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Abstract

The clinical electrophysiological (EP) techniques of intracardiac recording and stimu-

lation have emerged as invaluable tools for investigating and treating life-threatening

cardiac arrhythmias. Computing technology plays a crucial role in making EP tech-

niques possible. Two computational approaches designed to facilitate EP procedures

are the subject of this dissertation: the first one is referred to as electrocardiographic

imaging (ECGI); the second one is a novel statistical approach that enables a real-

time guidance of the EP procedure based on the standard 12-lead ECG and a pace-

mapping. Pre-ablation planning by means of ECGI can help to localize the origin

of ventricular tachycardia (VT) and thus contribute to improving ablation-procedure

outcome. The classical ECGI solves the inverse problem of electrocardiography by

reconstructing epicardial potentials from multiple body-surface ECGs and patient-

specific geometry of the heart and torso acquired by computed tomography. To over-

come the inherent instability of the inverse problem, regularization methods must be

used to constrain the solution. The present study assessed a data-driven Bayesian

approach to the inverse solution that uses a novel algorithm for deriving dynamic

spatio-temporal constrains for the solution. The encouraging results of validation

experiments provide a strong incentive for pursuing the Bayesian method further.

Next, a new statistical technique for real-time guidance of EP procedure was in-

vestigated. This technique supplements electroanatomic mapping—which provides

patient’s heart geometry—and it requires only the 12-lead ECG for a sufficient num-

ber of pacing sites with known coordinates to develop multiple linear regressions for

predicting the origin of unknown activation sequence. The localization accuracy of

the latter statistical method was superior to that achieved by the inverse solution

and thus this approach to localizing the origin of ventricular activation offers an al-

ternative to the pre-procedure inverse solution and its simplicity makes it practical

for real-time applications.
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Chapter 1

Introduction

1.1 The brief history of electrocardiography

Electrocardiography is a science and technology used daily in the clinical practice to

record the electrical activity of the heart; these recordings are called electrocardio-

grams (ECGs). ECG recording is one of the most useful tests in modern medicine. In

1882, Augustus Waller obtained the first ECG, using his obliging dog Jimmy as a sub-

ject, and in May 1887 he recorded the first human ECG at the St Mary’s Hospital in

London. These early ECGs were recorded by using a capillary electrometer [1], which

suffered from the poor frequency response caused by the heavy mercury column in the

capillary. In 1895, Willem Einthoven—at the University of Leiden in Holland—refined

the capillary electrometer, and then used a mathematical correction of the frequency

response to predict P , QRS, T waves of the ECG as they are now known [2]. In

1901, Einthoven invented the string galvanometer, and one year later he recorded for

the first time ECG tracings that show in real time the P,QRS, T waves [3]. The

scheme for interpretation of ECGs—now called the Einthoven triangle—was intro-

duced by Einthoven and his colleagues in 1913, and it is in clinical use to this date [4].

Einthoven’s triangle represents the relationship between the heart’s electric sources

and field potentials under the assumption of a two-dimensional and infinite homoge-

neous medium surrounding the heart, represented by a single vector (electrical axis

of the heart). In 1947, another Dutchman, Herman C. Burger, formalized a general

theory of heart vector and lead vector that does not require restrictive assumptions

regarding the volume conductor [5, 6, 7]. In the conventional clinical 12-lead ECG,

there are six “unipolar” precordial leads (V1–V6) with electrodes placed on the chest,

using the Wilson’s central terminal (which approximates the potential at infinity) as

a reference [8, 9]. The precordial leads view the heart’s electrical activity in the

transverse plane, perpendicular to the frontal plane of the Einthoven’s triangle [10].

1
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1.2 Genesis and interpretation of the electrocardiogram

Cardiac electrical activity can be represented by generators of bioelectric currents

distributed in the heart region. The heart is a syncytial structure consisting of ex-

citable muscle cells (cardiac myocytes); each cell undergoes an action potential (with

a refractory period of different duration in different parts of the heart), followed by

contraction. Fig. 1.1 (panel A) illustrates how the electrical excitation (depolarization

followed by repolarization of individual cells) spreads as an activation wave through

the entire heart; it starts at the sinoatrial (SA) node (pacemaker of the heart), spreads

within 100 ms through atria, is delayed about 100 ms in the atrioventricular (AV)

node, and spreads through the ventricular conduction system and ventricular muscle

in about 100 ms; it takes about 300 ms for myocytes to repolarize. The activation

wave front is an electrical double layer (with positive and negative side separated

by about 1 mm) driving electrical current through the passive electrically conductive

tissues surrounding the heart; Fig. 1.1 (panel B) illustrates the flow of electric current

with the colored loops in a computer model of the human thorax [11]; these electric

currents reach the body surface, creating time-varying potential differences that can

be recorded as the ECGs.

In the 1950’s, Durrer and van der Tweel studied excitation of the ventricular

myocardium in dog and goat at the University of Amsterdam [13]. They used a

plunge electrode to detect the passing activation wave front within the ventricular

wall as shown in Fig. 1.2 (panel A). By inserting a large number of such electrodes

at different locations in the ventricles, activity throughout the entire thickness of the

ventricular wall could be recorded. Multi-channel recording allowed the exact time

of a passing depolarization wave front to be detected (with reference to intracavitary

electrode in the ventricles); this way, it was possible to reconstruct a three-dimensional

(3D) isochronic map of ventricular depolarization. In 1968, Prof. Durrer’s lab in

Amsterdam studied 6 isolated human hearts, and published the composite findings

in 1970 as a 3D isochronic map [14] that illustrates the activation of the human heart

in Fig. 1.2 (panel B).

With the development of digital computers, it was possible to solve the forward

problem of electrocardiography—defined as estimation of body-surface potential dis-

tribution from cardiac electrical sources—without the use of a phantom in 1964.
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Miller and Geselowitz published a simulation of the ECG using multiple dipoles to

illustrate the sequence of activation and the cardiac action potential for the normal

heart as well as for infarction and ischemia in 1978 [15, 16]. In this laboratory at

Dalhousie University, Leon and Horáček introduced a computer model of an idealized

left ventricle to study excitation and recovery in anisotropic cardiac tissue [17, 18, 19].

This model had wall-thickness and fiber direction similar to that of the human heart.

In 1998, Hren and co-workers at Dalhousie University demonstrated the role of fi-

brous structure in a 3D propagation model of the realistic human ventricular my-

ocardium [20]. Fig. 1.3 (panels A and B) illustrates this realistic computer model

of the human ventricular myocardium, which consisted of over 2 million cells, each

with defined fiber direction (based on data from Auckland, New Zealand). In 2000,

Simelius and co-workers simulated the ventricular activation based on Hren’s real-

istic human heart [21] as shown in Fig. 1.3 (panel C). In this comparison of model

simulations with isolated heart isochrones the right column in Fig. 1.3 (panel D) rep-

resents the ventricular activation of an isolated human heart as reported by Durrer

and co-workers in 1970.

The clinical assessment of cardiac electrical function is usually performed by hu-

man interpretation of 12-lead ECG recordings, which is based on the vast experience

of clinical electrocardiographers over many decades. The interpretation of ECG sig-

nals based on Maxwell’s equations of electromagnetic theory constitutes the inverse

problem of electrocardiography. The standard precordial leads over the thorax do not

provide enough information for solving the inverse problem; therefore, with advanc-

ing electronic technology, body-surface potential mapping techniques were developed

to provide a comprehensive view of non-invasively available information reflecting

cardiac electrical activity [22].

1.3 Body-surface potential mapping (BSPM)

Body-surface potential mapping (BSPM) methodology has been evolving in this lab-

oratory for over four decades. BSPM uses multiple electrodes (as many as 256) to

record and measure cardiac electrical activity over the entire torso, providing a to-

tal time-varying potential distribution of heart-generated body-surface potentials. In

our laboratory, Dalhousie standard torso grid is used to record 120-lead BSPM data
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(Fig. 1.4).

To demonstrate how BSPM reflects the underlying electrical activity of the heart,

we used mean potential values of 400 normal subjects. Figs. 1.5–1.8 show a sequence

of measured body-surface potential maps corresponding to normal ventricular activa-

tion. Fig. 1.5 shows the body-surface potential distribution at the onset of the QRS

complex at 0 ms. As the small initial wave front spreads thought the septum in a

left to right direction in the heart, BSPM shows a maximum appearing on the right

shoulder or in mid-sternal area and a minimum in a lower position on the left thoracic

wall. During 4 ms to 34 ms of ventricular activation, phase I in Fig. 1.6, the mini-

mum migrates dorsally and towards the right shoulder, finally appearing anteriorly

in the right clavicular area, while the maximum moves downward to the left. We can

imagine that initial activation wave front is in the interventricular septum, spreading

throughout it, with a mean direction from base to apex. At this time, activation is

spreading in an endo-epicardial direction through the walls of both ventricles. Later

on, during the second phase of activation, as shown in Fig. 1.7, from 36 ms to 66 ms,

a new minimum suddenly appears in the midsternal region and soon merges with the

existing right-clavicular one to form a broad anterior negative region. Meanwhile, a

new maximum moves towards the left thoracic wall and then dorsally. Ventricular

activation continues as a wave front directed towards the apex by the Purkinje fibers,

generating a leftward electrical force (because of a larger mass of the LV). Finally,

at the phase III as shown in Fig. 1.8, during 68 ms to 98 ms, there are two positive

areas; the sternal maximum can be attributed to late excitation of basal areas of the

ventricles.

1.4 Electrocardiographic imaging (ECGI)

Body-surface potential mapping data non-invasively acquired from multiple thoracic

sites can be used, along with a numerical model that accounts for the torso geometry

and electrical properties, to reconstruct electrical events on the heart surface (epi-

cardial or endocardial surface) by solving an inverse problem of electrocardiography.

The inverse problem of reconstructing heart surfaces’ potentials from body-surface

potential measurements is often referred to as electrocardiographic imaging (ECGI).

It requires—along with inverse-solution techniques—processed body-surface potential
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mapping data, computational techniques for the forward calculation of body-surface

potentials from heart-surface potentials, and a patient-specific anatomical representa-

tion of the epicardial or endocardial surface and outer torso surface [25, 26]. Patient-

specific anatomical data have been increasingly made available by multi-detector com-

puted tomography (CT or MDCT) and by magnetic resonance imaging (MRI). A

pre-procedural thoracic computed tomography (CT) scan provides cardiac geometry

and torso electrode positions in the same reference frame. The methodology of ECGI

has already shown its potential, demonstrated in theoretical and experimental studies

[27], and has been successfully applied in clinical studies [28, 29, 26, 30, 31].

There are currently two commercial ECGI systems along with electrode vests:

CardioInsight (Medtronic Inc, Minneapolis, MN, USA) and EP Solutions (Yverdon-

les-Bains, Switzerland). Recently, several papers addressed the clinical validation

of these systems [32, 33, 34]. In spite of these advances, the inverse solution of

electrocardiography remains a challenging problem; the search for a reconstruction

approach which would deliver sufficiently accurate results with the highest clinical

value is still on.

1.5 Clinical cardiac electrophysiology

Implantable cardioverter defibrillator (ICD) therapy is widely used for patients suffer-

ing from recurrent ventricular tachycardia (VT). Unfortunately, ICDs do not prevent

the recurrence of VT [35]. The adverse prognosis and symptoms associated with ICD

shocks drive the continued need to find ways to effectively suppress VT [36]. Radiofre-

quency (RF) catheter ablation has been demonstrated to be an effective treatment

strategy to reduce recurrent scar-related ventricular tachycardia (VT) and related

hospitalizations [35, 37, 38]. This therapy has recently been demonstrated to be su-

perior to escalated antiarrhythmic-drug treatment for patients with prior myocardial

infarction [39].

Three-dimensional (3D) electroanatomic mapping is a non-fluoroscopic mapping

technique frequently used to study cardiac arrhythmias. The electroanatomic sys-

tems allow sequential acquisition of intracardiac electrical information at multiple

anatomical locations within a chamber of interest, which enables reconstruction of

the electroanatomic maps of the respective chamber. Two types of electroanatomic
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mapping systems are in general use: Carto c© (Biosense Webster, Diamond Bar, CA,

USA) and EnSiteTM (St Jude, St Paul, MN, USA), to localize cardiac electric sources

and facilitate catheter navigation.

Localizing VT exit sites is a pre-requisite for the successful ablation of VT. A

variety of methods have been developed to ablate VT. Point-by-point activation and

entrainment mapping is effective in aiding ablation of inducible, hemodynamically

tolerated VT, but is not applicable in the majority of patients; the majority of scar-

related VTs are poorly hemodynamically tolerated, may be difficult to induce and

frequently transform to other tachycardias during catheter mapping [40]. Three-

dimensional substrate-based techniques are frequently the preferred alternative, since

it may be advantageous to focus ablation efforts on abnormal tissue with the highest

likelihood of being culprit substrate, typically including a significant patch of myocar-

dial scar. These approaches may target specific regions of ventricular scar [41, 42],

regions of arrhythmogenic isthmuses within the scar [40, 43], regions of local abnor-

mal ventricular activity [44, 45, 46], discrete channels [43, 47, 48], or all low-voltage

areas. Some investigators have attempted to homogenize the entire scar [49, 50],

although this has not been proven to be superior to a strategy which focuses more

specifically on all inducible VTs, and may diminish the amount of procedure time

dedicated to higher yield sites within the scar. However, the procedure is restricted

by the limitations of point-by-point catheter mapping, even with newer multipolar

rapid mapping techniques. A common method for the identification of sites likely to

participate in clinically relevant VTs is to create a 3D map of the arrhythmogenic

substrate, induce VT, and identify portions of the scar which harbor exit sites. This

depends upon rapid interpretation of the 12-lead ECG, sometimes combined with

pace-mapping to identify areas from which the myocardium is activated. Efforts may

then be focused on ablating the sites within the scar which are contiguous with the

exit site. Rapid ECG interpretation requires significant expertise and could be fa-

cilitated with a computerized method to automatically locate the site of origin of

ventricular activation.

1.6 Thesis organization

This dissertation is organized as follows:
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Chapter 2 presents the required mathematical models of the forward-problem

solution that are a prerequisite to solving the inverse problem. Two surface-source

models, heart-surface potential and equivalent-double-layer (EDL) models are used to

formulate the relationship of potential distribution on epicardial/endocardial surface

to measured body-surface potential distributions.

Chapter 3 presents a novel hierarchical Bayesian approach to solving the inverse

problem, using an automatic relevance determination (ARD) model to derive dynamic

spatio-temporal a priori constrains. The Bayesian method was applied to 4 patients

suffering from scar-related VT.

Chapter 4 presents an improved algorithm for evaluating the global activation

time constructed from measurements of propagation delay for pairs of computed elec-

trograms at neighboring locations. The new method to detect activation times was

assessed by correlation with known activation maps obtained by contact mapping.

Chapter 5 presents a simplified method based on the properties of sparse repre-

sentation of the equivalent-double-layer (EDL) model that employs a sparse Bayesian

learning approach to the inverse solution, which makes use of the spatio-temporal

features of the cardiac action potential to localize the origin of LV activation from

body-surface potentials. The approach was applied to 3 patients with healthy my-

ocardium to localize the origin of the pacing site on the left-ventricular endocardial

surface.

Chapter 6 further explores the regression model using the generic LV geometry

introduced previously and seeks new methods of localization performance from the 12-

lead ECG in the generic LV geometry. In particular, two machine-learning methods

are assessed with regard to their localization performance based on the generic LV

geometry.

Chapter 7 compares the localization performance of two approaches: (1) The clas-

sical inverse solution of Tikhonov type reconstructing cardiac potentials using BSPM

data and patient-specific geometry obtained from CT imagines, and; (2) The intra-

procedure statistical method, requiring only the 12-lead ECG for pacing sites with

known origin and patient-specific geometry of the endocardial/epicardial surface ob-

tained by electroanatomic mapping. For 7 patients undergoing cardiac mapping and
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simultaneous 120-lead BSPM, the pre-procedure method was compared to localiza-

tion performance using the intra-procedure statistical method based on acquisition of

12-lead ECG for pacing sites with known location.
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Figure 1.1: A: Electrophysiology of the heart. The different waveforms for each of
the specialized cells found in the heart are shown [12]; B: A graphical representation
of the geometry and electrical current flow in a model of the human thorax [11]
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Figure 1.2: A: Durrer’s measurement of isochronic surfaces of ventricular activation
measurement. A section of ventricular wall of a dog heart showing approximate
intramyocardial plunge electrodes for measuring the arrival times of the propagation
wave front. B: 3D isochronic representation of the ventricular activation of an isolated
human heart. Each color represents a 5-ms interval. Zero time is the beginning of
the left-ventricular intracavitary potential [14].
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Figure 1.3: A: intramural white band in the realistic computer model indicates fibers
running in the perpendicular direction to the section, B: the whole ventricular struc-
ture viewed from the base of ventricles (Note that only excitable myocardium is
shown, less connective tissue, fat, etc.), C: corresponding simulated activation maps
of ventricular activation sequence produced by Dalhousie heart model, D: the pattern
of ventricular activation in a 3D presentation [14]; each color corresponds to a 5-ms
interval. The isochronic surfaces show that activation starts from the endocardium
of the LV and proceeds radially towards the epicardium.
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Figure 1.4: Dalhousie standard arrangement of 120 leads on the torso for BSPM.
Left half represents anterior surface, right half the posterior surface of the chest.
Transverse levels (labeled 1′, 2, . . . , 10′) are 1-inch apart from neck to waist; potentials
at 352 nodes (solid squares) are interpolated from potentials recorded at a set of 120
sites (blue circles); green squares indicate sites of precordial leads V1–V6; yellow
squares mark sites where electrodes of Mason-Likar [23] substitution for extremity
leads are placed; red squares are sites of EASI leads [24].
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Figure 1.5: Body-surface potential map for normal human heart activation. The
Phase 0 of ventricular activation is at the onset of QRS complex at 0 ms.
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Figure 1.6: Body-surface potential maps for normal human heart activation. The
Phase I of ventricular activation is from onset of QRS complex during 4 ms to 34 ms.



15

Figure 1.7: Body-surface potential maps for normal human heart activation. The
Phase II of ventricular activation is from 36 ms to 66 ms.
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Figure 1.8: Body-surface potential maps for normal human heart activation. The
Phase III of ventricular activation is from 68 ms to 98 ms.



Chapter 2

The Forward Problem of Electrocardiography

2.1 Introduction

In this chapter, the forward problem of electrocardiography is formulated as a calcu-

lation of body-surface potentials from epicardial or endocardial distributed sources,

given patient-specific geometry obtained from CT imaging. Although the main pur-

pose of clinical electrocardiography is to estimate the electrical activation of the car-

diac sources via body-surface potential measurements, which is the so-called inverse

problem of electrocardiography, the forward problem plays a fundamental role in

determining the relationships between electrical sources within the heart and their

body-surface potential manifestations on the torso.

Numerical methods for solving the forward problem of electrocardiography for

arbitrarily-shaped volume conductors have been used since the 1960s [56, 57, 58]. The

forward problem of electrocardiography is to compute, for given cardiac sources, the

electric potential field within the torso and on the torso surface. The most frequently

used distributed source models in electrocardiographic modeling are the electric-

potential model [59, 60] and the equivalent-double-layer (EDL) model [61, 62, 63, 64].

Using the the potential theory and Green’s theorem, we derived the source-field rela-

tionships between the torso surface and heart surface—or segmented heart surface—

generating a forward transfer-coefficient matrices adopted in inverse-problem calcu-

lations.

2.2 Cardiac electric sources and the volume conductor

During the process of propagated excitation in the heart, the sources of electrical

activity arise from the membrane currents of the individual cardiac cells. These

sources can be summed up as an impressed current density ~Ji [57] distributed in the

heart region, which is surrounded by the volume conductor that provides an electrical

17
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load to these primary sources. The impressed current density and the volume current

in the thorax are varying with time during the heart’s activation sequence. The

fundamental problem in electrocardiology is to estimate the relationships between

the currents generated by the cardiac excitation and the potentials measured on the

surface of the torso. We assume that the volume between the heart and the body

surface is a homogeneous volume conductor with a constant value σ (Siemens/m),

and that the volume conductor is electrically isotropic, which means the electrical

conductivity at any point is a scalar quantity.

The potential distribution in the volume conductor changes with time and space,

because of the spatial-temporal feature of the impressed current density. The capac-

itive and inductive properties of the tissues can be considered negligible in the fre-

quency range of interest to electrocardiography (less than 1 kHz). Therefore, for all

practical purposes, electromagnetic propagation effects can be neglected. In summary,

the electrocardiographic forward problem can be seen as a quasi-static problem—

for calculating potential distributions for time-varying current sources within a vol-

ume conductor, which is well approximated as linear, piecewise homogeneous, and

isotropic.

Thus, in terms of Maxwell’s equations, since the torso outside the heart region

can be assumed to be resistive, and the relationship between current density ( ~J) and

electric field ( ~E) can be considered linear,

~J = σ ~E, (2.1)

where σ is constant and represents conductivity at any point outside the heart vol-

ume. Since the spatial charge is neutralized almost instantaneously, neglecting the

propagation effects, we assume quasi-static conditions to define the electric field as

the negative gradient of a scalar potential φ:

~E = −∇φ. (2.2)

The total current density ~J at any point in the volume conductor is equal to the sum

of the impressed current density, ~Ji, generated by cardiac sources, and conduction

(ohmic) current density σ ~E:

~J = ~Ji + σ ~E. (2.3)
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In this expression, σ ~E is the passive response in the volume conductor to the primary

sources which are represented by ~Ji. Furthermore, since ~J is solenoidal, the divergence

of ~J forms closed loops of current flow. In other words, there is no net charge generated

and the divergence of the current density vanishes, leading to

∇ · ~J = ∇ · ( ~Ji + σ ~E) = 0. (2.4)

Hence, the forward problem of electrocardiography is to calculate the extracardiac

field from the given cardiac sources, which is governed by a Poisson’s equation:

∇ · σ∇φ = ∇ · ~Ji. (2.5)

2.3 Forward problem formulation

The forward problem solution is based on Green’s Second Identity [65] that states

that ∫
V

(u∇2v − v∇2u)dV =

∫
S

(u∇v − v∇u) · n dS, (2.6)

where the volume V is bounded by the surface S and n is the outward unit normal to

S, dS is the scalar element of area of the integrating surface. We define the function

u as 1/r, where r is the distance from the source point q to an arbitrary field point

p, called the observation point, and the function v as the scalar electrical potential,

φ. With these substitutions, the Green’s identity becomes∫
V

[
φ∇2 1

r
− 1

r
∇2φ

]
dV =

∫
S

[
φ∇1

r
− 1

r
∇φ

]
· n dS. (2.7)

Consider a heart region H embedded in a homogeneous bounded volume conductor

B, as in Fig. 2.1. The closed surface SH is the union of the endocardial and epicardial

surfaces of the left and right ventricles. SB is the body surface and B the volume

bounded by SH and SB.

Theorem 1. In an infinite homogeneous conducting medium of conductivity σ in R3,

the potential U∞(p) at the field point p due to an elementary dipole source density ~Ji

(which vanishes outside V ) is given by

φ = U∞(p) =
1

4πσ

∫
V

~Ji ·∇
1

r
dV (2.8)

where r = q − p, r = |r|, p is the field point and q the source point.
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Figure 2.1: Transverse sketch of the torso and closed heart surface boundaries for the
potential-based forward problem formulation. SH and SB are smooth surfaces with
outward unit normals. A: the observation point P is located on the outer bounding
body surface, SB; B: P is placed on the inner bounding closed heart surface SH . The
Ω defines the solid angle.

The H region will strictly contain all “impressed” current sources, and a non-

conducting boundary condition on the surface SB will apply. There are no active

sources outside the heart region, the right hand side of Eq. 2.5 can be set to zero in

passive extracardiac domains, resulting in the Laplace equation

∇ · σ∇φ = 0 ∈ B. (2.9)

This means that we now have

∇ · (σ∇φ(p)) = σ∇2φ(p) = 0 p ∈ B, (2.10)

for any field point p in B. The conductivity of air surrounding region B is zero (σ =

0), leading to normal component of current flow across outer torso boundary being

σ∇φ(p) · nB = 0 p ∈ SB, (2.11)

where SB is the human-torso surface bounding a homogeneous and isotropic volume

conductor, and containing the heart region H, φ(p) is the electric potential at a field

point p, nB is a unit normal oriented outward with respect to body surface SB [59].

Theorem 2. The solution to the forward problem (Eqs. 2.10 and 2.11) for p ∈ S is

given by

φ(p) = 2U∞(p)− 1/2π

∫
S−B

φ∇1

r
· ndS (2.12)
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with r = q − p and r = |r|, where S−B denotes the surface area excluding the sin-

gularity, that is, the integral is proper-valued and must be evaluated excluding the

singularity at r = 0.

Theorem 3. The equivalent integral formulation for the following problem,

∇ · σ∇φ(p) = ∇ · ~Ji = 0,p ∈ B; ∇φ(p) · nB = 0, p ∈ SB

is

c(p)φ(p) = −
∫
SB
φ∇r−1 · nBdS −

∫
SH
r−1∇φ · nHdS

+
∫
SH
φ∇r−1 · nHdS,

(2.13)

where r = q − p (p is again the field point and q the source point) and r = |r|,
c(p) = 2π for p ∈ SB and c(p) = 4π for p ∈ B and nB = n on SB and nH = −n
on SH .

2.3.1 Heart-surface potential model

Eqs. 2.10 and 2.11 state a boundary-value problem for Laplace’s equation, which can

be solved for any arbitrarily-shaped volume conductor by means of the boundary-

element method (BEM), as the BEM formulation only requires a geometric repre-

sentation of surfaces. The BEM method requires the application of Green’s second

identity (Eq. 2.7) to transform Eqs. 2.10 and 2.11 into an equivalent boundary-

integral equation for the potential φ at any field point p on SB ∪ SH [59, 66]. The

following derivation follows that of Horáček and Clements [60], which defines field

potentials directly on surfaces with singularity removed from integration. Usually, we

just consider a volume B bounded by body surface S = SB and closed epicardial

surface SH . To define the boundary condition between heart and body surfaces, we

use the geometry of closed heart surface as a whole boundary to solve the Eqs. 2.10

and 2.11. From Theorem 3, the forward solution can be obtained by calculating the

potential φ on the surface SB ∪ SH , which gives

2πφ(p) = −
∫
S−B

φB∇
1

r
· nBdS +

∫
S−H

φH∇
1

r
· nHdS −

∫
S−H

1

r
∇φH · nHdS, (2.14)

where S−B and S−H denote integration over the surfaces SB and SH , with the singularity

removed; dS = dS(q) is the differential of the integration surface; and the term
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∇1
r
· ndS = (1/r3)r · ndS is the incremental solid angle dΩ, with r = q − p being

the directed distance from the field point p to the source point q and r = |r|.
To rewrite Eq. 2.14, two observation points are placed on SB ∪ SH , respectively:

(1) Observation point i on SB,

− 1

2π

∫
S−H

φHdΩi
BH −

1

2π

∫
S−H

1

ri
∇φH · nHdSH +

1

2π

∫
S−B

φBdΩi
BB − φiB = 0

(2) Observation point i on SH ,

− 1

2π

∫
S−H

φHdΩi
HH −

1

2π

∫
S−H

1

ri
∇φH · nHdSH +

1

2π

∫
S−B

φBdΩi
HB − φiH = 0

Here, dΩi
PQ is the solid angle subtended by elemental area of integration over the

surface Q at an observation point i on the surface P .

We transform 2.14 in a discretized form, which can then be used to relate the

potentials on the body surface to those on heart surface. These integrals can be given

in its discretized form by

− 1

2π

∫
S−H

φHdΩi
BH =

NH∑
j=1

pijBHφ
j
H

− 1

2π

∫
S−H

1

ri
∇φH · ndSH =

NH∑
j=1

gijBHΓjH

1

2π

∫
S−B

φBdΩi
BB − φiB =

NB∑
j=1

pijBBφ
j
B

and

1

2π

∫
S−B

φBdΩi
HB =

NB∑
j=1

pijHBφ
j
B

− 1

2π

∫
S−H

1

ri
∇φH · ndSH =

NH∑
j=1

gijHHΓjH .

− 1

2π

∫
S−H

φHdΩi
HH − φiH =

NH∑
j=1

pijHHφ
j
H
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where ΓjH = ∇φjH · nH , j = 1, ..., n. Therefore, the entire system of linear algebraic

equations, written in the discretized equivalent forms based on SH ∪ SB, is:

piHBΦB + piHHΦH + giHHΓH = 0 (2.15)

piBBΦB + piBHΦH + giBHΓH = 0, (2.16)

where i refers to a specific observation point on either the heart surface or the body

surface. If we rewrite Eqs 2.15 and 2.16 for each point on the body and heart surface,

two sets of equations result, which in matrix notation can be written as:

PHBΦB + PHHΦH +GHHΓH = 0 (2.17)

PBBΦB + PBHΦH +GBHΓH = 0. (2.18)

The approach to solving the system defined by Eqs. 2.17 and 2.18, which has been

used by Barr et al. [59] has been to obtain the system

ZBH = (PBB −GBHG
−1
HHPHB)−1(GBHG

−1
HHPHH − PBH), (2.19)

where ZBH is the transfer coefficient matrix that directly relates the heart-surface

potentials to body-surface potentials. Once the matrix has been calculated, the for-

ward problem can be solved by converting heart-surface potentials into body-surface

potentials using simple matrix multiplication.

2.3.2 Equivalent Double Layer (EDL) model

The equivalent-double-layer (EDL) model introduced by Cuppen et al. [61] represents

the sources by a layer of current dipoles on the closed ventricular surface. The forward

transfer function K(p, q) can be computed from Theorems 1 and 2. Let K(p, q) be

the body-surface potential at p due to a double layer element (i.e., elementary current

dipole) at q on SH and directed outward from SH . Then it can be given by

K(p, q) = 2U∞(p, q)− 1

2π

∫
SB

K(p, q)∇(1/r) · ndS

= 2U∞(p, q) +
1

2π

∫
SB

K(p, q)dΩBB. (2.20)

where nB = n on SB and nH = −n on SH , the term ∇(1/r) ·n dS = −(1/r3)r ·n dS
is the incremental solid angle dΩ. Thus, for N source points qj on SH ,

A = Ai,j = K(pi, qj), i = 1, . . . ,M, j = 1, . . . , N (2.21)
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is the potential at pi due to an elementary source at qj and A is the required transfer

matrix. Based on Theorem 2, each Aij is given by

− Ai,j +
M∑
k=1

pikBBAkj ≈ 2U∞(pi, qj). (2.22)

where
∑M

k=1 p
ik
BB denotes the solid angle subtended by a differential of the integration

surface SB at the ith node pi on the surface SB. To deal with the singularity in the

Eq. 2.22, the Wielandt deflation technique was used to reduce the singular system to

a stable nonsingular system [67].

2.3.3 Segmented forward-transfer matrices

For a closed heart surface, as shown in Fig. 2.1, two covers of both cavities (rep-

resenting mitral valve and tricuspid valve) can be constructed, generating left and

right endocardial surfaces. Hence, the closed surfaces SH can be divided into three

independent parts illustrated in Fig. 2.2, which consists of LV endocardial surface

SH1 with N1 nodes, RV endocardial surface SH2 with N2 nodes and epicardial surface

SH3 with N3 nodes.

The forward problem of electrocardiography considered here is formulated as a

calculation of the potentials ΦB = (φ1:t
B , . . . , φ

m:t
B ) at M nodes on the body surface

SB from the observed electric potentials, ΦH = (φ1:t
H , . . . , φ

n:t
H ) at N nodes on the

closed heart surface SH that consists of LV endocardial surface with N1 nodes, right

ventricular (RV) endocardial surface with N2 nodes, and epicardial surface with N3

nodes, where “: t” indicates the t-th time constant of the estimated cardiac source

Φ:t
H and the collected electrical field data Φ:t

B. A forward transfer matrix calculated

by one of two source models can be discretized into three sub-matrices in terms of

the coefficients which depend only on the geometry of SB and SH based on different

boundaries with SH1 ∪ SB, SH2 ∪ SB and SH3 ∪ SB, giving for each i = 1, . . . , N on

SH and each j = 1, . . . ,M on SB.

2.4 Conclusions

In this chapter, we formulated two alternative solutions to the forward problem of

electrocardiography based on two source models, given a patient-specific geometry.
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We have shown how a forward transfer coefficient matrix calculated by these two

source models can be partitioned into three sub-matrices by directly relating different

segmented heart surface and body surface.
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Figure 2.2: Transverse sketch of the torso and closed heart-surface boundaries for
the potential-based forward problem formulation. B is the volume conductor region
encompassing the region of cardiac sources H. The closed heart surfaces SH that con-
sists of left ventricular endocardial surface SH1, right ventricular endocardial surface
SH2 and open epicardial surface SH3, and torso surface SB are smooth surfaces with
outward unit normals nH and nB



Chapter 3

Inverse Solution by Empirical Bayesian Method

3.1 Introduction

Catheter ablation of scar-related ventricular tachycardia (VT) has been demonstrated

to reduce VT recurrence and thus it has become an effective treatment option, even

though this therapy still faces challenges [42]. The main challenge of VT ablation

procedure is to find the site of VT origin. To this end, pre-ablation planning of the

electrophysiological procedures by ECG imaging (ECGI) [27] can be performed to es-

timate the site of origin of VT and thus contribute to improving ablation outcome [68].

The ECGI is a non-invasive technique that combines body-surface potential mapping

(BSPM) with patient-specific geometry obtained from computed tomography (CT)

or magnetic resonance imaging (MRI) to reconstruct epicardial potentials by solving

the inverse problem of electrocardiography.

The inverse problem is mathematically ill-posed; therefore, various regularization

algorithms have been applied to circumvent its ill-posedness. Usually, assumptions

concerning either spatial and/or temporal properties of cardiac sources are used to

constrain the solution space [26, 29, 55, 59, 69, 70, 71, 72, 73, 74, 75, 76]. Such a

priori assumptions are often considered to be fixed, but a fixed a priori model often

does not adequately predict complex spatio-temporal changes of cardiac sources under

pathological conditions. Bayesian models can potentially overcome this limitation and

they can be advantageously applied to solving the electrocardiographic inverse prob-

lem [77]. The earliest Bayesian study in electrocardiography was published by Martin

and co-workers [78], who used statistical constraints to reconstruct the epicardial po-

tential distribution over a 4-cm sphere surrounding the heart. Subsequently, Barr

and Spach [79] presented a simplified probability model akin to zero-order Tikhonov

regularization. In the late 1990s, several papers incorporated Bayesian concepts in

reconstructing endocardial electrical activity from intracavitary potentials acquired

by a multielectrode probe [80], and in visualizing cardiac arrhythmias [81]. In 1999,

27
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van Oosterom utilized the maximum-a-posteriori (MAP) estimator to compute the

epicardial potential distribution by assuming known a priori information (based on in-

corporating the spatial covariance of the epicardial potentials) [82, 83]. Greensite [84]

used a data-driven approach to present an “Isotropy” condition that combines tempo-

ral and spatial constraints to estimate temporal and spatial covariances under certain

restrictive assumptions; the method can be interpreted as learning the distribution of

temporal waveforms of the solution — a type of empirical prior. A similar approach

was later proposed by Erem and co-workers [85], who used a data-driven nonlinear

dynamic parametrization, which offers a more flexible and stable representation of

the temporal dynamics than the Isotropy method. The MAP was used to estimate

the unknown epicardial potential distribution with a known a priori probability-

distribution function by maximizing its a posteriori probability-density function in

subsequent studies [86, 87, 88]. The method of Dössel and co-workers [89], based

on the MAP, used QRS-integral features to localize the origin of premature beats;

the MAP requires building a statistical basis for possible sources, which in its turn

relies on certain assumptions about the source nature. Rahimi and co-workers [90]

used Bayesian analysis to evaluate the impact of prior models by learning a prior of

the p-norm distribution in transmural electrophysiologic imaging; they used an au-

tomatically adaptive set of models to deal with model-data mismatch and to achieve

consistent performance in reconstructing sources with different spatio-temporal prop-

erties.

Modern Bayesian methodology does not attempt to select the “right” priors nor

employ the fixed or known priors. Rather, empirical prior incorporating Bayesian

concepts are used to describe flexible a priori distributions developed by learning

from the particular system’s properties in terms of a set of unknown hyperparameters

that must be estimated from the data. To pragmatically learn a priori constraints, it

is important to regularize the ill-conditioned problem of ECGI. In a real heart, initial

pacing is more likely to fire neighboring nodes than those placed further apart, which

means that initial cardiac propagation contains a small group of potentially relevant

features for spatio-temporally changing properties of cardiac sources. With this in

mind, one way to model local spatial connections of this type is to incorporate spatial

smoothing in the form of an average window function into the prior distribution.
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We propose a hierarchical Bayesian approach with a smoothing Automatic Relevance

Determination (ARD) model [91] used to incorporate local spatial interactions on the

epicardial surface. The smoothing ARD model determines the relevant features of

cardiac sources, based on the temporal integral of the QRS complex extracted from

BSPM data, to dynamically guide the search for appropriate spatio-temporal a priori

constraints.

The aim of this chapter was to localize the origin of epicardial activation in patients

who underwent epicardial pacing at known pacing sites or in patients who had VT

with known exit sites. A spatio-temporal Bayesian approach was applied to solving

this problem. We compared the performance of the Bayesian method with that of the

`1-norm [55] and `2-norm (second-order Tikhonov [SOT]) methods in in vivo clinical

studies and in in silico experiments.

3.2 Materials and Methods

3.2.1 Problem formulations

Let us assume that the body-surface potentials are sampled at My nodes for obtaining

a temporal set of recordings at times ∆tTt=1, where ∆ is the sampling time interval

and T is the total number of measurements in time. The relationship based on time

series (t = 1, . . . , T ) between the measurement vector y and the epicardial sources x

at Nx nodes is given by:

y:t = Ax:t + v:t t = 1, . . . , T (3.1)

where y:t ≡ [y1:t, y2:t, . . . , ym:t]
′ denotes the M × 1 vector of potential measurements

at all nodes of body surface at time t, and x:t ≡ [x1:t, x2:t, . . . , xn:t]
′ denotes the N × 1

vector of cardiac electrical activity in all nodes of epicardial surface at time t; the

apostrophe ’ denotes the transpose; A is the transfer matrix between the epicardial-

surface and the torso-surface potentials computed by the forward calculation using

a quasi-static approximation from the Maxwell’s equations; v:t represents modeling

and measurement errors, independent from x:t for all time instants. Eq. 3.1 can be

transferred into a time-integral linear system given by:

ȳ = Ax̄+ ε with x̄ =
T∑
t=1

x:t and ȳ =
T∑
t=1

y:t, (3.2)
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where ε is a measurement noise.

3.2.2 Forward calculation

The forward problem of electrocardiography is to compute for given cardiac sources

the electric potentials within the torso and on the torso surface. In the present study,

the heart-surface potential source model introduced in Chapter 2 was used to derive

the transfer matrix A by solving the boundary-integral formulation of Laplace’s equa-

tion in the source-free volume conductor between the epicardial and torso surfaces,

using the boundary-element method (BEM) [92].

3.2.3 Inverse problem: `2-norm method

The conventional ECG inverse problem was used to estimate the cardiac source x̄ in

the Eq. 3.2 from the time-integral collected electrical field data ȳ using Tikhonov reg-

ularization [93], which can be derived by minimizing an error function that combines

data fit with a penalty defined by

min
x̄
{‖ȳ − Ax̄‖2 + λ‖Rx̄‖2}, (3.3)

where R is the regularizing operator, λ is the regularization parameter, and the sub-

script 2 means `2-norm used. The x̄ can be estimated by minimizing the cost func-

tion 3.3. The first term of the Eq. 3.3 represents the reconstruction error named data

fit, which measures the difference between the measured ECG signal and the recon-

structed ECG data calculated from the estimated cardiac source. The second term

places a penalty or constraint on the regularization method, depending on the choice

of the regularization operator R. Also, choice of the penalty function affects the solu-

tion. Various regularization algorithms have been applied to the ECG inverse prob-

lem, mostly based on Tikhonov regularization that imposes `2-norm constraints. For

the `2-norm solution, R is usually taken as the identity matrix (zero-order Tikhonov),

the discretized gradient matrix (first-order Tikhonov), or the Laplacian differential

matrix (second-order Tikhonov). Parameter λ is chosen by the L-curve [94] method,

CRESO method [95] or Zero-crossing method [96]; λ controls a trade-off between

fitting the data and minimizing the regularization term, which tunes the balance

between stability of the solution and its capability to explain the measured data.
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3.2.4 Inverse problem: `1-norm method

The `1-norm regularization method is to penalize the `1-norm of the gradient function

which is based on the normal derivative of the epicardial surface potentials. The cost

function is given by:

min
x̄
{‖Ax̄− ȳ‖2 + λ‖∂x̄

∂n
‖1}, (3.4)

where λ is the regularization parameter, and the subscript 1 indicates `1-norm. The

normal derivative of the epicardial surface potentials can be derived to relate a normal

derivative matrix F with epicardial surface potentials:

∂x̄

∂n
= Fx̄. (3.5)

Therefore, the cost function can be expressed as:

min
x̄
{‖Ax̄− ȳ‖2 + λ‖Fx̄‖1}, (3.6)

where the normal derivative matrix F can be derived from the geometric relationship

between the epicardial-surface potentials and the body-surface potentials, given by

F = −G−1
HHPHH solved in Chapter 2, where PHH represents the solid angles on

the epicardial surface, and GHH is the gradient of heart potentials on the epicardial

surface (see the details in Chapter 2). Ghosh, et al. [55] presented an iterative

method to calculate non-linear Eq. 3.6 because of non-differentiability of the `1-norm

penalty function.

To solve the non-differentiability of the `1-norm penalty function in Eq. 3.6, an

estimated solution can be obtained by [55]:

x̄ = (A′A+ λF ′WF )−1A′ȳ, (3.7)

where W is the weight matrix of x̄, and F = −G−1
HHPHH is equal to the normal

derivative. The diagonal weight matrix W is obtained by:

W =
1

2
(

1√
(‖Fx̄‖1 + ζ)

), (3.8)

where ζ is a small positive constant chosen 10−5, which can guarantee that the de-

nominator of each element in the W is nonzero. The `1-norm of Fx̄ was simplified
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to choose the maximum from the absolute sum of each column of Fx̄, which is given

by:

‖Fx̄‖1 = max
1≤j≤N

N∑
j=1

|Hij|, (3.9)

where Hij is element locating in ith row and jth column of Fx̄.

3.2.5 Inverse problem: empirical prior Bayesian method

Bayesian Theorem

Since a classic regularization framework provides us only with a single deterministic

solution (such as that obtained by the Tikhonov-type methods), a principal focus of

ECGI investigations shifted recently to obtaining a whole distribution of solutions.

Given the stochastic nature of noise affecting the data, it is natural to view inverse

problems as statistical inference problems. The model uncertainty problem has been

widely treated in the Bayesian literature in the last decade. Meanwhile, several

solutions have been proposed and applied in many other fields of scientific research.

The ill-posed inverse problem can be tackled by using Bayes’ theorem. The core of

this approach is to model the data as a random variable. Therefore, the Bayesian

approach would not only provide us with a maximum likelihood (ML) framework to

estimate the probability distribution of the data when the unknown is viewed as a set

of parameters, but also with an entire probability distribution that we can evaluate

to study sources of uncertainty, given the data.

In the Bayesian framework, on the other hand, x̄ is viewed as the realization of

the random variable rather than as a parameter, and it is given a prior distribution;

this prior is then combined with the likelihood through Bayes theorem to produce

the so called posterior distribution, i.e., the probability distribution for the unknown,

conditioned on the realization of the data. The solution of the inverse problem is

here defined to be the posterior distribution of the unknown, which can then be

used to compute point estimates and bounds. More specifically, let p(x̄) be the prior

probability distribution for the unknown, embedding all the information which is

known a priori , before the data are collected; let p(ȳ|x̄) be the likelihood function,

the same function that is used in the maximum likelihood framework; the posterior
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distribution is given by Bayes theorem as

p(x̄|ȳ) =
p(ȳ|x̄)p(x̄)

p(ȳ)
. (3.10)

Let us briefly consider a linear inverse problem with additive zero-mean Gaussian

noise ε, with standard deviation δ. In the ML framework, the likelihood function is

p(ȳ|x̄) =
1√
2πδ

exp(−‖ȳ − Ax̄‖
2

2δ2
). (3.11)

In Bayesian terms, the posterior distribution under zero-mean Gaussian prior for the

unknown turns out to be:

p(x̄|ȳ) ∝ exp(−‖ȳ − Ax̄‖
2

2δ2
) exp(−‖x̄‖

2

2η2
), (3.12)

where η is the standard deviation of the prior. Comparison of equations 3.12 and 3.3

suggests that the minimizer of the Tikhonov functional is the mode of the posterior

distribution. And the regularization parameter is identified with the ratio between

the noise variance and the variance of the prior distribution δ2

η2
. Constraints are

therefore applied to the problem by specifying probability distributions for the noise

and sources, called likelihood and prior respectively. The parameters describing these

two distributions will be referred to as the hyperparameters in the text. By adjusting

the hyperparameters using the data in ȳ the posterior probability can be determined,

which specifies the most probable value for the sources.

Hierarchical Bayesian Method

We consider Eq. 3.2 consisting of My nodes with corresponding target measurement

ȳ and N -dimensional source vectors x̄. For the probability distribution based on an

empirical Bayesian framework, the posterior distribution can be used as representation

of unknown sources given the measured ȳ,

p(x̄|ȳ) =
p(ȳ|x̄)p(x̄)

p(ȳ)
, (3.13)

where the model evidence p(ȳ) is the marginal likelihood which is important for

model comparison. The likelihood model p(ȳ|x̄) is assumed to be Gaussian with a

noise variance [97], which is given by
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p(ȳ|x̄) = (
2π

β
)−M/2 exp(−β‖ȳ − Ax̄‖

2

2
), (3.14)

where β is the reciprocal of the noise variance.

During the epicardial pacing, the activation is progressing smoothly from an initial

node to its neighboring nodes, as shown in Fig. 3.1. For each node and its nearest

neighbors a class is defined by a weighting function. The epicardial surface is divided

into Nx overlapping classes centered around each source node. The parametric form

of the proposed method’s weight prior combines each source and its nearest neighbors

as follows:

p(x̄i; γi) ∝ exp(−1

2

N∑
i=1

γi(x̄
2
i +

1

pi

pi∑
j=1

(x̄∗j)
2)), (3.15)

where for each source x̄i(i = 1, . . . , N), pi is the number of neighboring sources x̄∗j .

To find the normalization factor, the prior also can be rewritten as

p(x̄i; γi) ∝ exp(−1

2

N∑
i=1

(γi + ψi)x̄
2
i ), (3.16)

where γi+ψi are used to control each class of the sources x̄i (i = 1, . . . , N) as groups of

hyperparameters; the variable ψi(i = 1, . . . , N) is defined as an average of its closest

neighboring sources, which is given by

ψi(γ
∗
1 , . . . , γ

∗
j ; p
∗
1, . . . , p

∗
j) =

γ∗1
p∗1

+ · · ·+
γ∗j
p∗j
, (3.17)

where γ∗j (j = 1, . . . , pi) defines the hyperparameters that are centered around the

neighboring nodes x̄∗j of x̄i, and p∗j is the number of neighbors for each x̄∗j . The prior

then takes the form

p(x̄i; γi,∀i) ∼ Nx̄(0,Γ) (3.18)

where Γ is

Γ =


γ1 + ψ1 · · · 0

...
. . .

...

0 · · · γN + ψN

 .
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Figure 3.1: The reconstructed epicardial surface is depicted as a triangulated mesh
interconnecting source nodes. Source node x̄i (purple) is surrounded by its nearest
neighbors (yellow) denoted x̄∗j(j = 1, . . . , 6)
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The posterior probability of the x̄ over the weights is also Gaussian,

p(x̄|ȳ; β,Γ) =
1∫

exp(−L(x̄))dx̄
exp(−L(x̄)), (3.19)

where L(x̄) = β
2
|ȳ−Ax̄|2 + 1

2
x̄
′
Γx̄. To minimize the L(x̄), the most probable value of

x̄ can be estimated as

x̄MP = (A
′
A+

1

β
Γ−1)−1A

′
ȳ. (3.20)

The covariance Σx̄ evaluated at x̄MP is then

Σx̄ = (∇2L(x̄,Γ, β))−1 = (Γ + βA
′
A)−1, (3.21)

where ∇ denotes the gradient in the space of x̄. Using evidence approximation [91],

the marginal likelihood written by integrating the hyperparameters between Eq. 3.14

and Eq. 3.16 can be written as

p(ȳ; β,Γ) =

∫
p(ȳ|x̄MP ; β)p(x̄MP ; Γ)dx̄

= (
2π

β
)−

M
2 (2π)−

N
2

N∏
i=1

(αi + ψi)
1/2

·
∫

exp(−L(x̄MP ))dx̄. (3.22)

To estimate the hyperparameters β and Γ by maximizing the marginal likelihood

Eq. 3.22, we employed the expectation–maximization (EM) algorithm to iteratively

update the β,Γ by taking the natural log of Eq. 3.22, and differentiating this expres-

sion with respect to γi(i = 1, . . . , N) to find the optimum:

∂

∂γi
log p(ȳ; Γ, β) =

1

2γi
− x̄2

i

2
− 1

2
Tr(Σx̄). (3.23)

Setting the derivative with respect to γi to zero gives the following identity for γi,

which maximizes the evidence

γnew
i =

1

x̄2
i + Σii

i = 1, . . . , N, (3.24)
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where Σii is the i-th diagonal element of the Σx̄.

Many learning rules for β have been proposed [98]. However, in noisy environments

some of the learning rules cannot provide an optimal β, thus leading to degraded

performance. To localize a pacing/VT-exit site on the epicardial surface, we only

attempt to identify a node on the epicardial surface. Therefore, we assigned a value

to β, calculated by using the conventional Bayesian linear inverse problem method

(see 3.2.5), and then we used it to find the diagonal values of Γ and the source

estimates x̄MP . The proposed method ignores the irrelative nodes and pairs of nodes,

keeping only the most relative ones. In practice, during the iterative estimation, each

hyperparameter γi can be modified to obtain an optimal value using the evidence

approximation. If there is not enough evidence in the data that the i-th parameter

should be non-zero, the prior variance will have a large value of γi, which means that

the i-th parameter in effect will be “switched off” [98]. Thus, most of γi are pruned

out from the model when γi exceeds the given threshold value. This way, the inverse

prior variance γ−1
n for nodes that remain increases and a sparse solution is accelerated.

Hyperparameter β Estimation

In Eq. 3.2, the sum-of-squares error function Eȳ = 1
2
‖ȳ − Ax̄‖2 is chosen; the noise ε

on the measured data is assumed to have Gaussian distribution with zero mean, with

variance 1
β
; the likelihood model then takes the form of Eq. 3.14. So, the posterior

distribution under zero-mean Gaussian prior based on the decay function Ex̄ = 1
2
‖x̄‖2

for the unknown turns out to be:

p(x̄|ȳ; β, α) ∝ exp(−β‖ȳ − Ax̄‖
2

2
) exp(−α‖x̄‖

2

2
), (3.25)

where α is the inverse variance of the priori distribution. The most probable value of

x̄ can be calculated by finding the maximum of the posterior distribution. It is more

convenient to maximize the posterior by minimizing the negative logarithm of the

posterior distribution, because of a monotonic increasing property of logarithm. Since

two hyperparameters (α, β) are independent of x̄, we can minimize − log(p(x̄; β, α))

given by

− log p(x̄|ȳ) =
β

2
|ȳ − Ax̄|2 +

α

2
|x̄|2. (3.26)
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Differentiation gives

− ∂

∂x̄
log p(x̄|ȳ) =

∂

∂x̄
(
β

2
|ȳ − Ax̄|2) +

∂

∂x̄
(
α

2
|x̄|2)

= β(AT ȳ − ATAx̄)− αx̄ = 0, (3.27)

resulting in the most probable value

x̄MP = (ATA+
α

β
I)−1AT ȳ. (3.28)

To find two hyperparameters Θ(= α, β), the marginal probability density function

(pdf) can be written as

p(ȳ; Θ) =

∫
p(ȳ|x̄MP ; β)p(x̄MP ;α)dx̄

= (
2π

β
)−

M
2 (

2π

α
)−

N
2

· exp(−L(x̄MP ))(2π)
N
2 det(H)−

1
2 , (3.29)

where L(x̄MP ) = βEȳ(x̄MP ) + αEx̄(x̄MP ), H(= βA
′
A + αI) is the N × N Hessian

matrix of the total error function. We employ the EM method to maximize p(ȳ; Θ).

This is equivalent to minimizing − log p(ȳ; Θ), yielding the effective cost function:

− log p(ȳ; Θ) = L(x̄MP ) +
1

2
log det(H)− N

2
logα

− M

2
log β +

N

2
log 2π. (3.30)

Using differentiating, the α is given by,

αnew = (
N∑
i=1

λi
λi + α

)/2Ex̄(x̄MP ), (3.31)

where λi(i = 1, . . . , N) are the eigenvalues of βA
′
A. With the same procedure as for

α, the log-evidence can be differentiated with respect to β

βnew = (M −
N∑
i=1

λi
λi + α

)/2Eȳ(x̄MP ). (3.32)

The iterative algorithm is given by
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(1) Initialize α and β with positive random numbers between 0 and 1.

(2) Estimate xMP using Eq. 3.28.

(3) Re-estimate diagonal elements of α and β using the criteria from Eqs. 3.31 and

3.32.

(4) If convergence criterion is fulfilled then stop; else go back to step 2.

To evaluate the convergence using the maximum change in α and β between iterations,

the algorithm stops at iteration l when W (l) < ε where

W (l) = max |α(l)− α(l − 1)|, |β(l)− β(l − 1)|, ε > 0. (3.33)

Therefore, the l-th β is used in the Bayesian method.

3.3 Clinical and Simulation Protocols

3.3.1 Study population

Four patients who underwent epicardial mapping were enrolled. These patients had a

history of ventricular tachycardia resistant to amiodarone or two other antiarrhythmic

drugs, and patients with implantable defibrillators and recurrent appropriate device

therapies. Detailed description of the four cases is included in Appendix C.1.2.

3.3.2 Patient-specific models

CT-imaging was acquired for each patient in the supine position. All patients un-

derwent computed tomography (CT) scanning prior to the procedure for registration

with electroanatomic mapping and generation of patient-specific geometry by a cus-

tom software, and surface electrodes were applied on the patient torso according to

our Dalhousie Standard methodology [99, 100] (See Appendix A.1). The Dalhousie

standard torso consists of 352 nodes in Fig. 3.2 (panel A, blue part), which was used to

align with the patient-specific locations of the 120-lead electrodes in Fig. 3.2 (panel A,

red part) for customizing the Dalhousie standard 352-node torso as shown in Fig. 3.2

(panels B, C, E and F).
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Figure 3.2: A: Anterior view of the standard Dalhousie torso (blue) aligned with the
triangulated surface (red) of patient-specific locations of the 120 surface electrodes
(yellow disks). B, C, E, F: Patient-specific geometry with epicardial surface for the
subjects #1 to #4. D: Registration of electroanatomic map with CT.
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3.3.3 Data acquisition and processing

The detailed data acquisition is described in the Appendix B.1. For the purposes

of this study, we used the BSPM data corresponding to known pacing sites (with

spatial coordinates provided by the electroanatomic system), and analyzed them off-

line. Fig. 3.3 shows a butterfly plot of the BSPM data of a representative paced beat.

The following features were extracted: (1) QRS integral (
∫

QRS), a time integral of

the QRS complex in microvoltseconds (µVs); (2) trimmed QRS integral (
∫

QRSms)

calculated over the initial 10, 20, 30, 40, 50, 60, 70, 80 ms of the QRS complex

(denoted as
∫

QRS10, . . . etc.) from the onset of QRS complex.

Figure 3.3: Butterfly plot of the body-surface potential mapping (BSPM) data
with pacing spikes during epicardial pacing of Patient #2 who underwent epicar-
dial catheter ablation. The red vertical lines indicate the onset and the offset of the
QRS complex.
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3.3.4 Analysis of experimental data

The gold standard for assessing accuracy of the inverse procedure was provided by

the Carto c© electroanatomic mapping system during the epicardial ablation proce-

dure. The patient-specific Carto c© geometry was registered manually (by J.L. Sapp)

and fused with the patient’s CT geometry by a custom software, to facilitate quan-

titative comparison. The locations of the Carto c© sites where pacing was applied

were projected onto the triangulated mesh of the CT epicardial surface (Fig. 3.4). As

a measure of accuracy, the Euclidean distance was calculated for each recording be-

tween the inversely-calculated potential minimum and the actual pacing site exported

from the Carto c© electroanatomic system and projected on the discretized epicardial

surface. The means and standard deviations of the localization error over all pacing

sites were calculated (in millimeters).

Figure 3.4: Patient-specific image fusion. The patient-specific Carto c© elec-
troanatomic geometry was incorporated into the coordinate system of the computed
tomography (CT) geometry to register and fuse in the same coordinate system.

For analysis of pacing-site localization, we compared the Bayesian method with

both Tikhonov methods in localizing 78 epicardial pacing sites pooled for all 4 pa-

tients. The `1-norm method is based on the normal derivative of the potential as a

penalty function [55]; and the `2-norm regularization penalizes Laplacian function (a

second-order Tikhonov [SOT] scheme); regularization parameters are chosen by the

L-curve method [94]. For two of the four patients, epicardial potential distributions

corresponding to VTs for which an exit site was identified by clinical mapping were

also calculated by using both Bayesian and Tikhonov methods.
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3.3.5 Simulation protocol

To further validate the Bayesian method and compare it with Tikhonov methods,

model-based simulations were performed using patient-specific geometry. Sets of epi-

cardial and body-surface potentials were calculated using a forward simulation using

a single-dipole source [60] at anatomically significant locations.

For each patient’s geometry separately, simulated epicardial (ΦS
H) and body-

surface (ΦS
B) potentials with added Gaussian noise were calculated for 17 dipoles

on the epicardium, one in each AHA segment [101]. The 17 locations were deter-

mined by picking a triangle in the appropriate area of the epicardial surface, moving

the dipole source 5 mm along the inward normal, and making the dipole direction the

same as the inward normal of the selected triangle. The relative error (RE) and cor-

relation coefficient (CC) were calculated in each case, to compare forward-simulated

and inversely-estimated potentials.

RE =

√∑N
i=1(ΦC

i − ΦS
i )2∑N

i=1 ΦS
i

; (3.34)

CC =

∑N
i=1(ΦS

i − ΦS
mean)(ΦC

i − ΦC
mean)√

[
∑N

i=1(ΦS
i − ΦS

mean)2
∑N

i=1(ΦC
i − ΦC

mean)2]
, (3.35)

where ΦC
i is the inversely-estimated epicardial potential at the i-th node, ΦS

i is the cor-

responding forward-simulated potential; ΦS
mean and ΦC

mean are their respective mean

values. Fig. 3.5 shows patient-specific locations of 17 dipole sources with the direction

of the inward normal, based on AHA bull’s-eye display [101].

3.4 Results

3.4.1 Simulation study

We compared, in terms of RE and CC, the capabilities of the Bayesian method

and Tikhonov methods to recover epicardial potentials previously generated by the

forward calculation. Fig. 3.6 shows the corresponding CC and RE in boxplot format.

It is evident that the Bayesian method can recover epicardial potentials with the

highest CCmean (CCmean = 0.87 compared to 0.71 for `1-norm method and 0.69 for

`2-norm [SOT] method); i.e., it can recover the spatial pattern of epicardial potentials
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Figure 3.5: A single dipole with the direction of the outward normal at 17 locations
on epicardial surface, for each patient separately.
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more faithfully than the other methods. Also, the Bayesian method produces the

smallest RE.

Figure 3.6: Results of simulation experiments. Boxplots illustrate the ability—in
terms of correlation coefficient (CC) and relative error (RE)—to recover forward
generated epicardial potentials by the proposed Bayesian method, and by the two
Tikhonov methods. Boxes represent interquartile range, error-bars represent range,
and line in the box indicates median.

3.4.2 Localization of epicardial pacing sites

The localization accuracy was tested for: pooled pacing sites (n = 78), pacing sites

of each patient separately (n = 23, 24, 21, 10), and pooled pacing sites in the normal

tissue (n = 33), scar tissue (n = 31), and scar-margin tissue (n = 14). The accuracy

of pacing-site localization for varied intervals of
∫

QRS input variables is listed in

Table 3.1, with localization errors of an optimal integration interval indicated for

each patient. Fig. 3.7 compares localization performance of the Bayesian method

with that of the Tikhonov methods across all integration windows of input variables.

With increasing window size, the localization error does not change significantly for `1-

norm and `2-norm methods; however, for the Bayesian method it tends to decrease,

reaching the minimal value at 60-ms window. Thus we considered the “optimal”

integration interval of trimmed
∫

QRS input variables to extend 60 ms from the QRS

onset.
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Figure 3.7: Results of clinical experiments. Mean localization errors with SD of the
proposed Bayesian method and the two Tikhonov methods, across all integration-
intervals of

∫
QRS input variables, for all available pacing sites (n = 78).
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Table 3.2 shows—for each patient separately—the accuracy of pacing-site local-

ization for three methods, all using the
∫

QRS60 input variables. The pairwise t-

test demonstrated statistically significant differences in the mean error for each pair

of these three methods: Inverse solutions using the Bayesian method—for pooled

(n = 78) epicardial pacing sites—were significantly more accurate than those esti-

mated by the `2-norm method (P=0.0007), and the `1-norm method (P=0.0053).

Also, the pooled localization accuracy of the `1-norm method was better than that

achieved by the `2-norm method (P=0.022).

We found that for each subject, there were several outlier pacing sites that had a

localization error larger than 20 mm. To investigate the source of these unacceptable

errors, we sorted all pacing sites into three categories in terms of the electroanatomic

substrate around them, as characterized by bipolar voltage measured by Carto c©

system. Fig. 3.8 shows the localization error of the Bayesian method for the pacing

in no-scar areas (n = 33), scar-margin areas (n = 14), or scar areas (n = 31). The

pacing sites within scar region show the largest median of localization error (16.8

mm), whereas the pacing within the area with no scar shows the lowest median

of localization error (10.6 mm), with the mean and standard deviation (10.7 ± 7.4

mm). The Bayesian method’s localization accuracy within no-scar region and for

pacing sites with no-delay response (n = 17) was 7.6 ± 6.4 mm, which is significantly

better than that (13 ± 9 mm, P < 0.00001) achieved previously by Sapp et al. [26]

by means of the Tikhonov method and using the same clinical data.

3.4.3 Localization of VT-exit sites

Table C.2 contains clinical data of two patients suffering from scar-related VT (Patient

#1 and Patient #2) for whom epicardial VT-exit sites were identified by epicardial

contact mapping. Figure 3.9 illustrates how Bayesian and Tikhonov inverse solutions

estimated these known exit sites in each patient. In patient #1, the site of successful

ablation of VT1 was at the infero-basal LV as indicated on the electroanatomic map

in Fig. 3.9 (panels a). This site was estimated by both Tikhonov methods with the

localization error of 24.2 mm (panels f & j), whereas the epicardial potential distribu-

tion obtained by the Bayesian method featured a minimum at a distance of 13.3 mm

from the ablation site (panel n). In patient #2, the VT-exit site for VT2 was also
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Table 3.1: Accuracy of pacing-site localization achieved by the Bayesian method for
varied integration intervals of

∫
QRS input variables in 4 patients

Subject
#

No. of
Pacing Sites

Localization Error of the Proposed Method
Integration Intervals of

∫
QRS (Mean ± SD)

10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms
1 23 19.6 ± 12.6 16.7 ± 10.4 13.2 ± 9.2 13.8 ± 9.1 13.0 ± 9.9 12.9 ± 9.7 14.5 ± 10.0 15.1 ± 11.2
2 24 35.2 ± 17.7 29.8 ± 16.9 27.9 ± 15.7 23.2± 12.5 21.3 ± 13.7 18.8 ±13.6 17.3 ± 10.8 16.1 ± 10.9
3 21 23.6 ± 18.5 18.4 ± 11.3 13.8 ± 7.9 12.5 ± 5.1 12.5 ± 5.1 11.7 ± 5.7 11.7 ± 5.7 11.8 ± 5.9
4 10 52.5 ± 44.3 45.5 ± 40.4 42.3 ± 41.2 31.1 ±39.8 21.6 ± 18.5 14.1 ±13.2 14.1 ± 13.2 17.2 ± 12.4

Accuracy of localization in terms of Euclidean distance (mm) from the predicted
node to the known pacing-site node on the patient-specific epicardial surface as
Mean ± standard deviation (SD). Smallest error for each patient is in bold face.

Table 3.2: Accuracy of pacing-site localization achieved by Bayesian and Tikhonov
methods: patient-by-patient results

Subject
No. of
Sites

`2-norm [SOT]
Localization Error

(mm)

`1-norm
Localization Error

(mm)

Proposed method
Localization Error

(mm)
1 23 33.8 ± 21.5 27.3 ± 17.6 12.9 ± 9.7
2 24 45.5 ± 18.5 33.0 ± 16.0 18.8 ± 13.6
3 21 40.4 ± 22.1 21.8 ± 14.0 11.7 ± 5.7
4 10 42.7 ± 18.1 34.0 ± 11.0 14.1 ± 13.2

All three methods used
∫

QRS60 input variables. The localization error (in mm) was
calculated for pacing sites of each patient as mean ± SD of estimated distance over
the LV endocardial surface.
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Figure 3.8: Errors of the Bayesian inverse solution in localizing epicardial pacing sites
within no-scar areas (N), scar-margin areas (SM), and scar areas (S). Boxplots as in
Fig. 3.6, with median values attached.
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at the inferio-basal LV, at the scar margin, as indicated on the electroanatomic map

in Fig. 3.9 (panels d). Fig. 3.9 (panels h) shows a corresponding epicardial potential

distribution obtained by the `1-norm inverse solution, with the site of minimum po-

tential at a distance of 28.4 mm from the successful ablation site of VT2, still at the

infero-basal aspect of the LV (panel h). However, the minimum of potential distribu-

tion obtained by the `2-norm method for the VT2 predicts erroneously the VT-exit

site at the basal-superior LV (panel m). Fig. 3.9 (panel p) shows the Bayesian in-

verse solution features the site of minimum potential in close proximity to the site of

successful ablation of VT2, at a distance of 9.3 mm.

3.5 Discussion and Conclusions

The principal goal of this study was to improve localization of the earliest epicardial

activation by reconstructing electrical potential distributions on the epicardial surface

from the temporal-integral variables extracted from multiple body-surface ECGs. We

achieved this goal by developing a data-driven method based on empirical Bayesian

framework and the smoothing Automatic Relevance Determination (ARD) model

for deriving dynamic spatio-temporal a priori constraints. To validate the proposed

method, we used both in silico and in vivo experiments, using data acquired from

four patients suffering from scar-related VT who underwent CT scan, EP study, and

epicardial ablation procedure aided by the Carto c© electroanatomic mapping system.

Data exported from the latter system constitute the gold standard for the assessment

of localization performance.

The proposed Bayesian method based on the ARD model provides—in compari-

son with the established methods using a Tikhonov-type regularization—an improved

spatio-temporal estimation of the electrical potentials and their time-integrals across

the epicardial surface of the heart. The innovative aspect of the proposed method is

that the prior variance of each unknown parameter is estimated from the observed

ECG data by introducing a hierarchical prior on the variance [91]. The smooth-

ing ARD associates one group of hyperparameters to each source prior based on a

weighting function using only a small group of relevant spatio-temporal features and

automatically pruning the remaining features. The ARD model can force any unnec-

essary parameters to zero for irrelevant sources on the epicardial surface, which helps
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Figure 3.9: Localization of VT-exit sites by epicardial inverse-solution mapping. Top
Row: Electroanatomic substrate as depicted by epicardial Carto c© voltage maps for
patients #1 (a & c) and #2 (d & e); Second Row: epicardial inverse-solution maps of
the electrogram integrals during VT1 (f & g) and VT2 (h & i), obtained by the `1-norm
method; Third Row: maps corresponding to those in the 2nd row, obtained by the
`2-norm method; Bottom Row: maps corresponding to those in the 2nd row, obtained
by the Bayesian method. The yellow arrows on the Carto c© maps mark the clinically-
identified VT exit; these exit sites were registered to the inverse-solution potential
maps and marked by purple dot. The estimated sites of myocardial activation origin
are marked as yellow dots in the corresponding inverse-solution maps.
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to efficiently localize the origin of ventricular activation. This empirical Bayesian

framework with a smoothing ARD model yields significantly higher performance of

source localization than the widely-used Tikhonov-type regularization, demonstrating

that the empirical priors are superior to conventional fixed priors. We found that the

performance of the proposed method in localizing the origin of ventricular activation

improves when the temporal-integration window for calculating input ECG variables

encompasses a longer interval than just initial 30–40 ms from the onset of activation;

the optimal temporal window appears to be 60–80 ms from the QRS onset, i.e., it cor-

responds to the time required for the depolarization wave to spread near-completely

throughout the ventricular mass.

The Bayesian method’s ability to recover epicardial potential distributions (more

accurately, time-integrals of epicardial electrograms) was compared with the corre-

sponding ability of Tikhonov-type methods. We can confirm previous findings that

the `1-norm method performs better than the `2-norm method in localizing focal

sources [102, 103]. However, the `1-norm method [55] has a slow convergence and the

solution becomes unstable when the constant parameter in the diagonal weight ma-

trix is small. In addition, the accuracy of the constraint-based methods incorporating

a fixed a priori information depends on determination of an optimal regularization

parameter. Recently, various novel spatially-constrained regularization schemes were

proposed. For instance, Potyagaylo et al. [104] used spatially-varying regularization

parameters with different weightings for endocardial and epicardial components of

the solution. Chamorro-Servent et al. [105] optimized the placement of the pseudo-

boundaries (depending on the distance between the torso electrodes and the nearest

heart locations) to achieve significant improvements in inverse solutions in patients

with structural heart disease.

The limitations of the present study is that the proposed inverse solution recovers

only epicardial (not endocardial) potentials. However, the unique aspect of this and

the previous [26] study is that the reference data were obtained from electroanatom-

ical maps created with a catheter in direct contact with the epicardial surface. We

used the same clinical data as the previous study by Sapp et al. [26], which relied on

an inverse solution regularized by the Tikhonov method. From the same pacing sites
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as used previously we found a highly-significant improvement in the resulting local-

ization accuracy. In conclusion, the results of both in vivo and in silico experiments

yielded by the present study should provide a strong incentive for pursuing further

investigation and clinical application of data-driven Bayesian methods in electrocar-

diographic imaging.



Chapter 4

Inverse Solution for Activation Times

4.1 Introduction

The clinical electrophysiological (EP) studies are now routinely used to investigate

abnormal propagation pathways [106] by techniques of activation mapping [107].

Isochronal activation map visualizes propagation of the activation front wave in the

myocardium and it provides a summary of an entire activation sequence. The pass-

ing activation wave front can be detected from a steep negative deflection of a local

electrogram; this was first proposed by Sir Thomas Lewis in 1914 [108, 109]. Inva-

sive experiments designed to map the local activation times (LAT) throughout the

whole ventricle were later performed by Durrer and co-workers, who placed closely-

spaced differential electrodes in the ventricular wall of perfused human hearts [14];

they showed that the passing activation wave front can be most conveniently detected

as a spike-like deflection on bipolar electrograms.

The standard method by which activation times are calculated from inversely-

calculated unipolar electrograms (EGMs) is to detect the steepest negative deflection;

this approach has been widely used and it is well supported by experimental and

theoretical evidence [110]. Producing the LAT as an isochronal map over the entire

epicardial/endocardial surface by direct measurement requires maneuvering of the

catheter tip to collect EGMs point by point and determining for each point a LAT.

In the clinical EP studies, it is more common to detect passing activation wave front

beneath the catheter tip as spikes on bipolar electrograms [110]. The bipolar-catheter

technique was adopted in the present clinical study to define reference activation

times based on Carto c© measurements. This technique is sometimes used in clinical

EP studies to map sustained arrhythmias; however, the approach cannot be used

when the arrhythmia is not sustained or when it is not reproducibly inducible or

hemodynamically tolerated.

Over the past decade, electrocardiographic imaging (ECGI) as a noninvasive

54
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imaging modality has demonstrated its ability to reconstruct unipolar EGMs and

isochronal maps on the epicardial surface from body-surface potentials [27]. The

isochronal maps generated by the computed unipolar EGMs can serve as a summary

of the entire sequence of ventricular activation. There are two most frequently used

methods for calculating the activation times from the ECGI. In a standard computa-

tion, the LAT is defined as the time when the activation wave front passes beneath

the electrode, which is usually set either at the maximum negative slope of the elec-

trical deflection for computed unipolar EGM for that location, or at the maximum

signal magnitude for bipolar recordings [111]. Alternatively, a nonlinear temporal

model based on an a priori restriction of transmembrane potential waveforms can be

adopted on the heart surface model [61, 74, 112, 113]; this latter technique is referred

to as activation-time imaging. However, this approach with its a priori restrictions

does not accurately describe the full temporal behavior of the heart-surface potentials,

and it can be especially problematic in the cases of acute ischemia or prior myocar-

dial infarction. Moreover, the activation-time imaging requires strict physiological

constraints based on the assumption of uniform double layer (UDL) model [114].

This Chapter presents a new methodology for constructing isochronal activation

maps, based on measurements of propagation delay between pairs of computed EGMs

at neighboring locations. This new method of detecting activation times was assessed

by correlation with known activation maps derived from directly measured epicar-

dial EGMs collected invasively through Carto c© electroanatomic system (Biosense

Webster, Diamond Bar, CA, USA).

4.2 Methods

4.2.1 Study population

Validation of the proposed methodology of activation mapping was performed by

using clinical data of Patient #4, who had an implantable cardioverter defibrillator

(ICD) device (see Appendix C, Table C.2). During the epicardial catheter procedure,

the reference LAT was measured at multiple sites when keeping the ICD device pacing.
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4.2.2 Computed electrograms

The empirical Bayesian method proposed in Chapter 3 was used to reconstruct EGMs

that represent the variation of voltage as a function of time at a given point on the

epicardial surface. We extract the body-surface potential on the torso at each time

instant and use it as input for the inverse solution to recover a time-sequence of

potentials (EGMs) on the epicardial surface.

4.2.3 Global activation mapping

To assess the accuracy of the inverse procedure in preserving timing information, the

activation time at multiple points on the epicardial surface was mapped, generating

an activation map of the pathways followed by the electrical depolarization wave front

during the activity of the heart.

Dubois et al. [115] presented a method that measures the delay in the activation

of two neighboring locations during a single propagation of the depolarization wave

front. Based on this method, we employed a cross-correlation method to determine

the time delay in the activation of two neighboring locations. After calculating the

cross-correlation for each pair of neighboring locations, the maximum (or minimum

if the signals are negatively correlated) of the cross-correlation function indicates the

instant of time at which the signals are best aligned, i.e., the time delay between the

two signals is determined by the argument of the maximum, as in τdelay = arg max
t

((f ?

g)(t)), where the ? is the convolution operation for two continuous functions f and g

based on time series, such as a couple of EGMs in our application.

Using the known activation relationships of two neighboring locations with these

delays as the inputs, a linear system can be constructed. For a patient-specific ge-

ometry, let us assume N computed EGMs for which the activation map is known on

the epicardial surface. The activation times of two EGMs (i and j) are such that the

difference is equal to the time necessary for the wave front to travel from one to the

other:

Tj − Ti = τij i, j = 1, . . . , N ; j > i. (4.1)
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Therefore, the resulting system contains as many equations as there are pairs of neigh-

boring EGMs on the epicardial surface. Eq. 4.1 is rewritten in a matrix form DT = τ ,

where T = [T1, . . . , TN ]′ is the vector of activation times on the epicardial surface,

each row of D corresponds to an equation for a given two neighboring locations, and

the vector τ includes all neighboring pairs of EGMs’delays (τij). For example, let’s

imagine 3 time-instants of activations: T1, T2, T3, leading to 3 equations given by
−1 1 0

0 −1 1

−1 0 1



T1

T2

T3

 =


τ12

τ23

τ13

 . (4.2)

Since the matrix D assumes a sparse dictionary, we used Sparse Bayesian Learn-

ing [116] to solve this linear system.

4.3 Results

4.3.1 Global activation time (GAT)

Fig. 4.1 (panels (e)-(h)) shows the measured local activation time (isochronal maps)

obtained from Carto c© electroanatomic mapping system by using contact mapping [117].

The inversely-calculated isochronal map (panel (f)) shows earliest activation on the

right-ventricular apex (red) and the activation wave spreading over the right-ventricular

anterior and free wall in approximately 120 ms. The latest area to activate was the

basal region of the anterior left ventricle at around 220 ms as shown in panels (e) and

(h). To demonstrate the inverse isochronal map, an epicardial pacing site located on

the right-ventricular apex was selected and indicated by the blue dot and arrow, as

shown in Fig. 4.1. The computed isochronal maps (in Fig. 4.1 panels (i)-(l)) obtained

by the GAT mapping show a qualitatively similar spread of activation, and feature

several characteristics: the early activation, which captures the right-ventricular (RV)

apical region and then propagates from the right-ventricular anterior wall to the left-

ventricular anterior wall, as well as the latest activation of the anterior-basal wall,

are all correctly estimated by the proposed activation-map method. Moreover, a scar

region with lowest bipolar potentials (panel (b)) located on the right-ventricular apex

is near the ICD pacing site, causing delayed propagation (indicated by the green part)

as shown in lateral RV view of panel (j). The inverse isochronal maps of panels (i) and
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(j) illustrate the very slow propagation on the right-ventricular free wall and anterior

basal areas that are indicated as having large scar margin and tissue with unknown

status (panels (a) and (b)).

Fig. 4.1 (panels (m)-(p)) illustrates the activation maps constructed by a standard

computation. Although the calculated activation isochrones were approximately able

to capture early and late activation areas, the whole isochronal map features inaccu-

rate propagation patterns. The standard method estimates the local activation time

(LAT) at each location by using maximum negative slope method (min∂V
∂t

) during

depolarization. In this case, the poor resolution of the estimated activation time

by the classical method was caused by several factors: multiple negative deflections,

fractionated electrograms or poor signal-to-noise ratio (SNR), particularly in unipolar

recordings.

4.4 Discussion and Conclusions

This Chapter presents a novel method for assessing the local activation time at the

sites of computed EGMs. Inverse-solution isochrones yielded by this algorithm corre-

lated closely with known activation maps obtained by electroanatomic contact map-

ping during endocardial pacing at the right-ventricular apex, delivered by ICD.

The discrepancies in comparison of the proposed method and the reference LAT

isochronal map occur in part due to limitations of the inverse-solution method used

here, which can only produce unipolar EGMs, which inherently contain superposition

of both near and distant field potentials; moveover, the reference activation times were

obtained from directly measured bipolar EGMs, which reflect only intrinsic near-field

activity [119]. Bipolar EGMs exhibit a sharp peak when the activation wave front

passes by the catheter tip, whereas the fastest down-slope in inverse unipolar EGMs

has reduced ability to resolve changes in activation times over neighboring epicardial

regions.

In diseased hearts, there are many situations in which the peak negative derivative

may not be a reliable predictor of activation time. Spach et al [120] have recorded

multi-component unipolar EGMs from isolated atrial preparations for which the max-

imum negative derivative alone did not accurately predict activation of the myocardial
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Figure 4.1: Maps for Patient #4. The first row (panels a-d) shows Carto c© epicardial
substrate maps based on bipolar potentials; the second row (panels e-h) depicts the
activation times as determined by Carto c© system; the third row (panels i-l) shows the
activation times estimated by the proposed methodology of activation mapping; the
last row (panels m-p) shows the activation times estimated by the classical method
(maximum negative slope). The blue dot and arrow indicate where the ICD pacing
site projects on the epicardial surface. These estimated maps were constructed using
the Map3D [118] software.
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cells immediately beneath the extracellular electrode. They found the maximum neg-

ative derivative sometimes reflected activation of larger bundles of fibers that were

some distance from the recording site. Thus, the presence of diseased tissue further

complicated interpretation of EGMs obtained by the inverse solution. The method

of steepest down-slope applied to EGMs obtained by the inverse solution relies on

derivatives calculated from a few successive samples, which makes it vulnerable to

measurement noise in body-surface potentials or to slight changes in the regulariza-

tion parameter that controls the amount of smoothing in the inverse calculation. In

cases of EGMs with low peak amplitude, and thus low steepest-slope values, there

were multiple points with very similar steepest slope values, which caused spuri-

ous assignment of activation times. This problem was partially mitigated by spatial

smoothing of inverse EGMs using moving-average spline interpolation. Similar ob-

servation of quick activation over large regions and lines of abrupt jumps in the cal-

culated activation-time maps were noticed in figures published by other investigators

[27, 121, 122].

In calculating the activation maps, we have noticed that the inversely calcu-

lated isochrone maps did not reflect the presence of the scar, and thus they must

be correlated with known myocardial scar for interpretation. This would be pos-

sible with advanced imaging software, such as MUSIC platform, which integrates

dalayed-enhancement MRI and multidetector CT to derive a patient-specific 3D ge-

ometry to provide complementary information on VT substrate that facilitates VT

ablation [123, 124].



Chapter 5

Localization of Endocardial Pacing Sites

5.1 Introduction

Electrocardiographic imaging (ECGI) is a non-invasive technology that can provide

valuable information for pre-procedure planning of the catheter ablation interven-

tions. The ECGI methodology involves solving the inverse problem, which is usually

defined as computation of epicardial potentials from body-surface potential mapping

(BSPM) data acquired from multiple thoracic sites [27]. However, to reconstruct the

epicardial potential distributions is often not the clinical endpoint. Clinical electro-

physiologists are in many cases more interested in electrical activity on the endocardial

surface. Although endocardial potentials can be reconstructed by the commercial elec-

troanatomic mapping systems, such as Carto c© system (Biosense Webster, Diamond

Bar, CA, USA) [125] or EnsiteTM system (St Jude, St Paul, MN, USA) [126]), the

procedure is invasive and time consuming. Therefore, one of the challenging tasks for

ECGI to address is to develop a reconstruction of endocardial potentials from BSPM

data; this would greatly facilitate ablation procedures for ventricular arrhythmias.

Several studies considered recently the reconstruction of distributed sources on the

endocardial surface [32, 74, 85, 127, 128, 129, 130, 131, 132, 133]. The distributed-

source models can be either the surface-potential model [59, 60] or the equivalent-

double-layer (EDL) model [61, 62, 112], both introduced in Chapter 2. The surface-

potential model was applied in Section 2.3.1 to computing linear transfer coefficients

relating potentials on the epicardial surface and those on the body surface. The

limitation of this approach is that endocardial sources must be estimated by pro-

jecting epicardial potential distributions on the endocardial surface. To overcome

this limitation, attempts have been made to reconstruct simultaneously both epicar-

dial and endocardial potentials [32, 85, 130, 132, 133]. In addition, the EDL model

showed promise in activation-time imaging, which estimates the local strength of the

double-layer source for each node of the heart surface. The EDL approach opens

61
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the possibility of distinguishing between endocardial and epicardial activation [74].

However, all studies using the EDL model are based on simplifying (and possibly

oversimplifying) assumptions with regard to cardiac electrophysiology, and these as-

sumptions are often not valid under pathological conditions of ischemia or infarction.

For example, van Dam [74] introduced a fastest-route algorithm (FRA) into the EDL

model by assuming the heart to be a connected graph and assigning each edge in this

graph a conduction velocity, which was set to be twice as high along the ventricular

wall than in the transmural direction. Potyagaylo and co-workers [134] evaluated the

FRA sensitivity with respect to the possible modeling errors under the assumption of

structurally normal ventricular tissue, and they found that the performance of FRA

is strongly dependent on assumed conduction velocities.

We turned our attention to the Bayesian learning algorithms [77] and we hy-

pothesized that they can be advantageously applied to solving the inverse problem

of cardiac electrophysiology. Chapter 3 reviewed historical context of Bayesian ap-

proaches applied to the reconstruction of epicardial-surface potentials from BSPM

data, and introduced a data-driven Bayesian method that achieves significantly bet-

ter inverse-solution performance than the Tikhonov-type regularization methods. To

simplify computing tasks, one can take advantage of the sparse representation of

cardiac sources by the EDL model—introduced by Salu [135]—using unit-strength

double layer on depolarized sections of the ventricular surface and zero-strength on

the remaining parts. With such sparse system, one can employ the sparse Bayesian

learning (SBL) approach—first proposed by Tipping [98]—and use it for localizing the

origin of ventricular activation. Since the depolarization sequence in real ventricles

is continuous and it takes at least 30 ms for the activation wave front to propagate

through the ventricular wall [14, 135], we use temporal integrals of the QRS complex

as a robust variable to represent the initial phase of ventricular activation.

The aim of this Chapter is to validate a data-driven Bayesian approach to localiz-

ing the origin of ventricular activation by using clinical data recorded in patients with

structurally normal ventricular myocardium who underwent LV endocardial pacing.

The Chapter has three distinct parts: Firstly, the forward solution based on the EDL

model (introduced in Chapter 2) is used to produce a well-conditioned transfer ma-

trix (see Section 2.3.2). Secondly, the sparse Bayesian learning method is applied,
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assuming that apart from the initial site of activation, the remaining regions of the

ventricular myocardium are silent; relying on this sparseness constraint, the method

searches for a solution that has as few nonzero entries as possible. Thirdly, to vali-

date the proposed method, in silico experiments are performed to assess localization

accuracy for dipole sources in patient-specific torso geometry. Finally, the perfor-

mance of the proposed method is compared with a data-driven nonlinear dynamic

parametrization method of Erem and co-workers [85].

5.2 Methods

5.2.1 Problem formulation

The EDL theory—introduced by Cuppen et al. [61, 62, 112]—is based on the as-

sumption that the extracardiac potential generated by the volumetric electric source

distribution within the ventricular myocardium is equal to the potential generated

by a dipole layer on the ventricular surface. The strength of the layer is proportional

to the transmembrane potential (TMP) on this surface. A Heaviside step function

represents the transmembrane action potential, leading to a relationship between

body-surface potentials and the isochrones of activation at the ventricular surface.

The basic equation is given by

φ(p, t) =

∫
S

A(p, q)H(t− τ(q))dsq, (5.1)

where φ(p, t) is the body-surface potential generated at point p at time t, and A(p, q)

(see Chapter 2) is the transfer matrix representing the potential at points p on the

body surface generated by an elementary current double layer source around points

q of the ventricular surface and pointing towards the ventricular mass. The function

τ(q) is the activation time, when the wave front is passing by the ventricular-surface

points q. H(t−τ(q)) is the Heaviside step function approximating the actual ventric-

ular action potential; so the elementary sources q, once switched “on” at time τ(q)

remain “on” until the total ventricular surface has been activated. In the discrete

form Eq. 5.1 can be written as

φi,t =
N∑
j=1

Ai,jSj,t, (5.2)



64

where the strength Sj,t of dipole j(1, . . . , N) on the closed ventricular surface is either

1 or 0 depending on whether the point qj is already activated or not yet activated;

body-surface potential φi at any point pi(i = 1, . . . ,M) on a body surface is a linear

combination of N dipoles as basis vectors S1, . . . , SN at time t.

5.2.2 Forward calculation

In the present study, the transfer matrix A was first calculated for the patient-specific

ventricular surface SH and patient-specific body surface SB, using the EDL source

model (see Section 2.3.2 of Chapter 2), and then a sub-matrix ALV (M × N1) was

extracted that depends only on the geometry of body surface SB with M nodes and

LV endocardial surface SH1 with N1 nodes.

5.2.3 Inverse problem: Sparse Bayesian Learning (SBL)

The mathematical expression of the inverse problem to be solved by the sparse

Bayesian learning (SBL) method is given by

Φ̄ = ALVS̄LV + v, (5.3)

where Φ̄ ∈ RM×1 is a known vector of body-surface-measurements (we use a time-

integral of the time-varying ECG potential
∫
QRS), ALV ∈ RM×N1 is the previously

computed transfer matrix, S̄LV ∈ RN1×1 is reconstructed with N1-dimensional sparse

vectors on the LV endocardial surface, and v ∈ RM×1 is a vector of measurement noise.

The SBL, applied to solving the sparse inverse problem, is based on the Automatic

Relevance Determination (ARD) model [136] that is weighing the local spatial inter-

actions on the endocardial surface. A Bayesian empirical prior was used to describe

an a priori distribution developed by learning from the properties of the cardiac ac-

tion potential, in terms of a set of unknown hyperparameters that must be estimated

from the data.

Firstly, the SBL applies the ARD involved to assign a N1-dimensional Gaussian

hierarchical prior

p(S̄LV; γ) =

N1∏
i=1

(2πγi)
− 1

2 exp(−
S̄2

LVi

2γi
), (5.4)
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where γ = [γ1, . . . , γN1 ]
′ is an unknown vector that consists of N1 hyperparameters to

control the prior variance of each weight. Therefore, the priors can be given by

p(S̄LVi
; γi,∀i) ∼ NS̄LV

(0,Γ), (5.5)

where Γ is

Γ =


γ1 · · · 0
...

. . .
...

0 · · · γN1

 .
The likelihood model p(Φ̄ | S̄LV) is assumed to be Gaussian with a noise variance σ2

written as

p(Φ̄ | S̄LV;σ2) = (2πσ2)−
M
2 exp(− 1

2σ2
‖Φ̄− ALVS̄LV ‖2). (5.6)

Combining likelihood with prior, the posterior probability distribution of the S̄LV is

also Gaussian,

p(S̄LV | Φ̄;σ2,Γ) = N (µ,ΣS̄LV
), (5.7)

with the mean µ = σ−2ΣS̄LV
A
′
LVΦ̄ and the covariance ΣS̄LV

= (σ−2A
′
LVALV + Γ−1)−1.

Given these hyperparameters, the value of S̄LV can be estimated as the Maximum-A-

Posteriori (MAP) probability

S̄LVMP
= (A

′

LVALV + σ2Γ−1)−1A
′

LVΦ̄. (5.8)

To accommodate practical applications, where M << N , the S̄LVMP
can be written

as

S̄LVMP
= ΓA

′

LV(σ2I + ALVΓA
′

LV)−1Φ̄, (5.9)

by using the identity (C + DD
′
)−1D

′
= C−1D(I + D

′
C−1D)−1 [137]. The marginal

likelihood can be obtained by integrating the hyperparameters in Eqs. 5.4 and 5.6

p(Φ̄;σ2,Γ) ≡
∫
p(Φ̄ | S̄LVMP

;σ2)p(S̄LVMP
; Γ)dS̄LV

= log |ΣΦ̄|+ Φ̄
′
Σ−1

Φ̄
Φ̄, (5.10)
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where ΣΦ̄ , σ2I + ALVΓA
′
LV. To estimate hyperparameters Γ and σ2 by maximizing

the marginal likelihood, we used expectation-maximization (EM) algorithm to iter-

atively update the Γ and σ2 by taking the log of Eq. 5.10 and differentiating this

expression with respect to γi(i = 1, . . . , N1):

∂

∂γi
log p(Φ̄; Γ, σ2) =

γi
2
−
S̄2

LVi

2
− 1

2
Tr(ΣS̄LV

). (5.11)

Setting the derivative with respect to γi to zero gives the following identity for γi,

which maximizes the evidence

γnew
i = S̄2

LVi
+ Σii i = 1, . . . , N1, (5.12)

where Σii is the i-th diagonal element of the ΣS̄LV
. Similarly, we derive the σ2 given

by

(σ2)new ← ‖Φ̄− ALVS̄LV‖2
F

M
+
σ2

M
Tr[ALVΓA

′

LV((σ2)oldI + ALVΓA
′

LV)−1]. (5.13)

This learning rule for σ2 assures robustness in noisy environment by setting the off-

diagonal elements of ALVΓA
′
LV to zero [138]. Based on the properties of the EM

algorithm, this method is convergent, because the cost function is reduced, reaching

a fixed point by each iteration. During this EM progress, σ2 is sensitive to its initial

value. Therefore, the noise variance σ2 was set to a tenth of the source variance

(SNR M
Tr(C1/2C−1/2)

) to establish a initial value in scale with the SNR of data, where

the measurement noise covariance C was approximately estimated from collected

body-surface data by calculating the square of standard deviation for each node.

The inverse problem in terms of the EDL source model for the depolarization

phase entails finding the values of the Heaviside step function at discretization nodes

of the endocardial surface and normalizing the solution between 0 and 1, as given by

the equation

S̄LVi,0/1
=

S̄LVi
− S̄LVMin

S̄LVMax
− S̄LVMin

, (5.14)

where S̄LVi
, i = [1, . . . , N1] is the inverse solution at each point, S̄LVMin

is for the

minima among all the data points, S̄LVMax
refers the maxima among all the data



67

points, and S̄LVi,0/1
denotes the solution value at point i, normalized between 0 and

1.

5.3 Clinical Protocols

5.3.1 Study population

Three subjects with normal ventricular myocardium underwent 120-lead BSPM dur-

ing the endocardial catheter procedure (this dataset is at: http://edgar.sci.utah.edu/).

The pacing sites were identified on 3D electroanatomic maps acquired by the Carto c©

XP system (Biosense Webster, Diamond Bar, CA, USA). The study protocol was ap-

proved by the Ethics Review Committee of the Charles University Hospital, Prague,

Czech Republic.

5.3.2 Patient-specific models

CT-imaging restricted to a limited number of slices was performed for each patient

in supine position. The Dalhousie standard torso (see in Appendix A.1) consisting

of 352 nodes was aligned with each patient’s electrode locations for customizing the

torso surface [99, 100].

5.3.3 Data acquisition and processing

The Dalhousie standard BSPM protocol was used to acquire BSPM data (Appendix B.1).

For the purposes of this study, we used the BSPM data corresponding to known pacing

sites (with spatial coordinates provided by the electroanatomic system), and analyzed

them off-line at Dalhousie University. Eq. 5.2 can be transferred into a time-integral

linear system given by:

Φ̄ = AS̄ with Φ̄ =
T∑
t=1

φ:t, (5.15)

where φ:t ≡ [φ1:t, φ2:t, . . . , φn:t]
′ is the M × 1 vector of potential measurements at

nodes of body surface at time t; Φ̄ is a time integral of the QRS complex of duration

T ; A is a transfer matrix, and S̄ denotes the N × 1 vector of double-layer strength on

depolarized sections of the ventricular surface. The following features were extracted

from ECG data: (1) QRS integral (
∫

QRS), a time integral of the QRS complex in
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microvoltseconds (µVs); (2) trimmed QRS integrals (
∫

QRSms) calculated over the

initial 10, 20, and 30 ms of the QRS complex (denoted as
∫

QRS10, . . . etc.).

5.3.4 Simulation protocol

A model-based simulation study was performed using patient-specific geometry for

validating the proposed method. Sets of LV endocardial and body-surface potentials

were calculated using a forward simulation based on a single-dipole source at anatom-

ically significant locations. In particular, for each patient’s geometry separately, sim-

ulated endocardial and body-surface potentials with 0 dB Gaussian white noise were

calculated for 16 dipoles on the endocardium, one in each AHA segment [51, 101].

These 16 locations were determined by picking a triangle in the appropriate area of

the endocardial surface, moving the dipole source 5 mm along the inward-oriented

normal, and making the dipole direction the same as the inward normal of this trian-

gle. The mean and standard deviation of the localization error over all single-dipole

sites (n = 48) was given (in millimeters) by comparing the inversely-calculated lo-

cation and the known source-dipole site. Fig. 5.1 shows, for each patient separately,

locations of 16 dipole sources with the direction of the inward normal based on AHA

bull’s-eye display [101].

5.3.5 Data analysis of inverse-solution methods

The patient-specific Carto c© geometry was registered manually and fused with the

patient’s CT geometry (by Dr. Petr Štov́ıček), to facilitate quantitative comparison.

More details for patient-specific geometry were presented by Erem et al. [85]. The

gold standard for assessing accuracy of the inverse procedure was the information

provided by the Carto c© electroanatomic mapping system during the EP procedure.

The locations of the Carto c© sites where pacing was delivered were projected onto the

discretized CT endocardial surface. As a measure of accuracy, the Euclidean distance

was calculated for each recording between the computed unit strength and the actual

pacing site projected on the endocardial surface. The means and standard deviations

of the localization errors over all pacing sites were given (in millimeters) by comparing

the inversely-calculated location and the known reference location identified from the

Carto c© electroanatomic system. For analysis of pacing-site localization, we compared



69

Figure 5.1: A single dipole with the direction of the inward normal at 16 locations
on LV endocardial surface, for each subject (S #1, S #2, S #3) separately.
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the performance of the proposed method with method of Erem and co-workers [85] in

localizing the site of origin of ventricular activation based on 52 endocardial pacing

sites pooled for all 3 subjects.

5.4 Results

5.4.1 Simulation study

We first estimated the accuracy of the proposed method in localizing endocardial

dipoles from body-surface potentials generated by the forward calculation. Fig. 5.2

shows the frequency distribution of localization error for pooled single-dipole sites

(n = 48) achieved by the proposed method. It is evident that the proposed method

can accurately localize endocardial dipoles from simulated body-surface potentials

with the mean and standard deviation of 9.4 ± 4.5 mm.
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Figure 5.2: Frequency distribution of localization errors achieved by the proposed
method in simulation experiment for pooled single-dipole sources (n = 48). Error
is measured as Euclidean distance between the prediction node and the centroid of
pacing-site triangle on the endocardial surface. Mean value ± standard deviation is
9.4 ± 4.5 mm.



71

Table 5.1: Accuracy of pacing-site localization achieved by the proposed method for
varied intervals of integration

∫
QRS

Patient
#

No. of
Pacing Sites

Localization Error based on the Proposed Method
Intervals of Integration

10 ms 20 ms 30 ms
1 17 24.2 ± 14.0 20.5 ± 12.1 19.7 ± 12.9
2 21 20.2 ± 11.7 18.1 ± 9.1 17.0 ± 9.1
3 14 14.1 ± 7.6 14.1 ± 7.6 12.6 ± 6.7

Accuracy of localization in terms of Euclidean distance (mean ± SD) from the
predicted node to the actual pacing-site node on the patient-specific endocardial
surface. Optimal values are in bold face.

Table 5.2: Accuracy of pacing-site localization: Subject #1

Pacing
Site
(LV)

No. of
Averaged

Beats

Erem et al. Method
Localization Error

(mm)

Proposed Method
Localization Error

(mm)
1 28 29 ± 3 13.0
2 33 3 ± 5 13.8
3 29 39 ± 6 26.9
4 33 38 ± 8 29.0
5 34 54 ± 6 48.5
6 34 31 ± 9 15.3
7 34 29 ± 6 16.9
8 21 29 ± 6 16.9
9 20 19 ± 9 8.9
10 28 53 ± 6 14.2
11 33 46 ± 8 14.4
12 31 39 ± 6 4.6
13 24 24 ± 1 5.0
14 25 29 ± 10 11.8
15 21 26 ± 12 19.5
16 17 49 ± 4 27.4
17 22 44 ± 18 48.7

Erem et al. [85] averaged QRS complexes of a train of paced beats and, therefore,
their localization error is given as mean ± SD; our proposed method is using∫

QRS30 of a selected beat as an input variable. The underlined pacing sites were
located in the septal region.
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Table 5.3: Accuracy of pacing-site localization: Subject #2

Pacing
Site
(LV)

No. of
Averaged

Beats

Erem et al. Method
Localization Error

(mm)

Proposed Method
Localization Error

(mm)
1 43 40 ± 1 7.4
2 18 30 ± 2 21.1
3 38 41 ± 7 6.8
4 41 26 ± 1 2.5
5 35 34 ± 4 22.7
6 35 51 ± 20 16.2
7 27 22 ± 3 17.8
8 14 24 ± 0 27.1
9 29 38 ± 11 6.0
10 32 13 ± 14 21.9
11 33 17 ± 7 12.9
12 37 37 ± 10 27.8
13 30 30 ± 10 26.4
14 21 47 ± 11 19.4
15 28 42 ± 13 35.5
16 35 46 ± 7 25.3
17 33 23 ± 11 3.2
18 32 24 ± 10 6.2
19 35 49 ± 20 19.1
20 24 38 ± 15 14.3
21 34 21 ± 4 17.7

See legend of Table 5.2 for explanation.
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Table 5.4: Accuracy of pacing-site localization: Subject #3

Pacing
Site
(LV)

No. of
Averaged

Beats

Erem et al. Method
Localization Error

(mm)

Proposed Method
Localization Error

(mm)
1 32 32 ± 4 12.3
2 34 35 ± 0 11.5
3 15 18 ± 10 7.4
4 31 32 ± 5 3.4
5 33 34 ± 5 10.0
6 34 54 ± 18 19.3
7 23 24 ± 9 9.9
8 34 32 ± 1 7.2
9 37 22 ± 4 31.0
10 37 39 ± 4 14.4
11 11 21 ± 24 8.0
12 34 33 ± 9 14.0
13 15 22 ± 12 16.6
14 22 30 ± 11 12.0

See legend of Table 5.2 for explanation.

Table 5.5: Accuracy of pacing-site localization achieved by two different methods

Subject
No.

No. of
Sites

Erem et al. Method
Localization Error

Proposed Method
Localization Error

1 17 34.2 ± 13.1 19.7 ± 12.9
2 21 33.0 ± 11.1 17.0 ± 9.1
3 14 30.6 ± 9.2 12.6 ± 6.7

The localization error (mm) for all pacing sites of each subject was calculated, as
mean ± SD, by the proposed method and results were compared with those
reported by Erem et al. [85]. The proposed method used the optimal 30-ms-integral
(
∫

QRS30) input variables.
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Figure 5.3: Box plot of Euclidean distances between sites of pacing as identified by
Carto c© electroanatomic maps and sites identified by the proposed method and the
method previously introduced by Erem et al. [85]. Pacing sites are grouped into
those that were within septal region (group S; n = 10), and those outside septal
region (group NS; n = 42). Following the common convention, each box represents
interquartile range and whiskers represent range; line with value represents median.

5.4.2 Localization of LV endocardial pacing sites

The localization accuracy was tested for: all available LV endocardial pacing sites

(n = 52), and all pacing sites of each patient separately (n = 17, 21, 14). The inverse

solutions presented in Table 5.1 were calculated by using time-integral variables with

three different intervals of trimmed
∫

QRS. The optimal interval of trimmed
∫

QRS

extends 30 ms from the QRS onset; the mean values and standard deviations of the

localization error of the proposed solution for all pacing sites of subjects #1, #2,

and #3 were 19.7 ± 12.9 mm, 17.0 ± 9.1 mm, and 12.6 ± 6.7 mm, respectively. Ta-

bles 5.2–5.4 summarize the localization accuracy for pacing sites of the three subjects
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Figure 5.4: Subject #1: Normalized inverse-solution maps generated by the proposed
method for estimating sites of LV endocardial pacing. There were 17 pacing sites (P1–
P17) for this subject, 3 of them (P5, P16, P17) in the septal region; for each of the
non-septal sites, there is a panel showing an inverse-solution map with the actual
(purple dot) and the estimated (yellow dot) pacing site. The last panel shows 3
septal pacing sites (red dot and number) for which the localization error was large.

by a comparison of the proposed method based on the trimmed
∫
QRS30 calcula-

tion with results of Erem and co-workers [85]. Table 5.5 shows—for each patient

separately—the accuracy of pacing-site localization in comparison with results of

Erem and co-workers [85], and the proposed method based on the trimmed
∫
QRS30

calculation. It appears that the proposed method has a potential to improve the lo-

calization accuracy. To demonstrate that improvements in localization accuracy are

statistically significant, we used the pairwise t-test to evaluate the mean error of the

differentials between the proposed method based on the trimmed
∫
QRS30 calculation

with results of Erem et al. [85]. The proposed method for pooled pacing sites yielded

more accurate results than the method of Erem and co-workers, with a statistically

significant difference in accuracy (P = 0.0039).
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Figure 5.5: Subject #2: Normalized inverse-solution maps generated by the proposed
method for LV endocardial pacing. The same format as in Fig. 5.4; there were 21
pacing sites for this subject, with 6 in the septal region; for each non-septal site,
there is a panel showing an inverse-solution map and the last panel shows locations
of septal sites.

For all three patients of this study, computed sites of early activation agreed well

with sites registered from electroanatomic maps in all anatomical regions, except

on the septum. The results of pacing-site localization accuracy in relation to the

anatomical location of pacing are summarized in Figure 5.3, which graphically depicts

localization accuracy of the two different inverse-solution methods in two different
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Figure 5.6: Subject #3: Normalized inverse-solution maps generated by the proposed
method for LV endocardial pacing. The same format as in Fig. 5.4; there were 14
pacing sites for this subject, with one in the septal region; for each non-septal site,
there is a panel showing an inverse-solution map and the last panel shows location of
a single septal site.

anatomical regions: septal (S) and non-septal (NS). Apparently, for pacing in the

septal region (n = 10), localization accuracy is much reduced in comparison with

pacing in the rest of the LV (n = 42); this finding holds for both inverse-solution

methods.

Figures 5.4–5.6 show normalized LV endocardial localization maps during initial

30 ms of the paced activation in three patients with structurally normal ventricular

myocardium. The results are shown only for pacing sites outside septal region (NS).

The actual pacing sites are indicated by the purple dot and the estimated sites by

the yellow dot. The last panel of each figure shows the septal pacing sites with large

localization error.
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5.5 Discussion and Conclusions

The present study demonstrates that non-invasive localization of LV endocardial pac-

ing sites using the sparse Bayesian learning (SBL) approach based on the EDL-source

model is feasible and accurate. In this study, the forward sub-matrix ALV relates the

surface distribution of transmembrane potential on the LV endocardial surface to the

body-surface potentials. This requires fewer operations to solve the inverse problem

than the one using the potential formulation. The sparse Bayesian learning mecha-

nism is able to make use of actually recorded data to guide the search for appropriate

a priori constraints. Any unnecessary parameters are automatically forced to zero by

the ARD model. The solutions obtained by the proposed method compared favorably

with those obtained by Erem and co-workers [85], who used the same clinical data

for LV endocardial pacing sites of three subjects (n = 52).

In summary, the results of both in vivo and in silico experiments presented in this

Chapter provide a strong incentive for pursuing further investigations and clinical

applications of data-driven Bayesian methods in the electrocardiographic imaging.



Chapter 6

Machine Learning vs. Multiple Linear Regression

6.1 Introduction

In the early 1980s, it was demonstrated that the 12-lead ECG produced by endo-

cardial pacing can be helpful in identifying the pacing region in patients with and

without organic heart disease [139, 140]; subsequently, various algorithms for localiz-

ing the origin of activation have been developed from extensive data accumulated in

human studies [141, 142, 143, 144, 145, 146, 147]. With one notable exception [145],

localization algorithms used discrete anatomical regions to subdivide LV endocardial

surface and then to identify the region of most-likely origin of activation. All these

previous studies suffered from unsatisfactory resolution; typically, there were 9–10

ventricular segments, each with an area of about 10 cm2. In our laboratory, we use

discrete localization into 16 LV segments, combined with much finer continuous local-

ization using a multiple linear regression (MLR) and a generic LV geometry (Figs. 6.1

and 6.2). Our localization method can be used during the clinical procedure to find

rapidly and accurately sites of activation origin from the 12-lead ECG [51].

The purpose of the study presented in this Chapter was to further explore the

continuous-localization approach using the generic LV endocardium. In particular, we

assessed two machine-learning techniques—Random-Forest Regression (RFR) [52, 53]

and Support-Vector Regression (SVR) [54]—to further investigate intrinsic relation-

ships in the clinical data used by the previous study [51] and to consider applicability

of these techniques to the localization of focal ventricular activation.

6.2 Methods

6.2.1 Study population

The study population consisted of 38 patients who underwent the LV endocardial

catheter ablation; detailed description of this population is in Appendix C.1.1. A

79
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total of 1,012 LV pacing sites with known coordinates and their corresponding 12-

lead ECG constituted a clinical dataset for the present study.

6.2.2 Data description

In the present study, coordinates of each pacing-site Xj, Yj, Zj, j = 1, . . . , n (n =

1, 012), in the coordinate system of the generic LV endocardium, are considered de-

pendent variables. Predictor variables were extracted from ECG data as follows: For

all pacing sites (n = 1, 012), one representative paced beat was selected in the corre-

sponding 12-lead ECG, and a time integral of the QRS complex (
∫

QRS, in microvolt-

seconds) was calculated over the initial 120 ms for the 8 leads (II, III, V1–V6) [51];

dimensionless predictor variables, Vj:i, j = 1, . . . , n (n = 1, 012); i = 1, . . . , k (k = 8),

were then derived by normalizing by the total signal energy of the constituent leads.

6.2.3 Electrophysiology study and ablation

The EP study was performed in the usual manner, as described in Appendix C.2.1.

6.2.4 ECG acquisition and processing

For 18 patients, the Dalhousie standard BSPM protocol was used to record simulta-

neously 120 ECGs (Appendix B.1). For 20 additional patients, only 8 leads of the

12-lead ECG were acquired via Cardiolab system (GE Healthcare, Piscataway, NJ),

sampled at 1000 Hz with 16-bit resolution, and recorded for 15 seconds during VT,

sinus rhythm or pacing. For each representative paced beat, a time integral of the

QRS complex (
∫

QRS, in microvoltseconds), was calculated over the initial 120 ms of

the QRS complex as an optimal interval of integration for the
∫

QRS, according to

Sapp et al. [51].

6.2.5 Generic model of the left-ventricular endocardium

Anatomical sections of the normal human ventricular myocardium were used to con-

struct a generic LV endocardial surface (Appendix A.2). The generic model consists of

238 triangular area elements; three Cartesian coordinates X, Y , and Z specify each

triangle’s vertices, in the coordinate system with the origin at the LV (epicardial)
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apex and the Z axis oriented toward mid-point of aortic valve. Polar projection of

this generic LV endocardium (bull’s-eye display) is shown in Fig. 6.1; Fig. 6.2 shows

a view of the LV endocardium stylized after Miller et al. [141].

6.2.6 Registration of pacing sites

Fig. 6.3 shows patient-specific 3D Carto c© electroanatomic images of the LV endo-

cardium with 16 ventricular segments demarcated on the image of patient’s endocar-

dial surface by means of Carto c© software. For each patient, pacing sites were reg-

istered from the patient-specific 3D Carto c© electroanatomic image onto the generic

LV endocardium represented by the 3D model; each pacing site was associated with

one of the generic model’s 238 triangular area elements (Fig. 6.1). Two observers

independently registered pacing sites from the 3D Carto c© image (Fig. 6.3) by using

anatomical landmarks or visual estimation based on anatomical features. They first

demarcated 16 ventricular segments on the image by using Carto c© software and then

they selected the most appropriate triangle of the generic LV endocardium (Fig. 6.1)

for each site.

6.2.7 Multiple Linear Regression (MLR) model

The regression model used in the previous study [51] used generic LV endocardium

represented by the 3D surface and to this geometry were fitted three equations of the

MLR model with dimensionless predictor variables V:i, i = 1, . . . , k, for k = 8. Thus

a statistical estimate of pacing-site coordinates X̂, Ŷ , Ẑ was obtained by fitting three

equations

X̂ = α̂0 +
k∑
i=1

α̂iV:i + ex;

Ŷ = β̂0 +
k∑
i=1

β̂iV:i + ey;

Ẑ = γ̂0 +
k∑
i=1

γ̂iV:i + ez. (6.1)

where V:i are the ECG predictor variables, k is the number of predictors, α̂i, β̂i, γ̂i, (i =

0, 1, . . . , 8) are the regression coefficients with intercept calculated from the design set,
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Figure 6.1: Bull’s-eye display of the left-ventricular endocardium. Endocardial surface
is represented by 238 planar triangles in 3D space and then projected into this polar
display; there are 16 anatomical segments, resembling those recommended by the
AHA [101], comprising 6 basal segments (1–6), 6 mid-segments (7–12), and 4 apical
segments (13–16); basal and mid-segments are denoted, respectively, as anterior, an-
teroseptal, inferoseptal,inferior, inferolateral, and anterolateral; apical segments are,
respectively, anteroseptal, inferoseptal, inferolateral, and anterolateral.
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Figure 6.2: Stylized view of the left-ventricular endocardium with 238 triangles and
16 anatomical segments corresponding to Fig. 6.1
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and ex, ey, and ez are the residuals. The three equations are used to estimate origin

(in Cartesian coordinates) of an unknown activation of interest, based on the predic-

tors derived from the known 12-lead ECG recorded on the body surface. The fitting

of the MLR model to the generic LV geometry was performed by the R statistical

software [148].

6.2.8 Random Forest Regression (RFR) model

The RFR model, first proposed by Breiman [52], is a machine-learning method pre-

dicting response variables (such as our pacing-site coordinates X̂, Ŷ , Ẑ) from a set

of predictors (such as our dimensionless ECG variables V:i, i = 1, . . . , k) by averag-

ing over multiple decision trees (DTs) created by randomized feature selection and

bootstrap aggregation. The RFR is an ensemble method that combines multiple DTs

with weak learning output to predict a strong final decision using the mean of all

observations.

The RFR is a tree-based algorithm, the crucial part of which is to understand a

continuous variable DT [149]. In each DT, the goal is to determine the most predictive

branches based on the splitting decision using minimizing residual sum of squares

(RSS). However, a DT suffers from high variance and consequently high prediction

error. To overcome the variance issue, resampling techniques are used to generate

more data. To build many DTs for a forest, the bootstrap with replacement technique

creates random samples; for the design set, each DT is trained by roughly 63.2% ((1-

1/e)100%) of the design set drawn at random, leaving about 36.8% (100/e%) of the

design set “out of bag” (OOB) for determining unbiased estimate of the error. The

predictor variables are selected randomly for each node-splitting, which decreases the

correlation between trees in the forest, and consequently improves accuracy. Unlike

a classical regression tree, un-pruned regression tree is grown fully for each bootstrap

sample in random forest. The final outcome is the average of the results of all the

trees [52]. To estimate the accuracy of the RFR model, the mean square error (MSE)

of the aggregated OOB predictions and the observed responses is calculated [53]

MSEOOB =
1

m

m∑
j=1

(wj − ŵOOB
j )2, (6.2)

where wj ∈ Xj, Yj or Zj is the observed response for jth observation from all trees
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for which this observation has been OOB, ŵOOB
j denotes the predicted outcome for

the jth OOB case, m is the number of OOB cases. Also, R2
OOB can be obtained as

1−MSEOOB/(
∑n

i=1(wj−w̄)2), where w̄ is the mean of the observed outcome of OOB

cases.

The “Random Forest” function implemented in the RF package [53] was used to

run the RFR model. The required parameters for the RFR model fitting (the number

of trees, the number of randomly selected predictor variables at each node) were set

by using the 10-fold cross validation with five repetitions based on the grid-search

method in the R “caret” package [150]. For each coordinate, the combination of the

two parameters with the lowest error metric (root-mean-square (RMS) error) were

used for the final optimal parameters.

6.2.9 Support Vector Regression (SVR) model

The SVR [54] model is another machine-learning method for estimating the localiza-

tion performance. To train the SVR model, a nonlinear function ϕ(V ) was used to

map the input ECG variables onto an 8-dimensional feature space, for each coordinate

separately, as follows

g(V ) = w · ϕ(V ) + b. (6.3)

where w is the vector of coefficients, which controls flatness of the function; b is the

“bias” term. The quality of estimation is measured by the loss function L(u, g(V )),

where the u is the actual target. The SVR uses Vapnik’s ε-insensitive loss function

[151] defined as

Lε(u, g(V )) =

{
0 if|u− g(V )| ≤ ε

|u− g(V )| − ε otherwise
. (6.4)

Using the ε-insensitive loss function, g(V ) is found that can best approximate the

actual target u and has the error tolerance less than ε from the actual incurred targets

u for all training data. The SVR tries to reduce model complexity by minimizing norm

‖w2‖ flatness. This can be described by introducing (non-negative) slack variables

ξj, ξ
∗
j , to measure the deviation of training samples outside ε-insensitive zone. Thus
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the SVR is formulated as minimization of the following functional:

min
1

2
‖w2‖+ C

n∑
j=1

(ξj + ξ∗j ),

s.t.


uj − (w · ϕ(Vj:) + b) ≤ ε+ ξ∗j

(w · ϕ(Vj:) + b)− uj ≤ ε+ ξj

ξj, ξ
∗
j ≥ 0, j = 1, . . . , n

(6.5)

where ξj and ξ∗j are the distances of the training set points from the region where

the errors smaller than ε are ignored, the index j labels the n training cases, b is a

constant, and C is the cost constant. Based on the Eq. 6.5, Fig. 6.4 illustrates the

concept of non-linear SVR.

Then, the optimization problem can be transformed into the dual problem [151,

152] that can be expressed as

max
α∗j ,αj

1

2

n∑
j,l=1

(αj − α∗j )(αl − α∗l )〈ϕ(Vj:) · ϕ(Vl:)〉

− ε
n∑
j=1

(αj + α∗j ) +
n∑
j=1

uj(αj − α∗j )

s.t.



n∑
j=1

(αj − α∗j ) = 0

0 ≤ α∗j ≤ C, j = 1, . . . , n

0 ≤ αj ≤ C, j = 1, . . . , n

(6.6)

where α∗j , αj are Lagrange multipliers. The “kernel function”K(Vj:, Vl:) = 〈ϕ(Vj:), ϕ(Vl:)〉
is used for computations in input space for each estimated coordinate. Finally, the de-

cision function of nonlinear SVR with the allowance of the kernel function is expressed

as

g(v) =

nSV∑
j=1

(αj − α∗j )K(Vj, V ) + b (6.7)

where nSV is the number of Support Vectors (SVs).

In this study, the Gaussian radial basis function (RBF) kernel was employed to

separate the input ECG data into a hyperspace. The SVR model was tuned for

each pacing site coordinate by optimizing three parameters (the cost constant C, the

radius of the insensitive tube ε and the kernel parameter) by means of the grid search
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Figure 6.3: Three-dimensional Carto c© image of the LV endocardium with manually
added division into anatomical segments for a selected case. The LV endocardial
surface is first divided into 16 segments (shown in polar projection in Fig 6.1) and
then the location of pacing sites is estimated as triangle numbers of the generic LV-
endocardial model. For views of the LV endocardial surface are (from left to right):
right lateral, left lateral, inferior, and superior.

Figure 6.4: Nonlinear SVR with Vapnik’s ε-insensitive loss function [54].
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method in the R “caret”package [150]. To accomplish this optimization, ten random

partitions of the training data with five repetitions were used for cross-validation

of the model. Finally, the combination of three parameters resulting in the lowest

root-mean-square (RMS) error was selected for the final model.

6.2.10 Modeling assessment for each coordinate

To compare MLR, RFR, and SVR models [148], R statistical software was used. To

estimate the localization performance of each model, the entire dataset (n = 1, 012)

was partitioned at random into a design set with 80% of the entire set (n = 810)

and a test set with the remaining 20% of the entire set (n = 202). For the cross

validation, a 10-fold cross-validation scheme with 5 repetitions was applied to ensure

model stability and reliability using the “caret” R Package [150]. Each model’s ability

to predict the Cartesian coordinates of pacing sites was assessed by three measures of

predictive performance based on differences between predicted and observed values.

1) the coefficient of determination (R2); 2) root mean squared error (RMSE); and 3)

symmetric mean absolute percentage error (SMAPE). They were calculated as follows

R2 = 1−
∑n

i=1(Oi − Pi)2∑n
i=1(Oi − Ō)2

, (6.8)

RMSE = (
1

n

n∑
i=1

(Pi −Oi)
2)1/2, (6.9)

SMAPE =
1

n

n∑
i=1

|Oi − Pi|
(|Oi|+ |Pi|)/2

, (6.10)

where n is the number of samples in the design set, O is the true/observed value, and

P is the predicted value.

Bootstrap trials with replacement were used to get for each regression model

distributions of predicted coordinates for the left-over sample (n ' N/e, N = 1, 012)

to estimate errors to be expected for the future study population.

6.2.11 Prediction accuracy

Once the best-fitting coefficients were found for each regression model from the design

set, they were applied as constants with the ECG predictor variables of an indepen-

dent test set to get the estimated coordinates X̂e, Ŷe, Ẑe of known pacing sites. The
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triangle of the generic LV-endocardial surface with the smallest geodesic distance of

its centroid from (X̂e, Ŷe, Ẑe) was found and coordinates of its centroid (X̂c, Ŷc, Ẑc)

marked the estimated pacing/exit site on the generic LV-endocardial surface. The

geodesic distance between (X̂c, Ŷc, Ẑc) and the centroid of known pacing-site triangle

(Xp, Yp, Zp), measured on the generic LV-endocardial surface, was approximated as

an arc length on the sphere. The mean and standard deviation (SD) of this quantity

provided a measure of localization accuracy in the test set.

6.2.12 Quantitative assessment

The statistical inference of each regression model was assessed by using the bootstrap

method with replacement [153]. To estimate the optimistic bias of the regression

model, the mean error with standard deviation was calculated and applied to the

entire original sample (n = 1, 012) and to the left-over sample (n ' N/e, N = 1, 012),

which served as a test set. Localization error measured as geodesic distance in mm

was calculated for each pacing site. The standard error was used to construct the

95%-confidence interval of the localization performance.

6.3 Results

6.3.1 Assessment based on the design set

This assessment was based on the comparison of three error measures of the models’

ability to estimate spatial coordinates of the pacing sites using ECG variables as

predictors (Table 6.1). As can be ascertained from this table, the SVR performed

consistently better than the other two models, achieving lower RMSE and SMAPE

values, higher R2 values, and lower localization error measured as a geodesic distance

between the estimated and actual pacing site. The pairwise t-test was used to assess

significance of performance differences among three models for each of coordinates:

SVR was significantly more accurate than the other two models in the design set, as

shown in Fig. 6.5 (upper panel), both in comparison with the MLR (P< 0.00001),

and with the RFR (P< 0.00001) for all three coordinates. In Fig. 6.5 (upper row), the

RFR was significantly better than the MLR (P< 0.00001) for all three coordinates.

Frequency distribution of pacing-site localization error in the generic LV-endocardial
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model for the design set (n = 810) achieved by the SVR model is in Fig. 6.6 for the

localization error measured as geodesic distance.

Table 6.1: Model validation based on the design set

Model
X axis Y axis Z axis Localization Error

Mean ± SD (mm)RMSE SMAPE R2 RMSE SMAPE R2 RMSE SMAPE R2

MLR 7.229 0.152 0.540 7.524 0.209 0.621 11.693 0.060 0.652 12.9 ± 8.7
RFR 6.625 0.148 0.614 6.647 0.191 0.704 10.323 0.050 0.729 12.2 ± 8.5
SVR 5.294 0.119 0.753 5.663 0.152 0.785 8.711 0.039 0.807 9.1 ± 8.0

Three measures of error were calculated: RMSE, root mean square error; SMAPE,
symmetric mean absolute percentage error; and R2, the coefficient of determination.
Accuracy of localization in terms of Geodesic distance from the predicted node to
the pacing-site node in the Prototype LV endocardial surface is given as Mean,
standard deviation (SD).

6.3.2 Assessment based on the test set

Table 6.2 presents model performance statistics for the external validation using the

test set (n = 202). The results resemble (with only one exception) those obtained

for the design set. The SVR performed better than the other two models, achieving

consistently lower RMSE and SMAPE values, higher R2 values, and lower localization

error measured as a geodesic distance. In Fig. 6.5 (lower panel), the SVR and RFR

were significantly more accurate in the test set than the MLR for all three coordinates

in terms of the mean error for each pair of three methods (SVR vs. MLR (P< 0.00001),

RFR vs. MLR (P< 0.00001)). However, for the Y, and Z coordinates, the SVR is not

significantly more accurate than the RFR model. Frequency distribution of pacing-

site localization error in the generic LV-endocardial model for the test set (n = 202)

achieved by the SVR model is shown in Fig. 6.7 for the error measured as geodesic

distance.

6.3.3 Localization performance based on bootstrap assessment

To further assess the localization performance of regression models on the generic LV

endocardial surface, the bootstrap method with replacement using 1,000 trials was

used [153]. Table 6.3 shows—for each dependent variable X, Y, Z separately—the

localization performance in the left-over sample (n ' N/e, N = 1, 012). The SVR
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Figure 6.5: Upper panel: Comparison of three regression models applied to the design
set (n = 810) for three dependent variables (coordinates X, Y, Z). Lower panel:
Comparison applied to the test set (n = 202) for three dependent variables. Asterisk
’∗’ denotes significant difference (P<0.05); ’◦’ denotes non-significant (NS) difference.
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Figure 6.6: Frequency distribution of pacing-site errors on the generic LV-endocardial
surface for the design set, achieved by SVR model with 8 ECG predictor variables.
Error was measured as geodesic distance (approximated by the arc length) between
the tip of prediction vector and the vertex of target triangle on the LV endocardial
surface.

Table 6.2: Model validation based on the test set

Model
X axis Y axis Z axis Localization Error

Mean ± SD (mm)RMSE SMAPE R2 RMSE SMAPE R2 RMSE SMAPE R2

MLR 6.531 0.144 0.575 8.325 0.201 0.579 11.487 0.057 0.662 12.1 ± 8.1
RFR 5.735 0.138 0.672 7.440 0.181 0.664 10.247 0.048 0.709 12.1 ± 9.0
SVR 5.323 0.132 0.718 7.269 0.170 0.679 10.650 0.046 0.731 11.1 ± 8.1

Measures of error are the same as in Table 6.1.
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model had the best performance. Table 6.4 shows that for each coordinate the mean

localization error obtained by the SVR was in comparison with that obtained by the

MLR significantly lower, both in the entire sample (n = 1, 012) and in the left-over

sample (n ' N/e, N = 1, 012). Table 6.5 shows the results of 1,000 bootstrap trials

with replacement for the localization error in terms of geodesic distance between

predicted and actual pacing site, measured on the generic LV endocardial surface.

Bootstrap distributions of pacing-site localization error in terms of geodesic distance

on the generic LV-endocardial surface for the entire sample (n = 1, 012) and for the

left-over sample (n ' N/e, N = 1, 012) achieved by the SVR model and by the MLR

are in Figs. 6.8 and 6.9.

6.4 Discussion and Conclusions

The purpose of this study was to further investigate the regression approach intro-

duced in [51], for predicting the site of origin of LV activation on a generic left ventric-

ular endocardial surface, by comparing three statistical prediction models: multiple

linear regression (MLR), random forest regression (RFR), and support vector regres-

sion (SVR). The localization performance of each model was assessed using a large

set of ECGs corresponding to known pacing sites.

The performance comparison of regression models showed that consistent (albeit

modest) improvement in localization accuracy can be achieved by non-parametric

SVR and RFR models, in comparison with MLR model. This gain in accuracy is

most likely due to the existence of a non-linear relationship between the pacing-site

coordinates and the ECG predictors, which MLR could not adequately resolve.

The MLR is a frequently used statistical model, owing largely to its simplicity and

the interpretability of the estimated parameters, which can be easily implemented for

the real-time localization of ventricular activation on the generic LV. The RFR model

showed a localization performance comparable to the MLR model. The principal re-

sult of the present study is that the SVR model shows a significantly higher predictive

ability than the MLR model. We have shown that by using the SVR model, the ori-

gin of ventricular activation can be localized with mean accuracy of 10.2 mm from

the endocardial site of activation origin. The “population” coefficients generated by

the SVR model from our design set are superior to the previously-derived coefficients
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Table 6.3: Accuracy of pacing-site localization on the generic LV endocardial surface
achieved by MLR RFR, and SVR models using ECG predictors: Left-over sample

Model Coordinates Variable Mean SD Median 5th Pctl 95th Pctl

MLR

X
gmean 5.86 0.17 5.85 5.52 6.20

gsd 4.14 0.13 4.15 3.87 4.40
gmedian 5.12 0.25 5.12 4.64 5.64

Y
gmean 6.14 0.19 6.14 5.76 6.51

gsd 4.79 0.20 4.79 4.40 5.21
gmedian 5.08 0.25 5.08 4.59 5.60

Z
gmean 9.42 0.29 9.41 8.86 10.00

gsd 7.05 0.23 7.05 6.60 7.50
gmedian 7.96 0.39 7.95 7.20 8.72

RFR

X
gmean 5.15 0.17 5.15 4.81 5.46

gsd 3.97 0.16 3.96 3.66 4.25
gmedian 4.24 0.21 4.24 3.83 4.66

Y
gmean 5.37 0.18 5.37 5.04 5.74

gsd 4.40 0.22 4.40 3.98 4.81
gmedian 4.38 0.22 4.37 3.98 4.84

Z
gmean 8.23 0.28 8.23 7.70 8.81

gsd 6.48 0.28 6.48 5.90 7.04
gmedian 6.71 0.35 6.71 6.06 7.40

SVR

X
gmean 4.92 0.17 4.92 4.60 5.26

gsd 3.99 0.17 3.99 3.65 4.32
gmedian 3.90 0.22 3.90 3.47 4.34

Y
gmean 5.27 0.19 5.26 4.60 5.26

gsd 4.44 0.22 4.44 4.01 4.86
gmedian 4.19 0.22 4.18 3.75 4.66

Z
gmean 8.03 0.28 8.03 7.49 8.59

gsd 6.63 0.30 6.63 6.04 7.22
gmedian 6.38 0.34 6.37 5.73 7.09

Bootstrap method with replacement [153], using 1,000 trials, was used; the entire
sample consisted of n = 1, 012 pacing sites (results not shown); the left-over sample
had n ' 1, 012/e pacing sites. Three g-variables quantify accuracy of localization by
8-predictor regressions for pacing-site coordinates (X, Y, Z); gmean, mean value;
gsd, standard deviation; gmedian, median value; Pctl, percentile.
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Figure 6.7: Frequency distribution of pacing-site errors on the generic LV-endocardial
surface for the test set, achieved by SVR model with 8 ECG predictor variables. Error
was measured as geodesic distance between the estimated and the actual pacing site.

Table 6.4: The pairwise t-test for pacing-site coordinates (X, Y, Z) based on the
results of Bootstrap method with replacement using 1,000 trials in comparison of
MLR and SVR methods

Sample Coordinates
MLR

Mean± SD
SVR

Mean± SD
t p

Entire
X 5.80 ± 0.02 4.22 ± 0.07 23.55 <.00001?

Y 6.08 ± 0.02 4.51 ± 0.07 20.63 <.00001?

Z 9.35 ± 0.02 6.91 ± 0.09 27.10 <.00001?

Left-over
X 5.86 ± 0.17 4.92 ± 0.17 3.93 <.00010?

Y 6.14 ± 0.20 5.27 ± 0.19 3.22 <.00138?

Z 9.42 ± 0.29 8.03 ± 0.28 3.46 <.00061?

Mean and standard deviation (SD) are in millimeters, Student’s t-test results shown
as t and p values; ? denotes significant difference (p ≤ 0.05) between methods; the
entire sample consisted of n = 1, 012 pacing sites, the left-over sample had
n ' 1012/e pacing sites.
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Table 6.5: Comparative accuracy of pacing-site localization in terms of geodesic dis-
tance on the generic LV endocardial surface achieved by SVR and MLR models using
ECG predictors

Model Sample Variable
Mean
(mm)

SD
(mm)

Median
(mm)

5th Pctl
(mm)

95th Pctl
(mm)

SVR

Entire
(Geodesic)

gmean 10.15 0.15 10.15 9.85 10.43
gsd 8.50 0.23 8.58 8.17 9.04

gmedian 8.71 0.14 8.71 8.45 9.07

Left-over
(Geodesic)

gmean 12.00 0.39 12.00 11.27 12.81
gsd 8.88 0.62 8.87 7.70 10.12

gmedian 10.22 0.38 10.19 9.57 10.97

MLR

Entire
(Geodesic)

gmean 12.72 0.12 12.72 12.49 12.96
gsd 8.68 0.13 8.68 8.42 8.95

gmedian 11.08 0.16 11.04 10.79 11.43

Left-over
(Geodesic)

gmean 12.85 0.39 12.85 12.09 13.61
gsd 8.74 0.52 8.77 7.73 9.73

gmedian 11.22 0.43 11.21 10.41 12.04

Bootstrap method with replacement [153], using 1,000 trials, was used; the entire
sample consisted of n = 1, 012 pacing sites; the left-over sample had n ' 1012/e
pacing sites. Three g-variables quantify accuracy of localization by 8-predictor
linear regression in terms of geodesic distance (in millimeters) from the centroid of
the predicted triangle to the centroid of the pacing-site triangle in the 238-triangle
generic LV endocardial surface; gmean, mean value; gsd, standard deviation;
gmedian, median value; Pctl, percentile.
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Figure 6.8: Support-vector-machine model: Bootstrap distribution of pacing-site lo-
calization error in terms of geodesic distance on the generic LV-endocardial surface
for the entire sample (n = 1, 012), and the left-over sample (n ' N/e, N = 1, 012).
The red reference lines represent a 95% confidence interval; the yellow vertical line is
the mean of the bootstrap distribution.
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Figure 6.9: Multiple-linear-regression model: Bootstrap distribution of pacing-site
localization error in terms of geodesic distance on the generic LV-endocardial surface.
Analogous to Fig. 6.8.
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generated by the MLR model [51] and can supersede them to improve the real-time

localization of ventricular activation on the generic LV endocardial surface.



Chapter 7

Patient-Specific Inverse Solution vs. Pace-Mapping

7.1 Introduction

The pre-procedure ECGI methodology can identify sites of epicardial/endocardial

pacing with very good accuracy—as shown in Chapters 3 and 5—although accuracy

diminishes when pacing is performed over myocardial scar, or over a slowly conducting

isthmus (Chapter 3). To achieve such accuracy, however, ECGI requires specialized

electrodes for BSPM acquisition, patient-specific geometry acquisition by CT imaging,

and time-consuming processing, which make it complex to use in real time to guide

catheter-ablation procedure. In an attempt to develop a rapid localization of VT-exit

sites for real-time applications, we have previously introduced a novel statistical pace-

mapping methodology based on multiple linear regression (MLR) technique and using

only the standard 12-lead ECG for pacing sites with known coordinates to localize

the origin of ventricular activation [51].

The aim of studies presented in this Chapter is to compare the localization accu-

racy of the MLR technique with that of the validated inverse solution based on the

`1-norm method [55] (Chapter 3). Although both methods require patient-specific ge-

ometry data, the MLR method is using only geometry of the heart surface obtained

via catheter during intra-procedure electroanatomic mapping, whereas the inverse

solution requires pre-procedure CT imaging to obtain geometry of both heart- and

torso-surface, together with locations of body-surface electrodes.

7.2 Methods

7.2.1 Study population

We studied four patients with recurrent scar-related VT who underwent epicardial

catheter mapping and stimulation (79 pacing sites) at the QEII Health Sciences Cen-

tre in Halifax, and three patients with structurally normal ventricular myocardium

100
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who underwent endocardial stimulation (52 pacing sites) at the General University

Hospital, Charles University, Prague, Czech Republic. (This dataset was contributed

by Dr. Petr Št’ov́ıček, and it is available at http://edgar.sci.utah.edu/.) All 7 pa-

tients had 120-lead BSPM done according to the Dalhousie protocol, as described in

Appendix C.1.2.

7.2.2 Electrophysiology study and ablation

Body-surface electrodes were applied to the patient’s torso prior to the ablation pro-

cedure, which was performed by using standard techniques [117]. For the epicardial

patients, the pericardial space was entered percutaneously [154] and mapped using

an electroanatomic non-fluoroscopic system (Carto XP, Biosense Webster, Diamond

Bar, CA, USA) described in Appendix C.2.2. For the endocardial patients, the EP

study was performed as described in Appendix C.2.1.

7.2.3 Data acquisition and processing

Dalhousie standard BSPM recordings were acquired during pacing at each site (Ap-

pendix B.1). Within each recording, a representative paced beat was selected, and

the following features were extracted: (1) QRS integral (
∫

QRS), a time integral of

the QRS complex in microvoltseconds (µVs); (2) trimmed QRS integral (
∫

QRSms) for

inverse calculation, calculated over the initial 30, 40, . . . , 80 ms of the QRS complex

(denoted as
∫

QRS30 . . . etc.); (3) trimmed QRS integral (
∫

QRS120) for the statistical

method, calculated over the initial 120 ms of the QRS complex of the 12-lead ECG.

7.2.4 Statistical method by multiple linear regressions

The statistical method is based on a linear-regression model with MLR relating ECG

predictors (QRS integrals from the independent leads II, III, and V1–V6 of the 12-lead

ECG) to the coordinates of activation origin, using 8-variable regression equations

with patient-specific coefficients derived from the design set of ECGs corresponding to

the known pacing sites (with 3D coordinates defined by the electroanatomic system).

Once the regression coefficients that best fit (in the least-square sense) the patient’s

design set are found, they can be linearly combined with the variables generated

from the 12-lead ECG of any activation sequence of interest initiated at an unknown
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site. Thus, the 3D coordinates of an unknown pacing and/or VT-exit site can be

calculated from known patient-specific regression coefficients and the ECG variables

for the unknown pacing site or activation site of interest [51].

7.2.5 Emulation of clinical protocols

The statistical approach can be implemented in real time using a sweep-operator

algorithm [155] (Appendix D) that can then calculate patient-specific regression coef-

ficients for a minimal design set and—as more pacing sites are added to the training

set—recalculate them to improve localization accuracy with each added pacing site.

With 8 predictor variables, at least 8 + 1 pacing sites are necessary to render a non-

singular system. Therefore, for more safety, patient-specific regression coefficients can

be calculated with data acquired by pacing at least 10 known sites. This process was

emulated off-line to assess its expected performance in real time.

7.2.6 Inverse-solution method

The forward problem was solved based on the epicardial potential source model as

described in Section 2.3.1 of the Chapter 2. For each endocardial patient, we only

considered a forward transfer sub-matrix exported from the forward transfer matrix,

which directly relating LV endocardial surface to body surface (see details in Sec-

tion 2.3.3). The `1-norm regularization method was used to solve the inverse problem

(see details in Section 3.2.4 of the Chapter 3). The regularization parameter was

determined using the L-curve method [156].

7.2.7 Data analysis of the inverse-solution method

The electroanatomic Carto c© map was manually registered and fused with the pa-

tient’s CT data and pacing sites were projected to the discretized CT heart surface

(epicardial surface or endocardial surface) and utilized as the localization gold stan-

dard. As a measure of accuracy, the Euclidean distance was calculated for each

recording between the earliest computed potential minimum and the actual pacing

site projected on the heart surface. For analysis of pacing-site localization, the sites

were grouped into 3 categories: sites were characterized as “endocardial”, “epicar-

dial”, and “pooled”. For 2 of 4 patients undergoing epicardial mapping, epicardial
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potential distributions of VTs for which an exit site was identified were computed.

7.3 Results

7.3.1 Selection of optimal variables for the statistical localization

method

The optimal variables for representing ECG data were derived from 8 independent

leads (II, III, V1–V6) of the 12-lead ECG, since the remaining leads are redun-

dant [157]. Following our prior methodology, we chose the first 120 ms of the QRS

as an interval of integration for the
∫

QRS variables [51].

7.3.2 Accuracy of localization of pacing sites

Accuracy of pacing-site localization achieved—for each patient separately—by in-

verse solution for varied integration intervals of input variables (trimmed
∫

QRS) is

presented in Table 7.1 The optimal integration intervals of trimmed
∫

QRS are not

the same for all patients; they tend to be shorter (about 30–40 ms) for epicardial

pacing and longer (70–80 ms) for endocardial pacing. Comparative localization accu-

racy of the statistical MLR and of the deterministic inverse solution is summarized in

Table 7.2 and Fig. 7.1. Table 7.2 shows—for each patient separately—the accuracy of

pacing-site localization using the MLR method using
∫

QRS120 input variables and the

inverse-solution method using optimal integration interval input variables. Fig. 7.1

graphically compares the localization accuracy of statistical and deterministic meth-

ods for epicardial, endocardial, and pooled pacing sites. For epicardial pacing, the

mean localization error of the MLR method was lower than that of the inverse solu-

tion (11.2 vs. 28.4 mm, P = 0.034). For endocardial pacing, localization by the MLR

method also achieved better accuracy than the inverse solution (7.2 vs. 19.1 mm, P

= 0.017). The pooled localization accuracy of the MLR method was also superior to

that achieved by the inverse solution (P = 0.005).

7.3.3 Localization of VT exit sites by the inverse-solution method

For two patients who underwent epicardial mapping, an epicardial VT exit site was

identified with contact mapping. The site of successful ablation of VT1 identified by
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Table 7.1: Accuracy of pacing-site localization achieved by inverse solution for varied
intervals of

∫
QRS derived from BSPM: Patient-by-patient results

Patient
#

No. of
Pacing
Sites

Localization Error based on Inverse Solution
Intervals of

∫
QRS

30 ms 40 ms 50 ms 60 ms 70 ms 80 ms
1 epi 23 22.9 ± 13.3 23.9 ±15.7 23.9 ± 17.4 27.3 ± 17.6 33.5 ± 15.9 38.2 ± 16.7
2 epi 24 35.7 ± 21.9 35.3 ± 21.9 33.2 ± 16.3 33.0 ± 16.0 34.9 ± 15.9 33.9 ± 17.9
3 epi 21 23.2 ± 15.2 21.7 ±16.8 20.8 ± 14.5 21.6 ± 14.2 21.3 ± 13.7 23.0 ± 14.5
4 epi 10 31.7 ± 8.5 36.0 ± 10.2 34.3 ±10.6 34.0 ± 11.0 33.9 ± 11.0 33.0 ± 9.0

5 endo 17 45.3 ± 25.4 31.0 ± 15.0 27.7 ± 8.9 27.4 ± 9.6 24.5 ± 8.8 23.4 ± 10.5
6 endo 21 37.2 ± 22.2 22.5 ± 13.9 16.7 ± 8.3 17.0 ± 9.6 17.0 ± 10.9 17.8 ± 9.4
7 endo 14 45.6 ± 14.8 34.7 ± 15.2 23.45 ± 12.7 20.0 ± 11.2 19.8 ± 11.4 17.1 ± 11.7

Accuracy of localization evaluated for each patient separately in terms of Euclidean
distance (mm) from the predicted node to the pacing-site node on the
patient-specific epicardial or endocardial surface is given as mean ± standard
deviation. Optimal values are in bold face.

Table 7.2: Accuracy of pacing-site localization achieved by the MLR method and by
the inverse solution: Patient-by-patient results

Patient
#

No. of
Pacing
Sites

MLR Method
Localization Error∫

QRS120

Inverse Solution
Localization Error

1 epi 23 8.4 ± 9.8 22.9 ± 13.3
2 epi 24 12.7 ± 8.3 33.0 ± 16.0
3 epi 21 16.4 ± 14.2 20.8 ± 14.5
4 epi 10 7.4 ± 5.3 31.7 ± 8.5

5 endo 17 8.7 ± 8.1 23.4 ± 10.5
6 endo 21 5.1 ± 4.5 16.7 ± 8.3
7 endo 14 7.7 ± 13.0 17.1 ± 11.7

The accuracy of pacing-site localization was evaluated for each patient separately
using the MLR method and the inverse-solution method using the optimal
integration interval

∫
QRS120 as input variables. The localization error was

calculated for pacing sites of each patient as mean ± standard deviation of
estimated distance over epicardial and/or endocardial surface (mm).
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Figure 7.1: Box plots of localization error identified by the proposed MLR method
and by the inverse solution. Three plots for each method represent data for pooled
pacing sites (n = 130), epicaridal pacing sites (n = 78), and endocardial pacing sites
(n = 52). Boxes represent interquartile range, a line inside the box marks the median,
and “whiskers” above and below the box indicate the range.
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activation- and entrainment-mapping in Patient#1 is shown in Fig. 7.2a; an early

potential minimum estimated by the inverse solution from the optimal integration

interval (
∫

QRS30) as input variables appears at the mid-inferolateral LV, which cor-

responds approximately with the site of successful ablation at a geodesic distance of

24.2 mm (Fig. 7.2b). In Patient#2, the VT exit site was at the basal inferior left

ventricle at the scar margin (Fig. 7.2c). Fig. 7.2d shows that the site of early min-

imum potential on the inverse-solution map during VT2 (yellow dot) is in the same

anatomical region as the site of successful ablation (purple dot) registered from the

corresponding electroanatomic map, within a geodesic distance of 33.4 mm.

7.3.4 Emulation of real-time localization of the VT exit by the

statistical method

To illustrate how the statistical method can be incorporated into actual clinical work-

flow, we studied two patients who underwent epicardial mapping for VT-exit localiza-

tion (Fig. 7.3). In these two cases, the 3D coordinates of VT exit sites were identified

during the mapping/ablation procedure, based upon activation and entrainment map-

ping; 8-variable regressions were performed.

Representative Patient#1: This patient’s VT1 had cycle length 325 ms, with

right-bundle-branch-block-type (RBBB) morphology in lead V1, and a leftward axis

(Fig. 7.3A). The site of VT1 exit was identified by activation and entrainment map-

ping prior to termination by RF application. Using the statistical MLR method,

the VT1 exit was localized to the basal inferior LV, achieving accuracy within 10.5

mm after including up to 20 pacing sites in the training set (Table 7.3). The elec-

troanatomic map (Fig. 7.3B) shows the site of VT1 exit identified (yellow arrow); on

the corresponding meshed epicardial surface this exit site is marked by a purple dot

and estimated site of VT1 exit is marked by a yellow dot.

Representative Patient#2: The exit site of one of two inducible VTs was localized

using substrate and pace-mapping techniques; it was ablated with RF delivery at the

basal anterolateral presumed entrance site and it was rendered non-inducible. The

VT2 had a cycle length of 240 ms, with a left axis, and left-bundle-branch-block

morphology (LBBB) (Fig. 7.3C). By directing the catheter to the region of interest

and pacing at ≥10 sites within the region, patient-specific regression coefficients were
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Figure 7.2: Localization of VT exit by inverse-solution mapping for patients #1
and #2. Carto c© bipolar maps, inverse epicardial potential maps and isochrones
of activation are shown for VT1 and VT2, respectively. The yellow arrow on the
Carto c© maps in panels (a) and (c) indicates the clinically identified VT exit site,
which was registered to the corresponding heart surface geometry in panels (b) and
(d) with purple dot; the site of origin of ventricular activation estimated by the inverse
solution is shown as yellow dot. Localization error is 24.2 mm for VT1 exit and 33.4
mm for VT2 exit, measured as geodesic distance on epicardial surface.
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Figure 7.3: Localization of the activation origin by the statistical MLR method. (A)
The 12-lead ECG of monomorphic VT1 for Patient#1. (B) Top Carto c© map shows
the epicardial electroanatomic substrate for this patient, with areas featuring bipolar
signal amplitude ≥ 1.5 mV in purple, and the site of VT1 exit (identified by contact
mapping) depicted by the yellow arrow. Bottom panel shows a corresponding mesh
map with the actual site of VT1 exit marked by the purple dot and the site of VT1
exit estimated by the MLR method marked by the yellow dot; localization error of
the VT1 exit is 10.5 mm. (C) The 12-lead ECG of monomorphic VT2 for Patient#2.
(D) The actual site of VT2 exit (identified by activation and entrainment mapping)
and estimated site of VT2 exit for this patient are marked analogously to sites in
down panel (D); localization error of the VT2 exit is 11.6 mm.
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Table 7.3: VT-exit localization by successive regressions for predictors from ECG
leads (II, III, V1–V6) and meshed epicardial surface: Patient #1

Number of Neighboring
Pacing Sites

Estimated X
coordinate

Estimated Y
coordinate

Estimated Z
coordinate

Distance from
VT exit

True VT1 -24.3 -9.0 -42.2 0.0
1 to 10 – – – –

11 12.3 3.8 -49.9 39.5
12 13.0 3.6 -48.6 39.3
13 7.9 2.5 -51.6 35.5
14 1.4 0.9 -53.8 29.9
15 -3.1 -2.3 -49.0 23.2
16 -3.7 -2.7 -48.5 22.5
17 -8.8 -4.2 -48.1 17.2
18 -8.7 -4.2 -48.0 17.3
20 -15.9 -6.0 -47.7 10.5

Emulation of the clinical procedure as described in the text. The error of VT-exit
localization was calculated as Euclidean distance from the true VT origin (at
CARTO x, y, z coordinates -24.3; -9.0; -42.2 mm, measured from the center of
epicardial cavity at 42.4; -125.7; 6.6 mm, derived from the patient’s exported 257
Carto sinus-rhythm points). Only the first 20 pacing sites (out of available 23) are
shown here; the error of VT localization is a measure of convergence of successive
estimates.
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generated, which were then used to estimate the 3D coordinates of the site of VT2 exit.

This estimate became increasingly accurate with the addition of pacing sites within

the region provisionally identified (by means of MLR using “population coefficients”)

as the origin of VT2, finally converging to accuracy within 11.6 mm when pacing at

the 15th site (Table 7.4). The site of VT2 exit identified by contact mapping and the

estimated site are shown in Fig. 7.3D.

Table 7.4: VT-exit localization by successive regressions for predictors from ECG
leads (II, III, V1–V6) and meshed epicardial surface: Patient #2

Number of Neighboring
Pacing Sites

Estimated X
coordinate

Estimated Y
coordinate

Estimated Z
coordinate

Distance from
VT exit

True VT2 -24.1 -31.8 -24.0 0.0
1 to 10 – – – –

11 -2.9 -32.8 -4.0 29.2
12 -5.9 -29.1 -19.8 18.9
13 -11.3 -30.6 -19.9 13.6
14 -12.9 -30.8 -20.7 11.8
15 -13.0 -30.8 -20.8 11.6

Emulation of the clinical procedure as described in the text. The error of VT-exit
localization was calculated as Euclidean distance from the true VT origin (at
CARTO x, y, z coordinates -24.1; -31.8; -24.0 mm, measured from the center of
epicardial cavity at 42.9; -84.8; -22.8 mm, derived from the patient’s exported 236
Carto points gathered during sinus rhythm). Only the first 15 pacing sites (out of
available 24) are shown here; the error of VT localization is a measure of
convergence of successive estimates; the errors ≤ 12.0 mm in bold face.

7.4 Discussion and Conclusions

The main purpose of this study was to compare the performance of the statisti-

cal MLR method for estimating the site of origin of ventricular activation with the

corresponding performance of conventional electrocardiographic inverse solution. The

inverse-solution approach requires in our setting 120 body-surface electrodes for ECG

acquisition, patient-specific geometry acquisition by CT imaging, and time-consuming

processing, which does not make it suitable for guiding in real time a catheter ablation

procedure. On the other hand, the statistical MLR method is using just the standard

12-lead ECG and pacing-site coordinates exported from an electroanatomic system
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to generate patient-specific regression coefficients; once these coefficients are known,

the site of early ventricular activation can be estimated during the EP procedure with

significantly higher accuracy than that achieved by the inverse solution.

The utility of the 12-lead ECG in localizing the origin of ventricular activation

has been assessed previously by Miller et al. [141, 143] and by Kuchar et al. [142];

their algorithms were limited to patients with anterior and/or inferior infarction and

the site of VT origin was determined with relatively coarse resolution. The statistical

MLR method directly relates a patient-specific ventricular geometry to the ECG input

variables (predictors). Regression equations use patient-specific coefficients calculated

during the EP study. This method uses a pace-mapping approach to incrementally

increase the accuracy of localization as the procedure continues, and in the present

study it eventually localized the origin of epicardial activation with mean accuracy of

11 mm and the origin of endocardial activation with mean accuracy of 7.2 mm. Since

the MLR approach uses a patient’s own LV geometry gathered by the electroanatomic

system, it does not require any pre-procedure imaging. The method can be incorpo-

rated into a VT ablation procedure, after creation of a 3D heart substrate map and

VT induction, pacing at 10 to 20 sites near the presumed VT exit. Two emulations of

the clinical procedure demonstrated in this study achieved a mean localization error

of 11.1 mm for two tested VT-exit sites. Thus, the statistical patient-specific method

of VT-exit localization can potentially simplify substrate ablation for VT and help

to increase the efficiency of a catheter-ablation procedure.

Why would a simple pace-mapping method based on the conventional 12-lead

ECG surpass the accuracy of sophisticated electrocardiographic imaging? This was a

principal question in the editorial comment [158] to the paper by Sapp et al. [51]. To

answer this question, one should consider that the deterministic inverse-solution ap-

proach has to rely on numerous assumptions regarding electrical characteristics of the

patient’s torso and requires complex imaging techniques to describe torso geometry,

whereas the pace-mapping approach gathers all necessary patient-specific information

about the patient’s torso by experimental means, based on the assumption that the

human torso is a linear physical system.

In summary, the results of this study demonstrate that the pace-mapping method-

ology using real-time MLR calculations based on the conventional 12-lead ECG can
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reliably localize the origin of ventricular activation with high accuracy. This local-

ization capability stands out in comparison with the classical electrocardiographic

inverse solution, especially because the means of achieving it are much less cumber-

some. The proposed rapid method of localizing the origin of ventricular activation

may thus offer an attractive supplement and/or alternative to the electrocardiographic

inverse solution, making it suitable for real-time applications during clinical catheter

ablation.
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Conclusions

For many years, the problems of interest in the field of cardiac clinical electrophys-

iology have been solved by using deterministic models of the underlying biophysical

phenomena, based on hard assumptions regarding model parameters. Driven by the

dramatically improved performance of modern computers, more sophisticated statis-

tical modeling techniques have emerged in the machine-learning field. The aim of this

dissertation was to take advantage of these recent technological and computational

advances and to apply them in development of novel methods for guided therapy

of life-threatening cardiac arrhythmias. In particular, the proposed new computa-

tional approaches involve improved statistical methods for non-invasive pre-procedure

planning by electrocardiographic imaging (ECGI) and methods for real-time intra-

procedure localization of the origin of cardiac electrical activation.

We have shown that the ECGI methodology can provide detailed spatio-temporal

information to identify the origin of epicardial/endocardial ventricular activation with

very good accuracy when enhanced by the data-driven Bayesian approach. We used

the sparse property of the equivalent-double-layer (EDL) model to simplify localiza-

tion of the origin of activation on left-ventricular endocardium from body-surface

potential maps (BSPMs) using the spatio-temporal features of the cardiac action

potentials. We also presented an improved method for evaluating the global acti-

vation time (GAT). Inverse-solution isochrones yielded by this method correlated

closely with known activation maps obtained by contact mapping performed with

an electroanatomic mapping system. Finally, we further investigated the regression

approach—introduced previously in this laboratory—for predicting the origin of left-

ventricular activation by comparing three statistical prediction models: multiple lin-

ear regression, random forest regression, support vector regression. The performance

comparison of these regression models showed that consistent (albeit modest) im-

provement in localization accuracy can be achieved by machine-learning models, in

113
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comparison with widely-used linear regression model.

Although we have thoroughly validated the accuracy of proposed methods within

the available cohort of patients, future work should involve confirmation of our find-

ings in a separate cohort, to demonstrate whether the accuracy of novel methods is

indeed preserved across a broader range of structural heart-disease substrates. The

origin of malignant ventricular tachycardia can usually be determined quickly from

the conventional ECG and from catheter-acquired maps of low bipolar voltage when

infarct scars are small. However, the difficulties arise when scars are large or intra-

mural. To shed more light on these specific clinical problems, further validation of

our proposed methods will be necessary in another prospective validation cohort.
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[20] R. Hren, J. Nenonen, and B. M. Horáček. Simulated epicardial potential maps
during paced activation reflect myocardial fibrous structure. Ann Biomed Eng,
26(6):1022–1035, 1998.

[21] K. Simelius, J. Nenonen, and B. M. Horáček. Modeling Cardiac Ventricular
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[157] B.M. Horáček. “Lead Theory”. Comprehensive Electrocardiology. Springer Ver-
lag London, London, England, 2010.

[158] F. Bogun and M. Saeed. Computer-assisted mapping in electrophysiology: are
the machines taking over. JACC: Clinical Electrophysiology, 3(7):700–702, July
2017.

[159] E. Sosa, M. Scanavacca, A. d’Avila, and F. Pilleggi. A new technique to per-
form epicardial mapping in the electrophysiology laboratory. J. Cardiovasc.
Electrophysiol., 7(6):531–536, Jun 1996.

[160] R. I. Jennrich. “Stepwise regression”, Statistical Methods for Digital Computers.
Wiley-Interscience, New York, NY, 1977.



Appendix A

Dalhousie Standard Models

A.1 Dalhousie Torso Model

A realistic human torso was determined in our laboratory from tomographic measurement

of a single subject. The original version was developed by Dr. Horacek. The Dalhousie

standard torso consists of 352 nodes, which are vertices of 700 triangular elements of body

surface [99, 100]. Fig. A.1 shows a view of our Dalhousie torso model with this coordinate

system.

Figure A.1: The 3D Dalhousie standard torso. A: front view of the body surface; B:
left-side view of the body surface.
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A.2 Heart–A generic left-ventricular model

Detailed 3D geometry of the left-ventricular (LV) endocardial surface was obtained from the

necropsy specimen of the normal human heart. A heart specimen was embedded in gelatine,

frozen, and sliced whole with a microtome into 1-mm sections, which were photographed

and the myocardium boundaries were digitized. The triangulated closed LV endocardial

surface–including the aorto-ventricular membrane, mitral valve, and aortic valve–was then

constructed. It consists of 305 triangular area elements, 238 of which correspond to the LV

endocardium (with trabeculation and papillary muscles ignored) and the remaining triangles

close the surface. Fig. A.2 shows a view of open and closed LV endocardial surfaces with

coordinate system.

Figure A.2: The 3D generic LV endocardial surface. A: closed generic LV endocardial
surface; B: open generic LV endocardial surface.



Appendix B

Dalhousie Standard BSPM

B.1 Data acquisition and processing

To perform electrocardiographic body-surface mapping [99], 18 disposable strips with 120

Ag-AgCl electrodes (FoxMed, Idstein, Germany) were placed on patient’s torso and a 128-

channel acquisition system (Mark 6, BioSemi, Amsterdam, the Netherlands) with a laptop

computer running in-house-developed MAPPER software was used to display and record

ECGs. The analog signals were amplified, filtered (0.025 to 300 Hz), sampled at 2000

Hz with 16-bit resolution, recorded for 15 seconds or a sequence of 11-43 consecutive beats

during sinus rhythm (SR), ICD pacing, moving catheter pacing, and ventricular tachycardia

(VT) for 4 epicardial patients In the 120-lead set, missing leads (due to defibrillation pads)

and noisy leads were interpolated into 352 nodes by a three-dimensional interpolation [99],

based on the patient-specific torso model. All ECGs were plotted and a representative

paced beat for each pacing site was selected for analysis; great care was taken to select a

capture beat of the best quality from the recording, avoiding motion artifacts, ectopic beats

and non-capture beats. The location of each pacing site provided by the electroanatomic

mapping system was noted for later off-line analysis and comparison.
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Appendix C

Dalhousie Clinical Procedures

C.1 EP Studies Patient Population

C.1.1 Endocardial ablation patients

Study population consisted of patients who suffered from recurrent scar-related VT and

underwent catheter-ablation procedure at the electrophysiology (EP) Lab of the Queen

Elizabeth II Health Sciences Centre in Halifax, N.S., Canada. The total of 38 patients

participated in the study (Table C.1); the first 18 patients underwent 120-lead body-surface

potential mapping (BSPM) during catheter ablation procedure and for the next 20 patients

only the standard 12-lead ECG was recorded. Before the procedure, standard diagnostic

imaging modalities (including echocardiography, angiography, and multigated acquisition

scan) were used to locate the site of myocardial scar. All participating patients were in-

formed of the study’s procedure, and each gave written informed consent in accordance with

the ethical guidelines approved by the institutional Research Ethics Board.

For the purposes of this study, the 3D electroanatomic maps acquired by the Carto c©

electroanatomic system (Biosense Webster, Diamond Bar, CA, USA) during the ablation

procedure were reviewed and 12-lead ECG data corresponding to known left ventricular

pacing sites for all patients were pooled. Mean age of these patients was 62 ± 14 years;

37/38 were male; 77% had ischemic heart disease; 58% underwent previous coronary bypass

graft operation; 89% had clinical VT and the remaining 11% had multiple PVCs; mean

ejection fraction was 35%. Pacing sites that captured with delay > 40 ms were excluded,

because of the possibility of local capture with remote exit; a total of 1,012 LV pacing sites

with known coordinates and their corresponding 12-lead ECG constituted a dataset for the

present study.

C.1.2 Epicardial ablation patients

The clinical study was approved by the Capital Health Research Ethics Board (Halifax,

N.S., Canada), and patients gave written informed consent. The population consisted of
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Table C.1: Clinical Characteristics of Patient Population
Pt Age Sex SHD Prior CV Clinical EF(%) AAD LV

Surgery Arrhythmia Aneurysm

1 77 M AMI CABG SMVT 41 Amiodarone None
2 59 M IMI CABG SMVT 15 None None
3 61 M IMI CABG SMVT 25 Amiodarone None
4 62 M IMI CABG SMVT 43 Sotalol None
5 53 M IMI CABG SMVT 15 Amiodarone None
6 60 M IMI CABG SMVT 34 None Basal inferior
7 81 M IMI CABG SMVT 18 None None
8 67 M IMI None SMVT 26 Sota+Amio None
9 61 M IMI CABG SMVT 55 Amiodarone None

10 49 M IMI MVR SMVT 27 None None
11 76 M AMI CABG SMVT 25 Sotalol None
12 26 M DCM None SMVT 40 None None
13 61 M AMI None SMVT 25 Amiodarone None
14 43 M ARVC None SMVT 30 Amiodarone None
15 76 M IMI CABG SMVT 33 Amiodarone Basal inferior
16 37 M HCM Myectomy SMVT 45 Amiodarone None
17 66 M DCM None PVCs 45 None None
18 60 M VHD AVR SMVT 40 Sotalol None
19 76 F IMI CABG SMVT 42 None None
20 68 M MI CABG VT 30 None None
21 59 M MI None SMVT 50 Amiodarone None
22 46 M ARVC None SMVT 41 Amiodarone None
23 51 M MI None PVCs 55 None None
24 74 M MI CABG SMVT 30 Amiodarone None
25 81 M MI CABG/MVR SMVT 35 Amiodarone Apical septal
26 71 M IMI CABG PVCs 50 None None
27 75 M MI None SMVT 40 Amiodarone None
28 79 M MI CABG SMVT 25 None None
29 72 M IMI CABG SMVT/storm 30 Sotalol None
30 78 M AMI None SMVT 15 Amiodarone Apical & Antsept
31 68 M IMI CABG SMVT 40 Sota+Amio None
32 47 M ARVC None SMVT 35 Sota+Amio None
33 66 M IMI None SMVT 30 Sota+Amio None
34 73 M MI CABG SMVT 30 Sota+Amio Anterior
35 60 M None None SMVT 60 Sotalol None
36 63 M AMI None SMVT 49 Amiodarone None
37 69 M MI CABG SMVT/storm 35 Amiodarone None
38 80 M IMI CABG SMVT 35 Amiodarone None

SHD, type of structural heart disease; AMI, anterior myocardial infarction; IMI, inferior

myocardial infarction; DCM, dilated cardiomyopathy; ARVC, arrhythmogenic right ventricular

cardiomyopathy; HCM, hypertrophic cardiomyopathy; VHD, valvular heart disease; CABG,

coronary artery bypass graft; AVR, aortic valve replacement; MVR, mitral valve replacement;

SMVT, sustained monomorphic VT; PVCs, premature vetricular complexes.
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four patients undergoing epicardial catheter mapping and ablation of VT. Patients un-

derwent CT scanning before the procedure for registration with electroanatomic mapping

and generation of patient-specific geometry, and 120-lead BSPM was performed, using our

Dalhousie standard methodology [99, 100]. The Dalhousie standard torso consists of 352

nodes [60], which were aligned with the patient-specific locations of the 120 electrodes to

customize the standard torso. The clinical data of 4 patients are shown in Table C.2.

Table C.2: Clinical data of VT recordings for the 4 patients

No. Sex Age Etiology
No. of

Pacing Sites
Mapped

VT
VT Exit/

Ablation Site
CT

Slices
1 M 70 CAD 23 VT1 epi. basal inferior LV 0.8
2 M 30 CAD 24 VT2 epi. basal inferior LV 3
3 M 65 CAD 21 VT3 endo. basal inferolat LV

0.8
VT4 endo. LV mid septum

4 M 75 CAD 10 VT5 endo. basal lateral LV
0.8

VT6 endo. basal superior LV

VT, ventricular tachycardia; CAD, coronary artery disease; CT Slices, thickness of
CT slices (mm); epi, epicardial; endo, endocardial; LV, left ventricle.

C.2 EP Studies Protocols

C.2.1 Endocardial electrophysiology study and ablation

Access to the LV was achieved via a retrograde aortic or trans-septal approach. Pro-

grammed stimulation for VT induction was done with conventional catheters at two in-

tracardiac sites (RV apex and the RV outflow tract). Intracardiac bipolar and unipolar

electrograms were digitized and stored (by CardioLab, GE Healthcare, Piscataway, NJ)

and three-dimensional (3D) electroanatomic maps were acquired by the Carto c© XP and

Carto c© 3 systems (Biosense Webster, Diamond Bar, CA, USA). Pace-mapping and en-

trainment mapping (if possible) were performed as part of the clinical protocol. If VT was

inducible and tolerated, a combination of activation and entrainment mapping was used to

identify a target for ablation. If the VT was not inducible, non-sustained or hemodynam-

ically unstable, substrate-based mapping and pace-mapping were used to identify parts of

scar border targeted for ablation. For focal VTs, ablation was targeted at the site of ear-

liest activation identified by point-by-point mapping. An irrigated 3.5-mm tip deflectable

ablation catheter (Thermocool Navistar, Biosense Webster, Diamond Bar, CA, USA) was
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used for mapping and ablation. Pacing was performed with stable catheter position at mul-

tiple endocardial sites at minimum pacing output that ensured consistent focal myocardial

capture. Lesions were created by delivering RF energy at the target sites.

C.2.2 Epicardial electrophysiology study and ablation

In 1996, Sosa and co-workers modified the pericardiocentesis technique to enable percu-

taneous access to the pericardial space for mapping and catheter ablation of ventricular

tachycardia [159]. The same mapping maneuvers described above for endocardial mapping

and ablation of ventricular tachycardia are applied in epicardial mapping. During epicardial

substrate mapping it has to be considered that low bipolar voltage occurs in areas of epi-

cardial fat accumulation; also, these fat pads limit creation of deep lesions during ablation.

Extra precaution has to be taken during epicardial ablation to avoid injury to coronary

arteries and veins on the epicardial surface.



Appendix D

Sweep-operator engine

A great variety of statistical computations can be facilitated by the application of a simple

operator called the sweep operator, introduced by A.E. Beaton in 1964 [155].

Let A = (aij) be a square matrix whose kth diagonal element aij 6= 0. The result of

sweeping A on its kth diagonal element is a new matrix Ã = (ãij)of the same size given by:

ãkk = −1/akk

ãik = aik/akk

ãkj = akj/akk

ãij = akj − aikakj/akk (D.1)

for i 6= k and j 6= k. A sweep operation can be undone by means of an inverse sweep.

The sweep operator can be used to carry out regression computations [160]. The Fortran

implementation below illustrates how the sweep operator is used in this project to calculate

patient-specific regression coefficients off line. Subroutine doreg.f takes an 8×n input matrix

(n = 12, usually), where each row consists of the following string pertaining to the specific

pacing site: 1., area(aV F ), area(V 1), area(V 4), area(V 6), Xcarto, Y carto, Zcarto, where

area variables are time-integrals of respective ECG leads and carto variables are X,Y, Z

coordinates of pacing catheter. From this input is computed an 8 × 8 SCP (Sum of Cross

Products) matrix. The first 5 columns are then “swept” by calling subroutine sweep. The

SCP matrix is destroyed in the process, but 3 regressions can be extracted from the remains,

resulting in a 5 × 3 matrix of coefficients, where coef(1, i) is an intercept and coef(2, i)

through coef(5, i) are slopes for variables area(aV F ), area(V 1), area(V 4), area(V 6), re-

spectively, with i running through Xcarto, Y carto and Zcarto. The Fortran code shown

for illustration below does also other non-essential tasks, to compare results with those ob-

tained by SAS package. A stripped-down and more generalized Java version of subroutine

doreg.f , used for on-line applications on Android tablet, is listed below Fortran code. It

takes an input matrix dimensioned (nx + ny) × numRecordings(n ≥ 12, usually), where

each row consists of the string: 1., (nx− 1) measurements, ny measurements. From this is

computed an (nx+ny)× (nx+ny) SCP matrix. The first nx columns are then “swept” by
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calling subroutine sweep. The SCP matrix is destroyed in the process, but 3 regressions can

be extracted from the remains, resulting in a 3× nx matrix of coefficients, where coef [i][0]

is an intercept and coef [i][1] through coef [i][nx− 1] are slopes for the remaining (nx− 1)

measurements, respectively, with i running from 0 to (ny − 1).
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