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Abstract

Location theory is a topic widely researched in mathematics and computer science.

The goal of this thesis will be to propose a new method for choosing vertices on a

graph “optimally”, in terms of spread, by generalizing concepts from music theory

using physical interpretations. The sets from music theory are call maximally even

and they have nice properties that one would expect to have when dealing with sets

that are spread apart. However, these sets are only defined for directed cycles, and

hence we must find a way to generalize the definition of maximally even. We introduce

well-distributed sets as sets of charged particles repelling one another on a graph. We

first show that this is indeed an extension of maximally even, after which we analyse

well-distributed sets and classify them completely for some special families of graphs.
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Chapter 1

Introduction

1.1 Location Theory

Location theory is a branch of computational geometry that, at its core, deals with the

following question: given a graph G and a positive integer k, what is the optimal way

to choose k vertices of G with some goal in mind and possibly under some restrictions?

One example of this is the classic facility location problem [9]. In this formulation you

must choose the location of k facilities (vertices) in G which minimizes the sum of

the distances of each other vertex to its nearest facility. This type of problem might

be looked at when deciding where to build hospitals, schools, fire departments, etc.,

in a large city. Another proposed solution is dominating sets [1]. A dominating set

is a set of vertices in a graph such that, given any other vertex on the graph, it is

adjacent to a vertex in the set. We will look at these two examples more closely. (In

general, we follow “Graph Theory and Its Appliations” by Jonathan L. Gross and

Jay Yellen for graph terminology [8].)

Definition 1.1. Let G be a graph and S ⊆ V (G). For any vertex v ∈ V (G), define

the distance from v to S:

distG(v, S) = min{distG(v, u) : u ∈ S}

Note that distG(v, S) = 0 if and only if v ∈ S.

Remark 1.1. This definition allows for both directed and undirected edges. In prac-

tice, distG(v, S) is the fastest route from v to S.

Definition 1.2. Let G be a graph and S ⊆ V (G). The total distance from V (G) to

S is defined as:
∑

v∈V (G)

distG(v, S)

We can now formalize the facilities location problem.

1
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Figure 1.1: All facilities location solutions of size 5 in C12

Definition 1.3. Let G be a graph of order n and let k ∈ {0, 1, . . . , n}. We say the

vertex set S ∈ V (G) is a facilities location solution in G if:

1. |S| = k, and

2. For all S ′ ∈ V (G), if |S ′| = k then the total distance from V (G) to S ′ is at least

the total distance from V (G) to S.

In other words, S is a facilities location solution if it minimizes the sum of distances

from vertices to S among all sets of the same size. Facilities location solutions some-

times seem impractical. Many solutions yield facilities that would never be reached,

and facilities that would become crowded by the number of vertices that are closest

to it.

Example 1.1. LetG = C12, the undirected cyclic graph on 12 vertices, and let k = 5. A

5-facilities location solution in G would be any set S of size 5 where the total distance

from V (G) to S is 7, since there will be 7 unselected vertices (whose distance to S

must be at least 1) and it is possible for each to be of distance 1 away from S. Figure

1.1 shows all possible 5-facilities location solutions in C12, up to rotational and mirror

symmetry, with the chosen sets coloured black: although these are all solutions, the

second row of sets look more evenly spaced apart than the first, due to the sets in the

first row each having adjacent vertices. However, from a facilities location point of
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view, all solutions are equally good. Hence, facilities locations might not necessarily

be the best way to define evenly spaced sets.

Next we will formally define a dominating set, using the notation NG[S] to be the

closed neighbourhood of a subset S of vertices in G:

Definition 1.4. A set S ⊆ V (G) is a dominating set if NG[S] = V (G).

Example 1.2. All of the sets in Figure 1.1 are also dominating sets. Thus, for the

same reason as mentioned before with facilities location sets, dominating sets might

not be the best way to define even spacing.

The question that arises from these examples is: given G and n, what is the best

way to choose k vertices of G in such a way that the vertices are spread apart as

much as possible? Obviously there is some subjectivity to this question. Certainly

the solutions to a facilities location problem could be perceived as the best. However,

the previous example would lead us to believe that there is a stronger condition that

needs to be met.

1.2 A Concept from Music Theory

We seemingly digress now and talk about scales in music theory (but for good reason,

as we shall see). The keys of a piano form a familiar pattern to musicians. The twelve

fundamental notes that make up the chromatic scale are laid out on the piano like

so, starting at middle C:

From left to right these notes are: C,C#, D,D#, E, F, F#, G,G#, A,A#, B. The

fundamental pitch frequencies which give rise to each note (given in Hz, i.e. cycles

per second), rounded to the nearest integer, are: C : 262, C# : 277, D : 294, D# :



4

3

2

1
0

11

10

9

8

7
6

5

4

Figure 1.2: A cyclic representation of a piano

311, E : 330, F : 349, F# : 370, G : 392, G# : 415, A : 440, A# : 466, B : 494. The rest

of the frequencies on a piano (or any instrument for that matter) are related to one

of the fundamental frequencies by some power of 2. In music theory, multiplying a

frequency by 2 is the same as playing the note an octave above, which to most people

sounds “the same”. If a frequency is 2n times another frequency (n ∈ Z), the notes

are n octaves apart. This relation is an equivalence relation, and so every octave of

a pitch receives the same letter representation. One could represent the chromatic

scale as Z12 = Z/12Z by mapping the letters C,C#, . . . , B to the values 0, 1, . . . , 11

respectively. Then, instead of powers of 2, pitches would be related to one of the 12

fundamental frequencies via adding or subtracting some multiple of 12. If we treat

the chromatic scale this way, we could represent the piano as the directed cyclic graph

of order 12, which we will denoted C→
12 , as shown in Figure 1.2. Given this labelling,

we can see that the white vertices represent the white keys on a piano, and the black

vertices represent the black keys. Notice the similarity between this graph and the

very last graph in Figure 1.1. They are the same (under a rotation).

Remark 1.2. In general, chromatic scales of any positive integer size can be con-

structed under certain rules and customs. A general equal tempered chromatic scale

of size n, with a root frequency r Hz, is comprised of the following set of fundamental

frequencies:
{

r · 2k/n : k ∈ {0, 1, . . . , n− 1}
}

Given a general chromatic scale, we could represent it as a directed cyclic graph of
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order n, just as we have done with the “usual” chromatic scale with 12 notes. (The

reason the standard chromatic scale contains 12 notes is, in part, due to the good

approximations of “small” fractions.

In music theory there is a notion of a maximally even set of tones in the chromatic

scale. This term was first defined by John Clough and Jack Douthett in their paper

“Maximally Even Sets” [3]. They reconstruct the chromatic scale just as we have

above, and introduce some necessary terminology. The following definitions here

are restatements of Clough and Douthett’s definitions, with the goal of re-wording

and adapting notation more attuned to graph theory. Some of these are familiar to

mathematicians, and others to musicians. (Throughout this thesis, we will take N to

be the positive integers {1, 2, . . . }.)

Definition 1.5. The chromatic universe of size n ∈ N, denoted Un, is the set

{0, 1, . . . , n − 1}. Given such a universe, and given a, b ∈ N ∪ {0} such that 0 ≤
a, b ≤ n − 1, the chromatic distance from a to b in Un is the smallest non-negative

integer congruent to (b− a) (mod n).

To reiterate Remark 1.2, we can represent the chromatic universe Un as C→
n . With

this representation, chromatic distance is equivalent to graph distance.

Definition 1.6. Given n ∈ N, k ∈ N ∪ {0} with k ≤ n, a scale of size k in Un is any

subset of Un of size k.

Continuing with our graphical interpretation, a scale is just a vertex subset. The

set Sk ⊆ V (C→
n ) will stand for a scale of size k. We will label and order Sk as the set

{vs1 , vs2 , . . . , vsk−1
} with s0 < s1 < · · · < sk−1.

The next definition introduces a new distance that will be important for defining

maximal evenness. From here on out we will use the graph theoretic notation.

Definition 1.7. Given C→
n , Sk, the scale distance from vsi to vsj is the smallest

non-negative integer congruent to (j − i) (mod k).

Example 1.3. Recall Figure 1.2. If we choose Sk as the set of black keys, we can think
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of the scale distance as the graph distance in the following graph:

3

1

10

8

6

In music terms, the chromatic distance between notes is the number of ascending

half steps needed to get from the first note to the second. The scale distance would

be the number of ascending note steps in the scale.

The next definition considers the relation between general distance and chromatic

distance.

Definition 1.8. Given C→
n and Sk, the spectrum of chromatic distances for a given

scale distance d is a set of chromatic distances, denoted < d >, defined as:

< d >= {distCn
(vi, vj) : vi, vj ∈ Sk, and the scale distance from vi to vj is d}

If the spectrum of chromatic distances for d is d1, d2, . . . , dr, we write < d >=

{d1, d2, . . . , dk}. Note that trivially < 0 >= {0}, and we thus exclude it from any

considerations.

Example 1.4. Recall Figure 1.2 once again with the scale set being the black keys (this

set is a well known scale in music, called the pentatonic scale). The scale distances in

this set are 1, 2, 3 and 4. The spectrum of chromatic distances for each scale distance

is:

< 1 > = {2, 3}
< 2 > = {4, 5}
< 3 > = {7, 8}
< 4 > = {9, 10}
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Example 1.5. Here is another set of 5 vertices:
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The spectra of chromatic distances in this case are:

< 1 > = {1, 2, 3, 4}
< 2 > = {3, 5, 6, 7}
< 3 > = {5, 6, 7, 9}
< 4 > = {8, 9, 10, 11}

Notice the relation between the spectra and the evenness of these sets. In the

first example the set appears to be spread apart as evenly as possible on the cycle.

This gives rise to spectra each consisting of two consecutive positive integers. In the

second example the set appears to be clumped together and not well spread apart,

with the spectra each of size 4 and not necessarily with consecutive integers. This

observation motivates the next definition.

Definition 1.9. Given C→
n and Sk, we say Sk is maximally even in C→

n if each

spectrum of general distances corresponding to a specific distance is a single positive

integer, or two consecutive positive integers.

The pentatonic scale (see Figure 1.2) is an example of a maximally even set, as we

have shown in Example 1.4. The set in Example 1.5 was not maximally even. This

is consistent with the intuition that the pentatonic scale is evenly spaced, while the

clumps of vertices in Example 1.5 are not.

The following fundamental theorems all proven by Clough and Douthett [3].
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Theorem 1.1 (Clough & Douthett). Given a chromatic universe C→
n and k ∈

{0, 1, . . . , n}, there exists a maximally even set of size k.

Theorem 1.2 (Clough & Douthett). Given a chromatic universe C→
n , if Sk =

{vs0 , . . . , vsk−1
} and S ′

k = {vt0 , . . . , vtk−1
} are maximally even sets of the same size,

then there exists c ∈ {0, 1, . . . , n − 1} such that vsi + c = vti for all 0 ≤ i ≤ k − 1.

That is, any two maximally even sets of size k are translates of one another.

Theorem 1.3 (Clough & Douthett). Given a chromatic universe C→
n and a maxi-

mally even set Sk, the complement V (C→
n ) \ Sk is also a maximally even set.

These theorems tell us that for any directed cycle C→
n , there is a unique maximally

even set (up to symmetry) of each size, and the complement of one such set is another

such set.

Example 1.6. Figure 1.3 gives all the maximally even sets (up to symmetry) in C→
12 .

Many of these sets correspond to well known musical scales (or chords, if played

simultaneously), and hence maximally even sets give rise to “good” sounding scales

and chords.

Now we will circle back to graph theory. Choosing sets of vertices on graphs in

such a way that they are spaced out as much as possible is an important practical tool

in many areas of mathematics. We have explored the facilities location problem, as

well as dominating sets, and found similar issues with both. The difference between

these sets and maximally even sets is that maximal evenness is concerned with the

spacing of vertices on a global scale. Every pair of vertices is taken into account

when finding maximally even sets. On the other hand, facilities location solutions

and dominating sets are only concerned with some local property, meaning vertices

can still be “clumped together”, as seen in Example 1.1. This motivates us to try

and generalize maximal evenness to arbitrary graphs.

1.3 Well-Distributed Sets in Graphs

We want to extend the notion of maximally even to arbitrary graphs. However, the

concept of scale distance is not well defined on arbitrary graphs. Let G be a graph,
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tritone augmented triad

diminished 7th pentatonic whole tone diatonic

diminished

chromatic

Figure 1.3: All maximally even sets in C→
12 , up to a rotation.
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S ⊆ V (G), and v1, v2 ∈ S. There could be more than one shortest path from v1 to v2,

and each path could contain a different number of vertices in S. If this is the case,

what would be the analogous version of the scale distance from v1 to v2? Instead

of trying to deal with this issue, we are going to try a different approach altogether,

with a new motivation from physics.

Imagine a physical system in which some number of equally charged particles are

placed in some space. The particles will repel away from each other until the system

is stable. A stable state is one where, given any particle, the repelling forces from

all other particles on the given particle have a net value of zero. One example of

such a system is known as Thompson’s problem in which one tries to understand how

electrons would behave around the nucleus of an atom [11]. Thompson proposed the

idea of a “plum pudding” model of the atom, in which electrons moved freely inside a

sphere. The question became: how would a number of electrons spread apart inside a

sphere under the inverse square law? Of course, this is no longer a relevant question

in the structure of atoms, as newer models of the atoms have been pursued. However,

the placement of equally charged particles in a bounded space is still of interest.

We can ask a similar question in a discrete space. Suppose we have a graph G,

where we treat V (G) as the potential positions for a set of particles. Then given such

a set, how can we place it on the graph in such a way that the total energy of the

system is minimized? Let us be precise as to what this means first:

Definition 1.10. Let G be a graph (directed or undirected) and let S ⊆ V (G). The

total energy of S in G is defined as:

E(G,S) =
∑

vi,vj∈S,i 6=j

1

distG(vi, vj)
. (1.1)

This definition is not new by any means. The only differences between this and the

total energy of an electromagnetic system are (a) the space is discrete, and dependent

in G, (b) all of the masses/charges are treated as the same normalized values, and (c)

for each pair vi, vj, we consider {v1, v2} and {v2, v1} as separate. We do this to allow

one definition for both directed and undirected graphs.

Example 1.7. Consider the following graph G:
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1

2

3 4 5 6

Suppose we pick two different sets of vertices, S1 = {1, 2, 3} and S2 = {1, 4, 6}.

1

2

3 4 5 6

1

2

3 4 5 6

S1 S2

It certainly looks like the vertices in S2 are more spaced out than the vertices in S1.

Let us compare their energies.

E(G,S1) =
1

distG(1, 2)
+

1

distG(1, 3)
+

1

distG(2, 1)

+
1

distG(2, 3)
+

1

distG(3, 1)
+

1

distG(3, 2)

=
1

1
+

1

1
+

1

1
+

1

1
+

1

1
+

1

1

= 6

E(G,S2) =
1

distG(1, 4)
+

1

distG(1, 6)
+

1

distG(4, 1)

+
1

distG(4, 6)
+

1

distG(6, 1)
+

1

distG(6, 4)

=
1

2
+

1

4
+

1

2
+

1

2
+

1

4
+

1

2

=
5

2

So S2, the set that appears to be more spread apart, has a lower energy in this case.

Now that we have a better understanding of the total energy of a vertex set, we

can define what it means for a subset of vertices to be well-distributed in a graph.
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Definition 1.11. Given a graph G, the minimum k-set energy in G is defined as:

E(G, k) = min {E(G,S) : S ⊆ V (G), |S| = k} (1.2)

Definition 1.12. Let G be a graph and let S ⊆ V (G) with |S| = k. We say S is

well-distributed in G if E(G,S) = E(G, k).

Remark 1.3. It turns out that, in Example 1.7, S2 was in fact well-distributed.

We should look at some more examples to further justify this definition.

Example 1.8. Let P be an undirected path of length n:

0 1 2 n− 1

Clearly P has exactly one well-distributed set of size 2, i.e. {0, n− 1}. Furthermore,

any well-distributed set of size at least 2 must contain the set {0, n− 1}: If we think

of the set as charged particles, it makes sense that the leftmost particle would be

pushed to the left end of the path, and similarly for the rightmost particle, as such a

choice would drive down the energy.

As a quick proof, suppose the leftmost particle was in position i > 0. We could

make a new set by replacing this particle with one in position 0. The total energy

would only change by the pairs including the leftmost vertex, and those distances

must all increase (and hence the reciprocals decrease). Thus, the leftmost particle

must be in position 0. Similarly, the rightmost particle must be in position n− 1.

What would be a well-distributed set of size 3? We need a j such that the set

{0, j, n − 1} is minimized in P . Looking ahead, Lemma 2.2 will tell us that value

must be n−1
2

if n is odd, or n−1
2

± 1
2
if n is even. Once |S| > 3 it becomes much more

difficult to check if S is well-distributed.

Let us consider a similar example where we add directions to the edges.

Example 1.9. Let P be a directed path of length n:

0 1 2 n− 1
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Let S = {i1, i2, . . . , ik} ⊆ V (P ) where ij < ij+1. Notice that distP (ia, ib) = ∞
whenever a > b, meaning 1

distP (ia,ib)
= 0. So if we let Pu be the undirected “version”

of P , then E(P, S) = 1
2
E(Pu, S). Consequently, S is well-distributed in P if and only

if S is well-distributed in Pu.

Remark 1.4. The result from Example 1.9 only works because we look at reciprocals

of distances instead of just distances themselves. If we had instead defined well-

distributed sets as those that maximize the sum of all distances, any set of size at

least 2 on P would have been well-distributed, since the sum of distances would be

infinity.

Here is another example that justifies why we look at minimizing the sum of

reciprocals of distances, rather than maximizing distances themselves:

Example 1.10. Consider a graph G with 3 components: G1, G2, and G3 like so:

If we choose any set of size 3, with each vertex in a different component of G, the

resulting total energy will be zero. Thus, any such set is well-distributed. This also

implies that any set of size 3 with at least 2 vertices in the same component is not

well-distributed, since the total energy will be greater than zero. However, if we took

the sums of distances, both cases would yield ∞.

Example 1.10 gives rise to the following result:

Proposition 1.1. Let G be a graph with k components and let S ⊆ V (G) be well-

distributed in G. Then for any component Gi ⊆ G, S ∩ V (Gi) is well-distributed in

Gi. Furthermore:

1. If |S| ≤ k then |S ∩ V (Gi)| ≤ 1 for all components Gi ⊆ G.

2. If |S| ≥ k then |S ∩ V (Gi)| ≥ 1 for all components Gi ⊆ G.

Proof. Let S ⊆ V (G) be well-distributed in G and Gi ⊆ G be a component of G.

Suppose, to the contrary, that S ∩ V (Gi) is not well-distributed in Gi. Build S ′ from

S by replacing the subset S ∩ V (Gi) with a subset of the same size that is well-

distributed in Gi. It is clear that, if G1, G2, . . . , Gk are the components of G, then
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E(G,S) =
∑k

j=1 E(Gi, S ∩ V (Gi)) since 1

distG(v1,v2)
> 0 only when v1 and v2 are in

the same component. It follows that E(G,S ′) < E(G,S), contradicting our choice of

S. Therefore S ∩ V (Gi) is well-distributed in Gi.

Furthermore, if |S| ≤ k then E(G,S) = 0 precisely when all vertices in S are

in different components. Thus, well-distributed sets are those with each vertex in a

different component.

On the other hand, if |S| ≥ k and there is some component Gi such that S ∩
V (Gi) = ∅, then by pigeonhole principle there must be another component Gj con-

taining at least 2 vertices in S. Construct S ′ from S by removing a vertex in Gj

and adding a vertex in Gi. Then |S ′| = |S| and E(G,S ′) < E(G,S), contradicting S

being well-distributed in G.

There is another result hidden in Example 1.8. We mentioned how, for well-

distributed sets on a path, the leftmost and rightmost vertices in the set must be the

endpoints. In general, if a vertex in a well-distributed set is a cut vertex then there

should be a vertex from the well-distributed set in each component of G− v.

Proposition 1.2. Let G be a graph, S ⊆ V (G) be well-distributed, and v ∈ S.

Suppose v is a cut vertex of G and G1, G2, . . . G` are the components of G− v. Then

1. |S| > `, and

2. Gi ∩ S 6= ∅ for each i ∈ {1, 2, . . . `}.

Proof. Suppose G,S, v,G1, G2, . . . G` are defined as in the proposition. Notice that if

|S| ≤ ` then there must be at least one i such that Gi ∩ S = ∅. Thus, it is enough to

show the second condition is true.

Suppose to the contrary that Gi ∩ S = ∅ for some i ∈ {1, 2, . . . `}. Let u ∈ V (Gi).

Consider the set S∗ constructed from S by replacing v with u. Let vj ∈ S, and

Gj be the component of G − v containing vj. Since v is a cut vertex of G, any

path from vj to u must include v. Thus, distG(vj, u) > distG(vj, v). Consequently,

E(G,S∗) < E(G,S), contradicting S being well-distributed. Therefore, Gi ∩ S 6= ∅
for all i ∈ {1, 2, . . . `}.

This result can help us rule out sets when asking if they are well-distributed. For

example, none of the sets in Figure 1.4 can be well-distributed.
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1
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3 4 5 6

1

2

3 4 5 6

1

2

3 4 5 6

Figure 1.4: Sets that cannot be well-distributed due to Proposition 1.2

We have talked about maximally even sets defined on cyclic graphs. Then we

introduced a new type of set called well-distributed. Both definitions give rise to sets

which agree with our intuition of “spread apart”. However, it remains to show that

well-distribution is indeed a generalization of maximally even.



Chapter 2

Equivalence of Definitions for Cycles

In the previous section we defined well-distributed sets on graphs and gave enough

examples to justify the definition. What is important to show, however, is that well-

distributed sets, when restricted to directed cycles, are precisely maximally even sets.

In fact, Douthett showed this to be true in his paper “The Theory of Maximally

and Minimally Even Sets, the One-Dimensional Antiferromagnetic Ising Model, and

the Continued Fraction Compromise of Musical Scales” [6]. This section will be

dedicated to restating and reproving this theorem. The process, along with the in-

termediate results, will be similar, but with more rigour and with a graph theoretic

approach. We will also generalize Douthett’s result to undirected graphs, which are

the graphs we are primarily interested in.

2.1 Directed Cycle Equivalence

We will state the theorem now then work towards proving it by the end of the chapter.

Theorem 2.1 (Douthett). Let C be a directed cycle and S ⊆ V (C). S is maximally

even in C if and only if S is well-distributed in C.

Our plan for proving this result will be as follows:

1. Represent the well-distributed sets on a cycle as an optimization problem, where

the function to be minimized is the total energy.

2. Create a new optimization problem from the original by relaxing the constraints,

that is, by removing some of the restrictions.

3. Show that maximally even sets give rise to solutions of the generalized opti-

mization problem.

4. Use this to show that maximally even sets are the precise solutions of the original

optimization problem.

16
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Remark 2.1. This process will be analogous to a common technique, called LP-

relaxation, in solving integer programming problems. Suppose you are given an opti-

mization problem with integer parameters. Make another optimization problem with

the same optimizing value and restrictions but allow real solutions instead of integer

ones. If you find integer solutions to the new problem, they must also be solutions to

the original problem!

First, recall the notation from Section 1.2. Denote C→
n as the directed cycle on n

vertices with V (C→
n ) = {v0, v1, . . . , vn−1} so that there is an edge from vi to vi+1 for

all 0 ≤ i < n− 1 and an edge from vn−1 to v0.

Now let us define the optimization problem for a fixed n and k.

min z = E(C→
n , S) (2.1)

such that

S = {vs0 , vs1 , . . . , vsk−1
} ∈ V (C→

n )

s0 < s1 < · · · < sk−1

distC→
n
(vs0 , vs1) + distC→

n
(vs1 , vs2) + · · ·+ distC→

n
(vsk−1

, vs0) = n

distC→
n
(vs0 , vs2) + distC→

n
(vs1 , vs3) + · · ·+ distC→

n
(vsk−1

, vs1) = 2n
...

...
...

distC→
n
(vs0 , vsk−1

) + distC→
n
(vs1 , vs0) + · · ·+ distC→

n
(vsk−1

, vsk−2
) = (k − 1)n.

We first need to show that these restrictions on the distances are what we want.

Lemma 2.1. Given C→
n and Sk, the following equality holds for all 1 ≤ i ≤ k − 1:

distC→
n
(vs0 , vsi) + distC→

n
(vs1 , vs1+i

) + · · ·+ distC→
n
(vsk−1

, vsi−1
) = i · n

Proof. For the following, all subscripts are modulo k:
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distC→
n
(vs0 , vsi) + distC→

n
(vs1 , vs1+i

) + · · ·+ distC→
n
(vsk−1

, vsi−1
)

=
i−1
∑

j=0

(

distC→
n
(vsj , vsj+1

)
)

+
i
∑

j=1

(

distC→
n
(vsj , vsj+1

)
)

+ · · ·+
k−1+i−1
∑

j=k−1

(

distC→
n
(vsj , vsj+1

)
)

=
i−1
∑

j=0

(

distC→
n
(vsj , vsj+1

) + distC→
n
(vsj+1

, vsj+2
) + · · ·+ distC→

n
(vsj+(k−1)

, vsj+k
)
)

=
i−1
∑

j=0

n

=i · n

Notice that (2.1) is just another way to represent the problem of finding well-

distributed sets on cycles. Indeed, Lemma 2.1 shows that the equality conditions of

(2.1) follow from the fact that Sk is a subset of vertices in C→
n ordered in a certain

way. So (2.1) could simply be written as follows:

min z = E(C→
n , S)

such that

S = {vs0 , vs1 , . . . , vsk−1
} ∈ V (C→

n )

s0 < s1 < · · · < sk−1.

The extra conditions are put there so that we can create a “generalized” optimization

problem. Consider this new problem, for a fixed n and k ≤ n:

min z =
k−1
∑

i,j=0,i 6=j

1

di,j
(2.2)

such that

d0,1 + d1,2 + · · ·+ dk−1,0 = n

d0,2 + d1,3 + · · ·+ dk−1,1 = 2n
...

...
...

d0,k−1 + d1,0 + · · ·+ dk−1,k−2 = (k − 1)n

di,j ∈ N.
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What we mean by “generalized” is that di,j does not necessarily have to represent

a distance. However, it is clear by Lemma 2.1 that, for a given C→
n and Sk, we

could map distC→
n
(vsi , vsj) to di,j and the resulting list [di,j]

k−1
i,j=0,i 6=j would satisfy the

constraints of (2.2). Thus, it makes sense to call (2.2) a generalization of (2.1).

Before continuing towards proving the main result, we need a lemma which helps

explain the nature of the total energy equation:

Lemma 2.2. Let 1 < a ≤ b, then for any α > 0, 1
aα

+ 1
bα

< 1
(a−1)α

+ 1
(b+1)α

Proof. Let 1 < a ≤ b. Let f(x) = x−α + (a + b − x)−α for x ∈ (0, a + b). Then

f ′(x) = α
(

(a + b − x)−α−1 − x−α−1
)

. So f ′(x) < 0 if x < a+b
2

and f ′(x) > 0 if

x > a+b
2
. Thus, f is a strictly decreasing function for x ∈

(

0, a+b
2

)

. In particular,

a−α+ b−α = f(a) < f(a−1) = (a−1)−α+(b+1)−α, which proves the inequality.

Now we can prove the key lemma towards the theorem:

Lemma 2.3. Let D = [dj,j+i]
k−1,k−1
i=1,j=0 satisfy the constraints to (2.2). Then D is a

solution set to (2.2) if and only if |dj1,j1+i − dj2,j2+i| ≤ 1 for all 1 ≤ i ≤ k − 1, 0 ≤
j1 < j2 ≤ k − 1.

Proof. Suppose D is a solution set to (2.2). Now suppose, to the contrary, there was

some i, j1 and j2 such that |dj1,j1+i − dj2,j2+i| > 1. Assume without loss of generality

that dj1,j1+i < dj2,j2+i. Then by Lemma 2.2 we know that 1
dj1,j1+i+1

+ 1
dj2,j2+i−1

<

1
dj1,j1+i

+ 1
dj2,j2+i

. So define the new listD∗ =
[

d∗j,j+i

]k−1,k−1

i=1,j=0
by copyingD and replacing

the elements dj1,j1+i, dj2,j2+i with the elements dj1,j1+i+1, dj2,j2+i−1 respectively. The

resulting list D∗ still satisfies the conditions of (2.2) since:

d∗0,i + d∗1,1+i + · · ·+ d∗j1,j1+i + · · ·+ d∗j2,j2+i + · · ·+ d∗k−1,k−1+i

= d0,i + d1,1+i + · · ·+ (dj1,j1+i + 1) + · · ·+ (dj2,j2+i − 1) + · · ·+ dk−1,k−1+i

= d0,i + d1,1+i + · · ·+ dj1,j1+i + · · ·+ dj2,j2+i + · · ·+ dk−1,k−1+i

= i · n

Furthermore:
k−1
∑

i,j=0,i 6=j

1

d∗i,j
<

k−1
∑

i,j=0,i 6=j

1

di,j

contradicting the minimality of D.
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Conversely, assume D satisfies the property |dj1,j1+i − dj2,j2+i| ≤ 1 for all 1 ≤ i ≤
k − 1, 0 ≤ j1 < j2 ≤ k − 1. Suppose, to the contrary, D was not a solution to (2.2).

Then there must be a list D∗ which is a solution. Then D∗ also has the property

that
∣

∣d∗j1,j1+i − d∗j2,j2+i

∣

∣ ≤ 1 for all 1 ≤ i ≤ k − 1, 0 ≤ j1 < j2 ≤ k − 1. Thus, the lists

[dj,j+i]
k−1
j=0 and

[

d∗j,j+i

]k−1

j=0
are list with either one element or two elements which are

consecutive positive integers. Let q and q + 1 be the two such values in the first list,

and let q′ and q′+1 be the two such values in the second list. Suppose in the first list

there are r elements with value q + 1 (r could be zero), and in the second list there

are r′ elements with value q′ + 1 (r′ could be zero). What we get are the following

two equations:

i · n = qk + r 0 ≤ r < k

i · n = q′k + r′ 0 ≤ r′ < k

So r ≡ i · n (mod k), and r′ is also this value. Therefore r = r′, and hence q =

q′. Consequently, [dj,j+i]
k−1
j=0 and

[

d∗j,j+i

]k−1

j=0
are equivalent as multisets. Since i was

arbitrary, D ∼= D∗ up to the order of elements, contradicting the fact that D∗ was a

solution to (2.2) while D was not.

With this result we can now prove the main theorem:

Proof of Theorem 2.1:

(⇒) Let Sk be maximally even in C→
n for some 0 ≤ k ≤ n. Let us give val-

ues to the optimization problem (2.2) by setting dj,j+i = distC→
n
(vsj , vsj+i

) for all

1 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1. By Lemma 2.1 we know that the conditions of (2.2)

are satisfied, and by Lemma 2.3 we know that this is actually a solution to (2.2).

Consequently,
{

distC→
n
(vsj , vsj+i

)
}k−1,k−1

i=1,j=0
is a solution set to (2.1). Thus, Sk is well-

distributed in C→
n .

(⇐) Let Sk be well-distributed in C→
n . Then

{

distC→
n
(vsj , vsj+i

)
}k−1,k−1

i=1,j=0
is a solution

set to (2.1). Recall that, in the context of maximal evenness, Sk is considered a scale in

the chromatic universe Cn. Suppose for some 0 ≤ a, b, c, d ≤ k−1, vsa , vsb , vsc , vsd ∈ Sk

were such that the scale distance from vsa to vsb equals the scale distance from vsc to

vsd , and let this value be i. We have defined the vertices in Sk as {vs0 , vs1 , . . . , vsk−1
}
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with s0 < s1 < · · · < sk−1. Thus, i is the smallest non-negative integer congruent to

b− a (mod k). Therefore, i is also congruent to d− c (mod k). Thus, b = a+ i and

d = c+ i. It follows then by Lemma 2.3 that
∣

∣distC→
n
(vsa , vsa+i

)− distC→
n
(vsc , vsc+i

)
∣

∣ ≤
1. This means that, for any 2 pairs of vertices in Sk with the same scale distance, their

chromatic distances differ by at most 1. This is precisely the definition of maximally

even!

2.2 Undirected Cycle equivalence

To end the chapter we will generalize Theorem 2.1 to undirected cycles. This is

important since only the directed case is found in [6], and we will be concerned only

with undirected graphs from here on out.

Theorem 2.2. Let C be an undirected cycle and S ⊆ V (C). S is well-distributed in

C if and only if S is well-distributed in C→, where C→ is obtained from C by directing

Cn in one of the two circular orientations.

Proof. Let Cn be an undirected cycle on n vertices, labeled analogously to the directed

case. Start by defining a new optimization problem, where the right hand sides of

the inequalities increase until the halfway mark, then decrease:

min z = E(Cn, S) (2.3)

such that

S = {vs0 , vs1 , . . . , vsk−1
} ∈ V (Cn)

s0 < s1 < · · · < sk−1

distCn
(vs0 , vs1) + distCn

(vs1 , vs2) + · · ·+ distCn
(vsk−1

, vs0) ≤ n

distCn
(vs0 , vs2) + distCn

(vs1 , vs3) + · · ·+ distCn
(vsk−1

, vs1) ≤ 2n
...

...
...

distCn
(vs0 , vsk−2

) + distCn
(vs1 , vsk−1

) + · · ·+ distCn
(vsk−1

, vsk−3
) ≤ 2n

distCn
(vs0 , vsk−1

) + distCn
(vs1 , vs0) + · · ·+ distCn

(vsk−1
, vsk−2

) ≤ n.

This means there are two cases: one for even k and one for odd k. The even case is
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min z = E(Cn, S) (2.4)

such that

S = {vs0 , vs1 , . . . , vsk−1
} ∈ V (Cn)

s0 < s1 < · · · < sk−1

distCn
(vs0 , vs1) + distCn

(vs1 , vs2) + · · ·+ distCn
(vsk−1

, vs0) ≤ n

distCn
(vs0 , vs2) + distCn

(vs1 , vs3) + · · ·+ distCn
(vsk−1

, vs1) ≤ 2n
...

...
...

distCn
(vs0 , vs k

2

) + distCn
(vs1 , vs k

2
+1) + · · ·+ distCn

(vsk−1
, vs k

2−1
) ≤ k

2
· n

...
...

...

distCn
(vs0 , vsk−2

) + distCn
(vs1 , vsk−1

) + · · ·+ distCn
(vsk−1

, vsk−3
) ≤ 2n

distCn
(vs0 , vsk−1

) + distCn
(vs1 , vs0) + · · ·+ distCn

(vsk−1
, vsk−2

) ≤ n.

The odd case is

min z = E(Cn, S) (2.5)

such that

S = {vs0 , vs1 , . . . , vsk−1
} ∈ V (Cn)

s0 < s1 < · · · < sk−1

distCn
(vs0 , vs1) + distCn

(vs1 , vs2) + · · ·+ distCn
(vsk−1

, vs0) ≤ n

distCn
(vs0 , vs2) + distCn

(vs1 , vs3) + · · ·+ distCn
(vsk−1

, vs1) ≤ 2n
...

...
...

distCn
(vs0 , vs k−1

2

) + distCn
(vs1 , vs k−1

2
+1) + · · ·+ distCn

(vsk−1
, vs k−1

2 −1
) ≤ k−1

2
· n

distCn
(vs0 , vs k+1

2

) + distCn
(vs1 , vs k+1

2
+1) + · · ·+ distCn

(vsk−1
, vs k+1

2 −1
) ≤ k+1

2
· n

...
...

...

distCn
(vs0 , vsk−2

) + distCn
(vs1 , vsk−1

) + · · ·+ distCn
(vsk−1

, vsk−3
) ≤ 2n

distCn
(vs0 , vsk−1

) + distCn
(vs1 , vs0) + · · ·+ distCn

(vsk−1
, vsk−2

) ≤ n.

Notice that, in both cases, the ith row and the k − 1− ith row are identical since the

distance function is symmetric for undirected graphs. So we can rewrite the problem

as
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min z = E(Cn, S) (2.6)

such that

S = {vs0 , vs1 , . . . , vsk−1
} ∈ V (Cn)

s0 < s1 < · · · < sk−1

distCn
(vs0 , vs1) + distCn

(vs1 , vs2) + · · ·+ distCn
(vsk−1

, vs0) ≤ n

distCn
(vs0 , vs2) + distCn

(vs1 , vs3) + · · ·+ distCn
(vsk−1

, vs1) ≤ 2n
...

...
...

distCn
(vs0 , vsb k

2 c
) + distCn

(vs1 , vsb k
2 c+1

) + · · ·+ distCn
(vsk−1

, vs
b k
2 c−1

) ≤ bk
2
c · n.

What is important to notice is that the inequalities hold for any Cn and Sk. Indeed,

since the following holds:

dist(Cn)→(vs0 , vsi) + dist(Cn)→(vs1 , vs1+i
) + · · ·+ dist(Cn)→(vsk−1

, vsi−1
) = i · n

and since distCn
(u, w) ≤ dist(Cn)→(u, w) for any u, w ∈ V (Cn), we must have:

distCn
(vs0 , vs1) + distCn

(vs1 , vs2) + · · ·+ distCn
(vsk−1

, vs0) ≤ i · n

Continuing the analogous argument, we will write general version of this optimization

problem:

min z =
k−1
∑

i,j=0,i 6=j

1

di,j
(2.7)

such that

d0,1 + d1,2 + · · ·+ dk−1,0 ≤ n

d0,2 + d1,3 + · · ·+ dk−1,1 ≤ 2n
...

...
...

d0,k−2 + d1,k−1 + · · ·+ dk−1,k−3 ≤ 2n

d0,k−1 + d1,0 + · · ·+ dk−1,k−2 ≤ n

di,j ∈ N

The same logic applies as before, i.e. if we set dj,j+i = distCn
(vsj , vsj+i

) and the result

is a solution to (2.7), we must have started with a solution to (2.6). Furthermore,

any solution to (2.7) must satisfy d0,i + d1,i+1 + · · ·+ dk−1,i−1 = i · n for all 0 < i < k

since if S = [dj,i+j]
k−1,k−1
j=0,i=1 were a solution such that d0,i + d1,i+1 + · · ·+ dk−1,i−1 < i ·n
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then replacing d0,i with d∗0,i = d0,i+1 would yield a strictly smaller z value and would

still satisfy d∗0,i + d1,i+1 + · · ·+ dk−1,i−1 ≤ i · n, contradicting the minimality of S.

Since we can replace the inequalities by equalities, we can say by Lemma 2.3 that

D = [dj,j+i]
k−1,k−1
i=1,j=0 is a solution to (2.7) if and only if |dj1,i+j1 − dj2,i+j2 | ≤ 1 for all

i, j1, j2.

Note the following relation between Cn and C→
n :

distC→
n
(vi, vj) =

{

distCn
(vi, vj) if j − i ≤ n/2

n− distCn
(vi, vj) otherwise

Consequently, if |distCn
(vsj1 , vsi+j1

) − distCn
(vsj2 , vsi+j2

)| ≤ 1 for all i, j1, j2 such that

i ≤ n/2, then |distCn
(vsj1 , vsi+j1

)−distCn
(vsj2 , vsi+j2

)| ≤ 1 must be true for all i, j1, j2.

Hence, S is a solution if and only if S is maximally even.

Thus, we are justified in generalizing maximal evenness via well-distribution. Now

that this generalization has been established, we can now analyse the nature of well-

distributed sets.



Chapter 3

Analysing and Bounding Well-Distributed Sets

Now that we have a generalization of maximally even sets, we can begin to analyse

the nature of these sets. From here on out we will assume all graphs are simple and

undirected. We first want to know which results from maximally even sets carry over

to well-distributed sets.

3.1 Extending Maximally Even Results to Well-Distributed Sets

Recall Theorems 1.1, 1.2 and 1.3, which collectively tell us that maximally even sets

exists as unique, complementary pairs. Can we say something similar about well-

distributed sets? Clearly well-distributed sets of a given size always exist by the way

they are defined. However, is it always true that two well-distributed sets of the same

size are “the same” under an automorphism.

Example 3.1. Let G be the following graph:

Looking ahead at chapter 5, we will learn that the well-distributed sets of size 2 in

a connected graph are those pairs of vertices that achieve the diameter. Thus, there

25
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are three well-distributed sets of size 2. They are the following sets:

Notice that, while there is an automorphism of G that sends the first set to the second

(and vice versa), there is no automorphism sending the third set to either the first or

the second. Thus, Theorem 1.2 does not extend to well-distributed sets.

Just as there is no extension of Theorem 1.2, there is also no extension of Theorem

1.3. Example 1.8 showed that any well-distributed set of size at least 2 on a path

must include both end points. Thus, the complement of a well-distributed set of size

2 in P4 is not well-distributed.

Although these nice results of maximally even sets do not generalize to well-

distributed sets, the intuitive property of being “spread apart” does. We will study

these sets further to uncover more interesting properties.

3.2 Bounds on the Minimum Energy

What are some boundary conditions for the minimum k-set energy? Suppose a graph

G has diameter d. Then any two vertices in G are at distance d or less from each

other. Thus, we have a lower bound on the minimum energy.

E(G, k) ≥ k(k − 1)

d

i.e. the extreme case where every pair of vertices is distance d apart. On the other

hand, an upper bound for the minimum k-set energy would be the extreme case where

every vertex is adjacent to every other vertex. In this case we have E(G, k) = k(k−1).

This upper bound would only be achieved on the complete graph, since any other

graph would have at least one pair of vertices of distance at least two apart. However,

this gives us a total bound on E(G, k)
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Theorem 3.1. Given a graph G with diameter d and a positive integer k ≤ V (G),

the following bound holds:

k(k − 1)

d
≤ E(G, k) ≤ k(k − 1)

These are rather extreme bounds. However, the lower bound serves as a sufficient

condition for a set to be well-distributed.

Example 3.2. Let G be the Petersen graph, as shown below:

The diameter of this graph is 2, so the lower bound in Theorem 3.1 is useful. In

particular, we can assure that the following are all well-distributed sets:

The lower bound is achieved in each of these cases, since all distances are 2.

However, for any set of size greater than 4 in the Petersen graph, this bound cannot

be achieved. To see this, notice that for any set of 3 inner vertices, 2 are adjacent.

The same is true for 3 outer vertices.

We could look at other types of sets on graphs and use them to find boundary

conditions. One such type would be independent sets [1].

Definition 3.1. Let G be a graph and S ⊆ V (G). S is an independent set if no two

vertices in S are adjacent.
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A natural question that arises from independent sets is: given a graph G, what is

the largest independent set? This is known as the independence number of a graph

[1]. In other words:

Definition 3.2. Given a graph G, the independence number of G is the largest

positive integer k such that there exists an independent set of size k in G.

Now suppose we have a graph G with independence number k and we are looking

for a well-distributed set of size ` with ` ≤ k. Since we can find an independent set

of size ` (take a subset of size ` of an independent set of size k), we can find a set

of vertices with distances at least two from one another. Thus, the minimum `-set

energy is at most `(` − 1)/2. If our set is larger than k, we can still find at least k

points each with pairwise distance at least two. Thus, we have the following improved

upper bound

Theorem 3.2. Let G be a graph with independence number k. We have the following

bounds for the minimum `-set energy, depending on ` and k:

• If ` ≤ k then

E(G, `) ≤ `(`− 1)

2

• If ` > k then

E(G, `) ≤ `(`− 1)− k(k − 1)

2

Proof. In either case, we can always find k points with pairwise distance at least two.

Thus, the worse case scenario would be if each of those pairs were exactly distance

two, and the rest of the vertices were all of distance one away from the rest of the

set. Thus, in case 1 where ` ≤ k, any independent set S of size ` would satisfy the

following equation:

E(G,S) ≤ `(`− 1)

2
.

If ` > k, let S = S1 ∪ S2 where S1 is an independent set of size k and S2 is ` − k

vertices chosen arbitrarily. Then the total energy of S1 is at most k(k−1)
2

. Combining

this with the upper bound in Theorem 3.1, we get that

E(G,S) ≤ `(`− 1)− k(k − 1)

2
.
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Example 3.3. Let G be constructed from K10 by removing three edges that form a

triangle. Then for ` ∈ N such that ` ≤ 3, E(G, `) = `(`−1)
2

and the well-distributed

sets of size ` are the independent sets. For ` > 3, we construct S with |S| = ` by

choosing the independent set of order 3, plus any ` − 3 other vertices. Since only

three pairs of vertices in S are distance 2 apart, E(G, `) = `(` − 1) − `(`−1)
2

. Thus,

the boundaries in Theorem 3.2 are achievable.

We can also find a lower bound on the minimum k-set energy via spanning sub-

graphs. Given a graph G and a spanning subgraph H, we know that distG(vi, vj) ≤
distH(vi, vj) for any pair of vertices in G, since H is obtained from G by (possibly) re-

moving some of the edges in G. Thus, for a set of vertices S in G, E(G,S) ≥ E(H,S).

This is particularly useful if we can find a spanning subgraph for which we know the

well-distributed sets.

Example 3.4. Recall that a graph G on n vertices is Hamiltonian if there exists a

subgraph H of G that is isomorphic to Cn [8]. In this case, the total energy of a

well-distributed set of size k in G is at least the total energy of the maximally even

set of size k in Cn.

3.3 Computational Complexity

We have talked about results coming from independent sets and graphs with diameter

two. These results give us a way to show that the problem of finding well-distributed

sets is an NP-complete problem. More specifically, finding the minimum k-set energy

is an NP-complete problem.

WELL-DISTRIBUTED SET

INSTANCE: Undirected graph G, positive integer k and rational number r

QUESTION: Is E(G, k) ≤ r

Clearly this problem is in NP since, if the answer is yes, one can simply give a

set S that satisfies the inequality, and E(G,S) can be calculated for any vertex set

S ⊆ V (G). Now we must show this is in fact NP-complete. We do this by reducing

to the well known NP-complete problem of finding independent sets to it [7]. The

problem in question is:
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INDEPENDENT SET

INSTANCE: Undirected graph G, positive integer k

QUESTION: Does G have an independent set of cardinality k?

Given a graph G and a positive integer k, we are interested in whether G has an

independent set of size k. We can assume k ≥ 2, and hence C is not complete (if

k = 1 then the answer is always yes!) Construct the graph G+v by adding a vertex v

to G and connecting v to every other vertex in G (this is known as adding a universal

vertex ). Observe that G has an independent set of size k if and only if G + v does,

since v cannot be included in the set, and no other edges have been added in the

construction of G+ v.

We can say the following about G+ v:

1. G+ v can be constructed from G in polynomial time.

2. G+ v has diameter two.

We now show that E(G+ v, k) ≤ k(k − 1)/2 if and only if G has an independent

set of cardinality k. First, suppose E(G + v, k) ≤ k(k − 1)/2; as diam(G) = 2, in

any set S of cardinality k such that E(G,S) ≤ k(k− 1)/2, it must be the case where

distG(u, v) = 2 for all u, v ∈ S (since the only possible distances are 1 and 2, and any

set with a pair of adjacent vertices would yield a total energy larger than the lower

bound of k(k− 1)/2). Thus, S is an independent set of size k in G+ v, meaning S is

also an independent set of size k in G as k ≥ 2.

Conversely, if G has an independent set S of size k, then E(G+v, k) ≤ k(k−1)/2,

as E(G+ v, k) ≤ E(G+ v, S) = k(k−1)
2

.

Since finding the well-distributed number is intractable, we will not search for an

efficient algorithm to find them. However, we can still construct algorithms to find

sets nearly well-distributed.

3.4 Approximation Algorithms

Consider once again the physical interpretation of well-distributed sets. We can think

of the vertices in a set S as charged particles sitting in a graph G. Under this
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Update 0:

Update 1:

Update 2:

Update 3:

Figure 3.1: Output of the ‘spread’ algorithm on P8 with a set of size 3

interpretation, the well-distributed sets are those that minimize the energy across all

configurations. However, if one were to place charged particles randomly on a graph,

they would not simply rearrange themselves into a well-distributed set. Instead they

would move around the graph, continuously moving to adjacent vertices that yield

smaller total energy. We can simulate this behaviour, as shown in the following

pseudo code:

Procedure: Spread(G,S)

while movement = true

for v in S do

make empty list

for u in N(v) do

add (u,E(G,S − v + u)) to list

end for

pick u in list with min energy and replace v with u

end for

print G

if new S = old S then set movement = false

end while.

Example 3.5. Figure 3.1 shows each step of the spread algorithm on P8 with 3 parti-

cles. As expected, the leftmost and rightmost particles push to their respective ends

at each iteration.

While the algorithm found a well-distributed set on a path, it will not necessarily
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find a well-distributed set in all cases.

Example 3.6. Consider the following graph and set of size 2:

Clearly this is not a well-distributed set. However, neither particle will move since it

will initially increase the total energy.

Remark 3.1. Notice that we could extend the left and right paths in Example 3.6.

This means that we cannot even bound the difference between E(G, k) and E(G,S)

where S is the output of Spread(G, k).

Even though we cannot find well-distributed sets in this way, the algorithm will

give us something along the lines of sets that are spread apart. Appendix A shows a

number of such results. In each case, the left graph shows the initial configuration of

points, and the right graph shows the final configuration. In some cases we are able

to verify (either by exhaustive search or by previous knowledge) whether or not the

final configuration is well-distributed. In other cases, we cannot verify due to limited

computational power. This is indicated in the last column.

Even though we cannot find well-distributed sets in general, there are certainly

special classes of graphs where we can classify them completely.
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Well-Distributed Sets on Special Families of Graphs

4.1 Complete and Complete Bipartite

Example 4.1. For a given n ∈ N, the complete graph Kn and the edge-less graph

On are trivial cases. Any set of vertices S in Kn of size k has E(Kn, S) = k(k − 1).

Likewise, E(On, S) = 0.

Example 4.2. Given a complete bipartite graph Km,n, there are only two possible

distances between any two vertices. The distance is 1 if the vertices are on different

independent sets, and 2 if they are on the same. Thus, the well-distributed sets of

size less than or equal to max{m,n} are those that are in the same independent set.

This is easily verifiable as any independent set satisfies the lower bound in Theorem

3.1, whereas any other set does not.

Remark 4.1. This argument can be generalized to show that the well-distributed sets

of any size can be obtained by first filling up the larger of the two independent sets,

then choosing the rest of the vertices arbitrarily from the smaller independent set. In

fact, this can be further generalized to multipartite graphs. Given Kn1,n2,...,nk
with

n1 ≥ n2 ≥ · · · ≥ nk, well-distributed sets can be constructed by first filling up the

n1 independent set, then n2, etc... We can think of this as trying to maximize the

number of times we can add 1/2 to the total energy and minimize the number of

times we add 1, since they are the only two possibilities.

4.2 Random Graphs

For this section we follow “Random Graphs” by Béla Bollobás for probability and

random graph terminology [2].

Can we say anything about well-distributed sets on random graphs? One of the

most commonly used random graphs is the Erdös-Rényi G(n, p) model [2].
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Definition 4.1. Let n be a positive integer and p ∈ (0, 1). The random graph

G(n, p) is the set of all (simple, undirected) graphs on n vertices, and a probability

distribution. The distribution is defined so that every pair of vertices is connected

independently by an edge with probability p.

The random G(n, p) graph has many nice properties. One such property is that,

for a fixed p ∈ (0, 1), diam(G(n, p)) = 2 with probability tending to 1 (as n →
∞). In fact, Bollobás proves in [2] that if we consider p as a function of n, then

diam(G(n, p)) = 2 as n → ∞ if p2n− 2 log n → ∞ and n2(1− p) → ∞.

So we know that as n approaches infinity, the well-distributed sets in the G(n, p)

model are the independent sets, if such sets exist. We would therefore like to know

the independence number of G(n, p).

In [2], Bollabás shows that for fixed p ∈ (0, 1) and for fixed ε ∈ (0, 1/2), the clique

number of G(n, p) tends to a value in the range of:

(

(1 + ε) log1/(1−p) n, 2 log1/(1−p) n
)

The clique number of a graph is the size of the largest complete subgraph. Since

a complete subgraph in G corresponds to an independent set in the complement of

G, we know that a complete subgraph in G(n, p) corresponds to an independent set

in G(n, 1 − p), since the probability of G in G(n, p) equals the probability of Gc in

G(n, 1− p). Thus, the independence number of G(n, p) tends to

C log1/p n

where C ∈ (1 + ε, 2) is a constant.

Altogether this gives us the following Theorem:

Theorem 4.1. For p ∈ (0, 1), ε ∈ (0, 1/2), and k ∈
(

(1 + ε) log1/p n, 2 log1/p n
)

, for

any positive integer ` ≤ k, E(G(n, p), `) = `(`− 1)/2 with probability tending to 1 as

n → ∞.

Thus, we have a concrete result about the minimum k-set energy, under certain

conditions, for the random G(n, p) model.

In the next chapter, instead of classifying well-distributed sets in specific graphs,

we will classify well-distributed sets of specific sizes.



Chapter 5

Small and Large Well-Distributed Sets

5.1 Well-Distributed Sets of Size Three

Well-distributed sets of size 3 are the smallest non-trivial sets to look at. To see this,

first note that all sets of size 1 are well-distributed, and the sets of size 2 are precisely

those which achieve the diameter (assuming the graph is connected; otherwise pick

vertices from different components). We can already say quite a bit from previous

results about these sets of size 3. In some cases we can explicitly say what the

well-distributed sets are:

• For Kn and On, all sets of size 3.

• For Km,n, if max{m,n} ≥ 3, all independent sets of size 3. Otherwise, fill the

larger independent set first.

• For Cn, the maximally even set of size 3 up to symmetry.

• For Pn, the endpoints and the middle (or near middle if n is even).

• If G has two components, pick two on the larger diameter, and the third on the

other component.

• If G has three or more components, pick any set with no two vertices in the

same component.

• If G = G(n, p), any independent set of size 3.

This is indeed a lot of information, but it is no where near a complete classification.

Note that we can exhaustively search all sets of three vertices in a graph, which would

give an answer in polynomial time. However, this does not tell us anything about the

general classification. So we need to study these sets further.
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Let us assume for the rest of the chapter that G is a connected, undirected graph,

S = {v1, v2, v3} is a set of 3 vertices in G, and di,j is the distance in G from vi to vj.

We will fix an ordering on the distances, since v1, v2, v3 can be permuted. So assume

d1,2 ≤ d2,3 ≤ d1,3.

Lemma 5.1. A set S of cardinality 3 is well-distributed in G if and only if one of

three conditions hold (up to symmetry of the vertices):

1. d1,3 = diam(G) and v2 lies halfway (or nearly halfway) along a diameter path

from v1 to v3.

2. d1,3 = diam(G) and d1,2 + d2,3 > diam(G).

3. diam(G)
3

< d1,2 ≤ d2,3 ≤ d1,3 < diam(G)

Proof. First off, either d1,3 = diam(G) or d1,3 < diam(G).

Case 1: Assume d1,3 = diam(G). If v2 is on a diameter path from v1 to v3, Lemma

(2.2) tells us that d1,2 = bdiam(G)/2c. So v2 is halfway (or nearly halfway) between

v1 and v3.

On the other hand, if v2 is not on a diameter path from v1 to v3, we cannot

have d1,2 + d2,3 = d1,3. Nor can we have d1,2 + d2,3 < d1,3 by the triangle inequality.

Therefore, d1,2 + d2,3 > d1,3 = diam(G).

Case 2: Assume d1,3 < diam(G), so diam(G) > 1. Suppose, to the contrary, d1,2 ≤
diam(G)/3. Since d2,3 and d1,3 are strictly less than diam(G) we have the following

inequality:

1

d1,2
+

1

d2,3
+

1

d1,3
>

3

diam(G)
+

2

diam(G)− 1

Now let us compare with the set S ′ = {u1, u2, u3} that satisfies the first condition in

the lemma instead of the third. Then since distG(u1, u2) is at least (diam(G)− 1)/2,

and distG(u2, u3) is at least diam(G)/2 we have:
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1

2
E(G,S ′) =

1

distG(u1, u2)
+

1

distG(u2, u3)
+

1

distG(u1, u3)

≤ 2

diam(G)− 1
+

2

diam(G)
+

1

diam(G)

<
1

d1,2
+

1

d2,3
+

1

d1,3

=
1

2
E(G,S).

This contradicts S being well-distributed. Thus, diam(G)
3

< d1,2.

Hidden in this lemma is an upper bound on the minimum 3-set energy of a con-

nected graph G. Notice that, so long as diam(G) > 1, we can always build a set

that satisfied the first condition. Such a set would either be well-distributed, or there

would be another set with less total energy. Thus, we can say the following:

Corollary 5.1.

1

2
E(G, 3) ≤ 2

diam(G) + 1
+

2

diam(G)− 1
+

1

diam(G)
.

Remark 5.1. If diam(G) is even we have a sightly better bound, since in this case we

can pick v2 exactly in the middle of v1 and v3, making distG(v1, v2) = diam(G)/2.

Thus, the bound in this case is

1

2
E(G, 3) ≤ 5

diam(G)
.

We have shown that these three cases are the only ones that could arise. We will

give examples to show that each case is possible:

Example 5.1. Condition 1 is met for any path. For example, here is the well-

distributed set of size 3 in P9:

Condition 2 is met for any tree with three equal length branches. For example, here
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is the well-distributed set of size 3 on this star-type graph:

Condition 3 is met on cycles. Recall the maximally even set of size 3 in C12, known

in music theory as the augmented triad :

Lastly, we will classify all possible configurations of well-distributed sets of size

three. Figure 5.1 shows some of the possible configurations that could arise. The

next result shows that these subgraphs are in fact all possible subgraphs.

We will first prove a lemma to help exhaust all possible subgraphs.

Lemma 5.2. Let G be a connected graph with at least 3 vertices, and let v1, v2, v3 ∈ G.

Let P1,2 ⊆ V (G) be a shortest path from v1 to v2. Then, there exists a shortest path

P1,3 from v1 to v3 such that, if P1,3 branches from P1,2, then P1,3 does not reconnect

with P1,2.

Proof. Suppose we have a shortest path P1,2 from v1 to v2. First, if v3 is on this

shortest path, then a shortest path from v1 to v3 is simply the subset of P1,2 from v1

to v3. Otherwise there would be a shorter path P1,3 from v1 to v3; that is, P1,3 plus

the subset of P1,2 from v3 to v2 would be a shorter path between v1 and v2 than P1,2,

contradicting P1,2 being a shortest path. Therefore, we may assume {v3} ∩ P1,2 = ∅.
Thus, we have the following set up:
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v1 v2

v3

P1,2

Let us define a few more paths as follows:

• Q1,3 is a shortest path from v1 to v3,

• vx is the last vertex in P1,2 that is touched when travelling from v1 to v3 along

Q1,3,

• Q1,x and Qx,3 are the subpaths of Q1,3 connecting v1 to vx and vx to v3 respec-

tively, and

• P1,x and Px,2 are the subpaths of P1,2 connecting v1 to vx and vx to v2 respec-

tively.

Visually, we have the following:

v1 v2

v3

vx
Q1,x

P1,x

Qx,3

Px,2

Since P1,2 is a shortest path, |P1,x| ≤ |Q1,x| (otherwise Q1,x∪Px,2 is a shorter path from

v1 to v2). Likewise, since Q1,3 is a shortest path, |P1,x| ≥ |Q1,x|. Thus, |P1,x| = |Q1,x|.
So let P1,3 = P1,x∪Qx,3. Then |P1,3| = |Q1,3|, meaning P1,3 is also a shortest path from

v1 to v3. Furthermore, this path branches from P1,2 at vx, and does not reconnect to

P1,2 by the way we have defined vx.

Now we are ready to prove the main result.
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Figure 5.1: 6 possible subgraphs for well-distributed sets of size 3.

Proposition 5.1. Given a graph G and a set S of three vertices in G, the generalized

graphs in Figure 5.1 are all possible subgraphs of G containing S and a shortest path

between each pair in S.

Proof. We can start by picking a shortest path from any two vertices in G. Now we

can exhaust all possible connections to the third vertex. Here is our set up:

v1 v2

v3
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What are the possible shortest paths from v1 to v3? By Lemma 5.2, we have three

possibilities:

1. The paths could intersect at the whole path between v1 and v2. In this case we

have the following subgraph:

v1 v2 v3

2. The paths could intersect somewhere between v1 and v2. In this case we have

the following subgraph:

v1 v2

v3

3. The paths could intersect only at v1. In this case we have the following subgraph:

v3 v1 v2

Now for each of the three cases we can find all possible connections between v2 and

v3.

1. In this case, a shortest path between v2 and v3 must be the one already drawn,

since it is part of a shortest path from v1 to v3.

2. Let ph be the path from v1 to v2 and pv be the path from v3 to ph. Again, the

shortest path from v2 to v3 will intersect both pv and ph in exactly one subpath.

Furthermore, if the path intersected ph left of the intersection of ph and pv, it

would imply there was a shorter path from v3 to v1, which is a contradiction.

With this information we can exhaust all possible cases:

(a) The shortest path could include all of pv. In this case, no new vertices are

added and the subgraph is complete.



42

(b) The path could intersect at just v2, or more than one vertex in ph. The

two subgraphs respectively are:

pv

ph

v2

v1

v3

pv

ph

v1

v3 v2

(c) The path could intersect just v3 in pv, and more than one vertex in ph.

This case is equivalent to a previous previous case, with a permutation of

the vertices:

ph

pv

v3

v2

v1

(d) The path could intersect at just v2 and v3. In this case we have:

pv ph

v3 v2

v1
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3. In this last case, all outcomes are equivalent to outcomes in case 2 up to sym-

metry of v1, v2 and v3, except for the case where the path intersects at just v2

and v3. This gives our last possibility:

v1

v3 v2

Thus, we have all possible configurations for well-distributed sets of size 3. For

each case, we can determine where the vertices need to be in the subgraphs for the

sets to actually be well-distributed. We will list the cases in the same order as Figure

5.1.

Case 1: In the case of the path we know that, with out loss of generality, dist(v1, v3) =

diam(G) and v2 lies in the middle, or near middle, of v1 and v3.

Case 2: In the case of the star graph, each vertex must be as far away from the center

as possible.

Case 3: In the case of the circle, the vertices must be the maximally even set of size

3 on the subgraph.

Case 4: In the case of the circle with one stick, let C ⊆ G be the circle with cir-

cumference c, and P ⊆ G be the stick with length p (where C ∪ P is the single-point

intersection). Let v1 and v2 be the two vertices on the circle. Then by Lemma 2.2,

we can deduce that |distG(v1, v3)− distG(v2, v3)| ≤ 1.

Case 5: In the case of a circle with two sticks, we know by Lemma 2.2 that the

distance from the vertex in the circle to the other two are equal, or differ by 1.

Case 6: In the case of a circle with three sticks, each vertex is a far away from the

circle as possible.
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This gives a complete classification of well-distributed sets of size 3. Next we will

ask the opposite question. Namely: what are the well distributed sets of size close to

|V (G)|.

5.2 Well-Distributed Sets on Nearly All Vertices

Given a graph G, there is only one well-distributed set of size |V (G)|, that set being
V (G). A more interesting question is: what are the well-distributed sets of size

|V (G)| − 1?

Definition 5.1. Given a graph G, a set of vertices S, and v ∈ S, the total in-energy

to v from S in G is

Ein(G,S, v) =
∑

u∈S,u 6=v

1

distG(u, v)
.

The total out-energy from v to S is

Eout(G,S, v) =
∑

u∈S,u6=v

1

distG(v, u)
.

The total energy of v in S is

E(G,S, v) = Ein(G,S, v) + Eout(G,S, v)

Remark 5.2. If G is undirected then Eout(G,S, v) = Ein(G,S, v) = 1/2E(G,S, v).

Now let S = V (G)\{v} for some vertex v ∈ V (G). Then E(G,S) = E(G, V (G))−
E(G, V (G), v). Thus, finding well-distributed sets of size |V (G)| − 1 is equivalent to

finding v ∈ V (G) with the maximum total energy in V (G).

Example 5.2. Let G = Pn, with the vertices ordered from v0 to vn−1. Then the total

energy of vi in V (Pn) is

E(Pn, V (G), vi) = 2
n−1
∑

j=0,j 6=i

1

|i− j|

We can show that vα where α = b(n − 1)/2c is a vertex with maximal total energy.

Take some other positive integer i with i < α. Then for some c ∈ {1, 2, . . . , α},
j = α − c (notice that this covers the first half of the path, and so by symmetry it

covers all of the path). Thus, we have:
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1

2
E(Pn, V (G), vα)−

1

2
E(Pn, V (G), vα−c)

=

(

n−1
∑

j=0,j 6=α

1

|α− j|

)

−
(

n−1
∑

j=0,j 6=α−c

1

|α− c− j|

)

=

(

α
∑

j=1

1

j
+

n−1−α
∑

j=1

1

j

)

−
(

α−c
∑

j=1

1

j
+

n−1−α+c
∑

j=1

1

j

)

=

(

α
∑

j=1

1

j
−

α−c
∑

j=1

1

j

)

+

(

n−1−α
∑

j=1

1

j
−

n−1−α+c
∑

j=1

1

j

)

=
α
∑

j=α−c+1

1

j
−

n−α+(c−1)
∑

j=n−α

1

j

=

(

1

b(n− 1)/2c − c+ 1
+ · · ·+ 1

b(n− 1)/2c

)

−
(

1

d(n− 1)/2e + · · ·+ 1

d(n− 1)/2e+ c− 1

)

=
c−1
∑

j=0

1

b(n− 1)/2c − (c− 1) + j
− 1

d(n− 1)/2e+ j
> 0

So even in the simple case of the path, finding the well-distributed sets of size n−1

is non-trivial. However, we have shown that, when searching for well-distributed sets

of this size, we need only look at the vertex not in the set. The same reasoning can

be said about sets of size n− 2 and n− 3.



Chapter 6

Conclusion

The goal of this thesis was to propose a new family of sets, called well-distributed,

on graphs that formally define the loose concept of being “spread apart” as much as

possible and analyse such sets. These sets come from music theory, and are generalized

via a physical interpretation. We have shown that well-distributed sets appeal to our

intuition of being “spread apart” better than some other common sets in graph theory

such as dominating sets and facilities location solutions. In particular, these sets never

seem to “bunch up” in local groups. Since the energy function looks at all pairs of

distances, we will always end up with sets that are globally spread apart in stead of

locally spread apart.

There are many directions one could take to develop the theory of well-distributed

sets. Here are some ideas for further research:

Generalizing the Energy Function

We can generalize the definition of well-distributed sets since we are not restricted

to a physical system. Indeed, any reasonable energy function that is inversely pro-

portional to some power of the distance should do the trick. Here is the generalized

definition:

Definition 6.1. Let G be a graph and let S ⊆ V (G) represent a set of equally

charged particles in G. For any α > 0, the total α-energy of S in G is defined as:

E(G,S, α) =
∑

vi,vj∈S,i 6=j

1

distG(vi, vj)α

Setting α = 1 is the physical choice. However, there are other choices for α

that could prove beneficial. For example if α = 2, the physical analogy would be to

minimize the electromagnetic field, rather than to minimize the energy which is what

the particles will want to do naturally.
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Notice that the equivalence between well-distribution and maximal evenness on

cycles did not require us to choose α = 1. Indeed, the only time the energy function

was needed was for Lemma 2.2, which is true for arbitrary α > 0. Thus, we have the

following generalized theorem:

Theorem 6.1. Let C be a directed cycle, S ⊆ V (C), and α > 0. S is maximally

even in C if and only if S is well-distributed with respect to α in C. In particular,

S is well-distributed with respect to α in C if and only if S is well-distributed with

respect to β in C, for all β > 0.

This next example shows how changing α could change the nature of the well-

distributed sets in certain situations.

Example 6.1. Let G be a graph with two components Cn and Cm, where Cn (Cm)

is the directed cycle of length n (m). What are the well-distributed sets of size k?

Proposition 1.1 and Theorem 6.1 tell us that if we choose a well-distributed set Sk

with a vertices from V (Cn) and b = k− a vertices from V (Cm), Sk ∩Cn is the (up to

symmetry) maximally even set of size a in Cn, and similarly for Sk ∩Cm. So suppose

for the moment we chose a and b arbitrarily so that 0 ≤ a, b ≤ k and a + b = k. We

can write down the exact equation for the total energy of this set.

First, consider Cn and Sa with the usual labeling. We know that for any 0 ≤ i < a,

distCn
(vsi , vsi+1

) =
⌊

n
a

⌋

or
⌊

n
a

⌋

+1. In fact, we know exactly how many such distances

are
⌊

n
a

⌋

+ 1. There are r such distances, where r is the remainder of n (mod a). In

other words, r = n − a ·
⌊

n
a

⌋

. Similarly, distCn
(vsi , vsi+2

) =
⌊

2n
a

⌋

or
⌊

2n
a

⌋

+ 1, with
⌊

2n
a

⌋

+ 1 occurring 2n − a ·
⌊

2n
a

⌋

times. Continuing with this, if we let ri be the

remainder of i · n (mod k), we end up with the following formula (we will look at an

arbitrary α):

E(Cn, Sa, α) =
a−1
∑

i=1

(

a− ri
⌊

i·n
a

⌋α +
ri

(⌊

i·n
a

⌋

+ 1
)α

)

With this, we can empirically find which proportion of a and b yields a well-

distributed set for different values of α. For example, Table 6.1 shows the difference

between α = 1 and α = 2 for n = 100 and m = 50. Notice that, in almost all cases,

a/b = n/m when α = 2. However, when α = 1, it seems a/b < n/m. This suggests

that when α = 2, the ratio of a to b is the same as the ratio of n to m, and that this

is not the case for α = 1.
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|S| |S1| |S2| |S1| |S2|
(α = 1) (α = 1) (α = 2) (α = 2)

1 1 0 1 0
2 1 1 1 1
3 2 1 2 1
4 2 2 3 1
5 3 2 3 2
6 4 2 4 2
7 4 3 5 2
8 5 3 5 3
9 6 3 6 3
10 6 4 7 3
20 13 7 13 7
30 19 11 20 10
40 25 15 26 14
50 33 17 33 17
75 50 25 50 25
100 64 36 67 33
125 79 46 83 42
150 100 50 100 50

Table 6.1: The distribution of vertices in well-distributed sets on C100∪C50 for α = 1
vs. α = 2
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The Well-Distributed Polynomial

Analogous to the independence polynomial, we can associate a well-distributed

polynomial to each graph G (J. Brown, personal communication). Such a polynomial

can associate combinatorial correlations between the minimum k-set number and

analytic properties of the function.

Definition 6.2. Let G be a graph on n vertices. The Well-distributed polynomial on

G is defined as:

Pwd(G, x) =
n
∑

i=0

aix
i

where ai is the number of well distributed sets of size i in G.

What are some of these polynomials? What are their roots?

Example 6.2. If G is either the complete graph or the empty graph, every set of

vertices is well-distributed. Thus, the well-distributed polynomial of Kn (and also for

On) is:

Pwd(Kn, x) =
n
∑

i=0

(

n

i

)

xi = (x+ 1)n

Thus, the only root of Pwd(Kn, x) (Pwd(On, x)) is −1.

Example 6.3. If G has independence number k and diam(G) = 2, then the polynomial

Pwd(G, x)−
n
∑

i=k+1

aix
i

is the independence polynomial of G. This is because the well-distributed sets in G

of size at most k are precisely the independent sets.

Example 6.4. Given Cn, the number of maximally even sets of size k in n is n/ gcd(n, k)

[6]. This gives the following polynomial:

Pwd(Cn, x) =
n
∑

i=0

n

gcd(n, i)
xi

This polynomial is similar to a class of polynomials studied by Karl Dilcher and

Sinai Robins in their paper “Zeros and Irreducibility of Polynomials with GCD Powers

as Coefficients” [4]. Dilcher and Robins prove that polynomials of the form

P (n, k) =
n
∑

j=0

gcd(n, j)kzj
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Figure 6.1: All elements of Swd coming from graphs of order at most 7.

for k ≥ 1, have all of their roots lying on the unit circle. However, the same cannot

be said for Pwd(Cn, x). For instance, Pwd(C4, x) = x4 +4x3 +2x2 +4x+1, which has

roots at x = −2±
√
3.

We would be interested in understanding the set of all possible roots of well-

distributed polynomials. Let

Swd = {x ∈ C : Pwd(G, x) = 0 for some graph G}.

We can make some conclusions with our analysis thus far. First off we know that

if x ∈ Swd is real then x < 0, as x cannot be positive if all of the coefficients of

well-distributed polynomials are positive, and x cannot be zero since a0 = 1 for all

graphs. Secondly, since a0 = an = 1 for all graphs, we know by the rational root

theorem that the only rational number in Swd is −1.

We can find all such roots for small graphs using Maple. Figure 6.1 gives the set

of roots of well-distributed polynomials for all connected graphs of order at most 7.

Looking at these roots, we could make the following conjectures:

1. The set {x ∈ Swd : |x| = 1} is dense in the unit circle, and

2. The set {x ∈ Swd : x ∈ R} is dense in the negative real line.
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In conclusion, we have motivated a new family of sets of vertices in graphs which

seem to represent sets that are “spread apart”. The sets are a generalization of

maximally even sets, and follow a physical energy law as if the vertices in the sets

were charged particles. We showed that finding such sets, or more precisely finding

the minimum k-set energy, is an NP-complete problem. However, we were still able

to find bounds and approximations for well-distributed sets and the minimum k-set

energy. In special families of graphs we were able to find the well-distributed sets.

Similarly, we were able to classify well-distributed sets of size 1,2,3 and n − 1 (for a

graph of order n). We finally showed numerous approaches for further research. Given

the physical interpretation of well-distributed sets, it seems practical to analyse and

understand them.



Appendix A

Examples of Spread Algorithm

Graph Initial configuration Final configuration Well-distributed?

P6 × P6 Unsure

C12 Yes

P10 Yes

Complete binary tree No
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Graph Initial configuration Final configuration Well-distributed?

3D Hypercube No

Θ(4, 5, 6) Yes

C4 × C4 Unsure

Soccer Ball Graph Unsure
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