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Abstract 
 
Time-domain numerical methods are widely applied in modern engineering problems. In 
modeling electromagnetic structure problems, finite-difference time-domain (FDTD) 
method is one of the most well-known and widely adopted methods due to its algorithmic 
simplicity and flexibility. The major constraint of the FDTD method is, in its iterative 
solution process, that the time step is restricted by the Courant-Friedrichs-Lewy (CFL) 
condition. Simply to say, the finer the spatial discretization (often required by accuracy), 
the smaller time step that can be used. As a result, the computational speed and efficiency 
are limited. In the first half of this thesis, we analyze the FDTD method, review its 
instability and present its eigen-mode decomposition. Based on the finding, we then 
derived the analytic solution of the FDTD method, presenting an alternative non-iterative 
time-domain approach for electromagnetic problems. In the second half of the thesis, we 
focus on an important application of the FDTD method, the computational time reversal 
(TR) technique, which is an algorithm applied in inverse source problems such as source 
reconstruction. The algorithm is thoroughly investigated in theory, a new condition is 
presented for precise source reconstructions, and a mathematical model is developed to 
reformulate the time-reversal process in an optimization manner. Finally, band-limited 
fields or signals are incorporated into the model to make the time reversal method 
practical. Initial numerical experiments are conducted, and the results demonstrate the 
effectiveness and potentials of the proposed time-reversal method in source 
reconstructions and microwave structure synthesis in the future.    
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CHAPTER 1 INTRODUCTION	

1.1  PREFACE 

This thesis mainly focuses on investigations on time-domain numerical methods 

of computational electromagnetics; it includes the development of the finite-difference 

time-domain (FDTD) method, and its application in inverse source problems. This 

chapter is to introduce the research background and review the state-of-the-art of FDTD 

method, as well as the motivations and objectives. The contributions and the organization 

of the thesis will also be presented. 

 

1.2  RESEARCH BACKGROUND 

Solutions of partial differential equations (PDEs) are much demanded for modern 

engineering problems. For example, Diffusion equation, Poisson equation, Laplace 

equation, Maxwell equations, and Schrödinger equation, are well-known PDEs that are 

widely studied and used in various fields. There are mainly two ways to solve PDE, 

analytic approach and numerical approach. The analytic approach is explicit and accurate; 

hence it is preferred whenever it is applicable. However, there are very rare cases in 

which the analytical solutions are obtainable. Usually an analytical solution is available 

only when the shapes, boundaries of a problem structure or domain are regular and 

simple. For most practical situations, the effort needed to reach the analytic solution is 

too prohibitive. In short, the analytic approach is limited and unachievable in solving 

practical problems.  

The second way is to use numerical methods. In a numerical method, the first step 

is to discretize the problem in space and time, transfer the problem from a continuous 

model into a discrete one. By applying numerical approximations of the differential 

operators, the PDEs is transformed into discrete equations in the discrete domain. Then 

the solutions to the discrete equations are sought which are expected to the 

approximations to the analytic solutions to the original continuous PEDs. 

Finite-difference time-domain (FDTD) method [1] is one of the most well-known 

numerical methods to solve PDEs involving time. For electromagnetic problems, it 
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combines the finite difference algorithm with the specific lattice/grid pattern introduced 

by Yee in 1966. It was further developed by Taflove who named it in 1980 [2]. Since 

then, applications and research interests in this method have exploded as can be seen in 

millions of publications directly related to FDTD [3-6] so far. In the past four decades, 

due to FDTD’s simplicity, robustness, and explicitness, the range of applications of 

FDTD has been expanded over a very wide spectrum[6]. 

However, for the explicit time-domain method like FDTD method, the maximum 

time step is restricted by the Courant-Friedrichs-Lewy (CFL) condition [7], which is 

related to the smallest cell size in a discretized spatial domain. It is the major constraint 

of FDTD in its iterative solution process where the choice of time step is restricted. The 

finer the spatial discretization is (often required by accuracy), the smaller time step that 

has to be used. Hence, when multi-scale structures or geometry fine devices are to be 

modeled, discretized grid or cell size must be small to capture the detail of geometries; so 

does the time step. The restriction imposes a limit on computational speed and efficiency; 

sometimes it can make the computational time prohibitively long. If the CFL condition is 

not satisfied, solutions of the FDTD method (as well as the other explicit time-domain 

methods) will become unstable and diverge as the time marches, leading to numerical 

explosive results. 

To address the stability issue, in recent years, a number of unconditionally stable 

schemes have been developed to remove the dependence of time step on space step in the 

FDTD method. For example, the alternatively-direction-implicit (ADI) FDTD method 

was developed [8-12]. With the implicitness, the size of the time step can be made 

independent of cell sizes. Therefore, an arbitrarily large time step can be used with the 

only constraint on the time step being modeling accuracy. Other implicit unconditionally 

stable FDTD methods have been developed too in the past decades; they include the 

locally-one-dimensional (LOD) FDTD methods [13-15], the multi-stage split FDTD 

(SFDTD) [16, 17] and Crank Nicolson (CN) FDTD methods [18-21]. All of these 

methods are implicit methods that mathematically require a system matrix solution.  

To less extent of the removal of the stability condition, other methods have also 

been proposed to relax the stability condition and enlarge the time steps. A spatial 

filtering technique has been developed to extend the stability limit of the explicit FDTD 
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method [22-25]  in electromagnetics. The time step is successfully extended beyond the 

CFL limit, while the filtering process requires intensive computation. The cause of the 

instability is investigated with the eigen matrix theory and an unconditional FDTD 

scheme is introduced by modifying the conventional FDTD leap-frog iterative process  [6, 

26]. In these methods, the iterative march-on-time procedures are required and the CFL 

conditions are inherently present in the FDTD model.  

On the other hand, as one of the important applications of the FDTD method or 

time-domain numerical methods in general, computational time-reversal (TR) techniques 

have been studied for solutions of inverse source problems in acoustics, electromagnetics 

and other areas [27-31]. To understand TR process, consider a two-step procedure: first 

signals (or fields) emitted by sources are propagated, recorded at pre-selected output 

locations in a solution domain, which can be named as forward propagation; then in a 

backward propagation, the recorded signals are reversed in time and re-injected at the 

output locations into the problem domain. This procedure is the time reversal method. As 

long as the solution domain is reciprocal, these re-injected signals (or fields) experience 

the same propagation conditions (e.g. multipath, reflections, refractions) as the forward 

propagating signals, resulting in field focusing or peaks around the original source 

locations. Robust and simple to implement, the TR methods have drawn much attention 

of the inverse problem community. In computational electromagnetics, TR methods have 

been formulated and implemented using the Transmission Line Matrix (TLM) method 

[32-34], and the Finite Difference Time Domain (FDTD) method [35]. In spite of the 

progress of the recent years in the area, there are still major challenges and issues with 

the TR techniques developed so far for practical applications. For example, the source 

locating by peak identification may not work well in certain cases, especially when 

multiple sources exist; and the relevant theory has not been developed. Also, the signals 

of full-spectrum are mostly not available for the inverse operation and the TR process. 

All these limitations motivate us for the further development of the TR techniques as one 

of the major applications of the FDTD method or time domain numerical methods in 

general. 

 

1.3  OBJECTIVES 
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The objective of the thesis is to find new paths and formulations for the FDTD 

method and the applications in light of the challenges and issues described in the previous 

section. As the result of my work, this thesis achieves the following specific objectives of 

limited scope: 

1) perform detailed analysis of the conventional FDTD method and theorizes its 

stability problem from the aspect of a discrete system for a time-domain 

method; 

2) overcome constraint of CFL limit and develop a wave-equation based 

unconditionally-stable scheme for the FDTD solutions; 

3) derive the analytical form of the FDTD solution; 

4) develop the theoretical model for the time reversal method;  

5) derive a condition for precise source reconstructions without false results; 

6) reformulate and develop the TR process into an optimization problem for 

effective source identifications and reconstructions; and 

7) propose an extraction method for incorporating band-limited signals or 

responses into the TR process for practical applications. 

 

1.4  CONTRIBUTIONS OF THIS THESIS 

 This thesis presents the analysis of the essentials of the FDTD method. By 

considering FDTD method as a discrete system with input and output, the stability issue 

of FDTD method is studied in a succinct manner. Based on the analysis, a peculiar new 

phenomenon is first observed and reported: the CFL condition may not always guarantee 

the stability of FDTD method (and other time-domain methods). 

            With the stability studies, the cause of numerical instability is identified. By 

removing the unstable modes contained in the FDTD solutions, an unconditionally stable 

wave-equation FDTD method is developed. Numerical experiments are conducted to 

verify the unconditional stability.   

            Analytic form of FDTD solutions is derived for the first time. Solution of a FDTD 

model of a structure at any time step can then be obtained directly without the iterative 

process like that of the conventional FDTD simulation. Details of the analytical FDTD 
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solution in different scenarios of hard sources, lossy medium, and non-uniform dielectric 

materials are discussed and verified. Treatment of more complex scenario like absorbing 

boundary conditions are also discussed and a pathway is provided for future studies. 

 The time reversal method is an important application of the finite-difference time-

domain method to solve inverse source problems. In this thesis, detailed theoretical 

models and analysis of time reversal in both time-domain and frequency domain are 

presented for the first time. They show that the conventional TR focusing relies on peak 

identification sometimes fails. To address this, a new mathematical condition for 

reconstruction of multiple sources are developed. To apply the condition as a direct 

source location solver, a new method, the regularized least square technique, is 

formulated for the TR process; it can present the accurate identification of the numbers, 

locations and amplitudes of the sources.  

 Signals used in the TR method requires full-spectrum information so far. 

However, in practice, signal information is often band-limited. To overcome the problem, 

in this thesis, an extraction method that allows the incorporation of the band-limited 

signals or field responses into the TR method is developed. It makes the TR method 

practical and useful. 

 The above work, as a part of this thesis, has been published in [36-40] and another 

two papers are currently accepted for publication. As the first author in the papers listed 

below, this PhD candidate is responsible of the theoretic developments, numerical 

verifications, organizing and writing of these papers. 

[1] W. Fan, Z. D. Chen, and S. Yang, “A wave equation based unconditionally stable 

explicit FDTD method,” in Proc. 2015 IEEE MTT-S International Conference on 

Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2015. 

[2] W. Fan, Z. Z. Chen, and S. C. Yang, "On the Analytical Solution of the FDTD 

Method," IEEE Transactions on Microwave Theory and Techniques, vol. 64, pp. 3370-

3379, Nov 2016. 

[3] W. Fan, Z. Chen and W. J. R. Hoefer, "Source Reconstruction From Wideband and 

Band-Limited Responses by FDTD Time Reversal and Regularized Least Squares," IEEE 

Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 4785-4793, Dec. 

2017.  
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[4] W. Fan and Z. Chen, "A new time reversal method with extended source locating 

capability," In Proc. 2017 IEEE MTT-S International Microwave Symposium (IMS), 

Honololu, HI, 2017, pp. 704-706. 

[5] W. Fan and Z. Chen, "A condition for multiple source reconstructions with the time-

reversal methods," In Proc. 2016 IEEE MTT-S International Microwave Symposium 

(IMS), San Francisco, CA, 2016, pp. 1-4. 

 

 

1.5  ORGANIZATION OF THIS THESIS 

 Chapter 2 presents the detailed analysis of the FDTD method. By applying the 

matrix theory and the z-transform, it reveals the root cause of the instability of the FDTD 

method. Based on the analysis, it is discovered that the CFL condition does not always 

ensure the stability of The FDTD method as proved by numerical experiments. 

Furthermore, an unconditionally stable wave-equation based iterative method for the 

FDTD solutions is proposed. Numerical experiments verify the unconditional stability 

and effectiveness of the proposed method.  

 Chapter 3 develops the analytic solution of the FDTD method. For the first time, 

the analytic form of FDTD solution is explicitly represented, which makes possible to 

directly obtain FDTD simulation results at any time given without the conventional 

iterative march-on-time process. The analytic solution is mathematically derived and 

numerically verified. Besides, notable cases such as hard source, lossy medium and non-

uniform dielectric materials are considered and variants of the analytic solutions are also 

presented. Future directions of handling of absorbing boundary conditions are also 

provided. 

Chapter 4 dedicates to the application of time-domain methods to the time 

reversal (TR) method. The TR technique is applied in solving the inverse source 

problems such as source reconstructions. However, the conventional time reversal 

method is limited in practical applications for possible false results. Detailed theoretical 

analysis of the time reversal in both temporal and frequency domain are presented for the 

first time. A new condition is developed for reconstruction of multiple sources with 
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removal of the possibility of the false results. A mathematical formulation is then 

developed for the TR process for precise source reconstructions. To make the TR process 

practical, an extraction method is developed that can expand the band-limited signals or 

field responses to the full-spectrum signals for incorporations into the TR process. These 

developments lay the foundations for making the TR method practical for source 

reconstructions and synthesis in the near future.  

Chapter 5 concludes the research in the thesis and presents the future directions. 
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CHAPTER 2 THE STABILITY OF THE FDTD METHOD AND THE 

UNCONDITIONALLY-STABLE WAVE-EQUATION BASED METHOD	

 
2.1  INTRODUCTION 

Many numerical methods have been developed to solve Maxwell’s equations for 

electromagnetic structure problems. Among them, the explicit time-domain numerical 

methods such as the FDTD method [1, 2], has attracted particular interest for their 

capability of modeling transient responses. Besides, the explicit methods are normally 

free of matrix solutions and their solutions reflect physical events in its natural temporal 

dimension, providing a wideband solution with a single run of simulation. It also has 

advantages in modeling nonlinear phenomenon without much difficulty. 

However, for the explicit time-domain methods, the time step size is restricted by 

the Courant-Friedrichs-Lewy (CFL) condition [3, 7], which places an upper limit of the 

time step of these explicit numerical methods; it hence restricts computational speeds and 

efficiency. If a time step is chosen larger than the CFL limit, the time-domain solutions of 

these methods will become unstable and divergent as they march on time. The limit 

depends on the sizes of elements or grids which discretizes solutions domains and 

properties of the media to be modeled. The smaller the elements (or finer the numerical 

grids) are, the smaller the limit is. As a result, the CFL condition may cause long, 

sometimes prohibitively long, simulation time due to the small time step that has to be 

taken.  

Extensive research efforts have been made recently in circumventing the CFL 

condition by developing implicit FDTD methods [8, 9, 11, 41] or relaxing or even 

removing the CFL-caused instability [26, 42]. For example, spatial filtering is used to 

remove unstable solutions by filtering out the higher-order components in spatial domain 

[23-25, 42].  

In this chapter, we will show that the FDTD (and other time-domain methods) is a 

discrete system with singularity poles in its impulse response; the CFL condition only 

ensures that the position of the poles will not result in instability for the impulse response 
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but not necessarily the FDTD solutions at all the times. By applying the eigen matrix 

analyses, the poles are found to be related to the eigenvalues of the FDTD system matrix; 

and the instability is caused by the eigenvalues whose values are larger than 4. In addition, 

large eigenvalues and their corresponding eigenmodes are found to corresponds to high 

frequency components of the FDTD solutions. By removing the high-frequency 

eigenmodes that cause the instability, a wave-equation based FDTD solution is developed 

to solve electric and magnetic fields explicitly without numerical instability. The details 

are presented in the following sections. 

 
 
2.2  MATRIX FORMULATION OF THE FDTD METHOD AND STABILITY ANALYSIS  

2.2.1  The Matrix Formulation of The FDTD method 
 

Consider Maxwell’s equations in an isotropic and lossless medium of permittivity 

ε and permeability μ: 

                                          
=  ,

= +  , 

HE

EH J

t

t

µ

e

¶
Ñ´ -

¶
¶

Ñ´
¶

                                                    (2.1) 

in which E represents the electric field, H represents the magnetic field. J is the electrical 

current. With replacements of the derivatives with their central finite difference 

counterparts, equation (2.1) is discretized in both space and time. The results are the 

march-on-in-time formulations of the FDTD method: 

1 1[ ] [ ] [ ] ,
2 2 En n t n+ = - -DH H D E                             (2.2a) 

1 1[ 1] [ ] [ ] [ ]
2 2H

tn n t n n
e
D

+ = + D + - +E E D H J .                    (2.2b) 

 

where tD  is the discretizing time step, 
1[ ]
2

n -H  is a column vector whose elements are 

magnetic field at all the magnetic field grid points (or nodes) at time instant 
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1( )
2

t n t= - D , [ ]nE is a column vector whose elements are electric field at all the 

electric field grid points at time instant t n t= D , ED is the matrix of dimension h eN N´  

representing the finite-difference form of operator 1µ- Ñ´  and HD is the matrix of 

dimension e hN N´  representing the finite-difference form of operator 1e - Ñ´ . n is the 

time step stepping index, eN  is the number of the electric field nodes and hN  is the 

number of magnetic field nodes.  

Eq. (2.2) is the leap-frog form of the conventional FDTD formulation. As can be 

seen, the electric and magnetic field are solved in an alternating manner half a step apart. 

Eq. (2.2) can be further simplified by substituting (2.2b) into (2.2a) and vice versa. The 

results are the discretized wave equations for electric or magnetic fields, respectively: 

 

2 1 1[ 1] [ 1] 2 [ ] [ ] [ ] [ ]
2 2H E

tn n n t n n n
e
D æ ö+ + - - + D = - + - -ç ÷
è ø

E E E D D E J J ,   (2.3a) 

23 1 1 1 1[ ] [ ] 2 [ ] [ ] [ ]
2 2 2 2 2E H E

tn n n t n n
e
D

+ + - - + + D + = - +H H H D D H D J  .  (2.3b) 

The numbers of unknown quantities of (2.3a) and (2.3b) are eN  and hN , respectively.  

The above two equations have the similar form. Therefore, they have the same 

CFL condition, which is also the CFL condition of the FDTD formulation (2.2) (since 

(2.3) is derived from (2.2)). We take electric field wave equation (2.3a) for our analysis. 

It can be simply rewritten as 

 

[ 1] [ 1] 2 [ ] [ ] [ ]  (input)n n n n n+ + - - + =E E E ME x  .              (2.4) 

 

where 2
H Et= DM D D which is the finite-difference form of operator 

2 1t ( )eµ -D Ñ´Ñ´. ( )1[ ] [ 1/ 2] [ 1/ 2]n t n ne -= - D + - -x J J  which represents the 

source term. In the case of known boundary conditions, it may also include boundary 

condition terms imposed. 
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2.2.2  Eigen-Analysis of the FDTD Method 
 

Denote the Matrix M as the system matrix of The FDTD method. It has a 

dimension of e eN N´ , eN  is the number of the electric field nodes. It is a real 

symmetric matrix as well as semi-positive definite [6, 26]. Therefore, its eigenvalues are 

non-negative real numbers and its eigenvectors are linearly independent of each other. As 

a result, eN  eigenvectors of M form a complete solution space for the FDTD electric 

field solutions. In other words, any FDTD electric field solutions can be represented by a 

combination of these eigenvectors.  

Denote 1 2[   ...  ... ]
ei Ndiag l l l l=Λ as the eigenvalue matrix of M with its 

diagonal elements being the eigenvalues, 1 2[V  V  ... V  ... V ]
ei N=V  as the associated 

eigenvector matrix of e eN N´ elements whose columns are eigenvectorViof 1eN ´  

elements that is associated with eigenvalue il . We can then expand a FDTD field 

solution and its source at the n-th time step in terms of the eigenvectors as follows: 

 

[ ] [ ]n a n=E V                                                       (2.5a) 

[ ] [ ]x Vn b n=                                                       (2.5b) 

 

where 1, 2, , ,[ ] [   ...  ... ]
e

T
n n i n N na n a a a a= and 1, 2, , ,[ ] [   ...  ... ]

e

T
n n i n N nb n b b b b=  are the 

expansion coefficient column vectors at the n-th time step for [ ]nE  and x[ ]n ; element 

,i na  and ,i nb  are the time-step dependent expansion coefficients.  

Equation (2.5) indicates that any FDTD solutions and their sources can be 

expanded in terms of the spatially invariant eigenmodes with time-dependent expansion 

coefficients. Substitution of (2.5) into (2.4) leads to: 

 

[ 1] [ 1] 2 [ ] [ ] [ ]a n a n a n a n b n+ + - - + =V V V MV V  .                (2.6) 
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Since =MV VΛ，  

[ 1] [ 1] 2 [ ] [ ] [ ]a n a n a n a n b n+ + - - + =V V V VΛ V  .                (2.7) 

  

By left-multiplying 1-V  to both sides of (2.7), we obtain 

 

[ 1] [ 1] 2 [ ] [ ] [ ]a n a n a n a n b n+ + - - + =Λ   .                         (2.8) 

 

Since Λ  is a diagonal matrix, equation (2.8) can be fully decomposed for every element 

,i na of vector a[n]:  

 

, 1 , 1 , ,(2 ) ,  for  = 1, 2, 3, ...i n i n i i n i na a a b nl+ -+ - - = .             (2.9) 

 

where n represents the n-th time step of the FDTD march on time. 

From (2.9), we can see that the solution of the FDTD method can be decomposed 

in terms of eigen spatial eigenmodes with expansion coefficients ,i na . If expansion 

coefficient ,i na diverges as n (or time) increases, the corresponding eigenmode, as a part 

of the FDTD solution, will diverge and make the FDTD solution divergent and unstable. 

Note that the eigenvector or eigenmodes are invariant with time, while the eigenvalues 

have a proportional relationship with the square of the time step chosen. In the following 

section, we will find how the eigenvalues influence expansion coefficients and 

eigenmodes and hence the stability of the FDTD solutions.  

 

2.2.3  Stability Analysis of The FDTD Method 
 

Eq. (2.9) can be considered as a series of discrete scalar sub-systems that can be 

solved recursively. Such discrete sub-systems can then be analyzed effectively with the 

Z-transform [43].  
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For simplicity and without loss of generality, it is assumed that the initial 

conditions are , ,0 ,1 0i n i ia a a- = = =  and they are applied henceforth. By applying the 

unilateral Z-transformation to both sides of (2.9), the following equations are obtained: 

 
1

2

[ ] [ ] 2 [ ] [ ] [ ]  ,
[ ][ ] ,
[ ] 1 (2 )

i i i i i i

i
i

i i

zA z z A z A z A z B z
A z zH z
B z z z

l

l

-+ - + =

= =
+ - -

                      (2.10) 

 

where ,[ ] { } i i nA z Z a= can be considered as the response or output function, 

,[ ] { } i i nB z Z b= can be considered as the source or input function. [ ]iH z  is then the 

transfer function (as used in the circuit theory) or impulse response (as referred in 

communications theory) in the Z-domain; the latter name of impulse response is used 

henceforth in this thesis. 

Equation (2.10) has two poles which make its denominator zero. Denote these 

poles as 1iz  and 2iz . The time-domain impulse response is the inverse Z-transform of 

(2.10):  
1[ ] { ( )}i ih n Z H z-=    .                                             (2.11) 

The two poles of discrete system described in (2.9), 1iz  and 2iz , determines whether 

[ ]ih n will diverge or not and hence the stability of the FDTD system itself. Figure 2. 

shows the four scenarios where 1iz  and 2iz are located differently and they are analyzed 

below. 
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Figure 2.1 The four possible location scenarios of pole zi1 and zi2 

 

Scenario I (Figure 2.a): ,1 ,2 1i iz z= =  (or 0il = ) 

Equation ( 2.10) becomes: 

2[ ]
( 1)i
zH z

z
=

-
 .                                               (2.12) 

The corresponding impulse response is: 

[ ] 1ih n n= -      with [0] [1] 0 i ih h= = .                           (2.13) 

 

It means that the impulse response of the FDTD discrete system is increasing 

linearly with time in magnitude and hence is unstable. Note that (2.13) can be proven to 

be a solution of (2.9) by directing substituting it into (2.9) although (2.13) is a divergent 

solution in time.  

 

Scenario II (Figure 2.b): ,1 ,2 1i iz z= = - ( =4il )  

Equation ( 2.10) is then: 

2[ ]
( 1)i
zH z

z
=

+
     .                                  (2.14) 

Correspondingly the impulse response is  
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1[ ] ( 1) ( 1)n
ih n n-= - -    with [0] [1] 0 i ih h= =    .             (2.15) 

It means that the solution of the FDTD discrete system is oscillatory but 

increasing in magnitude linearly with time and hence is unstable.  

 

Scenario III (Figure 2.c): ,1| | 1.0iz >  and ,2| | 1.0iz <  (or 4.0il > )  

Equation (2.10) has one pole ,1iz  lying outside the unit circle and another one ,2iz  

inside the unit circle. The inverse of (2.10) presents the time-domain impulse response: 

1 1
,1 ,2

,1 ,2 ,2 ,1

1 1[ ] ( ) ( )
( ) ( )

n n
i i i

i i i i

h n z z
z z z z

- -= +
- -

                    (2.16) 

with [0] [1] 0 i ih h= = , 

 
2 2

,1

2 4 2 4
2 2

ji i i i i i
iz e pl l l l l l- + - - + -
= - =                (2.17a) 

2

,2
,1

2 41
2

ji i i
i

i

z e
z

pl l l- - -
= =                                   (2.17b) 

 

Since
2

,1

2 4
| | | |  1.0

2
i i i

iz
l l l- + -

= > , the impulse response (2.16) is 

divergent and the FDTD method is unstable. 

By carefully examining the temporal frequencies of the poles, we have:  

,1
1 .

2 2 2
s

i
ff

t t
p
p

= = =
D D

                                          (2.18) 

with 
1

sf t
=
D

 being the temporal sampling frequency of the FDTD system. In other 

words, the poles that cause the instability carries a frequency that is one half of the FDTD 

sampling frequency.  

Further mathematical analysis shows that 4.0il > corresponds to the case where 

the CFL condition is not satisfied (see Appendix I). 
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Scenario IV (Figure 2.d): ,1 ,2| | | | 1.0i iz z= = (or 0 4.0il< < ) 

Fig. 2.1d shows the positions of the two poles, 1iz  and 2iz ; they are conjugate to 

each other and are on the unit circle.  

The impulse response can still be represented by (2.16) but the two conjugate 

poles are:  

1,2

2

1,2

(2 ) 4
2

ij i i i
i

j
z e q l l l- ± -

= =                            (2.19a) 

in which the angles are  

2

1

2 1

4
arctan( )  ,

2
     .

i i
i

i

i i

l l
q

l
q q

-
=

-

= -

                                   (2.19b) 

  Analysis in Appendix I shows that it corresponds to the case where the CFL 

condition is satisfied. Mathematically, it means that the FDTD system is stable since 

,1 ,2| | | | 1.0i iz z= = .  

            To further explore the relationships between the poles and the eigenvalues, Figure 

2.2 and Figure 2.3 plot the relationships of poles and corresponding eigenvalues, showing 

the poles’ magnitudes(largest of the two) and angles as function of the eigenvalues. The 

angle of the pole is equivalent to the angular frequency of the eigenmode. 
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Figure 2.2 Largest magnitude of the two poles zi1 and zi2 versus the corresponding eigen 

value 

 
Figure 2.3 Angular frequency θi1 of the eigenmode versus the eigen value λi 

 

 It can be seen that il =4 is the cut-off point for both the two figures. From Figure 

2.2, the largest magnitude of the two poles will be kept at 1 when the eigenvalue is 

smaller than 4. With eigenvalue larger than 4, the largest magnitude of pole will be over 1. 
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Instability occurs in such a case. In Figure 2.3, it reveals that the frequency of the 

eigenmode also has a monotonic mapping relationship when its eigenvalue smaller than 4. 

Larger eigenvalue corresponds to higher frequency, and vice versa. When the eigenvalue 

is larger than 4, the angular frequency of the eigenmode will equal to π.  

In summary of the above four scenarios, it can be seen that the eigenvalue of the 

FDTD system matrix essentially determines the stability. The FDTD solution can be 

stable only if all the eigenvalues (or the maximum eigenvalue) of M satisfies: 

max ( ) 4Ml <                                                   (2.20) 

 In Appendix I, it is proven that the CFL condition is a necessary condition of 

(2.20) and thus the numerical stability of the FDTD model itself is ensured. Moreover, 

the eigenvalue also determines the temporal frequency of the corresponding eigenmodes. 

Eigenmodes with larger eigenvalue are of higher frequency in the FDTD solution, while 

the eigenmodes with smaller eigenvalue represents the low-frequency components. Since 

the instability is caused by the eigenvalues which are larger than 4, one can say that the 

FDTD instability is caused by high-frequency eigenmodes of the FDTD solution.     

             The above finding is very important. In practice, the spatial and temporal 

discretization in The FDTD method result in numerical dispersion [44, 45]. It means that 

the actual high frequent components of electromagnetic fields cannot be accurately 

modelled by the FDTD method. In other words, the high frequency components of the 

FDTD models represent numerical artifacts rather than its physical events. Therefore, 

removal of these high-frequency components in a FDTD model is not harmful to the 

accuracy of the FDTD solution. Based on this fact, we will propose an unconditionally 

stable wave-equation based FDTD method in section 2.5. 

 Although 0<= il <=4 can make the FDTD system stable, it is only the necessary 

condition not sufficient. In the following subsection, a further investigation is conducted.  

 

2.3  AN EXCEPTION: CAN THE CFL CONDITION ALWAYS GUARANTEES THE 

STABILITY? 

2.3.1  Theoretical Analysis 
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In this section, we focus the discussion on the scenario IV of section 2.3.2 where   

0< il <4. As Fig. 2.1d shows, the FDTD discrete system have two conjugate poles on the 

unit circle, 1iz and 2iz , corresponding to the i-th eigenmode. The impulse response of the 

i-th eigenmode in the z-domain can be expressed as 

1 2

[ ]
( )( )i

i i

zH z
z z z z

=
- -

                                       (2.21) 

The angles of the two poles are functions of the corresponding eigenvalue il  

2

1

2 1

4
arctan( )

2
2

i i
i

i

i i

l l
q

l
q p q

-
=

-

= -

                                    (2.22) 

As discussed in the previous section, the scenario corresponds to the case of a 

lossless FDTD system with the CFL condition satisfied. As conventionally believed, the 

FDTD solution will be stable. 

However, we have discovered that in such a case, the FDTD system may not be 

stable when certain input is chosen. Consider a monochromatic input 1[ ] cos[ ]ix n nq= .  

Notice that the angle frequency of the input coincides with one of the pole angle of the 

FDTD system. The z-domain interpretation of the source input is: 

1

1
2

1

1

1 1 1 1

1

1 2

[ ] ( [ ])
(cos[ ])
( cos )
2 cos 1

( cos )
( cos sin )( cos sin )
( cos )

( )( )

i

i

i

i

i i i i

i

i i

X z Z x n
Z n
z z

z z
z z

z j z j
z z
z z z z

q
q
q

q
q q q q
q

=
=

-
=

- +

-
=

- - - +

-
=

- -

         (2.23) 

The output y[n] of (2.21) for the FDTD solution is then: 
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1 1

2
1 1

2 2
1 2

1 1 2 3 4
2 2

1 2 1 2

1 1 2 2 3 1 4 2

[ ] ( [ ]) ( [ ] ( ))
( cos )( )

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i

i i

i i i i
n n n n

i i i i

y n Z Y Z Z X Z H Z
z zZ
z z z z
A A A AZ
z z z z z z z z

A z A z A n z A n z

q

- -

-

-

= =

-
=

- -

= + + +
- - - -

= + + +

        (2.24) 

Note that last two terms are multiplication of oscillation term 1( )niz  and linearly-

increasing term n . The term n  will then lead to the uncontrolled increase output as time 

marches (or n increases). In other words, monochromatic input at specific angular 

frequencies will result in a second-order pole of the output in the Z-domain, causing the 

output to be divergent and unstable. More generally, any input, whose Z-domain 

expression has a pole coincides with any pole of the FDTD system will result in unstable 

FDTD solutions. 

Since the angular frequency 1iq is determined by eigenvalue il  of the FDTD 

system matrix M as shown in (2.22), the frequencies causing unstable FDTD solutions 

are eventually determined by the FDTD system.  

In summary, the CFL condition, if satisfied, only guarantees the FDTD system 

itself is stable. The FDTD solutions are also dependent on the input or the excitations. If 

the excitations or the inputs contain components whose frequencies coincide with the 

eigen frequencies of the FDTD system, it is still possible to generate divergent FDTD 

solutions. To the author’s best knowledge, this phenomenon has not been reported so far.  

 

2.3.2  Verification of The Predicted Phenomenon  
 

             In the above section, an unreported case where the CFL condition doesn’t 

guarantee the stable FDTD solution is shown. To verify this, a simple but typical 

numerical example is considered: a two-dimensional square cavity with the perfect 

conducting (PEC) boundary. It is simulated with the FDTD method. 
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Figure 2.4. The square cavity with PEC boundary, TM wave excited. 

 

A 41x41 evenly-spaced grid is used to discretize the cavity. The number of 

unknown electric field points is then 1521. The matrix M and its eigenvalues and 

eigenvectors can be obtained using eigen-solvers of various mathematical software 

packages. A point electric field source is put inside the problem area, here chosen to be at 

the centre, exciting a monochromatic sinusoidal signal into the space. The signal can be 

described as 

sin[ ] sin[ (2 )]
2

n n f t
f t

q p
q p
= D
= D

                                        (2.25) 

The angle frequency is chosen equal to  

24
arctan

2
i i

i

l l
q

l
-

=
-

                                             (2.26) 
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in which the λi is one of the eigenvalue of the FDTD system matrix. By this source 

setting, the input will generate poles in Z-domain, who will coincide with the poles of the 

FDTD system. 

The simulation is performed for 20000 steps. The recorded time-domain field 

values diverge as shown in Fig. 2.5;  

 

 
Figure 2.5 The time-domain electric field recorded at the center of the cavity for 20000 

simulation time steps. 
 

Although Fig. 2.5 shows the solution explosion, one may still question whether it 

is the result of the instability as previously described since the cavity is lossless and 

monochromatic signal is continuously injected into the FDTD computational domain. 

Another suspicion is that the diverging time-domain solution may be caused by the 

natural resonances of the cavity which can produce large field values.  In the following 

paragraphs, we will address the concerns by carrying various numerical experiments.  

More specifically, different angle frequencies are chosen for the monochromatic 

sources to excite the FDTD numerical grids. The frequencies are chosen from as follows, 

respectively:  

(1) 0, which is a DC source; 
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(2) A random value between 0 and fs/2, where 1/sf t= D is the temporal sampling 

frequency; 

(3) the natural resonant frequencies of the cavity calculated by (2.27) 

 

 

2 2

c

2 2

c

1
2

2πc

m nf
a b

t m ntf
a b

p p
p µe

p pq
µe

æ ö æ ö= +ç ÷ ç ÷
è ø è ø

D æ ö æ ö= D = +ç ÷ ç ÷
è ø è ø

    ;                  (2.27) 

in which a and b are the sizes of the cavity, respectively. m and n represent the 

mode indices of the TM(m,n) mode; and 

(4) the unstable frequencies predicted by (2.26) 

 

With each of the above four sources, FDTD simulation is performed over 50000 

time steps. Maximum time-domain electric field values are recorded for each case. Figure 

2.6 shows the results. 
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Figure 2.6 Maximum time-domain field value obtained within the 50000 steps of the 

simulations using monochromatic sources of different frequencies. Black dots 
are the results for case (1) (the DC source), blue dots for case (2) (a random 
frequency between 0 and fs/2), green dots are for case (3) (a natural resonant 
frequency of the cavity), red circles for case (4) (the predicted unstable 
frequencies calculated by (2.26)).  

 

It can be seen from Figure 2.6 the only in case (4), abnormally high values of 

electric field are observed, which indicates the instability of FDTD simulation occurs. As 

described above, these frequencies leading to unstable time-domain field solutions are 

just the unstable frequencies determined by eigenvalues of M through (2.26). Other 

frequencies, including the natural resonant frequencies of the cavity, do not introduce 

uncontrollable large field values (or numerical instability) in the tests, unless they happen 

to coincide with the unstable frequencies ash shown for case (4). This experiment shows 

that the abnormally high values are neither resulted from continuous monochromic 

signals nor natural resonances of the cavity; they came from the numerical instability 

discussed before. 
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Another interesting experiment is to test how sensitive the system is to the course 

frequency when it gets close to the unstable frequencies. By injecting monochromatic 

sources whose frequency is near the unstable frequency, maximum time-domain 

electrical field values over 20000 simulation steps recorded and shown below in Fig. 2.7. 

As the frequency approaches the unstable frequency, field value becomes larger and 

larger, eventually reaching uncontrollable high numbers; the instability occurs.  

 

 
Figure 2.7 Maximum field values obtained with monochromatic sources whose 

frequencies are near an unstable frequency.   
 

 From Figure 2.7, it can be seen that if the source frequency is 2% off the unstable 

frequency, the FDTD solutions are normal without the instability issue. As a result, when 

the instability occurs when the CFL condition is satisfied, the source frequency needs to 

be moved away from the unstable frequency by more than 2%. 

 

2.3.3  Discussions and Summaries  
From the above analyses, we can have the following conclusions: 

1) The FDTD solutions may be considered as consisting of many eigenmodes, the 

size of Matrix M, i.e. the number of unknown electric field nodes to be solved for.  
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2) The eigenvalues associated with the eigenmodes are proportional to the square of 

the FDTD time steps. When the eigenvalue is smaller than or equal to 4, the 

associated eigenmode is stable. When the eigenvalue is larger than 4, the 

associated eigenmode is unstable.   

3) The equality of CFL condition corresponds to the situation where the largest 

eigenvalue is equal to 4. When the CFL condition is satisfied, the FDTD solutions 

contain only the stable modes and when the CFL condition is not satisfied, the 

FDTD solutions contain both the stable and unstable modes. If the unstable modes 

can be removed, the FDTD solutions can remain stable. 

4) Even when the CFL condition is satisfied, the FDTD solutions may become 

unstable if the sources or excitations have the same poles as those of the 

eigenmodes.  For a problem of a large physical domain that has a large number of 

electric field nodes, the size of M can be huge so is the number of the poles of the 

FDTD system. The poles may be cluster densely together and it is harder for the 

sources or excitations to avoid having the poles of the FDTD systems, instability 

may occur more frequently.  

 

2.4  THE UNCONDITIONALLY STABLE WAVE-EQUATION BASED FDTD METHOD 

 As mentioned before, eigenvectors of M do not change with the time steps chosen 

but eigen values do. Given a time step, eigenvalues can be determined, and so can the 

stability of the corresponding eigenvectors.  In other words, a stable FDTD solution can 

be obtained by removing the unstable eigenvectors in a FDTD solution. It will be 

elaborated below. 

2.4.1  The Proposed Unconditionally Stable Method 
 

The first step of the proposed method is to derive the eigenvalues and eigenvectors of the 

FDTD system matrix which is sparse. The stable eigenmodes are actually the 

eigenvectors of M that have the eigenvalues of smaller than 4. Direct solutions of 

eigenvalues and eigenvectors of M is not practical if the size of the FDTD system is large. 

There are various methods (e.g., power method, Lanczos Iteration, Arnoldi Iteration) and 



 

 27 
 

software packages to find eigenvalues and eigenvectors (modes) of a matrix accurately 

and efficiently. Among them, the implicitly restarted Arnoldi algorithm [46] is very 

robust and efficient and it is adopted by sophisticated software like Matlab®.  

Alternatively, a simple procedure, as presented in [26, 47], can be applied to find 

a limited number of physically important stable eigenvectors. The procedure starts from a 

trial conventional FDTD simulation of a limited number of marching iterations, say from 

n=1 to k. The time step is chosen to satisfy the CFL condition. At each time incidence, 

the FDTD solution is orthonormalized with previous solution vectors and stored in a 

matrix S. By applying the following order reduction process,  

 

* * * *R S M ST
k k k Ne Ne Ne Ne k=                                    (2.28) 

 

in which Ne is the number of unknown electric field nodes. Since k is chosen much 

smaller than Ne i.e. k<< Ne, *R k k is a small matrix and a common eigen-solver could be 

applied to it and find the eigenvalues and eigenvectors at little cost. Denote the 

corresponding eigenvectors found as RV . Then the physically important eigenvectors of 

M, denoted as V, can be found as: 

 

*1 * *1V S VNe Ne k Rk=                                           (2.29) 

 

 The procedure is terminated when the new solution vector has negligible 

component orthogonal with the space defined by V: 

3( ) ( )
10

( )

TE n VV E n
E n

-
-

£                                      (2.30) 

310-  is a prescribed error that can also be other small values.  

Suppose that a time step is chosen, for instance, p times of the CFL limit. Then 

the stable modes (denoted as Vs) can be selected from the eigenvectors and expressed as: 

{ } { }24/s p
V V

l<
=                                              (2.31) 
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In other words, the unstable eigenvectors are discarded. The FDTD solution of electric 

fields can then be projected on the sub-space { }sV composed of these stable modes 

expressed in the equation below: 
'E Es sVV=                                                    (2.32) 

Another thing which should be paid attention is not all eigenmodes have the same 

weights or are physically important in the solution. Some eigenmodes may have 

negligible even zero weight in the solution. The weights of the eigenmodes or 

eigenvectors in the solution are determined by the sources or excitations in a linear 

medium; they can be obtained with the inner products of the eigenvectors with the 

sources or eigenvectors. 

Another way to find the weights of the eigenmodes is to run a short run of the 

FDTD solution and the weights of the eigenmodes can be derived by inner product of the 

FDTD solution obtained and the eigenmodes. The modes that have negligible weights 

can be ignored. By doing this, the number of stable modes in the FDTD solutions can be 

further reduced and the computation will become more efficient. 

Based on the above analysis, we propose the stable FDTD solution as follows: 

[1] Given a time step, apply the procedure (2.28) to (2.31) and find the stable and 

physically important modes of M, { }sV . 

[2] Run initial two steps of the FDTD simulation with a time step which could be 

larger than the CFL limit.  

[3] Expand the FDTD solutions in terms of (2.5) to project the FDTD solution of 

electric fields to the sub-space defined by { }sV . Derive the expansion coefficient 

ai[0] and ai [1] for each stable eigenmode. 

[4] Use (2.9) to find all the coefficients ai [n] and (2.5) to obtain electric fields. 

[5] Find magnetic fields from the obtained electric fields through Maxwell’s 

equations. 

2.4.2  Numerical Experiments 
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In the following paragraphs, the proposed method is tested with a practical case. 

An “H” shape cavity is considered, as shown in Figure 2.8. TM waves inside the cavity 

are simulated and observed. Due to the narrow gap in the cavity, fine grids are employed 

to obtain good modeling accuracy. As a result, with the FDTD method, the upper limit of 

the time step, as restricted by the small space grid size, is small; the simulation will take a 

relatively long time and relatively large memory.  

 

 
Figure 2.8  Structure of the H type metal cavity. 

 

With the proposed method, we can choose a large time step, apply the solution 

steps described above, and obtain a stable solution.  A uniform numerical grid is used 

with a cell size of 1 1mm mm´ . A Gaussian pulse is excited at the center of the cavity.  

Figure 2.9 and Figure 2.10 show the numerical results. By taking the discrete 

Fourier transform of the solutions, the frequency domain solutions are obtained and 

shown in Figure 2.9. As can be seen, the results of the proposed method agree well with 

those of the conventional FDTD method except high-frequency components; this is 

expected since the high frequency components correspond to unstable modes and are 

discarded with the proposed method. 
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Figure 2.9  Frequency responses obtained with the conventional FDTD and the proposed 

method. 
 

Figure 2.10 shows the field distributions obtained with the conventional FDTD 

method and the proposed method. The first one of Figure 2.10 is the normalized field 

distribution at the 100,000th time step, obtained with the conventional march-on-time 

recursive FDTD simulation. The time step is 11.18ns which is 0.5 of the CFL limit. The 

second one is the field distribution at the 25,000th time step, obtained with the proposed 

method. The time step was 44.72ns which is two times of the CFL limit and four times of 

the time step used with the conventional FDTD simulation. In other words, 25,000 time 

steps of the proposed FDTD method represent the same physical time of 100,000 time 

steps of the conventional FDTD simulation. The distributions are basically the same 

except that the high-order modes associated with the high frequencies are discarded with 

the proposed method. 
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Figure 2.10  Electric field distribution obtained with the conventional FDTD 

simulation (left) and proposed method (right). 
 

2.5  SUMMARY 

In this chapter, based on the eigen analysis of the FDTD method, the root cause of the 

instability is revealed and explained using the concept of discrete systems and Z-

transformation. The relationship between the CFL condition and the stability is revealed. 

An interesting phenomenon is found that the CFL condition does not always guarantee 

the stability of the FDTD solutions, if specific monochromatic source is injected into the 

system. Numerical examples verified the findings. Based on the above analysis, we 

propose an unconditionally stable wave-equation based FDTD method; in it, electric and 

magnetic fields are solved in a decoupled and simplified manner. Numerical FDTD 

solutions can then be expanded by a limited number of stable eigenmodes. Each 

eigenmode and corresponding eigenvalue can be calculated at O(Ne2) complexity. Once 

the eigenmodes are found, the solution can be simply obtained with the difference 

equations of coefficients instead of time-marching iterations. Numerical examples are 

presented to verify the effectiveness of the proposed method. Because of that the 

principles and developments are without much of theoretical restrictions, discussions and 

formulations presented in this chapter can be generalized and extended to other time 

domain numerical methods.   
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CHAPTER 3 ANALYTIC SOLUTION OF THE FDTD METHOD 

 
3.1  INTRODUCTION 

In Chapter 2, we have analyzed the FDTD method and proposed an alternative new 

FDTD solution process. More specifically, we have systematically investigated the 

FDTD formulation and developed the wave-equation based discrete system. We have 

transformed the system into a series of discrete scalar sub-systems and apply the Z-

domain solutions for stability analyses. The final FDTD solutions are then obtained by 

solving the difference equations of the expansion coefficients. 

In this chapter, as a further development and significant extension of the analysis of 

the previous chapter, we derive the analytic solutions of the FDTD method that do not 

require the conventional iterative march-on-in-time solution process. The FDTD solution 

can then be directly obtained at any given time desired. Other details pertinent to the 

analytic solutions, including source implementations, treatment of lossy media, are also 

presented. Finally, we numerically verify the proposed method and conclude that the 

analytic approach can serve as an alternative way to the solutions of the conventional 

FDTD method. 

 

3.2  ANALYTIC FORM OF THE FDTD SOLUTION 

 In previous chapter, we have presented the wave-equation based FDTD method in 

its matrix form, which is  

[ 1] [ 1] 2 [ ] [ ] [ ]  (input)n n n n n+ + - - + =E E E ME x               (3.1) 

where matrix M is the FDTD system matrix as defined before.  

Eigen-analysis is performed on (3.1). By expanding the electric field solution 

vector E[n] and the input term x[n] on the eigenvectors of matrix M, 

1

[ ] [ ]
[ ] [ ]     or     [ ] [ ] ' [ ]
n a n
n b n b n n n-

=

= = =

E V
x V V x V x

                 (3.2) 
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As derived in the previous chapter, (3.1) can finally turn into the difference 

equation of coefficient ai for each eigenvector, as expressed by (2.9): 

, 1 , 1 , ,(2 ) ,  for  = 1, 2, 3, ...i n i n i i n i na a a b nl+ -+ - - =                       (3.3) 

(3.3) is the difference equation for coefficient ai which can be solved iteratively. It 

can also be considered as a discrete system, whose response can be derived using the Z-

transform:  
1

2

[ ] [ ] 2 [ ] [ ] [ ]  ,
[ ][ ] .
[ ] 1 (2 )

i i i i i i

i
i

i i

zA z z A z A z A z B z
A z zH z
B z z z

l

l

-+ - + =

= =
+ - -

                            (3.4) 

The impulse response in the time domain is 

1 1
,1 ,2

,1 ,2 ,2 ,1

1 1[ ] ( ) ( )
( ) ( )

n n
i i i

i i i i

h n z z
z z z z

- -= +
- -

                       (3.5) 

As discussed, when the CFL condition is met, the eigenvalues of matrix M is 

within the range (0,4), which ensures the system poles on the unit circle in the Z-domain. 

The two poles, 1iz  and 2iz , are conjugate to each other and are on the unit circle, which 

can be expressed as  

1,2

2

1,2

(2 ) 4
2

ij i i i
i

j
z e q l l l- ± -

= =           .                   (3.6) 

The angles are  

2

1

2 1

4
arctan   ,

2

     .

i i
i

i

i i

l l
q

l

q q

æ ö-
ç ÷=
ç ÷-è ø

= -

                                    (3.7) 

Correspondingly, the impulse response (3.5) for this stable system can be expressed as 
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1 1
,1 ,2

,1 ,2 ,2 ,1

1 1[ ] ( ) ( )
( ) ( )

1 [cos( 1) sin( 1) ]
2 sin

1 [cos( 1) sin( 1) ]
2 sin

sin[( 1) ]      with   [0] [1] 0
sin

n n
i i i

i i i i

i i
i

i i
i

i
i i

i

h n z z
z z z z

n i n
i

n i n
i
n h h

q q
q

q q
q
q

q

- -= +
- -

= - + -

+ - - -
-

-
= = =

                        (3.8) 

Equation (3.8) is the stable impulse solution of the FDTD system as described by 

(3.1).   

Consider now Kronecker impulse excitation that has non-zero value at time 

incidence n=1, i.e., 1,1 2,1 ,1 ,1[1] [   ...  ... ]
e

T
i Nb b b b b= is not zero and the excitation at other 

time instances 2,3,...[ ] nb n =  is zero. In other words, at initial time n=1, every eigen mode 

Vi is excited with an amplitude of ,1ib . Then  

,1( )i iB z b=   ,                                              (3.9) 

and the initial amplitude of Vi is  
1 1

, ,1

,1 ,1

{ ( ) ( )} { ( )}
sin[( 1) ]( )

i n i i i i

i
i i i

i

a Z B z H z Z b H z
nb h n b q
q

- -= =

-
= =

                              (3.10) 

As a result, by (3.3), the FDTD solution is: 

1,

, 1 1, , ,

,

1 1,1 1 ,1 1,1

1
1 1,1 ,1 1,1

1

...
E[ ] V [ ] V [V ... V ... V ]

...

[V ( ) ... V ( ) ... V ( )]

sin[( 1) ]sin[( 1) ] sin[( 1) ][V ... V ... V
sin sin sin

e e

e

e e

e

e

e

n

i n n i i n N N n

i N

i i i N N

Ni
i i N

i N

a

an a n a a a

a

b h n b h n b h n

nn nb b b
qq q

q q q

é ù
ê ú
ê ú
ê ú= = =
ê ú
ê ú
ê úë û

=

-- -
= ]

(3.11) 
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In most practical cases, the source signal has a duration. Consider that the source 

has a duration of sequential M impulses. In such a case, because the FDTD system is a 

linear system, the field solution as a result of excitation ,i kb at the k-th time step can be 

considered the same as that due to ,1ib in (3.11), except delayed by k time steps and a 

change of amplitude from ,0ib to ,i kb .  The overall FDTD solutions will be the sum of the 

responses due to all the source amplitudes of from ,0ib to ,i kb . In other words, the full 

FDTD solutions are then:     

 

1
1,1, 1

1 11

,,
11

, ,
1 1

sin( ) ( )( ) ( ) sin
......

sin( ) ( )E[ ] V ( ) ( ) V
sin

... ...
sin( )

( ) ( ) ( )
sin

e
e e e

MM

kk
kk

MM
i

i ki k i
kk i

M
N

N k N N k
k k

n kb u n kb h n k u n k

n kb u n kn b h n k u n k

n k
b h n k u n k b u n k

q
q

q
q

q
q

==

==

=

-é ù -- -ê ú
ê ú
ê ú
ê ú -ê ú -= - - =
ê ú
ê ú
ê ú
ê ú -

- - -ê ú
ë û

åå

åå

å
1

M

=

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û
å

(3.12) 

In the above equation, function ( )u n  is the unit function that is unitary at 0n ³  

and zero otherwise.    

Equation (3.12) is the explicit analytical expression of the FDTD solution. The 

FDTD solution is a function of discrete time step n and can be obtained directly at any 

time instant n as long as the eigenvalues and vectors of M are known or found in advance. 

 

3.3  THE HARD SOURCE IMPLEMENTATION  

Analysis above is based on the soft source settings. A soft source means that the 

source is simply added to the current field value at the source nodes, which can be 

considered as a simple input of the system. For the cases with the hard sources, on the 

other hand, the source nodes are assigned with certain field values, or boundary nodes are 

imposed with fixed boundary conditions; the source field values are not additive to the 

current field values but imposed on them.  
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Consider the conventional FDTD leap-frog scheme 

1 1H[ ] H[ ] D E[ ]
2 2

1E[ 1] E[ ] D H[ ]
2

E

H

n n t n

n n t n

+ = - - D

+ = + D +
                            (3.13) 

in which matrixes DE and DH follows the same definition as those of (2.2).  

Now decompose the electric field vector E[ ]n  of the whole problem region into 

two sets: the field value on the hard source (or forced boundary) nodes E [ ]s n , and those 

on other electric nodes E [ ]u n whose value are unknown and need to be solved. The 

decomposition can be written as 

E [ ]
E[ ]

E [ ]
u

s

n
n

n
é ù

= ê ú
ë û

                                                  (3.14) 

Denote the number of unknown electric field nodes as ,e uN , the number of source 

and known-boundary nodes as ,e sN , and hN  as the number of magnetic field nodes. 

Correspondingly, matrix DE  and DH  can be rewritten into two blocks with respect to 

the decomposition of electric field vector E[ ]n .  The matrix DE  can be partitioned as 

, ,D [D   D ]E E u E s=                                                  (3.15) 

in which ,DE u is the matrix of ,h e uN N´ , represents 1µ- Ñ´  operation on the unknown 

electric nodes for updating the magnetic field. ,DE s  is the matrix of ,h e sN N´ , 

representing the same operation on electric field nodes (and forced boundary nodes.) 

Similarly, the matrix DH  can be decomposed as 

 ,

,

D
D

D
H u

H
H s

é ù
= ê ú
ë û

.                                                     (3.16) 

in which ,DH u  is the matrix of size ,e u hN N´ ,  represents the discretized 1e - Ñ´  

operator at the position of unknown magnetic nodes for updating the electric field. 
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,DH s is of size ,e s hN N´ , representing the same operator for updating the electric hard 

source and forced boundary nodes.  

 

Based on these notations, the update equations (3.13) can be rewritten as 

, ,

,

,

E [ ]1 1H[ ] H[ ] D D
E [ ]2 2

DE [ 1] E [ ] 1H[ ]
DE [ 1] E [ ] 2

u
E u E s

s

H uu u

H ss s

n
n n t

n

n n
t n

n n

é ù
é ù+ = - - D ê úë û

ë û
+ é ùé ù é ù

= + D +ê úê ú ê ú+ë û ë û ë û

                      (3.17) 

Since the field values at the hard source nodes or forced boundaries are known or 

specified, update of E s  are not needed and (3.17) can be simplified as: 

, ,

,

1 1H[ ] H[ ] D E [ ] D E [ ]
2 2

1E [ 1] E [ ] D H[ ]
2

E u u E s s

u u H u

n n t n t n

n n t n

+ = - - D - D

+ = + D +
                     (3.18) 

The update of electric field is now performed on Eu  only. (3.18) can be further 

reduced to the wave equation by substituting the expression for H  into the expression for 

Eu : 

2 2
, , , ,E [ 1] E [ 1] 2E [ ] D D E [ ] D D E [ ]u u u H u E u u H s E s sn n n t n t n+ + - - +D = -D      (3.19)    

Apparently, the above wave equation has the form similar to the FDTD equations 

of (3.1) for the soft sources. The differences are that (3.19) updates unknown electric 

field Eu  only and the hard source fields (including the forced boundary conditions) E s  

is transformed into an equivalent soft source term 2
, ,D D E [ ]H s E s st n-D  on the right hand 

side of the equation. The resulting equation fits well with the form of (3.1). By eigen-

analysis of the new system matrix 2
, ,D DH u E utD of (3.19), the explicit analytic solution 

can be derived with the similar format of equation (3.12).  

 

3.4  THE EXPLICIT ANALYTICAL FDTD SOLUTION IN A LOSSY MEDIUM 
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In the cases of lossy medium, Maxwell equations become  

 

t

t

µ

s e

¶
Ñ´ = -

¶
¶

Ñ´ = + +
¶

HE

EH E J
          ,                              (3.20) 

where s  is the conductivity of the medium.  

By following the same FDTD discretization process of (2.1)-(2.4) (as applied in 

the above sections in this chapter), the recursive discrete electric wave equation in the 

lossy medium can be obtained as  

1+ [ 1] 1 [ 1] (2 ) [ ] [ ]
2 2
t tn n n ns s
e e
D Dæ ö æ ö+ + - - - - =ç ÷ ç ÷

è ø è ø
E E M E x            (3.21) 

The quantities are defined in the same way as those defined at (2.4) in the lossless case.  

Again, by expanding [ ]nE  and x[ ]n  in terms of the eigenvectors of M, (3.21) 

becomes a series of recursive equations:  

1+ [ 1] 1 [ 1] (2 ) [ ] [ ]
2 2

   for 1,2,3...

i i i i i
t ta n a n a n b n

i

s s l
e e
D Dæ ö æ ö+ + - - - - =ç ÷ ç ÷

è ø è ø
=

        (3.22) 

Application of the unilateral Z-transform to the above equation leads to 

11+ [ ] 1 [ ] 2 [ ] [ ] [ ]
2 2i i i i i
t tzY z z Y z Y z Y z X zs s l
e e

-D Dæ ö æ ö+ - - + =ç ÷ ç ÷
è ø è ø

     (3.23) 

2

[ ] 1[ ]
[ ] 1 1

(2 )2 2

1 1
2 2

i
i

i

Y z zH z
t tX z

z z
t t

s s
le e
s s
e e

= =
D Dæ ö æ ö+ -ç ÷ ç ÷-è ø è ø- +

D Dæ ö æ ö+ +ç ÷ ç ÷
è ø è ø

            (3.24) 

Stability of this system depends on the poles of the transfer function above. 

Detailed analysis (see Appendix II) will show that in lossy cases, 0< 4il <  for all the 

eigenvalues is still the necessary condition for stable FDTD solutions, whereas 

4il > will lead to unstable FDTD solutions. 
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Now assume that 0< 4il < . Analytical solutions to the recursive equations of 

(3.23) can be obtained. There are two cases to consider: 

Case 1: 
2 2

2
2 0< 4 and 4 0  i i i
tsl l l

e
D

< - + >  

The two poles are real numbers that can be expressed as: 

 

2 2
2

2

,1 2

2 4

2

i i i

i or

t

z t

sl l l
e

s
e

D
- ± - +

=
D+

                                (3.25) 

the impulse response of this system is 

1 1
,1 ,2

,1 ,2

1 1
,1 ,22 2

2
2

,1 ,2

2 2
2

2

1 1[ ] ( )
1

2

21 ( )
1 2 42

4

n n
i i i

i i

n n
i i

i i

n n
i i

i i

h n z z
t z z

t

z z
t t

z z

t

s
e

s
e

s sl le e

sl l
e

- -

- -

= -
D -æ ö+ç ÷

è ø
D+

= -
Dæ ö D+ç ÷ - +è ø

-
=

D- +

     .      (3.26) 

The above solution can be verified by substituting it into (3.22) with the initial 

conditions of [0] [1] 0i ih h= = .  Since magnitudes of ,1iz  and ,2iz  are smaller than 1 

(see Appendix II), [ ]ih n will be damped to zero as time progresses. 

Case 2: 
2 2

2
20< 4 and 4 0i i i
tsl l l

e
D

< - + < . 

The two poles are conjugate complex numbers that can be expressed as 

2 2
2

2

,1 2

2 4

2

i i i

i or

tj
z t

sl l l
e

s
e

D
- ± - -

=
D+

              .            (3.28) 
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Their angles and magnitudes are  

 

2 2
2

2

1

2 1

2 2

2

,1 ,2

4
arctan

2
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1
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i i

i
i

i i

i i i
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sl l
eq
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e
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e

æ öD- -ç ÷
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ç ÷-
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= = = <

D+

             .                    (3.29) 

The impulse response of this system is  

1 1
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,1 ,2

( 1) ( 1)

1

1 1[ ] ( )
1

2
1 1 ( )

( )1
2
1 sin[( 1) ]

sin1
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i i
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n n
i

i i
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ij j

i
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z e e
t z e e
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t

q q
q q

s
e

s
e

q
s q
e

- -
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-

-

= -
D -æ ö+ç ÷

è ø

= -
D -æ ö+ç ÷

è ø
-

=
Dæ ö+ç ÷

è ø

    .       (3.30) 

Since ,1iz  and ,2iz  are conjugate complex numbers with magnitude smaller than 1, 

the FDTD impulse response will be oscillating and decaying to zero as time progresses 

(i.e., n increases). 

Once 1,2,...,[ ] 
ei i Nh n = are obtained, the FDTD solution can be found through 

similar procedure as that for the lossless case (3.10~3.12). 

 

3.5  SUMMARY OF ANALYTIC SOLUTION OF THE FDTD METHOD 

From the analysis and results presented in chapter two, solutions of the FDTD 

method can be expanded in terms of fixed eigenmodes with time-dependent expansion 
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coefficients. Instead of solving the time-dependent coefficient numerically, the explicit 

analytical expressions of the coefficients can be obtained by solving the discrete system 

using the Z-transformation and so can the FDTD solutions at any time incidence. More 

specifically, the steps to obtain the FDTD solutions can be summarized below: 

1) Choose time step tD , construct the discrete system in the wave equation form of (3.1) 

and obtain matrix M (which is the discretized finite-difference form of 

operator 2 1
0t ( )eµ -D Ñ´Ñ´). We could choose the time step which satisfies the 

CFL condition to obtain the analytic solution formulation. The choice does not affect 

the efficiency of the method, since the solution at any time incidence will be solved 

analytically without iterative process. 

2) Apply known efficient algorithms or software packages (e.g., [16]) to find physically 

important eigenvectors (or eigenmodes) with the corresponding eigen values 

0< 4il < . 

3) For any given time incidence n, compute (3.12) to find mode amplitude [ ]b n  for 

each mode.  

4) Use (3.2) to obtain electric fields [ ]nE .  

5) Find magnetic fields from the obtained electric fields through Maxwell’s equations 

(2.1).  

 

Compared with the conventional FDTD solution approach, the above proposed 

method involves eigen-decomposition to system matrix M which is a sparse and 

symmetric matrix. Therefore, the computational efficiency of the proposed method is 

very much dependent on the algorithms used to extract the eigenvalues and eigenvectors. 

Various mathematical algorithms have been developed for efficient eigen-decomposition 

of a real, sparse, semi positive-definitive and symmetric matrix. After eigen-

decomposition is done, analytical FDTD solutions are obtained at almost no additional 

computational costs. Comparisons between the proposed FDTD solution approach and 

the conventional FDTD iterative method are not easy to make due to the different 

solutions paths. However, two obvious advantages of the proposed method over the 

conventional approach can be seen in either one of the two situations: 1) when an FDTD 
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solution requires a long iteration such that the iteration time exceeds the time in 

extracting the eigenvalues and eigenvectors of the stable modes, and 2) when the FDTD 

solutions of a structure need to be stored or recorded. In addition, since only electric or 

magnetic field is dealt with, the proposed approach uses less memory than the 

conventional FDTD solution approach where both electric and magnetic fields are 

simultaneously solved.  

Although the above analyses are performed on the FDTD method, they can be 

extended to other march-on-time numerical methods since recent studies have indicated 

that numerical methods are of the same nature in their solutions and can be unified with 

the same numerical mathematical framework [48, 49].  

In the next section, numerical experiments are carried out using the proposed method. 

 

3.6  NUMERICAL EXPERIMENTS 

To verify the proposed analytical FDTD solution presented above, two structures 

were computed as examples. The first is an “H” shape cavity as shown in Fig. 3.1 and the 

second one is the dielectric rod which is shown later. The cavity is chosen because it is 

not only a simple structure with readily available analytical solutions for comparisons but 

also embodies multiple field scatterings and reflections of electromagnetic waves from 

the cavity walls. If a method or an approach is incorrectly formulated, such multiple 

waves will be wrongly simulated, appear in the results, and can be easily identified. In 

other words, cavities present solid and convincing tests of a numerical method. The 

experiments are elaborated and described as follows.   

  

3.6.1  Numerical Experiment I: Analytic FDTD solution of the H-shape Cavity 
 

 The first experiment is performed on an H-shape cavity. It is shown in Figure 3.1. 

A uniform numerical cell size of 1 mm ×1 mm ×1 mm was used to discretize the cavity. 

A Gaussian pulse was excited at the center of the cavity. TM waves are simulated and 

observed for 52 10´ steps. The time step size was chosen equal to the CFL limit. For 
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comparisons, both the proposed and conventional FDTD solution approaches were 

carried out.  

 

 
Figure 3.1 Structure of H type metal cavity: (a) the three-dimensional view, (b) the cross- 

sectional view. 
 

Figure 3.2 and Figure 3.3 show the field distributions obtained with the two 

methods. The differences between the results are normalized to the largest values of the 

transient fields. As can be seen, the field distributions are visibly the same and the 

relative differences between the results obtained with the two methods are extremely 

small, namely at the noise level.  
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Figure 3.2 Field distribution recorded at the 200,000th time step of proposed method 
(left) and the conventional FDTD method (right). 

 

 
Figure 3.3 Results (recorded at the observation point) obtained with the proposed and the 

conventional FDTD methods. (a) shows the field values obtained by the two 
methods at observation node and (b) shows their relative errors for a 104  steps 
simulation. The errors are below 10-11. 

 

3.6.2  Numerical Experiment II: Simulation with Hard Source in Lossy Medium  
 

 The second experiment is to test the proposed scheme for hard source and in lossy 

medium settings. The simulation is performed with the conventional FDTD scheme and 

the proposed method for comparisons. In this experiment, the same cavity structure as 

that of Figure 3.1 is simulated but instead of air, lossy medium of conductivity σ of 0.1 

S/m is filled in the cavity. The source is placed at the center of the cavity and is set to be 

a hard source, which forces the electric field to be 1V/m at the source. The time step size 

was chosen equal to the CFL limit. The electric field at the observation point is recorded 

for each time incidence n. Comparison of the results is shown in below:   
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Figure 3.4 Results (recorded at the observation point) of field values obtained with the 

proposed and the conventional FDTD methods for the lossy-medium and hard 
source case. 

 

As shown in Figure 3.4, it can be seen that the two solutions agree well with each 

other. The differences are below 10-11, showing that the derived analytical FDTD 

solutions for lossy-medium and hard source are correct. 

 

3.6.3  Numerical Experiment III: Simulation of the Dielectric Rod Structure 
 

In the third numerical experiment, a dielectric rod resonator in a metallic 

rectangular cavity is considered as shown in Figure 3.5. The parameters of the dielectric 

resonator are chosen in accordance with the model used in [50, 51] : 2a=2.5362 cm, 

b=2.5362 cm, h=0.6985 cm and l=2.5718 cm. The support of the dielectric rod is 

assumed to have dielectric constant of 1. The rod has a dielectric constant of 38. In the 

experiments, the size of the structure 2a´b´ l is discretized into a numerical grid of 

26´26´26 and 31´31´32, respectively.  
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Figure 3.5 Geometry of the dielectric rod resonator in rectangular cavity. 

 

The electric field wave equation for this dielectric-loaded structure can be found 

as: 
1[ 1] [ 1] 2 [ ] [ ] [ ] [ ]  (input)rn n n n ne -+ + - - + =E E E ME x        (3.32) 

in which [εr] is the diagonal matrix of dielectric constant. The dielectric constant is a 

value which is a real number and larger than 1. 

Compared with (3.1), apparently, [εr]-1M is not necessarily semi-positive definite 

because it is not necessarily a symmetric matrix. Therefore, the method proposed in the 

previous discussion cannot be applied directly. To address this, (3.32) is reformulated and 

a variation of Maxwell wave equation for non-uniform dielectric medium cases is 

developed: 
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With this variation, M is a real symmetric matrix which ensures that its 

eigenvectors form a complete set of the basis function in the solution space. The eigen-
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analysis can then be carried out on (3.33) instead of (3.1) and E is solved following the 

steps proposed in section III. Discrete Fourier Transform is performed on E via 

1/2[ ]re
-=E Eto find the resonance frequencies. The results are compared with the 

measured results [50, 51] and are presented in Table I for two different diameters of the 

dielectric rod. The results obtained with the two different methods show very good 

agreement, which verifies the proposed method. 

 

Table 1 Comparison of the methods for resonant frequency of dielectric resonator. 
Size Grids Resonant Frequencies f(GHz) 

2R 

(cm) 

t 

(cm) 

Measured FDTD 

method 

Proposed 

method 

1.7551 0.5893 26´26´26 4.136 4.171 4.171 

1.9228 0.6426 31´31´32 3.76 3.696 3.696 

 

As a short summary, the four examples above verify that the proposed method 

provides the exact solution of the conventional FDTD method in a different solution path. 

The proposed method applies the eigen expansion of the discrete FDTD system and 

therefore its successful applications hinge on having an efficient and effective eigen-

solver. Since a large portion of the eigenvalues and their associated eigenvectors 

represents high-frequency modes or unstable modes, they can be identified and removed 

because they do contribute accurate solutions  as a result of inherent FDTD high 

numerical dispersion errors at high frequencies ; only a relatively small number of the 

eigenvalues of small values need to be found. In general, they account for 10%-20% of 

all the eigenvalues. Many efficient techniques have been developed to find these 

eigenvalues and their eigenvectors, such as the model-order-reduction technique 

described in [26] and the combined FDTD-trial-simulation and model-order-reduction 

technique presented in [47]. In our case, we use the one presented in [26] . We obtain the 

similar computational speedup of roughly six times in finding the needed eigenvalues and 

their associated modes in comparison with the conventional FDTD method at the same 

solution accuracy level. 
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3.7  TREATMENT OF ABSORBING BOUNDARY CONDITIONS (ABC) 

The above numerical experiments are performed in a closed structure.  In open 

structures, the absorbing boundary conditions (ABCs) are always needed to truncate the 

modeling domains while eliminating the reflections induced by the truncation. Among 

various absorbing boundary schemes, the perfectly-matched layers (PML) is considered 

to have the best performance of all and is widely used.  

The extension or incorporation of the proposed analytical method to the absorbing 

boundary conditions including PML has been found non-trivial. It requires thorough 

analyses like those presented in the above again. We are currently working on it and 

expect to report the results in our future publications. Nevertheless, it is worth to mention 

that a straightforward and practical technique to deal with ABCs is to use the approach 

described in [26]: a solution domain is divided into the ABC regions and the main region 

containing the structures to be solved for. In the ABC (e.g., PML) regions, the fields are 

computed in the conventional FDTD manner.  In the main region, the proposed method is 

applied but with the field values at the interface nodes between the two regions acting as 

soft sources. 

Below are our initial formulations of the PMLs with the proposed analytical 

method. Take Berenger’s field-split PML formulations [52, 53] for TE wave as an 

example. The governing equations in the PML region can be expressed as: 
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. (3.34) 

The bracketed terms are the corresponding parameters in matrix form. (3.34) is 

much more complex than (2.2) because of the introduction of anisotropic and lossy terms 

in the PML formulations. It will lead to a generalized eigenvalue (GEV)  

system, x xA Bl =  (in which λ and x are generalized eigenvalues and eigenvectors of the 
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system). Once the stable eigenmodes(vectors) are solved, the similar results may be 

obtained. 

An alternative approach to including the PML is to divide a problem domain into 

two regions: the PML region and the main region in which the structure to be studied is 

contained. Because the PML region is fictitious and should not contain information about 

the structure studied, the above described methods are only to the main region. In the 

PML region, simulation can be done with the conventional FDTD method. Interactions 

between the two regions occur at the interfacing nodes only. To the main region, the 

influences due to the PML region can be considered as the equivalent input sources at 

these interfacing nodes. In another word, soft sources are used to count for the PML 

interfaces.  

 

 
Figure 3.6 PML layers surrounds the computational domain; the circles represent the 

interfacing nodes. 

 

More specifically, electrical field in the main region can be divided into 

[ ] m

i

E
E n

E
é ù

= ê ú
ë û

        ,                                       (3.35) 
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In which Ei are the fields at the interfacing nodes and the Em represents the fields in the 

main region. The wave equation (3.1) can be applied to the main region directly, which is 

now written as  

 

[ 1] [ ] [ 1] [ ]
2 [ ]

[ 1] [ ] [ 1] [ ]
m m m m

i i i i

E n E n E n E n
M x n

E n E n E n E n
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- + + =ê ú ê ú ê ú ê ú+ -ë û ë û ë û ë û
 ,     (3.36) 
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 ,                                     (3.37) 

 

in which matrix Mm-m, Mm-i, Mi-m, and Mi-i are the sub-matrices of system matrix M for the 

main region, with sizes of Em, Ei, respectively. Also, the field quantities at the interfacing 

nodes are involved in the calculations of the PML layer. The field values at the 

interfacing nodes due to PML can be considered as input sources (i.e. the soft source 

terms) in the field update process of the main region. 

(3.36) can be expanded as 

[ 1] 2 [ ] [ 1] [ ] [ ] [ ]
[ 1] 2 [ ] [ 1] [ ] [ ] [ ]

m m m m m m m i i m

m m m m m m m m i i

E n E n E n M E n M E n x n
E n E n E n M E n x n M E n

- -

- -

+ - + - + + =

+ - + - + = -
 .   (3.38) 

The final equation above has the form similar to equation (3.1) and (3.19). The 

fields in the main region can then be solved by the procedure described before. The 

influence from the PML region to the main region is contained in the term [ ]m i iM E n--  

and become part of the input source term. In reference [8], a similar absorbing treatment, 

which divides the whole region into a main computation region and a ABC region; they 

are then solved separately. Further work along this line is needed which is beyond the 

scope of this thesis due to the limitation of the time.  

 

3.8  SUMMARY 

In this chapter, based on the eigen analysis of the FDTD formulation, we have 

derived the analytical solutions for the FDTD method and re-analyzed the stability 
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condition of the FDTD method in terms of impulse responses. Based on our analyses, the 

numerical solution of the FDTD can be expanded in terms of spatially time-invariant 

eigenmodes with the time-varying expansion coefficients ,i na . The iterative march-on-in-

time process of the FDTD can be replaced by directly solving the expansion 

coefficient ,i na . As a result, an alternative approach to solving the FDTD method is 

developed where the FDTD solution can be obtained at any time step without recursive 

march on time. This new approach allows the use of existing eigen solvers and may 

present time-saving in some cases where long simulation time is required. More 

significantly, the analytical forms of the FDTD solutions present the possibility of 

applications of advanced signal processing techniques as well as storing of structural 

impulse responses after pre-computing. Three preliminary numerical examples are given 

to verify the theory and the effectiveness of the proposed approach. The work opens 

another horizon in obtaining and using FDTD solutions.   
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CHAPTER 4 DEVELOPMENT OF EFFECTIVE TIME REVERSAL METHOD 

4.1  INTRODUCTION 

Source locating has been a topic of research and development in acoustic, 

electromagnetics and other areas. Various methods have been developed to locate sources 

in a time-invariant environment or domain. Many of them use the time-of-arrival or phase 

for the source locations, which may not necessarily use all the information in the full-

wave received signals or fields. Environmental effects often interfere the locating process 

and degrade locating accuracy. The time reversal (TR) method [27, 28] has become a 

choice for source identifications in many applications. There are two steps with the time 

reversal technique: forward propagation (simulation) and backward propagation 

(simulation). In the forward propagation, signals, for example electromagnetic fields 

emitted by unknown sources, propagate and are then recorded at preselected output nodes 

of a domain. Then in the backward simulation, the recorded fields are reversed in time 

and re-injected back into the propagation domain for the same period. The field peaks 

will be formed and observed at the end of the reversed signal propagation and they 

indicate the original source locations.  

Robust and simple to implement, the TR methods have drawn much attention 

recently. For example, [27, 28] apply TR for acoustic analysis;  [54] uses the TR 

technique to locate earthquake sources. [29, 30, 32, 55] apply the TR process to 

electromagnetic source locations.   

With a conventional source locating technique, multipath is considered as an 

adverse effect against the location accuracy. The time reversal is the technique which can 

utilize the multipath for performance improvements for target detection and/or source 

localization. It exploits the reciprocity of the propagation medium and the time-reversal 

invariant natural of the wave equation for field focusing. It processes the multipath copies 

of the transmitted signals in the medium, as induced by reflection, refraction and multiple 

scatterings, in a constructive manner, resulting in the improvement of the focusing 

resolution. The time reversal technique has successfully been applied and its capability 

has been demonstrated [27-32][54-55]. Since then, the time-reversal methods have also 

been applied to electromagnetic structures. The wide-range applications have spurred 
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extensive research in this area. The work presented in this thesis focuses on the time-

reversal methods with time-domain electromagnetic modeling.   

Figure 4.1 shows a typical computational time reversal simulation employing the 

FDTD method. The problem domain under consideration is a cavity which provides a 

multipath-rich environment. Figure 4.1a & 4.1b shows the source excitation and the field 

propagation within the cavity in the forward propagation. The fields are then recorded at 

the selected output nodes for a given length of time (or a fixed number of time steps).  

They are then re-injected into the cavity at the output locations. Figure 4.1c shows the 

recorded fields that are re-injected back into the cavity. The re-injected fields will then 

propagate back into the cavity and produce a time response at every node in the FDTD 

grid, including at the original source nodes. This is the reverse or backward simulation 

process. If the duration of the backward propagation is the same as that of the forward 

propagation, the fields will generally form maxima at the original source nodes and the 

locations of the sources are identified. Figure 4.1d shows the results of the time reversal 

process in which the source is identified by the field peak.  
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Figure 4.1 A typical time reversal process: (a) forward fields excited by a point sources; 

(b) wave propagation within the cavity and recorded at the output nodes; (c) 
re-injection of the recorded fields that are time-reversed at the output nodes; 
(d) re-focusing of the fields at the original source nodes at the end of the 
backward propagation. 

   
 

The figure above shows good focusing effect at the original source location with the 

time reversal; the sources location can be identified easily. There are issues with the 

conventional time reversal method. First, sources are simply located by peak 

identification. In the following sections, it can be shown by examples and in theory that 

the peak values may not always present the true locations of the sources. when multiple 

sources exist simultaneously, interference may occur among the signals excited by these 

sources, leading to complexity and challenges in peak identification and locating. 
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Secondly, in the simulations so far, full-spectrum impulses are considered. In practice, 

only limited-band of the recorded signals are available by measurements. Therefore, it is 

much desirable to develop a TR method that accommodate the signals of limited-bands.    

The motivation of the work presented in the following sections is to address the above 

two issues and develop new methods and techniques whenever proper and needed.   

 
 
 
4.2  THE LOCATION CONDITION FOR RECONSTRUCTION OF MULTIPLE SOURCES 

USING TIME REVERSAL METHOD 

4.2.1 Theoretic Analysis of The Conventional Time Reversal Method  
 

In this section, without loss of generality, theoretical analysis of a typical 

computational time reversal is performed.  Then, an ergodic air-filled cavity bounded by 

perfectly electric conductors (PECs) [33, 56] is considered as a numerical example and 

the finite-difference time-domain (FDTD) method is employed for simulations. Within 

the cavity, multiple source and output (or receiver) nodes are chosen and an electric field 

impulse excitation is applied at the source nodes.  

First, we consider the forward propagation (simulation). Suppose that J single 

impulse excitations xj(n) are injected into the cavity at J source nodes. Mathematically, 

they can be expressed as: 

 [ ] [ ],    1,...,j jx n a n j Jd= = .                                      (4.1) 

ja is the amplitude of the impulse injected at the j-th source node at the time step n.  δ is 

the Kronecker or unit impulse function and n is the time index or time step with the total 

number of time steps being N.  

Now consider I preselected output (or receiver) nodes. The signals or fields 

recorded at each of them can then be expressed as: 

1

[ ] [ ],  1,..., ,  0,1,..., 1
J

i j ij
j

y n a h n i I n N
=

= = = -å .                               (4.2) 
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where [ ]ijh n is the impulse response recorded at the i-th output node due to the unit 

impulse excitation at the j-th source node. If the transmission line matrix (TLM) method 

is applied, [ ]ijh n  is defined as an element of the Johns matrix [57, 58].  

Assume that the propagation medium is reciprocal. The response at the i-th node 

due to the unit impulse excitation at the j-th node is then the same as the response at the j-

th node due to the unit impulse excitation at the i-th node. 

In the subsequent backward propagation, the field responses described by (4.2) 

that were recorded at the i-th node, are reversed in time: 

 
1

[ ] [ 1 ] [ 1 ]
i

J
r

i j ij
j

y n y N n a h N n
=

= - - = - -å .                            (4.3) 

This inverse response, when re-injected into the problem domain at the i-th output 

node, produces the following output at the j-th source node: 
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The total fields or signals at the j-th source node will be the sum of the responses 

due to the re-injections at all the output nodes: 
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in which m=0,..,N-1 is the dummy time index for the convolutional shift of time 

instances.  'j  is the index of source nodes which we have introduced to distinguish it 

from operations involving the index j.  

At the last step of the backward propagation, i.e. n = N-1, (4.5) becomes 
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The first term in the right-hand side (RHS) of (4.6),  
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is the aggregation of auto-correlation of hji[n] which tends to have a relatively large 

value; it leads to the spatial and temporal field focusing or peak at the j-th source 

location. 

The second term in the RHS of (4.6) is a summation of cross-correlated terms 

generated by different sources. It represents the response recorded at one source caused 

by other sources from the forward and backward propagation. Since these signals are not 

correlated, the second term has in general a relatively low value in comparison with the 

first term. Therefore, (4.6) is in general dominated by the first term and will present large 

values at the original source locations. Then, the usual way to identify the source node 

locations (or to reconstruct the sources) is to find the highest peaks at the final time of the 

backward propagation.  

In the above analysis, we assume that all hji[n] are different from each other so 

that the auto-correlation occurs only at the original source location j. For the case without 

ergodic property, false peaks can also arise due to degenerescence of the field response or 

symmetries. hji[n] can be the same for different values of j and the reconstruction yields 

peaks at all those false positions. 

Even in the ergodic cases, sometimes, the second terms or cross terms of (4.6) 

may still become large, destroy the field focusing, and interfere with the above peak 

identification process; in other words, the auto-correlation terms may not be sufficiently 

large to be clearly identifiable.  In such a situation, the source reconstruction may fail if 

one relies only on the identification of the peak values.  
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To illustrate the unsuccessful case, experiments are performed on the cavity as 

shown in Figure 4.2. As seen, the sources are difficult to identify due to the false peaks 

resulting from the large uncorrelated terms at non-source locations (or due to insufficient 

magnitude of the peaks at the original source locations). The source reconstruction does 

not work in this case. This phenomenon is also found in certain cases modeled by TLM 

method. 

 

 
Figure 4.2 Two cases in which the reconstruction of sources with the time reversal 

method is unsuccessful. (a) The two original source amplitudes (with red 
dots) are equal. A peak is found at a source-free location. (b)The two original 
source amplitudes are 1 and 0.3 (with red dots). The source of amplitude 0.3 
cannot be identified unambiguously. 

 

In the next section, following up on the above analysis, we derive a quantitative 

condition for the exact identification of the source node locations even when the peak 

identification approach fails, or the field focusing does not occur. The condition requires 

neither the knowledge of the propagation environment nor the identification of field 

peaks.  

 

4.2.2 The Condition for Reconstruction of Multiple Sources 
 

In this section, we derive a mathematical condition for the accurate identification 

of multiple source-node locations.  
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First, we sum the squares of the field response samples (i.e. (4.2)) recorded at the 

i-th output node during the forward propagation: 
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Then, unlike in the backward propagation of the conventional time-reversal 

method where the time-reversed fields or signals recorded are rejected into the problem 

domain at all the output nodes simultaneously, we perform I separate backward 

propagations. During each simulation we re-inject only a single time-reversed response 

into a single output node, say the i-th node, at which that response has been recorded; we 

denote the process as the i-th backward propagations. At the final time step of the i-th 

backward transmission i.e. n=N-1, the field response at the j-th source is:  
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By comparing (4.8) and (4.9), we find that 
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(4.10) establishes the relationship between the energy of received signal yi[n] 

(which is reversed and re-transmitted) with the final state value at the sources in the 

backward propagation. Now we now reformulate (4.10) as: 
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The condition (4.11) must be satisfied at each source location. In fact, 
1

2

0

[ ]
N

i
n
y n

-

=
å  

is the total signal energy received or recorded at the i-th output node during the forward 

propagation. [ 1]i
jS N -  is the magnitude of the signal recorded at the j-th source location 

at the last time step of the i-th backward propagation. 

 

4.2.3 Verification of the Condition 
 

A numerical experiment was performed to verify the condition (4.11). Without 

loss of generality, the FDTD method is applied to simulate a PEC ergodic cavity with two 

sources and three output locations (i.e., J=2 and I=3). The amplitudes of the two sources 

are chosen to be 0.2 and 1, respectively.  

First, the forward propagation is run and electric field values or signals are 

recorded at each output node. The signals are time-reversed. Then three separate 

backward propagations are run and in each of them, only one of the three output nodes is 

excited with the time-reversed signal it has recorded. The field distribution at the end of 

each backward propagation is recorded.  

After the backward propagations, we check whether condition (4.11) is satisfied 

for any group of two nodes in the solution domain. If one of the groups does satisfy 

(4.11), it will represent the actual sources. 

More specifically, we randomly group the nodes into pairs and check if the 

following condition is satisfied for all j: 

                                  1 21 2 1
j j

a S a S+ = .                                                 (4.12) 

j=1, 2 and 3 represent the backward transmissions with the time-reversed signals re-

injected into each of the 3 output locations, respectively.  
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In reality, checking condition (4.12) can be made equivalent and easy by 

examining whether the determinant of matrix (4.13) below is zero. If the determinant is 

zero, the condition is satisfied and the source locations are found.  
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 .                                                 (4.13) 

Figure 4.3 shows the determinant values of (4.13) for 10,000 pair group of source 

candidates. It appears that only one group among these 10,000 yields a determinant that is 

significantly smaller than all the others by about eight orders of magnitude. This 

particular group turns out to correspond to the original source locations used in the 

forward propagation. Once the sources are correctly located, their amplitudes are easily 

solved with equation (12).  

 
Figure 4.3 Determinant of matrix (4.13) for 10000 groups of two nodes. Among them 

only the determinant of one group has a very small value close to zero. This 
group turns out to be the correct pair of source node.  

 

4.3  APPLICATION OF THE CONDITION FOR RECONSTRUCTION OF MULTIPLE 

SOURCES 
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4.3.1 The Proposed Method to Find the Source Locations 
 

In the above example, we assume that we have a prior knowledge of the number 

of the sources being two. In practice, however, it is not known. A sequential trial-and-

error approach can be employed to apply the condition to source reconstruction. More 

specifically, we may first start to assume the number of the sources to be 1 and perform 

the test described above; if the condition is satisfied, the source location is found. If not, 

we then assume the number of the sources is 2 and perform the test, and so on. In theory, 

this approach will allow us to find the source locations. In reality, however, its 

computational expense will be prohibitive, especially for an electrically large structure.  

Hence, an efficient method is desired to apply the condition for source reconstruction. In 

the following paragraphs, we propose the regularized least square (RLS) method . 

Assume M locations as the possible source locations. Based on the condition 

(4.10), consider that at non-source locations the amplitudes should be 0; that is, (4.10) 

can be rewritten as a condition that amplitudes of all these assumed M sources must 

satisfy:  
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,             (4.14) 

 

where the element Sm
i is the field value recorded at the assumed m-th source location at 

the end of the i-th backward transmission. am, m=1…M, is the amplitude of the impulse 

excitation at the assumed m-th source location.  

Since am is the amplitude of the impulse excitation at the source location, it will 

have a non-zero value at a true source location and zero at all other non-source locations. 
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In other words, the exact solutions of (4.14) can automatically yield true source locations 

and remove the non-source locations by identifying non-zero elements of [am]. 

Equation (4.14) represents I equations with M unknowns. Usually, M is much 

larger than I. Hence the equation is underdetermined. It can then be solved in the least 

square (LS) manner. Moreover, the smallest number of non-zero elements am is the 

constraint to the LS system, leading to a regularized least square (RLS) formulation, i.e. 

the solution am is sparse. To find the sparse solution, a L-1 regularization term is added to 

the underdetermined equation. The formulation can then be expressed as: 

      [ ][ ]
2

2

1

minimize ( [ ] )
N

j
n

S a y n al
=

é ù
- +ê úë û
å                     (4.15) 

in which λ is the regularization factor chosen empirically. The constraint equation (4.15) 

is to find the sparsest solution vector, which can be solved numerically by applying a 

solution algorithm such as LASSO [59-61]. The resulting amplitude coefficients [am] that 

are non-zero identify the source locations.            

4.3.2 Numerical Experiment with the Proposed RLS Method 
 

In the following numerical example, we choose three source nodes and six output 

nodes within the cavity domain. We then apply the proposed RLS method by selecting 

1500 nodes within an area that is assumed to contain the three source nodes. M is thus 

equal to 1500. Using the algorithm described in [59], we compute the amplitudes aj; the 

value of the regularization factor λ is chosen empirically to be between 0.001 and 0.02. 

The optimal choice of λ is a subject of future research. The results of the computation are 

shown in Figure 4.4. 

As can be seen, at only three node locations, aj is non-zero; they turn out to be the 

correct source locations. The computed source amplitudes are also close to the true 

values. If needed, the exact amplitudes can be found by solving (10) for the identified 

source locations. Therefore, this example proves the effectiveness of the proposed 

method. 
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Figure 4.4 Result of source reconstructions with the proposed method. The dots in the 

left region of the problem domain indicate the eight output nodes. The sources 
are shown as the peaks. (a) shows the original source locations and their 
amplitudes. (b) presents the results obtained with the RLS method. 

 

 As a summary of this section, we have first developed a condition for 

reconstruction of multiple sources. It is verified by the numerical experiments. The 

condition can be used as a validation of the possible sources identified. In other words, 

when we identify the sources using the conventional time reversal process, the condition 

can be used as a test to see if the sources identified are indeed true. Next, based on the 

proposed condition, we have developed a RLS scheme to directly calculate the possible 

source locations by solving the underdetermined equation. The result shows the 

effectiveness and reliability of the proposed method even in the cases that the 

conventional time reversal has difficulty in identifying all sources. 

 

 

4.4 SOURCE RECONSTRUCTION WITH REALISTIC BAND-LIMITED FREQUENCY 

DOMAIN SIGNALS 

We have so far used time domain impulse responses of infinitely large frequency 

band, which yield high spatial resolutions. However, in realistic situations, the field 

responses at output nodes are often measured or recorded in frequency domain within a 
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limited frequency band. Direct application of regular frequency-to-time transformation 

techniques, e.g. inverse Fourier transform, to convert these band-limited frequency-

domain field responses into their time domain counterparts, most likely lead to non-

causal complex time-domain signals; they cannot be used in the time reversal process. 

Therefore, it is necessary to develop a method to extract causal time-domain responses 

from band-limited frequency domain measurements so they can be used for the time 

reversal source reconstruction. In the following subsections, we develop an extraction 

method specifically for the time-reversal method. 

4.4.1 Reconstruction of Fields from Band-Limited Frequency Domain Responses 
or Measurements 

 

To better explain the method, we use again the numerical experiment of the 

ergodic cavity of Figure 4.2 and Figure 4.4. The frequency domain signals at the output 

nodes is first obtained by the discrete Fourier transform (DFT) of the time-domain 

responses recorded at the pre-selected output nodes. At the i-th output node, the recorded 

time-domain signal or field is expressed by (4.2). Its frequency domain correspondent is 

 

[ ] ( [ ]),     0,1,2,..., 1i iY k DFT y n k N= = -                                (4.16) 

where DFT is the discrete Fourier transform, k is the frequency step index which 

represents the frequency point of /k f k tD = D with tD  being the FDTD time step.  

To emulate the band-limited field responses, we remove the frequency contents 

outside a preselected frequency band of [ , ]l hk f k fD D  such that the following band-

limited response is used now for the time reversal source reconstructions:  

[ ], [ , ]
[ ]

0,       [ , ]
i l hc

i
l h

Y k k k
Y k

k k
w
w
Îì

= í Ïî
.                                                 (4.17) 

The graphical representations of the band-limited responses (4.17) are shown in 

Figure 4.5.  
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Figure 4.5 Creation of the band-limited frequency domain fields. The top two figures are 

the magnitude and phase of the frequency-domain fields recorded in a full 
spectrum. The bottom two figures show the band-limited spectrum that results 
from the removal of the contents outside the preselected frequency band of [kl, 
kh]. 

 

If the inverse Fourier transform is directly applied to (4.17) (which represents the 

band-limited signals), the resulting time domain response becomes complex and non-

causal; hence, it cannot be used in the time reversal process.  

To construct the usable time domain equivalent response, we propose to 

approximate the band-limited response as follows: 

[ ] ( ) cos(2 ( )),   0,1,2,..., 1
h

l

k
c c c
i i i

k k

ky n Y k n Y k n N
N

p
=

= +Ð = -å .               (4.18) 

It is a summation of monochromatic cosine functions. Each cosine function has a 

frequency of /k f k tD = D , an amplitude of |Yj
c(k)| and a phase ( )c

iY kÐ , respectively. 

(4.18) is a real time-domain sequence. 

By taking the DFT of (4.18), we can show that it has exactly the same values as 

Yi[k] within the band of interest[ , ]l hk f k fD D . Figure 4.6 shows the time and frequency 

domain representation of (4.18) and compares it to the original time response (4.16).  
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Figure 4.6 Comparison between original and the reconstructed time responses. The two 

figures on the left are the time-domain signals and the figures on the right are 
the frequency domain signals. The top two figures show the original 
responses, and the bottom two figures show the responses reconstructed with 
(4.18).  

 

After (4.18) is computed for each output node, it is time-reversed and re-injected 

into the cavity, and the backward simulation is run by following the procedure described 

in Section II. At the final step of the backward simulation, the field distribution shows 

clear peaks within the structure as Figure 4.7 shows.  

 

 
Figure 4.7 Sources reconstructed from band-limited responses, yielding well-defined 

peaks at the original source nodes.  
 

More numerical experiments were performed with different choices of sources 

and output nodes as well as different limited frequency bands. The results are all similar 

and unambiguous. The reason can be theoretically explained as follows.  
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Similar to (4.9), the response [ 1]i
jS N -  at the j-th source location at the end of 

the i-th backward simulation is:  
1

0

[ 1] [ ] [ ]
N

i c
j ij i

n
S N h n y n

-

=

- =å                                       (4.19) 

(4.19) shows that the final state value of backward transmission is the correlation 

product of constructed signal and the corresponding impulse response. On the other hand, 

based on Plancherel theorem, the correlation product of the time domain signals is 

equivalent to their conjugate-complex multiplication in frequency domain. That is, 
1 1

*

0 0

1[ ] [ ] [ ]( [ ])
N N

c c
ij i ij i

n k
h n y n H k Y k
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where 

[ ] ( [ ]) ,

[ ] ( [ ]) .
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After further manipulation, we have   
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The first term on the right-hand side is the summation of the positive numbers 

which aggregate and form a peak value. The second terms of the right-hand side 

represent the cross-terms between different sources and they will not accumulate 

constructively in most cases; therefore, they do not interfere with the peak values. Since 

the addition of the first term only takes place at the source nodes, focusing occurs at the 

source locations, very much like what is described for conventional TR focusing in 

Section 4.3.  

In short, (4.22) provides the theoretical foundation for the proposed method in 

which a band-limited response is used to reconstruct its sources with the time-reversal 

method. 
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4.4.2 The Condition for Source Reconstruction from Band-Limited Field 
Responses 

 

In the previous sections, we propose a method to reconstruct sources from band-

limited field responses via time-reversal and field peak identification. Like that described 

in Section II, the method should work most of the time but may fail in some special 

cases.  Here we derive the source locating condition that does not require the peak 

identifications for the source locations with the band-limited responses.   

From (4.19) we have 
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         ,                 (4.23) 

 

in which Sj
i[N-1] is the field response recorded at the j-th source node, at the end of the i-

th backward simulation during which the received signal at the i-th output node is 

reversed and re-injected into the domain at the i-th output node.   

From our previous analysis, we have 
1 1

*

0 0

1[ ] [ ] [ ] [ ]
N N

c c
i i i i

n k
y n y n Y k Y k

N

- -

= =

=å å                              (4.24) 

where Yi
c[k] is defined by (4.17).  

From the band-limited property of Yi
c[k], we can get  

1 1 12* 2

0 0 0

1 1[ ] [ ] [ ] [ ]
N N N

c c c
i i i i

k k n
Y k Y k Y k y n

N N

- - -

= = =

= =å å å              (4.25) 

The last equality in the above equation is obtained with Paserval’s theory.  

From (4.24) and (4.25), 

 



 

 70 
 

1 1
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Based on (4.23) and (4.26), we reach 
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  Similar to (4.10), (4.27) shows the relationship between the energy of transmitted 

signal and final state value at source locations in the backward propagation. The only 

difference with (4.10) is that here we use the constructed signal yi
c[n] in the backward 

propagation. (4.27) establishes the condition for the band-limited fields that permit the 

locating of the sources without identification of field peaks.  

 

4.4.3 The RLS Method with the Band-limited Field Responses 
 

Following the procedure used in section II, the underdetermined equation is 

constructed based on (4.27) and solved with the RLS process and the constraint of 

minimum non-zero number of coefficients aj. 

A numerical example with four sources and eight output nodes has been 

computed, with M=1500 selected. The results are shown in Figure 4.8. It is seen that the 

sources are reconstructed exactly at their original locations, and their amplitudes are very 

close to the original values.  
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Figure 4.8 Source reconstruction from the band-limited field responses by applying the 

source locating condition (4.27). The locations of the eight output nodes are 
indicated by the dots in the left region of the problem domain. The sources are 
identified by the peaks. (a) shows the original sources, (b) shows the 
reconstructed sources. The rectangular boxed area is the domain where 
M=1500 nodes are used as source location candidates for setting up the 
underdetermined system for source reconstructions.  

 

The above analysis and numerical experiments demonstrate that the proposed method 

to reconstruct impulsive sources from band-limited responses is viable. It makes the 

proposed time-reversal method applicable to real-world problems.  

 

4.5  SUMMARY 

In this chapter, we present a theoretical analysis of source reconstruction using the 

time reversal method with numerical methods like FDTD. We also develop a necessary 

condition for reconstructing multiple source locations and verify it with both theoretical 

analysis and numerical experiments. The condition does not involve Green’s functions or 

identification of field peak values. Furthermore, we develop a method to process the 

band-limited fields or signals available in reality so that they can be used with the time 

reversal technique for multiple source reconstructions. Again, theoretical analysis and 

numerical experiments are provided to support and verify the method.   
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The implementation of the condition is also reported. After turning the condition into 

underdetermined equations, the L1-constrained MLS (Minimum Least Square) algorithm 

can be applied to derive acceptable result, identifies multiples sources or greatly reduce 

the number of the possible candidates. The proposed method does not involve solving for 

the complete system’s impulse responses or Green functions; therefore, simplicity and 

robustness of the conventional TR method are retained. 
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CHAPTER 5 CONCLUSION 

 

5.1  CONCLUDING REMARKS 

This thesis has studied the finite-difference time-domain (FDTD) method for 

electromagnetic field modelling and its application in time reversal technique.  

The FDTD method is the most widely used time-domain numerical method for 

electromagnetic modeling and simulations due to its algorithmic simplicity and flexibility. 

It has been extensively studied and applied for the past 40 years. However, much research 

has still been focused on improving the FDTD computational efficiency. One of the 

efforts is to break the restriction of the CFL limit and improve the computational speed 

since the FDTD method an explicit iterative march-on-time scheme. In this thesis, we 

have re-analyzed the stability condition of the FDTD method in terms of impulse 

responses using the based on the eigen analysis of the FDTD formulation.  We show that 

the root cause of the instability of The FDTD method is the high-frequency eigenmodes 

whose eigenvalue is larger than 4. Since the eigenmodes are orthogonal, the unstable 

modes are of those with eigenvalues can be discarded, making the FDTD solutions stable. 

It is also found that the CFL condition does not always guarantee the stability of The 

FDTD method, which has not been seen in research reports so far. 

By expanding the FDTD formulation in terms of the eigenmodes of the coefficient 

matrix of the spatially and temporally discretized system, the conventional march-on-

time formulations are turned into solving the expansion coefficients. We have developed 

the recursive discrete system equations for the expansion coefficients. By solving the 

discrete system equation, analytical FDTD solutions are obtained. As a result, an 

alternative approach to the FDTD solution of an electromagnetic system is developed 

where the analytical FDTD solution can presents values at any time step without 

recursive march on time. Although finding the eigenmodes of the FDTD solutions may 

require computational efforts, they embody the full features of the FDTD systems once 

obtained. In addition, they can be stored and re-used without repeating the whole 
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simulation process again. Finally, because the unstable modes have been removed, there 

will be no issues that are related to the CFL stability limit.  

The computational time reversal method utilizes the time-domain numerical 

methods to solve the inverse problem of source reconstructions. Without explicit 

quantifications of the multipath effects, source locations can be recovered through 

backward propagation of the time-reversed field signals of the forward simulations that 

are recorded at the preselected output locations. Simple and robust, the time reversal 

techniques have gained quiet interest and has been extensively studied and investigated. 

However, there are challenges and issues that need to be addressed for practical 

applications.  In this thesis, we have addressed some of the challenges: we have derived a 

condition that enables precise reconstruction of multiple sources without false solutions. 

Based on the condition, we have developed the regularized least square (RLS) method 

that turns the time reversal method into an optimization formulation which could 

accurately recover the correct source locations, making the time-reversal available for 

practical uses.  

To further improve the practicality of the time reversal method, we have developed 

a method that makes band-limited field signals applicable to the time reversal method. It 

extracts the time domain signals feasible for uses with the time reversal method from the 

band-limited field signals through simple expansions. The reconstructed signals work just 

like the full frequency-band signals that lead to spatial and temporal focusing at the 

original sources. We have further developed the time reversal process that incorporates 

the location condition proposed above, greatly extending the applications of time reversal 

method. 

 
5.2  RECOMMENDATION FOR THE FUTURE WORK 

The work of this thesis is original and opening new dimensions for both the time-

domain numerical methods and the time reversal techniques. Therefore, there are many 

aspects of the topics can be further explored and developed. Due to the time limit of this 

thesis, they cannot be all covered. Here we present our thoughts for the future work in the 

hope that more work can be done in advancing the state-of-the-art based on the work 

presented in thesis. 



 

 75 
 

The first recommendation is to apply our analysis to other time-domain methods. 

For example, the TLM method and RPIM (radial point interpolation meshless) method all 

have similar form as FDTD does: the system can be described as matrix, the solution is 

derived iteratively in the march-on-time manner. Hence the instability issue in these 

methods can be treated in the same way developed in this thesis. 

The second recommendation is to develop the analytic FDTD solutions in 

complicated medium such as the PML region. The analytic FDTD solution in the PML 

region can greatly extend the analytic approach to open problems such as antennas and 

field scattering problems. 

The third recommendation is to extend the analytical approach to structure design 

and optimization. For example, to design a waveguide filter with desired resonant 

frequencies, the conventional method will start with initial guesses of the dimensions 

parameters and then iterate between performance analysis and dimension modifications 

to eventually find the right structure dimensions. With the analytical numerical solutions, 

non-changed parts of the filter, which is made of the large parts of the filter, could be first 

computed and stored in terms of its analytical solution form. Then the iterative 

optimization process can be carried out by simply interfacing the analytical solutions and 

the FDTD model of the varied part of the filter. Because of no need for the repeated 

simulations of the large part of the filter.  

The fourth recommendation is to extend the time reversal method to synthesis of 

electromagnetic structures with prescribed responses. For instance, one can specify the 

desired fields at some distance away from an array. By applying the time reversal, we 

may be able to find the array elements required. One of the application areas is the 

wireless power transfer systems. Preliminary work was presented in [64]. However, more 

comprehensive and systematic developments in applications of the time reversal 

techniques still need to be researched, particularly in improving the power transfer 

efficiency. In addition, more extensions of the time reversal to other problems need to be 

done.  
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APPENDIX I   Derivation of the Equivalence between the CFL Condition and 

Maximum Eigenvalue of the FDTD System Matrix 

 
In section II, it is shown that the maximum eigenvalue of system matrix M will 

determine whether the FDTD solution is stable or not. In the following paragraphs, we 

show that such determination is equivalent to the CFL condition.  

Since M is the discretized finite-difference form of operator 2 1t ( )eµ -D Ñ´Ñ´, it 

is symmetric, semi-positive definite and sparse [3, 5, 6]. The row (or column) of M has 

many non-zero elements. In the two dimensional case, a row can be written as: 

 
2 2 2 2 2 2

2 2 2 2 2 2

1 1 1 1 1 2 2..., ,... ,... ,... ,... ( )...t t t t t t
x x y y x yeµ eµ eµ eµ eµ
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(A.1) 

 

The upper bound of matrix eigenvalues has the following relationship with the 

matrix elements [19]: 

Suppose that matrix M has the dimension of N N´ . Let 
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wherem kl is the element of M at the kth row and lth column. Then the following 

inequality holds for all the eigenvalues of M: 

| ( ) | min( , )R Cl £M                                                  (A.4) 

In section II, we have shown that 4il <  presents the stable solutions. Therefore, 
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2 2
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Or, 

2 2
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                                                 (A.6) 

This yields the commonly known CFL condition in two dimensions.  

By applying the similar process, we can obtain the CFL condition in three 

dimensions: 

2 2 2
1 1 1

t

x y z

µe
D £

+ +
D D D

                                           (A.7) 

In other words, condition 4il <  corresponds to the CFL condition.   
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APPENDIX II Stability Condition of the FDTD Method in Lossy Cases 

The purpose of this Appendix is to show that the stability condition developed for 

lossless cases can be applied to lossy cases. In other words, in a lossy case, 0< 4il <  is 

the necessary condition for stability whereas 4il > leads to instability. 

In a lossy medium, the wave equation in the Z-domain can be written as (3.23): 
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The poles of [ ]iH z are the roots of the denominator:  
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Now consider the different situations. 

Situation 1: 4il >  
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In this case, 
2 2 2 2

2
2 24 0  ,i i
t ts sl l

e e
D D

- + > >  

2 2
2

2

,1 ,2

2 2
2

2

2 4
max( , )

2

2 4

2

i i i

i i

i i i

t

z z t

t

t

sl l l
e

s
e

sl l l
e

s
e

D- - - +
=

D+

D- + - +
=

D+

      ,                 (A.11) 

Since 2 2il - > and 
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This means that there must be at least one pole lying outside the unit circle. The 

FDTD solution is then unstable. 

Situation 2: 0 4il< <  

In this case, 
2 2

2
24i i
tsl l

e
D

- +  could be larger or smaller than zero. The 

discussions have to be separated in two scenarios.  

If 0 4il< < ,  we will have 
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If 0 4il< <  and 
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Since 2<2il - , 
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In summary, we show that when 0< 4il < , the FDTD solution itself is stable and 

when 4il > , the FDTD solutions are unstable. The condition applies to both lossless 

and lossy cases. The difference is that when 0< 4il < is satisfied, the poles of the system 

matrix lie on the unit circle in a lossless case but inside of the unit circle in a lossy case. 
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