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Abstract

As event detection is one of the main purposes of using wireless sensor networks
(WSNs), the location of nodes is essential to determine the location of an event
when it occurs. Many localization models have been proposed in the literature,
one of which is to deploy a set of static location-aware nodes, called anchors, to
exchange information with the other nodes to determine their location. Another
promising proposal involves replacing these sets of static anchors with only one
mobile anchor (MA). While this method seems to produce favorable results, it also
brings new challenges. The primary challenge is to �nd an optimal path for the
mobile anchor to follow while taking into account the need to provide highly accu-
rate data and more localizable nodes in less time and with less energy. This thesis
proposes techniques for mobility-assisted localization in WSNs. In this research
work, four main contributions are achieved in the design of such models.

Firstly, we introduce a new static path planning model for mobile anchor-assisted
localization in WSNs. Our proposed model guarantees that, when the resolution
is equal or greater than one, all nodes can receive the localization information and
thus estimate their location with higher localization accuracy in comparison to sim-
ilar static models. Moreover, this model overcomes the problem of collinearity and
considers the metrics of precision and energy consumption as well as accuracy, lo-
calization ratio and the path length of the mobile anchor.

Secondly, although some path planning models in two-dimensional (2D) re-
gions have been proposed in recent years, many WSNs' practical applications are
applied in three-dimensional (3D) regions. We also introduce a three-dimensional
path planning model for mobile anchor-assisted localization in WSNs. Our pro-
posed model offers higher performance regarding localization accuracy with a
lower error rate in comparison to other proposed models.

Thirdly, we propose a novel distributed range-free movement mechanism for
mobility-assisted localization in WSNs when the mobile anchor's movement is
limited. The designed movement is formed in a real-time pattern using a fuzzy-
logic approach based on the information received from the network and the nodes'
deployment. The novelty of this model lies in employing multiple individual in-
puts in a fuzzy-logic approach for path planning that are important to minimizing
the localization error and maximizing the localization ratio. Our proposed model
offers superior results in several metrics including both localization accuracy and
localization ratio in comparison to other similar works.

Finally, we design two novel dynamic movement techniques that offer obstacle
avoidance path planning for mobility-assisted localization in WSNs. The move-
ment planning is designed in real-time using two swarm intelligence-based al-
gorithms: the Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm
(WOA). The novelty of our proposed models is the use of optimization algorithms
to direct the path formation of the MA, which helps to maximize the localization
ratio and minimize the localization error. Both of our proposed models provide
better outcomes in comparison to other existing works in several metrics includ-
ing both localization ratio and localization error rate.
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Chapter 1

Introduction

1.1 Motivation and Background

Over the last few years, wireless sensor networks (WSNs) have been introduced

as a new and simple technology for data gathering in many different physical en-

vironments [1]. A WSN typically consists of a large set of small nodes deployed

in an area of interest to collect, store, and forward data and deliver it where it is

needed. These nodes are usually low-cost, low-power, limited in terms of memory,

and programmable [1, 2]. WSNs' simple components and sizes allow them to be

implemented for many purposes in health, security, the military, and in tracking

and monitoring applications [3]. In many applications of WSNs, the location of the

sensor node (i.e., the location of the gathered data) is highly important. A useful

example is the location of the �re source or the exact position of pollution in some

underwater applications.

Node deployment in WSNs is typically done in an arbitrary form, where these

nodes are distributed randomly, especially when many nodes are used or a wide

area is being monitored. Several approaches to providing nodes with information

on their location have been proposed. A straightforward approach is to provide

each node with a global positioning system (GPS) device. However, such a solu-

tion is impractical for many reasons including the cost of the devices, the limited

energy of each node and the small size of the nodes [4, 5]. Another solution is to

inform certain nodes of their locations and let those location-aware nodes, called

anchors or beacons, help the rest of the nodes in determining their locations. These

anchor nodes can be either static nodes such as those in [6–8], or mobile nodes such

as in [9–11]. MAs have shown a better performance in terms of cost, coverage,

1
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and accuracy [4]. In this method, the many static anchors in the network are re-

placed with a smaller number of MAs (one in many studies). The MA traverses the

network to inform the nodes that are not location-aware, called unknown nodes

(UNs), of their current location. Based on the planned path and the ability to re-

ceive the MA's signals, some UNs can estimate their location. However, adopting

mobility comes with many challenges such as �nding the way with minimum dis-

tance, the impact of the path on both the accuracy and rate of localization, energy

ef�ciency issues and others.

Optimizing the traveling path of a mobile element is an active area of research

in other �elds including unmanned aerial vehicles (UAVs) such as those in [12–

14], robotics as in [15, 16], and data collection as in [17, 18]. In such areas, the

mobile element begins its journey from a starting point ( a) and aims to reach an

ending point ( b) while traversing the shortest possible distance. There may be

some obstacles in the area that the mobile element has to avoid. However, the

objective of localization in WSNs is different from those in UAVs, robotics, or data

collection. The aim is to make the mobility path as short and ef�cient as possible by

having as many localized nodes as possible with the highest possible localization

accuracy. Accuracy is represented through the localization error rate; the lower the

error rate is, the higher the accuracy.

In mobility-assisted localization models, research mainly concentrates on ex-

ploring two fundamental areas: proposing a suf�cient static localization algorithm

and designing an ef�cient path model for the MA. The primary issue in develop-

ing path models is designing a traversing path that guarantees that a signi�cant

number of the UNs can receive the localization information with a high accuracy

and low energy consumption and time. The path strategy should be as short as

possible while also being comprehensive in order to reach all the UNs inside the

monitored area.
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1.2 Contributions

This thesis aims to contribute to this area of research by proposing new path plan-

ning models for mobile anchor-assisted localization in WSNs following four differ-

ent network scenarios and assumptions. A number of contributions in mobility-

assisted localization in WSNs are proposed. These contributions are summarized

as follows:

1. In the �rst scenario, a two-dimensional �at network is assumed with no ob-

stacles, and the MA can traverse the network without any constraints. The

research proposes a path planning model that ensures that all of the UNs

in the network can receive the localization information. All the UNs will be

able to estimate their current locations if they receive this data. The proposed

path model is designed to increase the localization accuracy and ratio of the

successfully localized nodes. Moreover, we suggested considering the pre-

cision metric in designing the path. To the best of our knowledge, we are

the �rst to consider the precision metric in mobility-assisted localization in

WSNs. We also noted that most of the current works do not take into account

wireless channel speci�cations; thus, realistic wireless speci�cations are used

in evaluating the different models in this work.

2. In the second scenario, similar assumptions are considered with a three-

dimensional �at network. A new path planning model for mobile anchor-

assisted localization in WSNs is designed where nodes deployment occurs in

3D areas. The results show that the proposed model offers a lower localiza-

tion error in comparison to other existing models.

3. The third scenario is assumed to exist when the maximum movement dis-

tance of the MA is limited, where a dynamic path planning model is needed

to deal with such conditions. We present a dynamic fuzzy-logic-based path

planning model for mobility-assisted localization that applies various crite-

ria for the movement decision to form the path of the MA. The novelty of this



4

model lies in the employment of multiple individual inputs in a fuzzy-logic

approach for path planning that are important to minimizing the localization

error and maximizing the localization ratio. By using a fuzzy-logic approach,

an improved movement path will be designed to achieve the objectives of the

process while taking into account the limited movement of the MA. To the

best of our knowledge, we are the �rst to use a fuzzy-logic-based model in

path planning for localization in WSNs. The proposed model offers superior

results in many metrics in comparison to existing models.

4. Finally, a more constrained environment is assumed where the network area

has a set of obstacles, and the MA has a limited movement distance. The

task for the MA is not only to take into account the limitation of the move-

ment but also to avoid the obstacles in its way in a real-time dynamic fash-

ion. For this scenario, we introduce two novel dynamic meta-heuristic op-

timization techniques for mobility-assisted localization in WSNs. The sug-

gested path planning models are based on two new optimization algorithms:

the Grey Wolf Optimizer (GWO) [19] and the Whale Optimization Algo-

rithm (WOA) [20]. The proposed models are respectively called Grey Wolf

optimizer-based obstacle-avoidance Path Planning (GWPP) and Whale Op-

timization algorithm-based obstacle-avoidance Path Planning (WOPP). The

novelty of our proposed models lies in employing optimization algorithms

to direct the path formation of the MA, which helps maximize the localiza-

tion ratio and minimize the localization error. By using the optimization al-

gorithms, the MA movement is formed in real-time; it also avoids the ob-

stacles, takes into account the maximum distance constraint, and simultane-

ously achieves the objectives of the entire localization process. To the best of

our knowledge, we are the �rst to use swarm-based optimization techniques

assuming such scenarios in path planning for localization in WSNs. The pro-

posed models provide outstanding results in several metrics in comparison

to existing works.
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Table 1.1 below summarizes the different scenarios of the four thesis contribu-

tions.

Table 1.1: An overview of the mobility-assisted movement models proposed in this
thesis

# Model
Movement

type
Area

Movement
constraints

Obstacles
Decision

base

1 [9] Static 2-D No No Trilateration
2 [10] Static 3-D No No Quadlateration
3 [21] Dynamic 2-D Yes No Fuzzy-logic system
4 [22] Dynamic 2-D Yes Yes SI optimization

As a result, parts of this thesis have been published in the following publica-

tions:

[J-3] A. Alomari , W. Phillips, N. Aslam, & F. Comeau,

"Swarm Intelligence Optimization Techniques for Obstacle-

Avoidance Mobility-Assisted Localization in Wireless Sen-

sor Networks," IEEE Access, 2017. [Online]. Available:

https://doi.org/10.1109/ACCESS.2017.2787140

[J-2] A. Alomari , W. Phillips, N. Aslam, & F. Comeau, "Dynamic

Fuzzy-Logic Based Path Planning for Mobility-Assisted Localiza-

tion in Wireless Sensor Networks," Sensors, vol. 17, no. 8, 2017

[J-1] A. Alomari , F. Comeau, W. Phillips, & N. Aslam, "New Path Plan-

ning Model for Mobile Anchor Assisted Localization in Wireless

Sensor Networks," Wireless Networks, pp. 1-19, 2017. [Online].

Available: https://doi.org/10.1007/s11276-017-1493-2

[C-3] A. Alomari , N. Aslam, W. Phillips, & F. Comeau, "Three-

Dimensional Path Planning Model for Mobile Anchor-Assisted

Localization in Wireless Sensor Networks," in 2017 IEEE

30th Canadian Conference on Electrical and Computer Engineering

(CCECE), April 2017, pp. 1-5.
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[C-2] A. Alomari , N. Aslam, W. Phillips, & F. Comeau, "Using DV-Hop

Technique to Increase Localization Ratio in Static Path Planning

Models in Wireless Sensor Network," in 2016 10th International

Symposium on Communication Systems, Networks and Digital Signal

Processing (CSNDSP), July 2016, pp. 1–6..

[C-1] A. Alomari , N. Aslam, W. Phillips, & F. Comeau, "A Scheme for

Using Closest Rendezvous Points and Mobile Elements for Data

Gathering in Wireless Sensor Networks," in IFIP Wireless Days

(WD) , November 2014, pp. 1-6

1.3 Thesis Outline

This thesis consists of seven chapters, organized as follows:

� Chapter 2: discusses some of the applications of WSNs along with their cur-

rent challenges and investigates in detail some of the localization approaches

and techniques described in the literature. Then, a survey of the usage of

mobility in localization in WSNs, and the different mobility path models and

their concepts are presented.

� Chapter 3: introduces a new static path planning model for mobile anchor-

assisted localization in WSNs. The proposed model guarantees that, when

the relationship between the transmission range and the distance between

every two points is equal or greater than one, all nodes can receive the lo-

calization information and thus estimate their location with higher localiza-

tion accuracy in comparison to similar static models. Moreover, this model

overcomes the problem of collinearity and takes into account the metrics of

precision and energy consumption as well as accuracy, localization ratio and

the path length of the MA.

� Chapter 4: presents a three-dimensional path planning model for mobile
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anchor-assisted localization in WSNs. Our proposed model offers higher per-

formance in terms of localization accuracy with a lower error rate in compar-

ison to other proposed models.

� Chapter 5: presents Fuzzy-Logic-based Path Planning for mobile anchor-

assisted Localization (FLPPL). FLPPL is a novel distributed range-free move-

ment mechanism for mobility-assisted localization in WSNs when the MA's

movement is limited. The designed movement is formed in a real-time pat-

tern using a fuzzy-logic approach based on the information received from

the network and the nodes' deployment.

� Chapter 6: introduces the Grey Wolf optimizer-based Path Planning model

(GWPP) and Whale Optimization algorithm-based Path Planning model (WOPP).

GWPP and WOPP are two novel dynamic movement techniques that offer

obstacle-avoidance path planning for mobility-assisted localization in WSNs

when the MA's maximum movement distance is constrained. The movement

planning is designed in a real-time fashion using two swarm intelligence-

based algorithms. The optimized movement decision achieves superior out-

comes in comparison to other existing works in several metrics including

both localization ratio and localization error rate.

� Chapter 7: summarizes the main topics of this thesis and discusses potential

future work.



Chapter 2

Literature Review and Background

This chapter provides an overview of WSNs and their applications. Some present

challenges are also discussed. There is a discussion of a literature survey consisting

of two parts: the �rst part explains localization approaches and algorithms, and the

second part explains path planning models and their classi�cations.

2.1 Wireless Sensor Networks (WSNs)

Recent advances in wireless technologies have helped to popularize the use of

WSNs in many applications. A typical WSN consists of a large number of sen-

sor nodes that are densely deployed around an area of interest to sense, monitor,

and measure speci�c events via wireless communication [23]. A simple WSN node

is formed of a microprocessor, a radio chip, and a power source. The characteris-

tics of these nodes differ based on the demands and applications. Ordinarily, the

nodes are low-cost, require little power, are limited in terms of memory, and are

programmable [24]. The sensor nodes can exchange their data through a single

or multi-hop approach to deliver it to a gateway or base station (BS) for further

processing. The role of the BS is to gather the sensed data into a database. The BS

communicates with the sensor nodes in the network and may provide a gateway

connection to other networks. It can be connected to the Internet, which allows

remote systems and third parties to monitor the required collected data. Thus, the

BS's database can be accessed through the Internet or locally using the BS itself

[23]. WSNs typically are controlled by single or multiple protocols that are op-

erated to accommodate the features and speci�cations of the network including

8
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their nodes' deployment, network environment, self-con�guration, energy con-

sumption and fault tolerance [3,23,25]. Knowing the location of the collected data

is mandatory in many applications to take further action. For example, tracking

applications are highly dependent on the location of the nodes, making it dif�cult

to work without knowing the location of each entity [4]. In conventional WSNs' lo-

calization techniques, a set of static location-aware nodes, (called anchors, beacons,

etc.), are distributed around the network. Their task is to provide their location to

the location-unaware sensor nodes, the UNs, in their transmission range and to

assist them in computing and estimating their location according to the individu-

ally designed algorithm [3, 4]. The more extensive the network, the more anchors

are needed; however, using these �xed anchors brings many challenges in cost,

energy, and accuracy. Instead, a promising method to localize UNs is to use an

MA equipped with a Global Positioning System (GPS) device moving among UNs

and periodically broadcasting its current location (anchor point) to help nearby

UNs with localization. This approach can be useful in terms cost and energy con-

sumption [4]. We will �rst present some of the sensor network applications in the

following section, then discuss the current sensor network challenges in Section

2.1.2.

2.1.1 Sensor Network Applications Types

Many WSN applications share some general characteristics. There is a clear dis-

tinction between the source of data represented by the sensor nodes and the sinks

represented by the BS to which data will be delivered; however, there is a need to

include both of them in most WSN applications [3]. Here, we list a set of types of

applications that are used in WSNs.

A. Event detection

Once a speci�ed event has occurred, the sensor node that detects the event

should report directly or indirectly to the BS. The monitored events can be

detected using a single node (for example, detecting a temperature change),
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or the collaboration of multiple nodes located in a speci�c area (for exam-

ple, detecting the spread of a �re). In cases where different event types exist,

there might be a need for event classi�cation. Examples of this type of ap-

plication are forest �re or �ood detection in environmental applications, and

battle�eld surveillance in security and military applications [3,23,25].

B. Periodic measurements

In some applications, sensor nodes are assumed to measure a physical phe-

nomenon and report its measured values periodically. Examples of this type

of application include remote monitoring of physiological data in health ap-

plications, traf�c �ow surveillance in some commercial applications, report-

ing weather status during the day and measuring the level of gas in some

environmental applications [3,23,25].

C. Tracking

When the source of the event is mobile, the WSN is used to collect and up-

date data regarding that source. The WSN can also provide an estimate of its

location, speed, and movement direction. In such applications, sensor nodes

collaborate to exchange the required data and report it to where it is needed.

Examples of tracking applications in WSNs include but are not limited to

tracking and monitoring doctors and patients inside a hospital in healthcare

and medical applications, vehicle tracking and detection in commercial ap-

plications and habitat tracking in environmental applications [3,23,25].

D. Mapping and edge detection

WSNs can be used to draw a map of the spread of speci�c circumstances. For

example, the spread and the perimeter of a forest �re can be mapped using

data gathered from a WSN to help �re�ghters locate the source of the �re.

E. Other applications
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Some applications of WSNs can be classi�ed under one or more type based

on the requirement of the sensed data. These applications include military,

environment monitoring, habitat Monitoring, health, commercial and home

applications.

2.1.2 Sensor Network Challenges

Although there is wide diversity in WSNs' applications, each WSN requires spe-

ci�c attention regarding deployment options, maintenance options, and the op-

tions for the energy supply source [3]. For example, the deployment process can

be done randomly using an aircraft to drop a large number of sensor nodes into

a particular area, or can be well-planned and use �xed deployment in some small

areas of interest. The energy supply issue is important to consider, especially in

applications where sensor nodes have to be in transmission mode for a long time.

Other notable design factors that arise in the application of WSNs include the type

of service, quality of service, fault tolerance, network lifetime, and scalability.

2.2 Survey of Localization Algorithms

Localization in WSNs has become an active area of research, resulting in the devel-

opment of several models and algorithms in the last few years [4]. Localization is

de�ned as the process of �nding the positions of the WSN nodes in respect to some

absolute or relative reference [3, 4, 9, 23]. In many WSN applications, the location

where data has been gathered is important for locating the monitored events of in-

terest and reacting accordingly [26]. For example, in the case of a wild�re, knowing

the location of the �re source and the area to which the �re has spread is critical for

�re�ghters to start planning their response [1,3]. Localization is also critically im-

portant in other applications such as target tracking and monitoring disaster areas

[1, 27]. The node can be localized using a physical position represented through a

numeric coordinate system, or symbolic position such as "computer lab" or "build-

ing A" or both systems "Store A located in x,y coordinates." For example, if a sensor



12

node is located at the point (44.637369, -63.591231) of the Earth's latitude and lon-

gitude coordinates as an absolute reference, it can also be represented by "located

in the Killam Library at Dalhousie University" as a relative reference. In [3,4,25], a

number of node localization advantages are identi�ed, including:

1. The requirement of the location in some applications, such as those for track-

ing, is mandatory to have readable and valid data.

2. Many location-based routing protocols need the location of the nodes to run

their operations.

3. Knowledge of the node location is helpful to enhance network security.

4. Knowledge of the node location can improve network monitoring and man-

agement.

5. Knowing location information is necessary when sensor nodes are mobile.

Since WSN is considered as one of the primary components of IoT, they both

share the same problems. Localization in IoT is important similar to WSN. Since

the action in IoT networks, such as �re alarm, energy transfer, emergency request,

is performed originally on the data center, a way to identify the location informa-

tion of entire nodes at the data center is of signi�cance [28]. One of the potential

applications of our models is the target tracking. Target tracking is one of the sig-

ni�cant purposes of WSN in which sensor nodes monitor and report the locations

of moving objects to the end user. Indeed, target tracking has many practical ap-

plications such as battle�eld surveillance, detection of illegal borders crossing, gas

leakage, �re spread, and wildlife monitoring [29].

A. Global Positioning System (GPS)

The Global Positioning System (GPS) is a global navigation satellite system

owned by the U.S. government that provides users with positioning, nav-

igation, and timing (PNT) services [30]. The GPS system consists of 24-31
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satellites that orbit the Earth. Only four of these satellites are required to

obtain location information; three are needed to determine a position and

one to resolve local clock uncertainty and synchronization [31]. Each satellite

receiver continually transmits data about its current position, time and other

vital statistics. Based on lateration and other statistical concepts, the receivers

on the ground can estimate their own location. Due to its easy installation

and precise localization estimation, GPS is considered an easy approach for

node localization; however, this solution is also impractical for many reasons

including:

1. GPS devices require a line-of-sight communication with multiple satel-

lites, which means it is dif�cult to use them in certain deployment envi-

ronments. Examples of these environments include indoor applications,

underground, underwater, urban areas between buildings, forests, moun-

tains and others [23,31].

2. Although GPS devices are available on the market, they are still rela-

tively expensive. The cost of the network will increase if a GPS device is

attached to every single node.

3. Sensor nodes are energy-constrained. Attaching a GPS to each sensor

limits the energy source which will lead to a network failure.

Similar to GPS, there are also global navigation satellite systems: GLONASS,

which is owned by the Russian government; Galileo, which is owned by the

European Union; and BeiDou, which is owned by China.

2.2.1 Localization Categorization and Models

In general, localization models differ based on their objectives in several ways such

as localization method, localization processing, deployment area, application area,

or anchor type [21]. Figure 2.1 summarizes the objectives of the localization mod-

els. Some of these classi�cations will be discussed in the next several sections.



14

Localization Models

Localization Method
Range-free

Range-based

Localization processing
Distributed

Centralized

Deployment area
Two-dimensional

Three-dimensional

Application area
Indoor

Outdoor

Anchor types
Static

Mobile

Figure 2.1: Classi�cation of localization models in WSNs based on their objectives

A. Localization method (Range-Based vs. Range-Free)

Generally, the classi�cation of localization methods in WSNs consists of two

categories: range-based models and range-free models [27]. Range-based

techniques estimate the nodes' locations by taking advantage of the angle

or the distance of their communication connection. Examples of such infor-

mation include Received Signal Strength Indicator (RSSI), Time of Arrival

(TOA), Time Difference of Arrival (TDoA), and Angle of Arrival (AoA) [32,

33]. On the other hand, range-free techniques depend only on the connection

between the nodes and some location-aware nodes, the anchors [1,26,27]. By

exchanging location information and making calculations, the UN can esti-

mate its own location [32].

B. Localization Processing (Centralized vs. Distributed)
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In the distributed algorithms, the UN localizes itself by exchanging messages

with its neighbors located within its communication range in a single-hop, or

even through multi-hop communication. In the centralized algorithm, the lo-

calization estimation will be treated at the BS after data is exchanged between

nodes [4].

C. Deployment Area (Two-Dimensional vs. Three-Dimensional)

A large number of studies on localization in WSNs have been proposed, but

these studies focus on two-dimensional (2D) areas. In most real-world appli-

cations, sensor nodes are deployed on planar surfaces where three-dimensional

(3D) areas are found [34, 35]. Examples of these surfaces include indoor ap-

plications, such as �oors, walls, tables and doors, and outdoor applications

such as mountains, valleys, hills, and forests [34,35].

D. Application Area (Indoor vs. Outdoor)

In indoor environments, physical obstructions like walls can decrease the

localization measurements and accuracy. Such obstacles can exist in outdoor

environments as well; therefore, careful consideration should be given to the

application area when applying a localization method.

E. Anchor and Node Type (Static vs. Mobile)

Localization models using anchor nodes are classi�ed under one of the fol-

lowing types: (static nodes and static anchors), (mobile nodes and static an-

chors), (static nodes and mobile anchors) and (mobile nodes and mobile an-

chors) [9,36].

2.2.2 Evaluation Criteria

As the primary work on mobility-assisted localization focuses on designing a path

planning model to assist UNs in their localization process, the results are measured

in both path planning and localization metrics. While localization accuracy and
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ratio seem to be the most important metrics, other metrics are chosen based on

their signi�cance to improve the overall framework. A number of them has been

already discussed in some similar works such as these in [5, 11, 36–38]. Here are

the main metrics that are evaluated:

A. Localization Accuracy

In path planning for mobility-assisted localization in WSNs, localization ac-

curacy is one of the most important performance metrics. Higher accuracy

gives more con�dence about the localization estimation of one model over

another; hence, it is considered the main factor in many works in this re-

search �eld. Accuracy is computed using the localization error. The lower

the estimation of error, the higher the localization accuracy.

i. Average Localization Error

The average localization error is indicated as the calculated distance be-

tween the real location and the estimated location of the localized node.

It is used to determine the degree to which the localization estimation is

accurate. The node localization error is formulated as

error( i) =
q

(xi � ui )2 + ( yi � vi )2 (2.1)

where (xi , yi ) are the true coordinates of the node i, and (ui , vi ) are the

estimated coordinates of the same node i. Therefore, the average local-

ization error, erroravg, is calculated as:

erroravg =
� N

å
i= 1

error( i)
�
/ RN (2.2)

where RN is the total number of localized sensor nodes (reference nodes).

ii. Standard Deviation of the Localization Error

A low standard deviation in localization error is desired, since it means

a high percentage of error values are close to the mean of all errors. The
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standard deviation of the localization error for the entire population is

calculated as

errorstd =

s
å N

i= 1(error( i) � erroravg)2

RN
(2.3)

Where RN is the total number of localized nodes, errori is the node i's

localization error, and erroravg is the average localization error.

iii. Con�dence Interval of the Localization Error

Con�dence interval (CI) is the chance that a speci�c value falls between

an upper and lower bound of a probability distribution [39]. It is a sim-

ple way to explain the signi�cance of uncertainty in a sample estimate

of a population [40]. While 95% and 99% are the most common, the CI

can take any number of probabilities [39]. A smaller CI indicates that

there is less chance of getting an observation within that interval, thus,

the accuracy is higher.

In general, the CI is calculated as follows:

X̄ � Z
S

p
n

(2.4)

Where X̄ is the mean, Z is the chosen Z-value,s is the standard deviation

and n is the number of samples.

After replacing the symbols with the ones in our models, the CI is rep-

resented as follows:

erroravg � Z
errorstdp

RN
(2.5)

Where Z is the chosen Z-value, errorstd is the standard deviation of the

localization error and RN is the total number of localized nodes. For

simplicity, a table of pre-calculated Z values for various con�dence lev-

els is used.
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B. Localization Precision

The accuracy of the location of each node in a network is determined by

the localization error, which is the distance between the actual location of

the node and its location as calculated by the localization algorithm. The

proportion of localization errors smaller than a certain threshold error value

is known as localization precision. For example, if 80% of the nodes have a

localization error of less than 3 m, the precision is 0.8 at< 3 m, which we can

write as P3 = 0.8.

Precision can be formulated as

Pk =
å N

i= 1(bi )
RN

8
><

>:

bi = 1, if LE( i) < = k

0, otherwise
(2.6)

Where Pk is the precision values achieved under the k threshold of distance

in m, LE is the localization error, and RN is the set of all localized nodes in

the network.

C. Localization Ratio

The localization ratio, or coverage, indicates the number of localized nodes

(reference nodes) divided by the total number of nodes. A high localization

ratio gives an impression of how successful the path planning is. The local-

ization ratio is represented as

Lavg =
RN
N

(2.7)

Where RN is the total number of reference nodes, and N is the total number

of deployed nodes.

D. Path Length

Although path length does not affect the localization error rate or the number
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of localized nodes directly, it helps determine the time needed for the local-

ization process to be completed and may affect other critical metrics such as

energy consumption.

E. Energy Consumption

Energy consumption is another metric that is considered in this work. Since

sensor nodes depend highly on a limited source of energy, respecting this

condition requires a model that is ef�cient in terms of energy consumption.

Nonetheless, the number of path planning models that consider energy con-

sumption is limited [41]. The energy is consumed from two sides, the nodes'

side and the MAs' side. For sensor nodes, most of the energy is spent dur-

ing communication between the sensors and the MAs. On the MAs' side,

the energy is spent in the communication process as well, but most of the

consumed energy is spent on traveling around the network.

F. Obstacles Consideration

The obstacle-resistant trajectory is considered to handle obstacles that may

block the MA trajectory.

2.2.3 Range-Based Localization

As mentioned before, the range-based models estimate their locations based on

wireless characteristics such as the power and direction of the signal. Here, a dis-

cussion about the essential range-based methods is presented.

A. Distance Measurement Approaches

To estimate the location of a given UN, the real distance between this UN and

its neighbor MAs or localized nodes is needed. In range-based localization,

the distance measurement is based on four central concepts:

i. Received Signal Strength Indicator (RSSI)
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RSSI is an indicator available in most modern WSNs and Internet of

Things (IoT) motes that measures the power of the received radio signal

[42]. It is principally used for the measurement of the distance between

the transmitter and the receiver [43]. The relationship between the RSSI

and the actual distance is a core idea in many WSNs localization ap-

proaches [44]. If the power of the signal at the sender node is known,

it is possible to estimate the distance at the receiver node. RSSI is a de-

sirable method since it requires no dedicated hardware. In other words,

the node needs wireless characteristics for distance estimation. Many

RSSI modules exist in the literature. Considering the module in [45] and

assuming d0 = 1, the distance between two nodes i and j extracted from

the RSSI values is estimated as

di j = 10(� RSSI+ PL(d0)+ Na)/ (10b) (2.8)

Where PL(d0) is the power loss at the reference point (d0) in dB, Na is

the zero-mean Gaussian random variable with a standard deviation a

(i.e. N (0,a)) and b is a constant path loss exponent.

However, RSSI has some drawbacks. For example, RSSI is affected by

physical obstacles such as walls, which can impact the estimation accu-

racy. In practice, the real estimation rarely matches theoretical estima-

tions.

ii. Time of Arrival (ToA)

ToA (also known as the time of �ight) is another simple method of dis-

tance estimation between the sender and the receiver in wireless tech-

nologies [3, 23]. The core idea of ToA is to measure the time taken for a

signal traveling from one node to another. The sender and the receiver

have synchronized clocks. Once a signal arrives at the receiver side, the

receiver registers the time of transmitting (at the sender) and the time

of arrival and computes the distance between both of them based on the



21

difference between those two sessions. However, the propagation speed

must be known. The time estimated for a signal traveling from a node i

to another node j is modelled as [46]

t i j =
jj xi � xj jj

c
+ Na (2.9)

Where c is the signal propagation speed, and Na is the zero-mean Gaus-

sian random variable with a standard deviation a. The distance estima-

tion is formed

di j = cti j = jj xi � xj jj + c.Na (2.10)

Figure 2.2 presents an example of the ToA estimation concept.

Figure 2.2: An example of the essential ToA ranging concept (redrawn from [4])

Similar to RSSI, ToA suffers from several drawbacks. First, ToA requires

very high-resolution clocks for acceptable accuracy [3]. Second, it is

dif�cult to determine the propagation speed since it depends on other

external factors such as temperature or humidity [3]. As radio signals

travel at the speed of light, it is a challenge to estimate their time of ar-

rival precisely [23].

iii. Time Difference of Arrival (TDoA)
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TDoA exists to overcome the need for the explicit synchronization re-

quired in ToA [3]. It calculates the distance between two given nodes by

computing the different times of arrival of two different signals [47].

The two signals have to be produced by two transmission mediums

of very different propagation speeds, typically radio waves and ultra-

sound [3,23]. Usually, a sender node i starts sending an ultrasound and

a radio transmission at the same time to another node j. Radio waves

typically travel at the speed of light. Hence, they are much faster in com-

parison to ultrasound. When the receiver node j receives the �rst signal,

it will start measuring the time until the next message arrives, thus, it ig-

nores the propagation time of the radio communication [3,25,47]. Figure

2.3 shows an example of the TDoA estimation concept.

Figure 2.3: An example of the essential TDoA ranging concept (redrawn from [4])

The main disadvantage of TDoA is the need for more than one type

of sender and receiver on each node, which increases the energy con-

sumption. On the other hand, this method provides better estimation

accuracy compared to those used in RSSI-based approaches.

iv. Angle of Arrival (AoA)

This method determines the direction of the radio-frequency waves prop-

agation using an antenna array [3]. The antenna array is a set of con-

nected antennas that combine together as a single antenna to transmit
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or receive radio waves. AoA de�nes the direction of a signal using the

TDoA at one antenna and measures the delay between them.

B. Discussion

There is a trade-off between the ranging error, and the complexity and the

cost of the measurement method. While RSSI-based approaches are simple

and require no additional hardware, the deployment environment has an im-

pact on the accuracy of the estimation. On the other hand, TDoA provides

more accurate prediction in comparison to RSSI, though it also requires more

complicated and additional hardware which consumes more energy. Study-

ing the application requirement needed to determine which approach is more

suitable to use is mandatory.

C. Computing Locations Using Ranging-Based Measurement

Lateration and angulation are two methods that use the geometric informa-

tion extracted from the communication between two nodes [3].

i. Lateration

Lateration is used when the distance between nodes is known. In the

case where a node has accurate distance measurements to three non-

colinear anchors, it is called trilateration, which is required in most 2D

applications. In the 3D case, four noncolinear anchors are required,

which is called quadlateration. Figure 2.4 illustrates an example of tri-

lateration using three intersecting anchors. The UN will estimate its lo-

cation based on the determined distance between itself and the other

three anchors.

ii. Angulation

On the other hand, when angles between nodes are known, the node

location can be derived using angulation. Similar to trilateration and
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Figure 2.4: Illustration of triangulation using three intersecting anchors (redrawn
from [3])

quadlateration, triangulation and quadrangulation exist in 2D and 3D

estimation. Figure 2.5 depicts another example of triangulation based

on the locations of two anchors.

iii. Distance Determination

In both lateration and angulation, the distance between the UN and the

anchors is required. To determine the distance between each anchor

node and the UN, the radio communication characteristics between both

of them can be helpful. In particular, the RSSI, the ToA, and the TDoA

can provide a distance estimation based on the communication between

the sender and the receiver.

Now, assume that there are three location-aware anchors with the posi-

tions (xj , yj), where j = 1, ...,3, and a UN is located at (xi , yi). Using the
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Figure 2.5: Illustration of angulation based on two anchors (redrawn from [23])

Pythagorean theorem, the distance relation between every anchor and

the UN will be expressed as

q
(xj � xi )2 + ( yj � yi )2 = di j for j = 1, 2, 3 (2.11)

Where di j is the distance between the UN i and the anchor j.

Now the location of the UN can be estimated as
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(2.12)

2.2.4 Range-Free Localization

Unlike the former models (range-based), range-free localization algorithms esti-

mate their UNs' locations using the connectivity information between the UNs

and anchor nodes. Next, the main principles used in this connectivity information

are displayed.
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A. Proximity-Based Methods

These methods are simple and cost-ef�cient. They work based on whether a

given UN is located within the range of another node or not. Based on the

communication technology used: radio, infrared or sound, the information

exchanges between every two nodes can be used to estimate their locations

[3,23,48]. One of the most straightforward approaches that utilizes this con-

cept is the Centroid method [45,49]. In this method, a given UN can estimate

its own location by gaining an advantage from the overlapping signals of

multiple location-aware nodes (anchors). The location of a UN can be calcu-

lated using the following generic formula

(xi , yi ) =
�

å n
j= 1 xj

n
,
å n

j= 1 yj

n

�
(2.13)

Where (xi , yi) are the estimated coordinates of a given node i, and n is the

total number of received anchors [48]. The proximity-based method requires

a network with a large number of anchors to minimize the localization error

and maximize the localization rate.

i. Approximate Point in Triangle (APIT)

This model is one of the most well-studied methods in localization in

WSNs, and is proposed in [50]. APIT's basic idea is to divide the net-

work area into portions of triangular regions so that their vertices indi-

cate the locations of anchor nodes. The UN estimates its location based

on the three vertices around it. APIT works in three phases where in the

�rst phase, Message Exchange, all nodes will receive locations informa-

tion from anchors around them. In the second phase, Point In Triangle

(PIT) Testing, each node will select three anchors and test whether they

form a triangle around it or not. This procedure will be repeated until

all UNs belong to at least one triangle. In the third phase, APIT Aggre-

gation, a centroid calculation is performed to estimate the location of the
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node.

ii. High-Resolution Robust Localization (HiRLoc)

HiRLoc is another proximity-based localization algorithm proposed in

[51]. Its concept is similar to APIT; however, HiRLoc aims to reduce the

overlapping regions using the transmission power and directional an-

tennas of UNs. The localized nodes will share their information as well,

which helps to maximize the localization coverage. The communication

cost of HiRlLoc increases as the network region increases [52].

iii. Weighted Centroid Localization (WCL)

WCL is a localization method that was �rst proposed in [49]. The idea

behind it was to design an algorithm that would be able to achieve a

small amount of computation, with a lower communication consump-

tion and cost. The nodes' positions in WCL can be estimated after cal-

culating the weights of anchors based on their estimated distance. The

weight function can be calculated as

wi j =
1

(di j )g (2.14)

Where g is a default degree based on different scenarios. Thus, the node

position can be estimated as

pi =
å n

j= 1

�
wi j .aj

�

å n
j= 1 wi j

(2.15)

Where Pi is the (xi , yi) coordinates of the UN i, and aj = (xj , yj) is the

anchor's j position.

After replacing the wi j with the RSSIin equation 2.17, the �nal pi can be

estimated as
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pi =
å n

j= 1

�
RSSIi j .aj

�

å n
j= 1 RSSIi j

(2.16)

iv. Weight-Compensated Weighted Centroid Localization (WCWCL)

WCWCL is another localization model that is based on the idea of WCL [45].

However, WCWCL allows for more impact from the nearby anchors

when calculating the weights. In other words, the estimation of the node

location will be based on the minimum number of closest anchor loca-

tions, in case of receiving more. For this reason, WCWCL modi�es the

weight function to a new one that can be calculated depending on the

RSSI model. A simple RSSI model is shown in the following

RSSI= PL(d0)dB + 10 b log10

� d
d0

�
+ NdB

a (2.17)

Where PL(d0) is the power loss at the reference point (d0), b is a con-

stant path loss exponent, d is the real distance, and Na is the zero-mean

Gaussian random variable with a standard deviation a. The improved

weights function proposed in WCWCL can be shown as

Wi =
wi j

å n
j= 1 wi j

=

vu
u
t

 

10
RSSIij

10

! g

å n
j= 1

vu
u
t

 

10
RSSIij

10

! g
(2.18)

The WCWCL model works in three simple steps:

i. Recording the RSSI value and the anchor's location, aj , in each UN

after receiving the signals.

ii. Computing the weight function as

Wni j =
Wi j .n

2.Wi j

å n
j= 1 Wi j .n

2.Wi j
(2.19)
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iii. Estimating the node's position using the following equation

pj =
n

å
i= 1

Wi .aj (2.20)

Where pi is the (xi , yi) coordinates of the UN i, and aj = (xj , yj) is the

position of anchor j.

B. Connectivity-Based Methods

Connectivity-based localization algorithms use the connectivity information

for the entire network [23]. They employ the concept of graph theory for

node localization [52]. Distance-Vector Hop (DV-Hop) [53] and Localizable

Collaborative Body (LCB) [54] are two well-known algorithms that fall under

this approach.

i. Distance-Vector Hop (DV-Hop)

DV-Hop is a range-free algorithm, proposed by the authors of [53]. It is a

simple distributed technique that provides approximations of locations

at a low cost, and no extra hardware is needed. DV-Hop assumes that

the WSN is composed of a set of randomly distributed UNs along with

another set of reference nodes, namely anchors. All anchor nodes are

aware of each others locations as well. DV-Hop has received extensive

attention because of its simplicity and localization capability. In [55], the

authors propose using DV-Hop to increase the coverage and localization

ratio in mobility trajectories models.

The DV-Hop algorithm is divided into three main stages:

Stage 1: Hop count

In this stage, each anchor node sends its location to all UNs located in

its communication range. Following the information �ooding approach,

each of these UNs that receives the anchor's information will broadcast
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it again to the other UNs in their communication range. Initialized orig-

inally to 0 in each anchor node, with each set of data sent, the number

of hops between each anchor and each UN increases by a value of 1.

In the end, each UN will have an information table that includes the lo-

cation information of all anchors and the number of hops to each anchor.

Stage 2: Distance calculation

This stage consists of two steps:

(a) Calculation of average Hop-Size:

Once an anchor node, say�, receives the hop count information from

other anchor nodes, it can estimate the average hop-size using the

following formula [56],

HopSizei =
å

q
(xi � xj )2 + ( xi � xj )2

å hopi j
(2.21)

Where �6= âand, (xi , yi ) and (xj , yj ) are the location coordinates for

the anchors � and â, and hopi j is the number of hops between them.

Lastly, each anchor will �ood its hop-size to all network nodes.

(b) Sensor-anchor distance estimation:

This step is a chance for the UNs to estimate their distance to each

known anchor. Based on the information in step (a), the distance

estimation between each UN s and anchor � can be calculated as

dsi = CountHopsi � HopSizei (2.22)

Stage 3: Location estimation

Once three different distance estimations are performed, the UNs can

estimate their locations using the trilateration method as described be-

fore.

ii. Localizable Collaborative Body (LCB)
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LCB is a localization algorithm that estimates UN locations based on the

graph theory [54]. Similar to DV-Hop, LCB also uses the connection of

multi-hop anchors for location estimation, allowing it to overcome the

problem of having three direct neighbor anchors. A tree structure called

BN-tree is formed to construct a localizable collaborative body of the

network. An advantage of using LCB is that it decreases computation

and communication costs since the localized nodes can share their infor-

mation with their neighbors. On the other hand, the localization error

in one node has a signi�cant impact on the localization error of another

node, thus increasing the localization error in general [52].

C. Event-Driven Methods

This is an emerging range-free localization approach that aims to reduce the

computation overload on the UN's side [57]. This is done by applying an

asymmetric system design where the sensor nodes only need to conduct sim-

ple operations of event detection and reporting. Most of the localization pro-

cedures follow a centralized approach where the localization process will be

conducted on another device. Some of the notable works under this method

are: the Lighthouse model proposed in [58], the Spotlight model proposed in

[59] and the laser Scan model proposed in [60]. While event-based methods

are now drawing more attention, there are some disadvantages of using this

method such as the need for expensive localization devices and its sensitivity

to the environment in which it is deployed [57].

2.3 Survey of Path Planning Models

With the increased number of localization proposals, the classi�cation of localiza-

tion models has been extended. Based on the nature of the mobility, and according
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to [36], localization models are grouped into four main categories as shown in Fig-

ure 2.6. The �rst category (Static Node – Static Anchor), where both nodes and an-

chors are static, represents the original area of localization research. An extensive

body of work has been conducted on this category, and this work continues. This

category is classi�ed into two types that were discussed above, the range-based

and range-free models. It is important to mention that in one way or another, most

of the other types of models depend somewhat on this type. Examples of this

type can be found in [45, 49, 50, 53]. The second category (Mobile Node – Static

Anchor) contains the algorithms in which the mobility exists in nodes, not the an-

chors. This type usually includes scenarios where a sensor node is attached to a

monitored body, such as an animal, and the static anchors provide each node with

an updated location with each movement. Examples of this category are proposed

in [61, 62]. In the third category (Static Node – Mobile Anchor), which we are in-

terested in, the sensor nodes remain static at the time, while the MA is responsible

for traversing the network and assisting these sensor nodes in estimating their lo-

cations. This type of localization model is further subdivided into two categories:

random mobility and planned mobility. Since our proposed models are located

under the (Static Node – Mobile Anchor) category, more details about these mod-

els are provided in this section. The last category (Mobile Node – Mobile Anchor)

includes scenarios where both sensor nodes and anchors are mobile. Examples

of this category are more likely to be found in robotics applications, like those in

[63,64].

2.3.1 Random Path Planning

As indicated by its name, the direction of movement and steps are chosen ran-

domly. Nonetheless, more parameters may also be determined randomly, such as

the velocity and length of each movement. This kind of mobility is used in cases

where no accurate locations or localization ratios are required. Consequently, there

is no guarantee that all UNs will receive enough localization information; hence,
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Figure 2.6: Classi�cation of localization models in WSNs

many UNs will not be able to estimate their locations.

A. Random Waypoint (RWP) Model

It was �rst proposed for routing purposes in ad hoc networks, then was ex-

tended to be used in localization assistance models. RWP randomly changes

the MA's direction and velocity. Each velocity is chosen as a value between

the minimum and maximum velocity in m/ s. RWP highly depends on the

waves that represent the clustering sensors located in the center of the mon-

itored area. As with most random mobility models, RWP does not solve

the coverage problem of having all UNs receive localization information, nor

does it provide a reasonable error rate. An example of RWP is shown in Fig-

ure 2.7. Other random mobility models were proposed and used in [65,66].

B. Random Direct (RD) Model

The Random direct model (RD) was proposed to overcome the weakness of

RWP [66]. It is similar to RWP, except that the MA moves along the border

of the monitoring area. Thus, the MA can travel through the whole area

instead of restricting itself to the center of the area, which helps to reach a

more substantial number of nodes.

C. Gauss-Markov(GM) Mobility Model

The Gauss-Markov(GM) mobility model is an adaptive localization approach

for WSNs based on the Gauss-Markov mobility model proposed in [67]. It
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Figure 2.7: Mobile path movements models in RWP

consists of three main phases: the perpendicular bisector phase, the virtual

repulsive phase and the velocity adjustment phase. The three phases work

simultaneously to enhance the localization ef�ciency. The perpendicular bi-

sector phase aims to adjust the path of the MA to avoid collinearity. The

virtual repulsive phase ensures the MA movement is within the boundary

of the network, and the velocity adjustment phase changes the MA velocity

based on the network topology. Based on these three phases, the MA adap-

tively adjusts its velocity and direction. In comparison to RWP, GM shows

better performance in terms of accuracy and ratio [4].

2.3.2 Static Path Planning

The main difference between static mobility paths and other mobility types is that

the movement trajectory is set in advance and cannot be changed or modi�ed after

deployment, except in some models where obstacles are considered. Thus, most
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static path proposals are in some way based on triangulation or trilateration con-

cepts. In general, static path models show high localization ratios, since one of

their primary goals is to guarantee that all UNs receive localization information.

Nonetheless, in comparison to other types of mobility, static models offer a low lo-

calization error, which means the UNs will be able to estimate their locations more

accurately and precisely. However, proposing a static path requires giving more

attention to the details of the anchor points and the designed trajectory to avoid

other problems, such as collinearity and path length. The collinearity problem ex-

ists when a UN receives only one localization message from one direction or when

it receives multiple messages from one line and different directions. Another issue

is that since the static mobility models depend highly on trilateration concepts, the

designed path should ensure that all UNs can receive at least three different anchor

locations so they can determine their own locations. Examples of static mobility

models for sensor localization are presented in [11,36–38].

A. SCAN

The SCAN and Hilbert models are considered the �rst mobility assisted-

localization path models and were proposed in [36]. SCAN is a simple model

that allows the MA to move in straight lines in one dimension, x or y. The

distance between every two lines is de�ned as the resolution. At the same

time, the resolution represents the distance between every two anchor points

in each line. Figure 2.8 shows the path model of SCAN.

The main advantage of the SCAN model is its simplicity to implement; how-

ever, it suffers from the collinearity problem, which signi�cantly affects its

accuracy.

B. Double-SCAN

To overcome the collinearity problem in SCAN, another model called Double-

Scan, or D-SCAN for short, was designed similarly to SCAN, but with an
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Figure 2.8: Mobile path movements model in SCAN

extension in two directions. D-SCAN works in both the horizontal and ver-

tical vertices to increase the coverage and solve the collinearity problem [36].

However, it increases the path length of the MA, due to the nature of SCAN

and D-SCAN regarding moving in straight lines.

C. Hilbert

To avoid the weaknesses of SCAN, Hilbert, which is shown in Figure 2.9,

was proposed to make more turns and avoid collinearity. Hilbert works by

dividing the area into four equal squares and connecting the points between

these squares. With the localization information from different non-collinear

positions, the UNs are able to estimate their location more accurately than

in SCAN. One of the signi�cant issues in Hilbert is the coverage problem

because the UNs that are located at the border of the area are unable to re-

ceive enough information to estimate their locations, which then affects the

localization ratio and increases the localization error [52].
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Figure 2.9: Mobile path movements model in Hilbert

D. CIRCLES

Along with S-Curves, CIRCLES is one of the earliest and most well-known

path planning models for MA-assisted localization [68]. CIRCLES is formed

based on circular path movement. The primary goal of CIRCLES is to over-

come the collinearity problem. However, this model is unable to reach the

nodes located in the corners of the network, thus, affecting the localization

ratio negatively. This problem can be solved by adding more outer circles to

the path; however, this will bring another issue to the path length.

E. S-Curves

S-Curves is a static path planning model proposed in [68]. In its basic con-

cept, the movement pattern of S-Curves is similar to that formed in SCAN,

which progressively scans the deployment area vertically or horizontally. To

overcome the collinearity in SCAN, the S-Curves algorithm follows an 'S'

curve instead of moving in straight lines. Because the straight lines strategy
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is avoided, and in comparison to SCAN and Hilbert, S-Curves offers bet-

ter accuracy and a higher localization ratio. The path length in S-Curves is

slightly shorter than those in SCAN and Hilbert.

F. Localization algorithm with a Mobile Anchor node based on Trilateration

(LMAT)

In [11], a Localization algorithm with a Mobile Anchor node based on Trilat-

eration (LMAT) was proposed. In LMAT, the path is formed in many sym-

metrical triangles. The distance between every two points in LMAT's path

is de�ned in advance as the resolution value. The main reason for using

trilateration in LMAT is to provide more accurate estimation and to avoid

collinearity. Although LMAT provides a high localization ratio with fewer

errors, the path length that an MA needs to travel is an issue. LMAT path

model is shown in Figure 2.10.

Figure 2.10: Mobile path movements model in LMAT



39

G. Mobile Anchor-Assisted Localization algorithm based on a Regular Hexagon

(MAALRH)

Han et al. propose a Mobile Anchor-Assisted Localization algorithm-based

on a Regular Hexagon (MAALRH) [37]. Unlike the other planning trajecto-

ries, the path in MAALRH starts from the center point and moves a hexagon-

form step. Once the MA reaches the hexagon's starting point, it moves out

one step in the distance of the resolution and starts forming another larger

hexagon as shown in Figure 2.11.

Figure 2.11: Mobile path movements model in MAALRH

While MAALRH is considered one of the newest models, it gives poor results

in both its localization ratio and localization error. The MA in MAALRH is

unable to reach the corners of the area, thus the UNs located in these corners

are unable to determine their locations. Nonetheless, the UNs outside of the

outermost hexagon will estimate their locations, if they can, with high error

values.

H. Z-Curves
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The Z-Curves mobile path model was proposed in [38]. As indicated by its

name, the MA traverses the network forming a Z-shape. The network is

divided into three levels, and the Z-shapes are connected to each other in

each level. The �nal Z-Curves model is shown in Figure 2.12. Like the other

localization-assisted mobility models in WSNs, the Z-Curves model aims to

form a set of different points that are based on the trilateration concept to

avoid collinearity and help the UNs receive at least three different localiza-

tion messages from three different locations.

Figure 2.12: Mobile path movements model in Z-Curves

Z-Curves also proposes that when the MA faces an obstacle on its way, it

simply turns around the corner of that obstacle and goes to the obverse point

of the obstacle to continue the movement. However, such a solution leaves

several drawbacks in terms of path length and collinearity.
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2.3.3 Dynamic Path Planning

Dynamic Path Mobility is included under the second category of localization mod-

els, the planned models. In dynamic models, the direction of the MA and its

movement path depend on real-time information and the demands of the initial

distributed UNs. Thus, there is no speci�c or deterministic path in advance. Ex-

amples of this kind of mobility being used in localization-assistance are the Dy-

namic Path of Mobile Beacon (DPMB) algorithm in [69], Breadth-First (BRF) and

Backtracking Greedy (BTG) algorithms in [70], and Deterministic Dynamic Beacon

Mobility Scheduling (DREAM) in [71].

A. Dynamic Path of Mobile Beacon (DPMB)

The Dynamic Path of Mobile Beacon (DPMB) algorithm, presented in [69]

divides the nodes into three classes: unknown, settled, and reference nodes.

Each node contacts its neighbours that are located in its transmission range.

Thus, the MA will determine its path from node to node according to the

quantity of neighbours (QN) for each UN. The �rst triple position and other

algorithms are used to determine the locations of UNs. In the �rst triple

position, all movements are random; however, when a triangle is formed, all

nodes inside it can be localized to become reference nodes.

B. Breadth-First (BRF) and Backtracking Greedy (BTG) Models

BRF and BTG are models that derive their movement design by construct-

ing the localization problem into a graph theory [70]. The WSN is viewed

as a connected undirected graph. Then, the path planning problem is trans-

lated into a spanning tree and traversing graph. Breadth-First is a searching

technique that has a property in which if all of the edges in a graph are un-

weighted, the �rst time a node is visited is regarded as the shortest path to

that node. On the other hand, the Backtracking Greedy Algorithm is an algo-

rithm that continually takes the best immediate solution while attaining an

answer. The MA changes its direction based on the nodes deployment. Both



42

BRF and BTG suffer from high localization error.

C. Deterministic Dynamic Beacon Mobility Scheduling (DREAMS)

The deterministic beacon mobility scheduling (DREAMS) model was pro-

posed in [71]. The �rst MA movement in DREAMS is taken randomly. The

next movements are performed based on a Depth-First Traversal (DFT) search.

DFT is a searching algorithm for graph data structures that allows the graph

to come to the same point, if needed. The MA performs a distance-based

heuristic movement that relies on the measurement between the MA and the

target UNs. A Local Minimum Spanning Tree (LMST) sub-graph is also used

to minimize the path length of the MA. An advantage of DREAM is that there

is no need for prior knowledge about the monitored network.

D. Snake-Like

Another dynamic model, called Snake-Like is introduced for obstacle-avoidance

in [72]. The proposed movement formation is similar to that offered in SCAN;

however, it follows a horizontal approach. When an obstacle is faced, identi-

cal to Z-Curves, the MA will move on the border of the obstacle and reach the

other point on the same line as the last point before the obstacle and keeps its

movement. The main disadvantage of the Snake-Like proposal is collinear-

ity. Snake-Like does not provide a solution for the collinear points and how

to deal with them. In addition, to avoid the repeated points in the path, some

areas in the network will not be fully covered. Figure 2.13 below shows an

example of a Snake-Like path when 10 obstacles exist in the network area.

E. Node Localization Algorithm with Mobile Beacon Node (NLA_MB)

A node localization algorithm with a mobile beacon node (NLA_MB) is pro-

posed in [73] with an assumption of limited and constrained movements. In

this model, the area of interest is divided into a number of hexagonal grids,

and the MA moves from the centre of the hexagon to a corner and vice versa

based on the proposed optimization model to form the �nal movement path.
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Figure 2.13: Mobile path movements model in Snake-Like when 10 obstacles exist

The area coverage of NLA_MB differs based on the available sources of time

and energy (i.e., maximum path length). Figure 2.14 shows an example of

an NLA_MB movement pattern when 105 m is assigned as the maximum

movement of the MA.

2.3.4 Three-Dimensional Path Planning Models

As shown previously, most path planning algorithms use the concept of the trilat-

eration path for the MA to minimize localization errors and improve localization

accuracy [11]. However, in real-life scenarios, the concept of quadrilateration is

vital [34]. The quadrilateration method uses distance measurements from four dif-

ferent non-collinear nodes to localize other nodes in 3D space. Using the quadri-

lateration method will overcome the coplanarity problem, where a set of nodes lie

on the same straight line [34].

A. Three Dimensional Random Waypoint (3D-RWP)

A 3D-Random Waypoint (3D-RWP) model is proposed [74], which presents a
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Figure 2.14: Mobile path movements model in NLA_MB with a maximum move-
ment distance of 105m

four-mobile-beacon assisted weighted centroid localization method in three-

dimensional space. It suggests using more than a single MA for localization

assistance. The main idea is to allow the MA to move freely in the network;

therefore, the movement path will be similar to that shown in RWP. Figure

2.15 represents the movement pattern of the 3D-RWP.

B. Layered-SCAN

Reference [75] proposed three models: Layered-SCAN, Layered-Curve and

3D-Hilbert. In Layered-SCAN, the procedure is similar to that proposed in

SCAN; however, it is applicable in a 3D area. Three coordinates (x, y and z)

are considered, where Z represents a set of a 2D SCAN. Each 2D SCAN is

called a layer. The distance between layers is the same as the distance be-

tween every two points in the 2D SCAN. Layered SCAN inherits the same

challenges of SCAN, with both having a long movement path and copla-

narity problems. Figure 2.16 shows an example of the 3D Layered SCAN.
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Figure 2.15: Mobile path movements models in 3D-RWP

Figure 2.16: Mobile path movements models in Layered-SCAN
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C. Layered-Curves

Derived from S-Curve, the Layered-Curve movement is formed using a set of

layers where the distance between every two layers is constant and donated

as Resolution. The MA traverses the network along one dimension using

straight lines and S-Curves. While Layered-Curve overcomes collinearity, it

may bring some problems associated with the path length and energy as well

as some repeated points.

D. 3D-Hilbert

Since Hilbert was an improvement of SCAN that allows the MA to make

turns to avoid collinearity, in Layered-Hilbert, a similar concept is employed.

However, it comes with more complexity as more points are needed to local-

ize a node in a 3D area. Figure 2.17 presents an example of a Layered-Hilbert

path planning model.

Figure 2.17: Mobile path movements models in Layered-Hilbert
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E. Hexahedral Localization (HL)

A three-dimensional hexahedron localization based on MAs is proposed in

[76]. The idea is essentially to divide the network space into a broad set of

hexahedrons. Then, the UNs are located using the perpendicular properties

of the movement path. All points inside each hexahedron should be visited

so that the UNs can get their localization information. However, the authors

state that the MA's path may be uncontrollable, and the path may not be the

ultimate one.

2.3.5 Summary of Path Planning Models

The following Table 2.1 provides a general comparison of different path planning

schemes.
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Table 2.1: General comparison of mobility-assisted movement schemes in WSNs.

Mobility
Protocol

Area
Movement

Path
Movement
Constraints

Area
Covered

Collinearity
Considerd

Accuracy

RWP 2-D Random No No No Low
RD 2-D Random No No No Low
GM 2-D Random No No No Low

SCAN 2-D Static No Yes No Low
Hilbert 2-D Static No Yes Yes Medium

CIRCLES 2-D Static No No Yes Low
MAALRH 2-D Static No No Yes Medium
Z-Curve 2-D Static No/Yes Yes Yes High/Medium
LMAT 2-D Static No Yes Yes High
DPMB 2-D Dynamic No No Yes Weak
BRF 2-D Dynamic No No No Weak
BTG 2-D Dynamic No No No Weak

DREAMS 2-D Dynamic No No No Medium
Snake-Like 2-D Dynamic Yes No No Weak
NLA_MB 2-D Dynamic Yes Differs * Yes High
3D-RWP 3-D Random No Yes No High

Layered-SCAN 3-D Static No Yes No Weak
Layered-Curves 3-D Static No Yes Yes Weak
Layered-Hilbert 3-D Static No Yes Yes Medium

HL 3-D Static No Yes Yes High
* Based on the maximum movement distance
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As shown in Table 2.1, the random models (RWP, RD and GM) and the static

models (CIRCLES and MAALRH), are not able to cover the whole area since the

nodes located in the corner sides of the network are dif�cult to reach, while the

collinearity problem affects the accuracy in RWP, RD, GM, SCAN, BRF, BTG, and

DREAM. On the other hand, dependence on a single parameter leads to the weak

performance of coverage and accuracy in DPMB. Thus, multiple parameters in the

decision making of the movement direction are needed to improve the limitations

of the static and dynamic models. This becomes more important in cases where

the movement of the MA is constrained. The main aims of any proposed model

are to overcome the collinearity problem that the static models suffer from as in

[36], enable the MA to reach any point in the network regardless of its position

unlike those in [37, 68], and to form the movement path based on various inputs

to increase the performance of the optimization model, unlike the dynamic one in

[69].

2.4 Conclusion

In this chapter, an overview of the WSNs and their types of applications and their

current challenges were presented. In addition, a survey of the localization in

WSNs was offered, which includes the localization categorization and models with

more focus on both range-based and range-free localization. Then, we provided a

summary of some of the existing localization models with their concepts. Another

survey about the path planning models for mobility-assisted localization and their

initial ideas were addressed.



Chapter 3

New Path Planning Model for Mobile Anchor-Assisted

Localization in Wireless Sensor Networks

3.1 Preface

In this chapter, we introduce a new path planning model for mobile anchor-assisted

localization in WSNs. Our main contribution in this chapter is providing a pro-

posal for a competitive path planning model for mobility-assisted localization in

WSNs that provides better results. The proposed path model is improved to in-

crease the localization accuracy and ratio of the successfully localized nodes. More-

over, we suggested considering the precision metric in designing the movement

path. To the best of our knowledge, our work is the �rst to consider the precision

metric in mobility-assisted localization in WSNs. We also noticed that most of the

current works do not take into account wireless channel speci�cations; thus, realis-

tic wireless speci�cations are used in evaluating the different models in this work.

We contribute a path planning model for mobile anchor-assisted localization in

WSNs that

1. Ensures that all of the UNs inside the network can receive the localization

information. By doing so, and in contrast with random models and some

static model like Circles [68] and MAALRH [37], all UNs will be able to esti-

mate their current locations, when the resolution is equal or greater than one,

depending on the received information.

2. Provides a path model with a competitively accurate estimation with a lower

localization error as compared to other static models.

3. Uses the precision metric, which is de�ned as the ratio of how many speci�c

50
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accuracy values are reached, for evaluation in more than one area.

4. Takes into consideration the collinearity problem, as compared to the random

mobility models and some static models such as SCAN, and HILBERT which

do not [36].

5. Shows an average energy consumption that is related to the number of lo-

calized nodes. We consider both node and MA energy consumption in our

calculations.

6. Additionally, we analyze and discuss the trade-off between the chosen lo-

calization algorithm and the designed path model. We prove that both the

mobility path and the localization algorithm impact each other.

Section 3.2 shows the system model and the assumptions that are considered

in the performance evaluation. In Section 3.3 we introduce our mobility-assisted

path planning model and the ideas behind it. Section 3.4 presents a performance

setting using the model described in Section 3.2, while Section 3.5 shows the evalu-

ation part and the results. We discuss the trade-off between the chosen localization

algorithm and the designed path in Section 3.6. We sum up this chapter in the Con-

clusion in Section 3.7.

3.2 System Model and Assumptions

The system model is assumed to have the following characteristics:

1. A two-dimensional network �eld with an area size of S in m2.

2. A set of UNs, N, are deployed around the network following a uniform dis-

tribution.

3. At �rst, all UNs are not location-aware.

4. All of the distributed nodes are assumed to be static and their location will

not change.
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5. Each sensor node has a �xed transmission range of RTx in m.

6. An MA, or more of M number, is able to determine its location at any part

of the network and is ready to traverse the whole network freely, in straight

and direct lines, based on each path model. For simplicity, we assume that

there are no obstacles in the deployment area to limit the MA's movement.

7. The MA is assumed to make several stops on its way, and the distance be-

tween every two stopping points is set in advance as dm.

8. Each MA and UN are able to connect to each other only if their positions are

within the same transmission range, RTx.

9. Once a UN receives three different localization messages, it can start the lo-

calization estimation using the selected localization algorithm.

10. Both UNs and MAs consume energy in their connection; however, the MA

consumes a greater amount of energy during its travels around the network.

3.3 Path Planning Models for Mobile Anchor-Assisted Localization

The main contribution of this work is to design a path planning model for mobility-

assisted localization in WSNs. Our proposed model is called H-Curves, because

it derives its name from the multiple sloping H-Shaped paths in this design. In

order to overcome the problem of collinearity and to shorten the path, the model

is intended to have a winding path to ensure that each UN is located within the

area of at least three different anchor points. Thus, the coverage, accuracy and

localization ratio increase. Figure 3.1 shows a sketch of the mobile path for this

model. The node's localization process is done in three simple steps: the mobility

movement step, the localization information exchange step, and the localization

estimation.

Figure 3.2 summarizes the three step process of the localization in our proposed

model.
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Figure 3.1: The proposed MA path in H-Curves

3.3.1 Mobility Movement

The MA will start from the beginning point at the corner of the deployment area

and travel in straight lines from each anchor point to another in a �xed distance

of dm. The value of dm will not change at any time. After completing one row of

movement, upon reaching the second corner point, the MA will take a step in the

other direction, or coordinate y in this example, with the same �xed dm. However,

after two movements in this direction, the MA will return to its original coordinate,

x in this case, but in the reverse direction. An important point here is that the MA

will travel only half of the distance dm. This is meant to make a difference between

the rows and prevents the rows from corresponding, which will help to decrease

the number of points and create the triangle-like form of communication.
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Figure 3.2: The MA movement and node localization process
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3.3.2 Information Exchange

If three different points are chosen, as in Figure 3.1, (x1, y1), (x2, y2), and (x3, y3),

then the UN located in their communication range will be able to communicate

with all of them and estimate its own location. When receiving localization infor-

mation from fewer than three different points, the UN will wait till the MA arrives

from a different point till three points of information is provided. As mentioned

earlier, our proposed model guarantees that, in most cases, each single UN will be

able to receive three different localization messages.

3.3.3 Localization Estimation

Once three different localization messages are received by a UN, it becomes ready

to start the location estimation. The accuracy of the localization estimation de-

pends on the localization technique that is used. Each UN starts calculating its

own coordinates in the area. The accuracy of each model will be determined as the

difference between the real node's location and the estimated one.

3.4 Performance Settings

Five static path planning algorithms for mobile anchor-based localization and one

random mobility model were used to assess the performance of our proposed

model. The static models that were used in this work include SCAN, Hilbert,

MAALRH, LMAT and Z-Curves, while the RWP model was used as a random

model. Two localization algorithms, WCL and WCWCL, were used to study the

ef�ciency of the implemented mobility models.

3.4.1 Parameters and Settings

We implemented the different models using the Matlab environment with 50 run

times. The network area is assumed to be a square area with a size,S, of 100 m

x 100 m. A set of 250 UNs, N, is deployed, while only one MA, M, is used. The
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resolution values indicate the relationship between the transmission range, RTx,

and the distance between every two points in each static model. This distance is

de�ned as the distance metric value, dm. Thus, the resolution is de�ned as:

R =
RTx

dm
(3.1)

For the wireless model, we used the speci�cations of a wireless node that was

equipped with a Chipcon CC1100 radio module [77], which were used in [45]. The

remaining parameters are shown in Table. 3.1.

Table 3.1: Simulation values and parameters in H-Curves

Parameters Symbol Value

Network Size ( m) S 100 � 100
Number of MAs M 1
Number of UNs N 250

Resolutions R 0.5, 0.75, 1, 1.25, 1.5, 2
Path Loss Exponent b 3.5

Power Loss at d0 (dB) PL(d0) -60
Reference Point (m) d0 1

Standard Deviation of Noise s 3, 5, 7, 9
Simulation Run 50

3.5 Evaluation

To evaluate the effectiveness of the proposed model, we considered the following

metrics, discussed below: accuracy, precision, localization ratio, path length, and

energy consumption.

3.5.1 Accuracy

Here, we used two methods to calculate the localization error of each mode: the

average localization error and the standard deviation of the localization error.

A. Average Localization Error
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As described in Section 2.2.2, the average localization error is used to analyze

the degree to which the estimated position is accurate. However, to compare

the average localization error of each mobility model in each run, we �rst ran

a test of 250 UNs with a communication range of 12.5 m, which is equivalent

to a resolution, R, of 1, s of 3, and 50 simulation runs. We also use the stan-

dard deviation of the localization error rate to see how different it is from

the average localization error rate. A low standard deviation of error values

means that a high percentage of the values are very close to the average.

Figures 3.3a and 3.4a show how the different models performed in terms of

localization error when WCL and WCWCL are used, while Figures 3.3b and

3.4b show the standard deviation of the localization error for both localiza-

tion techniques with each run time for the same localization techniques.

As shown in Figure 3.3a, our proposed model demonstrated higher esti-

mated locations with a lower error rate in most of the shown results when

the localization algorithm WCL was used. The LMAT model was the runner-

up in many cases, while competitive with the other static models, SCAN,

Hilbert and Z-Curves. However, there is a large difference in localization er-

ror between these static models and MAALRH. MAALRH showed a higher

localization error rate because of the nature of its designed path. As shown

in Figure 2.11, the UNs that are located in the corners of the deployment area

will not be able to receive enough localization information; hence, less accu-

rate positions will be estimated. The RWP demonstrated the highest localiza-

tion error rate in every single run due to its random movement that prevents

many nodes from having complete estimation information. In Figure 3.3b

when WCL was used, our proposed model showed lower standard deviation

values, which means they are closer to the average. The other static models,

except MAALRH, move up and down with each run. However, SCAN and

Hilbert showed lower values for most times in comparison to LMAT and

Z-Curves.
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(a)

(b)

Figure 3.3: Localization errors and standard deviations of all movement strategies
in WCL, ( R = 1, s = 3)
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(a)

(b)

Figure 3.4: Localization errors and standard deviations of all movement strategies
in WCWCL, ( R = 1, s = 3)
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In Figure 3.4, we repeated the same test but with the WCWCL localization

algorithm. In general, the path models were improved when this localiza-

tion algorithm is used. Fewer localization errors occurred, which means

more accurate locations were estimated. Our proposed model is in com-

petition with the LMAT model, with a small advancement for LMAT, that

is the average localization error for all 50 runs in LMAT is 0.917 m, while

in our proposed model is 1.009 m. However, a positive point is the stabil-

ity of the estimated locations in both models with different deployments of

nodes. The other static models perform well when WCWCL is used. How-

ever, an important �nding to notice here is the improvement of MAALRH

when WCWCL is used. RWP gives the poorest results even though it per-

forms better in WCWCL than the one in WCL. For the standard deviations,

as shown in Figure 3.4b, LMAT and our model offered very small deviations,

around 0.5 m from the average in most cases. The other three static models,

SCAN, Hilbert, and Z-Curves, presented better results than those from when

WCL is used. MAALRH and RWP tended to show higher standard devi-

ations than the others because of their design since they leave some nodes

unreachable.

For the average localization error, we used the parameters shown in Table.

3.1 with two changeable values, the resolution ( R) and the standard devia-

tion of noise (s).

In the �rst experiment, we ran a simulation of 250 UNs with different res-

olution values ranging from 0.5 to 2 and s = 3. Figures 3.5a and 3.6a show

the average localization error for the path models when WCL and WCWCL

are respectively used, while Figures 3.5b and 3.6b present the standard devi-

ation of errors to the corresponding resolution and errors. With both local-

ization algorithms, H-Curves and LMAT present the best results with small

differences. The other static models share similar results with the exception

of MAALRH, which performs less well than the others for the reasons that
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were discussed above. RWP demonstrates the higher localization error rate,

which means that is offers the least accurate locations. There are two main

points to notice here. First, increasing the resolution value does not necessar-

ily lead to increased accuracy as shown in the �gures. Second, the random

movement enables the RWP to perform better than the others when the res-

olution is 0.5, which means a decreased communication range. Figure 3.5b

shows the standard deviation of the localization error when different reso-

lution values of 0.5, 1, 1.5, and 2 were used with WCL and s = 3. When R

= 0.5, all models tended to offer low results in terms of standard deviation;

thus, they were closer to the average. When the R value increased, the stan-

dard deviation of error increased in general except in one case, with LMAT

when R = 1.5. However, the increase differs from one model to another. In all

experiments, LMAT and H-Curve showed better results than the others. In

WCWCL cases, as shown in Figure 3.6b, the models showed similar results

when R = 0.5. Moreover, when R = 0.5, the WCL and WCWCL results were

similar. But when R increased, both LMAT and H-Curve showed very small

values of standard deviation of error that are very close to the average local-

ization error. Indeed, when R = 1.5, our proposed model reached the best

value with less than 0.7 m variation on average.

To prove the statistical signi�cance, the CI of the localization error is also

used. A 95% of CI is chosen to test that signi�cant. Figure 3.7 shows again

the localization error while the error bars depicted in the �gure this time

illustrate the 95% con�dence interval. The results show that in most cases, the

proposed model provides a narrower CI, which implies that the improved

performance is statistically signi�cant. This is applicable on both localization

techniques of WCL and WCWCL.
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(a)

(b)

Figure 3.5: Average localization errors and standard deviation of errors with the
corresponding Resolutions in WCL
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(a)

(b)

Figure 3.6: Average localization errors and standard deviation of errors with the
corresponding Resolutions in WCWCL
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(a)

(b)

Figure 3.7: Average localization errors and the 95% con�dence interval with the
corresponding Resolutions in (a) WCL, and (b) WCWCL
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For the second experiment, in Figure 3.8 we repeat the same parameters with

a �xed resolution value ( R) of 1 and a different standard deviation of noise

(s). Figure 3.8a shows the average localization error rate for the mobility

models with a different standard deviation of noise (s) when the WCL al-

gorithm is applied, and Figure 3.8b shows the same as when WCWCL is

applied. In the �rst algorithm, our proposed model, the H-Curve, outper-

formed the other models with the lowest localization error rate, which re-

sulted in the most accurate estimates with less than 3.5 m in all runs regard-

less of the change of the standard deviation of noise (s) as shown in Figure

3.8a. LMAT offered similar results and was also unaffected by the change in

standard deviation of noise (s). The other static models, including SCAN,

Hilbert and Z-Curves, offered similar localization error values of around

3.5 m. MAALRH again demonstrated less accurate estimates than the other

static models, while RWP offered the least accurate estimates. In WCWCL in

Figure 3.8b, H-Curve and LMAT showed a small localization error of about 1

m only, with a small advantage of LMAT. The positive point here is that using

WCWCL helps MAALRH to improve its estimation accuracy in comparison

to the WCL algorithm. With the change of standard deviation of noise (s),

the Z-Curve offers reduced localization accuracy when WCWCL is used as

compared with WCL.
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(a)

(b)

Figure 3.8: Average localization error of all movement strategies vs the standard
deviation of noise (s) in (a) WCL, and (b) WCWCL
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3.5.2 Precision

The localization precision metric is de�ned as the ratio of how many speci�c accu-

racy values are reached [3]. We considered four localization error values that were

< 1.5 m, < 3 m, < 4.5 m and < 6 m. With each localization error value, we calcu-

lated the ratio of how many values were achieved. Figure 3.9 shows the result of

the precision when R is 1 and s is 3.

As in Figure 3.9a, none of the models achieved a localization error of < 1.5 m

when the WCL algorithm was used. However, a small improvement in the H-

Curve and LMAT models was found when < 3 m was considered. All of the static

models achieved the highest precision ratio when a localization ratio of 4.5 m was

used, except MAALRH, which still showed a precision ratio close to 1. RWP was

not able to reach the full ratio except in the case where the localization error rate

was around 6 m. In WCWCL, as in Figure 3.9b, the highest precision ratio was

reached for both H-Curve and LMAT when the localization error was 1.5 m or

less. Compared to the previous localization algorithm, both SCAN and Hilbert

achieved better results with some values < 1.5 m. However, a large improve-

ment occurred when considering 3 m of localization error, where all static models

reached the highest precision ratio. Using WCWCL helped RWP to improve its

precision when < 4.5m and < 6 m are considered.

3.5.3 Localization Ratio

In this scenario, we used 250 UNs and different resolutions with a �xed value of

s of 3. Since the localization ratio is almost the same in both WCL and WCWCL,

only one of them is shown. Figure 3.10 presents the localization ratio for the im-

plemented path models.

When WCL and WCWCL were used with R = 0.5, none of the mobility models

successfully localized all of the UNs. However, Z-Curves and our proposed model

reached a high localization ratio with about 80% and more. The point here is that,

while Z-Curves perform less well than the other static models, except MAALRH,
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(a)

(b)

Figure 3.9: Precision ratio of all movement strategies with the corresponding local-
ization error in (a) WCL, and (b) WCWCL
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Figure 3.10: Localization ratio of all movement strategies in WCL and WCWCL

in some experiments shown above, it does well here with the highest localization

ratio when R = 0.5. Increasing the resolution increases the localization ratio. When

R = 1, all models provided fully localized nodes except MAALRH, which was un-

able to localize the UNs in the corners of the area, and RWP because its movement

is unpredictable. Thus, RWP will never be able to assist all UNs to estimate their

locations even if the resolution is doubled to 2. Unlike RWP, MAALRH is able to

localize almost all nodes when resolution is 1.5.

3.5.4 Path Length

Although path length does not affect the localization error rate or the number of

localized nodes directly, it helps to determine the time needed for the localization

process to be completed and may affect other critical metrics such as energy con-

sumption. We calculated the path length according to their design and based on

two variables, the network size, S, and the distance between each two points, dm.
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In the following equations, we show the path length calculation for each static mo-

bility model. Eq. 3.2 shows the path length calculation for SCAN while Eq. 3.3

shows the path length of Hilbert. Eq. 3.4, Eq. 3.5, and Eq. 3.6, show the path

length for LMAT, MAALRH and Z-Curves, respectively. In Eq. 3.7, our H-Curve's

path length is shown.

LSCAN =
S2

dm
� dm (3.2)

LHilbert =
S2

dm
(3.3)

LLMAT =
S2

dm
+

S
5

� dm (3.4)

LMAALRH =
3
4

�
S2

dm
+

3
2

S+ 4dm (3.5)

LZ =

"
� 5

8
� 43�

� 1

#

dm+

"
� 5

8
� 43�

#

�
p

2dm (3.6)

LH =
S2

dm
+ 18dm (3.7)

We set the RWP's number of anchors to be equivalent to our model's in order

to get comparable results. Figure 3.11 shows the path length in m for all mobility

models.
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Figure 3.11: The path length for the different mobility models

As shown, RWP travels a long distance around the network with no particular

direction with more than 3700 m. The other static models travel shorter distances in

contrast to RWP, with 787.5 m for SCAN, and 800 m for both Hilbert and MAALRH.

Z-Curves takes somewhat longer with about 912 m of traveling. LMAT and H-

Curves take longer trips than the other static models. However, H-Curves gives

better results than LMAT with only 1025 m of traveling distance as compared to

1050m in LMAT.

3.5.5 Energy Consumption

For the energy consumption model in this work, we used a similar model to the

one used in [78]. We used the speci�cations of the low-power wireless mote CC1100

[77]. Because the energy consumption difference in both WCL and WCWCL is in-

signi�cant, only the consumption in WCL is shown.

A. Energy consumption by UNs
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To calculate the energy consumption for the regular nodes, we need �rst to

calculate the energy consumed per receiving one bit value, Erec, as

Erec = Prec �
Psize

datarate
(3.8)

Where Prec and Psizeare the value of the received power and the packet size,

respectively.

By multiplying this energy into the average number of received messages,

M rec, we can get the energy consumption for the deployed nodes as

Enodes= M rec � Erec (3.9)

According to CC1100 speci�cations, the value of the received power Prec is

15.5mA, and the data rate is half of the baud equivalent to 125 kbps. We as-

sume a packet size (Psize) of 160 bits, which is smaller than that assumed in

[11].

Figure 3.12a shows the average energy consumption per node for each mo-

bile model. Since the calculation here depends on the total energy spent in

localized nodes only, RWP seems to consume less energy than the others.

MAALRH comes next in total energy consumption in localized nodes with

less than 10mJ when R = 0.5 is used and less than 14 whenR is 1. How-

ever, both RWP and MAALRH consumption increase when R increases. The

energy consumption for the other static models, including H-Curves, was

approximately 14.5 mJ, except for a small variation when R = 0.5. Overall,

the energy consumption of the UNs is not signi�cant. However, taking into

account a larger number of nodes will raise the energy consumption gradu-

ally.

B. Energy Consumption by MAs
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(a)

(b)

Figure 3.12: Energy consumption for all movement strategies in: (a) energy con-
sumption in all localized nodes, (b) energy consumption by the anchor in each
model
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For the MA, the energy consumption can be derived from two parts, the en-

ergy spent in the connection process with the deployed nodes, Esend, and the

energy needed for movement around the area, Emovement. Hence, the total

energy consumption of the MA is

Eanchor= Esend+ Emovement (3.10)

The energy required for messages to be exchanged between the MA and the

UNs is calculated as

Esend= M trans � Etrans (3.11)

Where M trans and Etrans are the number of transmitted messages and the en-

ergy consumption for transmitting each message, respectively. This value,

Etrans, is calculated using the value of transmitting power, Ptrans, which is

16.5mA in CC100, multiplied by the packet size over the data rate.

Etrans = Ptrans �
Psize

datarate
(3.12)

The second part, the energy needed for movement around the area, is calcu-

lated as

Emovement= Lpath � Epm (3.13)

Where Lpath is the path length for each mobility model, and Epm is the energy

consumption for moving one unit of distance ( m here). We assume that the

energy consumption for traveling per 1 m is 2 J [78,79].

Figure 3.12b presents the total energy consumption by the anchor in each

model. Because most energy is spent in traveling, the energy spent in com-

munication goes unnoticed. The longer the traveling distance, the greater
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the energy consumed. RWP spends a large amount of energy in compari-

son to the others with more than 7500 mJ consumed. This is because RWP

travels about 3765 m in its journey around the network. The static models

seem to be divided into three levels based initially on their path length and,

thus, their energy consumption. SCAN, Hilbert, and MAALRH are similar to

each other with less than 1600mJ consumed, while Z-Curves uses more en-

ergy at approximately 1822 mJconsumed. Our model, H-Curves, and LMAT

both consume approximately 2000 mJ for their anchor node movement. To

create a larger picture regarding the energy consumption, we chose to calcu-

late the average energy consumption of localized nodes. The average energy

consumption for each mobility model is estimated as

E =
Enodes+ Eanchor

RN
(3.14)

Where RN is the number of localized nodes.

C. Average Energy Consumption by Localized Nodes

Figure 3.13 shows the average energy consumption by localized nodes in

each model. For the total amount of energy spent by both sensors and MAs,

RWP is the highest energy consumer even though this energy consumption

decreases by increasing R. For the other static models, the distinction be-

tween them is very small and insigni�cant. Consequently, and taking into

account the other metrics of our model, it is not affected by energy consump-

tion. Figure 3.14 shows the energy consumption of the UNs to the localiza-

tion ratio in each model when R = 1 and s = 3.

3.6 The Trade-Off between the Localization and the Designed Mobile Path

Impact of path models on localization in WSNs has been discussed in a number

of studies including [55, 65, 78]. They show that the performance of a localization
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Figure 3.13: the average energy consumption per the number of localized nodes

model will be affected by the designed mobility path including the accuracy of the

localization and the localization ratio. However, in this study and based on the

obtained results, we observe that there is also an impact of the applied localization

model on the performance when a path planning model is used. This means that

the results will vary when different localization techniques are used even though

the same mobility model is used. Let us take another look, for example, to Figures

3.3a and 3.4a. In Figure 3.3a, H-Curves model gives better results than the other

models with localization errors ranging between 3 to 3.5 m when WCL is used.

However, when WCWCL is used, the localization errors will decrease to values

around 1 m as shown in Figure 3.4a. WCWCL provides almost stable results in

all the 50 runs. Another point here is that in some cases the localization technique

used may give an advantage to one path model over another. For example, in

Figure 3.8a, Z-Curves mobility model offers better results when WCL is used in

comparison to MAALRH, however, MAALRH performs better when WCWCL is
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Figure 3.14: Energy consumption of the UNs to the localization ratio in each model
(R = 1, s = 3)

used as presented in Figure 3.8b. The same is true of of the precision ratio, and

localization ratio as well. There is no impact on the mobile path length since the

mobile path is not changed and remains static. To sum up, the trade-off between

the localization and the designed mobile path should be considered to determine

which technique is more suitable for the designed path.

3.7 Conclusion

In this chapter, we introduced a new path planning model, called H-Curves, for

mobility-assisted localization in WSNs. Our model guarantees that all UNs can

estimate their location with high accuracy and precision, and provides good cov-

erage and low energy consumption. The model is static, which means the MA will

not change its path during its movement. The proposed model guarantees that a

large portion of UNs are able to estimate their locations based on the information
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provided by the MA. This guarantee comes with high accuracy that is led by a

small localization estimation error. Compared with other random and static mod-

els, our model shows superior result in metrics such as precision, which refers to

the ratio of how many times a speci�c accuracy value is achieved. As compared

to other models, H-Curves offers high precision ratio regardless of the localization

error in both WCL and WCWCL localization techniques. Coverage is used to en-

sure the number of localized nodes. Again, regardless of the resolution values, R,

H-Curves shows competitive results. Finally, we studied energy consumption in

this work. We assume that energy consumption occurs on both sides, in the nodes

and the MA. Our model shows energy consumption similar to other models while

attaining a better ratio of localized nodes. Indeed, our model consumes less energy

than LMAT.



Chapter 4

Three-Dimensional Path Planning Model for Mobile

Anchor-Assisted Localization in Wireless Sensor Networks

4.1 Preface

In this chapter, we propose a new path planning model for mobile anchor-assisted

localization in WSNs where node deployment occurs in 3D areas. Our proposed

static model shows higher localization estimation accuracy, and thus lower local-

ization error in comparison to other similar models.

In many real-world applications, sensors are distributed on planar surfaces

where three-dimensional (3D) planes are observed [34,35]. Examples of these sur-

faces as stated in Section 2.2.1, involve indoor uses, such as �oors, walls, tables and

doors, and outdoor purposes such as mountains, valleys, hills, and forests [34,35].

Similar to [80], some of the potential applications of our proposed model can be

shown as other sensor network tasks. For example, our model can be used to

draw a map of the nodes' location to help in 3D geographic routing or to enhance

network connectivity by providing nodes with their neighbours' locations.

Section 4.2 presents the network model and assumptions, while section 4.3

shows our proposed model. Section 4.4 shows in detail the performance metrics

while Section 4.5 evaluation and the results. Finally, section 4.6 includes future

work and the conclusion.

4.2 Network Model and Assumptions

The network area is represented as a three-dimensional �eld with a side length,

S in m. A uniformly distributed set of UNs, N, are spread around the network.

79
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Initially, sensor nodes are not location aware. The UNs are assumed to remain

static and do not change their location after the �rst distribution. Each network

contains a �xed number of anchors, M. All anchors can determine their location

within the network area. Each MA is able to move freely, in straight lines, in any

direction in the network following its path model. For simplicity, we assume that

the network area does not contain obstacles that could restrict anchor mobility. The

UNs and anchors can connect to each other only if they are located within the same

transmission range, RTx. The UNs cannot share anchor locations with each other.

The MAs stop frequently within a �xed distance between each two points, de�ned

asdm. The MAs are not energy constrained.

4.3 Three-Dimensional Path Planning Models for Mobile Anchor-Assisted

Localization

This work is intended to design a 3D path planning model for mobility-assisted

localization in WSNs. The concept of this work is derived from the 2D path plan-

ning for mobile anchor-assisted localization in [9]. Our model consists of several

layers L equals to

L =
S

dm
(4.1)

where S is the side length of the network and dm is the distance between each

two points (or layers). To overcome the problem of collinearity, we propose our

model to let the MA follow an H-shape with a winding path each time. In 2D

scenarios, at least three different points are needed to estimate a node's location;

however, in 3D scenarios, at least four points are needed for the estimation. Figure

4.1 shows the proposed model in one layer as in Figure 4.1a and full layers as in

Figure 4.1b. For a better representation, we extend the distance between layers to

be 2dm in Figure 4.1.

The proposed model works in three simple stages: the mobility movement

stage, the localization information exchange stage, and the localization estimation
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(a)

(b)

Figure 4.1: The proposed mobile path model in (a) one layer, and (b) full layers
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stage.

4.3.1 Mobility movement

In this stage, the MA leaves the starting point at a corner of the network and moves

in one direction, say y� coordinate. In each step, the MA will make one movement

with a travelling distance dm. The value of dm remains �xed all the time. After this

step, the MA will make another turn toward another direction, say x� coordinate.

The same procedure will be repeated until reaching the border of the network,

which means a row of points is completed. It is then time for another row, and so

the MA will take a step to form another row, toward the y � coordinatein this ex-

ample. The MA will go back in the reverse direction of x � coordinate, however, it

will take 0.5 � dm only; this is important to prevent the points from being collinear.

The same movement will be repeated until reaching the last corner of the deploy-

ment area. Here, the MA will move to form another layer by increasing the third

coordinate, z � coordinate, by dm. The movement will be taken in the reverse direc-

tion until reaching the starting point of the x and y � coordinateswith the current

z � coordinate. The same procedure will be done until reaching a set of layers that

is equal to L.

4.3.2 Information Exchange

In 2D scenarios, when three different points are known, the UN can estimate its

own location [9]. However, in 3D environments, the UN can estimate its location

when four different points are reached. Thus, in each movement, the UN in the

communication range of the MA exchanges the location information, stores it, and

waits for the next localization information.
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4.3.3 Localization estimation

As mentioned above, once four different localization messages are received by a

UN, it can start estimating its own location in accordance to the localization tech-

nique used.

The procedure is summarized in the following Algorithm 1.

Algorithm 1 MA movement and UNode localization

1: procedure N ODE LOCALIZATION

2: Nodes deployment
3: MA movement
4: UNode receives localization message
5: if ReceivedMessages< 4 then
6: UNode keeps waiting
7: go back to 3

8: Localization estimation
9: if MAmovement6= lastpointthen

10: go back to 4

11: Movement ends
12: Localization done

4.4 Performance Setting

To evaluate the performance of our proposed model, we implemented it along

with three other models: 3D-RWP, layered-SCAN, and 3D-Hilbert. For fair com-

parison, two localization techniques were used: the weighted centroid localization

(WCL) algorithm [49] and the Weight-Compensated Weighted Centroid Localiza-

tion (WCWCL) algorithm [45].

For simulation, we used the Matlab environment with 50 run times. A set of

250 UNs, N, is assumed to be deployed in a 3D area with a side length, S, of

100 m � 100 m � 100 m. A single MA, M, is used to traverse the network and

exchanges its location with other nodes. Different resolution values, R, are used.

The resolution value, R, represents the relation between the communication range,

RTx and the distance between every two points, the dm of each path. It can be
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Table 4.1: Simulation values and parameters in 3D H-Curves

Parameters Symbol Value

Network Side Length ( m) S 100
Number of MAs M 1
Number of UN N 250

Resolutions R 0.5, 0.75, 1, 1.25, 1.5, 2
Path Loss Exponent b 3.5

Power Loss at d0 (dB) PL(d0) -60
Reference Point (m) d0 1

Standard Deviation of Noise s 3
Simulation Run 50

derived as

R =
RTx

dm
(4.2)

We used a realistic wireless channel by applying the speci�cations of a wireless

node equipped with a Chipcon CC1100 radio module [77]. The rest of the parame-

ters are shown in Table 4.1. The simulation tool and parameters were chosen to be

consistent with other similar works.

4.5 Evaluation Results

We evaluate the path planning model's performance in two metrics: the average

localization error, and the standard deviation errors. All results are based on the

average of the simulation run, 50 times.

A. Average Localization Error

In the three dimensional scenarios, the node localization error is estimated as

error( i) =
q

(xi � ui )2 + ( yi � vi )2 + ( zi � wi )2 (4.3)

Where (xi , yi , zi) are the real coordinates of the node i, and (ui , vi , wi) are the
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estimated coordinates of the same nodei.

The average localization error, erroravg, will be the same as before and is cal-

culated as:

erroravg =
� N

å
i= 1

error( i)
�
/ RN (4.4)

Figure 4.2a shows the average localization errors and the corresponding res-

olutions in all models when WCL is used. All path models offer close lo-

calization errors between 4 and 5 m when R = 0.5; however, this distinc-

tion between the different models increases when the resolution increases.

Our proposed model offers lower localization error when R = 0.75 to 2. Our

model guarantees that all nodes can receive the localization information and

can solve the collinearity problem. The nature of movement in RWP increases

the localization error in 3D-RWP since there is no guarantee that all nodes can

receive the localization information. Layered-SCAN and 3D-Hilbert perform

similarly when WCL is used. When WCWCL is used, as shown in Figure

4.2b, better localization estimation in all path models is achieved except in

the case where R = 0.5. Layered-SCAN and 3D-Hilbert perform similarly

again, however, the impact of collinearity in Layered-SCAN as in [75], is

shown here. 3D-Hilbert was proposed to solve the collinearity problem in

localization, but the improvement is relatively small. In all other cases, our

proposed model shows superior results over the others, particularly when

our model reaches the lowest point of localization error of 1.17 m when R

= 1.25. The other models act similarly to the ones in WCL, but with lower

errors.

B. Standard Deviation of the Localization Error

The standard deviation of the localization error indicates how close values
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(a)

(b)

Figure 4.2: Average localization errors with standard deviation and the corre-
sponding Resolutions in all models in (a) WCL, and (b) WCWCL
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are to the average error. The standard deviation of the localization error rate

is calculated as

errorstd =

s
å N

i= 1(error( i) � erroravg)2

RN
(4.5)

Where N is the number of UNs, error( i) is the localization error for node

i, and erroravg is the average localization error. Figures 4.2a and 4.2b show

the average standard deviation errors and the corresponding resolutions in

all models in which WCL and WCWCL are used. In both localization tech-

niques, our model provides the lowest standard deviation values, which in-

dicates that they are closer to the average. Indeed, in WCWCL, our proposed

model shows an ef�cient performance with a standard deviation of 0.5 m

only.

C. Con�dence Interval of the Localization Error

A 95% of CI is chosen to prove the statistical signi�cance. Figure 4.3, in the

following page, shows the localization error while the error bars depicted

in the �gure this time illustrate the 95% con�dence interval. The presented

results indicate that the 3D-H-Curves model provides a narrower CI in most

cases, which means that the improved performance is statistically signi�cant.

This is applicable on both localization techniques of WCL and WCWCL.
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(a)

(b)

Figure 4.3: Average localization errors and the 95% con�dence interval with the
corresponding Resolutions in (a) WCL, and (b) WCWCL
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4.6 Future work and Conclusion

In this chapter, we presented our proposed 3D path planning model for mobile

anchor-assisted localization in WSNs. Our proposed model shows lower local-

ization error than some existing works, and thus has higher accurate estimation.

For future works, we will extend our work to evaluate more of the current 2D

models by testing their ability to work in 3D environments. Moreover, more eval-

uation perspectives will be added, including precision, localization ratio, energy

consumption and path length.



Chapter 5

Dynamic Fuzzy-Logic Based Path Planning for Mobility-Assisted

Localization in Wireless Sensor Networks

5.1 Preface

In this chapter, we present a novel dynamic Fuzzy-Logic based Path Planning for

mobility-assisted Localization in WSNs (FLPPL) that applies various criteria for

the movement decision to form the path of the MA. The novelty of this model

lies in employing multiple individual inputs in a fuzzy-logic approach for path

planning that are important to minimizing the localization error and maximizing

the localization ratio. By using a fuzzy-logic, a balanced movement path will be

designed in order to achieve the objectives of the process and taking into account

the limited movement of the MA. To the best of our knowledge, we are the �rst

to use a fuzzy-logic based model in path planning for localization in WSNs. The

proposed model offers superior results in many metrics in comparison to existing

models.

Our contribution lies on designing a model for mobility-assisted localization in

WSNs that:

1. For the �rst time, is formed based on multiple inputs. Using fuzzy-logic

for processing the various inputs helps to balance the movement decision,

which also helps to improve the localization ratio and the accuracy of the

localization process.

2. Ensures that a maximum number of the UNs in the network are able to get

the localization information when the distance of movement increases, while

90
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considering the limitation of the MA movement. By doing so, a larger quan-

tity of UNs can estimate their own positions in comparison to other models.

3. Offers a competitive localization error. Implementing both the RSSI (Re-

ceived Signal Strength Indicator) and the distance metrics in a fuzzy logic

approach helps to improve the accuracy of the localization.

4. Uses the precision metric for a better evaluation. Precision represents how

many speci�c localization error values are achieved as in [9]. The proposed

model offers very high precision in comparison to the other existing models.

This chapter is organized as follows. In Section 5.2, a brief review on Fuzzy-

logic (FL) and some of the existing FL's studies in WSNs. Section 5.3 shows the

assumption for the system model. Section 5.4 presents our proposed model start-

ing with an analysis of the constraints and the objectives, then shows our proposed

FL system in details, and �nally describe the localization process. In Section 5.5,

we explain the simulation and performance settings, and discuss the evaluation

results in Section 5.6. Section 5.7, discusses the potential extension of the current

model and the future work as well as the limitations of the proposed work. Then,

the conclusion part in Section 5.8 is provided outlining the future works as well.

5.2 Fuzzy Logic in WSNs

Since its introduction by Zadeh in the 1960s, Fuzzy Logic (FL) has gained much

attention due to its ease of implementation and simplicity [81]. The applications

of FL have grown signi�cantly. FL has been the main tool in many protocols and

models in WSNs. For example, FL was used to enhance the networks lifetime as in

[82–84]. Another usage of FL in WSNs was introduced by Mhemed et al., in [85],

to propose a novel scheme, the Fuzzy Logic Cluster Formation Protocol (FLCFP),

that uses Fuzzy Logic Inference System (FIS) in the cluster formation process. The

work succeeded in choosing a balanced cluster head (CH) in each cluster and pro-

vides a competitive lifetime in comparison to other cluster formation models such
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as LEACH. Other similar works using FL are presented in [86–89]. A novel model

of implementing FL to dynamically control the traf�c lights using WSNs is pro-

posed in [90]. It employs multiple fuzzy-logic controllers for a real-time traf�c

monitoring using WSNs. Moreover, FL was used in several data routing proto-

cols in WSNs including those in [91–94]. However, to our knowledge, no study

of using FL in path planning for mobility-assisted localization in WSNs has been

proposed. Therefore, we introduce our FLPPL model.

Simply, the concept behind it is to smooth the classical Boolean logic of True (1

or yes) and False (0 or No) to a partial value located between these values coming

in a term of the degree of membership [85]. Such degree is determined based on

multiple inputs, a decision function and one or more output functions. The set of

inputs will be tested and evaluated together according to the applied set of rules.

Rules works as a medium for the logical relationship between the inputs and the

outputs. Thus, the results of the rules are combined and defuzzi�ed in order to

produce the degree of the �nal output [81]. Figure 5.1 depicts the generic structure

of the Fuzzy-logic system as illustrated in [81].

Figure 5.1: Fuzzy-logic system structure
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5.3 System Model and Assumptions

The following features are assumed to form the system model:

1. A two-dimensional square network. The area size of the network is denoted

asS in m2.

2. A collection of UNs, are distributed randomly around the network. The num-

ber of UNs is denoted as N.

3. Initially, all UNs are not location-aware.

4. The deployed nodes are stationary, thus, no change to their location after

deployment.

5. Each sensor node has a stable communication range ofRTx in m.

6. The MA can determine its own position at any point of the network area. It

is able to travel freely around the entire network in straight directions. The

number of MAs is denoted as M.

7. For simplicity, no obstacles in the deployment area are considered.

8. The movement distance of the MA is limited by the value of the maximum

distance to travel, dmax, where the MA's movement cannot exceed that value.

9. The MA stops frequently to provide nodes with information containing its

current position and continue moving. Each stopping point is called a local-

ization point.

10. Each MA and UN can contact each other only if their locations are within the

communication range RTx.

11. Once a UN receives any three different locations information, it will be able

to estimate its own location using the applied localization algorithm.
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12. Each node that succeeds in estimating its location, will be converted from a

UN to a reference node, RN. Each RN can share its location with the other

nodes, helping them to estimate their own locations.

5.4 Proposed Model

5.4.1 Constraints and Objectives Analysis

The main objective of the designed model is minimizing the localization error

while maximizing the localization ratio. Similar to most path planning models,

a number of constraints are considered in planning the MA movement as follows.

First, every visited localization point is unique; this means the MA cannot visit

a localization point more than once. Second, in order to avoid the collinearity of

localization points, the optimization requires that every three consecutive localiza-

tion points are not collinear. In addition, and as in [55, 73], another constraint is

considered in designing this model that the movement distance is limited, which

therefore means MA cannot exceed the maximum traveling distance. These con-

straints may be broken in only one case where the MA is trapped in a corner or a

border of the network. Two objective functions are to be optimized, the minimum

average localization error and the maximum localization ratio. They are respec-

tively represented in the following formulas

Minimize Erroravg (5.1)

Maximize RN (5.2)

5.4.2 Fuzzy-Logic Based Movement Decision

The �rst step in path planning starts with dividing the area of interest into a set of

symmetric virtual hexagons. The MA is supposed to travel from the center of one
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hexagon to one corner of the same hexagon and the reverse procedure is applied in

the next movement. Hexagonal-based movement has been proposed in a number

of recent works including [69, 73, 95]. Similar to [73], the hexagons are formed

based on the transmission range of RTx, where the side length of each hexagon is

equal to RTx/
p

3 m. Figure 5.2 shows an example of the virtual hexagons forms in

our system.

Figure 5.2: The hexagonal network system model of FLPPL (Fuzzy-Logic based
Path Planning for mobility-assisted Localization

The movement of MA from one point (either the center or a corner) to another

point will be determined in a real-time approach using an FL system. In such

system, three inputs will be used namely the Received Signal Strength Indicator

(RSSI) level, the number of neighbours, and the distance to each neighbour. These

inputs will be measured from the MA's current location. The Mamdani method

was used as the main tool to represent the fuzzy system. Mamdani is considered

to be intuitive, widespread accepted and well suited to human input [81]. Table
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5.1 shows the three input functions along with their membership functions.

Table 5.1: Input functions in FLPPL

Input Membership Function

RSSI Level Weak Medium Strong
Number of Neighbours Low Medium High

Distance to Each Neighbour Near Medium Far

RSSI input measures the strength of the signal of all UNs located within the

range of the current location of MA. A scale of � 100 dBm to 0 dBm is used in

this model, where the closer the value to 0, the stronger the signal is [96]. The

RSSI membership function used in this model is close to the one in [97]. All UNs

within the range of the MA will exchange their neighbour table information with

the MA. This table includes the node id, the number of neighbours, the neighbour

ids, the RSSI strength and the localization status, whether localized (1) or not (0).

An example of this table is shown in the following Table 5.2.

Table 5.2: Node's Neighbours Table in FLLPL

N_ID Type Nbrs_# Nbrs_IDs Nbrs_Types Nbrs_RSSI

20 0 3 48, 147, 226 0, 0, 0 � 89.92,� 57.91,� 82.44

In the second input, and from its current location, the MA contacts each UN

located within its range. Each UN exchanges its neighbours list and the MA eval-

uates them based on the number of neighbours. A higher chance will be given to

the UN with higher number of neighbours. This is meant to reach the maximum

number of UNs by considering the ability of each nodes to share its information to

as much neighbours as possible. In the third input, although the locations of both

the MA and the UN are required to calculate the distance between each of them,

it is still possible to estimate using the RSSI. The closer the distance is, the higher

chance is given. Considering the module in [45] and assuming d0 = 1, the distance

extracted from the RSSI values is estimated as
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d = 10(� RSSI+ PL(d0)+ Na)/ (10� b) (5.3)

where PL(d0) is the power loss at the reference point (d0) in dB, Na is the zero-

mean Gaussian random variable with a standard deviation a and b is a constant

path loss exponent.

Two membership functions were chosen to present our parameters, Triangular

and Trapezoidal. They are simple, direct and easy to apply in many applications

[81, 98]. Simply, triangular membership function is a collection of three points

forming a triangle. It is represented using the following equation

mA1(x) =

8
>>>>>>>>><

>>>>>>>>>:

0 x � 0

x � a1
b1 � a1

a1 � x � b1

c1 � x
c1 � b1

b1 � x � c1

0 c1 � x

(5.4)

Trapezoidal membership function is like the Triangular function with a �at top.

It is formed as

mA2(x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

0 x � a2

x � a2
b2 � a2

a2 � x � b2

1 b2 � x � c2

d2 � x
d2 � c2

c2 � x � d2

0 d2 � x

(5.5)

As in [85, 86], we used the triangular function for the middle variables while

the trapezoidal member function was used for the boundary variables. The values

used in both the Triangular and the Trapezoidal membership functions are shown

in the following Table 5.3.
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Table 5.3: The values of membership functions in FLPPL

RSSI Neighbours Distance

Weak: [� 102 � 100 � 90 � 70] Low: [ � 0.5 0 6 8] Near: [� 0.25 0 3.125 6.25]
Medium: [ � 90 � 70 � 30] Medium: [6 8 12] Medium: [3.125 6.25 9.375]

Strong: [� 70 0 2] High: [8 12 25 25.5] Far: [6.25 9.375 12.5 12.75]

Figure 5.3 illustrates the inputs functions and degrees of relationship of FLPPL,

Figure 5.3a the RSSI level input, Figure 5.3b the number of neighbours input and

Figure 5.3c the distance to each neighbour input.

The correlations between each two input functions and the output can be rep-

resented as a three-dimensional curve. The following surface plots in Figure 5.4,

depict the correlations between the fuzzy inputs in our FLPPL approach, starting

with the Distance to RSSI as in Figure 5.4a, Distance to Neighbours in Figure 5.4b

and Neighbours to RSSI in Figure 5.4c.

The system output function in our model is identi�ed as the chance (probabil-

ity). The chance represents the probability of the MA's next point from the current

location. The MA will move to the closest point in distance to the higher chance

node. For example, consider the three nodes (N_ids = 1, 2 and 3) shown in Fig-

ure 5.5. The MA's current location is in the center of the hexagon, which by de-

fault means that the next movement will be to a corner of the hexagon. Now, the

MA will contact each node, exchange their information and analyze it. Using the

fuzzy-logic model, the MA will estimate each node's chance considering the three

membership function inputs. While still taking into account the rules of constraints

described in Section 5.4.1, the MA will move to the closest point (in green) to the

highest chance node (N_id = 2 in the example).

Nine output degrees are de�ned in this system similar to those used in [85].

They range from (very weak) as the lowest degree to (very strong) as the highest

one. Table 5.4 shows the output function along with the nine membership func-

tions.
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(a)

(b)

(c)

Figure 5.3: Inputs functions and degrees of relationship of FLPPL, ( a) the RSSI level
input, ( b) the number of neighbours input and ( c) the distance to each neighbour
input.
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(a)

(b)

(c)

Figure 5.4: Relationship among fuzzy inputs of FLPPL, ( a) distance vs. RSSI, (b)
Distance vs. Number of Neighbours, ( c) Number of Neighbours vs. RSSI. The
darker the color is, the lower the chance is.
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Figure 5.5: Example of selecting the next movement of the MA

Table 5.4: Output functions in FLPPL

Output Membership Functions

Very Weak
Weak

Little Weak
Little Medium

Chance Medium
High Medium
Little Strong

Strong
Very Strong

Any fuzzy-logic system depends on the IF-Then rule statements that are used

to formulate the conversion from the input functions to the output one. A simple
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fuzzy IF-Then rule is stated as

i f x is A, then y is B (5.6)

where A and B are the linguistic values de�ned by the fuzzy sets on the ranges

x and y [81]. The following Table 5.5 de�nes the fuzzy if-then rules.

Table 5.5: The Fuzzy rules of if-then in FLPPL

RSSI Neighbours Distance Chance

Weak Low Far Very Weak
Weak Low Medium Weak
Weak Low Near Little Weak
Weak Medium Far Weak
Weak Medium Medium Little Weak
Weak Medium Near Little Medium
Weak High Far Little Weak
Weak High Medium Little Medium
Weak High Near Medium

Medium Low Far Little Weak
Medium Low Medium Little Medium
Medium Low Near Medium
Medium Medium Far Little Medium
Medium Medium Medium Medium
Medium Medium Near High Medium
Medium High Far Medium
Medium High Medium High Medium
Medium High Near Little Strong
Strong Low Far Medium
Strong Low Medium High Medium
Strong Low Near Little Strong
Strong Medium Far High Medium
Strong Medium Medium Little Strong
Strong Medium Near Strong
Strong High Far Little Strong
Strong High Medium Strong
Strong High Near Very Strong



103

Figure 5.6 plots the degree of Membership, in the range of 0 to 1, versus the

chance values of FLPPL.

Figure 5.6: Output membership function of FLPPL

Therefore, the complete system model of FLPPL consists of three inputs with

three membership functions and nine degrees of chance as shown in Figure 5.7.

Figure 5.7: The system scheme of FLPPL
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5.4.3 Mobility Movement and Localization Process

The mobility movement and localization process are conducted simultaneously in

two sides, the UN's side and the MA's side as follows.

A. Procedure in UN's Side

(a) The UNs will be deployed randomly.

(b) Each node will communicate with its neighbours' node that are located

within its communication range, collecting their information and adding

them to its neighbours table was shown above in Table 5.2.

(c) When the MA arrives at each node, the node will exchange its table with

the MA.

(d) When three different locations are received by each UN, it will be able

to calculate its own location.

B. Procedure on MA Side

(a) The MA will start its journey from a starting point, the starting point can

be set in advanced or random.

(b) The MA has a maximum distance value.

(c) The �rst three movements will be random in any direction.

(d) After each movement, the MA will stop and communicate with all nodes

in its communications range, providing them with its current position.

(e) It will update its routing table, which has the following information:

i. Node IDs

ii. Node's status

iii. Number of neighbours

iv. Neighbours IDs

v. Neighbours' status
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vi. RSSI value

(f) The MA will evaluate all nodes and elect one based on the previous

chance table.

(g) The next point of the hexagonal will be the shortest point in distance to

the elected node.

(h) The MA will travel to that point and provide its current position infor-

mation.

(i) TheMA keeps moving till reaching the maximum distance, dmax.

The �owchart in Figure 5.8 presents the localization procedure done on the

UN's side, while the �owchart in Figure 5.9 presents the localization procedure

done in the MA's side.
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Initialization
UN communicates
with its neighbours

UN updates its
neighbours table

3 different
RNs in the

table

Wait
MA arrives

to UN's
range

UN exchanges its
table with MA

3 different
locations
received

UN estimate
its location,

UN turns to RN

End

No

Yes

Yes

No

Yes

No

Figure 5.8: The node localization process in the UN.
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Initialization

MA moves randomly

MA stops, provides
nodes within its
range with its

current location

Update routing table

3 random
movements

reached

Evaluate all nodes
Elect one, based on

the chance table

Pick closest point
to elected node

MA moves to
selected point

Maximum
distance
reached?

End

Yes

No

Yes

No

Figure 5.9: The movement and node localization process in the MA.
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5.5 Performance Settings

Three static path planning algorithms and one dynamic model were implemented

to evaluate the performance of FLPPL. SCAN, LMAT and Z-Curves are the static

models while the NLA_MB model was used as a dynamic algorithm.

The two localization algorithms, Weighted Centroid Localization (WCL) [49]

and Weight-Compensated Weighted Centroid Localization (WCWCL) [45], were

implemented to analyze the effectiveness of the mobility models implemented.

Figure 5.10 shows an enlarged example of the FLPPL mobility movement and the

estimation of location of the nodes deployment in the WCL algorithm.

Figure 5.10: An example of the FLPPL mobility movement and the estimation of
location of the nodes deployment in WCL

We evaluated the performance of the proposed FLPPL model using MATLAB

environment and compared it with the other implemented models of SCAN, LMAT,

Z_Curve and NLA_MB in terms of localization accuracy, localization precision and

localization ratio and coverage respectively. The simulation tool and implemented
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parameters were chosen in accordance with some other similar works, we used

them here for consistency. A square network area is assumed with a size, S, of 100

m � 100 m. A randomly distributed set of 250 nodes, N, is used with only one

MA, M. The maximum movement, dmax indicates the maximum distance that the

MA can take in travelling around the network. Different maximum movements

were used to evaluate the models. A random starting point approach was used

in each run for each model. A realistic wireless model was used by implementing

the characteristics of a wireless node that is equipped with a Chipcon CC1100 ra-

dio module [77]. Such speci�cation were already used in similar works including

[9,45].

The rest of the parameters are shown in the following Table 5.6.

Table 5.6: Simulation values and parameters in FLPPL

Parameters Symbol Value

Network size ( m) S 100 � 100
Number of MAs M 1
Number of UNs N 250

Maximum movement distance ( m) dmax 35, 70, 105, 140, 175
Path loss exponent b 3.5

Power loss (dB) at d0 PL(d0) � 60
Reference point (m) d0 1

Standard deviation of noise s 3, 5, 7, 9
Simulation run 50

5.6 Evaluation and Results

To assess the ef�ciency of the proposed model, we studied the models considering

the following aspects, discussed below: accuracy, precision, and localization ratio.

5.6.1 Localization Accuracy

In this work, we study the accuracy from two perspectives, the average localization

error and the standard deviation of the localization error in each model.
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A. Average Localization Error

To study the behaviour of the proposed model and compare it to the others,

we �rst executed a test of 50 simulation runs with 250 UNs, a maximum

movement distance, dmax, of 140 m, and a standard deviation of noise, s,

of 3. Figure 5.11 shows the performance of the different models based on

localization error when both WCL and WCWCL were used.

Figure 5.11a shows that FLPPL offers lower error rate, thus, higher localiza-

tion accuracy in most of the presented results when WCL was used. A range

of localization errors between 0.3 m and 2.58m were achieved. The dynamic

path planning of NLA_MB also presented a better performance in compari-

son to the other static models of SCAN, LMAT and Z-curves. While LMAT

was proposed for a better performance as a static model [9,11], when the MA

movement is constrained, there is no signi�cant difference to the other static

models. This may help to prove that the dynamic path planning models are

more suitable in such cases where the MA movement is limited and there is

a need to take the network topology and nodes deployment into account in

the movement decision making. All path planning models offer low stan-

dard deviation of error results ranging between 0.42 m and 0.55 m, which

means that most of the results are very close to the average.

The same assumptions were used again with WCWCL scheme, as shown in

Figure 5.11b. Higher localization estimation was achieved by decreasing the

localization error using WCWCL. FLPPL again provided higher performance

of accuracy by offering lower localization error, which therefore means more

accurate estimation. Once more, NLA_MB shows higher estimation of node

locations with minimal locations error compared to the implemented static

models. On average, WCWCL attained better results than WCL due to the

nearby anchors having more impact on the estimation and calculation of the

locations. For example, FLPPL yielded an average of 0.601m with a range of

errors between 0.08m and 2.17m in comparison to the higher results of the
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(a)

(b)

Figure 5.11: Localization errors of all mobility models in ( a) WCL, and (b)
WCWCL, (dmax = 140m, s = 3)
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same assumptions in WCL.

Moving on to the average localization error for all path models when differ-

ent maximum movement distance, dmax, are used, Figure 5.12 shows the per-

formances when WCL and WCWCL are implemented. We conducted two

experiments using the parameters shown in Table 5.6 with two changeable

values, the maximum movement distance, dmax, and the standard deviation

of noise, s.

In the �rst trial, we ran a test of 250 UNs with different movement distances

ranging between 35 m and 210m and s = 3.

Figure 5.12a presents the average localization error for the proposed model

along with the others when WCL is used, while Figure 5.12b shows the aver-

age localization error when WCWCL is used. FLPPL and NLA_MB offered

the best results with slight distinctions in both WCL and WCWCL. FLPPL

shows superior results with all movement allowances. In general, WCWCL

provides better results with all path models including the statics. However,

the difference between the dynamic models of FLPPL and NLA_MB, and the

rest of SCAN, LMAT and Z-Curve is very signi�cant. For example, the local-

ization error of the models when only 35 m of distance is allowed are 7.41,

8.06, 8.15, 1.90 and 1.78m for SCAN, LMAT, Z-Curve, NLA_MB and FLPPL

respectively when WCL is used. These results improved to 6.59, 6.94, 7.11,

1.52 and 1.56m when WCWCL is used.

Moreover, to verify the statistical signi�cance, the CI of the localization er-

ror is also used. A 95% of CI is chosen to test that signi�cant. Figure 5.13

shows the localization error while the error bars depicted in the �gure this

time illustrate the 95% con�dence interval. The results explain that in most

cases, FLPPL model provides a narrower CI, which means that the improved

performance is statistically signi�cant. This is applicable to both localization

techniques of WCL and WCWCL.
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(a)

(b)

Figure 5.12: Average localization errors with standard deviation of errors versus
maximum movement in ( a) WCL, and (b) WCWCL
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(a)

(b)

Figure 5.13: Average localization errors and the 95% con�dence interval with the
corresponding maximum movement in (a) WCL, and (b) WCWCL
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Two interesting points here to mention. First, while increasing the move-

ment distance showed better localization in most trials, it is not always true.

Increasing the maximum movement distance does not always mean that the

accuracy will increase as shown in the �gures. Second, the static models

behave differently based on the implemented localization algorithm. For

example, Z-Curve shows better performance than SCAN and LMAT when

WCWCL is used with 105 m.

In the second experiment, shown in Figure 5.14, we conducted the same pa-

rameters with a �xed maximum distance, dmax, of 70 m and a different stan-

dard deviation of noise, s.

Figure 5.14a and 5.14b show the average localization error for the chosen

models with a different deviation of noise, s, when WCL and WCWCL al-

gorithms respectively are used. In all runs and regardless of the value of the

standard deviation of noise, s, our proposed model, FLPPL, offered the most

accurate estimations, with a localization error of less than 1.5 m in both WCL

and WCWCL. Indeed, FLPPL was able to achieve even lower results than 1

m when the values of 5 and 7 were used as standard deviation of noise, s in

WCWCL. NLA_MB showed closed results and the impact of changing the

standard deviation of noise, s, was insigni�cant. Static models offered bet-

ter results when s increases to 5. Once more, static models with WCWCL

outperformed those with WCL.

To sum up this point, taking into account the strength of the node`s RSSI

signals, locations and distance of both the MA localization points and the lo-

calized neighbour nodes helped to achieve high accuracy values in FLPPL

using both WCL and WCWCL. Moreover, in FLPPL, the localized nodes are

given the opportunity to provide their neighbours with their own localiza-

tion information; therefore, the UN can determine its own location based on

the most accurate information received. NLA_MB also consider the usage of
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(a)

(b)

Figure 5.14: Average localization error versus the standard deviation of noise ( s)
of the mobility models in ( a) WCL, and (b) WCWCL
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the nearby localized nodes to supply their own neighbour with their loca-

tions, which helps to increase such ratio.

5.6.2 Precision

We also used the precision metric. Five localization error values are considered as

follow, <1.5 m, <3 m, <4.5 m, <6 m and <7.5 m. The ratio of how many values were

attained is calculated with each of the previous localization error values in the 50

simulation runs. Figure 5.15 shows the precision evaluation results when dmax =

70 and s = 3.

In Figure 5.15a and when WCL is used, the number of the localized nodes with

localization error within 1.5 m is very high with over 0.8 precision in FLPPL. Again,

the reason behind it is the consideration of employing both the RSSI values and

the distance metrics in the decision movement which therefore leads to a better

localization. In fact, all localization error values were kept in control under 3 m

in FLPPL. NLA_MB also provided a high precision when compared to the other

static models with more than 0.6 within less than 1.5 m and more than 0.9 preci-

sion within less than 3 m of errors. The static models of SCAN, LMAT and Z-Curve

acted very weakly only few values reached within 6 m of the real locations. This

precision increased slightly with 0.46 in Z-Curve, 0.7 in SCAN and 0.74 in LMAT

when a localization error of 7.5 m is considered which means the rest of the local-

ized nodes in each model were achieved in more than 7.5 m or error rate.

When WCWCL is applied, the precision was improved as shown in Figure

5.15b. This is because WCWCL modi�ed the weight calculation and gave more

effect of the distance and nearby anchors. FLPPL obtained about 0.9 of precision

where localization error was kept less than 1.5 m. All FLPPL localization errors

were under 3 m of error. Even in NLA_MB, the precision increased from 0.66 when

WCL was used to 0.7 in WCWCL when less than 1.5 m was considered. The impact

of WCWCL is clear on the static models precision as well. The precision values im-

proved gradually from 4.5 m to less than 7.5 m.
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(a)

(b)

Figure 5.15: Precision of all mobility models versus the localization error in ( a)
WCL, and (b) WCWCL, (dmax = 70,s = 3)
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5.6.3 Localization Ratio

A set of 250 UNs is used with different movement distances, dmax with the default

value of standard deviation of noise, s = 3. Since the localization ratio is almost

the same in both WCL and WCWCL, we only show one of them here. Figure 5.16

presents the localization ratio for the implemented path models.

Figure 5.16: Localization ratio all mobility models in both WCL and WCWCL

When dmax = 35, all paths, including FLPPL and NLA_MB, provided insuf�-

cient ratio of localization. The very short movement allowance had its negative

impact on the number of localized nodes. With increasing the maximum distance,

the localization ratio improves. FLPPL is the only model that takes the number

of neighbours of each node in its movement decision. Hence, it showed a better

performance starting with dmax = 70 till dmax = 210. Another reason is that nodes

in FLPPL are able to share their own location, which helps to spread the localiza-

tion information. This feature is applied in NLA_MB as well. However, while
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NLA_MB provides a competitive localization error, the other static models offered

higher localization ratio in most cases. The distance between each two points in

the static models is farther than those in NLA_MB which means more nodes will

receive the localization information than those in NLA_MB.

5.7 Discussion

In this section, we highlight the limitations and the points that are not considered

in this work.

5.7.1 Limitations

The proposed model was designed for a densely deployed network, assuming that

the area includes a suf�cient amount of sensor nodes. In case there is an insignif-

icant number of sensor nodes, the inputs of the fuzzy system might be affected

(especially the number of neighbours), thus, affects the optimization of the path

planning. On the other hand, most of the model operations exist in the MA's side.

Assuming that the MA is not energy-constrained and is able to complete the as-

signed movement distance, we did not consider the computation load or energy

consumption in this model. In a special scenario where the MA has a trivial source

of energy, it might be unable to even complete its limited distance. Although our

proposed model shows a signi�cant improvement of localization ratio in compar-

ison to other models, it is very dif�cult to guarantee that all UNs will be able to

receive the localization information. Two reasons behind that, the limited move-

ment distance of the MA and the nature of the dynamic models of forming the

mobility movement based on the information received from the deployment area.

5.8 Conclusions

In this chapter, we introduced a dynamic mobility path model for node localiza-

tion in WSNs. The proposed path model is formed based on a number of inputs in
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a fuzzy-logic approach which helps to design a superior path when the movement

of the MA is limited. Two types of mobility, represented by four different models,

are implemented in this work to test and examine our proposed model. The re-

sults show that our model, FLPPL, increases the network's localization ef�ciency

in terms of localization coverage, localization accuracy, and localization precision.

We were able to draw conclusions based on the three metrics studied:

1. Localization accuracy: Represented by the localization error, the �nal re-

sults show leading outcome for our proposed model along with the dynamic

model of NLA_MB as shown in Figures 5.12, 5.14.

2. Localization precision: The FLPPL dynamic model presents superior preci-

sion results with the highest ratios in both WCL and WCWCL as indicated in

Figure 5.15.

3. Coverage: In general, the static models perform better than the others in

terms of network coverage. However, this not necessarily true when MA

movement is constrained and limited. FLPPL consider three inputs in its

movement decision, the RSSI signal, the distance between nodes and anchors

and the number of neighbours of nodes which increases the number of local-

ized nodes effectively. These results hold in both experiments when using

different distances of movement as shown in Figure 5.16.

To conclude, we have shown that employing multiple inputs for forming a

movement path has positive impacts in several regards.



Chapter 6

Swarm Intelligence Optimization Techniques for

Obstacle-Avoidance Mobility-Assisted Localization in Wireless

Sensor Networks

6.1 Preface

This chapter introduces two novel dynamic meta-heuristic optimization techniques

for mobility-assisted localization in WSNs. The suggested path planning models

are based on two new optimization algorithms, namely the Grey Wolf Optimizer

(GWO) [19] and the Whale Optimization Algorithm (WOA) [20]. The proposed

models are respectively called Grey Wolf optimizer based obstacle-avoidance Path

Planning (GWPP) and Whale Optimization algorithm based obstacle-avoidance

Path Planning (WOPP). The novelty of our proposed models lies in employing an

optimization algorithms to direct the path formation of the MA, which helps to

maximize the localization ratio and minimize the localization error. By using the

optimization algorithms, the MA movement is formed in real-time; it also avoids

the obstacles, takes into account the maximum distance constraint, and simulta-

neously achieves the objectives of the entire localization process. To the best of

our knowledge, we are the �rst to use swarm based optimization techniques as-

suming such scenarios in path planning for localization in WSNs. The proposed

models provide outstanding results in several metrics in comparison to some ex-

isting works. The rationale of adopting swarm-based algorithms in general, and

GWO and WOA in particular, lies on their ease to implement and computational

ef�ciency in many optimization problems.

We work on designing an obstacle-avoidance path for mobility-assisted local-

ization in WSNs. We summarize our contribution in the following points:

122
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1. For the �rst time, the MA path is dynamically formed based on meta-heuristic

optimization models. Using either GWO or WOA in the movement decision

helps to increase the number of localized nodes and more importantly mini-

mize the localization error.

2. While considering all of the area's and nodes' constraints, the proposed mod-

els ensure that a larger number of UNs can receive the MA's localization

information compared to other models. This number increases when the

maximum distance increases. In comparison to other existing models, our

proposed models offer better localization ratios.

3. The objective function comes �rst. In every movement step, the MA will

make its decision for next movement based on the �tness of the objective

function. Therefore, both models show a competitive accuracy.

4. Regardless of the number of obstacles, locations, or dimensions, the opti-

mized MA movement can sense and �nd them. Thus, the MA can conse-

quently act by ignoring the direction of the obstacles and consider the alter-

native directions while also taking other constrains into account.

5. Unlike the other models, in which the MA has to go around the obstacles and

keep moving in the same movement pattern, the MA in our proposed models

is free to change its own direction based on the applied optimization model.

This freedom is important for avoiding to have the MA being trapped in a

small region.

The rest of this chapter is organized as follows: Section 6.2 provides an overview

of swarm intelligence based works in WSNs, and the two optimization models

used in this work, GWO and WOA. Section 6.3 states the system model assump-

tions. We introduce our proposed models starting with the constraints and the

objective analysis, then present the GWPP and WOPP approaches in details, and

ending with describing the localization process all in Section 6.4. In Section 6.5 and
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6.6 respectively, we show the simulation and performance setting, and discuss the

evaluation results. Section 6.7 offers a discussion on both proposed models based

on the shown results, and we conclude our work by Section 6.8 and ending by

stating the future works.

6.2 Swarm Intelligence in WSNs

In recent years, Meta-heuristics have gained an attention and have been applied in

many �elds. The term Meta-heuristic denotes an area of general algorithms and

frameworks that are designed to deal with complex optimization problems [99].

Simplicity of concept, ease of implementation, and its applicability to be used in

different problems are few reasons behind its successful spread [20]. Their inspira-

tion, typically, is based on mimicking a natural phenomenon [20, 99]. Generally

speaking, the Meta-heuristics can be categorized into three main classi�cation,

evolution-based, physics-based, and swarm-based methods [19]. Genetic Algo-

rithms (GA) [100] is the most popular example of the �rst category, the evolution-

based algorithms. In physics-based category, we can mention the Simulated An-

nealing (SA) [101] as a popular example, while in the swarm-based methods, there

is a list of existing models that includes Particle Swarm Optimization (PSO) [102],

Ant Colony Optimization (ACO) [103], Arti�cial Bee Colony (ABC) algorithm [104],

and many other existing algorithms. Since our techniques focuses on swarm-based

optimization, we limit our discussion only to such methods. Swarm-based, or

Swarm Intelligence (SI), optimization is a relatively new �eld that showed a novel

direction in optimization research [105]. Simply, swarm-based algorithms are op-

timization models that try to solve the researched problem by imitating the so-

cial behavior of creatures, especially animals [19]. In WSNs, swarm-based opti-

mization models have been used for many purposes including routing [106, 107],

energy ef�ciency [108–110], reliability [111] and other applications. For instance,

in [108], the authors introduce a hybrid swarm intelligence energy ef�cient algo-

rithm that works to enhance the clustering and routing processes using both ABC
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and ACO algorithms. In [109], a new energy ef�cient cluster head selection algo-

rithm based on the PSO, called PSO-ECHS, is proposed. It consists of two phases,

a cluster head selection phase that is based on PSO, and a cluster formation phase,

which depends on the residual energy of nodes. In node localization in WSNs,

several works have been done considering the SI algorithms. In [112], another

SI based model is proposed for node localization this time. The work introduces

two different localization models that use PSO and ABC together. The localization

algorithms are evaluated in both single-stage and multi-stage localization. The

evaluation results show that the PSO-based localization algorithm performs better

than the one that uses ABC. However, no comparison to other existing localization

works was performed. A multi-objective PSO localization algorithm, MOPSOLA,

is presented in [113] to enhance the localization in WSNs. The investigated objec-

tive functions consist of the space distance constraint and the geometric topology

constraint. The proposed model shows better results in terms of localization error

compared to other similar models. Another direction of localization is considered

in [114], where the UNs are assumed to be moving and distributed in underwater

WSNs. The proposed localization model is based on mobility prediction and PSO.

The results show that the nodes locations can be estimated along with their veloc-

ity and movement can be predicted. However, to best of our knowledge, no study

of using SI in controlling the MA movement and path planning for obstacle-exist

networks in localization assistance in WSNs has been proposed. Therefore, we

propose our GWPP and WOPP models. More details about the proposed models

will be shown in Section 6.4, but an overview about GWO and WOA will be �rst

presented in the following sections 6.2.1 and 6.2.2 respectively.

6.2.1 Grey Wolf Optimization

Proposed by Mirjalili et al. in [19], Grey Wolf Optimizer (GWO) is a new meta-

heuristic algorithm that mimics the natural leadership hierarchy system of the grey

wolves. Grey wolves live in small groups of members. They have a special social
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dominant hierarchy that divides the group into four hierarchical parts starting of

the top leaders called alphas (a), then betas (b), delta (d), and the lowest ranking of

the hierarchy is omega (w). Each of these kinds leads the subgroup that is located

in its lower ranking. For example, Delta wolves are followers of alphas and betas

but they can lead the omegas. Figure 6.1 depicts the social pyramid of the Grey

Wolf in nature.

Figure 6.1: Hierarchy of grey wolf (adopted from [19])

For the mathematical modelling, alpha ( a), beta (b), and delta (d) represent the

best three candidate solutions within the search space respectively. The optimiza-

tion process is guided by these candidates. All other candidate solutions are con-

sidered as omegas (w). Each candidate solution is represented as a vector in

~X = x1, x2, ....,xn (6.1)

Where xi is the current position of the grey wolf, and n is the dimension of the

search space [115]. Mathematically, the hunting process represents the optimiza-

tion, while searching for the prey represents the available solutions. The grey wolf

hunting behavior consists of three main phases starting with encircling the prey,

hunting, and attacking the prey. The �rst phase, prey encircling, is mathematically
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modelled as

~D = j~C.~XP(t) � ~X(t)j (6.2)

~X(t + 1) = ~XP(t) � ~A.~D (6.3)

Where t indicates the current iteration, ~A and ~C are two coef�cient vectors, ~XP

is the position vector of the prey, and ~X indicates the position vector of a grey wolf.

The two coef�cient vectors of ~A and ~C can be calculated as

~A = 2~a.~r1 � ~a (6.4)

~C = 2~r2 (6.5)

Where components of ~a are linearly decreased from 2 to 0 over the iterations

course, and~r1,~r2 are vectors chosen randomly in the range of [0, 1]. Initially, the

grey wolves are able to locate potentially the prey positions in order to hunt them.

This localization is guided by the �rst best solutions, namely ( a), beta (b), and delta

(d). Thus, these three best candidate solutions so far will be saved and updated

over the iteration times in order to support other wolves ( w) �nding their own

positions. This process of hunting is represented using the following formulas

~Da = j~C1.~Xa � ~X j (6.6)

~Db = j~C2.~Xb � ~X j (6.7)

~Dd = j~C3.~Xd � ~X j (6.8)

Where ~Da, ~Db, and ~Dd are the updated distance vectors between the position of



128

each leader wolf and the other wolves. ~Ci is the required coef�cient vector that is

calculated using the formula in equation 6.5, and ~X is the position of other wolves.

Each ~X i represents an estimated position calculated based on the distance vector

between the omega wolf and each leader wolf of ~Da, ~Db, and ~Dd respectively. They

are calculated as

~X1 = ~Xa � ~A1.(~Da) (6.9)

~X2 = ~Xb � ~A2.(~Db) (6.10)

~X3 = ~Xd � ~A3.(~Dd) (6.11)

The updated new position vectors are given as ~X i where ~X1 is the new position

based on alpha position ~Xa and the distance vector ~Da, ~X2 is the new position

based on alpha position ~Xb and the distance vector ~Db, and ~X3 is the new position

based on alpha position ~Xd and the distance vector ~Dd. The coef�cient vectors of ~A i

are calculated as in equation 6.4. Therefore, using the average sum of all previous

positions, the new position vector is calculated as

~X(t + 1) =
~X1 + ~X2 + ~X3

3
(6.12)

The third phase, the prey attacking, comes after the hunting phase. In this

phase, the value of~a is decreased, which therefore decreases the value of~A. The

value of ~A is limited by the range ( � 2a, 2a). In order to �nd a better solution, ~A

value has to be more than 1.

Since its �rst appearance, GWO has caught growing attention. It has been used

in tremendous engineering and optimization problems. In WSNs, GWO is used

varying from routing [116], energy ef�ciency and clustering [117], and localization

[115].
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6.2.2 Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) is another new swarm intelligence opti-

mization model that was recently proposed [20]. As indicated by its name, WOA

simulates the social behavior of humpback whales. Whales have the ability to

think, learn, communicate and have a higher level of smartness in comparison to

many other creatures. An interesting social behavior of whales is their special strat-

egy of hunting, so-called bubble-net feeding. This strategy consists of two main

maneuvers, upward-spirals and double-loops. The proposed WOA is based only

on the former one. In this maneuver, whales dive deeply in the water and start cre-

ating bubble around the prey in a spiral shape, and swim up toward the surface of

the water. The spiral shape movement is similar to number '9'. The mathematical

model of WOA consists of three phases, prey encircling, spiral bubble-net feeding

maneuver, and search for prey. In the �rst phase, the prey encircling, the whales

are assumed to recognize the location of the prey and encircle them. Initially, the

WOA considers the target prey as the current best candidate solution, since the

position of the optimal solution is not known a prior. This search candidate will

be updated in case a better candidate solution is achieved. Similar to GWO, this

behavior is formulated as

~D = j~C. ~X � (t) � ~X(t)j (6.13)

~X(t + 1) = ~X � (t) � ~A.~D (6.14)

Where ~C and ~A are coef�cient vectors, ~X � is the so far obtained best solution of

position vector, and ~X is the position vector. The value of ~X � is updated continually

with each iteration. The two coef�cient vectors of ~C and ~A are calculated as

~C = 2~r (6.15)
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~A = 2~a.~r � ~a (6.16)

Where, similar to GWO, ~r is a random vector in the range of [0, 1], and ~a is a lin-

early decreased value from 2 to 0 over iterations course. Adjusting the values of ~C

and ~A leads to give different places around the best candidate achieved. In the sec-

ond phase, the bubble-net attacking method is represented mathematically as the

exploitation phase. This behavior of bubbling is done following two approaches,

the shrinking encircling mechanism and the spiral updating position. The former

approach is achieved by decreasing the value of~a, which therefore decreases the

value of ~A. In the latter approach, the distance between the whale current location

and the prey location is calculated. A spiral equation is formulated to mimic the

whales' movement between the two locations as follows

~X(t + 1) = ~D0.ebl. cos(2p l ) + ~X � (t) (6.17)

~D0 = j ~X � (t) � ~X(t)j (6.18)

Where ~D0 indicates the best solution so far (the distance of the ith whale to the

prey), b is a constant value that de�nes the logarithmic spiral, l is a random number

in the range [-1, 1]. The whales swim simultaneously within a shrinking circle in

a spiral-shaped path. Similarly, the WOA has a 50% of choosing the shrinking

encircling mechanism or the spiral model and updates the new position based on

that. This is mathematically modelled as

~X(t + 1) =

8
><

>:

~X � (t) � ~A.~D, if p < 0.5

~D0.eb1. cos(2p l ) + ~X � (t), if p � 0.5
(6.19)

Where p is a random value in [0, 1]. The last phase, search for prey, is simulated

as the exploration phase in WOA. Unlike the previous phase, the whales search for

prey randomly according to the position of each other. For this reason, the value
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of ~A is chosen randomly. However, it has to be greater than 1. This is intended to

let the whale exploration to perform a global search. This is formulated as

~D = j~C.~Xrand � ~X j (6.20)

~X(t + 1) = ~Xrand � ~A.~D (6.21)

Where ~Xrand is a random value representing a random position vector (a ran-

dom whale) selected from the current population.

Generally, the WOA is initiated with a set of random solutions. With every

iteration, the search agents update their location based on either the best solution

obtained so far or a random search agent.

Although, it was published recently, the WOA is used in many engineering

application including WSNs. The work introduced in [118] proposes a lifetime

maximization of WSNs using WOA.

6.3 System Model and Assumptions

The following assumptions are used to form the system model:

1. A two-dimensional plane network following a square shape. S one side of

the square area of the network in m.

2. The network area is assumed to have a set of obstacles. The number of ob-

stacles is denoted asO. The dimensions of each obstacle is given asOsize in

m. For simplicity, the obstacles are assumed to be rectangles.

3. A set of UNs are distributed following an arbitrary form. The number of

these nodes is introduced as N.

4. At �rst, all UNs inside the network have no prior knowledge about their

current locations.
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5. All deployed nodes are static, which means no node is able to change its own

location once the distribution process is done.

6. Each node has a �xed communication range RTx in m.

7. An MA is able to move freely in the network in straight directions except in

locations where obstacles exist. It is also assumed to have the ability to locate

itself in any point in the network. The number of MAs is denoted as M.

8. The MA is able to detect any obstacle in its direction using any detection

method. Examples of those detection methods include infrared (IR) sensors

or passive infrared (PIR) sensors [119]. Unlike the active IR, the PIR depends

on the received IR that is emitted by the objects.

9. The MA movement is constrained by the value of maximum distance ( dmax),

where the MA movement cannot go beyond this value.

10. While the MA is moving, it frequently stops to provide nodes within its com-

munication range with its current position. Each of these positions called a

localization point.

11. The MA and UNs cannot communicate with each other except if their loca-

tions are within the communication range of each other.

12. Once any three different location information of MA are received by a UN, it

estimates its own location by the used localization model.

13. Once the UN succeeds in estimating its location, it turns into a reference node

(RN). The RN can share its own location information with other UNs located

within its range, which will help in estimating their locations.
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6.4 Proposed Models

In this section, we discuss the constraints and objectives of this model and then in-

troduce the two movement techniques. Then, we describe the localization process

from both side, on the MA's side and on the UN's side.

6.4.1 Constraints and Objectives Analysis

As in many path planning models in WSNs, a number of constraints is assumed.

In this model, we assume four different constraints as follow:

1. In the network area, every visited localization point must be unique. This

means that the MA cannot visit a localization point more than once and can-

not return to the same point at any time.

2. To avoid the collinearity problem that affects the localization results, the

model forces the MA movement to be not collinear by assuming that every

three consecutive localization points are not on the same line.

3. The MA cannot exceed the limited movement distance ( dmax). Once this dis-

tance is reached, the MA stops.

4. The network area includes a set of obstacles distributed randomly around

the network. The MA has no prior knowledge about the obstacles' locations

and has to detect them during its movement, thus, avoid them.

Although it is a rare situation to have the MA trapped in a small area of net-

work, the MA can any of the �rst three constraint rules once it happens in order to

keep moving. The last constraint cannot be broken since the MA is unable to move

over the obstacle.

The main objective function of this model is to minimize the average localiza-

tion error of the deployed nodes. It is represented as

Minimize Erroravg (6.22)
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6.4.2 Movement Decision

Before starting the MA movement, a few rules regarding the movement pattern

will be assigned. The network area will be virtually divided into a set of lines,

each line includes a set of guide points. The distance between each two lines is

�xed. Also, the distance between any two guide points in the same line will be

�xed, denoted as dp. Similar to [21], this distance is given as RTx/
p

3 m. Therefore,

to maintain the condition of �xed distance between each two neighbor points in

any direction, the distance between each two lines are given as dp/2 m. However,

the starting point in each consecutive lines will be incompatible. In other words,

if the starting point of line a is (x, y), the next line b will be starting a half of dp as

(0.5x, 2y). This is intended to overcome the collinearity problem forming a triangle-

shape of virtual points. In addition, since the MA has to consider the movement

constraints, a few rules are considered as shown in Figure 6.2.

Initially, as in Figure 6.2a, the MA is surrounded with six different points, any

of which can be chosen as a next point to visit based on the optimization model

decision. Let us say that the MA has the following points in its range { a, b, c, d, e, f }.

Based on the optimization decision, the MA selected the point f as next point to

move to. Now, a new set of points will be formed. The last point that MA has

just left will be a new point in the new form, called c in Figure 6.2b. However, this

point will be excluded from the potential visiting point since it has already been

visited. Thus, the MA will never visit it again. Two more points in Figure 6.2b

will be ignored as well, namely { e, f }. These points will be excluded for different

reasons. The point eis located in an obstacle direction, which MA has to avoid, by

considering other directions. On the other hand, the point f will not be considered

because of the collinearity problem, which imposes that three consecutive points

cannot be collinear. Thus, only the other three points, namely { a, b, d}, will be con-

sidered. The decision of moving to one of them will be made based on the applied

optimization model. In this example, the MA selects the point a as the next point,

and the same procedure concept will be repeated.
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