
ACTIVE NEURAL LEARNERS FOR TEXT WITH DUAL
SUPERVISION

by

Chandramouli Shama Sastry

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

November 2018

c⃝ Copyright by Chandramouli Shama Sastry, 2018

Dedicated to parents, friends, roommates and relatives.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . ix

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Related Works . 4

Chapter 3 CNN and RNN Architectures . 6

3.1 CNN for Text Classification . 6

3.2 RNN for Text Classification . 7

3.3 Softmax . 9

Chapter 4 Dual Supervision in NNs . 10

4.1 Attributions and Misattribution error . 10

4.2 Comparison with Previous work . 12

Chapter 5 Experiments – Text classification 14

Chapter 6 Experiments – Information Retrieval 18

Chapter 7 Discussion and Future Work . 23

Bibliography . 25

Appendix A Architecture-specific adaptations of Misattribution Error 28

A.1 CNNs . 28

A.2 RNNs . 30

iii

A.3 Hyperparameters: ρ and τ . 31

Appendix B Additional Text Classification Results 33

Appendix C Useful Insights for Real-world Applications 35

Appendix D Programming Details . 40

D.1 Libraries used . 40

D.2 Readme . 40

iv

List of Tables

6.1 Dataset Overview: Approximately only 1-2 % of the documents are
relevant. 20

6.2 Although the query is a subset of the keywords in all of the datasets
and the keywords significantly overlap with the search strings used
to collect candidate studies, we report improvements in recall up to
5%. The Queries are the query terms (adapted from Yu and Menzies
[2017]) used for scoring the documents using BM25. The Bootstrap
constitution is as indicated. 21

A.1 Hypothetical feature maps after training with Eq. 1 when 3 filters A,B and
C of same region size are used. Note that each activation corresponds to a
set of words. Greater the activation value, greater the attribution value. . . . 29

A.2 Hypothetical feature maps after training with Eq. 1 when 3 filters A,B and
C are used. Note that each activation corresponds to a set of words. 29

B.1 Text classification. 33

v

List of Figures

1.1 Overview of active learning: The process starts with a sample of labeled
and annotated instances. After every training round, N instances are strate-
gically selected from the unlabeled pool and presented to the human oracle
for labeling (and annotating); these are repeated until the budget B (mea-
sured in terms of instances or time) is exhausted. In dual supervision, the
system is constrained by the additional misattribution error – which quanti-
fies the deviation between machine-selected features and user annotations.
In our experiments, we simulate the oracle through code. 2

3.1 CNN Architecture: An input sentence is converted into a sentence matrix,
M , of dimension N × d where N is the number of words and d is the
dimension of word embedding. The activated feature maps (fis) (Eq. 3.1)
are computed by applying 1-D convolution over M using k filters (F is)
of sizes ri × d, where ri, the region size, indicates the number of adja-
cent words jointly considered. The feature vector, vs, is constructed by
applying 1-max-pooling (Eq. 3.2) on each of the activated feature-maps;
the dimensions of vs are therefore equal to k. vs is used as feature-set for
softmax classifier. 6

3.2 RNN Architecture: The input sequence wi of words represented by their
embeddings and the hidden states hi (Eq. 3.3) are computed according
to standard GRU formulation. The attentions αi are derived using the
context vector u (Eq. 3.4) and feature vector vs is computed by taking the
weighted mean of the hidden activations (Eq. 3.5). vs is used as feature-set
for softmax classifier. See Figure 3.3 for more details. 8

3.3 GRU unit: Illustration of Eq. 3.3 as taken from Chung et al. [2014]. IN
corresponds to [h˙i-1:w˙i] and OUT corresponds to h˙i. 8

5.1 Learning Curves for dataset of Pang and Lee [2004]: The accuracy ob-
tained using x annotated and labeled documents are compared with 2x

labeled documents. While the vertical gap between the two curves in-
dicates the gain in accuracy achieved for the same effort, the horizontal
gap indicates the additional effort needed to achieve the same accuracy.
We note that one labeled and annotated document can be worth up to 7
labeled documents in CNNs and up to 5 labeled documents in RNNs. . . . 15

vi

5.2 Learning Curves for Maas et al. [2011]: For this dataset, we bootstrap us-
ing annotated documents borrowed from Pang and Lee [2004] and use just
labeled documents for later iterations. Therefore, we compare accuracy
obtained using x labeled documents and 10 labeled and annotated docu-
ments with accuracy obtained using x+ 20 labeled documents. 17

5.3 Attribution Distribution: The graphs show the distribution of shares (Eq.
4.4) allocated to class-indicating words in predicting the class as the train-
ing progresses. For CNNs trained with as few as 20 labeled and annotated
documents, 50% of the unlabeled documents are assigned a share of at
least 0.5 to the class-indicating words. The same can be observed with
RNNs trained with 40 labeled and annotated documents. 17

6.1 Recall Curves for Hall: The graphs show the percentage of relevant doc-
uments retrieved over 5 review rounds. The bootstrap sample (first 10
documents) is obtained by using defect prediction as the query for BM25
ranking (as suggested by (Yu et al. 2017)). In subsequent rounds, the top
10 most relevant documents in the unlabeled pool, as predicted by the ma-
chine, are shown to the user. The curves corresponding to CNN-A and
RNN-A are obtained by augmenting the machine with keywords extracted
from the title of (Hall et al. 2012): software,defect,prediction,performance
(used defect instead of fault, as fault isn’t present in the bootstrap sample)
as relevant-class indicating terms. Interestingly, the machines with an-
notations retrieve about 5% more relevant documents although there is a
large overlap (syntactic/semantic) between bootstrap query, keywords and
search string ((fault* OR bug* OR defect* OR errors OR corrections OR
corrective OR fix*) in title only AND (Software) anywhere in study) used
for creating the database. The results for other 3 datasets are similar and
are presented in Figure 6.2. 19

6.2 Recall Curves for Kitchenham, Wahono and Radjenovic: The graphs
show the percentage of relevant documents retrieved over 5 review
rounds. The first 10 documents are retrieved using BM25 scoring
based on the query terms (Table 3). In subsequent rounds, the top
10 most relevant documents in the unlabeled pool, as predicted by
the machine, are shown to the user. The curves corresponding to
CNN-A and RNN-A are obtained by training the machine with the
corresponding keywords (see Table 3) as corpus-level annotations.
Interestingly, the machines with annotations retrieve about 5% more
relevant documents although all the documents in the corpus have
at least one of these terms. 22

vii

A.1 RNN (without attentions and softmax) with an example sentence.
The annotated words (shaded) can be interpreted as those words
worth accumulating in the hidden state. The thickened arrows indi-
cate those terms which the machine might remember. 31

viii

Abstract

Dual supervision for text classification and information retrieval, which involves training

the machine with class labels augmented with text annotations that are indicative of the

class, has been shown to provide significant improvements, both in and beyond active learn-

ing (AL) settings. Annotations in the simplest form are highlighted portions of the text that

are indicative of the class. They can range from unranked document-specific phrases to

ranked corpus-level class-indicating terms and are an easy way to better engage users in

training process. In this work, we aim to identify and realize the full potential of unsuper-

vised pre-trained word embeddings for text-related tasks in AL settings by training Neural

Nets – specifically, Convolutional and Recurrent Neural Nets – through dual supervision.

The proposed solution involves the use of gradient-based feature attributions for constrain-

ing the machine to follow the user annotations; further, we discuss methods for overcoming

the architecture-specific challenges in the optimization. Our results on the sentiment clas-

sification task show that one annotated and labeled document can be worth up to 7 labeled

documents, giving accuracies of up to 70% for as few as 10 labeled and annotated docu-

ments, and shows promise in significantly reducing user effort for total-recall information

retrieval task in Systematic Literature Reviews.

ix

Acknowledgements

I am most deeply indebted to my advisor, Dr. Evangelos Milios. Highly supportive and

encouraging since the beginning, he has helped me in every step through my masters pro-

gram. He introduced me to tools like Mindmup and helped me wade through the literature,

finally leading me into the right research topic. I couldn’t have done this research without

his insightful ideas and directions. He even advised me in the course-related projects and

patiently taught me how to prepare presentations! Not only did he teach me how to write

better, but also taught me how to write in LATEX! I thank him for bearing with the countless

messages I sent on Slack/E-Mail and his timely and detailed responses. He has also helped

me in finding an internship and planning the way forward. He has helped me in getting

through a number of hurdles in graduate study. I consider myself blessed to have got an

opportunity to work under the direction of Dr. Evangelos Milios. I am ever grateful to him

for funding and supporting my entire masters program.

I am grateful to my teachers – Dr. Stan Matwin, Dr. Thomas Trappenberg, Dr. Vlado

Kesselj and Dr. Fernando Paulovich – for teaching Machine Learning, Natural Language

Processing and Visual Analytics so well! The ideas gained from these classes have played

a huge role in shaping my thoughts and have indirectly contributed to my thesis.

I would like to thank Dr. Sageev Oore for giving me an opportunity to function as the

Teaching Assistant for the Deep Learning course and the subsequent opportunity to work

under his direction at Vector Institute. I got exposed to a lot of interesting ideas in Deep

Learning and helped in positioning my work.

Finally, I would like to thank my parents for instilling in me the values of higher edu-

cation and supporting me through my ups and downs through daily skype calls. I am also

grateful to my roommates – Mohanish Gunwant, Nikhil Dhirmalani and Rahul Midha – for

bearing with the frustrations and stresses during the process of research. I am thankful to

my friends – Darshan Jagaluru, Bharath Kashyap, Mohit Mayank, Sai Vishwas, Deepak

Mahendrakar, Gautham BA, Aman Achpal, Karthik Radhakrishnan and Debarati – for

keeping in touch and keeping me informed of the ongoings back home and never allowed

me to feel left out.

x

Chapter 1

Introduction

Active Learning (AL) is an iterative learning process wherein the machine cleverly chooses

data points to present to the human to elicit labels which are most helpful in inducing the

best classifier. While the learning usually starts with a completely unlabeled dataset, the

machine starts accumulating data through a sequence of carefully chosen queries. The

goal of the learning algorithm is to induce the best classifier for a given budget – which is

usually defined in terms of the user effort. Usually, the unlabeled pool is much larger than

the labeled pool and algorithms which can make use of large amount of unlabeled data can

benefit the most in the AL setting.

Distributed word representations induced from unlabeled text data, which capture sev-

eral syntactic and semantic relationships between the words, have advanced the state-of-

the-art in several natural language processing tasks such as Text Classification, Question-

Answering, Named-Entity-Recognition. However, Convolutional Neural Networks and

Recurrent Neural Networks which can make the most effective use of these word embed-

dings haven’t been explored much in the Active Learning setting; the main reason is that

the ideal decision boundaries can be found only when constrained with a lot of training

examples. In this work, we propose to better exploit unsupervised embeddings by the use

of user annotations. Although less pronounced, this problem exists in traditional machine

learning with linear decision boundaries as well and has been usually solved by eliciting

user annotations (Zaidan et al. [2007], Melville and Sindhwani [2009], Small et al. [2011],

Sharma et al. [2015]).

Annotations are essentially feature labels which indicate whether or not the feature is

indicative of the class assigned to the containing document. Some examples of annotations

for sentiment classification of movie reviews, as reproduced from Zaidan et al. [2007], are:

• you will enjoy the hell out of American Pie

• fortunately, they managed to do it in an interesting and funny way.

1

2

• he is one of the most exciting martial artists on the big screen, continuing to

perform his own stunts and dazzling audiences with his flashy kicks and punches.

• the romance was enchanting.

How are annotations used? During training, the machine implicitly learns to select

useful features from input and associates patterns in selected features with classes; however,

when not constrained with lot of instances, the machine has a wide variety of choices which

do not necessarily generalize well on unseen instances. The choices the machine makes

and the importance of each of the input dimensions in computing the class assignment are

represented as attribution maps; an overview of gradient-based attribution methods can be

found in Ancona et al. [2018]. Annotations are used to suggest the useful choices.

Figure 1.1: Overview of active learning: The process starts with a sample of labeled and annotated
instances. After every training round, N instances are strategically selected from the unlabeled pool
and presented to the human oracle for labeling (and annotating); these are repeated until the budget B
(measured in terms of instances or time) is exhausted. In dual supervision, the system is constrained
by the additional misattribution error – which quantifies the deviation between machine-selected
features and user annotations. In our experiments, we simulate the oracle through code.

3

In this work, we propose a method for training neural networks by factoring in user

annotations. We define misattribution error as the deviation between machine-selected

features and user annotations; the core of the paper involves defining misattribution error.

Thus, the strategy for factoring in user reviews involves minimizing misattribution error

along with the prediction error as shown in Fig. 1. Note that, we query a batch of data

points per iteration as opposed to one data point per iteration.

We perform our experiments 1 on (i) the sentiment classification task and (ii) total recall

information retrieval (requiring the collection of all relevant documents) in Systematic Lit-

erature Reviews in Software Engineering. We attempt to answer the following questions:

1. How can we factor in annotations in training Convolutional Neural Networks and

Recurrent Neural Networks for the text classification task?

2. What is the return on investing additional time for annotating each instance in addi-

tion to labeling it? Experimentally, the time to annotate an instance has been found to

be at most be equal to the time taken to label the instance itself (Zaidan et al. [2007]).

3. Can the neural nets model user-selection well enough that the extra investment on an-

notation can be minimized? Unlike bag-of-words model, the machine can automat-

ically estimate importance of unseen words and can considerably reduce annotation

costs; further, reducing annotation costs need not use specialized sampling strategies

like the ones in Melville and Sindhwani [2009] and Sharma et al. [2015].

1Code for replicating the experiments: www.github.com/chandramouli-sastry/dual-AL

www.github.com/chandramouli-sastry/dual-AL

Chapter 2

Related Works

We review related works which apply active learning using neural networks and review the

general idea of factoring in annotations.

Active Learning for Text applications using Neural Networks like CNNs or RNNs is

a relatively unexplored area. While we did not come across any work making use of RNNs

for Text Classification, CNNs for Text classification in Active Learning is studied in Zhang

et al. [2017b]. They propose a new sampling strategy that chooses those documents whose

word embeddings are expected to change the most if the true class labels were revealed.

They employ the idea of Expected Gradient Length and report improvements in accuracies

over entropy-based uncertainty sampling. In our work, sampling method is a controlled

variable and improvement in sampling strategies would bring in similar improvements in

both training settings with or without user annotations.

Factoring Annotations in Neural Networks using gradients has been proposed in

Ross et al. [2017]. To the best of our knowledge, we are not aware of any work on fac-

toring annotations in CNNs/RNNs. Although the approach we propose in our work draws

inspirations from the ideas presented in this paper, there are a few weaknesses which make

it inapplicable to Neural Networks with shared weights like CNNs and RNNs; we will

discuss these weaknesses and how we overcome them in Section 4. While they factor

in annotations implicitly, factoring in annotations explicitly using additional architectural

component to model feature selection has been proposed in Zhang et al. [2016]. We note

that this relies on longer annotations (sentences/phrases) and is not targeted to work well

for shorter (words) annotations. Further, we are motivated towards finding a solution which

can be applied to any given architecture requiring no architectural modifications.

Factoring Annotations in traditional models has been well explored – both within

and beyond Active Learning. Annotations to improve SVM performance on movie senti-

ment reviews (Pang and Lee [2004]) are proposed in Zaidan et al. [2007]; they also studied

the time it takes to annotate and report that annotating a document can take as much time

4

5

as that of labeling it. Further, this idea has been extended to Generative models in Zaidan

and Eisner [2008] and Melville et al. [2009]. The idea of ranked feature annotations for

Information Retrieval and Text classification using SVMs has been proposed in Small et al.

[2011]. More recently, novel query strategies and a unified method for training SVMs,

Logistic Regression and Naive Bayes augmented with annotations in an AL Setting are

proposed in Sharma et al. [2015]; the idea is to modify the training instance by scaling

down the irrelevant features. While this idea did not give us any improvements in CNNs

or RNNs, adding a new instance with just relevant features helps in CNNs (when there

are more training instances) and we show that it is a special case of what we propose (See

Appendix A). Unfortunately, even this strategy did not work well for RNNs.

Posterior Regularization in machine translation (Zhang et al. [2017a]) shows how a

variety of prior knowledge can be factored into the training of the LSTM as differentiable

constraints. The annotations in our work correspond to the prior knowledge represented

in phrase table and bilingual dictionary. In order to express these constraints, they make

use of the learnt attentions; we would like to point out that attentions are not always ex-

plicitly modeled by an architectural component and needs to be derived using attribution

techniques. Further, when we trained the RNN-architecture with constraints only on the

learnt attention, the improvement was not significant.

Chapter 3

CNN and RNN Architectures

In this section, we will describe the architectures we used. As the goal of the paper is

to study how annotations can be factored in, we use standard values without any hyper-

parameter tuning.

3.1 CNN for Text Classification

We will use the CNN architecture proposed in Kim [2014] and investigated in detail by

Zhang and Wallace [2015]. A simplified architecture is shown in Figure 3.1 (adapted from

(Zhang and Wallace [2015] and Kim [2014])).

Figure 3.1: CNN Architecture: An input sentence is converted into a sentence matrix, M , of
dimension N × d where N is the number of words and d is the dimension of word embedding. The
activated feature maps (fis) (Eq. 3.1) are computed by applying 1-D convolution over M using k
filters (F is) of sizes ri×d, where ri, the region size, indicates the number of adjacent words jointly
considered. The feature vector, vs, is constructed by applying 1-max-pooling (Eq. 3.2) on each of
the activated feature-maps; the dimensions of vs are therefore equal to k. vs is used as feature-set
for softmax classifier.

Let us denote the ith filter by F i and its region size, the number of adjacent words

jointly considered, by ri. A filter bank of k filters will yield k activated feature maps; if we

6

7

denote the ith feature map as fi , the jth activation (given 0 ≤ j ≤ N − ri+1) is given by :

fij = σ

(
p=ri∑
p=0

q=d∑
q=0

Mp+j,q × F i
p,q

)
(3.1)

The ith element of vs is obtained by applying 1-max pooling over fi:

vsi = max
0≤j≤N−ri+1

fij (3.2)

We used 50 filters each of sizes 3,4 and 5 as suggested in Zhang et al. [2017b] and

Zhang and Wallace [2015]; the weights of the filters and their biases and the weights and

biases of the softmax are trainable parameters. However, we trained the machine with static

embeddings as suggested by Zhang and Wallace [2015] (unlike Zhang et al. [2017b]). We

applied dropout regularization to the penultimate layer (vs) with dropout probability of 0.3.

Dropout with probability 0.3 means that we expect 30% of the 150 dimensions to be set to

zero.

3.2 RNN for Text Classification

We use an adaptation of the Hierarchical Attention Network Yang et al. [2016] for text clas-

sification; specifically, we use single GRU (Gated Recurrent Units) instead of bidirectional

GRU and we ignore the hierarchy and consider the document as one long sentence. The

architecture is shown in Fig. 3.2.

Let Nh be the number of hidden units, d be the number of dimensions in the embedding

and wi be the embedding representing the ith word. The trainable parameters are repre-

sented by W∗ and U∗. The hidden states hi are derived using standard GRU formulation

(The operator ⊙ denotes element-wise multiplication and [A:B] denotes the concatenation

of vectors A and B):

hi = (1− zi)⊙ hi−1 + zi ⊙ h̃i (3.3)

where, zi = σ(W
Nh×(Nh+d)
z [wi : hi−1] + bz)

ri = σ(W
Nh×(Nh+d)
r [wi : hi−1] + br)

h̃i = f(WNh×d
h wi + ri ⊙ (UNh×Nh

h hi−1) + bh)

where f is a non-linearity like tanh. The reset gate ri and the forget gate zi control the

weighting between older information and newer information.

8

Figure 3.2: RNN Architecture: The input sequence wi of words represented by their embeddings
and the hidden states hi (Eq. 3.3) are computed according to standard GRU formulation. The
attentions αi are derived using the context vector u (Eq. 3.4) and feature vector vs is computed by
taking the weighted mean of the hidden activations (Eq. 3.5). vs is used as feature-set for softmax
classifier. See Figure 3.3 for more details.

Figure 3.3: GRU unit: Illustration of Eq. 3.3 as taken from Chung et al. [2014]. IN corresponds to
[h˙i-1:w˙i] and OUT corresponds to h˙i.

9

The attentions αi are derived using context vector u Bahdanau et al. [2014] as :

αi =
exp(uT

i u)∑
j exp(u

T
j u)

(3.4)

where ui = tanh(WAhi + bA). The feature vector vs is later obtained as:

vs =
∑
i

αihi (3.5)

The trainable parameters include the various weights and biases used for computing hi

along with the attention parameters (WA and bA) and the context vector u. We used hidden

units of size 100 and context vector of size 50. We found that the RNNs needed more reg-

ularization than CNNs and used all of the following: variational dropout between recurrent

states (Gal and Ghahramani [2016]), input embedding dropout, activity regularization of

recurrent states (Merity et al. [2017]) and L2 regularization.

3.3 Softmax

Once the feature vector vs is obtained, we feed it through the softmax classifier parameter-

ized by weight Ws and bs and obtain the logits as:

l = Wsvs + bs (3.6)

We denote the logit of the expected class c as lc. The probability of the document

belonging to class i is then obtained by applying softmax over l:

pi =
exp(li)∑
j exp(lj)

(3.7)

Chapter 4

Dual Supervision in NNs

The strategy that we adopt to factor in the user annotations is to first devise a method for

computing misattribution error – the deviation between user suggested features (through

annotations) and machine-chosen features and then minimize it. Annotations can be clas-

sified based on different criteria. For example, they can be classified into binary or real

(with higher numbers indicating greater class-association) depending on whether they are

unranked or ranked respectively. They can also be classified into instance-level or class-

level depending on whether annotations are elicited per instance or per-class. Generically,

AU
i refers to weight assigned to ith word by the user; while this can be binary or real,

we assume it to be binary for the purposes of this discussion. In this work, we consider

unranked annotations at both instance-level (Text Classification) and class-level (Informa-

tion Retrieval). The same idea can be extended to ranked annotations: for example, one

straightforward way would be to allocate a higher share (explained below) to higher class-

indicating phrases.

4.1 Attributions and Misattribution error

A very straightforward method for computing attributions is given by computing the partial

derivative of the output with respect to the input and multiplying it with the input itself

(Shrikumar et al. [2016]). Thus, aij , the attribution score of the jth dimension of wi, the ith

word vector can be given as:

aij = wij
∂F (V0,V1...Vn)

∂Vij

⏐⏐⏐⏐
V0=w0,V1=w1...Vn=wn

(4.1)

F is a function of n vectors and represents the CNN/RNN. Vi is the placeholder (argument)

for the ith word vector. Best results are obtained when F is set to yield:

• lc, the logit of the expected class, OR

10

11

•
∑

vs, the sum of the learnt dimensions of the feature vector in the penultimate layer.

The sum is needed to capture the overall impact of Vij .

The attribution score of the ith word can then be obtained by simply summing across

all the dimensions:

Ai =
∑
j

aij (4.2)

It is usually interpreted as the first-order Taylor approximation of the change in outputs

if all components of ith word are set to 0. In the context of word vectors, we interpret

the attribution of a given word in an input as the quantification of inclination between the

word embedding vector and the gradient vector, which happens to be normal to the decision

boundary, given that the other words are in the exact same order. It can be expressed as a

dot product as shown:

Ai = wi ·
∂F (V0,V1...Vn)

∂Vi

⏐⏐⏐⏐
V0=w0,V1=w1...Vn=wn

(4.3)

Observe that the values of Ai are real-valued and can be positive or negative; positive

values indicate that the word is in favor of the output and negative values indicate the

opposite. What we are really interested in are the relative magnitudes and not their real

magnitudes. We use the intuition that the attributions measure the inclination between the

word embedding and normals (gradient vector) in computing the normalized attributions

using softmax as:

Ãi =
expAi∑
j expAj

(4.4)

Ãi can be interpreted as the share of the ith word in determining the class. One simple

way of defining the misattribution error, µ, is by allocating a certain share, ρ, to the user-

suggested features:

µ(AU , Ã, ρ) =

(∑
i

AU
i Ãi − ρ

)2

(4.5)

We use softmax for normalizing as opposed to other possible techniques as we found that

encouraging the inclinations between normals and non-annotated words to be as large as

possible (Ai < 0) gives superior performance; however, the degrees of freedom of the

machine in allowing smaller inclinations to unannotated words is inversely proportional to

the value of ρ. Since there are no constraints on the value of Ãi, the machine has complete

12

flexibility in choosing number of words - it might choose very few or most of the words.

Therefore, we can add additional constraints limiting the maximum or minimum share

it has to allocate to each of the words. Because limiting the minimum would make the

machine less robust to longer annotations, we choose to limit the maximum (ReLU(x) =

max(0, x)):

µ(AU , Ã, ρ, τ) =

(∑
i

AU
i Ãi − ρ

)2

+
∑
i

ReLU(Ãi − τ) (4.6)

Summarily, we introduce two hyperparameters (ρ and τ) and the total error that needs to

be minimized can be written as:

Error = PredictionError + µ (4.7)

The greater the value of ρ, the greater the share allocated to user annotations. The lower the

value of τ , the greater the number of features it chooses from the user annotations. How-

ever, higher τ values correspond to greater flexibility in choosing the number of features.

In this study, we compute the attributions Ãi by either considering the F (Eq. 4.1)

to yield output logit of the expected class or the features fed into the softmax layer. We

distinguish these by µc and µf respectively. Note that the attribution values for different

classes are different when µc is considered and are the same when µf is considered.

While this is a simple strategy, we encountered architecture-specific challenges in train-

ing CNNs and RNNs with constraints (Eq. 4.6) on attributions. Specifically: in CNNs,

the gradients with respect to the input words not selected in 1-max-pooling are zero and

are not informative making the optimization hard; in RNNs, the gradients received by the

non-attended words are small and affects optimization. The exact adaptations of the misat-

tribution error for the architectures are given in the Appendix A.

4.2 Comparison with Previous work

Constraining the neural net by minimizing the absolute value of the gradients with respect

to input has been shown in Ross et al. [2017]. The misattribution error defined therein can

be adapted to this problem as (with some notational abuse):

µ = λ
∑
i

(1− AU
i)

(∑
j

(
∂F

∂Vij

)2
)

(4.8)

13

They report qualitative experiments showing that constraining the model explanations

works well. Unfortunately, when we applied it to the Convolutional and Recurrent Neural

Networks, we got results which were very comparable to the results of the machine without

annotations and sometimes worse. The reason for this behavior is that, in machines with

shared weights, the derivative of the output with respect to the input is primarily a function

of the weights and has much less or no dependence (when activation functions like ReLU,

which have 0 second derivative are used) on the input and functions as a regularizer.

The authors set the value of λ = 1000; we note that the magnitudes of the derivatives

get smaller with depth and using higher λ values are imperative. Unfortunately, as the same

λ value is also used for weighting the importance between prediction error and misattribu-

tion and setting it is non-intuitive as the same knob controls 2 behaviors. We overcome the

dependence on large λ values by optimizing based on the relative magnitudes. Further, our

strategy has at least 2 more advantages: allows derivatives with respect to unannotated fea-

tures to be negative as well; it allows for specifying the allocation of shares to the annotated

features.

Chapter 5

Experiments – Text classification

In this chapter, we attempt to answer the following questions in the context of text clas-

sifications: What is the return on investing additional time in annotating? Do we need to

annotate all the examples? How does our method compare with earlier benchmarks? How

well does the machine generalize in identifying useful class-indicating features?

We conduct experiments on text classification using:

• Pang and Lee [2004] dataset consists of 1000 documents each of positive and nega-

tive classes. 1800 of those (900 positive and 900 negative) are annotated by Zaidan

et al. [2007]. We use 10-fold stratified cross-validation such that 9 partitions are used

as part of the training pool and the remaining partition (containing 180 documents)

and the 200 unannotated documents are used as held-out test data.

• Maas et al. [2011] dataset consists of 25k documents each in train and test split,

equally divided amongst the positive and negative classes. As the test data is large

enough, we do not perform cross-validation.

As the data points are balanced, we will use accuracy as the evaluation metric. The experi-

mental setup of Active Learning is as follows:

• Bootstrap phase: The CNNs (RNNs) with and without dual supervision are both

given the same bootstrap sample consisting of 5 positive and 5 negative samples;

care is taken to ensure that the bootstrap samples, training and testing partitions are

identical.

• Iterative phase: Until the budget is exhausted, each of the machines is allowed

to choose 10 documents, which it is most uncertain about, to elicit labels and/or

annotations using entropy-based uncertainty sampling quantified as (P (Y = c|x) is

the predicted probability that the instance x belongs to class c):

Unc(x) = −
∑
c∈C

P (Y = c|x) log(P (Y = c|x)) (5.1)

14

15

where C is the list of all classes.

0 100 200 300 400 500
50

60

70

80

Labeling Effort [Number of documents]

A
cc

ur
ac

y

Pang and Lee [2004]

CNN
CNN-A

0 50 100 150 200

60

70

80

Labeling Effort [Number of documents]

A
cc

ur
ac

y

Pang and Lee [2004]

RNN
RNN-A

Figure 5.1: Learning Curves for dataset of Pang and Lee [2004]: The accuracy obtained using x
annotated and labeled documents are compared with 2x labeled documents. While the vertical gap
between the two curves indicates the gain in accuracy achieved for the same effort, the horizontal
gap indicates the additional effort needed to achieve the same accuracy. We note that one labeled
and annotated document can be worth up to 7 labeled documents in CNNs and up to 5 labeled
documents in RNNs.

Every time the training data is updated, a new machine is instantiated and trained. The

whole process is repeated 5 times with different seeds for computing partitions to accom-

modate for variance – in all, the accuracies are computed over 50 training sessions. For this

task, we set the total share of user-suggested words, ρ, to 0.9 and the maximum share that

can be allocated to a word, τ , to 0.8 (Refer to Appendix A.3 for a note on the hyperparame-

ters). We used pre-trained Google News Word Vectors1 for text-classification experiments.

We aim to answer the following questions:

• What is the return on investing additional time in annotating the instances?

In order to answer this, we will compare the accuracies of the machines with and

without annotations for the same amount of time spent on labeling (Fig. 5.1). We

can see that the CNN (RNN) augmented with annotations clearly outperforms CNN

(RNN) with just labels even though the number of instances is double. The most

interesting observation is that for as few as 10 labeled and annotated documents,

1https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

16

CNN achieves an accuracy of about 70% and without annotations, up to 150 labeled

instances are required to match the accuracy! Similar observations hold true for RNN

as well.

• Do we need to annotate all the examples? While the answer to this question might

depend on the task in question, we seek to answer in the context of sentiment clas-

sification. In order to answer this, we design our experiments on Maas et al. [2011]

dataset such that the dual supervised machine is bootstrapped using 10 randomly

chosen annotated examples (5 from each class) from Pang and Lee [2004] dataset;

in later rounds, only labeled examples (chosen from Maas et al. [2011]) are added to

the training pool. The learning curve is shown in Fig. 5.2: we find that the machine

can make good use of annotations even if a few of the documents are annotated.

• How well does the machine generalize in identifying useful class-indicating fea-

tures? Assuming user annotations exhaustively indicate all class-indicating sen-

tences/phrases, we investigate how well and how fast the machine (augmented with

annotations) can mimic user annotations on unlabeled documents. For each of the

documents not used for training, we compute the share assigned to user annotations,

given by
∑

i A
U
i Ãi, and examine the distribution of the assigned shares as the train-

ing progresses. Specifically: for CNNs, we compute Ãi using gradients as described;

for RNNs, we use the attentions by setting Ãi = αi. The results are shown in Fig

5.3. We observe that the machine can identify useful features quite well in the initial

iterations of training process itself and can potentially help in conserving user effort.

For example, the user can be shown the features that are selected by the machine and

if they are good enough he can choose to just assign the class label.

• How does this compare with earlier benchmarks? Given that the Zaidan et al.

[2007] dataset is quite popular and used in all the papers which aim to factor in

annotations, we did not come across any paper which reported an accuracy of about

70% for just 10 documents. In order to quantitatively compare, we consider the

relatively recent paper, Sharma et al. [2015], to be representative of the performances

of the earlier benchmarks. As they report experiments on Maas et al. [2011] using

a feature-expert, we executed their algorithm by bootstrapping using the annotated

documents from the Pang and Lee [2004]. We find that this method was able to

17

achieve only about 55% for 10 labeled documents. Please refer to Appendix B for

more results on standard text classification datasets.

10 20 30 40 50

50

55

60

65

70

75

Labeling Effort [Number of documents]

A
cc

ur
ac

y

Maas et al. [2011]

CNN
CNN-A

10 20 30 40 50

55

60

65

70

Labeling Effort [Number of documents]
A

cc
ur

ac
y

Maas et al. [2011]

RNN
RNN-A

Figure 5.2: Learning Curves for Maas et al. [2011]: For this dataset, we bootstrap using annotated
documents borrowed from Pang and Lee [2004] and use just labeled documents for later iterations.
Therefore, we compare accuracy obtained using x labeled documents and 10 labeled and annotated
documents with accuracy obtained using x+ 20 labeled documents.

Figure 5.3: Attribution Distribution: The graphs show the distribution of shares (Eq. 4.4) allocated
to class-indicating words in predicting the class as the training progresses. For CNNs trained with as
few as 20 labeled and annotated documents, 50% of the unlabeled documents are assigned a share
of at least 0.5 to the class-indicating words. The same can be observed with RNNs trained with 40
labeled and annotated documents.

Chapter 6

Experiments – Information Retrieval

In this section, we consider the task of primary study selection, requiring total recall infor-

mation retrieval, in Systematic Literature Review (SLR). The initial steps of SLR involve

defining a research question, extracting keywords, creating search strings and creating a

database of all possible candidate studies from various data sources; this is followed by pri-

mary study selection which involves collecting all the relevant documents from the database

and is one of the most time consuming processes requiring the review of thousands of doc-

uments to select a few dozen relevant documents.

In this work, we investigate how annotations can help in this task by applying it on

4 Software Engineering-based SLR datasets1 corresponding to 4 SLRs as shown in Table

6.1, published and extensively studied by Yu et al. [2016]. The curated database essentially

consists of the abstracts along with the relevance (class) label: 1 if they are included in the

SLR, 0 otherwise. While the curated database along with relevance labels for Kitchenham

and Brereton [2013] is reported to be shared by Dr. Kitchenham herself, the databases

for the other 3 SLRs are reported to be constructed from IEEE xplore using search strings

described in the corresponding papers and those studies which were included in the SLR are

marked relevant. The experiment setup is as follows (adopted from Cormack and Grossman

[2014] and Yu and Menzies [2017]):

1. The bootstrapping is done by selecting the top N = 10 documents according to

BM25 score. This is repeated until at least one relevant and irrelevant documents are

collected; fortunately, one bootstrap round was sufficient for all datasets. The details

of the BM25 queries used for bootstrapping and number of relevant documents in

bootstrap sample are given in the supplementary material.

2. The classifier is induced from the obtained labels (and annotations, if available). The

reviewer is then presented with the top N = 10 most relevant documents (certainty

sampling), as predicted by the classifier, for eliciting labels.
1Available at https://zenodo.org/record/1162952#.W3aQFNgzbRY

18

https://zenodo.org/record/1162952#.W3aQFNgzbRY

19

3. The reviewer labels the presented documents and repeats until budget B = 50 re-

views is exhausted.

Unfortunately, as the dataset does not contain annotations, we just used the keywords

present in the title of the corresponding published SLR as corpus-level positive-class-

indicating annotations. In other words, we ask the machine to allocate a total share of

ρ to the key-words present in documents labeled as relevant; for the irrelevant documents,

however, we let the machine decide as we do not have any external knowledge. Although,

these key-words significantly overlap (syntactically and semantically) with the search string

(see Table 6.2) used to construct the database, the intuition is that the machine will figure

out when these terms are relevant and when they aren’t. Further, the BM25 bootstrap query

is a subset of the key-words, which means that all documents in the bootstrap sample will

contain a few of the keywords.

10 20 30 40 50
5

10

15

20

22.85%

18.05%

Number of Reviews

R
ec

al
l

CNN
CNN-A

10 20 30 40 50

10

15

20 19.56%

14.49%

Number of reviews

R
ec

al
l

RNN
RNN-A

Figure 6.1: Recall Curves for Hall: The graphs show the percentage of relevant documents re-
trieved over 5 review rounds. The bootstrap sample (first 10 documents) is obtained by using defect
prediction as the query for BM25 ranking (as suggested by (Yu et al. 2017)). In subsequent rounds,
the top 10 most relevant documents in the unlabeled pool, as predicted by the machine, are shown to
the user. The curves corresponding to CNN-A and RNN-A are obtained by augmenting the machine
with keywords extracted from the title of (Hall et al. 2012): software,defect,prediction,performance
(used defect instead of fault, as fault isn’t present in the bootstrap sample) as relevant-class indicat-
ing terms. Interestingly, the machines with annotations retrieve about 5% more relevant documents
although there is a large overlap (syntactic/semantic) between bootstrap query, keywords and search
string ((fault* OR bug* OR defect* OR errors OR corrections OR corrective OR fix*) in title only
AND (Software) anywhere in study) used for creating the database. The results for other 3 datasets
are similar and are presented in Figure 6.2.

As these terms are not completely indicative of the class, we set the share ρ = 0.5 to

20

Paper #Documents Relevant Docs
Hall et al. [2012] 8911 102 (1.15%)
Wahono [2015] 7002 62(0.9%)
Radjenović et al. [2013] 6000 48(0.8%)
Kitchenham and Brereton
[2013]

1704 45(2.6%)

Table 6.1: Dataset Overview: Approximately only 1-2 % of the documents are relevant.

these terms and set threshold τ = 0.4; although, we did not formally examine the perfor-

mance for all values of ρ and τ as we got reasonable performance, we note that ρ = 0.9

gave poorer results than without annotations. We used the collection of all 4 datasets along

with about 20k articles, published in software engineering related conferences, extracted

from IEEE Xplore for inducing the domain specific word2vec-based word embeddings.

The experiments are repeated 30 times to account for variance and we use the percentage

of relevant documents retrieved during the review process as the evaluation metric. Surpris-

ingly, we find that even these annotations are able to help retrieve about 5% more relevant

documents (and up to 10% more for Kitchenham) than the machine not augmented with

annotations (Figure 6.1). Further, through informal experiments, we find that the irrelevant

documents (not included in the SLR) returned by the machine augmented with annotations

are qualitatively more relevant than the ones retrieved by the machine not augmented with

annotations.

Although we did not perform hyperparameter optimization, we do not expect the Neural

Nets augmented with these simple annotations to significantly outperform existing state-of-

the-art approaches with SVMs (Yu et al. [2016]). The results obtained in the text classi-

fication task and the improvements stemming from the use of simple annotations provide

some evidence that there is potential in exploiting unsupervised pre-trained embeddings for

the task of primary study selection, which is also a kind of text classification, by the use of

more useful corpus-level or document specific annotations. Although most of the keywords

exist in all of the bootstrap instances and are not truly indicative of the relevant-class, the

neural net can still make use of the annotations by taking into account the context and word

order in determining when the keywords are indicative of the class.

21

Hall Query: defect prediction
Bootstrap: 7 Relevant + 3 Irrelevant
Keywords: software, defect, prediction, performance
Search String: (fault* OR bug* OR defect* OR errors OR corrections

OR corrective OR fix*) in title only AND (Software)
anywhere in study

Wahono Query: defect prediction
Bootstrap: 6 Relevant+4 Irrelevant
Keywords: software, defect, prediction, dataset, framework
Search String: (software OR applicati* OR systems) AND (fault* OR

defect* OR quality OR error-prone) AND (predict* OR
prone* OR probability OR assess* OR detect* OR
estimat* OR classificat*)

Radjenovic Query: defect prediction metrics
Bootstrap: 4 Relevant+6 Irrelevant
Keywords: software, defect, prediction, metrics
Search String: software AND (metric* OR measurement*) AND (fault*

OR defect* OR quality OR error-prone) AND (predict*
OR prone* OR probability OR assess* OR detect* OR
estimat* OR classificat*)

Kitchenham Query: systematic literature review
Bootstrap: 2 Relevant+8 Irrelevant
Keywords: systematic, literature, review
Search String: any paper doing literature review and published in

selected Software Engineering avenues

Table 6.2: Although the query is a subset of the keywords in all of the datasets and the
keywords significantly overlap with the search strings used to collect candidate studies,
we report improvements in recall up to 5%. The Queries are the query terms (adapted
from Yu and Menzies [2017]) used for scoring the documents using BM25. The Bootstrap
constitution is as indicated.

22

10 20 30 40 50

5

10

15

20

25

30
27.78%

16.66%

Number of Reviews

R
ec

al
l

Kitchenham and Brereton [2013]

CNN
CNN-A

10 20 30 40 50

5

10

15

20 19.56%

14.49%

Number of reviews

R
ec

al
l

Kitchenham and Brereton [2013]

RNN
RNN-A

10 20 30 40 50

10

15

20

22.58%

17.74%

Number of Reviews

R
ec

al
l

Wahono [2015]

CNN
CNN-A

10 20 30 40 50

10

12

14

16

18

20
20.35%

13.92%

Number of reviews

R
ec

al
l

Wahono [2015]

RNN
RNN-A

10 20 30 40 50

10

15

20

25 25.0%

20.83%

Number of Reviews

R
ec

al
l

Radjenović et al. [2013]

CNN
CNN-A

10 20 30 40 50

8

10

12

14

16

18

20 19.04%

13.95%

Number of reviews

R
ec

al
l

Radjenović et al. [2013]

RNN
RNN-A

Figure 6.2: Recall Curves for Kitchenham, Wahono and Radjenovic: The graphs show the
percentage of relevant documents retrieved over 5 review rounds. The first 10 documents
are retrieved using BM25 scoring based on the query terms (Table 3). In subsequent rounds,
the top 10 most relevant documents in the unlabeled pool, as predicted by the machine,
are shown to the user. The curves corresponding to CNN-A and RNN-A are obtained
by training the machine with the corresponding keywords (see Table 3) as corpus-level
annotations. Interestingly, the machines with annotations retrieve about 5% more relevant
documents although all the documents in the corpus have at least one of these terms.

Chapter 7

Discussion and Future Work

In this work, we demonstrated how annotations and gradient based attributions can be

used for better exploiting unsupervisedly learnt word embeddings in text classification and

information retrieval. Further, we demonstrated the performance in three different kinds

of application scenarios: 1) all documents fully annotated, 2) only some documents fully

annotated and 3) some documents partly annotated.

Deep Embeddings While word embeddings support inductive transfer at just the model’s

first layer, inductive transfer across weights of the model, as demonstrated in ULMFiT(Howard

and Ruder [2018]), have not only achieved better state-of-the-art accuracies, but also have

demonstrated good performance on low-shot accuracies; specifically, for the Maas et al.

[2011] dataset, they state that 10x more documents are needed to match accuracies of 100

labeled documents trained on pre-trained language model. It would be useful to check how

annotations work in conjunction with transfer-learning models. The drawback of ULMFiT,

however, is that it seems to be designed for RNNs only.

Few-shot Learning Few-shot text classification aims to induce a classifier from a train-

ing dataset that consists of fewer examples per class. In the area of few-shot text clas-

sification, transfer-learning from a number of related tasks has been shown to be useful

(Yu et al. [2018]). For example, they transfer knowledge learnt on sentiment classification

of reviews of 57 varieties of products to sentiment classification of book reviews. In our

work, we exploit annotations for transferring knowledge directly from the user onto the

system and demonstrate significant improvements. It would be interesting to examine how

annotations can be combined with transfer-learning to improve performance on few-shot

text classification. Empirically, we examined how user-annotations could be used for 10-

way 1-shot classification on the Yahoo Answers dataset. For this experiment, we randomly

chose one document from each class and manually annotated the document. We found that

using annotations, even without any transfer learning, can boost the accuracy from around

23

24

15% to about 31%!

Other Possible Future Directions For Information Retrieval, we observed that the re-

trieved documents under dual-supervised settings are qualitatively more relevant than the

ones trained without dual-supervision. It would be nice to investigate the qualitative and

quantitative benefits when information retrieval is done with dual supervision. While the

above directions consider the text classification or information retrieval task, a more inter-

esting research direction is to explore how additional user knowledge can help in more chal-

lenging tasks like Question-Answering systems, Text Translation and Image-captioning.

Further, the additional knowledge need not always come from the user; it can even be done

in an unsupervised manner.

Conclusion In this work, we show how we can factor in user annotations, in the form

of highlighted phrases indicative of the class, using gradient-based attributions for training

CNNs and RNNs. Our findings indicate that the pre-trained embeddings induced in an un-

supervised manner can be best exploited when coupled with annotations. We find that this

arrangement can help us achieve accuracies of up to 70% for as few as 10 labeled and an-

notated instances; something not heard of previously. More importantly, we achieve these

results with the commonly used entropy-based query strategy. In information retrieval, we

find that using just a few keywords as annotations can help us retrieve more relevant doc-

uments not only quantitatively but also qualitatively. As this is a specialized application

of text classification, we believe similar improvements can be obtained by exploiting pre-

trained embeddings better by the use of more useful annotations. We intend to investigate

the quantitative and qualitative benefits in our own future work.

Bibliography

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and Markus Gross. Towards better under-
standing of gradient-based attribution methods for deep neural networks. In 6th Interna-
tional Conference on Learning Representations (ICLR 2018), 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical eval-
uation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555,
2014. URL http://arxiv.org/abs/1412.3555.

Gordon V Cormack and Maura R Grossman. Evaluation of machine-learning protocols
for technology-assisted review in electronic discovery. In Proceedings of the 37th inter-
national ACM SIGIR conference on Research & development in information retrieval,
pages 153–162. ACM, 2014.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. In Advances in neural information processing systems, pages
1019–1027, 2016.

Isabelle Guyon, Gavin Cawley, Gideon Dror, and Vincent Lemaire. Results of the active
learning challenge. In Active Learning and Experimental Design workshop In conjunc-
tion with AISTATS 2010, pages 19–45, 2011.

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A systematic
literature review on fault prediction performance in software engineering. IEEE Trans-
actions on Software Engineering, 38(6):1276–1304, 2012.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classi-
fication. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 328–339, 2018.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Barbara Kitchenham and Pearl Brereton. A systematic review of systematic review process
research in software engineering. Information and software technology, 55(12):2049–
2075, 2013.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association

25

http://arxiv.org/abs/1412.3555

26

for Computational Linguistics. URL http://www.aclweb.org/anthology/
P11-1015.

Prem Melville and Vikas Sindhwani. Active dual supervision: Reducing the cost of an-
notating examples and features. In Proceedings of the NAACL HLT 2009 Workshop on
Active Learning for Natural Language Processing, pages 49–57. Association for Com-
putational Linguistics, 2009.

Prem Melville, Wojciech Gryc, and Richard D Lawrence. Sentiment analysis of blogs
by combining lexical knowledge with text classification. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
1275–1284. ACM, 2009.

Stephen Merity, Bryan McCann, and Richard Socher. Revisiting activation regularization
for language rnns. arXiv preprint arXiv:1708.01009, 2017.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of the 42nd annual meeting
on Association for Computational Linguistics, page 271. Association for Computational
Linguistics, 2004.

Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software fault
prediction metrics: A systematic literature review. Information and Software Technology,
55(8):1397–1418, 2013.

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right rea-
sons: Training differentiable models by constraining their explanations. arXiv preprint
arXiv:1703.03717, 2017.

Manali Sharma, Di Zhuang, and Mustafa Bilgic. Active learning with rationales for text
classification. In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages
441–451, 2015.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just
a black box: Learning important features through propagating activation differences.
CoRR, abs/1605.01713, 2016. URL http://arxiv.org/abs/1605.01713.

Kevin Small, Byron C Wallace, Carla E Brodley, and Thomas A Trikalinos. The con-
strained weight space svm: learning with ranked features. In Proceedings of the 28th
International Conference on International Conference on Machine Learning, pages 865–
872. Omnipress, 2011.

Romi Satria Wahono. A systematic literature review of software defect prediction: research
trends, datasets, methods and frameworks. Journal of Software Engineering, 1(1):1–16,
2015.

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1605.01713

27

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hi-
erarchical attention networks for document classification. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1480–1489, 2016.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald Tesauro,
Haoyu Wang, and Bowen Zhou. Diverse few-shot text classification with multiple met-
rics. arXiv preprint arXiv:1805.07513, 2018.

Zhe Yu and Tim Menzies. Fast2: an intelligent assistant for finding relevant papers. CoRR,
abs/1705.05420, 2017. URL http://arxiv.org/abs/1705.05420.

Zhe Yu, Nicholas A Kraft, and Tim Menzies. Finding better active learners for faster
literature reviews. arXiv preprint arXiv:1612.03224, 2016.

Omar Zaidan, Jason Eisner, and Christine Piatko. Using annotator rationales to improve
machine learning for text categorization. In Human Language Technologies 2007: The
Conference of the North American Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages 260–267, 2007.

Omar F Zaidan and Jason Eisner. Modeling annotators: A generative approach to learning
from annotator rationales. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 31–40. Association for Computational Linguistics,
2008.

Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu, and Maosong Sun. Prior knowledge
integration for neural machine translation using posterior regularization. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1514–1523, 2017a.

Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820,
2015.

Ye Zhang, Iain Marshall, and Byron C Wallace. Rationale-augmented convolutional neural
networks for text classification. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing. Conference on Empirical Methods in Natural Lan-
guage Processing, volume 2016, page 795. NIH Public Access, 2016.

Ye Zhang, Matthew Lease, and Byron C Wallace. Active discriminative text representation
learning. In AAAI, pages 3386–3392, 2017b.

http://arxiv.org/abs/1705.05420

Appendix A

Architecture-specific adaptations of Misattribution Error

A.1 CNNs

In the CNN architecture considered, the misattribution error is hard to optimize because the

gradients through the 1-max-pooling will contain zeros and will not be informative enough.

Essentially, the machine should first suppress values from non-useful features and then wait

around till the right values are chosen by the machine. This increases train time. Further,

another challenge is that if the machine does end up selecting most of the user-suggested

features, the zero gradients to the non-user-suggested features does not really guarantee that

the activation values of the non-user-suggested features are sufficiently suppressed. This

makes the optimization hard.

Let’s call the given CNN network defined in the main paper as N . We propose comput-

ing the attributions for the misattribution error by considering a proxy network P instan-

tiated with the exact same weights as N but with 1-max pooling replaced with sum; i.e,

the sentence features are computed by summing across all of the feature maps instead of

computing max. This enables the machine to adjust attributions of all words, in parallel.

Let ÃP be the attributions computed using the network P .

MisattributionError = µc(A
U , ÃP) (A.1)

However, there is one problem with this approach: the machine gets the same reward

irrespective of whether it chooses to minimize the objective function by using several filters

or just a few filters. In order to better demonstrate, consider the hypothetical feature maps

shown in Table A.1 and A.2; the shaded columns correspond to the activation values from

the user-suggested features. Observe that both of them satisfy the objective function in Eq

A.1, although, the misattribution error for the true network N would be truly minimized if

the feature maps looked like Table 2. Another side-effect if the machine chose to behave

like the one showed in Table 1 is that the machine ends up under-utilizing the number of

28

29

filters and reduces the capacity. Note that this is just one of the many possible ways to not

result in desired attribution distribution.

1 2 3 4 5
A 0.5 2.5 2.75 0.01 0.2
B 0.5 0.01 -1.00 0.05 0.8
C 0.01 0.03 -0.2 0.05 0.01

Table A.1: Hypothetical feature maps after training with Eq. 1 when 3 filters A,B and C of same
region size are used. Note that each activation corresponds to a set of words. Greater the activation
value, greater the attribution value.

1 2 3 4 5
A 0.5 2.5 1.2 0.01 0.2
B 0.5 0.01 2.75 0.05 0.8
C 0.01 0.03 -0.2 0.05 0.01

Table A.2: Hypothetical feature maps after training with Eq. 1 when 3 filters A,B and C are used.
Note that each activation corresponds to a set of words.

The fix to this problem would be to introduce an additional term in the objective func-

tion encouraging the machine to optimize Eq A.1 by using features across different filters

instead of features across the same filter. Note that we are primarily concerned in maxi-

mizing the number of filters which select user-suggested features when 1-max pooling is

applied. Let us first consider the non-zero attributions to the user-suggested features from

each of the filters such that each filter is allowed to transfer information from only one set

of input words; these can be extracted greedily by applying 1-max-pooling only to activa-

tions corresponding to user-suggested features (Ex: along A3, B2 and C2 for feature maps

in Table 1). It is easy to see that pushing these attribution scores higher would encourage

the proxy network P to use features across many filters. Let AB,c
i be the attribution as-

signed to ith user-suggested feature along the best-possible path leading to logit of class

c. We choose to maximize the sum of these attributions σc =
∑

i A
B,c
i as we do not know

the exact distribution of attribution among user-defined features; however, as we do not

know the required magnitude of these attributions, we need to maximize it in comparison

to another number. For simplicity, we choose to maximize the attributions with respect to

the expected class E in comparison to the other classes. Let’s quantify the total attribution

from user-specified features leading up to expected class, E, with respect to other classes

using softmax as γE:

30

γE =
expσE∑
c expσc

(A.2)

Finally, we can define the misattribution error using cross-entropy loss as:

MisattributionError = µc(A
U
i , Ã

P
i) + log(γE) (A.3)

Interestingly, if the activation used is ReLU or Leaky-ReLU, the second term is equivalent

to adding a new example having only user-labeled features. Thus, masking features for

factoring in user-suggestions, like in traditional methods, is applicable in certain cases

such as this and is a special case of attribution; however, unlike in traditional models, this

is similar to adding a new example rather than modifying an existing data point.

In the text classification task: If µc(A
U
i , Ã

P
i) is used alone, we observe that the accu-

racies with training pool smaller than 50 examples remain unchanged, but saturates way

earlier as the machine starts using fewer filters and has a reduced capacity as illustrated.

Further, if the machine is trained with just log(γE), the accuracies with larger number

(≥ 100) of training examples remain relatively unchanged but those with fewer examples

have a lesser accuracy; this is because the machine does not get automatically tuned to ig-

nore non-annotated words when there are fewer examples. In the information retrieval task,

however, we did not notice any advantage (even for higher number of training examples)

of using the second term as the number of user-suggested features were very few.

A.2 RNNs

For the same reasons as in max-pooling, optimizing through the attention is hard because

the gradients are too small for the non-attended features. As we chose to compute attribu-

tions by setting F to class logits in CNNs, we choose to optimize using feature vector vs (Eq

2 in main paper) in RNNs. Following the same idea as in CNNs, we propose to compute

attributions using hidden states without attention (i.e. hi instead of αihi) and independently

optimize the αis to select user-suggested features. In order to optimize attentions, we can

easily write the misattribution error by equating the normalized attributions Ãi with the

attentions αi:

MisattributionError = µf

(
AU

i , αi

)
(A.4)

We need to now factor user suggestions into the computation of hidden features: in

order to do that, we can very easily compute the attributions by setting F to be the sequence

31

Figure A.1: RNN (without attentions and softmax) with an example sentence. The anno-
tated words (shaded) can be interpreted as those words worth accumulating in the hidden
state. The thickened arrows indicate those terms which the machine might remember.

of hidden states; in other words, the gradients from all hidden states at time steps ≥ t would

be considered to compute attribution of word wt as shown in Eq A.5 [the derivatives are

computed at V0 = w0,V1 = w1...Vn = wn]

Ai = wi ·
(
∂hi

∂Vi

+
∂hi+1

∂Vi

+ · · ·+ ∂hn

∂Vi

)
(A.5)

Using this, we can write out the complete misattribution error as:

MisattributionError = µf

(
AU

i , αi

)
+ µf

(
AU

i , Ãi

)
(A.6)

However, this is computationally expensive and we propose approximating it by just

considering the gradients from hidden state at time t = i. Turns out that this approximation

works quite well not only for those cases where all the hidden states are used but also where

the last hidden state is used. Mathematically, if Ai is large, wi · ∂hi

∂Vi
should be large as well;

this is because, if the gradient of hidden state at ith time step with respect to wi is small, the

gradients of hidden states at later time steps would be smaller as they are a function of hi.

Gated Recurrent Neural Networks can be interpreted as machines which read through a

sequence of inputs and accumulate useful information in the hidden states from the inputs

that it finds important (Fig. A.1). From the figure, it is easy to see how the approximation

satisfies attribution with respect to both feature vectors: mean or weighted mean of all

hidden states and last hidden state. Note that this is just an approximation to speed up the

training for single recurrent layer.

A.3 Hyperparameters: ρ and τ

For the text classification task, we find that the accuracies are similar for 0.8 ≤ ρ ≤ 0.9

and 0.7 ≤ τ ≤ 0.8. If τ is set to reasonable values (τ >= 0.5) beyond these ranges, the

accuracies for instances trained from fewer than about 50 examples are negatively affected

32

as the machine becomes less robust to long annotations, while the others are relatively

stable. It is useful to keep the ρ value < 1 and allow the machine to consider the unan-

notated words in at least 2 cases: when not all of the class-indicating-features are actually

annotated and/or for allowing the machine to learn the context for selecting the annotated

features. For the information retrieval task, unsurprisingly, we find that setting higher ρ

values (> 0.5) reduces the recall.

Appendix B

Additional Text Classification Results

In this section, we illustrate the advantages of combining annotations with unsupervised

word embeddings by benchmarking with Sharma et al. [2015]. We simulated the human

labeler by extracting features as described in the paper: we choose only the positive (neg-

ative) features that had the highest χ2 (chi-squared) statistic in at least 5% of the positive

(negative) documents. Further, the artificial labeler returns any one word, rather than the

top word or all the words, as rationale. Here is the description of the datasets:

• WvsH: This classification task consists of classifying between comp.os.ms-windows.misc

and comp.sys.ibm.pc.hardware in the 20-Newsgroups classification task.

• Nova: This is a binary classification task derived from the 20-newsgroups classifica-

tion task. More details can be found at Guyon et al. [2011].

• SRAA: This is a binary classification task consisting of 48K documents that discuss

either auto or aviation.

The improvement in the AUCs are illustrated in Table B.1. We derived the AUCs by

taking a mean of the AUCs obtained by RNNs and CNNs when trained on 10 randomly

chosen documents - 5 from each class. The AUCs for Sharma et al. [2015] are extracted

from the paper.

Dataset Sharma et al. [2015] Ours
WvsH 80% 87.25%
Nova 83% 90.53%

SRAA 86% 91.37%

Table B.1: Text classification.

Additionally, we also empirically evaluated the gains we would get when we perform

one-shot text classification with annotations using Yahoo! Answer Classification dataset.

33

34

In this 10-way classification task, we randomly chose 1 document from each class and man-

ually annotated for the purposes of the experiments. In the traditional Machine Learning

method, we obtained an accuracy of about 14% with annotations while we obtained 28%

with RNNs and 31% with CNNs.

Appendix C

Useful Insights for Real-world Applications

In this chapter, we will present some insights from the various experiments we conducted

which could be useful in training setup for solving real-world problems like Total-recall

Information Retrieval. Some of the things include:

1. Tuning the Architecture: Typically, a machine tuned to run well on X training ex-

amples does not necessarily run well when trained on Y examples when X << Y .

However, in our experiments, we found that when the machine is tuned to work on X

training examples, it will typically work well on X± 100. A possible research direc-

tion could be to dynamically grow the network such that previously trained weights

are still retained.

2. Empirically testing the gain on using annotations: It is useful to first investigate

what kind of annotations are useful by annotating few examples (say, between 10 and

50). In order to better estimate the performance, it is useful to strategically sample

a variety of documents instead of just randomly sampling. In our experiments, we

found that the length of the text is one of the most important features in distinguishing

texts. Other syntactic or semantic features could be used to get better representative

samples; these could either be hand-picked or selected by clustering.

3. Monitoring learning: As annotations can sometimes have unintended side-effects, it

is useful to track progress by investigating the key features the machine is considering

in assigning the class. This can serve as a feedback towards what kinds of annotations

are most useful. This is a crucial step in cases where annotations aren’t as direct as

sentiment-bearing words.

4. Crowd-sourcing annotations: Some times, it might be useful to crowd-source the

annotations for training so as to eliminate bias. Further, the strategy for combining

the crowd-sourced annotations is important in setting the share. For example, de-

pending on the portions of annotations ignored, it might make sense to allocate a

35

36

lesser share to the annotations. Furthermore, in case all annotations are retained, the

parameter ρ can be suitably adjusted to allocate higher shares depending on the votes.

5. Here are examples of annotated positive and negative examples from the sentiment-

classification dataset (Pang and Lee [2004]):

(a) one of my colleagues was surprised when i told her i was willing to see betsy’s

wedding . and she was shocked to hear that i actually liked it . her reac-

tion was understandable when you consider that the film revolves around molly

ringwald , who hasn’t made a worthwhile film since 1986 . but the fact is ,

betsy’s wedding is also an alan alda film . and while ringwald has been making

duds for the last four years , alda has been involved with several noteworthy

projects , including crimes and misdemeanors and a new life . written and

directed by alda , betsy’s wedding is a vibrant slice-of-life , mixing a few dra-

matic moments into a big bowl of whimsical humor . alda’s comic elixir

is smooth and refreshing –and a welcome change of pace from the usual

summer fare . as bride and groom , molly ringwald and dylan walsh are the

pivotal characters in the film , but they are by far the least interesting . walsh

is a nonentity , with all the screen presence of a door knob . ringwald is sim-

ply unbearable and is easily the weakest link in the chain . she looks hideous

with her short-cropped orange hair , red lip-stick and grotesque outfits . she’s

supposed to be a dress designer , but she looks more like a clown . and to make

matters worse , ringwald’s performance matches her appearance . thankfully ,

alda keeps ringwald’s screen time to a minimum ; he is far more interested in

the colorful periphery characters . the wedding is just a device to bring together

the bride’s working-class , italian family and the groom’s rich , gentile family

. ringwald’s folks are homey and down-to-earth , with alda as her free-spirited

father , madeline kahn as her practical mother , and ally sheedy as her lonely

sister . walsh’s clan , on the other hand , is prim , proper and ostentatious . when

the two families meet and mingle , the movie becomes a story of culture clash ,

or as one character puts it , ” money versus values . ” ally sheedy , in a wonder-

fully understated performance , is one of the film’s most pleasant surprises

. sheedy expresses more with just her eyes than ringwald does with her entire

37

body . it’s anthony lapaglia , however , who seizes the spotlight . lapaglia plays

stevie dee , a suave , overly polite mafioso who is formally courting sheedy with

old-fashioned chivalry . lapaglia’s sincere but dim-witted character is a riot .

and what’s uncanny is that lapaglia is a dead ringer for robert de niro , with a

little bit of alec baldwin thrown in for good measure . lapaglia seems to have

attended the de niro school of gangster acting , and his inspired performance

is partly a tribute to his role-model and partly a rip-off . i don’t know whether to

say a star is born or a star is re-born , but i do know that lapaglia’s over-the-top

performance should not be missed . the scrumptious comic acting , however

, extends well beyond sheedy and lapaglia . joe pesci , in particular , sinks

his teeth into his role as alda’s unscrupulous brother-in-law , a slum lord with

mob ties , who is cheating on his wife (catherine o’hara) . alda , faced with

challenge of both directing and acting , somehow finds just the right comic

touch as the bride’s financially-strapped father , a carpenter whose dreams are

bigger than his wallet . the film adopts alda’s psychological point of view as he

tries to one : plan the wedding , and two : pay for it . as a filmmaker , alda’s

style of humor is remarkably restrained and tasteful . and while he doesn’t have

the comic genius of a woody allen , alda does possess the inspiration to make

movies which are ten times more entertaining than the slop which usually

passes for comedy .

(b) best remembered for his understated performance as dr . hannibal lecter in

michael mann’s forensics thriller , manhunter , scottish character actor brian

cox brings something special to every movie he works on . usually playing a bit

role in some studio schlock (he dies halfway through the long kiss goodnight

) , he’s only occasionally given something meaty and substantial to do . if

you want to see some brilliant acting , check out his work as a dogged police

inspector opposite frances mcdormand in ken loach’s hidden agenda . cox plays

the role of big john harrigan in the disturbing new indie flick l . i . e . , which

lot 47 picked up at sundance when other distributors were scared to budge . big

john feels the love that dares not speak its name , but he expresses it through

seeking out adolescents and bringing them back to his pad . what bothered some

audience members was the presentation of big john in an oddly empathetic light

38

. he’s an even-tempered , funny , robust old man who actually listens to the kids’

problems (as opposed to their parents and friends , both caught up in the high-

wire act of their own confused lives .) he’ll have sex-for-pay with them only

after an elaborate courtship , charming them with temptations from the grown-

up world . l . i . e . stands for long island expressway , which slices through the

strip malls and middle-class homes of suburbia . filmmaker michael cuesta uses

it as a (pretty transparent) metaphor of dangerous escape for his 15-year old

protagonist , howie (paul franklin dano) . in his opening voice-over , howie

reveals a morbid preoccupation with death on the road , citing the l . i . e .

highway deaths of filmmaker alan j . pakula , songwriter harry chapin , and his

own mother on exit 52 . he’s both fascinated and disturbed by the l . i . e . ,

and those feelings are projected onto big john (who follows howie around in

his bright red car , but never makes a move to force the boy to do something he

doesn’t want to do . this makes him much more complex than the usual child

molesters seen in movies – he’s a beast , but ashamed of it .) l . i . e . would

have worked best as a half-hour short film about howie’s ill-advised foray into

big john’s haven . there is unnecessary padding with howie’s miserable dad

(bruce altman) in the hot seat for a white-collar crime , degenerate youngsters

who get their kicks from robbing middle-class houses , and some homoerotic

shenanigans with wise-ass gary terrio (billy kay) , a handsome artful dodger

. rather than add to the themes of suburban ennui (not that we needed another

movie on that subject) , these awkward subplots pad out the running time

to adequate feature length . concurrently , the relationship between howie and

big john is evenly paced and exceptionally well acted . cox , sporting a baseball

cap and a faded marine tattoo , is all bluff and bluster . dano is quiet and at

first glance seems so withdrawn as to be transparent . we’re so used to child

actors whose dramatic choices are broad and obvious (calling haley joel !) ,

it’s surprising to see one who actually listens throughout any given scene . the

restraint is admirable . but l . i . e . ’s screenplay doesn’t always give them the

best material . when howie reads big john a walt whitman poem , the moment

feels a bit too precious . director michael cuesta lingers on an ecstatic reaction

shot of big john , who may as well be hearing glenn gould performing bach’s

39

goldberg variations . it’s too much . there are also some obvious dramatic

contrivances involving big john’s other boy toy (walter masterson) , jealous

over the newbie . this plot thread predictably leads to violence . not content to

be a haunting , observational portrait of teen alienation in a royally screwed up

world (like terry zwigoff’s superb ghost world) , cuesta lacks the confidence

in his own work to end on an ambivalent note . it’s typical of unimaginative

cinema to wrap things up with a bullet , sparing the writers from actually

having to come up with a complex , philosophical note . in this regard , l . i . e .

(and countless other indie films) share something in common with blockbuster

action films : problems are solved when the obstacle is removed . how often

does real life work this way ? to extend the question : if a movie is striving for

realism , do dramatic contrivances destroy the illusion ?

Appendix D

Programming Details

D.1 Libraries used

All the code is written in python 2.7 (with future import to allow for compatibility with

Python3). The following libraries are used in the project:

1. Tensorflow - We used version 1.7 in this project for the experiments. Although, a

newer version is released almost every month, we expect the code to be compatible

with future releases. We used the Tensorflow for building the CNN.

2. PyTorch - We used version 0.4. We used PyTorch for building the RNN as Tensorflow

cannot compute second derivatives.

3. Numpy - We used numpy for common matrix operations.

4. NLTK - We used NLTK for stopwords and for tokenizing documents.

5. Gensim - We used version 3.3.0. We used this for training word embeddings and

loading pre-trained embeddings.

D.2 Readme

The exact details of how the program needs to be run is mentioned in the GitHub repo:

https://github.com/chandramouli-sastry/dual-AL. There are essentially

5 kinds of classes as described below. The GitHub Repository has 4 Python Packages –

1shot, IR, classification and featExpert AL; each of these packages have their own special-

ized versions of these 5 classes.

1. driver - This is the main program that reads the data in and creates the list of Docu-

ment objects, which is used by the ActiveLearning class. For the text classification

task, each of the documents are in separate files and grouped into folders according

40

https://github.com/chandramouli-sastry/dual-AL

41

to their class. For the information retrieval task, all the documents and their labels

are part of one csv file. The driver takes care of abstracting out the storage details

and creates a list of Document objects.

2. Document - This file contains the definition of Document class. Each document has

an id, title (if present), text and class label as features. Further, the annotated features

(if present) are also included. It is responsible for any pre-processing - which as of

now is just word tokenization.

3. RNN-Factory - This file contains the definition of RNN-Factory class which can

return two kinds of classes based on the parameters : one with dual supervision and

one without dual supervision. These classes are used to instantiate the classifiers

used by the ActiveLearning class. This is implemented in PyTorch.

4. CNN-Factory - This is highly similar to the RNN-Factory class excepting that it

internally constructs a CNN architecture and is written in Tensorflow.

5. ActiveLearning - This class is instantiated with the training pool [a list of Docu-

ment objects], a held-out test data [a list of Document objects], the classifier object

[CNN/RNN] and the budget [in terms of the maximum number of documents to se-

lect from the traning pool].

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Related Works
	CNN and RNN Architectures
	CNN for Text Classification
	RNN for Text Classification
	Softmax

	Dual Supervision in NNs
	Attributions and Misattribution error
	Comparison with Previous work

	Experiments – Text classification
	Experiments – Information Retrieval
	Discussion and Future Work
	Bibliography
	Architecture-specific adaptations of Misattribution Error
	CNNs
	RNNs
	Hyperparameters: ρ and τ

	Additional Text Classification Results
	Useful Insights for Real-world Applications
	Programming Details
	Libraries used
	Readme

