
EVOLVING HIERARCHICAL STRUCTURES FOR
CONVOLUTIONAL NEURAL NETWORKS USING JAGGED

ARRAYS

by

Stuart McIlroy

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2018

c© Copyright by Stuart McIlroy, 2018

Table of Contents

List of Tables . iv

List of Figures . vi

Abstract . vii

List of Abbreviations Used . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Research Statement . 2

1.2 Thesis Overview . 2

1.3 Thesis Contribution . 3

1.4 Organization of the Thesis . 4

Chapter 2 Background and Related Work 5

2.1 Machine learning . 5
2.1.1 Overfitting and Under-fitting 5
2.1.2 Variance and bias trade-off . 6
2.1.3 Neural network . 6
2.1.4 Softmax . 8
2.1.5 Cross-entropy error . 8
2.1.6 Training . 9
2.1.7 Parameter Initialization . 9
2.1.8 Validation and Testing . 9
2.1.9 Batch Learning . 10
2.1.10 Learning rate . 10

2.2 Convolutional Neural Networks . 10
2.2.1 Convolution . 11
2.2.2 Pooling . 11
2.2.3 Dropout . 12
2.2.4 Batch Normalization . 12

Chapter 3 Approach . 14

3.1 Introduction . 14

ii

3.2 Background . 15
3.2.1 Genetic algorithms . 15

3.3 Related Work . 17

3.4 Approach . 20
3.4.1 Genotype . 21
3.4.2 Initialization of genotype population 25
3.4.3 Phenotype . 25
3.4.4 Convert genotype to phenotype 25
3.4.5 Skip connections . 28
3.4.6 Evaluation . 28
3.4.7 Training over Generations . 29
3.4.8 Selection . 30
3.4.9 Crossover . 30
3.4.10 Mutation . 33
3.4.11 Data Selection . 33

Chapter 4 Results . 35

4.0.1 GA performance . 35
4.0.2 Structure evolution of MNIST 37
4.0.3 Structure evolution on CIFAR-10 42
4.0.4 Evolution in a modular problem 47

4.1 Discussion . 52

Chapter 5 Conclusion . 58

5.1 Summary . 58

5.2 Threats to Validity . 59

5.3 Future Work . 60

Appendix A Pseudo Code . 62

Appendix B Mutation Descriptions . 70

Bibliography . 77

iii

List of Tables

Table 3.1 Mutations for the structures array 30

Table 3.2 Individual weight and weight array mutations 31

Table 3.3 Mutations for a structure’s jagged array 32

Table 3.4 Individual module mutations 33

Table 3.5 Modules array mutations . 33

Table 4.1 Most occurring mutations in the main structure of the genome
population. 57

iv

List of Figures

Figure 2.1 Demonstrates an example of a single convolution. 12

Figure 3.1 Diagram of a genetic algorithm flow. 17

Figure 3.2 Genotype organization: There are four arrays - a structures,
modules, weights and biases array. 22

Figure 3.3 A structure with a depth of 3. 23

Figure 3.4 The main structure (always the first structure in the array) is
converted to a TensorFlow graph. 26

Figure 3.5 Demonstrates two different ways to solve the problem of having
different sized outputs on modules of the same layer. 28

Figure 3.6 Demonstrates two genotypes’s structures undergoing crossover. 31

Figure 4.1 Best network’s accuracy in the population each generation on
MNIST data. Accuracy out of 1. 36

Figure 4.2 The mean population accuracy over GA generations for MNIST
data. Accuracy out of 1. 37

Figure 4.3 Network architecture of the network that achieved the lowest
loss in the GA. 38

Figure 4.4 The mean population accuracy over genetic generations for CI-
FAR10 data. Accuracy out of 1. 38

Figure 4.5 Fully training the best performing network from the GA on
CIFAR-10 data. Accuracy out of 1. 39

Figure 4.6 Diagram of the best performing network on CIFAR-10 data. . 40

Figure 4.7 Number of layers against the accuracy of networks in the pop-
ulation on the MNIST dataset. 40

Figure 4.8 Number of parameters of the best network over generations of
the MNIST data. 41

Figure 4.9 The average size of the parameters of the network over each
generation of the genetic algorithm on CIFAR-10 data. 43

Figure 4.10 Plot of the total parameters of the evolved networks in the
population and their accuracy on CIFAR-10. 44

v

Figure 4.11 Example training image with noise. 48

Figure 4.12 The output modules are divided into groups which correspond
to the number of label types. 50

Figure 4.13 Early on in training, the network splits into two separate struc-
ture groups. 51

Figure 4.14 Best evolved network on the two class problem. 52

Figure 4.15 This figure plots the loss of each network after 34 generations
on the two-class problem by their depth. 53

vi

Abstract

Traditionally, deep learning practitioners have relied on heuristics and past high-

performing networks to hand-craft their neural network architectures because archi-

tecture search algorithms were too computationally intensive. However, with the

advent of better GPU processing for neural networks, architecture search is now fea-

sible. We propose a search through the architecture space, using a genetic algorithm

that evolves convolutional neural networks using a novel decomposition scheme of

nested hierarchical structures using jagged arrays. We test it on standard image

classification benchmarks (MNIST, CIFAR-10) as well as a modular task (classifying

“what” and “where”). The resulting architectures achieve performance comparable

with the state of the art. We then explore the types of network architectures that arise

from the evolutionary stage. We show that the evolved architectures adapt to the

specific dataset, that common heuristics such as modular reuse evolve independently

in our approach and hierarchical structures develop for the modular task.

vii

List of Abbreviations Used

CE Cross-entropy.

CIFAR-10 (Canadian Institute For Advanced Research dataset of color images.

CNN Convolutional neural network.

CPU Central processing unit.

EA Evolutionary Algorithms.

FC Fully connected.

GA Genetic Algorithm.

GPU Graphics Processor Unit.

MLP Multi-layered Perceptron.

MNIST Modified National Institute of Standards and Technology database of hand-

written digits.

viii

Acknowledgements

I would like to sincerely thank my parents for supporting me throughout this Master’s.

Without them, I wouldn’t be here today.

I would like to thank Dr. Thomas Trappenberg for providing guidance, insightful

comments and always pushing me to go further with my research. I have become a

more independent and well-rounded researcher as a result.

ix

Chapter 1

Introduction

The popularity of convolutional neural networks (CNNs) has exploded in recent years

due to their success on many difficult tasks such as image classification [24], speech

recognition [15], machine translation [9] and game playing [41]. Convolutional neural

networks are a type of neural network and are part of the Deep Learning family of

image representation learning algorithms. Deep learning encompasses many forms of

neural networks like feed-forward and recurrent networks that aim to learn a compact,

generalizable representation of the data.

Even with the success that CNNs have seen, there remain issues that require

special attention to any practitioner that wishes to use them. For example, datasets

can be very different from one another. Datasets may be small or large, or feature

vastly different objects within the images, or the datasets may be noisy or unbalanced.

As per the No Free Lunch Theorem [40], no algorithm can perform optimally on all

problems, therefore care must be taken to select the best algorithm given the dataset.

This is no different when determining the type of CNN to use to classify a dataset.

Additionally, if the capacity of the network i.e. the number of learnable parame-

ters, is larger than the dataset truly requires, than the network is unnecessarily large

— an important consideration in embedded and mobile systems. Also, the complex-

ity of the network may allow it to overfit the training data whereby it memorizes

the noise in the training set and lacks the ability to generalize to unseen data. On

the other hand, if the network is too small, it may lack the ability to fit the current

dataset correctly and have poor accuracy, known as underfitting.

Therefore, most CNNs were traditionally handcrafted and the best performing

networks in the literature were designed through trial and error to fit various datasets.

However, these handcrafted networks have not been designed in a rigorous manner

with systematic parameter search or model-based searching methods, (we may refer

to specific architectures and parameter distributions of a neural network as a model).

1

2

There always would remain concerns that the particular network that was chosen

could be improved.

There has been much work performed on parameter selection of neural networks

and also other means such as employing evolutionary algorithms to search the archi-

tecture and parameter space to optimize the networks. However, up to recent times,

evolutionary algorithms were difficult to use with CNNs. It is not uncommon for mod-

els to take weeks to train. Additionally, CNNs tended to produce excellent results

without much fine tuning i.e. different models produce similar results. Circumstances

changed recently with the advent of faster Graphical Processor Units (GPUs) and the

desire by practitioners to squeeze every last drop of accuracy out of models to achieve

the very best performance.

In fact, one of the major driving forces for the adoption of CNNs was the creation of

algorithms for CNN computation on GPUs which allowed CNNs to train much faster.

Researchers are even going so far as to design specialized hardware for Deep Learning

models [21]. Therefore, research is now being conducted on utilizing evolutionary

algorithms to evolve CNN architectures — an approach that was intractable six years

ago.

1.1 Research Statement

Selection of the best performing network architecture is a challenge that is encoun-

tered when using convolutional neural networks. New approaches to finding the best

performing network architecture for a given problem and gaining a better understand-

ing of the types of neural networks that result from evolution are needed to better

leverage the vast computational potential of convolutional neural networks.

1.2 Thesis Overview

We implement a genetic algorithm with novel mutation and crossover operators to

evolve neural network architectures in a nested hierarchical manner. The basic build-

ing blocks are nested jagged arrays of convolutional and fully connected layers. We

test our approach with three datasets: MNIST, CIFAR-10 and a dataset with a two

class problem. We achieve competitive performance on MNIST and CIFAR-10 and

3

successfully evolve a hierarchical structure on the two class problem.

1. We create a novel decomposition scheme of convolutional neural networks using

nested structures of jagged arrays. We evolve the structures using a genetic

algorithm. The goal is to create a hierarchical model of a CNN which is fit to

the problem at hand. The difficulty of this stage was transforming the model

into a neural network suitable for training on the GPU.

2. We run the genetic algorithm on three sets of data, MNIST, CIFAR-10 and

our 2-class problem. The goal is to test the accuracy of our technique. The

difficulty of this stage was integrating the datasets into the genetic algorithm.

3. We observe what structures develop and their distributions among the evolved

population of networks. The goal is to investigate the types of networks that

are successful and their properties.

1.3 Thesis Contribution

In this thesis, we apply a genetic algorithm to evolve a network architecture and

observe the types of networks that result. In particular we make the following con-

tributions:

1. We propose a novel hierarchical decomposition scheme using jagged arrays to

represent a neural network. We use novel mutation and crossover operators to

evolve the neural networks. This two-step approach allows practitioners and

researchers to automatically search for a network architecture that best suits

the problem.

2. For the MNIST dataset, we observed that the best networks were flat (non-

hierarchical) and short (3 layers). For the CIFAR-10 dataset we found that flat,

longer networks performed better than shorter networks, modules are re-used

across the networks, the mutations which favor growth are most prevalent and

the number of parameters of a network are not necessarily indicative of the

network’s performance.

4

3. We observed that hierarchical models evolved for the two class problem and

that two separate channels evolved for each of the two classes.

4. We observe that some of the heuristics used today (such as modular design

and reuse) are independently evolved and that the networks evolved to suit the

problem.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides an overview

of machine learning, specifically CNNs and genetic algorithms and typical network

architectures of CNNs. Chapter 3 presents our approach to evolving network ar-

chitectures. Chapter 4 presents the results and provides a discussion of our results.

Chapter 5 concludes the thesis, presents the limitations and threats to validity and

proposes possible avenues for future work.

Chapter 2

Background and Related Work

This section presents an overview of machine learning and more specifically, convolu-

tional neural networks.

2.1 Machine learning

The goal of machine learning is to improve performance on a task given experience.

The performance is measured using a specific performance measure. The model is a

representation of the task and should perform better with more experience. Generally,

the experience is presented in the form of a collection of Rn vectors known as data.

The model should perform well with data that the machine learning algorithm has

never seen before. This is called generalization.

Supervised learning’s goal is to learn a correct mapping from X to y where X is

a collection of Rn vectors of data and y is an accompanying vector {1, ..k} or Rn. X

and y can be discrete or continuous valued numbers. A training set Xtrain is provided

that comes with labeled data. So that each x data points has an accompanying y

value. The learning algorithm must learn the mapping of training data x to y with the

added goal of generalizing to unseen examples of data on a test set Xtest. Supervised

learning can further be divided into classification and regression tasks. Classification

tasks are where the y label is discrete and the goal is to label each x instance with

one of the possible y values. In regression tasks, the goal is to select a real value y

for each instance x. In this thesis, we focus on supervised learning.

2.1.1 Overfitting and Under-fitting

Overfitting occurs when an algorithm performs well on the training set but performs

poorly on a test set. As stated earlier, the goal is to perform well on both the training

and test set. Overfitting occurs because the algorithm may have learned from random

noise or outliers in the training set which do not occur in the test set or the algorithm

5

6

has only learned to memorize the training set rather than learn to generalize to as

yet unseen data. Under-fitting occurs when the data performs poorly on the training

set due to insufficient training data or the algorithm’s capacity is not large enough

to handle the training data’s complexity.

Capacity is a measure of the ability of an algorithm to fit many functions. In other

words, it is a measure of the maximum complexity of functions that an algorithm can

fit. The larger the capacity, the more complex the function that the algorithm can

fit. A rough estimation of capacity can be made by determining the number of free

learnable parameters the algorithm contains during training.

Hypothesis space is a related concept and can be thought of as the number of

functions that the machine learning algorithm has at its disposal to fit the problem.

No single machine learning algorithm can perform well on every single problem as per

the No Free Lunch Theorem [40]. Therefore, the challenge remains to find the right

algorithm for the right task.

2.1.2 Variance and bias trade-off

Bias is the measure of average error in the training data. Variance is the measure of

how well an algorithm performs across many constructions of the same model with

a different sample of the dataset. A very complex model will have a low bias, but

a high variance. A simple model will have a high bias but a low variance. For an

optimal algorithm, the goal is to construct a model with low variance and low bias

but in reality, most algorithms settle for a trade-off between the two. Neural networks

generally have a high variance and a low bias.

2.1.3 Neural network

Neural networks are learning algorithms inspired by how the neurons in our brains

work. Indeed, neural networks can be seen as abstract representations of networks

of neurons. They were originally devised by Rosenblatt in 1958 and called a percep-

tron [38]. A perceptron is a set of neurons which are fed input from the data and

output a classification value. It was a very simple implementation that lacked many

modern day features such as backpropogation but performed well enough to solve

simple linearly separable problems.

7

A single threshold neuron has n incoming weights which each correspond to an

input from a data example x. The weights are multiplied by the input w × x and

summed up. If the value is greater than a bias then the output is 1 otherwise it is 0.

The bias is a parameter of the neural network. It can be thought of as the threshold

which the weights times the outputs must reach before the neuron fires.

f(x) =

1, if w · x+ b > 0

0, otherwise

Threshold perceptrons are able to classify linearly separable data, but were deemed

unsuitable for complex problems due to their inability to solve non-linear problems

such as the XOR problem [32]. Afterwards, Werbos invented the backpropagation

technique which solved the XOR problem using a multi-layer perceptron [37]. In

the 1980s, Rumelhart et. al. popularized the technique under the term connection-

ism [39].

Multi-layer perceptrons (MLP) have several differences to perceptrons. The sim-

plest MLP has three layers: an input layer, a hidden layer and an output layer. The

input layer’s activations feed into the hidden layer which in turn feeds into the output

layer. The output layer outputs the network’s classification. Each layer contains indi-

vidual nodes such as the ones in the perceptron except they have activation functions

other than the simple threshold.

Activation functions are similar to a population response of many threshold neu-

rons in the brain. Activation functions mirror the gradual increase and subsequent

saturation of the overall activation as the number of neurons that fire increases. For

an artificial neuron, the neuron’s summed output, wx+ b, is passed through the acti-

vation function φ which performs a non-linear transformation of the output. Example

functions include the logistic function, tanh function or ReLU function. In our work,

we use the ReLU activation function. The formula is:

φ(x) = max(0, x)

MLPs use backpropagation to learn. Backpropagation is a way to assign error

to nodes in a neural network derived from the error (known as loss) between the

output’s activations and the target labels in a neural network. For example, if the

8

output layer’s node is 0.1 and the y value is 0, the error is (0− 0.1)2 = 0.1. The error

is “propagated” back from the output nodes to previous nodes. The error is used to

adjust the weights of the neural network to minimize the error at each node. In this

way, the output nodes produce output closer to the target labels after each iteration

of backpropagation.

The weights are adjusted using the following formula:

∆wij = wij − ηoiδj

where η is the learning rate which scales how much the weight is adjusted and δj

is error of the outgoing node and oi is the incoming value to the weight.

The delta is calculated as follows if using the logistic function:

δi =

(oi − yi)oi(1− oi), if output node∑
j∈J δjwij · oi(1− oi), if inner node

The oi(1− oi) is the derivative of the logistic activation function.

2.1.4 Softmax

Softmax operator is useful to turn the neural network outputs into an equivalent

probability distribution where each node’s output becomes the probability that the

network believes that particular output corresponds to the correct label. The softmax

operator transforms the output values to such a distribution. The exact function is

as follows:

oj =
eoj∑
k e

ok

2.1.5 Cross-entropy error

As with most supervised learning algorithms, the goal is to predict P (y|x). To do so

we use the principle of maximum likelihood estimation. The idea is to find a model

distribution that best represents the training data distribution. We wish to maximize

the probability that the model fits the training data. For reasons of efficiency, the log

likelihood is used instead. To measure the difference between the two distributions

we use the negative log likelihood also known as the cross-entropy error.

9

2.1.6 Training

The network undergoes many iterations of small changes to its weights and biases to

find the best network classification accuracy. In essence, the training is an optimiza-

tion problem where the goal is to minimize the error of the network by changing the

weights and biases of the network. The weights and parameters are adjusted based

on the feedback from the error of the network on the training data.

The network normally begins with a random assignment of weights and biases.

Then a training instance is given to the network and run through the network, the final

activations of the output neurons are compared to the expected output of the training

instance. The CE error is calculated and then the gradient of the error is subtracted

from the weights and biases. This moves the weights and biases values closer to

producing the desired output. The loss function is not guaranteed to converge to a

global minima but in practice performs reasonably well. We use the adam optimizer

which is a first-order gradient descent optimizer [22]. The algorithm adjusts the

current gradient step by weighting it by the moving average and variance of past

gradients.

2.1.7 Parameter Initialization

The weights and biases at each layer l are usually initialized based on the number of

nodes connected to layer l. The idea is to keep the variance of each layer’s weights

the same to speed up training. This technique is known as Xavier initialization.

V ar(W) = 2
nin
, where the variance of the weights initial values is equal to 2 over

the number of input nodes.

2.1.8 Validation and Testing

It is important to know the accuracy of the network on unseen data as that is a better

measure of how well it will perform in a real world setting and see that the network

has not just memorized the data. This data is known as validation or testing data.

Validation data is used to help select a model by training the model on training data

and then seeing the error rate on validation data. The model is then adjusted to

perform better on the validation data. In this way, the validation set “leaks” into the

10

model building process and biases the model towards favoring models that perform

well on the validation data. Therefore, at the end of model building, the model is

run on testing data which it has never been exposed to in order to evaluate the true

error rate.

2.1.9 Batch Learning

The whole dataset can be used to compute a single gradient descent step, however

this is often computationally infeasible. Instead stochastic gradient descent can be

used, which uses only a single training example at a time, however it may get stuck

in local minima more easily as the computed gradient is an approximation of the true

gradient. A compromise between the two is to adjust the weights and biases using

the average gradient of n random instances from the training data. Each successive

iteration of the network is trained on a different small sample of the data called a

mini-batch. We use the mini-batch method.

2.1.10 Learning rate

The learning rate is the magnitude of the gradient that is subtracted from the weights

and biases. A large learning rate may learn faster but runs the risk of overshooting

the intended direction of the minimization problem. A small learning rate such as

0.001 is generally preferred for convolutional neural networks.

2.2 Convolutional Neural Networks

A convolutional neural network is composed of layers of spatially-invariant feature

maps or kernels. These feature maps learn to detect specific features anywhere in

the input channels. In this way, small disturbances between training instances are

ignored e.g. an eye feature detector is able to cope with the minor variations of the

location of eyes on human faces. Successive layers of learned feature detectors are

stacked on top of each other so that the higher layers are hierarchical compositions

of lower level features. The final layer is a fully-connected layer similar to the hidden

layer in a MLP.

Convolutional neural networks (CNN) were first popularized by Le Cun et. al. in

11

1998 where they showed that they could perform well on the MNIST letter dataset [26].

An earlier version of the convolutional neural network was created by Fukashima

called the Neocognitron [13]. CNNs did not become popular until 2012 when several

key contributions were made by Krizhevsky and Hinton who harnessed the growing

power of GPUs and a technique called dropout to outperform the state of the art on

a large image classification task called Imagenet [24]. Since then CNNs have become

extremely popular over the past five years and are used in many real world prob-

lems such as the aforementioned image classification, speech recognition and machine

translation.

2.2.1 Convolution

Each layer is composed of a set of convolutional operators. The convolutions are x

by y sized matrices called kernels that pass over the entire image and on each pass

the kernel values are multiplied by the input, summed up and added to the bias. The

new value is placed in the output matrix.

In order to preserve the size of the original image we add padding around the

image. Padding entries are commonly zero valued entries around the matrix.

An example of a single convolution is shown in Figure 2.1. Here a 3 by 3 image is

convolved with a 2 by 2 kernel. The image has a 1 pixel wide padding.

A convolutional layer is composed of multiple n kernels that produce m output

matrices called channels. The number of pixels that is skipped between each shift of

the kernel is known as the stride.

2.2.2 Pooling

A pooling layer is where a pooling kernel is passed over the output of a layer and

“pools” the output into a smaller, compact representation of the output. It reduces

the number of parameters and adds invariance to local shifts in features. There are

several popular types of pooling. Max pooling takes the maximum element in the

pooling kernel. Average pooling returns the average value in the kernel. A standard

pooling layer is a 2 by 2 kernel with max-pooling which results in halving the input

size.

12

Figure 2.1: Demonstrates an example of a single convolution. A 3 by 3 image is
convolved with a 2 by 2 kernel. The image has a 1 pixel wide padding. Only the first
convolution is shown. The kernel will pass along the image with a stride of 1 until all
rows and columns have been visited.

2.2.3 Dropout

Dropout disables a random subset of neurons in a layer from firing during a training

iteration. The outcome of applying dropout is that the network generalizes better

to unseen data. The idea behind dropout is that it creates many different samples

of different networks on each training iteration so it can be thought of as a form of

bagging. Bagging is a term used to describe combining the outputs of many different

machine learning models and taking the majority’s classification.

2.2.4 Batch Normalization

Batch normalization attempts to normalize each hidden layer similar to how we nor-

malize the input layer. Layer i would prefer if layer i−1 activations were normalized,

but due to the constant fluctuation of the activations from training, layer i− 1’s acti-

vations are not. This fluctuation is called covariance shift. What batch normalization

does on each layer is determine a mean and variance of the batch and normalize that

13

layer along with using two parameters which are learned by stochastic gradient de-

scent. The end result is that the activations per layer will shift less and make training

faster.

Chapter 3

Approach

3.1 Introduction

Convolutional neural networks (CNNs) have traditionally been crafted by hand in an

ad-hoc manner. Practitioners usually test different network architectures and their

parameters in a non-exhaustive way and rarely report any form of parameter tuning

in research papers describing new architectures. They usually only report the best

classification accuracy attained on a test set. The lack of parameter tuning is due

to the fact that convolutional neural networks can take many hours to fully train

– making search algorithms that must evaluate thousands of network architectures

prohibitively expensive.

Deep learning practitioners have built a consensus based on performance of a few

large-scale high-performing networks as to what the best network should look like.

The crafted CNNs tend to be long, deep networks which outperform shorter, wider

networks [17]. For many years practitioners have done well with these heuristics.

CNNs have the benefit that they naturally perform well with a variety of architec-

tures and parameters, requiring less fine-tuning and are quite adaptable to different

image recognition tasks. So fine-tuning was not a priority to practitioners. However,

a network architecture chosen heuristically may perform well on one dataset but may

not be the best architecture for another similar dataset. Additionally, one may ex-

ist that contains less parameters which can also be beneficial - a smaller network is

more compact, faster to train and run during deployment. If a practitioner wishes

to achieve the absolute best accuracy than a method to search the architecture space

using evolutionary algorithms (EA) may be desirable.

Evolutionary algorithms such as genetic algorithms have long been employed in

evolving neural network architectures [34, 27], but their use in CNNs have been less

prevalent until recently with the advent of faster GPUs [31]. Their potential lies in

their ability to optimize the parameters of the network with architecture search.

14

15

We propose a genetic algorithm (GA) to search for an optimal network architecture

using hierarchical 2D jagged arrays as the network. The GA evolves a population of

CNNs with their loss as the fitness. We evaluate whether the heuristics such as long,

thin networks hold when analyzing many different network architectures through our

use of a genetic algorithm.

This approach is tested on both the MNIST and CIFAR-10 datasets. The results

of the evolved network are competitive with the state-of-the-art. Then we present

the types of networks and their parameters which tend to be selected.

We confirm past findings that networks that are deep and narrow are evolved. We

find that diverse structures perform similarly and that the mutations that occur most

frequently in high-performing networks are high growth mutations such as doubling

the size of the network.

We also perform an experiment on a two-class problem to observe the resulting

network architectures. We find that the GA creates a hierarchical network that

parallelizes the output to the two classes.

The remainder of this chapter is organized as follows: Section 3.2 presents the

background on genetic algorithms. Section 3.3 presents the related work. Section 3.4

presents our approach.

3.2 Background

In this section, I give an overview of genetic algorithms and the details specific to our

approach.

3.2.1 Genetic algorithms

A genetic algorithm is a method of evolving a group of solutions to solve a problem.

GAs are inspired by biological evolution whereby a population of organisms’ geno-

types have a small chance of mutating each generation and those mutations sometimes

produce beneficial functions which make the individuals with the beneficial mutations

more likely to survive, produce offspring and live on in successive generations. After

many generations, novel and unique adaptations to the environment develop in indi-

viduals. The genotype is the DNA inside an individual whereas the phenotype is the

individual in the wild.

16

A GA works similarly to their biological counterpart. An abstract representation

of a solution is called a genotype. The genotype is what is mutated and crossed

over between individuals in the population. When it comes time to test the geno-

type’s fitness, the genotype is converted to a phenotype to test the solution on the

problem. The phenotype is the genotype converted to an actual solution - and no

longer an abstract form of the solution. The rules for conversion are fixed and known

beforehand.

The algorithm begins with a population of genotypes which are initialized ran-

domly. An GA generation consists of several steps: evaluation, selection, mutation,

and cross over.

Evaluation consists of converting the genotypes to phenotypes and evaluating the

fitness function for each phenotype on the problem. The fitness function returns a

value which measures how well the phenotype solved the problem. We use the loss

function of a CNN. Lower loss translates to higher fitness. The fitnesses are assigned

to the genotypes.

Selection consists of probabilistically selecting the most fit genotypes to be placed

in the new generation’s population. Only those genotypes that survive into the new

population carry on. Those that were not selected are discarded in the old population.

The genotypes with higher fitness have a higher chance of being selected.

Mutation consists of making changes to the genotype with a small probability.

The probability remains low, usually 1%. If the mutation rate is set too high then

the genetic algorithm devolves into a random walk in the architecture space.

Crossover consists of pairing up two genotypes and switching parts of their geno-

type. The idea borrows from crossover in genes of cells during sexual reproduction.

The motivation behind crossover is that parts of well performing genotypes are ex-

changed together which preserve the exchanged parts’ structure. Crossover probabil-

ity is usually set around 20-30%.

The four steps are repeated until a stopping criteria is met, such as a finite num-

ber of generations or a certain accuracy is attained. After successive generations of

evolution, high-fitness solutions tend to survive while weaker solutions do not. A

basic diagram of a genetic algorithm is presented in Figure 3.1.

To ensure that the population is always improving, there are various techniques

17

that can be applied that are not strictly biological, such as elitism. In elitism, a

portion of the best evaluated individuals of the population are not modified and pass

directly to the next population. In this way, the best solution in the population can

never get worse between generations.

Figure 3.1: Diagram of a genetic algorithm flow.

3.3 Related Work

Parameter search has been used to find the optimal parameters (weights, biases) in a

network [7]. The parameter values of a network are modified in an either systematic or

random way. Approaches to parameter tuning have been performed such as Bayesian

optimization [42] and random search [6]. The end result are highly tuned networks.

In our work, architecture search is a form of parameter tuning if you consider the

network architecture and number of nodes as parameters of the model.

GAs have long been used to train neural networks [34, 27]. Until recently though,

CNNs took too long to train. Now that GPUs have been used to train CNNs, the

potential for using evolutionary algorithms like GAs has increased enormously.

We focus the related work on image recognition tasks although GAs have been

employed in different domains of Deep learning such as on creating auto-encoders.

David and Greental created a deep auto-encoder using genetic algorithms to produce

an improved, sparser network [10]. They evolved the weights of the encoding layer.

Pinto et al. was on of the first to evaluate many different architectures on image

classification tasks for Deep learning [35].

Fernando et al. created PathNet, an example of a modular multi-layered CNN

which evolved the connections between modules using a genetic algorithm [12]. They

18

initialized a set of modules on a finite set of rows and then used a genetic algorithm to

select connections between the modules to solve transfer learning tasks. This approach

lacks the ability to expand in size or any hierarchical structures contrary to subsequent

approaches. One of the goals of this approach is the ability to transfer useful evolved

structures to new problems. Task A is learned first and then the weights and biases are

frozen and then a new set of connections are initialized while preserving the previous

connections. Task B is learned by evolving the connections of PathNet but also using

the previous learned connections from Task A. They saw an improvement in training

times when training CIFAR-10 and MNIST as a second task. They also applied

their approach on Atari games. In comparison to our approach, their GA ran for

500 generations and used tournament selection. Their resulting architecture for the

Atari game was 10 modules per layer with 4 layers total. However, the modules were

not all connected. The final layer was pre-determined to be a fully connected layer.

Their approach was more concerned with transfer learning which differs from our

goals of observing the network architectures, so a direct comparison is not possible,

but we do find that our GA evolved different sized modules — both in kernel size and

channel size and our approach outperformed their CIFAR-10 accuracy. Their results

compared to newer approaches shows that perhaps using fixed sized networks is not

an ideal technique.

Xie and Yuille created a binary representation of graph structures and then stacked

the binary codings on top of each other and called them phases [44]. They used fixed

size convolutional filters. They experimented with a 3 phase network on CIFAR-10

and achieved a 76.84% accuracy. Each phase contained around 5-6 modules connected

in a graph. They later fit the evolved network structures from CIFAR-10 into larger

networks like VGGNet — replacing VGGNet’s architecture and significantly improved

their accuracy to 92.9%. The downside is that they needed to hardcode the networks

themselves and needed a well-designed network to transfer their learned structures.

Whereas in our approach we do not need to hard-code the levels or intervene in its

creation aside from the initialization phase where we seed the network structures with

random modules.

Real et al. designed a GA to evolve network architectures [36]. They do not

use any initial conditions and preserve the trained weights of networks through each

19

generation as long as the weights were not altered during mutation. They utilized a

parallel architecture of 250 workers to evolve and train many networks at once. They

achieve 94.6% on CIFAR-10. Their mutations allowed for large alterations in the size

of the network. Our approach also allows for mutations that add entire layers to the

network. They did not use crossover, whereas we did.

Miikkulainen et al. created DeepNEAT, a convolutional version of Co-NEAT, a

genetic algorithm for evolving neural networks [31]. The authors evolve two sepa-

rate groups: modules and blueprints. Modules are small networks and blueprints are

graphs where each node represents a module. To assemble a network, they replace

each node in a blueprint with the module i.e. a small network. The result is hier-

archical graph-like structure. They achieved 92.7% accuracy on the test set. One of

the best performing networks featured 12 layers with some linear convolutions (no

RELU) and some convolutions plus batch normalization and RELU. They used an

initialization method similar to our own where they initialized 25 blueprints and 45

modules before the GA began. Our approach differs in that it uses a hierarchy of

jagged arrays rather than a graph so the mutations are different. They also restrict

their approach to a certain set of hyper-parameters such 32-256 range of filters and

kernel size of 1 to 3.

Simonyan et al. evolved neural network architectures by using a hierarchical

encoding of operations in a graph [29]. They reused architectures in different layers

of hierarchy which is most similar to our own work, but they use a graph-based

structure and use a set number of lower level motifs. They use 200 GPU workers to

evolve their architecture. They achieve a 96.37% accuracy on CIFAR-10.

Reinforcement learning has also been used to find the best structure of a network.

Baker et al. created a reinforcement learning solution using Q-learning and epsilon

greedy search [4]. Actions of the Q-learner consisted of adding a new type of layer

to the network. The validation accuracy served as the reward. Over many runs,

the Q-learner learned specific constructions of well-performing networks. Zoph and

Le used reinforcement learning to search effective architecture space for CNNs [46].

They call their method Neural Architecture Search (NAS). They used a RNN to

predict architectures and then use the resulting validation accuracy as the reward for

the architecture. The list of generated architectures becomes the list of actions taken

20

by the reinforcement algorithm. Each subsequent run would learn which pathways

were successful and improve the way the network was constructed. Zhong et al.

employed a similar Q-learning algorithm [45]. The Q-learning agent sampled different

block structures composed of convolutional operators and then trained them in an

asynchronous manner. They achieved a 96.4% accuracy rate on CIFAR-10. They used

32 GPUs. Zoph et al. employed a similar idea as Xie and Yuille and first evolved

a neural network architecture on CIFAR-10 which achieved a 2.4% error rate (state

of the art) and then used the network as a unit itself and stacked multiple networks

on top of each other each with their own parameters and tested the stacked network

on ImageNet and achieved a state of the art result of 82.7% [47]. They used Neural

Architecture Search (NAS) for the evolution of the smaller CIFAR-10 network. They

employed a pool of 500 GPUs.

Among the other types of approaches, Assuncao et al. separate evolution into an

outer layer consisting of the sequence of layers and an inner layer consisting of the

parameters of the layers. They define the allowable range of parameters with a context

free grammar. [2]. Liu et al. uses another approach different from genetic algorithms

and reinforcement learning. They use sequential model-based optimization (SMBO)

to search network architectures of increasing complexity while guiding the search with

a heuristic function [28]. Hypernetworks use a smaller network to create the weights

of a CNN or recurrent network [16]. Mocanu et al. evolved sparse representations of

their Deep learning networks [33] which is in contrast to other work which assumes

fully connected layers.

Our work differs from the above works in that we use a jagged array rather than

a graph-based structure. Our results do not match the level of accuracy that some of

these networks achieve, however our goal is to investigate the resulting architectures

of our genetic algorithm to see what patterns arise.

3.4 Approach

In this section, the approach, datasets and preprocessing of the data are presented.

Our GA’s task is to evolve a neural network that performs well on an image

recognition problem. Therefore, the population of the GA consists of neural network

genotypes. A neural network genotype for this problem is an abstract representation

21

of a neural network. The phenotype is an actual neural network implemented in

TensorFlow [1].

The GA population consists of 80 neural network genotypes which are initialized

with random structures. Then the algorithm repeats the four step process of eval-

uation, selection, crossover and mutation until it has reached a limit determined by

time allowance and accuracy.

The evaluation consists of converting the genotype into the phenotype, training

the phenotype on image classification for a small number of iterations (typically much

less than a fully trained network), evaluating the loss and applying the fitness function

to the genotype. Selection occurs by probabilistically selecting genotypes that have

higher fitness. The probability is calculated by dividing each genotypes’ fitness by the

total fitness of all genotypes. The more fit genotypes are more likely to be selected.

Two genotypes are selected probabilistically and then crossed over, then each are

given a chance to mutate. These four steps are repeated until a stopping criteria is

met. The training is stopped after 28 generations for MNIST and 101 for CIFAR-10.

We use a technique called “early stopping” whereby if the validation accuracy does

not change over several generations then the GA is terminated.

After the GA finishes evolving, the neural network phenotype in the population is

selected with the highest fitness and then fully trained. Training for 100K iterations

on CIFAR-10 and 30K iterations for MNIST. We evaluate them on test data. Once

again, we employ early stopping.

In essence, the approach can be thought of as having two distinct learning phases.

The first phase of learning is the genetic algorithm as it attempts to find an optimal

network architecture and the second phase is taking the best performing network

from the GA and fully training it.

3.4.1 Genotype

The genotype is composed of four arrays: the modules array, the structures array,

the weights array and the biases array. We refer to the individuals in the arrays as

elements. Figure 3.2 provides a visual example of a genotype. The population of

genotypes are initialized with random values.

The genotype is hierarchical and modular in nature. The hierarchy is inherent

22

Figure 3.2: Genotype organization: There are four arrays - a structures, modules,
weights and biases array.

in the structures. Each structure can contain other structures. The modularity

comes from the fact that structures can contain the same modules repeatedly. The

modularity allows reuse of the same pieces across multiple locations in the genotype,

and allowing a mutation in a modular component to affect all parts of the genotype

that uses that modular component. Therefore, one small change can have large

consequences in the genotype. The hierarchical nature allows natural structures to

form and then be easily swapped to other genotypes in the crossover operation.

Structures

The structures array is composed of structures. It is an expandable n sized array

containing any number of structures. A structure is a two-dimensional jagged array.

A two-dimensional jagged array is similar to a matrix but whereas a matrix’s rows are

of equal length a 2-D jagged array’s rows can be any length. They can alternatively

be thought of as a list of lists. For example the following is a 2-D jagged array with

two rows, the first row has 2 elements and the second row has 3:

23

[[0, 1],

[1, 1, 2]]
(3.1)

The rows of the array represent layers of a neural network and can be any length

in size. Each row contains any number of modules or structures. For example, if

a structure is composed of two rows, the first containing 2 modules and the second

array containing 1 module then the structure would represent a 2 layer network with 2

modules on the first layer and 1 module on the second layer. Figure 3.3 demonstrates

a possible hierarchy.

Figure 3.3: A structure with a depth of 3.

Each layer in a structure is fully connected to preceding and succeeding layers.

Additionally, skip connections between layers are also permissible.

There is potential for a hierarchy of structures to exist whereby a parent structure

contains a child structure on one of its layers. In this case, the parent structure’s

preceding layer to the child structure is fully connected to the child structure’s first

layer, then the child structure’s output layer is fed to the next layer of the parent’s

structure. The goal is to allow embedding of deep layers within a single parent layer.

The only restriction for structure’s children elements is that a child element cannot be

the parent element nor can the child element contain the parent element to eliminate

the possibility of infinite recursion.

The elements inside a structure’s jagged array are merely references to either a

module or structure from the modules or structures array respectively. The reference

is a pointer to the actual element located in its respective array. That means when

a module in the modules array is changed, all the references to that module in other

24

structures are changed as well. This allows one small change to potentially alter many

structures at once. It also allows for a more compact and efficient representation and

makes it much easier to add and remove references to structures. To keep the sizes

of the structure manageable we restrict the hierarchies to a depth of 4, but our

implementation is not limited to any depth and could in theory use a limitless depth.

Modules

The modules array contains modules. There are two types of modules. The first type

is called a CNN module and it is a collection of convolutional operators. The full list

of parameters for a CNN module are: the number of output channels, kernel size,

stride length, 2x2 max pooling (ON or OFF), concatenation of incoming modules

(ON or OFF), the weight element and bias element. The second type is called a fully

connected (FC) module and is a set of fully connected nodes. A FC module has the

number of nodes and a weight and bias element as parameters.

A module is synonymous with a standard layer from a CNN or neural network.

For example, a FC module could be a 512 node fully connected layer or a CNN

module could be a 64 channel CNN layer with 5 by 5 kernel. The difference in our

approach to a standard convolutional layer is that modules can be stacked together

on the same layer of a structure. This allows multiple modules (which create different

sized output channels) to exist on the same layer.

Biases and Weights

The biases and weights arrays are composed of bias and weight elements respectively.

A bias or weight element contains a value and these elements are attached to modules

to modulate the starting value of their biases and weights before training. Before the

weight and bias elements modify the starting values, the weights are initialized by

Xavier initialization so the weights’ values are determined by the number of nodes

on the ith and jth layers for wij. After Xavier initialization is performed, the weight

values are adjusted by whatever the value of the weight module is.

25

3.4.2 Initialization of genotype population

The population of genotypes is initialized with random modules, structures, weight

and bias elements. The reasoning behind seeding the genotypes with random elements

is that without them the GA would waste time increasing the modules and structures

arrays before they could be mutated to something useful.

The modules array is initialized with five fully connected modules of 128, 256,

512, 1024 and 2048 nodes and 360 convolutional modules where each module has a

slightly different number of output channels, pooling, stride, kernel size etc. Each

module receives a random starting weight and bias element.

The structure array is initialized with 60 random structures. Forty structures

consisted of a random number of layers with one module each while twenty were two

layers long with a one or two modules per layer.

The biases and weights arrays are initialized with 50 starting bias and weight

elements. They are randomly assigned starting values with a normal distribution.

3.4.3 Phenotype

The phenotype is a TensorFlow graph constructed from the genotype’s abstract rep-

resentation of a neural network. Careful consideration was taken to build the graph

respecting the modular and hierarchical nature of the genotype. Figure 3.4 demon-

strates an overview of the conversion process. To begin the process the main structure

is converted to a TensorFlow graph. While a genotype’s structure array can contain

many structures, the first structure in the array is always selected as the main struc-

ture. Of course, the main structure’s layers can contain other structures from the

structures array. The GA will always be trying to maximize the fitness of the first

structure in the array but the GA will be able to develop structures on the side which

may get mutated into the main structure later on. If the main structure is empty,

then the fitness is zero.

3.4.4 Convert genotype to phenotype

The genotype’s main structure is converted to a phenotype. The process involves

turning the abstract representation of a CNN into a TensorFlow graph that can be

26

Figure 3.4: The main structure (always the first structure in the array) is converted
to a TensorFlow graph. The first structure in the structures array becomes the
main structure. Then we form a computational graph in TensorFlow by connecting
all the modules inside the main structure. The process precedes in a feed-forward
manner starting from the first layer of the main structure. If a child structure is
encountered, the child structure’s modules are connected recursively to the main
structure’s modules.

trained. It is done in three stages: processing the input layer, then processing the

middle layers and processing the output layer. Once the graph is defined, in a separate

step, the graph is compiled and ran.

First, the structure’s input modules are identified, they are any modules that

do not have incoming connections. Each input module is then attached with the

input of the problem as Algorithm 1, located in the Appendix, demonstrates. A

pointer to the resulting output (graph node), h, is kept in order to store it in the

module. In this generic system, a module can have multiple image outputs and store

them within the pointer. The usefulness of the pointer is that a module on the next

layer can separately convolve over each output image stored in a module’s pointer

at the previous layer. That way, the modules on a layer are not forced to pool and

concatenate together.

After the input has been connected to the input modules of the main structure, the

rest of the main structure is connected to the TensorFlow graph. The graph is created

by visiting each element in the main structure starting at the main structure’s first

layer. If a child structure is encountered it is expanded and explored recursively. Each

time a module is visited, the matching TensorFlow object is created and attached to

27

the TensorFlow graph. The module is connected to the modules in previous layers.

Algorithm 3, found in the Appendix, shows the pseudo-code for connecting modules

with previous modules. The genotype conversion is complete once all elements in

the main structure have been visited (including child elements). The search through

the main structure proceeds in a feed-forward manner. Algorithm 2, located in the

Appendix, demonstrates the pseudo-code for recursively connecting every module in

a structure.

For the final stage, the output modules of the main structure are connected to

the class nodes (each node representing a class of the problem. A global pooling

operation pools all the values from the output modules to each class node — which

acts as the final softmax layer. Algorithm 5, located in the Appendix, demonstrates

connecting the output modules to the softmax output.

The resulting TensorFlow graph is now connected to the input layer and class

layer for the given problem. For image recognition tasks, the input layer is the size of

the images and the class layer’s size equals the label size. The input and class layer

do not change during any phase of learning. For example, in the CIFAR-10 dataset

the input layer’s size is 28 x 28 x 3 and the class layer’s size is 10.

Concatenation

Normally, input to convolutional layers are required to be the same size. In our CNN

architectures, multiple modules on a single layer are allowed and these modules may

produce different sized image channels e.g. module a has a stride length of 2 so

produces a 5 by 5 image while module b (also on the same layer) has a stride length

of 1 and produces a 10 by 10 image. We devise two solutions to allow convolutions

over different sized inputs, the two solutions are demonstrated in Figure 3.5.

The first solution is for the module on layer n+1 to convolve over each separately

– creating two output images. However, if there were two modules at n + 1 they

would both now have two different image sizes and that means the module at n + 2

will then produce four output images. The number of parameters quickly becomes

intractable to handle.

The second solution is to downsample or pool the modules of a layer then con-

catenate the channels - at TensorFlow conversion time - so that the layer contains a

28

set of same-sized output channels. Then the next layer’s modules output channels is

not doubled in size. Algorithm 4 shows the pseudo-code for this solution.

Both solutions are allowed and we include a concatenation parameter on every

CNN module to control whether it is on or off.

Figure 3.5: Demonstrates two different ways to solve the problem of having different
sized outputs on modules of the same layer. In the example, the two modules at layer
1 have different sized outputs (20 and 40). The first solution is to store the results
from convolution separately at each module on layer 2. The second solution is to
downsample the modules to 20 by 20 and then concatenate the channels together.
This allows the second layer modules to convolve over them.

3.4.5 Skip connections

Skip connections are connections which skip at least one layer. They can be added to

structures via mutation. Skip connections that were added in the genotype are also

added in the phenotype. They provide a means to connect non-adjacent layers. They

have been shown to be beneficial in other networks [19].

3.4.6 Evaluation

The converted TensorFlow neural network is then trained on an image recognition

task. We use a small number of iterations to keep the overall cost of evaluation down.

We begin training for 1800 training iterations using stochastic gradient descent.

If a network is not feasible it is assigned a fitness of zero. Each genotype must

have at least one module in its main structure.

29

Once the network has been trained, the loss of the network is used as a parameter

for the fitness function. The output layer uses a cross-entropy loss function which is

a measure of error between the true labels and the output of the network. The error

is backpropagated through the network’s weights and biases.

The fitness function minimizes the loss of the network but also the size of the

network parametrized by the number of generations. The total parameters are calcu-

lated by summing up the number of weights and biases that the resulting TensorFlow

network contains.

The size of the network is compared against a threshold value sizemin. If the

network’s parameter size is less than sizemin than the fitness is not punished and it

equals 1/loss. If the fitness is between sizemin and sizemax then a punish value is

normalized out of 1 between the two threshold values and the punish value multiplied

by the fitness. If it exceeds sizemax then the fitness is zero. The sizemin is 2 million

and the sizemax is 55 million allowing for very gradual regularization. Punishing the

size of a network acts as a regularization measure to pressure the GA to evolve smaller

networks first and only expand as more parameters are needed.

There is also a max threshold where a network cannot exceed; if it does the network

is assigned a fitness of zero to stop extremely large networks from running. The value

is 5 million and 32 million for MNIST and CIFAR-10 respectively.

3.4.7 Training over Generations

After each generation, the sizemin (if the size of the network is over sizemin, the

network’s fitness is reduced) and sizemax (after sizemax the network’s fitness is 0) are

increased by 200,000.

Additionally, we increase the number of training iterations each generation by 40.

This way the solutions are trained progressively longer and give better estimates of

their true fitness.

After training is complete, the loss, accuracy and fitness (based on the loss and

network size) are calculated, then the weights and biases are reset. So the network

- if it is reused again in the GA - must learn from scratch before re-calculating its

fitness.

30

3.4.8 Selection

We employ fitness proportionate selection for creating the new population from the

old. The probability of selection is:

pi =
fi

ΣN
j=1fj

where fi is the fitness of an individual and pi is the probability of being selected.

Then they are sorted by their proportional fitness and a random number is drawn

where its value corresponds to a particular individual.

The GA uses elitism to ensure the overall population fitness doesn’t get worse be-

tween generations and that the population doesn’t lose potentially strong individuals

at random. The best 10% of genotypes are carried over between generations.

Selection is performed twice, and the two selected genotypes are crossed-over,

mutated and placed in the next population. This process is repeated until the new

population is filled.

3.4.9 Crossover

We perform crossover on two genotypes at a time. The elements in the element arrays

(structures, modules, weights and biases) are aligned starting at the 0th position and

swap with the other genotype with a 20% chance. Crossover stops once the end of

an element array is reached.

Table 3.1: Mutations for the structures array
Structure Array Mutations

Create new structure, a new copied structure
Merge two structures side by side, two structures vertically, two

modules side by side, two modules vertically
Swap positions of structure, starting position in array
Shift structure left in array, structure right in array
Cut and rearrange a split of the array
Remove structure
Transfer structure references to another structure (keep old),

structure references to another structure (remove old)

31

Table 3.2: Individual weight and weight array mutations
Weight Mutations

Adjust individual value
Double individual value
Divide individual value
Create new weight, a new copy of a weight
Transfer references to another weight (keep old), references to

another weight (remove old)
Remove weight from array

Structures

Due to the unique hierarchical and modular nature of a structure, we employ a novel

method of crossover. Elements that are swapped must remove their child references to

their old genotype and replace the lost child references with new references from the

new genotype (at the same location as the old references). For example if a structure

s was swapped to genotype b from genotype a, then it removes its child modules from

genotype a and replaces them with corresponding modules in the same location from

genotype b. The replacement modules should be in the same location as the replaced

modules from the old genotype. If not, they are removed. Figure 3.6 demonstrates a

simple example where a a structure is swapped and then its child element is swapped

with the respective child element in the new genotype. Algorithm 6 demonstrates the

pseudo-code for crossing over structures.

Figure 3.6: Demonstrates two genotypes’s structures undergoing crossover. Here one
structure is swapped with the other structure at the same position. The child element
of each structure needs to be swapped as well because they reference structures from
their old genotypes.

32

Table 3.3: Mutations for a structure’s jagged array
Structure’s Jagged Array Mutations

Insert module as a new layer (first), module as a new layer (last), a module
as a new layer (anywhere), module on exiting layer, structure as a
new layer (first), structure as a new layer (last), a structure as a
new layer (anywhere), structure on exiting layer

Create copy of element in layer and insert
Double size horizontally, size vertically
Copy layer elements then append to the same layer, layer elements then

add as a new layer (below), layer elements and add as a new layer
(above)

Overwrite a layer with a random module, a layer with a layer module or
structure, a column with a random module, a column with a ran-
dom structure or module, all elements with a module, all elements
with a structure or module, a layer with a weight, a layer with a
bias, a random element with a module, a random element with a
structure, biases of elements (non-recursive), weights of elements
(non-recursive), a layer with a random structure, a column with a
random structure, all with structure, a layer with a single random
module, a layer with a single random structure

Remove layer, module or structure from random location, all elements, all
but one element from a layer

Set a module’s pooling to true, a module’s pooling to false, a module’s
concatenation parameter to true, a module’s concatenation param-
eter to false

Add random identity skip connections

Modules

When two modules are swapped between genotypes, structures that reference them

must reference the other swapped module. For example, if module a is swapped with

module b, a structure that referenced a will now reference b. The biases and weight

elements in a module a must now refer to biases and weights in the new genotype

(if possible) - otherwise they use a default value of 0. Algorithm 7 demonstrates the

pseudo-code for crossing over modules.

Weights and Biases

When weight or bias elements are swapped, any modules referencing them must

reference the new swapped element.

33

3.4.10 Mutation

During the mutation phase, each element in the genotype undergoes mutation. The

mutation operators have a 1% chance of occurring. The mutation operators modify

the location of the elements in the four arrays and the parameters of the elements

themselves. We have included the names of each mutation operator in Tables 3.1,

3.2, 3.3, 3.4, 3.5 for reference. The bias mutation table is identical to the weight

mutations so we have not included here. For the full list of mutations and more

detailed explanations see Appendix B.

Table 3.4: Individual module mutations
Module mutation

Change a module’s weight initialization, a module’s bias ini-
tialization

Add 1 node to fully connected module, 1 output channel
to CNN, 1 to kernel size, 1 stride in CNN module

Subtract 1 node of a fully connected module, 1 output channel
to CNN, 1 to kernel size, 1 stride in CNN module

Double number of nodes, output channels
Halve number of nodes, output channels
Flip pooling, concatenation

Table 3.5: Modules array mutations
Modules Array Mutations

Create CNN module, FC Module, copy from existing module
Transfer references from one to another (keep old), references

from one to another (remove old)
Swap two modules in the array
Shift modules left, modules right in array
Remove module from array

3.4.11 Data Selection

We evaluate our approach on both the MNIST and CIFAR-10 datasets [25, 23]. We

select them because they are popular benchmark datasets for Deep Learning.

The MNIST dataset contains 50,000 28 by 28 pixel images and 10,000 test images.

Of the training data, 45,000 was used for training the networks and 5,000 for validation

34

of the GA. The test data was set aside for evaluating the approach so as not to bias the

results. There are 10 classes for each of the 10 digits. The images are 1 dimensional

gray scale images. We used a batch size of 50. All images are randomly cropped to 27

by 27 and normalized which means that the image’s mean pixel value is subtracted

from each pixel value then divided by the standard deviation of all pixel values in the

image.

The CIFAR-10 dataset contains 50,000 images 32 by 32 pixel images and 10,000

test images. There are 10 classes: motorcycle, car, etc. The images are 3 dimensional

color images. We use 42,500 for training, 7,500 for validation and 10,000 for testing.

We use a batch size of 128. The images are cropped to 24 by 24 pixels from 32 by 32

and normalized. The images are randomly flipped left or right.

An iteration of training consists of one run of the network on a training batch.

Once the network has seen every batch of the training data, the data is reshuffled

and preprocessed again. We use batch normalization and dropout.

Chapter 4

Results

In this section we present the results from evaluating the performance of our approach

and our observations on the types of structures that evolved.

4.0.1 GA performance

We demonstrate that the GA can evolve high performing networks on different sets

of image recognition tasks.

The best performing network achieved an accuracy of 99.5% on MNIST

After 28 generations, the GA produced a network that reached 99% accuracy. Fig-

ure 4.1 shows the best network’s accuracy each generation. After only the first gen-

eration, the network was already at approximately 98%. As Figure 4.2 shows, the

mean population also increased over time, but saw more fluctuations then the best

performing network. The fluctuations are due to mutations modifying networks and

reducing their fitness or increasing their fitness. The best performing network (lowest

loss) was selected and fully trained for 30,000 iterations and reached a test accuracy

of 99.5%. The accuracy is comparable to the state of the art on the MNIST dataset

which is in the range of 99.6-99.8% [5].

The GA evolved a three layer network. The first layer contained 1 module of 511

channels, 3 by 3 kernel size and stride of 1 with 2 by 2 pooling. The second and

third layers were identical – two modules of 256 channels each of 3 by 3 kernel size,

stride of 2, no concatenation and no pooling. The network had 4,884,480 parameters.

Figure 4.3 demonstrates the architecture of the network.

The best performing network achieved an accuracy of 89% on CIFAR-10

After 101 GA generations - which corresponded to 3 week of training - the network

with the highest fitness achieved an accuracy of 85%. The average accuracy of the

35

36

Figure 4.1: Best network’s accuracy in the population each generation on MNIST
data. Accuracy out of 1.

population was 69% indicating that some networks still performed poorly within the

population after 101 generations. Figure 4.4 shows the mean accuracy of the popu-

lation improved over successive generations. After fully training the best performing

network, the network achieves an accuracy of 89% on the test set. Figure 4.5 shows

the learning curve of a full training run on the best network. This result remains com-

petitive with the state-of-the-art, but falls short of matching the latest evolutionary

algorithms results of 92%-94% accuracy [31, 29]. However, we are more focused on

what types of networks are evolved and whether the heuristics of previous networks

hold true. So we are not concerned with achieving the best result.

The GA evolves an 8 layer network. Seven of the layers are identical, each com-

posed of two identical modules. The module has 127 channels, 6 by 6 kernel, stride of

1, no pooling and concatenation. The third layer contains 4 modules of 2 types. The

first two are the same module type mentioned before, the second has 15 channels, a

kernel of 7, stride 2, no pooling and concatenation. Figure 4.6 shows a diagram of

the network. Additionally, there is a skip connection from the third to 6th layer.

37

Figure 4.2: The mean population accuracy over GA generations for MNIST data.
Accuracy out of 1.

4.0.2 Structure evolution of MNIST

We provide a summary of our observations on the evolved structures for the MNIST

dataset. After 28 generations, there is 72 feasible networks of 80. The average

parameter size of a network is 2,030,000.

The MNIST networks are short, but have multiple modules per layer

The average number of layers is 3, the average number of modules per layer is 1.7.

This means the GA favors width to length. The features of the first few layers of a

convolutional neural network are edge detectors and simple features. They lack the

abstract representation of the higher layers. We hypothesis that the fewer layers are

due to the simpler nature of the MNIST dataset, which is a series of black and white

characters.

One hypothesis as to why the network has multiple modules is that it is an effective

means to quickly double the number of features by a single mutation. Indeed, we

observe that in the best network, its second and third layers do not concatenate,

so the addition of 2 modules per layer effectively acts a way to quickly double the

38

Figure 4.3: Network architecture of the network that achieved the lowest loss in the
GA.

Figure 4.4: The mean population accuracy over genetic generations for CIFAR10
data. Accuracy out of 1.

number of features.

MNIST networks reuse modules

The unique modules per network is 2.4 and the total number is 5.6 which means the

networks usually contain duplicate modules in the network. The network reuses the

same modules as our approach was designed to do. Many mutations support this

type of operation where mutations are copied across a layer. The benefit of reusing a

module is that a mutation can change the referenced module which updates all the

modules in the network at once, which allows for greater ability for the network to

39

Figure 4.5: Fully training the best performing network from the GA on CIFAR-10
data. Accuracy out of 1.

adjust to the problem.

The evolved structures are shallow

The average depth of the main structure is close to 0 (0.17). Hierarchical structures

were not as good as shallow structures. We see this pattern repeat among the related

works as well. One of the original benefits of hierarchical structures is the powerful

mutations that can move entire structures in or out of other structures. But from our

experience, they are not used. We hypothesis that the mutations that modify layers

are already powerful enough operators.

Population as a whole evolved similarly high accuracy networks

The average accuracy was 96%. This finding highlights how powerful CNNs and

backpropagation are and why there was not as much research into architecture search

until GPUs were capable of supporting them. A practitioner can devise a network

that performs well with a high degree of probability just by using a few layers and a

number of feature channels per layer. However, we do observe a range of performance

across the networks indicating that there are some networks that perform worse.

As demonstrated in Figure 4.7 the number of layers seems to have an effect on the

40

Figure 4.6: Diagram of the best performing network on CIFAR-10 data.

accuracy with networks of length 3 and 4 performing best.

Figure 4.7: Number of layers against the accuracy of networks in the population on
the MNIST dataset.

The GA creates networks of modules that conform to common values

The average kernel, stride and channel size is 4, 1.7 and 153 respectively and the

standard deviation is 1, 0.4, and 83 respectively. The ranges fall within popular

choices for networks. The networks used in the past are in the range of 3-5 kernel

size, 1-2 stride and 128-512 channel size. This demonstrates that there may be value

41

in constraining the parameters during evolution to conform to specific ranges. It

would speed up training and not sacrifice performance. Indeed, many of the related

work papers included constraints.

The best network’s parameters varied across epochs

As Figure 4.8 shows that even as the accuracy increases for the best network, its

parameters vary considerably. This shows that the largest networks are not necessarily

the best and finding the right fit for the problem is paramount.

Figure 4.8: Number of parameters of the best network over generations of the MNIST
data.

The evolved networks use both pooling and concatenation

55% of the time modules are set to use pooling. As we see from Figure 4.3, the first

layer uses pooling but the subsequent layers do not. Pooling helps reduce the size

of the network but loses some detail. We hypothesis that for the MNIST dataset a

balance of some pooling was required, but too much would lead to too much loss of

detail.

32% of the time a module is set to use concatenation. It seems that with the

smaller networks created for MNIST, that concatenation was not required as much.

For example, the best network’s third layer has double the normal weights because

two sets of weights project to the second layer’s two modules but the network has

42

only 3 layers in total so the size is not too great (over two million). The size is still

large compared to a similar three layer network which would be near half the size in

total parameters.

Weights and bias elements go mostly unused

Initialization of the weight and bias elements are only used in 21% and 44% of the

modules. The values are -0.8 and -0.89. The low usage rates show a downward pres-

sure from the GA to not use the weight and bias elements — otherwise the rates

would be around 50%. We hypothesize that the Xavier initialization is already ade-

quate and so the initialization parameters didn’t contribute much to faster learning,

so the networks did not evolve to use them.

Fully connected layers are not used

Fully connected layers — while used extensively in deep learning modules — were not

evolved in the MNIST dataset. Usually they appear at the last layer, the convolutions

are seen as building a representation of the data and then the final fully connected

layer is essentially the hidden layer of an MLP where the input data is the well

represented features of the CNN. We hypothesis that there were more CNNs in the

modules array so it was less likely that a fully connected layer would be mutated into

the last layer of the network. In the future, we may wish to experiment with adding

an additional mutation to add a fully connected module to the last layer. The other

reason may be that the global pooling layer at the end acts as a fully connected layer

in itself and so the fully connected layer is not required.

4.0.3 Structure evolution on CIFAR-10

We focus next on our observations of the CIFAR-10 dataset network structures. The

CIFAR-10 dataset is far more complex and difficult to classify than the MNIST

dataset, so we see a more complex network evolve and it requires more generations

to learn.

43

Parameter size was not always a good indicator of performance

Figure 4.9 plots the best network’s total parameters each generation. The best net-

work’s accuracy is monotonically increasing each generation, thus if there is a drop

in parameter size, we know that the GA evolved a better, smaller network. The

parameter size ranges from 30 million to approximately 11 million.

We observe that there is a large flux in total parameters of the best network

as it evolves. We observe that similar network accuracies exist between networks

of disparate sizes. In several instances, large drops in parameter size results in a

higher accuracy. Therefore, we hypothesis that using the largest network possible is

not always the best solution. Careful consideration of the architecture can lead to

improvement of the network’s accuracy. Larger architectures are also slower to train

and larger to store in memory, so smaller architectures are more desirable if they

equal the larger architectures in accuracy.

Figure 4.9: The average size of the parameters of the network over each generation
of the genetic algorithm on CIFAR-10 data.

The GA produced a diverse range of network structure sizes

The average size of feasible networks was 11.6 million. 11 of 80 networks were not

feasible – either because they were over the limit of 32 million or the main structure

44

was empty. The distribution of sizes ranged from tens of thousands to 30 million

parameters. We observe that the population of the GA did not converge to a similar

architecture. We hypothesis that because 1) the mutations allow for large changes to

be affected on the network at once through replacing layers or doubling or halving

the size and 2) that a mutation to a module will affect all of its references in other

structures ensures that the networks remained diverse.

As can be seen from Figure 4.10, the accuracies see a slight improvement as

the size increases to about 15 to 20 million parameters but smaller networks show

remarkable resiliency even at much lower parameter sizes - some as low as half the

largest network. Again reinforcing the concept that CNNs are capable of adapting to

the problem at hand given a less than ideal architecture. However, to achieve peak

accuracy there are certain network architectures that are favored.

Figure 4.10: Plot of the total parameters of the evolved networks in the population
and their accuracy on CIFAR-10. Accuracy out of 1. There is a slight trend towards
network sizes of 15-20 million performing better however, the smaller networks still
perform reasonably well even with half as many parameters.

Longer networks of 7 to 8 performed the best

The average length of the evolved networks was 7. Additionally, the accuracy of the

networks increased as the network’s layers increased up until 8 layers. The network

45

ceased improving past 8 layers. Networks with less layers performed worse, which is

in contrast to the MNIST dataset problem which required 3-4 layers to perform the

best. The longer networks allow for more hierarchical features to form as the class

values are more complex. For example, the objects include trucks and cars which

have many discernible parts, textures and colors. Similar lengths were produced in

other evolved networks [31]. We cannot say definitely that this is the ideal size for

the problem, only that that is what we observed that the GA produced. However, a

practitioner can have far more confidence that they are closer to an ideal structure

by using the GA than without using one and creating the network by hand.

Multiple modules per layer were present in high accuracy models

The average number of modules per layer was 2 meaning most layers contained only

2 modules. Multiple modules per layer allows for different output sizes if the modules

have different stride lengths or opposite pooling values. The modular connections

are similar to the Inception network [43] and shows how different modules can be

beneficial to present different scales of input data. For example, in the best performing

network, we observe multiple modules at layer 3, two have a stride of 2 and the other

two have a stride of 1 which produces two different sized images.

The GA favors shallow hierarchies

At least during the generations observed, the GA produces an average depth of 0 –

meaning no hierarchies. This shows that hierarchical networks are not necessary for

types of image recognition tasks like CIFAR-10. We hypothesis that the complicated

structures that a hierarchy could produce simply were not required. It remains to be

seen if further generations would produce hierarchical networks.

Structures that exhibit reuse are preferred by the GA in main structures

The average number of unique elements (modules/structures) in the main structures

of genotypes is two while the average total number of elements in the main structure

is 15. The disparity between total elements vs. unique elements means that the same

repeated elements are reused within the main structure. Repeated structures are a

key component in other models such as in Residual Networks [17].

46

Average kernel size, stride and channel output were 5.6, 1.5 and 113

respectively.

The evolved networks tended to prefer larger convolutions, a stride of 1 and 2 and

large numbers of output channels. The variance for kernel size, stride and channel

output is 0.9, 0.69 and 53 demonstrating that there is very little variance between

the populations parameters. We observed comparatively larger kernel sizes 6-7 than

what is normally used in other works which use 1-5 [45].

The networks used concatenation but not much pooling

Networks contained 92% concatenated modules and only 31% pooling. We hypothesis

that the concatenation is present to prevent the number of parameters from doubling

each layer. It is especially important for longer networks such as on an 8 layer network

due to the number of layers. Pooling occurs less because we believe the lack of pooling

helps maintain a high level of detail needed to discern complex features in the images.

Networks didn’t evolve the use of weights or bias initialization

We found that most networks did not make use of the weight initialization at only

18%, most likely because the Xavier initialization was sufficient. Same for the biases

where the biases were only used 64% of the time. As above, we note that this is

evidence that there is evolutionary pressure to remove the weights entirely.

We find that only CNN modules were used versus FC modules

Again, FC layers are not used, we hypothesis that it is due to the low probability of

a mutation occurring which adds a FC module at the end of the network.

The most used mutations are those that increase size

We record the types of mutations that occurred on the modules and structures of each

genotype. We specifically look at the genotypes of main structures because they were

the structures used to generate the network. We find that the top five mutations that

occur in order of magnitude are: 1) double size of network vertically, 2) copy a layer

and reinsert as a new layer, 3) overwrite all elements in the structure with a random

47

element, 4) set layer modules to concatenation = True, 5) append a random module

to the array. Intuitively, we can observe the benefits of these mutations. The 1st,

2nd and 5th mutations increase the size of the network. Overwriting the structure

ensures uniformity and applying concatenation reduces the number of parameters for

multi-module layers. Table 4.1 shows the mutations which occurred the most in the

final genome population on the main structures. These three mutations lead to the

popular heuristics of very long networks, repeated patterns and pooling different sized

outputs together.

4.0.4 Evolution in a modular problem

We devised an experiment to classify the “what” and “where” of objects in an image

similar to an experiment by Jacob et al. [20]. We investigated what architecture

would result when instead of there being only one classification task there were two.

We were motivated to devise this task in part because humans solve problems with

separate goals all the time such as locating an object and identifying the object’s type.

Also, we wished to see whether separate pathways would develop or if the network

would remain uniform.

The human brain’s visual system has examples of both parallel and sequential

processing [8]. In this way, specialized structures handle aspects of the input which

are then combined in upstream pathways such as when separate parts of the LGN

receive the left and right field of view of each eye. The brain also processes input in

a sequential matter where the input is passed through multiple layers of processing,

producing abstract and more meaningful representations of the low level features [11]

For example, visual information is passed from retinal ganglion cells to V1 cortical

neurons and then to higher level processing in the V2 and V3. Goodale argued that

there existed two distinct pathways the dorsal and ventral streams also known as the

“what” and the “where” pathways [14]. Both the parallel and sequential paths are

required for efficient and thorough processing of human visual information.

Evolving the structure of a neural network emulates the evolution of the human

brain at a much smaller scale where the structure fits the problem at hand. Just as in

the human brain, structures specialize and also share information. We test whether

our approach is capable of producing similar structures.

48

The task we choose to test is a segmentation task which requires the network to

classify both the where, and the what of an object. The neural network must predict

from a set of shapes which shape is located in the image and also predict where it is

in the image.

More specifically, each training image has two sets of labels - a location label and

an object label. The neural network is given an image and must correctly predict the

correct label for the location and object label. For the location label, the possible

values correspond to every combination of x and y coordinate (x,y). For example,

given a 10 by 10 training image there are 100 possible label values because there are

a 100 possible combinations of the x and y coordinate. The object label consists of

the combination of (yellow, red, and blue) and (square, circle and triangle) for a total

of 9 objects. To make the task more difficult we added noise. Figure 4.11 shows a

shape with noise.

Figure 4.11: Example training image with noise. The training image contains a
shape, and the label location that the network is attempting to classify. The white
dot doesn’t appear in the training image and used only to indicate the center.

We modified the traditional architecture of a neural network to accommodate two

classes – the location of the object and the object itself. The label for each image is

thus a tuple e.g. ((1,3), ‘red square’). The output modules of the evolved structure

49

are split into two groups — one for each class. So each output module projects to

only one class.

To be more specific, the steps are as follows: 1) The output modules are identified.

The output modules are any modules that have no outgoing connections to other

modules. 2) If there is only one output module it projects to both class outputs.

3) If there is more than one, then the output modules are divided into n groups

which equal the number of classes. The division of modules into groups is done in a

systematic way so the process is repeatable and consistent across different runs. If

there are uneven amount of output modules, the split value is rounded to the nearest

integer. For example, if there are five output modules then the first two output

modules project to the location class and the last three output modules project to

the object class. Figure 4.12 shows an example of the output modules. Algorithm 8

demonstrates the pseudo-code of splitting the output modules into two groups.

The location and object labels always receive independent input from separate

output module groups. In this way, the GA is able to evolve either a solution where

a single output module projects to both or multiple modules project separately to

each class — without favoring either approach. Of course, the internal structures of

the main structure are also free to evolve parallel or sequential structures.

To calculate the error, both the error of the location and the error from the position

are summed together. The errors are not scaled or weighted. Back-propagation is

used to learn the weights of the network.

We evolve a population of genotypes using a GA and observe the results. The

average size of the parameters is 2,580,000. The average number of layers is 2, however

that doesn’t explain the whole picture because we find that the average depth of a

network is 1. This means that there exists structures within each layer (which contain

potentially more modules) which adds to the actual number of sequential layers. For

example, a main structure could have one layer which contained a structure, and

inside that child structure could be a 5 layer network, so the “effective” length of

the network is 5. The average depth of 1 for the networks demonstrates that the

problem required a hierarchical approach. We hypothesize that depth allows for

easier transference of good structures to parts of the structure that require them

because a single mutation can move a whole structure to a new location. For this

50

Figure 4.12: The output modules are divided into groups which correspond to the
number of label types.

problem with two distinct classes, the hierarchical structures may have made it easier

to separate large sequences of modules into distinct pathways.

The number of modules or structures per layer is 1.3 which shows networks are

relatively thin. The number of modules is 20.6. The number of modules is much

larger than both the MNIST and CIFAR-10 averages. We hypothesis that the GA

learns to create separate pathways and so needs to essentially create two networks

which doubles its size. However, the networks have only 1.6 unique modules per main

structure which shows that this population of networks also favors reusing modules

across the whole network.

The average kernel size, stride and channels is 5.8, 1.2 and 25 respectively. The

number of channels is much lower than the other two image recognition problems.

This problem is much less complex and so the number of feature detectors is corre-

spondingly lower. The stride and kernel size are similar to the other two problems.

Concatenation was used 91% of the time, pooling was used 12% of the time.

Weights were only used 12% of the time and biases were used only 41%. There were

no FC modules in the main structures. These values are similar to the values of

CIFAR-10 networks.

We observed that the best network evolved through several stages of development.

51

At the first stage, the network evolved into a one layer network with two structures as

Figure 4.13 shows. Both structures contained 10 modules in sequential order. Each

structure projected to a separate label – evolving separate independent structures.

This demonstrates parallelization of the task by splitting the processing into two

distinct streams. Upon further training, the network subdivided into two layers of

two structures each. The structures were themselves five layers long of one module

each. The earlier structures shared output to the next two structures and the final

two structures projected to separate labels. Figure 4.14 shows the network at its final

stage at 34 generations.

Figure 4.13: Early on in training, the network splits into two separate structure
groups. One for each of the labels: location and object.

The final network demonstrates how low level features are shared between both

labels then on the second layer the features “specialize” to handle different labels.

This is similar to how an efficient lower-level feature representation is shared in the

brain and then processed in different sections later on [8, 11]

An interesting observation is that the network evolved a hierarchical structure

utilizing repeated structures with their own internal 5 layer networks. Figure 4.15

shows the networks’ loss versus their depth after 34 generations. We see that the

lowest loss is reached by networks with a depth of one. This demonstrates that

certain problems may be more amenable to hierarchical processing and others may

not be — such as MNIST and CIFAR-10.

52

Figure 4.14: Best evolved network on the two class problem. It is a hierarchical
network with each structure containing 5 layers. The orange modules denote output.

The results of the segmented task were able to achieve 100% accuracy after only

5 generations. The problem is simple and therefore to be expected. On more difficult

problems, more generations would likely be required to find an optimal structure.

However, as the generations increased, the loss continued to decrease which led to the

creation of the final structure.

4.1 Discussion

We find that the use of jagged arrays overall works well. The approach is able to learn

effective representations of networks that perform well across three different datasets

and was able to quickly learn hierarchical representations for the 2-class problem.

Although, we did not do a direct comparison to graph-based architectures, we

can compare some similarities and differences. Graph structures are comparable with

jagged array structures in that they both can recreate any type of hierarchical feed-

forward network. We would argue that mutations are more difficult to devise and

employ in graph-based architectures than jagged arrays. Mutating a whole array is

simple and fast, whereas a graph must be traversed and replaced. However, with

graph-based structures, they are easily able to create multiple independent paths to

a node, whereas with a jagged array architecture, it requires a hierarchy of structures

53

Figure 4.15: This figure plots the loss of each network after 34 generations on the two-
class problem by their depth. The loss is lowest at depth one and two demonstrating
that depth was necessary for lower loss.

to accomplish the same thing. We would like to explore future work on comparing

the speed of mutation for graphs versus jagged arrays.

From the accuracies in the related work, we find that graph-based architectures

exceeded the accuracy of the jagged array architecture. However, we can’t say defini-

tively that it is due to the representation scheme. After all, other comparable works

used many more GPUs, sometimes 500+, to reach their results [29, 47]. If we had

access to larger GPU clusters, we could test whether it also performed as well. Cer-

tainly, the final networks resembled other evolved networks for CIFAR-10, in that

they shared common kernel sizes, channel outputs and number of layers and reuse.

We would also like to try training networks using different GA parameters such as

using tournament selection, using validation accuracy instead of loss as the fitness

and experimenting without using crossover. As it stands, we can’t recommend this

54

approach over existing approaches, however with the aforementioned changes above,

we believe this approach deserves more consideration. Also, many of the proposed

approaches share common characteristics, and indeed, our approach employs similar

techniques to others such as evolving modules and structures separately and hav-

ing the ability to substitute these modules into the main structure [31] and building

structures into hierarchies [29]. So it remains to be seen what will emerge as the best

combination of techniques for architecture search.

Finally, there is intrinsic value to the creation of alternative algorithms (in this

case the use of jagged arrays) to accomplish a task even if they do not yet perform

better than the state of the art. There have been many examples in the Deep learning

field of researchers taking old algorithms, applying them on challenging problems with

modern hardware and achieving extraordinary results. For example, Long Short Term

Memory [18] was an older algorithm that was not used much until the advancements

in GPU hardware acceleration and a few other advancements led to it being used

in many applications today. We cannot say that the same situation will occur for

our approach. However, this remains a first step in creating an algorithm for future

exploration of its capabilities.

We were surprised that hierarchies did not develop in CIFAR-10. We thought

that structures would evolve naturally, similar to how other popular networks used

repeated convolution patterns at each layer [17]. We hypothesis that one reason is

that the GA simply did not have enough generations to fully develop interesting sub

structures and only had enough time to construct repeating modules across the layers.

However, we did find sub-structures develop quickly on the two-class problem — this

again could be due to the simplified problem space versus the much more complex

CIFAR-10 problem. If not for complexity reasons, one hypothesis is that the 2 class

problem explicitly required two streams of processing as the “where” and the “what”

problems were very different. On the other hand, CIFAR-10’s problem requires all

parts of the network to contribute to the problem so sharing that information is

critical for success.

The top hand-designed networks [43, 17] have all exhibited characteristics that

the GA evolved. Our results confirm that heuristics developed over the past several

years such as using shallow, long and thin networks, large output channels, kernel

55

sizes between 3 and 6 and reusing modules are beneficial. These characteristics all

developed independently in the GA. In some ways, the best performing traditional

networks had been crowd-sourced as researchers shared what they found worked well

and then others made small changes and shared their results. The sharing of networks

and tweaking their parameters can be thought of as a search in itself.

We find that the networks of different sizes (# of parameters, # of layers) per-

formed almost as well as larger networks. This demonstrates one of the strengths

of CNNs which acts as a universal approximator and without any fine-tuning can

perform quite well on difficult image recognition tasks. However, the networks that

achieved the very best performance, were those adapted specifically to the problem

and the three top networks for each problem were very different from each other. The

difference in the top networks shows that although the same network is particular

good at adapting to many different datasets, there is a definite benefit to certain

architectures over others.

We ran our GA over only a limited number of generations. We can’t say what

would develop over more generations as the computational resources are not at a

sufficient capacity to allow us to run hundreds of generations yet. For future work, we

will be able to test whether our findings remain consistent or if hierarchical structures

do develop when the GA is trained for orders of magnitude longer. There are much

larger networks that have been handcrafted with over 100 layers [17] but our GA was

not given sufficient time to develop. In the future, we may be able to run the GA for

longer and see if it develops deeper networks.

Another interesting finding is that the networks did not evolve a fully connected

layer at the end of the network. In most published networks, the networks end with a

fully connected layer. For all three problems, our best performing networks did not.

This fact could be due to the evolutionary algorithm not being able to reproduce it

or that the final layer was not as beneficial as previously thought. When comparing

with the related work, we did not find that other evolved networks produced fully

connected layers at the end of their networks either. This is most likely due to the

previous convolutional layers developing a sufficient non-linear representation of the

data which is linearly separable for a linear softmax layer.

We experimented briefly without using regularization on the size of networks.

56

Without size constraints the networks quickly grew to tens of millions of parameters

due to specific mutations allowing networks to double in size. The large networks

caused out of memory exceptions. So we first implemented a maximum limitation,

but we found that the networks tended to grow to the maximum size very quickly

and this would slow the discovery of efficient, small networks as the GA was required

to test many large networks when a smaller network could perform just as well. At

the same time, we did not want to restrict the size permanently so we determined

the best approach was to gradually allow the network’s to increase in size. We found

that the gradual increase in size forced the GA to first consider networks of efficient

structures before a larger size and sped up training time. The regularization effectively

constrains the search space which leads to faster convergence to a solution.

Normally, a convolutional layer requires the preceding layer’s output channels

to be a uniform size. However, our approach allows for a set of modules on the

preceding layer to produce different sized output “images”. Other networks, like the

Inception network [43] or ResNet [17], employ a “concatenation” or “pooling” layer

to standardize the modules on the same layer. In our approach, we make no such

requirement. The different sized outputs can either be automatically concatenated

such as in those past networks or they can be preserved for successive layers up to

the final layer. We were interested in determining whether networks would make use

of this capability or use the technique of standardizing the output images. From

our results, we found that both were used. In the MNIST problem, the two separate

modules at layer 2 were not concatenated meaning they were convolved over separately

by the two modules at layer 3. The number of parameters at layer 3 doubled as a

result. The resulting output images were the same size, so they could have been

concatenated, but we saw several networks that resulted that had several different

sized outputs to exist through multiple layers. In the CIFAR-10 problem, the modules

of the best performing network were all concatenated. For future work, we would

like to investigate the underpinnings behind the benefit of carrying different sized

outputs through the network and if there is a benefit to maintaining different sized

outputs. Certainly, networks like DenseNet [19] have shown that projecting context

from earlier layers to later layers is useful, but they employed a method of pooling at

specific points to maintain uniformity of image size across the layer.

57

Table 4.1: Most occurring mutations in the main structure of the genome population.
Mutation Name Amount the mutation

that occurred
matrix creation copy row place below 151
matrix overwrite all with item in matrix 132
matrix creation copy double size vertically 131
matrix random row set standardized true 76
matrix creation layer append last structure 63
matrix creation append module 63
matrix creation copy row place above 63
matrix overwrite col with col item 63
structure add random identity skip connection 59
matrix creation copy double size horizontally 48
matrix overwrite weights non recursive 19
matrix overwrite col with random module 18
matrix creation copy module or structure on row 18
structure add random convolution skip connection 16
matrix overwrite row with row item 13
matrix overwrite row with single random module 13
matrix overwrite row with bias 12
matrix overwrite randomly with module 12
matrix remove row all but one module or structure 11
matrix creation copy row place horizontally 10
matrix random row set pooling true 10
matrix remove module or structure 9
matrix creation layer append first module 9
matrix overwrite randomly with structure 8
matrix overwrite row with weight 6
matrix random row set pooling false 6
matrix creation layer insert structure 4
matrix creation append structure 3
matrix overwrite row with single random structure 3
matrix remove row 3
matrix overwrite all with structure 2
matrix overwrite biases non recursive 2
matrix remove all 2
matrix creation layer insert module 2
matrix overwrite row with random module 2
mutate expression 1
matrix random row set standardized false 1
matrix overwrite col with random structure 1

Chapter 5

Conclusion

We conclude the thesis with a summary of the results, a discussion of the limitations

and provide a glimpse at potential future work.

5.1 Summary

Traditionally, heuristics were used to create neural network architectures and they

have proven successful in the past [24]. Architecture search algorithms did not become

popular until hardware advancements made them computationally feasible. Now

with the advent of architecture search algorithms, they have led to new advances in

performance on benchmark datasets like CIFAR-10 [2, 47, 36].

We extended the research in this field by developing a novel structural scheme and

used a genetic algorithm to evolve the structure of a convolutional neural network.

In this way, we performed architecture search to find the best architecture suited to

the individual problem.

In this thesis, we presented our genetic algorithm approach, we demonstrated how

there are two phases of learning, the GA evolving the structure and then the training

of the network on the dataset. We showed how the structures are organized and how

they are transformed into TensorFlow graphs. Then we showed that our approach

performs well on MNIST, CIFAR-10 and the 2-class problem. It is able to achieve

respectable results on each benchmark. We observed the best performing networks

and found that they exhibited unique traits among all three showing that the network

evolves structures for each problem. We observed that the GA evolved the heuristics

that are used currently on hand-crafted models such as the re-use of modules and

multiple modules per layer.

58

59

5.2 Threats to Validity

In this section, we describe possible threats of validity to our study.

We could not perform an extensive statistical evaluation of the genetic algorithm’s

performance. A 10 fold cross validation was not possible with our current hardware.

However, heuristically, we found that our approach was capable of learning across at

least three different problems demonstrating its ability to handle different datasets.

We also found after running several short runs of a dozen generations that the average

loss of the genetic algorithm was reduced. Additionally, in the literature, some of

the seminal papers in Deep Learning never report exhaustive analyses. The lack

of analyses is due in part to the length of time Deep Learning algorithms take to

train (ours took over 3 weeks). This means that traditional statistical analysis is

not feasible. Researchers let the average accuracy on the test data serve as the

quantitative benchmark of the algorithm.

Genetic algorithms are not guaranteed to converge to the solution and one of

its problems is that they get stuck in local minimum. Although this is true, we

employ elitism to at the very least, not create worse solutions. Secondly, we found

that the networks that were evolved consistently matched the benchmarks of other

solutions, highlighting its ability to at the very least reach the level of past network

architectures.

Although we tested three datasets (MNIST, CIFAR-10 and 2-class problem), we

cannot say that the approach generalizes to all datasets. Future work is required to

test different datasets to see what architectures result and if the GA can successfully

evolve a CNN capable of performing well on other problems.

Our approach relies on selecting parameters for our network such as the learning

rate. We used our own heuristics to determine the best hyper-parameters for the

problem. Where possible we used knowledge from the literature to determine the

parameter values. At the same time, even if the hyper-parameters are sub-optimally

chosen, the GA is able to work within the constraints of the hyper-parameter space

to evolve networks that perform well with those given hyper-parameters.

Our approach requires creating different types of mutations. We do not know if

there are favorable mutations that have been left out or if there are mutations that

60

hinder the progress of the GA. However, the nature of the GA is that each mutation

has only a small chance of occurring at any given generation and network. There is a

strong chance that network individuals will carry over between generations without a

specific mutation occurring. Therefore, even if we included a bad mutation operator,

the GA could effectively ignore it by selecting the strong performing networks without

that mutation. Future work is required to perform an extensive analysis on which

mutations are most beneficial and which can be excluded. We felt that adding as

many as possible allowed the GA the most freedom.

5.3 Future Work

For future work, we would like to run our approach on more powerful hardware, that

means more GPUS. Genetic algorithms are inherently parallelizable and so the task

of adding more GPUs to process each network should not be too difficult. Given

more processing power, more generations of the GPU can be processed which means

a chance for more complex structures to evolve and better structures for the problem

at hand. Some of the other techniques used up to 200+ GPUs compared to our one

GPU [45].

We would also like to experiment with different genetic algorithm techniques.

There are many different types of crossover and selection techniques like tournament

selection. It remains to be seen if the other techniques would have faster learning

rates or higher accuracies. We would also like to explore different datasets to see the

different structures that result.

We would like to experiment with using fitness sharing which helps preserve di-

versity in the population [30]. Additionally, we would consider using evolutionary

multi-objective optimization through Pareto dominance to automatically rank can-

didates by their complexity and accuracy rather than resort to a manual weighting

between accuracy and complexity [3].

Appendices

61

Appendix A

Pseudo Code

Pseudo code for some of the algorithms developed for this problem. Certain parts

have been simplified in order to convey the basic theory without bogging down in the

complexities of the implementation itself.

Algorithm 1: fc input — Pseudo-code for recursively connecting the graph to

the input.

Data: x, element, data

1 if element is a Module then

2 W ← weight variable([kernel.x = element.kernel, kernel.y =

element.kernel, in = data.num channels, out = element.channel output];

3 b← bias variable(element.channel output);

4 h← relu(matmul(x, W) + b);

5 Add batch normalization and dropout;

6 if element.pooling then

7 out height← int(math.ceil(out height/2.0));

8 out width← int(math.ceil(out width/2.0));

9 end

10 graph pointer ← Pointer(h, out height, out width);

11 element.graph pointers.append(graph pointer);

12 else if element is a Structure then

13 if len(element.matrix) > 0 then

14 for element in element.matrix[0] do

15 fc input(x, element, data);

16 end

17 end

18 end

62

63

Algorithm 2: fc structure — Pseudo-code for recursively creating a connected

Tensorflow graph of the main structure. Starting at the second layer, iterate

over each module and connect with the previous layer’s modules. Concatenate

modules if module calls for it.
Data: structure

1 for for i, layer in enumerate(structure layers) do

2 if i > 0 then

3 modules← find connected previous modules(structure[i− 1]);

4 if i >= 2 then

5 modules← add any skip connections();

6 end

7 end

8 for j, element in enumerate(layer) do

9 if element.concatenate is True then

10 concatenated modules← concatenate(modules);

11 connect modules(element, concatenated modules);

12 else

13 connect modules(element, modules);

14 end

15 if element is a Structure then

16 fc structure(element);

17 end

18 end

19 end

64

Algorithm 3: connect modules — Pseudo-code for recursively connecting a

module to its connected modules from previous layers.

Data: next element, previous modules

1 if next element a Module then

2 next module← next element;

3 for previous module in previous modules do

4 for previous pointer in previous module.graph pointers do

5 out height ← ceil(previous pointer.img height /

next module.stride);

6 out width ← ceil(previous pointer.img width / next module.stride);

7 W ← weight variable([kernel.x = element.kernel, kernel.y =

element.kernel, in = previous module.channel output, out =

next module.channel output];

8 b← bias variable(next module.channel output);

9 h← relu(matmul(previous pointer.graph node, W) + b);

10 Add batch normalization and dropout;

11 if element.pooling then

12 out height← int(ceil(out height/2.0));

13 out width← int(math.ceil(out width/2.0));

14 end

15 graph pointer ← Pointer(h, out height, out width);

16 next module.graph pointers.append(graph pointer);

17 end

18 end

19 else if next element is a Structure then

20 if len(next element.layers) > 0 then

21 for module in next element.first layer do

22 connect modules(module, previous modules);

23 end

24 end

25 end

65

Algorithm 4: concatenation — Pseudo-code for concatenating a set of modules

into a single module

Data: modules

Result: new cnn module

1 instantiate new cnn module;

2 for module in modules do

3 if module is Module then

4 smallest height, smallest weight ← get min(module.graph pointers);

5 end

6 end

7 for module in modules do

8 for previous pointer in module.graph pointers do

9 new cnn moduleċhannel output + = module.channel output;

10 if previous pointer.img height > smallest height then

11 new graph node ← downsample(previous pointer, smallest height,

smallest width);

12 same size graph nodes cnn.append(new graph node);

13 else

14 same size graph nodes cnn.append(previous pointer.graph node);

15 end

16 end

17 end

18 concatenated cnn ← concatenate(same size graph nodes cnn, 3);

19 pointer ← Pointer(concatenated cnn, smallest height, smallest width);

20 new cnn module.graph pointers.append(pointer);

21 return new cnn module;

66

Algorithm 5: connect output — Pseudo-code for connecting the output with

the main structure’s output in TensorFlow.

Data: main structure, output size, output size

Result: y

1 output pointers, num nodes array ← get output modules(structure);

2 num nodes ← sum(num nodes array);

3 if num nodes > 0 then

4 output concatenate(output pointers, 1);

5 W ← weight variable(num nodes, output size);

6 b ← bias variable(output size);

7 Add batch normalization and dropout;

8 y ← matmul(output, W) + b;

9 return y;

10 else

11 return None;

12 end

67

Algorithm 6: crossover structure — Pseudo-code for crossover of two structure

arrays

Data: gene a, gene b

1 structure a, structure b = gene a.structures, gene b.structures if

len(structure a) <= len(structure b) then

2 min len ← len(structures b);

3 else

4 min len ← len(structures ;

5 end

6 for i in range(min len) do

7 if random number < mod constants.crossover rate then

8 temp ← structures a[i];

9 structures a[i] ← structures b[i];

10 structures b[i] ← temp;

11 switch elements of structures a[i]’s jagged array with corresponding

elements from gene b;

12 switch elements of structures b[i]’s jagged array with corresponding

elements from gene a;

13 replace references to structures b[i] with references to structures a[i];

14 replace references to structures a[i] with references to structures b[i];

15 end

16 end

68

Algorithm 7: crossover modules — Pseudo-code for crossover of two module

arrays

Data: gene a, gene b

1 modules a, modules b = gene a.modules, gene b.modules;

2 if len(modules a) <= len(modules b) then

3 min len ← len(modules a);

4 else

5 min len ← len(modules b);

6 end

7 for i in range(min len) do

8 if random number < mod constants.crossover rate then

9 temp ← modules a[i];

10 modules a[i] ← modules b[i];

11 modules b[i] ← temp;

12 replace gene b weights of modules a[i] with corresponding weights from

gene a;

13 replace gene a weights of modules b[i] with corresponding weights from

gene b;

14 replace references to modules a[i] in gene b with modules b[i];

15 replace references to modules b[i] in gene a with modules a[i];

16 end

17 end

69

Algorithm 8: Dual output Stream — Pseudo-code for splitting the structure’s

output into the 2 two-class softmax outputs.

Data: a structure

Result: y pos, y what

1 output pointers, num nodes array = get output modules(a structure);

2 if output pointers > 1 then

3 half way ← len(output pointers)/2;

4 pos outputs ← output pointers[0:half way];

5 pos num nodes ← sum(num nodes array[0:half way]);

6 what outputs ← output pointers[half way:];

7 what num nodes ← sum(num nodes array[half way:]);

8 y pos ← do output calc(pos outputs, pos num nodes, len(y pos));

9 y what ← do output calc(what outputs, what num nodes, len(y what));

10 else

11 output pointers, num nodes array ← get output modules(structure);

12 num nodes ← sum(num nodes array);

13 y pos ← do output calc(output pointers, num nodes, len(y pos));

14 y what ← do output calc(output pointers, num nodes, len(y what));

15 end

16 return y pos, y what;

Appendix B

Mutation Descriptions

Structure Array:

Create new structure: Creates a new empty structure and adds it to the structure

array.

Create a new copy structure: Creates a new copy of an existing structure and

adds it to the structure array.

Merge two structures side by side: Create a new structure and place two other

random structures inside the new structure’s jagged array side by side.

Merge two structures on top: Create a new structure and place two other random

structures inside the new structure’s jagged array on two different layers.

Merge two modules side by side: Create a new structure and place two random

modules inside the new structure’s jagged array side by side.

Merge two modules on top: Create a new structure and place two other random

modules inside the new structure’s jagged array on two different layers.

Swap positions of structure: Swap positions of two random structures in the

structures array.

Swap starting position: Swap the structure at the starting position in the struc-

tures array with another random structure. Essentially replacing the main structure

with another structure in the structures array.

Shift structure left: Swap positions with a structure to the left of a random struc-

ture.

Shift structure right: Swap position with a structure to the right of a random

structure.

Cut and rearrange: Split the structures array in two and then place the second

half before the first.

Remove structure: Remove random structure from structures array

Transfer structure (keep old): All references to a random structure are transferred

70

71

to another random structure and the references are converted to the new structure.

The original structure is kept in the array.

Transfer structure (remove old): All references to a random structure are trans-

ferred to another random structure and the references are converted to the new struc-

ture. The original structure is removed from the array.

Weights:

Adjust value: Add normal random variable value to the weights array.

Double value: Double the current value of a weight element.

Divide value: Divide current value of a weight element by two.

Create new weight: Create a new weight and add it to the weights array.

Create a new copy of weight: Create a new weight that is a copy of an existing

weight initialization and add to the weights array.

Transfer weights (keep old): All references to a random weight are transferred to

another random weight — converting them to the new weight. The original weight

is kept in the weight array.

Transfer weights (remove old): All references to a random weight are transferred

to another random weight — converting them to the new weight. The original weight

is removed from the weight array.

Remove weight: Remove the weight initialization from the weight array.

Biases:

Adjust value: Add normal random variable value to the biases array.

Double value: Double the current value of a bias element.

Divide value: Divide current value of a bias element by two.

Create new bias: Create a new bias initialization and add it to the biases array.

Create a new copy of a bias: Create a new bias that is a copy of an existing bias

initialization and add to the biases array.

Transfer biases (keep old): All references to a random bias are transferred to

another random bias — converting them to the new bias. The original bias is kept

in the bias array.

72

Transfer biases (remove old): All references to a random bias are transferred to

another random bias — converting them to the new bias. The original bias is removed

from the bias array.

Remove bias: Remove the bias initialization from the bias array.

Structure’s Jagged Array Mutations):

Insert module as a new layer (first): Insert a random module as a new layer at

the beginning of the jagged array.

Insert module as a new layer (last): Insert a random module as a new layer at

the end of the jagged array.

Insert a module as a new layer (anywhere): Insert a random module as a new

layer between random existing layers.

Insert module on exiting layer: Insert a random module on a random layer.

Insert structure as a new layer (first): Insert a random structure as a new layer

at the beginning of the jagged array.

Insert structure as a new layer (last): Insert a random structure as a new layer

at the end of the jagged array.

Insert a structure as a new layer (anywhere): Insert a random structure as a

new layer between random existing layers.

Insert structure on exiting layer: Insert a random structure on an existing ran-

dom layer.

Create copy of an element in a layer and insert: Create a copy of an element

in a random layer (could be a module or structure) and add it to the same layer.

Double size horizontally: Copy all the elements in the jagged array and add it

horizontally to the jagged array — effectively doubling the size.

Double size vertically: Copy all the elements in the jagged array and add it

vertically to the jagged array — effectively doubling the size.

Copy layer elements, append to the same layer: Copy all of a layer’s elements

and append them to the same layer.

Copy layer elements add as a new layer (below): Copy a layer then insert the

new copy to the jagged array below the original layer.

73

Copy layer elements, add as a new layer (above): Copy a layer then insert the

new copy to the jagged array above the original layer.

Overwrite a layer with a random module: Overwrite a layer with a random

module. Older elements are replaced by the random module.

Overwrite a layer with a layer module or structure: Overwrite a layer with

either a layer or structure randomly chosen from the jagged array.

Overwrite a column with a random module: Select a column index in the

jagged array and replace each layer at that column index with a random module.

Overwrite a column with a random structure or module: Select a column

index in the jagged array and replace each layer at that column index with a random

module or structure in the jagged array.

Overwrite all elements with a module: Randomly choose a module from the

modules array and overwrite all elements in the jagged array with the chosen module.

Overwrite all elements with an structure or module: Randomly select a mod-

ule or structure from the jagged array and overwrite all the elements with it.

Overwrite a layer with a weight: Choose a random weight to overwrite a layer’s

weights.

Overwrite a layer with a bias: Choose a random bias and overwrite a random

layer’s biases.

Overwrite a random element with a module: Overwrite a random element with

a random module from the modules array.

Overwrite a random element with a structure: Overwrite a random element

with a random structure from the structures array.

Overwrite biases of elements (non-recursive): Overwrite the biases of elements

in the jagged array non-recursively.

Overwrite weights of elements (non-recursive): Overwrite the weights of ele-

ments in the jagged array non-recursively.

Overwrite a layer with a random structure: Overwrite a random layer with a

random structure.

Overwrite a column with a random structure: Overwrite a random column in

the jagged array with a random structure.

Overwrite all with structure: Select a random structure from the structures array

74

and overwrite all elements of the jagged array with it.

Remove jagged array layer: Delete a random layer.

Remove jagged array module or structure: Randomly select an element from

the jagged array and remove it.

Remove all: Empty the jagged array of all elements.

Overwrite a layer with a single random module: Random layer is reduced to

a single random module.

Set a module’s pooling to true: Randomly select a module in the jagged array

and set its pooling to true.

Set a module’s pooling to false: Randomly select a module in the jagged array

and set its pooling to false.

Set a module’s concatenation parameter to true: Set a module’s concatenation

parameter to true

Set a module’s concatenation parameter to false: Set a module’s concatenation

parameter to false

Overwrite a layer with a single random structure: Replace a random layer

with only a single random structure.

Remove all but one element from layer: Remove every element from a random

layer except one (which is selected randomly).

Add random skip connections: Add a skip connection to the structure at random

point. There must be a layer in between the skip connection layers so the number of

layers must be 3 or greater.

Individual Modules:

Change a module’s weight initialization: Set module’s weight initialization to

a random weight initialization from the weights array.

Change a module’s bias initialization: Set module’s bias initialization to a ran-

dom bias initialization from the biases array.

Add 1 node to fully connected module: Add 1 node to the fully connected

module.

Subtract 1 node of a fully connected module: Subtract 1 node from the fully

connected module.

75

Double number of nodes: Double the number of nodes from the fully connected

module.

Halve number of nodes: Halve the number of nodes from the fully connected

module.

Add 1 output channel to CNN: Add 1 output channel to the CNN module.

Subtract 1 output channel to CNN: Subtract 1 output channel to the CNN

module.

Double output channels: Double the number of output channels on the CNN

module.

Halve output channels: Halve the number of output channels on the CNN module.

Add 1 to kernel: Add 1 to kernel size of the CNN module.

Subtract 1 to kernel: Subtract 1 to kernel size of the CNN module.

Add 1 stride in CNN module: Add 1 to stride in the CNN module.

Subtract 1 stride in CNN module: Subtract 1 from stride in the CNN module.

Flip pooling: Flip the true false flag of the CNN module.

Flip concatenation: Flip the true/false flag of the CNN module.

Modules Array:

Create new CNN module: Create a new convolutional module and add to modules

array.

Create new FC module: Create a new fully-connected module and add to modules

array.

Create module copy: Add a copy of an existing module.

Transfer modules (keep old): Transfer references of one module to another module

and convert the references to the new module. Keep old un-referenced module in

array.

Transfer modules (remove old): Transfer references of one module to another

module and convert the references to the new module. Remove old un-referenced

module in array.

Swap modules: Swap two random modules in the modules array

Shift modules left: Swap a random module to its left neighbour’s position.

Shift modules right: Swap a random module to its right neighbour’s position.

76

Remove module: Remove random module in modules array.

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[2] Filipe Assunçao, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.
Denser: Deep evolutionary network structured representation. arXiv preprint
arXiv:1801.01563, 2018.

[3] Khaled Badran and Peter I Rockett. The influence of mutation on population
dynamics in multiobjective genetic programming. Genetic Programming and
Evolvable Machines, 11(1):5–33, 2010.

[4] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Design-
ing neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

[5] Rodrigo Benenson. Classification datasets results, 2016. [Online; accessed 9-
March-2018].

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[7] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. In Advances in neural information processing
systems, pages 2546–2554, 2011.

[8] Edward M Callaway. Structure and function of parallel pathways in the primate
early visual system. The Journal of physiology, 566(1):13–19, 2005.

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

77

78

[10] Omid E David and Iddo Greental. Genetic algorithms for evolving deep neu-
ral networks. In Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, pages 1451–1452. ACM,
2014.

[11] James J DiCarlo, Davide Zoccolan, and Nicole C Rust. How does the brain solve
visual object recognition? Neuron, 73(3):415–434, 2012.

[12] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha,
Andrei A. Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution
channels gradient descent in super neural networks. CoRR, abs/1701.08734,
2017.

[13] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and cooperation in neural nets, pages 267–285. Springer, 1982.

[14] Melvyn A Goodale and A David Milner. Separate visual pathways for perception
and action. Trends in neurosciences, 15(1):20–25, 1992.

[15] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In Acoustics, speech and signal processing
(icassp), 2013 ieee international conference on, pages 6645–6649. IEEE, 2013.

[16] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint
arXiv:1609.09106, 2016.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[19] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convo-
lutional networks. CoRR, abs/1608.06993, 2016.

[20] Robert A Jacobs, Michael I Jordan, and Andrew G Barto. Task decomposition
through competition in a modular connectionist architecture: The what and
where vision tasks. Cognitive science, 15(2):219–250, 1991.

[21] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings
of the 44th Annual International Symposium on Computer Architecture, pages
1–12. ACM, 2017.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

79

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. 2009.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[25] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[27] Frank Hung-Fat Leung, Hak-Keung Lam, Sai-Ho Ling, and Peter Kwong-Shun
Tam. Tuning of the structure and parameters of a neural network using an
improved genetic algorithm. IEEE Transactions on Neural networks, 14(1):79–
88, 2003.

[28] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture
search. arXiv preprint arXiv:1712.00559, 2017.

[29] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical representations for efficient architecture search. arXiv
preprint arXiv:1711.00436, 2017.

[30] Robert I McKay. Fitness sharing in genetic programming. In Proceedings of
the 2Nd Annual Conference on Genetic and Evolutionary Computation, pages
435–442. Morgan Kaufmann Publishers Inc., 2000.

[31] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink,
Olivier Francon, Bala Raju, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat.
Evolving deep neural networks. arXiv preprint arXiv:1703.00548, 2017.

[32] Marvin Minsky, Seymour A Papert, and Léon Bottou. Perceptrons: An intro-
duction to computational geometry. MIT press, 2017.

[33] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. Evolutionary training of sparse
artificial neural networks: a network science perspective. arXiv preprint
arXiv:1707.04780, 2017.

[34] David J Montana and Lawrence Davis. Training feedforward neural networks
using genetic algorithms. In IJCAI, volume 89, pages 762–767, 1989.

[35] Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-
throughput screening approach to discovering good forms of biologically inspired
visual representation. PLoS computational biology, 5(11):e1000579, 2009.

80

[36] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers.
arXiv preprint arXiv:1703.01041, 2017.

[37] Beyond Regression. New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Ph. D Dissertation, Harvard University, Department of
Applied Mathematics, 1974.

[38] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[39] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning inter-
nal representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[40] Chris Schumacher, Michael D Vose, and L Darrell Whitley. The no free lunch
and problem description length. In Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation, pages 565–570. Morgan Kaufmann
Publishers Inc., 2001.

[41] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[42] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-
tion of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems 25, pages 2951–2959. Curran Associates, Inc., 2012.

[43] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In AAAI, volume 4, page 12, 2017.

[44] Lingxi Xie and Alan Yuille. Genetic cnn. arXiv preprint arXiv:1703.01513, 2017.

[45] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design
with q-learning. arXiv preprint arXiv:1708.05552, 2017.

[46] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

[47] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-
ing transferable architectures for scalable image recognition. arXiv preprint
arXiv:1707.07012, 2017.

