to the central vertex in Gk
0.
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yk

y2

y1

. . .

(a) Gk
0

yk

y2

y1

. . .

(b) Gk
1

yk

y2

y1

. . .

(c) Gk
2

Figure 4.1: Graphs with independence roots of large moduli.

Note that the orders of Gk
0, G

k
1, and Gk

2 are congruent to 0, 1, and 2, respectively,

mod 3. We then use the Intermediate Value Theorem (IVT) to prove that each has

a real root of large modulus. (We shall say that a polynomial alternates in sign on

an interval if it takes on both positive and negative values in the interval, and hence

by the IVT has a root in the interval.) From Proposition 1.3.1, it easily follows that

i(Gk
0, x) = (1 + 3x)k(1 + 2x) + x(1 + x)k+1,

i(Gk
1, x) = (1 + 3x)k + x(1 + x)k, and

i(Gk
2, x) = (1 + 3x)k(1 + 2x)2 + x(1 + x)k+2.
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It is now straightforward to determine that

sign

(︃
lim

x→−∞
i(Gk

0, x)

)︃
= (−1)k

sign

(︃
lim

x→−∞
i(Gk

1, x)

)︃
= (−1)k+1

sign

(︃
lim

x→−∞
i(Gk

2, x)

)︃
= (−1)k+1.

We now prove the lower bounds for maxmod(n) by exhibiting, in each one of the

cases, a graph with a real independence root with modulus larger than the bound.

Case 0: n ≡ 0 mod 3

If n = 3, then we can use the quadratic formula to find that P3 has indepen-

dence roots −3±
√
5

2
and therefore an independence root with modulus approximately

2.618 > 1. So we may assume that n ≥ 6 and thus k = n−3
3

≥ 1 for our analysis of

Gk
0. For all k ≥ 1, we have that

i(Gk
0,−3k) =

(︁
1− 3k+1

)︁k (︁
1− 2 · 3k

)︁
− 3k

(︁
1− 3k

)︁k+1

= (−1)k
[︁
(1− 3k)

(︁
(3k+1 − 1)k − (3k+1 − 3)k

)︁
− 3k(3k − 1)k

]︁
which has the same sign as (−1)k+1 since 0 < (3k+1−1)k− (3k+1−3)k. Thus, i(Gk

0, x)

alternates sign on (−∞,−3k) = (−∞,−3
n−3
3 ), so by the IVT, i(Gk

0, x) has a root in

this interval.

Case 1: n ≡ 1 mod 3

If n = 1, then K1 is the only graph to consider and the result clearly holds. So

we may assume that n ≥ 4 and therefore k = n−1
3

≥ 1 for our analysis of Gk
1. Since

i(Gk
1,−3k) = (−1)k((3k+1−1)k− (3k+1−3)k), it follows that i(Gk

1,−3k) has the same

sign as (−1)k. Thus i(Gk
1, x) alternates sign on (−∞,−3k) = (−∞,−3

n−1
3 ) and by

IVT it must have a root in the interval.
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Case 2: n ≡ 2 mod 3

If n = 2, then the graph K2 has −1 as an independence root and | − 1| = 1 = 30.

If n = 5, then P5 has independence polynomial 1 + 5x + 6x2 + x3 and i(P5,−5) = 1

while i(P5,−6) = −29, so P5 has a real independence root in the interval (−6,−5)

by IVT. This independence root has modulus greater than 3. We now consider n ≥ 8

and therefore k = n−5
3

≥ 1 for our analysis of the graph Gk
2. We now have,

i(Gk
2,−3k) = (−1)k

[︁
(1− 2 · 3k)2(3k+1 − 1)k − 3k(1− 3k)2(3k − 1)k

]︁
= (−1)k

[︁
(1− 4 · 3k + 4 · 32k)(3k+1 − 1)k − (1− 3k)2(3k+1 − 3)k

]︁
= (−1)k

[︁
(1− 4 · 3k + 32k + 32k+1)(3k+1 − 1)k − (1− 3k)2(3k+1 − 3)k

]︁
= (−1)k

[︁
(1− 3k)2

(︁
(3k+1 − 1)k − (3k+1 − 3)k

)︁
+

(32k+1 − 2 · 3k)(3k+1 − 1)k
]︁

which has sign (−1)k since

(3k+1 − 1)k − (3k+1 − 3)k > 0,

(1− 3k)2 > 0, and

(32k+1 − 2 · 3k)(3k+1 − 1)k > 0.

Therefore, IVT yields that i(Gk
2, x) must have a root in the interval (−∞,−3k) =

(−∞,−3
n−5
3 ).

This completes the proof.

Therefore, maxmod(n) is at least exponential in n and perhaps 3
n
3 is a close

approximation. We will indeed put an upper bound on maxmod(n) but we first

require the next two lemmas.

Lemma 4.1.4. For all graphs G with at least one edge, there exists a non-isolated

vertex, v, such that α(G) = α(G− v) ≥ α(G−N [v]) + 1.

Proof. Let G be a graph with at least one edge. It is clear that for any vertex v of G,

α(G) ≥ α(G −N [v]) + 1, since any maximum independent set in G −N [v] will still
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be independent in G with the addition of v. Suppose that for all vertices v ∈ V (G),

that α(G) > α(G − v). Then every vertex belongs to every maximum independent

set. However, G has at least one edge, so the vertices incident with this edge cannot

belong to the same independent set, which contradicts both of these vertices being

in every maximum independent set. Therefore, there exists some v ∈ V (G) incident

with some edge such that

α(G) = α(G− v) ≥ α(G−N [v]) + 1.

Lemma 4.1.5. If G is a graph on n vertices such that ξ(G) = 1, then

iα(G)−1 ≤ 3
n
3 + n− 1.

Proof. Let G be a graph on n vertices such that ξ(G) = 1. Every independent set of

size α(G)−1 is either maximal or is a subset of the one independent set of size α(G).

Therefore, iα(G)−1 ≤ µ(G)−1+α(G) ≤ 3
n
3 +n−1 (subtracting 1 from µ(G) to account

for the one maximum independent set) by the note following Theorem 4.1.2

Theorem 4.1.6. For all n ≥ 1, maxmod(n) ≤ 3
n
3 + n− 1.

Proof. We actually prove the stronger result that, for a graph on n vertices, the

ratios of consecutive coefficients of its independence polynomial are bounded above

by 3
n
3 + n− 1. It then follows directly from the Eneström-Kakeya Theorem that the

roots are bounded by this value. We proceed by induction on n.

The results hold for graphs on n ≤ 5 vertices by straightforward checking the

ratios of consecutive coefficients of the independence polynomials of all 52 graphs in

Maple, shown in Table 4.1 along with the values for maxmod(n). In this table let Mn

denote the maximum value
iGk
iGk+1

can take over all k and all graphs G of order n.

Now suppose the result holds for all 5 ≤ k < n, and let G be a graph on n vertices.

If G has no edges, then we are done, since G has only −1 as an independence root

in this case. Therefore, G has at least one edge. Let v be a nonisolated vertex in G

such that α(G) = α(G− v) ≥ α(G−N [v]) + 1, noting that v exists by Lemma 4.1.4.

Now by Proposition 1.3.1,
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n 3
n−r
3 maxmod(n) Mn 3

n
3 + n− 1

1 1 1 1 1.442249570
2 1 1 2 3.080083823
3 1 2.618033989 3 5
4 3 3.732050808 4 7.326748710
5 3 5.04891733952231 6 10.24025147

Table 4.1: maxmod(n) for n ≤ 5

i(G, x) = i(G− v, x) + x · i(G−N [v], x)

=

α(G−v)∑︂
k=0

iG−v
k xk + x

α(G−N [v])∑︂
k=0

i
G−N [v]
k xk

= 1 +

α(G−v)∑︂
k=1

iG−v
k xk +

α(G−N [v])+1∑︂
k=1

i
G−N [v]
k−1 xk. (1)

We now have two cases.

Case 1: α(G) = α(G− v) = α(G−N [v]) + 1.

In this case, (1) gives

i(G, x) = 1 +

α(G−v)∑︂
k=1

(︂
iG−v
k + i

G−N [v]
k−1

)︂
xk.

This gives 1/n and

iG−v
k + i

G−N [v]
k−1

iG−v
k+1 + i

G−N [v]
k

for k = 1, 2, . . . , α(G−N [v])

for the ratios between coefficients. For all n ≥ 1, 1
n
< 3

n
3 +n−1, and by the inductive

hypothesis,
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iG−v
k + i

G−N [v]
k−1

iG−v
k+1 + i

G−N [v]
k

<

(︂
3

n−1
3 + n− 2

)︂
iG−v
k+1 +

(︂
3

n−|N [v]|
3 + n− |N [v]| − 1

)︂
i
G−N [v]
k

iG−v
k+1 + i

G−N [v]
k

≤

(︂
3

n−1
3 + n− 2

)︂(︂
iG−v
k+1 + i

G−N [v]
k

)︂
iG−v
k+1 + i

G−N [v]
k

= 3
n−1
3 + n− 2

< 3
n
3 + n− 1.

Case 2: α(G) = α(G− v) > α(G−N [v]) + 1.

In this case, the independence polynomial is obtained from (1) as,

i(G, x) = 1 +

α(G−N [v])+1∑︂
k=1

(︂
iG−v
k + i

G−N [v]
k−1

)︂
xk +

α(G−v)∑︂
α(G−N [v])+2

iG−v
k xk.

This gives four different forms for
iGk
iGk+1

. The first two, namely 1
n
and

iG−v
k +i

G−N [v]
k−1

iG−v
k+1 +i

G−N [v]
k

,

are less than or equal to 3
n
3 + n − 1 for each k = 1, 2, . . . , α(G − N [v]) by the same

argument as Case 1. This leaves,

iG−v
α(G−N [v])+1 + i

G−N [v]
α(G−N [v])

iG−v
α(G−N [v])+2

and
iG−v
k

iG−v
k+1

, for k ≥ α(G−N [v]) + 2

By the inductive hypothesis,
iG−v
k

iG−v
k+1

≤ 3
n−1
3 + n − 2 < 3

n
3 + n − 1, so we are left only

with
iG−v
α(G−N [v])+1

+i
G−N [v]
α(G−N [v])

iG−v
α(G−N [v])+2

.

In this case, we first show that we may assume that |N [v]| ≥ 3. As v is not

isolated, |N [v]| ≥ 2. If |N [v]| = 2, then v is a leaf, and since v was chosen such that

α(G) = α(G− v) ≥ α(G−N [v]) + 1, v is not in every maximum independent set in

G. But every maximum independent set in G must contain either v or its neighbour,

so α(G − v) = α(G − N [v]) + 1, which was covered in Case 1. Therefore, we may
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assume |N [v]| ≥ 3. We also note that

iG−v
α(G−N [v])+1 + i

G−N [v]
α(G−N [v])

iG−v
α(G−N [v])+2

=
iG−v
α(G−N [v])+1

iG−v
α(G−N [v])+2

+
ξ(G−N [v])

iG−v
α(G−N [v])+2

.

There are three subcases to consider.

Case 2a: α(G−N [v]) + 2 < α(G− v) = α(G).

If α(G−N [v]) + 2 < α(G− v), then G− v has an independent set of size α(G−
N [v]) + 3. Therefore, iG−v

α(G−N [v])+2 ≥ α(G − N [v]) + 3 ≥ 3, since any independent

set of size k, contains at least
(︁

k
k−1

)︁
= k independent sets of size k − 1. Now by the

inductive hypothesis and the note following Theorem 4.1.2,

iG−v
α(G−N [v])+1

iG−v
α(G−N [v])+2

+
ξ(G−N [v])

iG−v
α(G−N [v])+2

≤ 3
n−1
3 + n− 2 +

ξ(G−N [v])

3

≤ 3
n−1
3 + n− 2 + 3

n−|N [v]|−3
3

≤ 3
n−1
3 + n− 2 + 3

n−6
3

= 3
n
3

(︃
3

−1
3 +

1

9

)︃
+ n− 2

≤ 3
n
3 + n− 1.

Case 2b: α(G−N [v]) + 2 = α(G− v) = α(G) and |N [v]| ≥ 4.

In this case, by the inductive hypothesis and the note following Theorem 4.1.2,
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iG−v
α(G−N [v])+1

iG−v
α(G−N [v])+2

+
ξ(G−N [v])

iG−v
α(G−N [v])+2

≤ 3
n−1
3 + n− 2 + ξ(G−N [v])

≤ 3
n−1
3 + n− 2 + 3

n−|N [v]|
3

≤ 3
n−1
3 + n− 2 + 3

n−4
3

= 3
n
3

(︂
3

−1
3 + 3

−4
3

)︂
+ n− 2

< 3
n
3 + n− 1.

Case 2c: α(G−N [v]) + 2 = α(G− v) and |N [v]| = 3.

We break this final case into two subcases based on the size of iG−v
α(G−N [v])+2. First,

if iG−v
α(G−N [v])+2 ≥ 2, then by the inductive hypothesis and the note following Theo-

rem 4.1.2,

iG−v
α(G−N [v])+1

iG−v
α(G−N [v])+2

+
ξ(G−N [v])

iG−v
α(G−N [v])+2

≤ 3
n−1
3 + n− 2 +

ξ(G−N [v])

2

≤ 3
n−1
3 + n− 2 +

3
n−3
3

2

= 3
n
3

(︃
3

−1
3 +

1

3

)︃
+ n− 2

≤ 3
n
3 + n− 1.

Note that if some maximum independent set in G contained v, then this set with v

removed would be an independent set of size α(G)−1 = α(G−N [v])+1 in G−N [v],

which is a contradiction. Therefore, the maximum independent sets in G and G− v

are exactly the same sets and, in particular, ξ(G) = ξ(G− v). Now, if

1 = iG−v
α(G−N [v])+2 = ξ(G− v) = ξ(G),

then Lemma 4.1.5 applied to G gives a bound on iGα(G)−1 that we can use to show that
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iG−v
α(G−N [v])+1 + i

G−N [v]
α(G−N [v])

iG−v
α(G−N [v])+2

=
iGα(G)−1

iGα(G)

= iGα(G)−1

≤ 3
n
3 + n− 1.

All cases together show that if z is an independence root of G, then, by the

Eneström-Kakeya Theorem, |z| ≤ 3
n
3 + n− 1.

Theorems 4.1.3 and 4.1.6 yield the following corollary.

Corollary 4.1.7.
log3(maxmod(n))

n
=

1

3
+ o(1).

Proof. From Theorems 4.1.3 and 4.1.6, we have the following chain of equalities:

3
n−r
3 ≤ maxmod(n) ≤ 3

n
3 + n− 1

n

3
− r

3
≤ log3(maxmod(n)) ≤ n

3
+ log3

(︃
1 +

n− 1

3
n
3

)︃
1

3
− r

3n
≤ log3(maxmod(n))

n
≤ 1

3
+

log3

(︂
1 + n−1

3
n
3

)︂
n

Thus
log3(maxmod(n))

n
=

1

3
+ o(1).

4.2 Bounds for Trees

Now that we have determined bounds on maxmod(n), a natural extension of this is

to determine the largest modulus an independence root can obtain among all graphs

of order n in a specific family of graphs. In particular, the bound we obtained for

maxmod(n) seems to be much too large when we restrict our attention to trees. In
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this section, we consider maxmodT (n), the maximum modulus of an independence

root over all trees on n vertices.

Let Tk be the tree obtained by identifying k copies of P3 together at a leaf (see

Figure 4.2). This tree is known [77] to have the largest number of maximal indepen-

dent sets among trees on 2k+1 vertices and we will show that it also has the largest

ratio of consecutive coefficients among all such trees, and therefore provides an upper

bound on maxmodT (n).

yk xk

y2 x2

y1 x1

z

...

Figure 4.2: The tree Tk on 2k+1 vertices that has independence root in [−2k−k,−2k).

We need to extend our notation to maxmodF (n), the maximum modulus of an

independence root of a forest of order n; clearly maxmodT (n) ≤ maxmodF (n). We

will also require a technical lemma for proving an upper bound on the ratio of consec-

utive coefficients of the independence polynomials of forests. The proof of this lemma

relies on the following theorem.

Theorem 4.2.1 ([88]). If G is a tree of order n ≥ 2, then

ξ(G) ≤ t(n) =

⎧⎪⎪⎨⎪⎪⎩
2

n−3
2 if n is odd

2
n−2
2 + 1 if n is even

.

Lemma 4.2.2. If F is a forest on n vertices, n ≥ 2, and v ∈ V (F ), then

ξ(F )

ξ(F − v)
≤

⎧⎪⎪⎨⎪⎪⎩
2

n−3
2 + 1 if n is odd

2
n−2
2 + 1 if n is even

.
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Proof. Let F = H1∪H2∪· · ·∪Hk, where k ≥ 1, and eachHi is a connected component

of F . Suppose, without loss of generality, that v ∈ Hk. Then

F − v = H1 ∪H2 ∪ · · ·Hk−1 ∪ F ′,

where F ′ is the forest obtained from deleting v from Hk (note that if v was an isolated

vertex in F , then F ′ may have no vertices and ξ(Hk) = 1). Now we have,

ξ(F )

ξ(F − v)
=

ξ(H1) · ξ(H2) · · · ξ(Hk)

ξ(H1) · ξ(H2) · · · ξ(Hk−1) · ξ(F ′)

=
ξ(Hk)

ξ(F ′)

≤ ξ(Hk)

≤ max{t(i) : 1 ≤ i ≤ n} (from Theorem 4.2.1)

=

⎧⎪⎪⎨⎪⎪⎩
2

n−3
2 + 1 if n is odd

2
n−2
2 + 1 if n is even

.

We are now ready for the main result of this section.

Theorem 4.2.3. For n ≥ 1,

maxmodF (n) ≤

⎧⎪⎪⎨⎪⎪⎩
2

n−1
2 + n−1

2
if n is odd

2
n−2
2 + n

2
if n is even

.

Proof. As in the proof of Theorem 4.1.6, we actually prove a stronger result, bounding

the ratios of consecutive coefficients. The Eneström-Kakeya Theorem then applies to

obtain the bound the roots. We proceed by induction on n.

For n = 1, 2, 3, 4 the results hold by checking all forests of order at most 4 (see

Table 4.2 and Table 4.4). Suppose the result holds for all 4 ≤ k ≤ n − 1 and let F

be a forest on n vertices. Note that if F = Kn, then the largest ratio of consecutive

coefficients of i(F, x) can easily be verified to be n which is less than the result in either
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case, so suppose F has at least one edge and therefore at least one leaf. Let v be a leaf

of F and let u be adjacent to v. Note that α(F−{u, v}) ≤ α(F−v) ≤ α(F−{u, v})+1

and for our argument, we assume that α(F − v) = α(F − {u, v}) and will address

the easier case when α(F − v) = α(F − {u, v}) + 1 shortly. To simplify notation, let

α = α(F − v) = α(F − {u, v}). By Proposition 1.3.1, we have

i(F, x) = i(F − v, x) + x · i(F − {u, v}, x)

=
α∑︂

k=0

iF−v
k xk + x

α∑︂
k=0

i
F−{u,v}
k xk

= 1 +
α∑︂

k=1

(︂
iF−v
k + i

F−{u,v}
k−1

)︂
xk + iF−{u,v}

α xα+1. (2)

(Note that if α(F − v) = α(F − {u, v}) + 1, then

i(F, x) = 1 +

α(F−v)∑︂
k=1

(︂
iF−v
k + i

F−{u,v}
k−1

)︂
xk.

This yields 1
n
and

iF−v
k +i

F−{u,v}
k−1

iF−v
k+1 +i

F−{u,v}
k

for k = 1, 2, . . . α(F −v)−1 as the ratios of coefficients.

We will cover both of these ratios under our assumption that α(F−v) = α(F−{u, v}),
so we do not need to consider α(F − v) = α(F − {u, v}) + 1 separately.)

We need to show that
iFk
iFk+1

is bounded above by the desired value and from (2),

we see that
iFk
iFk+1

can take on the following forms:

1

n
,
iF−v
k + i

F−{u,v}
k−1

iF−v
k+1 + i

F−{u,v}
k

for k = 1, 2, . . . α(F − {u, v})− 1, and
iF−v
α + i

F−{u,v}
α−1

i
F−{u,v}
α

.

The first ratio, 1
n
, clearly satisfies the desired bound regardless of the parity of n.

We now only need to verify the remaining two forms of
iFk
iFk+1

. We will do this in two

cases depending on the parity of n.

Case 1: n is odd.
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We apply the inductive hypothesis to get,

iF−v
k + i

F−{u,v}
k−1

iF−v
k+1 + i

F−{u,v}
k

≤

(︂
2

n−3
2 + n−1

2

)︂
iF−v
k+1 +

(︂
2

n−3
2 + n−3

2

)︂
i
F−{u,v}
k

iF−v
k+1 + i

F−{u,v}
k

≤

(︂
2

n−3
2 + n−1

2

)︂(︂
iF−v
k+1 + i

F−{u,v}
k

)︂
iF−v
k+1 + i

F−{u,v}
k

= 2
n−3
2 + n−1

2

< 2
n−1
2 + n−1

2
.

For the last ratio, we have,

iF−v
α + i

F−{u,v}
α−1

i
F−{u,v}
α

=
iF−v
α

i
F−{u,v}
α

+
i
F−{u,v}
α−1

i
F−{u,v}
α

≤ ξ(F − v)

ξ(F − {u, v})
+ 2

n−3
2 + n−3

2
(by the inductive hypothesis)

≤ 2
n−3
2 + 1 + 2

n−3
2 + n−3

2
(by Lemma 4.2.2)

= 2
n−1
2 + n−1

2
.

Therefore, the result holds when n is odd by the Eneström-Kakeya Theorem.

Case 2: Suppose that n is even.

Then we apply the inductive hypothesis to get,

iF−v
k + i

F−{u,v}
k−1

iF−v
k+1 + i

F−{u,v}
k

≤

(︂
2

n−2
2 + n−2

2

)︂
iF−v
k+1 +

(︂
2

n−4
2 + n−2

2

)︂
i
F−{u,v}
k

iF−v
k+1 + i

F−{u,v}
k

≤

(︂
2

n−2
2 + n−2

2

)︂(︂
iF−v
k+1 + i

F−{u,v}
k

)︂
iF−v
k+1 + i

F−{u,v}
k

= 2
n−2
2 + n−2

2

< 2
n−2
2 + n

2
.
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For the last ratio, we have,

iF−v
α + i

F−{u,v}
α−1

i
F−{u,v}
α

=
iF−v
α

i
F−{u,v}
α

+
i
F−{u,v}
α−1

i
F−{u,v}
α

≤ ξ(F − v)

ξ(F − {u, v})
+ 2

n−4
2 + n−2

2
(by the inductive hypothesis)

≤ 2
n−4
2 + 1 + 2

n−4
2 + n−2

2
(by the Lemma 4.2.2)

= 2
n−2
2 + n

2
.

Therefore, the result holds when n is even by the Eneström-Kakeya Theorem.

Corollary 4.2.4. For n ≥ 1,

maxmodT (n) ≤

⎧⎪⎪⎨⎪⎪⎩
2

n−1
2 + n−1

2
if n is odd

2
n−2
2 + n

2
if n is even

.

We remark that, at least in terms of the bounds on the ratio of consecutive

coefficients, this is best possible as there are trees when n is odd and forests when

n is even that achieve these bounds. Let n be odd, and consider the graph Tn−1
2

as

previously defined and pictured in Figure 4.2. The independence polynomial of this

tree is (1+ 2x)
n−1
2 +x(1+x)

n−1
2 , which has 2

n−1
2 + n−1

2
as its last ratio of consecutive

coefficients. If n is even, then consider the forest Tn−2
2

∪ K1, whose independence

polynomial has 2
n−2
2 + n

2
as its last ratio of consecutive coefficients.

We have shown that the bounds on the ratio of consecutive coefficients are tight,

but are these bounds tight on the roots? It is not always the case that the upper bound

on the modulus of the roots of a polynomial from the Eneström-Kakeya Theorem is

tight, even for trees and forests. Take for example, the tree K1,30 which has 30 as an

upper bound on the roots from the Eneström-Kakeya Theorem but its actual root of

largest modulus is approximately 2.023777128. It gets even worse when we consider

taking the disjoint union of k copies of K1,30. This forest will have the same root

of maximum modulus but the Eneström-Kakeya bound is 30k, which is unbounded.

Fortunately, it turns out that the bound we found in Theorem 4.2.3 is quite good for
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trees when n is odd.

For the case where n is even in the next proof we require the definition of the tree

T ′
k as shown in Figure 4.3. Let T ′

k be the graph obtained by adding two leaves to each

vertex in K2 (i.e, K2 ◦K2) and then identifying a leaf of the resulting graph to the

central vertex of Tk (see Figure 4.3).

e

d

c

b

a

yk xk

y2 x2

y1 x1

z

...

Figure 4.3: The tree T ′
k on 2(k+3) vertices that has an independence root in [−2k+1−

k − 4,−2k).

Proposition 4.2.5. For all n ≥ 1,

maxmodT (n) ≥

⎧⎪⎪⎨⎪⎪⎩
2

n−1
2 if n is odd

2
n−6
2 if n is even

.

Proof. The proof is similar to the proof of Theorem 4.1.3, in that it relies on finding

trees that have real independence roots of large modulus.

Case 1: n is odd.

If n = 1, then the result clearly holds so we may assume n ≥ 3. Let n =

2k + 1, so that k = n−1
2

≥ 1, and set T = Tk as in Figure 4.2. A simple calculation

via Proposition 1.3.1 shows that i(T, x) = (1 + 2x)k + x(1 + x)k. We will use the

Intermediate Value Theorem to show that i(T, x) has a real root to the left of −2k.

Now
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i(T,−2k) = (1− 2k+1)k − 2k(1− 2k)k

= (−1)k
(︁
(2k+1 − 1)k − (2k+1 − 2)k

)︁
,

so i(T,−2k) has sign (−1)k. On the other hand, i(T, x) has sign (−1)k+1 as x tends

to ∞. Thus, i(Tk, x) alternates sign on (−∞,−2k], so by IVT it must have a real root

in the interval (−∞,−2k). We remark that from Theorem 4.2.3, that i(T, x) actually

has a real root in the interval [−2k − k,−2k).

Case 2: n is even.

For n = 2 and 4, the result holds by straightforward checking (see Table 4.3 where

MT
n is the maximum of consecutive coefficients over all independence polynomials of

order n). For n ≥ 6, we will show that T ′
k, the graph in Figure 4.3, has a real root to

the left of −2k. Let n = 2(k+3) for k ≥ 0, so that k = n−6
2
. If k = 0, then i(T ′

k, x) =

(1+x)2(1+4x+x2) which has roots −1, −2+
√
3, and −2−

√
3, with −2−

√
3 being to

the left of −2
6−6
2 = −1. If k = 1, then i(T ′

k, x) = x5+9x4+22x3+21x2+8x+1, which

has its largest root at approximately −5.7833861, which is to the left of −2
8−6
2 = −4.

Since the result holds for k = 0, 1, we may now assume that k ≥ 2.

Using Proposition 1.3.1, we find that

i(T ′
k, x) = (1 + 2x)k(1 + 5x+ 6x2 + 2x3) + x(1 + x)k(1 + 4x+ 4x2 + x3).

Let g(x) = 1+5x+6x2+2x3 and h(x) = 1+4x+4x2+x3. We can easily verify that

g(x) < 0 for all x ≤ −2 and h(x) < 0 for all x ≤ −3. Moreover, h(x) = g(x)−x(x+1)2.

We consider the function

f(x) = (−2x− 1)k(1 + 5x+ 6x2 + 2x3) + x(−x− 1)k(1 + 4x+ 4x2 + x3),

so that i(T ′
k, x) = (−1)kf(x). Now,
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f(−2k) = (2k+1 − 1)kg(−2k)− 2k(2k − 1)kh(−2k)

= (2k+1 − 1)kg(−2k)− 2k(2k − 1)k(g(−2k) + 2k(1− 2k)2)

= g(−2k)((2k+1 − 1)k − (2k+1 − 2)k)− 22k(2k − 1)k+2

and since g(−2k) and −22k(2k − 1)k+2 are both negative for k ≥ 2, it follows that

f(−2k) < 0. Therefore, i(T ′
k, x) has sign (−1)k(−1) = (−1)k+1. On the other hand,

i(T ′
k, x) has sign (−1)k+4 = (−1)k as x tends to ∞. Thus, by the IVT, i(T ′

k, x) has a

real root to the left of −2k. From Theorem 4.2.3 and the Eneström-Kakeya Theorem,

i(T, x) has no roots in (−∞,−2k+1/2 − k − 3), so i(T ′
k, x) has a root in the interval

[−2k+1/2 − k − 3,−2k).

Tables 4.2 and 4.3 show values of maxmodT (n) for small values of n in comparison

to our bounds. We also include Table 4.4 as the values are different for trees and

forests of even order, but they are indeed the same for odd order. In these tables, let

MT
n be the maximum value of

iTk
iTk+1

over all values of k and all trees T of order n. Let

MF
n be defined analogously for forests.

n 2
n−1
2 maxmodT (n) = maxmodF (n) MT

n = MF
n 2

n−1
2 + n−1

2

3 2 2.61803398900000 3 3
5 4 5.04891733952231 6 6
7 8 9.49699733952714 11 11
9 16 17.9705962347393 20 20
11 32 34.4632033453548 37 37
13 64 66.9662907779610 70 70
15 128 131.473379027662 135 135
17 256 259.980782682655 264 264

Table 4.2: Comparing maxmodT (n) to our bounds for odd n.

Although the bounds on maxmodT (n) are not as tight for even n as for odd n,

Corollary 4.2.4 and Proposition 4.2.5 give the following corollary for all n.

Corollary 4.2.6.
log2(maxmodT (n))

n
=

1

2
+ o(1).
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n 2
n−6
2 maxmodT (n) MT

n 2
n−2
2 + n

2

2 0.25 0.5 1 2
4 0.5 1.77423195656734 3 4
6 1 3.732050808 6 7
8 2 5.78338611675281 9 12
10 4 10.0833151322046 14 21
12 64 18.5001015662614 23 38
14 8 34.9710040067543 40 71
16 16 67.4665144832128 73 136

Table 4.3: Comparing maxmodT (n) to our bounds for even n

n MF
n 2

n−2
2 + n

2

2 2 2
4 4 4
6 7 7
8 12 12
10 21 21
12 38 38

Table 4.4: Comparing our bounds on maxmodF (n) and MF
n .

Proof. From Corollary 4.2.4 and Proposition 4.2.5 we have the following. If n is odd,

then

2
n−1
2 ≤ maxmodT (n) ≤ 2

n−1
2 +

n− 1

2
n

2
− 1

2
≤ log2(maxmodT (n)) ≤

n

2
− 1

2
+ log2

(︃
1 +

n− 1

2
n+1
2

)︃
1

2
− 1

2n
≤ log2(maxmodT (n))

n
≤ 1

2
− 1

2n
+

log2

(︂
1 + n−1

2
n+1
2

)︂
n

Therefore
log2(maxmodT (n))

n
=

1

2
+ o(1).
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If n is even, then

2
n−6
2 ≤ maxmodT (n) ≤ 2

n−2
2 +

n

2
n

2
− 3 ≤ log2(maxmodT (n)) ≤

n

2
− 1 + log2

(︂
1 +

n

2
n
2

)︂
1

2
− 3

n
≤ log2(maxmodT (n))

n
≤ 1

2
− 1

n
+

log2

(︂
1 + n

2
n
2

)︂
n

Therefore
log2(maxmodT (n))

n
=

1

2
+ o(1).

(a) (b)

Figure 4.4: Both graphs that achieve maxmod(6).

When the precise values of maxmod(n) and maxmodT (n) have been determined

it is natural to wonder if these values are obtained by only one graph. Computational

evidence suggests that this is the case for most n, but not all n. For n = 6, there

are two graphs that achieve maxmod(6). Both graphs are shown in Figure 4.4, and

it is interesting to note that both graphs have 1 + 6x + 8x2 + x3 as their indepen-

dence polynomial. The problem of determining graphs with equivalent independence

polynomials is a fascinating one and it is our focus for the next chapter.



Chapter 5

Independence Equivalence Classes of Paths and Cycles

Properties of the coefficients and roots of independence polynomials tell us interesting

things about the graph or family of graphs in question, but how good is the inde-

pendence polynomial at distinguishing nonisomorphic graphs? Since graphs can be

completely defined by the set of all independent sets (even just those of size 2!), it

is natural to wonder how much information is lost when we only have the number of

independent sets of each size, that is, the independence polynomial. As we saw at the

end of the last chapter, the combinatorial information encoded in the independence

polynomial is not enough to completely distinguish a graph. Studying graphs with

equivalent independence polynomials is also of interest in analogy to the correspond-

ing notion for the chromatic polynomial. The chromaticity of a graph, that is, the

study of graphs have unique chromatic polynomials and families of graphs that share

a chromatic polynomial, has been a very active area of research (see chapters 4, 5,

and 6 of [37]).

We say that two unlabelled graphs G and H, are independence equivalent, denoted

G ∼ H, if they have the same independence polynomial. Independence equivalence

is clearly an equivalence relation, so we define the independence equivalence class of

a graph G, denoted [G], to be the set of all graphs that are independence equivalent

to G. We say G is independence unique if [G] = {G}.

As an example, i(P4, x) = i(K3 ∪K1, x) = 1 + 4x + 3x2, so P4 and K3 ∪K1 are

independence equivalent. This straightforward example shows that the independence

polynomial does not even distinguish between connected and disconnected graphs!

On the other hand, each complete graph Kn, is independence unique as it is the only

graph with independence polynomial 1+nx. In general, are most graphs independence

unique? Makowsky and Zhang [66] answered this question by showing

lim
n→∞

UGn

Gn

= 0

69
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where Gn is the number of nonisomorphic graphs of order n and UGn is the number of

nonisomorphic independence unique graphs of order n. In other words, independence

unique graphs are a rarity.

Independence equivalence was first considered by Hoede and Li [50] from the per-

spective of the clique polynomial. Stevanović [83] showed that every threshold graph

is independence unique, Brown and Hoshino [20] completely characterized indepen-

dence unique circulant graphs, and Levit and Mandrescu [63] showed that well-covered

spiders are independence unique among well-covered graphs. In Chism’s thesis [29],

the independence equivalence classes of paths were considered. In [64], it was shown

that the only tree in the independence equivalence class of a given path is the path

itself. A similar result for cycles was shown in [72].

Figure 5.1: Independence equivalent trees on 8 vertices.

Even for the path and cycle of order n, determining their independence equivalence

classes is tricky and subtle (much more so than for the chromatic polynomial, where

the class of Pn consists of all trees of order n, and that of Cn is just itself). Chism

[29] showed that [P2n] contains a few families of graphs (we will expand upon this

in Section 5.1) and Zhang [90] proved the same results via different techniques. In

[64], it was shown that the only tree in [Pn] is Pn itself. Most recently, Oboudi [72]

completely determined all connected graphs in the independence equivalence classes

of cycles. In this work, we extend the results of Oboudi [72] and Li [64] by considering

which disconnected graphs can be in [Pn] and [Cn] respectively.

This chapter is structured as follows: Section 5.1 is devoted to exploring [Pn].

For odd n we show that Pn is independence unique, whereas for even n there can be

arbitrarily many nonisomorphic graphs in [Pn]. In Section 5.2, we consider [Cn], using

very different methods depending on the parity of n. We find that when n is even

(and n ̸= 6), or a prime power where the base is at least 5, then [Cn] = {Cn, Dn}.
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Throughout this chapter, Dn is the graph obtained by identifying a leaf of Pn−2

with one vertex of a triangle (see Figure 5.2). Our results for paths and even cycles

involve combinatorial analysis that comes from analyzing the coefficients. Our results

for prime cycles and prime power cycles, however, are proved using algebraic results

by examining the reducibility of the polynomials. The results of this chapter have

appeared in [6].

u2

u3
un−1 un

u1

u4

. . .

Figure 5.2: The graph Dn

5.1 Independence Equivalence Classes of Paths

The highly structured nature of paths allows for an explicit formula for i(Pn, x) given

in the following theorem due to Arocha.

Theorem 5.1.1 (Arocha, [4]). The independence polynomial of a path of order n is

given by

i(Pn, x) =

⌊n+1
2

⌋∑︂
j=0

(︃
n+ 1− j

j

)︃
xj.

Despite this closed formula, [Pn] has remained elusive. Recently, Li, Liu, and Wu

[64] completely classified all connected graphs in [Pn] for all n

Theorem 5.1.2 ([64]). For any connected graph G and n ∈ N, if i(G, x) = i(Pn, x)

then G ∼= Pn.

However, independence equivalence does not necessarily put a restriction on con-

nectivity. In this section we will consider what disconnected graphs can belong to

[Pn], showing that P2k+1 is independence unique for all k ≥ 0. We start by showing

that even paths are very different in the disconnected case; there can be arbitrarily

many graphs in the independence equivalence classes of even paths. To do this, we
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build on the basic results in [29, 90] that provide an example of a disconnected graph

in [Pn] for even n.

Proposition 5.1.3 ([29, 90]). P2n ∼ Pn−1 ∪ Cn+1 for n ≥ 2.

Proposition 5.1.4 ([29, 90]). For n ≥ 3, Cn ∼ Dn (where Dn is formed from a

triangle by adding a pendant path – see Figure 5.2).

Proposition 5.1.5. There exists arbitrarily large even integers n such that |[Pn]| ≥ n
2
.

Proof. Let N be a positive integer, and set n = 2⌈N/2⌉+2 − 2. We claim that Pn

has at least n
2
non-isomorphic graphs in its independence equivalence class. From

Proposition 5.1.3, P2⌈N/2⌉+2−k−2 is equivalent to P2⌈N/2⌉+1−k−2 ∪ C2⌈N/2⌉+1−k for all k =

0, 1, . . . , ⌈N/2⌉ − 1. Therefore, by iteratively applying Proposition 5.1.3, we obtain

Pn ∼ P2⌈N/2⌉+1−k−2 ∪
k⋃︂

ℓ=0

C2⌈N/2⌉+1−ℓ . (5.1)

By Proposition 5.1.4, for 0 ≤ ℓ ≤ k, C2⌈N/2⌉+1−ℓ ∼ D2⌈N/2⌉+1−ℓ . Therefore, for each

value of k, the cycles in (5.1) can be replaced by equivalent graphs in 2k+1 ways. This,

together with the graph Pn, gives 1 + 2 + 22 + · · · 2⌈N/2⌉ = 2⌈N/2⌉+1 − 1 = n
2
distinct

graphs in [Pn]. Therefore, |[Pn]|| ≥ n
2
.

The surprising difference between the disconnected and connected graphs that are

independence equivalent to even paths begs the question of what happens with odd

paths. In the odd case, we completely characterize [P2n+1] for all n by showing, in

stark contrast to Proposition 5.1.5, P2n+1 is independence unique for all n ≥ 0.

Theorem 5.1.6. P2n+1 is independence unique for all n ≥ 0.

Proof. Suppose that there exists a graphG such thatG ∼ P2n+1. Note that i(P2n+1, x)

is monic for every n ≥ 0, since there is exactly one independent set of maximum size,

n+ 1, by taking a leaf and then every second vertex along the path. So i(G, x) must

be monic. (We can also see that i(P2n+1, x) is monic from Theorem 5.1.1.) Therefore,

G must have exactly one independent set of size n + 1; call this set S. If there is a

vertex in V (G)−S that is adjacent to at most one vertex in S, then we can take this
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vertex and n vertices in S that are not adjacent with it to make a second independent

set of size n+1, a contradiction. Therefore every vertex in V (G)−S is adjacent to at

least 2 vertices in S, requiring at least 2n edges between V (G)− S and S. From the

second coefficient of i(P2n+1, x), we know that G has exactly 2n edges and therefore

G is a bipartite graph with bipartition (V (G)− S, S). Hence G is triangle-free.

S

. . .

n

Figure 5.3: G

If G ̸∼= P2n+1, then from Theorem 5.1.2 we know that G must be disconnected. Let

G1, G2, . . . , Gk be the connected components of G for some k ≥ 2. Let Si = S∩V (Gi)

and Si = V (Gi)− Si for i = 1, 2, . . . , k. Each Gi is bipartite with bipartition (Si, Si).

Suppose that for some i, |Si| ≤ |Si|. Now,
⋃︁

j ̸=i Sj ∪ Si is an independent set with at

least n+ 1 vertices in it, which contradicts i(G, x) being monic and of degree n+ 1.

Therefore, |Si| ≥ |Si|+ 1 for i = 1, 2, . . . , k. Therefore,

2n+1 = |V (G)| =
k∑︂

i=1

|V (Gi)| =
k∑︂

i=1

(︁
|Si|+ |Si|

)︁
≥

k∑︂
i=1

(︁
2|Si|+ 1

)︁
= 2n+k ≥ 2n+2,

a contradiction. Therefore, G must be connected, and by Corollary 5.1.2, G ∼= P2n+1.

Therefore P2n+1 is independence unique.

It is interesting to note the dichotomy between the independence equivalence

classes of even and odd paths respectively given by Proposition 5.1.5 and Theo-

rem 5.1.6. It may be that the key distinction between the independence equivalence

classes of odd and even paths is the number of independent sets of maximum size.

An even path on n vertices has n
2
+1 maximum independent sets, while an odd path

has only one. As seen in the proof of Theorem 5.1.6, a graph having few maximum

independent sets determines some structure. We will use a similar approach in the

next section for even cycles.
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5.2 Independence Equivalence Class of Cycles

An early result in chromaticity is that cycles are chromatically unique [27]. Clearly

this is not the case for independence polynomials as Proposition 5.1.4 shows Cn ∼ Dn

for n ≥ 4. In this section, we will show that [Cn] = {Cn, Dn} for n even, or n a prime

at least 5 to any power. Along with these results, we have used the computational

tools of nauty [68] and Maple to show that [Cn] = {Cn, Dn} for 1 ≤ n ≤ 32 with the

exceptions of C6, C9, and C15. We will present the independence equivalence classes

of each of these three exceptional graphs as we proceed.

Like paths, all connected graphs which are independence equivalent to cycles have

been determined.

Theorem 5.2.1 ([72]). For n ≥ 3, if G is a connected graph such that i(G, x) =

i(Cn, x), then G ∼= Cn or G ∼= Dn.

Given Theorem 5.2.1, we need only consider disconnected graphs to determine

[Cn]. We will use an argument on the degree sequence to show that there are no

disconnected graphs in [C2n] for n ≥ 2, and one disconnected graph in [C6]. As is

shown in the next theorem, using the principle of inclusion-exclusion, some informa-

tion about the degree sequence of a graph is encoded in the coefficient of x3 in its

independence polynomial. We note that after personal correspondence with Hailiang

Zhang, it appears that the next theorem was first stated in [91]. However, the result

was presented without proof, so we prove the theorem here.

Theorem 5.2.2. For any graph G = (V,E) with n vertices and m edges

i3(G) =

(︃
n

3

)︃
−m(n− 2) +

∑︂
v∈V

(︃
deg(v)

2

)︃
− n(C3),

where i3(G) is the number of independent sets in G with cardinality three and n(C3)

is the number of 3-cycles in G.

Proof. It is sufficient to show the number of 3-subsets which are not independent is

m(n − 2) −
∑︁

v∈V
(︁
deg(v)

2

)︁
+ n(C3). Any 3-subset of V induces one of the graphs in

Figure 5.4.

We can construct each non-independent 3-subset by taking an edge uv and a

vertex w not incident to the edge. As G has m edges, we will construct m(n − 2)
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(a) (b) (c) (d)

Figure 5.4: All graphs on 3 vertices.

subsets. If w is not adjacent to u nor v then we induce the subgraph (b) in Figure 5.4

and construct it once. If w is adjacent to u (or v) then we induce the subgraph (c) in

Figure 5.4. However this 3-subset will have been constructed in two ways: the edge

uv and vertex w, and the edge uw (or vw) and vertex v. Therefore we have counted

each 3-subset which induces a subgraph of type (c) twice and (d) three times.

We can construct each 3-subset which induces a subgraph of type (c) by taking

a vertex and choosing any two of its neighbours. Hence there are
∑︁

v∈V
(︁
deg(v)

2

)︁
such

subsets. Note this counts the number of 3-subsets which induces subgraph (d) three

times as well. Clearly the number of 3-subsets which induces subgraph (d) is n(C3).

Thus the number of non-independent 3-subsets is m(n− 2)−
∑︁

v∈V
(︁
deg(v)

2

)︁
+ n(C3).

Lemma 5.2.3. Let n ≥ 4 and G be a graph with n(C3) many 3-cycles and gi many

vertices of degree i. If G ∼ Cn then

(i)
n−1∑︁
i=0

gi = n,

(ii)
n−1∑︁
i=1

i · gi = 2n,

(iii)
n−1∑︁
i=2

(︁
i
2

)︁
gi = n+ n(C3), and

(iv) n(C3) ≥ g0 +
n−1∑︁
i=3

gi, that is, there are at most n(C3) vertices not of degree one

or two.

Proof. Suppose G is a graph such that G ∼ Cn. Then G has n vertices and n edges

making (i) and (ii) trivial. To prove (iii), we note that by Theorem 5.2.2,

i3(G) =

(︃
n

3

)︃
− n(n− 2) +

n−1∑︂
i=2

(︃
i

2

)︃
gi − n(C3)
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.

Furthermore i3(Cn) can easily be computed to be
(︁
n
3

)︁
− n(n− 2) + n. As i3(G) =

i3(Cn) it follows that (iii) holds. Finally by adding (i) and (iii) and subtracting (ii)

we obtain:

n(C3) =
n−1∑︂
i=0

gi +
n−1∑︂
i=2

(︃
i

2

)︃
gi −

n−1∑︂
i=1

i · gi = g0 +
n−1∑︂
i=3

(︃(︃
i

2

)︃
− i+ 1

)︃
gi ≥ g0 +

n−1∑︂
i=3

gi.

Hence (iv) holds as well.

5.2.1 Even Cycles

For even n, we can completely determine [Cn].

Theorem 5.2.4. Let K4 − e denote the graph which consists of a K4 with one edge

removed. Then

• [C6] = {C2n, D2n, (K4 − e) ∪K2}, and

• [C2n] = {C2n, D2n} for n ≥ 2, n ̸= 3.

Proof. Suppose G ∼ C2n and G ̸∼= C2n. Then G has 2n vertices and 2n edges. For

n = 2 there is only one graph, D4, with 4 edges and 4 vertices which is not isomorphic

to C4. As C4 ∼ D4 by Proposition 5.1.4 then [C4] = {C2n, D2n}. We now consider

when n ≥ 3. By Theorem 5.1.1 and Proposition 1.3.1 it can be shown that i(G, x) is

degree n with leading coefficient equal to 2. That is, there are exactly two maximum

independent sets in G of size n.

We begin by showing G contains a triangle. Suppose not, that is G is triangle-free

and let gi be the number of vertices of degree i in G. By Lemma 5.2.3 (iii) and (iv),

the fact that G is triangle-free (i.e. n(C3) = 0) and G ∼ C2n, we have,

2n−1∑︂
i=2

(︃
i

2

)︃
gi = 2n and 0 ≥ g0 +

2n−1∑︂
i=3

gi.

Hence gi = 0 for i ≥ 3 and thus
∑︁2n−1

i=2

(︁
i
2

)︁
gi = 2n implies G is 2-regular. However

as G ̸∼= C2n then G is a disjoint union of cycles. It is easy to see each cycle has
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at least two maximum independent sets, meaning G must have at least 4 maximum

independent sets which is a contradiction. Thus G contains a triangle.

As G contains a triangle, it is not bipartite, and hence the two maximum indepen-

dent sets (of cardinality n) in G are not disjoint. Thus we can partition the vertices

into non-empty sets A,A′, B,B′ such that A ∪ A′ and A ∪ B are the two maximum

independent sets of size n. Note |A ∪ A′| = |A ∪ B| = |B ∪ B′| = n and all sets are

disjoint so |A′| = |B|. It follows that |A| = |B′| and so |A′|+ |B′| = n.

Each vertex in B′ is adjacent to at least two vertices in A∪A′. Otherwise we can

form another independent set of size at least n which is not A ∪A′ nor A ∪B. Thus

our partially constructed G looks like Figure 5.5.

A′ A

B B′ . . .

Figure 5.5: Partially constructed G.

We now consider two cases: |B| ≥ 2 and |B| = 1. If |B| ≥ 2, then by the same

argument used for B′ and A∪A′, each vertex in A′ is adjacent to at least two vertices

in B. Thus G has is at least 2(|A′|+ |B′|) = 2n edges. However, as G is not bipartite

and has exactly 2n edges, there must be an edge between two vertices of B ∪ B′, a

contradiction.

Now suppose |B| = 1. In this case, there are 2(|B′|) = 2(n − 1) = 2n − 2 edges

between B′ and A ∪ A′ leaving only 2 edges to account for in G. As |B| = |A′|, we
now have that |A′| = 1. We will label the vertex in A′ and the vertex in B to be

a′ and b, respectively. Note a′ and b are adjacent, as otherwise A ∪ A′ ∪ B forms a

independent set of size n + 1. Thus our partially constructed G (omitting one edge

in B ∪B′) looks like Figure 5.6.

We will consider the placement of the final edge in G which must connect two

vertices in B ∪B′ (otherwise G is triangle free). We break this into two cases.

Case 1: The edge is from b to some vertex v ∈ B′.

Then as G contains a triangle, v must be adjacent to a′ (note this is only triangle
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A

B′

a′

b
. . .

Figure 5.6: Partially constructed G with |A′| = |B| = 1.

A

B′

a′

b v
. . .

Figure 5.7: G with edge bv.

in G). All vertices in B ∪ B′ are now degree two with the exception of v which has

degree three. Thus G now looks like Figure 5.7.

We now know that G has exactly one triangle (i.e. n(C3) = 1) and G ∼ C2n so,

by Lemma 5.2.3 (iv), G has at most one vertex which is not degree one or two. As

v is degree three then every other vertex must either have degree one or two. Again

let gi be the number of vertices of degree i in G. Note gi = 0 for i ̸= 1, 2, 3, g3 = 1,

and g1 + g2 + g3 = 2n. Furthermore by Lemma 5.2.3 (iii),

2n+ 1 =
2n−1∑︂
i=2

(︃
i

2

)︃
gi =

(︃
2

2

)︃
g2 +

(︃
3

2

)︃
g3 = g2 + 3.

Thus g2 = 2n − 2, g3 = 1 and g1 = 1. Note a′ must have degree two. We now

construct G. Begin with the one triangle in G which is formed by the vertices a′, b,

and v. As v is a degree three vertex it must have a neighbour in A. Let ℓ denote the

only vertex of degree 1. As all other vertices in V (G) − {v} are all of degree two, ℓ

must be in the same component as v, otherwise the component with ℓ has exactly one

vertex of odd degree which contradicts the Handshaking Lemma. Therefore, there

must be an induced path connecting v and ℓ. This induced path together with a′ and

b forms a Dr component in G for some r ≤ n. If r = n, then G ∼= Dn. If r < n,

then G is the disjoint union of cycles and a Dr for r < n. However as Dn has two

maximum independent sets, if G has any cycle components it would have at least
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four maximum independent sets which is a contradiction.

Case 2: The edge in B ∪B′ is between two vertices u, v ∈ B′.

As G contains a triangle, u and v must have at least one common neighbour in

A∪A′. Note that we now know the number of vertices of each degree in B ∪B′; b is

degree one, u and v are degree three and every other vertex in B ∪B′ is degree two.

Thus we consider two subcases: u and v have one or two common neighbours.

Case 2a: u and v have exactly one common neighbour

Then G has exactly one triangle and now looks like Figure 5.8.

A

B′

a′

b u v

Figure 5.8: G with exactly one triangle.

As G has exactly one triangle (i.e. n(C3) = 1) and G ∼ C2n, Lemma 5.2.3 (iv)

gives that g3 ≤ 1. However u and v both have degree three which is a contradiction.

Case 2b: u and v have exactly two common neighbours.

Then G has exactly two triangles and looks like Figre 5.9.

A

B′

a′

b u v

Figure 5.9: G with exactly two triangles.

Since G has exactly two triangles (i.e. n(C3) = 2) and G ∼ C2n, Lemma 5.2.3 (iv)

implies that
∑︂
i ̸=1,2

gi ≤ 2. Both u and v have degree three so every other vertex must

either have degree one or two. Note gi = 0 for i ̸= 1, 2, 3, g3 = 2, and g1+g2+g3 = 2n.

Furthermore by Lemma 5.2.3 (iii),
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2n+ 2 =
2n−1∑︂
i=2

(︃
i

2

)︃
gi =

(︃
2

2

)︃
g2 +

(︃
3

2

)︃
g3 = g2 + 6.

Thus g2 = 2n − 4, g3 = 2 and g1 = 2. Note that every vertex in A ∪ A′ has degree

at most two, thus u, v and their two common neighbours form a K4 less an edge

component of G. Furthermore G has two vertices of degree one. As b is degree one

and every vertex in B′ is degree two or three, the second vertex of degree one is a′ or

some vertex in A.

First suppose some vertex ℓ ∈ A is degree one. At this point our graph looks like

Figure 5.10.

A−N(u)−N(v)

B′ − {u, v}

a′

b
uv

. . .

Figure 5.10: G with a K4 − e component.

Note that every vertex in B′ − {u, v} and A − N(u) − N(v), other than ℓ, has

degree 2. Therefore one component in G is a path of even order from b to ℓ. However,

every even path with more than two vertices has at least three maximum independent

sets, which is a contradiction as G only has two maximum independent sets.

Now suppose a′ is degree one. Then a′ and b form a K2 component in G and

the remaining vertices in (B′ − {u, v}) ∪ (A−N(u)) must induce a disjoint union of

cycles. In the case where n = 3, that is G ∼ C6, G has no cycle components and

G ∼= (K4− e)∪K2. For n ≥ 4, (B′−{u, v})∪ (A−N(u)) contains at least one cycle.

However, as K2 and cycles each have at least two maximum independent sets, G has

at least four maximum independent sets, which is again a contradiction.

The only two cases which didn’t result in a contradiction yielded G ∼= D2n and,

when G was of order 6, G ∼= (K4 − e) ∪ K2. As D2n ∼ C2n for all n ≥ 3, we have

shown that [C6] = {C6, D6, (K4 − e) ∪K2} and [C2n] = {D2n, D2n} for n ≥ 4.
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5.2.2 Prime Power Cycles

In Theorem 5.2.4, we used an involved construction to show that there is only one

disconnected graph that is independence equivalent to C2n. This construction relies

on the fact that the leading coefficient of i(C2n, x) is 2. This argument will not hold

for odd cycles as the leading coefficient of i(C2n+1, x) is 2n + 1. However, if we can

show that for certain n any graph independence equivalent to Cn must be connected,

then it will follow from Theorem 5.2.1 that [Cn] = {Cn, Dn}. There are other ways

to show connectivity than constructing the graph from its independence polynomial,

and we shall do so via irreducibility of polynomials over the rationals. We will require

Eisenstein’s famous criterion for irreducibility that we state here

Theorem 5.2.5 (c.f. [42] pp. 215). Let p ∈ Z be a prime and f(x) = a0 + a1x +

. . . + anx
n be a polynomial of degree n with integer coefficients. If p divides each of

a0, a1, . . . , an−1 but p does not divide an, and p2 does not divide a0, then f is irreducible

over the rationals.

Proposition 5.2.6. If p is an odd prime, then [Cp] = {Cp, Dp} (note Cp
∼= Dp when

p = 3).

Proof. We show that i(Cp, x) is irreducible over the rationals and therefore Cp has

no disconnected graphs in its equivalence class. The result will then follow by Theo-

rem 5.2.1. Let p be an odd prime. By Theorem 5.1.1 and Proposition 1.3.1 we know

that

i(Cp, x) = i(Pp−1, x) + xi(Pp−3, x)

=

⌊ p
2
⌋∑︂

j=0

(︃
p− j

j

)︃
xj +

⌊ p−2
2

⌋∑︂
j=0

(︃
p− 2− j

j

)︃
xj+1

=

⌊ p
2
⌋∑︂

j=0

(︃
p− j

j

)︃
xj +

⌊ p
2
⌋∑︂

j=1

(︃
p− j − 1

j − 1

)︃
xj

= 1 +

⌊ p
2
⌋∑︂

j=1

(︃(︃
p− j

j

)︃
+

(︃
p− j − 1

j − 1

)︃)︃
xj
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= 1 +

⌊ p
2
⌋∑︂

j=1

(︃
(p− j)!

j!(p− 2j)!
+

(p− j − 1)!

(j − 1)!(p− 2j)!

)︃
xj

= 1 +

⌊ p
2
⌋∑︂

j=1

(p− j)!

j!(p− 2j)!

(︃
1 +

j

p− j

)︃
xj.

= 1 +

⌊ p
2
⌋∑︂

j=1

(︃
p− j

j

)︃(︃
p

p− j

)︃
xj.

The coefficients above must be integers and since p is a prime, it follows that p− j

does not divide p for any j = 1, 2, . . . , ⌊p
2
⌋, so p − j must divide the integer

(︁
p−j
j

)︁
.

Therefore,
(︁
p−j
j

)︁ (︂
p

p−j

)︂
is a multiple of p for j = 1, 2, . . . , ⌊p

2
⌋. We now consider the

coefficient of x⌊ p
2
⌋,(︃

p− ⌊p
2
⌋

⌊p
2
⌋

)︃(︃
p

p− ⌊p
2
⌋

)︃
=

(︃
(p− ⌊p

2
⌋ − 1)!

⌊p
2
⌋!(p− 2⌊p

2
⌋)!

)︃
p

=

(︃
(p− ⌈p

2
⌉)!

⌊p
2
⌋!(⌈p

2
⌉)− ⌊p

2
⌋)!

)︃
p

=

(︃⌊p
2
⌋!

⌊p
2
⌋!

)︃
p

= p.

Therefore, applying Eisenstein’s famous criterion to the polynomial xα(Cp)i(Cp,
1
x
)

with the prime p, it follows that i(Cp, x) is irreducible over the rationals. Since i(Cp, x)

is irreducible, Cp cannot be independence equivalent to any disconnected graph. It

follows that [Cp] = {Cp, Dp} by Theorem 5.2.1.

The ideas used to show irreducibility of cycles of prime length given in Proposi-

tion 5.2.6 can be partially extended to cycles of order pn for all n and all odd primes

p ≥ 5. These polynomials are reducible but considering each irreducible factor will

lead us to the same conclusion as the case for n = 1.

We say that a polynomial p(x) =
∑︁n

i=0 pix
i with integer coefficients is unicyclic if
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p0 = 1, p1 = k and p2 =
(︁
k
2

)︁
−k for some integer k. Note that a unicyclic polynomial is

one that shares the same first three coefficients with the independence polynomial of

some unicyclic graph. If a connected graph has a unicyclic independence polynomial,

then that graph must be unicyclic. This is because the graph has k vertices, k edges,

and is connected.

Lemma 5.2.7. If h(x) = g(x)f(x) and h(x), g(x) are unicyclic, then f(x) is uni-

cyclic.

Proof. Assuming the hypothesis, let the first three terms of g(x) be 1, nx,
(︁(︁

n
2

)︁
− n

)︁
x2,

and the first three terms of f(x) be 1, kx,
(︁(︁

k
2

)︁
− k + ℓ

)︁
x2 where ℓ is some integer

(note f(x) must have integer coefficients from well-known factorization results, see

[42, pp. 215] for example). Since h(x) is unicyclic, the first three terms of h(x)

are 1, (n + k)x,
(︁(︁

n+k
2

)︁
− (n+ k)

)︁
x2. Since h(x) = f(x)g(x), they must be equal

coefficient-wise so we must have,

(︃
n+ k

2

)︃
− (n+ k) =

(︃
n

2

)︃
− n+

(︃
k

2

)︃
− k + ℓ+ nk

=
n(n− 1) + k(k − 1) + 2nk

2
− (n+ k) + ℓ

=
(n+ k)((n+ k)− 1)

2
− (n+ k) + ℓ

=
(n+ k)2 − (n+ k)

2
− (n+ k) + ℓ

=

(︃
n+ k

2

)︃
− (n+ k) + ℓ.

Therefore, ℓ = 0, and f(x) is unicyclic.

When looking at the factors of i(Cn, x), it is very helpful to know the indepen-

dence roots of Cn. Luckily, the roots of i(Cn, x) have been completely determined by

Alikahni and Peng [2] and we will make use of a corollary that can be derived from

their results.

Theorem 5.2.8 ([2]). For n ≥ 3, the roots of i(Cn, x) are given by



84

ri = − 1

2
(︂
1 + cos

(︂
(2i−1)π

n

)︂)︂
for i = 1, 2, . . . , ⌊n

2
⌋, and these roots are all distinct.

Corollary 5.2.9. For odd n and k ̸= 1, k|n if and only if i(Ck, x)|i(Cn, x).

Proof. Let n be odd. First suppose k|n. Then let n = qk for some positive integer q.

By Theorem 5.2.8, we only have to show that for all j = 1, 2, . . . , ⌊k
2
⌋ there exists an

i from 1 ≤ i ≤ ⌊n
2
⌋ such that (2i−1)π

n
= (2j−1)π

k
. This happens if and only if

i =
(2j − 1)q + 1

2
.

Since n is odd, it follows that q is also odd and therefore i is indeed an integer and

since j ≤ ⌊k
2
⌋, 1 ≤ i ≤ ⌊n

2
⌋. Thus every root of i(Ck, x) is also a root of i(Cn, x). Let

i(Ck, x) = (x− r1)(x− r2) . . . (x− r⌊ k
2
⌋) where the ri’s are the roots of i(Ck, x). Since

all roots of i(Ck, x) are also roots of i(Cn, x), it follows that i(Cn, x) = (x − r1)(x −
r2) . . . (x− r⌊ k

2
⌋)g(x) for some polynomial g(x) and therefore i(Ck, x)|i(Cn, x).

Conversely suppose i(Ck, x)|i(Cn, x). Then the leading coefficient of i(Ck, x) must

divide the leading coefficient of i(Cn, x). From Theorem 5.1.1 and Proposition 1.3.1,

as n is odd then the leading coefficient of i(Cn, x) is n. Furthermore the leading

coefficient of i(Ck, x) is either 2 if k is even or k if k is odd. As n is odd then 2 ̸ |n
and hence k|n.

Lemma 5.2.10. Let p be an odd prime and n ≥ 1. Then every irreducible factor of

i(Cpn , x) is unicyclic.

Proof. The proof is by induction on n. For n = 1, that case was handled in Propo-

sition 5.2.6. Suppose the result holds for n ≤ k for some k ≥ 1. Now from Corol-

lary 5.2.9, we know that i(Cpk , x)|i(Cpk+1 , x). Let i(Cpk+1 , x) = i(Cpk , x)r(x). We

claim that r(x) is irreducible and unicyclic. The fact that r(x) is unicyclic follows

from the inductive hypothesis and Lemma 5.2.7.

Similarly to the proof of Proposition 5.2.6, we derive an expression for the coeffi-

cients of i(Cpk , x)
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i(Cpk , x) = 1 +

⌊ pk

2
⌋∑︂

j=1

(︃
pk − j

j

)︃(︃
pk

pk − j

)︃
xj.

Note that p divides each coefficient above except the constant term as
(︁
pk−j
j

)︁
pk

pk−j

must be an integer and pk − j has at most k − 1 factors of p for all 1 ≤ j ≤ pk − 1.

Let r(x) = r0+r1x+r2x
2+ · · ·+rmx

m. Since i(Cpk+1 , x) = i(Cpk , x)r(x), we must

have

(︃
pk+1 − j

j

)︃(︃
pk+1

pk+1 − j

)︃
=

j∑︂
i=0

(︃
ri

(︃
pk − (j − i)

j − i

)︃(︃
pk

pk − (j − i)

)︃)︃
(5.2)

for j = 0, 1, . . . , ⌊pk+1

2
⌋.

As noted earlier, since p| pk+1

pk+1−j
for 1 ≤ j ≤ pk+1−1, p must divide the sum on the

right hand side of (5.2). Since we know p divides each coefficient of i(Cpk , x) except

the constant term, it follows that p|rj for all j = 1, 2, . . . ,m. Also, since pkrm = pk+1,

it follows that rm = p. So by Eisenstein’s Criterion applied to xmr( 1
x
), it follows that

r(x) is irreducible.

We are now ready to extend Proposition 5.2.6.

Theorem 5.2.11. For k, p ∈ N where p ≥ 5 is prime, [Cpk ] = {Cpk , Dpk}.

Proof. Suppose G ∼ Cn and G ̸∼= Cn where n = pk. Then G has n vertices and n

edges. Then by Lemma 5.2.3 we obtain the following three equations:

n−1∑︂
i=0

gi = n,
n−1∑︂
i=1

i · gi = 2n,
n−1∑︂
i=2

(︃
i

2

)︃
gi = n+ n(C3).

Thus,

n(C3) =
n−1∑︂
i=0

gi +
n−1∑︂
i=2

(︃
i

2

)︃
gi −

n−1∑︂
i=1

i · gi = g0 +
n−1∑︂
i=3

(︃(︃
i

2

)︃
− i+ 1

)︃
gi. (1)

Furthermore, G has no C3 components, otherwise i(C3, x)|i(Cn, x) and hence by

Corollary 5.2.9, 3|n which is a contradiction as n = pk for prime p ≥ 5. Hence

every induced C3 has a vertex with degree 3 or greater. By Lemma 5.2.10, every
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irreducible factor of i(Cn, x) is unicyclic and hence every connected component of G

has the same number of vertices and edges and is therefore unicyclic. Therefore every

vertex is part of at most one induced C3. As every induced C3 has a vertex with

degree 3 or greater then

n(C3) ≤
n−1∑︂
i=3

gi.

Therefore by subtracting this inequality from equation (1) we obtain

0 ≥ g0 +
n−1∑︂
i=3

(︃(︃
i

2

)︃
− i

)︃
gi.

As
(︁
i
2

)︁
− i ≥ 2 for i ≥ 4 and

(︁
3
2

)︁
− 3 = 0, it follows that gi = 0 for i ̸= 1, 2 or 3.

Therefore, by equation (1) we have g3 = n(C3). We can also now simplify the sums

given in Lemma 5.2.3 to get g1+ g2+ g3 = n and g1+2g2+3g3 = 2n and subtracting

2 times the former from the latter we obtain g1 = g3.

Consider the structure of G. Note that no two induced C3 graphs intersect, as

each vertex is in at most one. As G has no C3 components, each of the induced

C3 must contain at least one degree three vertex. As g3 = n(C3), each induced C3

contains exactly one degree three vertex and there are no other degree three vertices

in the graph. Now all that remains are degree one and two vertices. Hence the other

neighbour of each degree three vertex is either a leaf or a degree two vertex. It is easy

to see that if it is a degree two vertex, this must be the beginning of a path of degree

two vertices ending in a leaf, otherwise we would contradict either the component

being unicyclic or the number of degree three or greater vertices. This shows that

each component is either a cycle or Dr for some r ≤ n. As Dli ∼ Cli , G must be

independence equivalent to a disjoint union of cycles.

Now let G ∼ Cn1 ∪Cn2 ∪· · ·∪Cnr for some r ∈ N. Note nj ≥ 3 as each component

must have an equal number of vertices and edges. As the independence polynomial

is multiplicative across components we have

i(G, x) = i(Cn1 , x) · i(Cn2 , x) · · · i(Cnr , x).

It is easy to see from Theorem 5.1.1 and Proposition 1.3.1 that the leading coefficient
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and the coefficient x of i(Cnj
, x) are both nj. Thus the leading coefficient of i(G, x) is

n1 ·n2 · · ·nr and the coefficient of x is n1+n2+ · · ·+nr. However as i(G, x) = i(Cn, x)

then the leading coefficient and the coefficient of x of i(G, x) are both n. Thus

n1n2 · · ·nr = n1 +n2 + · · ·+nr. However a simple induction can show n1 ·n2 · · ·nr >

n1 + n2 + · · · + nr for r ≥ 2 and nj ≥ 3. As each nj ≥ 3, r = 1 and G is connected.

By Theorem 5.2.1, we conclude that [Cn] = {Cn, Dn}.

One notable exception to these results is [C3n ] when n > 1. These cases are more

difficult to deal with, as a graph in [C3n ] can have C3 components which does not allow

us the certainty of where the degree 3 vertices are located among the components.

We suspect that if [Cn] grows large for certain n, then n will be an odd multiple of

3. For example, the only cycles that we know of with graphs other than Dn and Cn

in their independence equivalence classes are C6, C9 and C15. Oboudi showed in [72]

that

[C9] = {C9, D9, G1 ∪ C3, G2 ∪ C3, G3 ∪ C3}

where G1, G2, and G3 are shown in Figure 5.11.

(a) G1 (b) G2 (c) G3

Figure 5.11: Components of the disconnected graphs in [C9]

Computationally, we were able to show that

[C15] = {C15, D15, G
′
1 ∪ C3 ∪ C5, G

′
2 ∪ C3 ∪ C5, G

′
3 ∪ C3 ∪ C5}

where G′
1, G

′
2, and G′

3 are shown in Figure 5.12.

(a) G′
1 (b) G′

2 (c) G′
3

Figure 5.12: Components of the disconnected graphs in [C15]
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Despite the similarities between [C9] and [C15], we were able to computationally

verify that [C21] = {C21, D21} and [C27] = {C27, D27}.



Chapter 6

Conclusion

This thesis was primarily focused on the independence roots of graphs, although

properties of the independent set sequence and independence equivalence classes were

also explored. In this final chapter, we will focus on what salient open problems and

conjectures arise from our work.

6.1 Unimodality, Log Concavity, and Independence Polynomials

In Chapter 2, we provided evidence for the log-concavity conjecture for very well-

covered graphs by exploring a surprising connection between the roots and the log-

concavity of a polynomial. We showed that every graph can be extended to a very

well-covered graph that has a log-concave (and therefore unimodal) independence

polynomial. The sector

R = {z ∈ C : 2π
3
< |arg(z)| < 4π

3
}

played a large role in our results, and the distribution of independence roots with

respect to this sector is fascinating. Computations suggest that most small graphs

have their independence roots in the sector; in fact, out of 11,117 connected graphs

of order 8, there are only 40 independence roots (counting multiplicities) outside the

sector (see Figure 6.1). The observation seems to be true of trees of even higher order

as well. Hence we propose the following conjecture.

Conjecture 6.1.1. The independence polynomial of almost every graph G has all of

its independence roots lying in the sector {z ∈ C : 2π
3
< |arg(z)| < 4π

3
}, and hence is

log concave.

89
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Figure 6.1: Independence roots of all connected graphs of order 8.

6.2 On the Stability of Independence Polynomials

In Chapter 3 we were able to provide constructions for families of graphs with all in-

dependence roots lying in the left half-plane as well as other constructions for families

of graphs that have at least one independence root in the right half-plane. One of

these constructions provided an infinite family of trees with nonstable independence

polynomials.

While we have seen that stars are stable, other complete multipartite graphs are

not. In the concluding remarks of [13], we asked if all complete bipartite graphs were

stable and we have shown here that they are not. From computations in Maple we

found a handful of nonstable complete bipartite graphs, all of which have relatively

large order. The nonstable complete bipartite graph of smallest order is the graph

K9,22 which has independence roots with real part approximately 0.0006577811540.

While we have provided a number of families (and constructions) of nonstable

graphs, we still feel that stability is a common property, as small graphs suggest.

Problem 6.2.1. Are almost all graphs stable?

We have also proved that trees are not necessarily stable, but the structure of a

tree that ensures that its independence polynomial is stable seems elusive.

Problem 6.2.2. Characterize when a tree is stable.

We do not know the smallest nonstable graph with respect to order or number of

edges. Calculations in Maple show that the order is greater than 10, but after this

point it becomes infeasible to check the stability of all graphs of a fixed order. From
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Corollary 3.1.6, we can search for nonstable graphs by joining a clique to all graphs

of small order with independence number at least 4. We were able to iteratively join

larger cliques to all graphs of order at most 8 and check the stability of the resulting

graph. In [13], we said that the smallest order of a nonstable graph was between 11

and 24, as we were only looking at joining cliques to graphs with independence number

4 and the smallest graph we found was K4+K20. We have since extended our search

in Maple for nonstable graphs with higher independence number which has turned

up several nonstable graphs of order 15 and with fewer edges than K4 + K20. The

first was K6+K9 (independence number 6); we found many other graphs of the same

order that were nonstable. The graph K6 +K9 has
(︁
9
2

)︁
+ 6 · 9 = 90 edges though the

size can be reduced by the graph (K1,7∪K1)+K6, which has
(︁
6
2

)︁
+7+6 ·9 = 76 edges,

and is the lone nonstable graph with fewer than 77 edges that we found. Therefore,

the smallest order of a nonstable graph is somewhere between 11 and 15 inclusive and

the fewest number of edges in a nonstable graph is at most 76, but the open problem

remains.

Problem 6.2.3. What is the smallest nonstable graph with respect to order and

with respect to edges?

We ended Chapter 3 with a brief exploration of graphs with purely imaginary

independence roots, where the only such roots we could find were i and −i. Our work

in Section 3.4 leads us to suspect that these are the only possibilities.

Conjecture 6.2.4. If G is a graph with bi as an independence root, then b = 1 or

b = −1.

6.3 The Maximum Modulus of Independence Roots

In Chapter 4, we proved bounds on the maximum modulus of an independence root

of a graph and a tree on n vertices, respectively. Our work shows that the maximum

modulus grows exponentially in n in both cases as

log3(maxmod(n))

n
=

1

3
+ o(1)
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and
log2(maxmodT (n))

n
=

1

2
+ o(1).

From computations with Maple and nauty [68], we have the following conjecture.

Conjecture 6.3.1. If G is a graph on n vertices, then for n ≥ 3,

maxmod(n) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 · 3n−3
3 + n

3
if n ≡ 0 mod 3

3
n−1
3 + n−1

3
if n ≡ 1 mod 3

4 · 3n−5
3 + n+1

3
if n ≡ 2 mod 3

Conjecture 6.3.1 comes from the true upper bound on the ratios of consecutive

coefficients for the independence polynomials of the graphs Gk
0, G

k
1, and Gk

2, as

i(Gk
0, x) = xk+2 +

(︂
2 · 3

n−3
3 +

n

3

)︂
xk+1 + · · ·+ 1

i(Gk
1, x) = xk+1 +

(︃
3

n−1
3 +

n− 1

3

)︃
xk + · · ·+ 1

i(Gk
2, x) = xk+3 +

(︃
4 · 3

n−5
3 +

n+ 1

3

)︃
xk+2 + · · ·+ 1.

Furthermore, we pose that the only extremal graphs are the ones above.

Conjecture 6.3.2. The graphs Gk
0, G

k
1, and Gk

2 are the only graphs to achieve

maxmod(n) for all n ̸= 6, 7.

Turning now to trees, the ratio of coefficients of even order trees is smaller than

the bound in Theorem 4.2.3, achieved uniquely by T ′
k, which leads us to conjecture

an improvement on an upper bound for maxmodT (n) for even n.

Conjecture 6.3.3. If T is a tree on n vertices with n ≥ 6 even , then,

maxmodT (n) ≤ 2
n−4
2 +

n+ 2

2

Conjecture 6.3.4. The trees Tn−1
2

and T ′
n−6
2

(recall Figures 4.2 and 4.3) are the only

trees to achieve maxmodT (n) for n odd and even respectively.
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Chapter 4 focused on two values, maxmod(n) and maxmodT (n). However, ques-

tions remain open about maxmodF(n), the maximum modulus of an independence

root over all graphs of order n belonging to the family of graphs F for various fami-

lies F . One family of graphs of interest that we are very familiar with at this point

in the thesis is the family of well-covered graphs. For each well-covered graph with

independence number α, it is known that all of its independence roots lie in the disk

|z| ≤ α and there are well-covered graphs with independence roots arbitrarily close

to the boundary [16]. This difference between the independence roots of graphs and

well-covered graphs begs the question of what happens for well-covered trees? Finbow

et al. [40] showed that every well-covered tree is necessarily equal to T ∗ (recall Fig-

ure 2.1) for some tree T . Recalling Proposition 2.1.1, we can obtain the independence

roots of T ∗ by an easy Möbius transformation of the independence roots of T . This

allows us to be more efficient when computing the independence roots of well-covered

trees. Using Maple and nauty [68], we were able to verify that all well-covered trees

on n ≤ 40 vertices have their independence roots contained in the unit disk!

This makes it extremely tempting to conjecture that the independence roots of

all well-covered trees are contained in the unit disk. However, we know that we

can exploit the formula for i(T ∗, x) and the properties of Möbius transformations

to determine the region where the independence roots of all trees would have to be

contained for the independence roots of all well-covered trees to be contained in the

unit disk. Any tree T with independence roots to the right of the line Re(z) = 1
2
, will

yield a well-covered tree T ∗ with independence roots outside of the unit disk. From

Proposition 3.3.7, we know that there are trees with independence roots arbitrarily

far in the right half of C; therefore, there are well-covered trees with independence

roots outside of the unit disk. Note that all well-covered trees on n vertices have n/2

as an upper bound on the ratios of consecutive coefficients by Lemma 3.1 in [16],

so it does not seem like the Eneström-Kakeya Theorem will be useful to solve the

tantalizing question:

Question 6.3.5. What is the maximum modulus of an independence root of a well-

covered tree on n vertices?

While Question 6.3.5 remains elusive, we can definitively answer which well-

covered tree of order n has the independence root of smallest modulus. We will
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now briefly look at a lower bound on the modulus of an independence root of a

well-covered tree to extend Oboudi’s result [71] for trees.

Theorem 6.3.6 ([71]). If T is a tree on n vertices, r is an independence root of T ,

and w is an independence root of K1,n−1 of smallest modulus, then |r| ≥ |w|.

The root of smallest modulus is unique and real and we will require this result as

well.

Theorem 6.3.7 ([34]). If G is a graph and w is an independence root of G of smallest

modulus, then w is real and the unique root with modulus |w|.

Proposition 6.3.8. Among all well-covered trees of order 2n, S∗
n is the tree with the

independence root of smallest modulus.

Proof. Let G = T ∗ be a well-covered tree on 2n vertices, so that T is on n vertices.

We know from Theorem 6.3.7 that the independence root of smallest modulus of G is

real. Therefore, we only need to consider real independence roots. Since no positive

real number is an independence root of any graph, the root of smallest modulus will

be the largest real root. Now let r ̸= 1 be a real independence root of a well-covered

tree on 2n vertices. From Proposition 2.1.1 and the Finbow et al. [40] result, we know

that r = s
1−s

for some real independence root of a tree on n vertices. If we consider

r as a function of s and differentiate, we obtain r′ = 1
(1−s)2

, which is always positive

and therefore r is always increasing. Since the largest real root of a tree on n vertices

is an independence root of K1,n−1 [71], the largest real root of a well-covered tree on

2n vertices must be the largest real root of the K∗
1,n−1.

6.4 Independence Equivalence

Our goal in writing Chapter 5 was to completely determine [Pn] and [Cn]. Although

we did this for certain values of n, [Pn] and [Cn] are still unknown for the remaining

values of n.

Problem 6.4.1. What graphs can be in [P2n]?
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We showed that |[P2n]| is unbounded for certain n, but this involved showing that

[P2n] consisted of disjoint unions of cycles, graphs independence equivalent to cycles,

and a path. However, using nauty [68], we were able to computationally determine

that |[P10]| = 10. In addition to the 7 graphs that we expected from Proposition 5.1.5,

we found the 3 surprising graphs in Figure 6.2. What other graphs can belong to [P2n]?

(a) H1 (b) H2 (c) H3

Figure 6.2: Surprising graphs in [P10].

Problem 6.4.2. What graphs can be in [C3n]?

Multiples of 3 make things more difficult when trying to characterize the equiv-

alence classes of cycles as graphs in these classes can have triangle components. In

fact, the only cycles we know of where [Cn] ̸= {Cn, Dn} are cycles with n = 3k for k

odd. Not every multiple of three has this property however, as C21 is only equivalent

to itself and D21. Does [C3n] eventually stabilize to the two graphs we expect, or can

it grow like the independence equivalence classes of even paths?

Problem 6.4.3. Are there families of graphs such that the independence equivalence

class is unbounded and each independence polynomial is irreducible?

We saw that i(Cp, x) was irreducible and |[Cp]| = 2 for all primes p ≥ 3. An irre-

ducible independence polynomial implies that all graphs in the independence equiva-

lence class are connected. The restriction to connected graphs via irreducibility seems

that it would make it less likely to have large independence equivalence classes, but

the question remains open. We also think that studying the irreducibility of indepen-

dence polynomials can be useful when studying independence equivalence classes of

other graphs.

Finally, we leave the reader with a conjecture that all of our results and compu-

tational work has lead us to believe is true.

Conjecture 6.4.4. If 3̸|n and n ≥ 4, then [Cn] = {Cn, Dn}.
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6.5 Future Work

While we have touched on a number of different problems related to our results,

there are some other tantalizing questions related to independence polynomials that

are worth pursuing.

Unimodality of the Domination Polynomial

We believe our methods for determining log-concavity of certain very well-covered

graphs depending on their independence roots can be useful for log-concavity con-

jectures for other graph polynomials as well. One in particular, is the domination

polynomial.

A set of vertices is a dominating set if every vertex outside of the set is joined

to at least one vertex in the set. More precisely, S ⊆ V (G) is dominating if N [S] =

V (G). In the same vein as the independence polynomial, the domination polynomial

of a graph G, denoted D(G, x), is defined by D(G, x) =
∑︁n

k=0 dkx
k, where dk is

the number of dominating sets of size k in G. Alikhani and Peng [3] conjectured

that the domination polynomial is unimodal for all graphs. Despite the intriguing

unimodality conjecture for the domination polynomial, there has been very little

progress made. There has been even less work on determining which families of graphs

have log-concave domination polynomials. We computed the domination polynomials

of all graphs on 9 and fewer vertices and checked their log-concavity using Maple.

Surprisingly, there is exactly one graph whose domination polynomial is not log-

concave, which is shown in Figure 6.3. This graph has domination polynomial x9 +

9x8 + 35x7 + 75x6 + 89x5 + 50x4 + 7x3 + x2, and 50 · 1 > 72, so it fails log-concavity

at the first possible index.

Based on these findings, we hypothesize that most graphs actually have a log-

concave domination polynomial. To provide evidence for this, we plan to use results

relating the roots of a polynomial to its log-concavity. We expect that using the

roots to show log-concavity (and therefore unimodality) will be a better approach

than trying to show these properties combinatorially. We also want to study different

random graph constructions in ways that the domination polynomial (or part of it)

can still be computed to show that almost all graphs have a log-concave domination

polynomial. This technique has been useful with other graph polynomials, including
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showing that almost all independence polynomials have a nonreal root [24]. We also

expect that aiming for the stronger property of log-concavity will provide great insight

on how to prove the unimodality conjecture for domination polynomials.

Figure 6.3: The lone graph of order 9 whose domination polynomial is not log-concave.

Multivariate Independence Polynomials

One of the disadvantages of studying the independence polynomial is that much of

the information about the graph is not encoded in the polynomial. This can make for

interesting results, for example all of the content in Chapter 5, but it can also make

it difficult to exploit structural properties in a given family of graphs. One method to

study graphs through polynomials without losing as much information is to extend

the graph polynomial from a univariate polynomial to a multivariate polynomial. The

trade off for the extra information about the graphs is that we now must work in the

world of multivariate polynomials, although as we will see, this may not be such a

disadvantage.

Definition 6.5.1. Let G be a graph on V = {v1, v2, . . . , vn} with I(G) as the set

of all independent sets of G and let x1, x2, . . . , xn be variables. The multivariate

independence polynomial of a graph G is defined as

i(G, x1, x2, x3, . . . , xn) =
∑︂

I∈I(G)

∏︂
vi∈I

xi.

It is easy to see that by setting all xi = x that i(G, x, x, x . . . , x) = i(G, x), so

the extension is a very natural one. It is also easy to see that the degree of xi is

at most 1 in each monomial term of i(G, x1, x2, . . . , xn) as no vertex will appear in

an independent set twice. Multivariate polynomials with this property are said to
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be multiaffine and these tend to be nicer multivariate polynomials to work with.

The multivariate independence polynomial was used in [73] to prove the existence

of a zero-free region (based on maximum degree) with applications for efficiently

approximating i(G, z) for certain z ∈ C. It was also the main tool in [78] for studying

a certain problem relating to statistical mechanics to the Lovász Local Lemma. While

the many multivariate results in [30] cannot be directly applied to independence

polynomials in general (the basic underlying structures in [30] are matroids), they

do suggest that the multivariate extension of the independence polynomial may be a

helpful tool in studying independence roots.

The Algebra of Independent Sets

Independent sets in a graph are crucial for understanding the graph and our

methods for studying independent sets have been through the independence polyno-

mial. Independent sets can of course be studied using graph theoretic techniques,

but the collection of all independents has a deep algebraic structure as well, known

as a (simplicial) complex (see [11, 32] for thorough discussions of complexes from a

combinatorial viewpoint). As we noted in the introduction, every subset of an in-

dependent set is necessarily independent. Therefore, for a given graph G = (V,E),

Ind(G) = (V, F ) is a complex where F is the set of all independent sets of G. The

complex Ind(G) is called the independence complex of G.

We know from Proposition 5.2.6, a result whose proof used the reducibility of

polynomials, that [Cpk ] = {Dpk , Cpk} for all primes p ≥ 5 and k ≥ 1. It may be

the case there are alternate proofs for classifying independence equivalence classes

that rely on the properties of the independence complex. Perhaps invariants like

homology of the independence complexes could be useful in providing necessary or

sufficient conditions on when two graphs are independence equivalent.

Every complex has an associated f -polynomial, which is the generating polyno-

mial for the number of faces of each size [11]. The f -polynomial of Ind(G) is equal

to i(G, x), so, in this way, studying Ind(G) is more general and has potential to lead

to deeper results than by studying the independence polynomial alone. For example,

it has eluded graph theorists for 32 years why general graphs can have unconstrained

independence polynomials, but trees appear to always have log-concave, or at least
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Figure 6.4: The containment of various simplicial complexes.

unimodal, independence polynomials. Perhaps the answer to this lies in the indepen-

dence complexes of trees.

Complexes are objects of interest in algebra and topology, and as such there are

different tools for studying independence complexes from an algebraic perspective

(various recent results along these lines can be found in [86, 5], for example). There

are also established notions that have analogous graph interpretations. For example,

a graph G is well-covered if and only if Ind(G) is pure. There are subclassifications

of pure simplicial complexes, such as vertex decomposable, shellable, and partionable

complexes as well as the previously mentioned matroids. It is known that Ind(G)

is a matroid if and only if every component of G is a clique [11]. Therefore, all

independence roots of graphs whose independence complexes are matroids are not

only real, but rational!

An interesting problem is to classify all graphs whose independence complexes

have one of the specified properties, especially since there is the following implication:

matroid⇒ vertex decomposable⇒ shellable⇒ partitionable⇒ pure (see Figure 6.4).

One question that we are interested in is the behaviour of the independence roots of
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graphs in each category. It is known that the independence roots of graphs with pure

independence complexes are still dense in C, but their roots grow linearly in n as

opposed to the exponential bound we showed in Chapter 4. As we move through

the layers of Figure 6.4, are the independence roots still dense in C? Are the graphs

eventually stable? What is the maximum modulus of an independence root? For

matroids we know every independence root is of the form −1/n for some positive

integer n, but all of these questions remain open for graphs whose independence

complexes are partitionable, shellable, or vertex decomposable.
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Appendix A

Plots of Independence Roots

Order Independence Roots
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Appendix B

Plots of Independence Roots of Trees

Order Independence Roots
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Appendix C

Independence Roots with Maximum Modulus

Order Graph(s) maxmod(n)

1 1

2 1
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3 2.618033989

4 3.732050808

5 5.04891733952231



116

6 7.18421012919818

7 10.3318514126666

8 13.6506654518316
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9 19.8113767295360



Appendix D

Independence Roots with Maximum Imaginary Part

Order Graph(s) maxImmod(G)

4 1.16154139999725

5 1.56388451052696
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119

6 1.90626149836483

7 2.40107000622037

8 2.98709821496198
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