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Abstract 

Fishing is one of the largest and most widespread ocean uses affecting marine ecosystems 

and biodiversity. From small-scale coastal vessels to industrialized high-seas fleets, the 

footprint of modern fisheries extends over much of the global ocean. Nonetheless, we 

have only limited understanding when, where, and how those fisheries are occurring, 

especially in remote areas far from shore. This poses a problem for fisheries management 

efforts and marine conservation measures such as marine protected areas (MPAs), which 

are being established to meet global conservation targets. Fishing is an important factor 

influencing the effectiveness of MPAs. It is therefore of vital importance to map and 

analyze the global footprint of fisheries and better understand its influences on the efficacy 

of marine conservation measures and fisheries management. I apply a novel satellite-

based monitoring tool, the Automatic Identification System (AIS), to analyze behavior and 

movement patterns of fishing vessels globally in the context of marine conservation. For 

this I developed methods to automatically analyze fishing effort from AIS data and applied 

these to analyze patterns of fishing vessel behavior around the globe. These new tools 

allowed me to describe the global distribution of fisheries at fine spatial and temporal 

resolution. In some cases, fishing effort accumulated close to the boundaries of MPAs, an 

indicator of spillover of fish benefiting fishing fleet s nearby. Near the Galápagos Marine 

Reserve, fishing effort within 20 km from the reserve boundary was four times higher than 

in the surrounding area, and tuna catches were higher and more stable near the reserve 

boundary as well. Patterns of fishing effort around 12 other large MPAs were shaped 

predominantly by their proximity to Exclusive Economic Zone and MPA boundaries, 

showing the major effects of maritime zoning regulations on fishing effort. Furthermore, 

fishing was increased around older MPAs and those in developing countries. Linking 

fishing vessel behavior to seafood supply chains, I also documented global patterns and 

hot spots of transshipment of catch to cargo vessels. Using AIS data I found transshipment 

particularly important in high seas fisheries, such as tuna longlining, raising concerns about 

mixing of legal and illegal catches in some of the worldõs most widespread and valuable 

fisheries. Finally, I reviewed the effectiveness of spatial protection for highly migratory fish, 

which is related to a range of species characteristics (e.g. migration, aggregation and 

homing behaviors) as well as management features (fleet dynamics and management 

effectiveness). These results provide deeper insight into the global behavior of fishing 

vessels and highlight the potential and applicability of AIS vessel tracking data to 

document fishing and transshipment activities in unprecedented detail. By opening a new 

window of transparency to remote ocean areas, this work provides a foundation for 

improved high seas governance and management of marine living resources, especially in 

waters beyond national jurisdiction.   
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CHAPTER 1  

INTRODUCTION 

State of global fisheries  

Since the first records of human fishing activity for pelagic species about 42,000 years ago 

(OõConnor et al. 2011) the face of global fisheries has changed significantly. Fishing vessels 

have progressed from small man- and wind-powered wooden boats fishing close to shore 

with handlines and nets, to large, ocean-going, machine-powered vessels capable of 

circumnavigating the globe and using  sophisticated technology to find and extract about 

90 to 120 million tons of fish every year (Jackson et al. 2012, Watson et al. 2013, Pauly & 

Zeller 2016, FAO 2018). The footprint of modern fisheries is stretching further than ever, 

covering more than half of the global ocean (Kroodsma et al. 2018) and reaching remote 

regions and depths exceeding 2,000 m (Pauly et al. 2002, Morato et al. 2006). Fisheries 

play a vital role in the global economy and food security, supplying 17% of the human 

population with a significant share of their animal protein in take and, combined with 

aquaculture, meet an ever growing demand for fish around the world: Per capita fish 

consumption has more than doubled over the last 50 years, an increase exceeding that of 

meat consumption from all terrestrial animals combined, and shows no signs of decreasing 

in the near future (FAO 2018). 

The industrialization of fisheries has sped up and intensified overexploitation on a 

global scale (Swartz et al. 2010). While overfishing is no modern phenomenon (Jackson et 

al. 2001, Lotze 2007), now over 33% of all globally assessed stocks are overfished and a 

further 60% are maximally sustainably (fully) fished, whereas the amount of underfished 

stocks has declined steadily to about 7% (FAO 2018). Catches have been mostly stagnating 

since the mid-1990s (FAO 2018) and possibly declining when accounting for illegal, 

unreported, and unregulated (IUU) catches (Pauly & Zeller 2016), despite increasing effort 

(Fig. 1.1). 
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Fig. 1.1 Trends of global wild marine fish catch and fishing effort over five dec ades. Graph modified after 

data in Watson et al. 2013 

 

Overfishing is reducing available seafood supply by an estimated 16.5 million tons per year 

(Ye et al. 2013). Next to overexploitation, destructive fishing practices such as bottom 

trawling, and illegal fishing are putting additional strain on f ish stocks and marine 

ecosystems, raising concerns about the sustainability of global fisheries (Agnew et al. 

2009).  

Biological effects of fisheries  

Fisheries are a dominant and widespread anthropogenic threat to marine species and 

ecosystems (Jackson et al. 2001, Chuenpagdee et al. 2003, Worm & Lenihan 2013), 

contributing directly and indirectly to habitat degradation and l oss (Lotze et al. 2006), 

species extinction (Dulvy et al. 2003), as well as changes in food webs, and community and 

stock structures (Baum & Worm 2009, Lotze et al. 2011). Direct influences of fisheries 

include reductions of abundance and biomass of targeted species (Lotze et al. 2006, Worm 
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& Tittensor 2011), as well as life-history changes such as size and age at maturity 

(Kuparinen et al. 2016). Similar effects can occur for non-targeted bycatch species (Worm 

& Lenihan 2013). Indirect effects of fisheries encompass habitat destruction through 

destructive fishing techniques such as trawling and dredging (Thrush & Dayton 2002), as 

well as changes in species interactions such as trophic cascades (Baum & Worm 2009) and 

trophic level and commun ity changes from long-lived, slow-growing, late-maturing 

species to species with shorter lifespans, faster growth rates and earlier maturity 

(Hutchings & Baum 2005).  

Given these effects, the sustainability of many of the worldõs fisheries, evident for 

example in a constantly growing proportion of overfished stocks (FAO 2018), has been 

questioned (Pauly et al. 2002). Transforming fisheries into a more sustainable enterprise at 

a global scale will require a range of management and conservation measures (Beddington 

et al. 2007, Worm et al. 2009), which in turn require an adequate understanding of where, 

when and how fisheries are operating.  

Monitoring of global fishing fleets  

Unfortunately, much basic knowledge about global fisheries is vague or lacking such as 

the exact number of fishing vessels on the global ocean. The best estimate by the Food 

and Agriculture Organization (FAO) assumes around 4.6 million fishing vessels of all sizes 

and types fishing around the wor ld in 2014, with about 61% under motor (FAO 2018). The 

largest fleets are located in Asia (79.9% of motorized fishing vessels) and mainly consist of 

vessels smaller than 12 m length, a further factor complicating their monitoring. 

Existing information on fishing vessel activities are often rather patchy, highly 

aggregated, or on coarse scales. While individual government agencies in many countries 

monitor fisheries within national waters through vessel monitoring systems (VMS) and on-

board observers, these data are generally not accessible, and not integrated at a global 

scale. Likewise, data for the High Seas are collected only for selected fish stocks within the 

convention areas of individual Regional Fisheries Management Organizations (RFMOs). In 
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times of increased monitoring and surveillance, including the ability to track the 

movements of trucks, cargo ships, planes and teenage drivers, the lack of a comprehensive 

global overview of fishing activities is remarkable. This is presumably largely due to two 

factors: first, the vastness and remoteness of the realm fishing vessels are operating in 

complicates tracking, as the global ocean covers more than 70% of the planetõs surface. 

Likely influenced by this, the concept of mare liberum, the freedom of the seas (a term 

coined by Hugo Grotius in the 17 th century) and the open access right for navigation and 

fisheries, is strong within the fishing sector (Russ & Zeller 2003). This out-of-sight, out-of-

mind mentality complicates monitoring, surveillance, and regulatory attempts (Rosenberg 

2003, Di Lorenzo et al. 2016). 

The current widespread lack of information on where, when, how much and which 

fishing vessels operate is causing serious problems for fisheries management, 

enforcement, and marine spatial planning, such as fisheries closures and marine protected 

areas (MPAs). Improved monitoring of fisheries has been identified as a vital part of future 

management efforts (Pauly & Zeller 2016). 

Assessing MPA effectiveness  

To encounter the rising anthropogenic pressures such as fishing, but also habitat 

destruction, pollution, and other stressors, international marine conservation targets such 

as the Convention on Biological Diversityõs (CBD) Aichi target 11 were developed. Spurred 

by protection  targets of at least 10% of the global ocean to be spatially protected by 2020. 

an increasing number of MPAs are being established worldwide (Lubchenco & Grorud-

Colvert 2015, UNEP-WCMC & IUCN 2016). Following a definition by the International 

Union for Conservation of Nature (IUCN) an MPA (sometimes also called marine reserve, 

sanctuary, or park) is a clearly defined geographical area which is dedicated and managed 

through legal and other means with the aim to protect and conserve nature and associated 

ecosystem services as well as cultural values (Dudley 2008). Specifically excluded are areas 

without stated conservation goals, such as areas primarily managed for fisheries, tourism, 

or other industries (Day et al. 2012). 
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By 2018, more than 15,000 MPAs had been created globally (UNEP-WCMC and IUCN 

(2018), Marine Protected Planet), with sizes varying from less than a square kilometer 

(median size approx. 2.5 km2) to nearly 5 million km 2, located from coastal to remote 

offshore waters (OõLeary et al. 2018). Over the last decade, most marine spatial protection 

has been achieved through the creation of large-scale MPAs (LSMPAs) covering 100,000 

km2 and more. By 2018, LSMPAs encompassed more than two-thirds of the global marine 

protected area and about 7% of the worldõs ocean. Taken together, about 7.26% of the 

ocean is protected (July 2018, UNEP-WCMC and IUCN (2018) Marine Protected Planet), 

but given levels of protection vary strongly among MPAs and only about 3.6% is included 

in fully implemented MPAs and even less (2%) in fully protected areas (Sala et al. 2018). 

The IUCN lists six different categories of protection, from category Ia, a strict nature reserve 

with limited access and activities, to category VI, a protected area where sustainable use 

of natural resources is allowed (Dudley 2008). Essential for biodiversity conservation, 

objectives of MPAs can include species-specific management and stock rebuilding, 

protection, maintenance or restoration of marine ecosystems, and their processes, 

services, and associated species, and other specific targets (Day et al. 2012). While not 

typically intended as a tool in fisheries management, MPAs have been recognized as a vital 

part of ecosystem-based management, contributing to protecting and rebuilding stocks 

and ecosystems affected by fisheries (Roberts et al. 2005, Gaines et al. 2010). 

Developing a new monitoring tool  

New tools to study and understand the influence of fisheries and marine management 

have become available fairly recently. While VMS has been used for many years by 

individual governments and RFMOs to monitor fishing vessels in their respective area, 

these systems are typically for government use only, and data are hard to access, coarse, 

and often highly aggregated (Lambert et al. 2012, Russo et al. 2016). Over the past years, 

the Automatic Identification S ystem (AIS) has increasingly being used for monitoring and 

research of vessel activities (Natale et al. 2015, de Souza et al. 2016, McCauley et al. 2016, 

Wu et al. 2017). In contrast to VMS, AIS is a global open-access system with data provided 
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by multiple suppliers worldwide. AIS transponders are mandated as a safety feature to 

avoid collisions for large (>300 gross tons) fishing vessels undertaking international 

voyages (SOLAS Convention Chapter V) but are also used by smaller ships. Vessel locations 

as well as identity, speed, course over ground, and a variety of other information are 

transmitted to land -based towers as well as receivers on low-orbit satellites as frequently 

as every couple of seconds (Fig. 1.2) and can be used to map a vesselsõ tracks and analyze 

its behavior based on movement patterns.  

 

 

Fig. 1.2 Scheme of Automatic Identification Syste m (AIS) signaling between ships carrying the 

transponder as well as satellite and ground station s.  

 

AIS data are greatly extending the range of hitherto existing systems such as VMS 

and observer systems and enable a range of new research questions and management 

possibilities. Using AIS tracks and analysis tools based on machine learning techniques, it 

is now possible to detect, classify and map the spatial and temporal patterns of global 

fishing vessel movements (Kroodsma et al. 2018) and relate them to areas of interest such 

as sensitive habitats and MPAs as well as understand the links of fishing vessels to 

international seafood supply chains even for vast and remote areas. 
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Therefore, the overarching goal of my thesis is to explore the application of global 

fishing vessel monitoring in the context of marine conservation and fisheries management 

more broadly. I ask  

1) if it is possible to track and analyze the behavior of fishing vessels in relation to 

MPAs,  

2) how spatial and temporal patterns of fishing effort compare around various MPAs 

and  

3) how this knowledge can inform MPA and fisheries management. 

Extending on that, I examine the usefulness of vessel tracking data for other issues such 

as the transshipment of catch at sea and review how spatial protection and management 

can be optimized for highly mobile species. 

Structure of thesis  

My thesis is divided into five chapters exploring different aspects of the analysis and 

application of AIS data to track and map the behavior of fishing vessels, and a final 

concluding chapter highlighting main findings, applications and next steps. In Chapter 2 I 

present novel techniques to determine fishing effort for three different fis hing gear types 

(trawl, longline, and purse seine) from AIS data. Building on this in Chapter 3, I analyze 

purse seine fishing effort around the iconic Galápagos Marine Reserve, one of the oldest 

LSMPAs in the world. In Chapter 4, I extend the scope and investigate fishing effort around 

thirteen LSMPAs worldwide. Exploring additional applications of AIS data in the context of 

marine conservation, I examine the role of transshipment of catch from fishing vessels to 

refrigerated cargo vessels in Chapter 5 and analyze how this affects seafood supply chain 

transparency and traceability. Finally, in Chapter 6 I survey the literature whether spatial 

protection is feasible and beneficial specifically for large pelagic fishes such as tuna and 

sharks and their associated fisheries, before drawing conclusions from my work and 

highlighting future research in Chapter 7. 



8 

  

Ultimately, my work aims to contribute to an increased comprehension of the role 

and scope of global fisheries and novel tools to track, understand, and eventually regulate 

their effects on marine ecosystems, and their living resources. 

Statement of Co -Authorship  

This dissertation contains five data chapters. Each chapter corresponds to a manuscript 

written for publication in a scientific journal and large ly follows the regular structure of 

scientific papers consisting of an abstract, introduction, materials and methods, results, 

discussion, and conclusion. 

All co-authors contributed to these manuscripts through comments, advice, support in 

research design and method development, as well as interpretation. The publication status 

of each chapter at the time of submission of this thesis is as follows: 

Chapter 2: de Souza, E.N*., Boerder, K. *, Matwin, S. and Worm, B., 2016. Improving fishing 

pattern detection f rom satellite AIS using data mining and machine learning. PloS ONE 11, 

e0158248. 

* equal co-authors 

Chapter 3: Boerder, K. , Bryndum-Buchholz, A., & Worm, B., 2017. Interactions of Tuna 

Fisheries with the Galápagos Marine Reserve. Marine Ecology Progress Series 585, 1ð15 

Chapter 4: Interactions between large marine protected areas and global fishing fleets 

(unpublished) 

Chapter 5: Boerder, K. , Miller, N.A., Worm, B., 2018. Global hot spots of t ransshipment of 

fish catch at sea. Science Advances 4, eaat7159  

Chapter 6: Boerder, K. , Schiller, L., Worm, B. Not all who wander are lost: spatial protection 

for large pelagic fishes. Marine Policy (in revision) 
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Four of these chapters (2, 3, 5 and 6) have either been published or submitted. Details are 

provided on th e first page of each chapter. Chapter 2, 3 and 5 have been published under 

an open-access license. 

 

Data accessibility  

Data is freely available through globalfishingwatch.org and upon request  to 

research@globalfishingwatch.org and kristina.boerder@dal.ca.  

mailto:research@globalfishingwatch.org
mailto:kristina.boerder@dal.ca
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CHAPTER 2  

Improving fishing pattern detection from satellite AIS 

using data mining and machine learning 1 

 

Abstract  

A key challenge in contemporary ecology and conservation is the accurate tracking of the 

spatial distribution of various human impacts, such as fishing. While coastal fisheries in 

national waters are closely monitored in some countries, existing maps of fishing effort 

elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. 

Better understanding of the behavior of the global fishing fleets is required in order to 

prioritize and enforce fisheries management and conservation measures worldwide. 

Satellite-based Automatic Information Systems (S-AIS) are now commonly installed on 

most ocean-going vessels and have been proposed as a novel tool to explore the 

movements of fishing fleets in near real time. Here we present approaches to identify 

fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and 

purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011 - 

2015, we developed three methods to detect and map fishing activities: for trawlers we 

produced a Hidden Markov Model (HMM) using vessel speed as observation variable. For 

longliners we have designed a Data Mining (DM) approach using an algorithm inspired 

from studies on animal movement. For purse seiners a multi-layered filtering strategy 

based on vessel speed and operation time was implemented. Validation against expert-

labeled datasets showed average detection accuracies of 83% for trawler and longliner, 

and 97% for purse seiner. Our study represents the first comprehensive approach to detect 

and identify potential fishing behavior for three major gear types operating on a global 

scale. We hope that this work will enable new efforts to assess the spatial and temporal 

                                                           
de Souza, E.N., Boerder, K., Matwin, S. and Worm, B., 2016. Improving fishing pattern detection from satellite 

AIS using data mining and machine learning. PloS one, 11(7) 
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distribution of global fishing effort and make global fisheries activities transparent to 

ocean scientists, managers and the public. 

 

Introduction  

A common challenge in ecology is the mapping of dynamic patterns of human activity 

across vast areas in order to understand and track their ecosystem impacts on regional 

and global scales (Halpern et al. 2008, Trebilco et al. 2011, Selig et al. 2014). While 

important from a scientific perspective, there are also many other obvious applications, 

including the monitoring of marine fisheries and the enforcement of spatial management 

measures, such as marine protected areas (MPAs), ecologically and biologically sensitive 

areas (EBSAs) as well as fisheries closure zones. While the reception range of coastal 

monitoring tools such as tower -based applications (tAIS, radar) is limited to inshore areas, 

long-range tools such as AIS (Automatic Identification System) and VMS (Vessel 

Monitorin g System) provide insight into vessel movements elsewhere. Vessel monitoring 

systems were specifically designed to monitor commercial fisheries while AIS was intended 

as a safety feature to avoid vessel collisions under low visibility. While the use of VMS 

devices is mandated only for some fleets in individual nations, the International Maritime 

Organization (IMO) has made the carrying of an AIS transponder mandatory for all vessels 

larger than 300 gross tons or carrying passengers (SOLAS Chapter V). In addition, national 

regulations may include other vessel types, such as per recent requirements by the 

European Union that all fishing vessels bigger than 15 m must carry an AIS device (Natale 

et al. 2015). Both VMS and AIS feature on-board transmitters linked to the vesselõs GPS to 

receive and transmit exact position in time and space on long-range radio frequencies to 

either coastal ground stations or satellites. In the case of AIS, data are also transmitted to 

other ships in the area that carry the device. VMS usually transmits in time intervals varying 

from one to several hours, satellite-based AIS (S-AIS) transmissions can be as frequent as 

every few seconds, enabling the monitoring of fine -scale vessel behavior and movement 

patterns. Several attempts have been made to use VMS and AIS data to understand fishing 
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vessel behavior, for example by using simple presence/absence or vessel speed (Gerritsen 

& Lordan 2011, Chang & Yuan 2014). While speed can be a useful indicator of vessel 

activity, operational speeds while fishing vary greatly for different fishing gear types such 

as trawls, longlines or nets. More sophisticated algorithms differentiating fishing from 

non-fishing activity for different fleets and gears are needed to properly captur e and 

represent the characteristics of the various fishing methods, as stated previously by Natale 

et al. (2015). We develop and present such algorithms here, then assess their accuracy in 

correctly identifying individual fishing events or ôsetsõ by comparing against expert-labeled 

data. Finally, we briefly chart potential applications in marine ecology, conservation, and 

fisheries management. 

 

Materials and Methods   

Data Sets 

This work is based on a database containing global AIS data obtained from AIS-enabled 

communication satellites since January 2011 until October 2015. Data were obtained under 

research license from exactEarth (http://www.exactearth.com/products/exactais). A 

representation of three several-year tracks and examples of fishing activity patterns for 

trawling, longlining and purse seining is given in  Fig. 2.1. Individual tracks for known trawl, 

longliner and purse seine fishing vessels were extracted from different regions 

representing vessels from different nations operating in various parts of the oceans at 

scales from coastal fishing grounds to circumnavigating the globe. The trawler data 

contained an initial sample of 83 vessels operating in the North Pacific and corresponds 

to 217,860 data points collected in July 2013 used for algorithm development and training. 

For comparison and testing on a global scale, a second trawler data set, composed of 

seven vessels operating from January 2011 until October 2015 across various ocean basins 

was selected. These tracks were much longer than those in the North Pacific, totaling 

884,478 data points. Analyses for longliners comprised data from 16 vessels operating 

across all major ocean basins from June 2012 until December 2013, corresponding to 
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573,204 data points. Data on seven purse seine vessels comprised 399,545 points from 

January 2011 until October 2015 representing long-range operations in various areas of 

the world. 

 

Fig. 2.1 Presentation of raw AIS tracks for three individual  vessels using different fishing gear types . 

Global overview (A) and more fine -scale representations of potential fishing behavior for a trawler 

(green, B), longliner (red, C) and purse seiner (blue, D). Dots represent individual AIS signal detections, 

lines interpolated tracks. Note the global -range behavior of longliners, and the more regional basin-wide 

operations of purse seine and trawl vessels. Map data by Natural Earth. 
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Definition of Fishing Activity by Gear Type  

Trawler  

Trawling involves dragging one or more nets behind a fishing vessel either on the sea floor 

(bottom trawling) or in the water column (pelagic or midwater trawling). While trawling, 

fishing vessels usually slow down and aim to maintain a constant speed to keep the strain 

on the dragged net as even as possible. Duration of trawling operations depends mostly 

on the density of the prey and can last from a few minutes up to several hours. The typical 

length of a trawl will vary between 3 and 5 hours (FAO). Here, trawling activity is defined 

from the moment the net is deployed to  when it is retrieved. Trawls are often characterized 

by slow, steady speeds between 2.5 and 5.5 knots. These speed thresholds were 

determined directly from the distribution of the AIS speed data and correspond to similar 

values obtained from literature  (Lee et al. 2010, Skaar et al. 2011, Alemany et al. 2013, 

Mazzarella et al. 2014).  

Longliner  

Longlining involves the setting of fishing lines (up to 100 km length) equipped with several 

hundred to several thousands of hooks (FAO). Lines can be deployed at various depths 

with the use of floats and horizontal lines extending to deeper w aters. To set the line, the 

vessel travels only slightly slower than its steaming speed while the line is set. After the 

last hook is in the water, the line is left in the water for some hours (ôsoak timeõ). During 

this time, the vessel either drifts slowly with the line or sets other lines in the vicinity. To 

haul the line the vessel reverses and steams back along the line. The whole operation can 

take up to a day. Speed while hauling is kept mostly constant but can vary according to 

catch and number of crew working. The time to set a longline depends on the length of 

the line and the number of crew working it, but the median set time estimated from the 

16 vessels used in our analyses was 6.5 hours. Here a longline set is considered to start 

with setting of  the longline and to end with retrieval of the last hooks. Characteristics used 

for identification of longline sets comprise spatial -temporal movement patterns in a very 

restricted area. 
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Purse seiner 

Purse seines are long nets deployed hanging vertically from floats around schooling fish 

on or near the surface by the vessel or by a separate skiff. To avoid fish escaping the setting 

of the seine needs to happen quickly and is done at high speeds averaging around 10 

knots. Once the net encircles the school completely, the bottom of the net is pulled shut 

and the net hauled. Drifting with the net attached, the fish are then retrieved and 

transferred to the vessel. The duration of this process depends on the amount of catch 

and can vary from one to several hours (Walker & Bez 2010). For the purpose of this work, 

a purse seine set is defined as the time the net is closed around the fish to the end of the 

fish bailing operation when the net is lifted out of the water. During this time the purse 

seine vessel stays more or less stationary and speed over ground is generally slow, ranging 

around 2.5 knots and less. This threshold was determined based on speed distributions of 

the AIS data as well as observations from literature (Bertrand et al. 2005, Bez et al. 2011). 

Data Labeling and Pre -processing  

All vessel tracks were classified and pre-labeled as potential fishing and non-fishing events 

by an expert based on information on fisheries characteristics as obtained from literature, 

analyses of the tracks (speed and movement profiles by gear type, flag, vessel size and 

area of operation), personal interviews with fishermen and fisheries on-board observers 

and comparisons to speed and movement profiles from observer data for the Northeast 

Atlantic. Characteristics include speed over ground, change of direction within a defined 

area, spatial-temporal movement patterns, operational time and duration of the fishing 

event. The testing of the algorithms against expert-labeled data was chosen because 

suitable observer or logbook data for the fleets and time period examined were 

unavailable to us. Expert judgement on vessel behavior based on the aforementioned 

characteristics might be a conservative approach, as some fishing events will be missed. In 

order to improve fishing activity prediction, for each data point we calculated whether it 

occurred during night or day. In order to estimate the amount of sun light available in a 

region of the world during a certain UTC-based time, the R package solaR (Perpiñán 

Lamigueiro 2012) was used, with positive values for sunlight marking the day, zeroes 
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marking the night. To avoid irregular vessel movement patterns very close to shore and in 

port a 10 km boundary around shorelines was established. The calculation required the 

computation of the Haversine distance between each vessel track point and all the points 

in the shoreline data provided by Natural Earth to establish the minimum distance to shore. 

This process is computationally expensive and to improve the quality of the calculation, it 

was decided to use the parallel capabilities provided by the code available under 

https://stackoverflow.com/questions/27697504/ocean -latitude-longitude -point -

distance-from-shore. 

Algorithm Testing  

The algorithms presented here were tested against expert-labeled fishing vessel tracks, 

separating fishing and non-fishing activity based on observations from operational data, 

expert knowledge and comparison to other tracking data. Accuracies presented are based 

on these comparisons. Each algorithm proposed has different assumptions: The Hidden 

Markov Model (HMM) assumes that the user will have part of the data available for 

training, while the Data Mining (DM) and filtering approaches do not require training. 

These differences determine how these approaches are tested: the HMM algorithm 

(applied for traw lers) uses Monte Carlo experiments to measure how it behaves with time 

variation, and the DM approach uses all data available for testing against expert-labeled 

data (used for longliner and purse seiner). For the trawling activity the HMM algorithm 

was tested with a Monte Carlo simulation using the implementation provided by the R 

package DMwR (Torgo 2003). The North Pacific trawler data set was used for this purpose. 

This data was the first data set that was available for development and testing of the HMM 

approach and offered a high variation of vessel behaviors within shorter tracks covering 

one month of data (July 2013). To ensure the applicability of the HMM trained on this data 

set, the HMM was subsequently applied and tested on a second data set containing multi-

year trawler tracks operating in various parts of the ocean on regional and global scale. 

The Monte Carlo Simulation partitioned the data in 20 segments; each of these segments 

was trained with anywhere from 25,000 data to 130,000 points. All tests predicted 100,000 

points in the future. The Monte Carlo simulations did not consider the 10 km threshold, as 

https://stackoverflow.com/questions/27697504/ocean-latitude-longitude-point-distance-from-shore
https://stackoverflow.com/questions/27697504/ocean-latitude-longitude-point-distance-from-shore
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the HMM uses only speed as input. We decided to execute tests with fixed-size windows 

for training and test to avoid possible overfitting.  The DMwR package randomly selects 20 

data windows according to the user specification for training and test data, where the 

entire window is dislocated once the training and testing is do ne, and its respective 

statistical results are stored. The results of the testing are represented as Prediction (F for 

fishing) and Prediction (NF for non-fishing) in Table 2.1 and Table 2.2 and were calculated 

based on Altman & Bland 1994. These two metrics give an estimate of how well the 

algorithm predicts the desired class using unseen data. 
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Table 2.1 Performance measures for the worldwide trawl dataset.  NF stands for probable non-fishing and F for probable fishing events. Sensitivity is related with 

non-fishing detection, and specificity with fishing detection. The column Stat. Diff. Fish Effort shows the t-test statistical comparison (p-value) between the predicted 

fishing effort time calculated from the algorithmõs labels and the expertõs labels. The asterisk indicates a significant difference. 

Track ID  Track Size Accuracy  

Prediction  

(F) 

Prediction 

(NF) Sensitivity  Specificity  

% of Fish. 

Activity  

Stat. Diff. 

Fish. Effort  

1 38,258 0.75 0.47 0.96 0.90 0.71 0.42 0.84 

2 254,323 0.84 0.83 0.85 0.93 0.69 0.70 0.21 

3 93,670 0.83 0.82 0.95 0.99 0.40 0.89 0.11 

4 56,287 0.87 0.89 0.80 0.94 0.69 0.77 0.04* 

5 55,034 0.92 0.51 0.98 0.82 0.93 0.14 0.21 

6 285,407 0.57 0.28 0.93 0.84 0.51 0.55 0.09 

7 101,499 0.76 0.01 1.00 1.00 0.76 0.24 0.32 

Median±SD   0.83±0.11 0.51±0.32 0.95±0.07 0.93±0.07 0.68±0.17   
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Table 2.2 Performance measu res for the 16 longliner vessels in different oceans.  NF stands for probable non-fishing and F for probable fishing events. Sensitivity 

is related with non-fishing detection, and specificity with fishing detection. The column Stat. Diff. Fish Effort shows the t-test statistical comparison (p-value) between 

the predicted fishing effort time calculated from the algorithm's labels and the expert's labels. Two of the vessels could no t be measured because they did not have 

any labeled fishing activity. The asterisk indicates a significant difference. 

Track ID  Track Size Accuracy  

Prediction 

(F) 

Prediction 

(NF) Sensitivity  Specificity  

% of Fish. 

Activity  

Stat. Diff. 

Fish. Effort  

1 7,935 0.46 0.25 0.95 0.35 0.93 0.70 0.29 

2 25,558 0.80 0.87 0.56 0.52 0.88 0.80 0.08 

3 9,642 0.65 0.57 0.85 0.45 0.91 0.71 0.62 

4 35,258 0.89 0.93 0.70 0.71 0.93 0.81 0.67 

5 34,993 0.87 0.89 0.82 0.66 0.95 0.79 0.28 

6 42,566 0.89 0.90 0.83 0.54 0.98 0.88 0.35 

7 25,287 0.76 0.73 0.81 0.59 0.89 0.68 0.67 

8 96,314 0.54 0.48 0.97 0.22 0.99 0.87 0.05* 

9 123,686 0.89 0.90 0.89 0.81 0.94 0.67 0.54 

10 128,668 0.74 0.66 0.96 0.49 0.98 0.75 0.82 

11 2,070 0.54 0.50 0.81 0.20 0.94 0.86 0.80 

12 1,452 0.95  0.95 1.00 0.00 0.00 NA 

13 12,405 0.71 0.43 0.93 0.68 0.82 0.44 0.34 

14 18,169 0.86 0.87 0.80 0.55 0.96 0.83 0.67 

15 6,421 0.99  0.99 1.00 0.00 0.00 NA 

16 2,780 0.88 0.80 0.93 0.89 0.86 0.36 0.30 

Median±SD   0.83±0.15 0.87±0.11 0.57±0.24 0.77±0.21 0.93±0.04   



20 

  

Data Analysis  

HMM and Observation Variable Choice for Trawlers  

Hidden Markov Models (HMM) represent a probability distribution over a sequence of 

points (Ghahramani 2001). It is assumed that an observation at time t was generated by a 

hidden state St. The second assumption is that given the value in StĬ1, the value of St  is 

independent of all previous states to t Ĭ 1. Assuming that the observed variable is defined 

by Yt  in time t, and states St  are defined as classes {ôFõ,ôNõ}, then the Markov Model is 

factored in the following way:  

0ÒὛȡȿὣȡ 0ÒὛ 0ÒὣȿὛ Б 0ÒὣȿὛ ὖὶὛȿὛ ρ  

Where ὖὶὛȿὛ  represents the transition matrix giving the probability of a state 

being changed to another state. In the case of fishing activity, it will represent the 

probability of changing the vesselsõ state from fishing to non-fishing, and vice-versa. This 

transition matrix can be estimated directly from the distribution of fishing and non -fishing 

labels defined in the data set. 0ÒὣȿὛ  represents the probability of an observed variable 

occurring associated with a state St in time t. T represents the last speed read in the data 

set. 

In order to build a successful HMM model it is necessary to define which parameters 

offer t he best chance to identify the correct hidden states (fishing or non -fishing). Since 

speed is a key feature in all ecological work associated with HMMõs of animal movement 

(Peel et al. 2011), our work also implements an HMM based on speed.  

Fig. 2.2 shows the speed distribution for vessels engaged in potential fishing or non -

fishing activities (such as steaming, searching and anchoring). These results are 

comparable to those presented by others for mobile towed gear  (Charles et al. 2014). 
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Fig. 2.2 Speed distribution for trawlers during fishing and non -fishing activities.  The red line represents 

probable non-fishing activity, and the black line probable fishing acti vity. 

 

Data Mining Approach for Fishing Detection of  Longliner  

The same HMM approach cannot be directly applied to the longliner data set as the speed 

distribution  does not follow a clear pattern as seen in the trawler data (Fig. 2.3). Several 

parameters contained in the data were tested as potential classifiers, but none proved 

sufficient to describe fishing and non-fishing activity patterns for longlining.  Therefore, we 

opted to develop an alternative approach sim ilar to what biologists have used in studying 

animal movement tracks. It has been shown that human fishermen tend to show similar 

movement patterns as animal predators simply because this is the most efficient method 

to search for and locate prey (Bertrand et al. 2005). Building on this, we decided to use a 

segmentation technique traditionally applied to animal predators. The Lavielleõs 

segmentation algorithm  (Lavielle 1999, 2005) is widely used by biologists to segment 

animal tracks in order to identify possib le variations in their habitat use. 

The Lavielleõs algorithm finds the best segmentation of a time series assuming that 

it is built  by K segments defined by the user. The algorithm is not originally designed to 

work with GPS coordinates, but instead it wil l segment any regular time series data. Before 
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segmentation the whole track was regularized in time to remove gaps in the GPS readings. 

The regularization assumes equal separation of seven hours between each GPS reading. 

The separation of seven hours was defined based on the average time that longliners spent 

fishing as estimated from the labeled data set. 

Lavielleõs algorithm searches for a minimum contrast estimator in a problem of 

change points estimation, which suggests that Lavielleõs algorithm is a drift detector in a 

time series. The implementation used required the definition of K, which is the number of 

segments desired by the user as algorithm input, and it was estimated as 70 segments 

based on various tests. More information about the implementati on used may be found 

in the adehabitat package (Calenge 2006) in R. 

For each of the segments a second algorithm was used to detect if the segment is 

composed of straight or curved lines. For each segment, the algorithm calculates the 

cosine of the relative angle between two consecutive points and calculates an average for 

all points in the segment. If the average cosine returns a value above 0.8 or below -0.8, it 

indicates that the whole segment is formed by a straight -line movement. All segments that 

contain the majority of their points classified as straight lines receive a label of non-fishing 

activity. The segments presenting curved movements are separated to execute a third 

algorithm to further  filter non -fishing activity. 

Once the curved segments are separated it is possible to analyze each point to 

remove possible non-fishing activity classified as fishing. Since the entire curved segment 

is considered fishing from the straight -line algorithm detection, many non-fishing 

activities will be automatically assumed as fishing. In order to reduce this type of error, two 

other algorithms are combined to extract these false alarms: First-Passage Time algorithm 

(FPT) (Fauchald & Tveraa 2003) and Utilization Distribu tion algorithm (UD)  (Worton 2018). 

The FPT algorithm (Johnson et al. 1992, Fauchald & Tveraa 2003) uses Brownian 

Motion theory to find areas where the patterns appear in a trajectory. According to  

Calenge (2006), òfor a given scale r it is defined as the time required by animals to pass 

through a circle of radius ró. This means that the FPT algorithm searches for the minimum 
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radius r that contains multiple passes of the animal/vessel in the same region. One 

problem with the approach is that, depending on how long the track is, it does not restrict 

the size of r, which could result in a longer search for the correct radius. Fortunately, the 

movement of the vessels inside the curved segments is very restricted, which makes the 

search for r feasible. After some tests, we found that r using 30 different radii uniformly 

distributed varying from 0.1 to 1, offer a n acceptable accuracy for FPT. Fauchald and Tveraa 

(2003) extended the FPT algorithm to compute the variance of the log(FPT), which should 

be high for scales where vessels have multiple passes. As a threshold for our algorithm, if 

the Var(log(FPT)) Ó 0.1 it is a straight line and these points are labeled as non-fishing. 

To reduce possible false alarms, the Utilization Distribution algorithm (UD) (Worton 

2018) was used in addition. The UD is defined as a probability distribution  (Van Winkle 

1975) using only the longitude and latitude features. In order to estimate this distribution, 

a kernel method clustering algorithm is used in the coordinate parameters. The idea is to 

use a bivariate kernel function as a distance metric in each GPS location to find the cluster 

centers. The adehabitat implementation uses by default the normal kernel function, and 

we did not change this parameter. This work uses the UD estimations to correct wrong 

predictions of points wrongly classified as fishing activity to non -fishing activity.  

The combination of FPT and UD within the curved data segments offers an extra 1% 

to 2% accuracy improvement and a reduction of non-fishing activity false alarm comparing 

to the expert labels. 
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Fig. 2.3 Speed distribution for longliners during fishing and non -fishing activities.  The red line represents 

probable non-fishing activity, and the black line probable fishing activity. 

 

Filtering Approach for Purse Seiner Fishing Detection  

Fishing activity detection for purse seiners builds on two assumptions based on literature 

data (see Bez et al. 2011), personal communication with fisheries observers working on 

board of various purse seiners and observations from the AIS data. Firstly, the majority of 

purse seiners do not fish at night, with some exceptions that are not considered here. 

Second, that the fishing pattern consists of two main activity patterns, namely the setting 

of the net at high speeds and the drifting while hauling in the net and retrieving the fish 

at very low speeds. While the setting of the net is a very short activity that may not be 

represented in the data due to insuffi cient satellite coverage, the hauling and bailing can 

take up to several hours and is thus used to detect and classify potential fishing activity. 

Using the abovementioned day/night classifier, possible fishing activity was detected 

using a speed filter for speeds smaller than or equal to 2.5 knots. Fig. 2.4 presents the 

speed distribution for purse seiners, for all positions reported at least 10 km from shore 

and during day. It is noticeable that the majority of pr obable fishing activity happens with 

speeds in the range of 0 up to 5 knots, as indicated by the black distribution, and a second 

distribution peak appears for probable non -fishing activity (around 15 knots) in red. 
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The 2.5 knots speed threshold was chosen based on observations from the AIS data 

and the work of Bez et al. (2011). The filtering -based approach does not require machine 

learning, but the computation of extra features as described in the data pre -processing 

section.  

 

Fig. 2.4 Speed distribution for purse seiners. The red line indicates the probable non-fishing activity labeled 

by the expert, while the black line represents probable fishing activity. This distribution considers only the 

speeds reported by the vessels more than 10 km from shore and during day time 

 

Results  

Trawler  

As presented before, the solution proposed for trawling vessels is based on the HMM 

algorithm. As HMMs assume that the data is time dependent the analysis must consider 

the order of the points. Monte Carlo simulations are the only repeatable testing method 

that does not change this order. The objective of the repeated test is twofold: 1) to assess 

the HMM performance, and 2) to identify how many data points a re required to correctly 

predict potential fishing activity.  

Fig. 2.5 presents the Monte Carlo average results of the accuracy, recall and Area 

Under the Curve (AUC) for each class (fishing and not fishing). The HMM keeps the same 
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average accuracy independently on the number of points available for training (close to 

88%). The algorithm also improved the recall (defined as the percentage of relevant, 

correct fishing detections retrieved by the algorithm) of the fish ing activity from 58% to 

above 85% when the algorithm was presented with more data for training, but also 

reduced the prediction of non -fishing activity from above an average 95% to 87% at the 

same time. This increase in the number of correct predictions of probable fishing activity 

indicates that the HMM may be overfitting, with higher number of points available for 

training. The overfitting aspect of the model can only be evaluated with tests on a different 

data set. 

 

Fig. 2.5 Accuracy/Recall measured for trawlers with a Hidden Markov Model using a Monte Carlo 

Simulation.  Results do not consider the 10 km threshold. 

 

Despite the fact that the Monte Carlo simulations are a good indicator of the 

algorithmõs performance, they do not give the full information about how the algorithm 

will work with future data sets. To confirm the number of points necessary for training we 

tested the HMM against data from other parts of the world. The training was done on the 

2013 North Pacific data, which contains 25,000 points. The test data was derived from the 

seven vessels operating across all oceans and years. The algorithm showed low accuracy 

results when trained with more than 25,000 data points, due to overfitting. This lies in the 
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nature of t he Monte Carlo test methodology: the more data available for training also 

means less data for testing, which reduces the variance (Fig. 2.4). To avoid overfitting, it is 

advisable to train the HMM with fewer data points to increase its generalization. The 

results indicate that the HMM can be used to locate probable fishing activity for trawlers 

using tracks from different areas of the world with  a median accuracy of 84%. There was 

little difference in accuracy for the two subtypes of trawling, pelagic/midwater (average 

accuracy 75%) and bottom (average accuracy 80.6%). The sensitivity to detect probable 

fishing activity (column Sensitivity in Table 2.1) shows a median of 93% and the respective 

specificity (the capability to identify probable non -fishing activity) a median of 68%. 

Fig. 2.6 presents the results for track number two from  Table 2.1, containing 254,323 

points with a total accuracy of 84% and 69% specificity to detect probable fishing activity, 

as well 93% sensitivity of probable non-fishing activity detection.  As shown by Altman & 

Bland (1994), the sensitivity and specificity only concern the current modelõs capability to 

classify the test instances, but they give no information about future algorithm 

performance. With support of the information provided in columns Predictio n (F) and 

Prediction (NF), it is possible to confirm that the algorithm will have high probability to 

keep the same performance with unseen data. 
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Fig. 2.6 Comparison of the Hidden Markov Model algorithm results to the expert la bels for trawler 

number 2 in Table 2.1. Matching results for fishing activity presented in blue, expert labels in green and the 

algorithmõs fishing activity predictions in red. Empty circles represent non-fishing activity as identified by 

algorithm and expert. Map data by Natural Earth. 

 

Longliner  

The 16 longliner vessels were tested independently as a mathematical model was fit to the 

data set and all the data was used for testing. The longliner database contains an average 

of 76% of movement patterns dedicated to assumed fishing activity. Table 2.2 summarizes 

the results of the longliner detection. In general, the median algorithm performance is 

83%. As previously presented, the columns Prediction (F) and Prediction (NF) shown in 

Table 2.2 indicate how well the algorithm will perform on unknown data sets.  

Fig. 2.7 and Fig. 2.8 illustrate the results of the fishing prediction for tracks 8 and 1 

in Table 2.2 respectively. These tracks were chosen because these vessels presented the 

highest and lowest accuracy results in the longliner data. 

The last column presented in Table 2.1 and Table 2.2 shows the results of a t-test 

between the algorithmõs predicted Fishing Effort (FE) and the expertõs labels. The FE is a 

measure to estimate how much time the vessel invests in fishing activity and is calculated 

in two steps: 1) periods of fishing activity for each vessel are tagged at the moments when 
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a change from non-fishing activity to fishing and vice -versa occurred, and 2) for each 

individual period of fishing the time difference between the first and last AIS messages is 

calculated. A statistical difference between expert and prediction labels (p < 0.05) occurred 

only in one case (p = 0.05, Table 2.1 and Table 2.2). This indicates that the algorithm is 

capturing the expert labeling for nearly all of the vessels evaluated. Two of the vessels 

were not part of the analyses as they did not have any fishing activity labeled by the expert. 

 

 

Fig. 2.7 Comparison of algorithm results to expert labels for longliner number 8 from Table 2.2 

(accuracy 89%).  Matching results for fishing activity presented in blue, expert labels in green, and the 

algorithmõs fishing activity predictions in red. Empty circles represent non-fishing activity as identified by 

algorithm and expert. Map data by Natural Earth. 
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Fig. 2.8 Comparison of algorithm results to expert labels for long liner number 1 from  Table 2.2 

(accuracy 46%).  Matching results for fishing activity presented in blue, expert labels in green, and the 

algorithmõs fishing activity predictions in red. Empty circles represent non-fishing activity as identified by 

algorithm and expert. Map data by Natural Earth. 

 

Purse Seiner 

Table 2.3 illustrates the results for the Purse Seiner filtering approach. The total median 

accuracy of the model is 97%, with a standard deviation of 1%. The filter median prediction 

capability of probable fishing and non -fishing activities is 97% and 94%, respectively. The 

main difference is in the sensitivity measure associated with probable non-fishing activity, 
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with a median of 99% and a standard deviation of 1%. The specificity associated with 

probable fishing activity detection is around 71% with a standard deviation of 17%.  

All these results indicate that the model is highly accurate to detect probable fishing 

activity when comparing to expert labels. The FE metric was not estimated for purse seiners 

as due to incomplete satellite coverage the total purse seining activity from starting to set 

the net to the  finishing of the haul is rarely seen completely. Subsequently the filtering was 

designed to capture the hauling portion of the fishing activity only. This makes the FE 

metric unreliable to estimate the correct probable fishing time intervals. Instead, we 

present the AUC which is a common metric used in ML to inform on algorithm  

performance. The median AUC for the purse seiner is 0.85, with a standard deviation of 

0.08, which also indicates the model is reliable to identify the minority class. Fig. 2.9 

presents an example of the results found with the filtering technique proposed and 

corresponds to track number six in Table 2.3. The track contains 51,545 points and the 

filtering algorithm reached 97% total accuracy with nearly all probable fishing activity 

detected. The detection of false alarms is based on the expertõs labeling strategy, which 

classified speeds higher than 2.5 knots as fishing. 
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Table 2.3 Results for the purse seiner filtering approach.  The seven vessels were randomly chosen from multiple parts of the world. NF stand for probable non -

fishing and F for probable fishing activity. Sensitivity is related with non-fishing detection and specificity with fishing detection.  

Track ID Track Size Accuracy  Predicti on (F) Prediction (NF)  Sensitivity  Specificity  AUC % of Fish. Activity  

1 43,457 0.95 0.02 1.00 0.95 0.82 0.89 0.05 

2 170,972 0.98 0.94 0.98 1.00 0.71 0.85 0.05 

3 43,369 0.96 0.95 0.96 1.00 0.36 0.68 0.02 

4 18,122 0.94 0.76 0.97 0.96 0.79 0.88 0.13 

5 38,596 0.99 0.91 1.00 1.00 0.89 0.94 0.03 

6 51,545 0.97 0.97 0.97 1.00 0.65 0.83 0.05 

7 33,484 0.97 0.96 0.97 1.00 0.64 0.82 0.05 

Median±SD   0.97±0.01 0.97±0.01 0.99±0.01 0.94±0.34 0.71±0.17   
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Fig. 2.9 Comparison of algor ithm results to expert labels for purse seiner number 6 from  Table 2.3.  

Matching results for fishing activity presented in blue, expert labels in green, and the algorithmõs fishing activity 

predictions in red. Empty circles represent non-fishing activity as identified by algorithm and expert. Map data 

by Natural Earth. 

 

Discussion  

The aim of this work was to develop automated methods to detect potential fishing 

behavior from different gear types based on AIS track data. As fishing activity for each 

gear type has its unique pattern and characteristics (compare Fig. 2.1), we developed 

separate approaches tailored to the specific challenges associated with systematic 

differences in vessel behavior, speed distribution, and fishing time.  


































































































































































































































































































































