USING SMARTPHONE TO PREVENT KEYLOGGING AND SHOULDER SURFING

by

RAHIL KARIM ALI

Submitted in partial fulfilment of the requirements

for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia
December 2017

© Copyright by Rahil Karim Ali, 2017

| dedicate this thesis work to
My beloved parents Karim Ali and Mehrbano Ali for their unconditional love,
My Supervisor Dr. Srinivas Sampalli for his guidance, support and motivation
throughout the research work,
My Siblings Shoaib Ali and Sanam Ali who believed in me
And

To my best friend Sehrish Khawaja who stood by my side.

TABLE OF CONTENTS

LIST OF TABLES ... e Vi
LIST OF FIGURESottt vii
A B S T R A T ettt e e nrre e e nnaes X
LIST OF ABBREVIATIONS USEDccciiiiiccee et Xi
ACKNOWLEDGEMENTSottt e e il
CHAPTER 1 INTRODUCTIONottt 1
1.1 BRIEF INTRODUCTION OF THE TERMS AND CONCEPTS ...coitiiiiiiiiieeee e 1
O I I o NV @ 2 { D I I N 1
1.1.2 DIFFIE-HELLMAN KEY EXCHANGE ALGORITHMuuiiiiiiiiiiiiiiiiiiii e 4
L1 3 HASHING ..ttt sttt et st b e et e bt s a e et e s bt et e sbesaeemtesbeentebeeaeesesaeeneas 4

1.2 RESEARCH PROBLEMeiiiiiiiiiiiettetee ettt ettt e e e s et e e e s e s ee e e e s e s mnneeeeeeas 5
1.3 Introduction to the proposed apProach.........c.ueeiiciiieiiciiee e 6
1.4 QUTLINE OF THESIS ...eeeeeteeeeetittttttteieteteieieteeeeeaveeae bbb sssssssssssannnes 7
CHAPTER 2 BACKGROUNDccciiiiecie ettt 8
2.1 KEYLOGGING.....cueeieitieienteettete ettt ettt ettt et s b bt et s bt et e bt sae et e sbe et e seesbee b e sbeentenbesaeensesbeeanes 8
2.1.1 SOFTWARE KEYLOGGERS....ccetiiiiiiiitteeee ettt ettt e e e e et e e e e e s snneneeeee e e e 8
2.1.2 HARDWARE KEYLOGGERS.....ciiiieeeeee ettt ettt et e e e e e e e e e 9
2.1.3 WORKING OF KEYLOGGERScottiutiiiitieienieeiesie sttt ettt st et 10

2.2 SHA-256 ...ttt ettt ettt bbbt et b e s bt et e bt et e bt e at et e e beebenbeeneen 12
2.3 SYMMETRIC KEY CRYPTOGRAPHY ...ooriiiiiiiiiieiiee ittt 13
2L AES-128....eeeeeee ettt h e et bttt e bt et e eteea e e beeheentenhe et enteeneetesteeatans 14
2.4.2 AES ENCRYPTION PROCESS...... ettt ettt e ettt et e e e et e e e e e s e s nneeeeeeeeeeenas 15
2.4.2 AES DECRYPTION PROGCESS.......cottiutitintietentenite sttt st ettt sat et bt sbeeate b saee e saeeaees 18

2.5 DIFFIE-HELLMAN ...ttt ettt ettt sttt ettt st be st sbe et sbeeste bt sae et e sbeesesbeeneans 18
2.5.1 MAN-IN-THE-MIDDLE ATTACK: .. .ccutiitiritetinteeteriesieesie ettt st et sieetesteeaeesbesaee e sneeaees 20
CHAPTER 3 RELATED WORK ..ottt 22
3.1 LITERATURE SURVEY ON KEYLOGGING AND SHOULDER SURFINGcccceetiiiiiiiiereeeeeniiine 22
3.1 1 KEYLOGGINGceeiietieeee ettt ettt e e e ettt e e e e e e e aab et e e e e e e snnreeeeaeeee s nnneeeneeas 22
3.1.2 SHOULDER SURFINGttt ettt ettt e e e e e et e e e e e e sttt e e e e e e sennneeeeeeas 25

3.2 LITERATURE SURVEY ON DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM.......cccvceevierennene 29

CHAPTER 4 METHODOLOGYcoiiiiiiiiiiiieet e 33

4.1 Brief Overview of Proposed APProachccevciiiiiiiiiiieiiee et e e s saaeee s 33
4.2. Detailed Description of proposed approachccceccuveiieciieiiiiiiiec e 34
4.2.1 CREATING CONNECTIONS BETWEEN TWO DEVICESc..eeiiiriieiieieeieeieeneenee e 37
4.2.2 DIFFIE-HELLMAN KEY EXCHANGEcoitiiiiiiieieeieesieesiee sttt 43
e A g1 AV Aol Yl (= U 44
4.2. 4 ENCRYPT AND DECRYPT DATAcotteitteniteniterte et et e steesitesitesaeesbesbeesbeesaeesneesaeeeneeeseas 45
CHAPTER 5 IMPLEMENTATION ...ttt 48
5.1 DEVELOPMENT ENVIRONMENT ...uttiiiiiiiiiieiieesieesteesitestesreesieesieesseesseesseesseenseesseesunesanesas 48
5.1.1 PROGRAM ARCHITECTUREcccutiiiieiieieeieeniee sttt sttt e steesaeesaeesabesbe e s e saeesaeesaseenseas 49
5.1.2 JAVA ENVIRONMENT AND LIBRARIES USED ...cc.eiiiiiiiiieinieenienieeiee et 49
5.1.3 C# ENVIRONMENT AND LIBRARIES USED ...ccuutiiuiiiiiiiieieenieeniee et 52
5.2 IMPLEMENTATION DETAILS OF THE PROPOSED APPROACHccceevuiiiiinienieeieeniee e 53
5.2.1 RANDOM STRING GENERATION:coctiiiieitieiteniteste st eieesieesaeeseesbesbeesseesaeesneesnseensees 56
5.2.2 QRCODE GENERATION: ... cttitteitteetieeie ettt ettt sttt et et esiee st e st e be e b e sbeesmeeemeeeneeen 56
5.2.3 SOCKET CONNECTIONS:eiitieitieiitiete ettt sttt ettt e sie e st sbe b b e smeesmeesmeeeneeen 57
5.2.4 GENERATING ‘D’ ‘8" AND “TA: ..ottt ettt sttt st s ee s 58
5.2.5 GENERATING RANDOM SECRET INTEGER:ccootiriiriiiiienieenee e 59
5.2.6 EXCHANGE ‘P” ‘G" AND “TA: <ottt 60
5.2.7 VERIFY SECRET KEY USING HASHING:.....ccciiiiiiiiiiinieeiee et 61
5.2.8 ENCRYPT AND DECRYPT DATA: ...ttt sttt ettt e ittt sbe e e sbeesmeesaeeeneees 62
5.2.8 DATABASE ACCESS AND QUERIES.......cociiitieieeneente ettt s 64
5.2.9 PERMISSIONS REQUIRED FOR ANDROID APPLICATION:oeviiriirieeriereereesee e 65
CHAPTER 6 EXPERIMENTAL RESULTS AND ANALYSIS......cccccoiiiiiieeiees 67
6.1 EXPERIMENTAL SETUP ...ttt ettt sttt et sane s e 67
6.2 EVALUATION OF THE PROPOSED APPROACH.......coitiiiieiieieeiee ittt ettt 68
6.2.1 Testing over the Wi-Fi medium. ... e 68
6.2.2 Testing over the Bluetooth Medium........cccooiiiiiiiiii e 74
6.2.3 Testing over the NFC MediUmccciiiiiciiee et 77
6.3 SUMMARY OF THE EXPERIMENTAL RESULTS ...coiiiiiiiierieeeereeieesiee et 79
Chapter 7 CONCLUSION AND FUTURE WORK........cccooviiiiie e 80
T L LIMITATIONS ...ttt ettt ettt et s e sttt b e b e s be e saee et e eteesbeesanesane e 81
7.2, FUBUIE WOTK. ettt ettt ettt ettt et e st e e smb e st e e sbe e e sabeesneeesmseesaneeesaneenn 81

REFERENCESo

APPENDIX A
APPENDIX B

LIST OF TABLES

Table 1: Development environment for the Desktop Application.ccccccceveiininnne. 48
Table 2: Development environment for the Mobile Application.cccccooiiiininnne. 49
Table 3: Mobile Device Used fOr teStING.........ccuevviiirrinieiie e 49

Vi

LIST OF FIGURES

Figure 1: Shoulder SUrfING [37] ...oovoieiieieee e 2
Figure 2: PS/2 KeYlOggers [36]. ...ccveiueiieieeieiie it eiiesie ettt snn e ae s 9
Figure 3: USB Keyloggers [36].....ccuciiiiiiieiiiie et 10
Figure 4: Working of Keylogger [9]ccvoveiiiie e 11
Figure 5: Sending log file to the intruder [9].......ccooveve i 12
Figure 6: Cryptographic algorithms [21]cccoooeiieiiie e 14
Figure 7: Schematic of AES Structure [22]ccoeiveiieiieee e 15
Figure 8: AES encryption proCess [22].ccoveveiieieeie et 16
Figure 9: Byte SUDSHITULION [23]....cuvoiveiieiieie e 16
Figure 10: Shift FOWS [23] ...ecveiieieeie st 17
Figure 11: MixX COlUMN [23]. oot 17
Figure 12: Diffie-Hellman key exchange algorithm [25]..........cccooeviiiiiiieii i, 19
Figure 13: MITM attack in DH [26].......ccoueiiiiiiieiecc e 21
Figure 14: Virtual Keyboard [35].cccoeiieiiieiicie e 23
Figure 15: Virtual Keyboard changing all values [35]......ccccccoviiieiiiiiece e, 24
Figure 16: Virtual keyboard area division [35].cccoovviiiieiieiiesc e 24
Figure 17: Set of IMages [38] .. .eciviiiieiieeiie st 26
Figure 18: Selection region on an image [38].ccooveiieiiieiie e 27
Figure 19: Working of PassBoard. [63]........cccceiiiiiiiiiiiiiciie e 29
Figure 20: Overview of the proposed approach. ... 33
Figure 21: Overview of the mobile application.cccooeiiiiiiiiiii e 34
Figure 22: Overview of the desktop appliCation.ccccvvevviiiiieie s 35

vii

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Figure 45:

Database table StrUCLUIEc.oooviiiiiee e 36
Screenshot of the desktop appliCation............ccccooeiiiiiiiiiicie e 37
Initiating connection through Wi-Fi ... 39
Initiating connection through BIUEtOOth ... 40
Initiating connection through NFC ... 43
The Diffie-Hellman timing diagram.cccccooeriiiiiniiiiceee e 45
Encryption and decryption ProCESS.ccueeierierenereseseeiee s 46
Initiating Wi-Fi connection between Desktop and Mobile App.c.ccccveeee. 69
Sending Diffie-Hellman parameter P via Wi-Fic.ccooovviininiciie 70
Sending Diffie-Hellman parameter G via Wi-Fi...........ccocovviiiiniiciiine 70
Sending Diffie-Hellman parameter TA via Wi-Fi. ..o 71
Acknowledgment PACKEL.c.coeriiiiiiiiecee 72
Sending MeSSage AIGEST.coveiviriiriiiiiieie s 73
Sending Encrypted Credentials.cocooveieieiiieniieee e 73
Packets captured during Bluetooth transfer.ccccoooevieieiieniece e 74
Sending Diffie-Hellman parameter P via Bluetooth..............ccoccevvviveienennee. 75
Sending Diffie-Hellman parameter G via Bluetooth.cccccoevvvveinnennee. 75
Sending Diffie-Hellman parameter TA via Bluetooth...........c.ccoovivevnnee. 76
Bluetooth Acknowledgment Packet.cccovvreiiiiniiieicieee e 76
Sending message digest via BIUELOOth. ... 77
Sending encrypted credentials via Bluetooth.ccccccooveviiieieiiece e, 77
Sending Diffie-Hellman parameters via NFC............ccocooiiiiniiieice 78
Sending credentials Via NFC..........cooiiiiiiie s 79

viii

Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:

Figure 53:

Screenshot of the desktop application home page.cccooevvrienieeienieseeeen 91
Desktop application displaying QR COde.covviiiiiiiinienienee e 91
Desktop application searching Bluetooth devices.ccccvveviiiniienennnene 92
Mobile application home page...........cccoeviiiiii i 93
Mobile application insert credential Pagecccovvreriieieniesiereee e 93

View Credential page.........coevvviviiiniiiiiiiieiie e sene e 94
Scan QR COAC. ..ot 94

NFC PAGE .ottt 95

ABSTRACT

Intruders have developed many methods to obtain sensitive information- some of the
information is private and confidential such as username and password. Although strong
cryptographic algorithms and authentication schemes have been developed by other
researchers, the credentials can be easily cracked through attacks such as brute-force,
dictionary, shoulder surfing, and keylogging. This thesis presents a new approach to
prevent two attacks, namely, keylogging and shoulder surfing. We propose a technique to
login users into a secure account without entering their usernames and passwords on a
physical or virtual keyboard. The usernames and passwords are stored in the smartphone
and can be transferred to the system using Wi-Fi, NFC (Near-field communication) or
Bluetooth technologies. Furthermore, the usernames and passwords are encrypted using
AES-128 encryption algorithm. Since AES-128 encryption algorithm requires a secure
key to encrypt data, we have used Diffie-Hellman key exchange algorithm to generate
the secure key. Moreover, the secure key is verified using the one-way hash function
SHA-256 as Diffie-Hellman is susceptible to man-in-the-middle attacks. A proof of
concept prototype has been implemented and tested using Wireshark and USBIlyzer to
analyze the network traffic and to ensure that the credentials are transferred to the

desktop application in an encrypted form.

LIST OF ABBREVIATIONS USED

WORA Write Once Run Anywhere

SDK Software Development Kit

NFC Near-Field Communication

IDE Integrated Development Environment
API Application Programming Interface
NDEF NFC Data Exchange Format

USB Universal Serial Bus

MITMA Man In The Middle Attack

RAT Remote Administration Trojan horse
CCTV Closed Circuit Television

PC Personal Computer

ATM Automated Teller Machine

DH Diffie Hellman

Wi-Fi Wireless Fidelity

SSL Secure Sockets Layer

Xi

SSH Secure Shell

IPSec Internet Protocol security

AES Advanced Encryption Standard

Xii

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Dr. Srinivas Sampalli for his guidance and

support. This work would not have been possible without his support.

I wish to express my sincere thanks to my family, my parent Karim Ali and Mehrbano
Ali for their unconditional love and support in all aspect of my life, my siblings Shoaib

Ali and Sanam Ali for their support, trust and love.

I would also like to thank my best friend Sehrish Khawaja who was always there for
helping me in my difficult times, for all the emotional support, for believing in me and

for motivating me in all my ups and downs.

Last but not the least | would like to thank all teachers of my entire academic career for

sharing their knowledge and wisdom throughout my entire life and for making me

capable to achieve this milestone.

Xiii

CHAPTER 1 INTRODUCTION

We will begin our journey of this thesis by providing a brief introduction about various
terms and concepts that are used in different chapters. We will then discuss the research
problem followed by an overview of the proposed solution and the work done for

preventing keylogging and shoulder surfing.

1.1 BRIEF INTRODUCTION OF THE TERMS AND CONCEPTS
1.1.1 PASSWORD ATTACKS

Passwords are the key component to authenticate the user to any system. Depending on
the authentication scheme the type of password can be in text, graphical, or biometric
form. Passwords play a vital role to authenticate users to various type of applications
such as ATM machines, online accounts, computer logins etc. As the password protects
the system from non-legitimate users, cybercriminals develop techniques to perform
malicious activities such as stealing data, identity, and passwords. Intruders make the
system vulnerable by accessing the important information or by using different software
programs and can steal sensitive information from the system. In this section, we will
briefly discuss the various types of attacks through which passwords and other

information can be stolen.

a) Brute force attack:
For cracking short passwords, Brute force attack is very a fast technique. It
usually works for short passwords and is not very useful for longer passwords. It

is an attack in which attacker uses all possible combinations to retrieve password

b)

or PIN. Therefore, it is recommended to use strong and longer passwords with the
combination of alpha, numeric and special characters.

Dictionary attack:

Users commonly uses their names, date of births or simple words taken from the
dictionary which can be easily judged by the attacker [8]. Attackers make a list of
the most commonly used words and apply all these words to crack the password,
which is also referred to as a dictionary attack. This attack is sometimes faster
than brute force attack [7].

Shoulder surfing:

Shoulder surfing is done by observation technique. The attacker can spy over
victim’s shoulder to get the password, PINs, and other sensitive information while

the victim is typing it in his/her personal or public computer.

Figure 1: Shoulder surfing [37]

d)

Usually, this attack takes place in public places where there are many people
around the user such as at a library’s computer, an ATM machine, a public
internet cyber cafe, or a shopping mall. There are various techniques for the
shoulder surfing which includes observing the hidden CCTV Camera or observing
the number of keys pressed by the user. The attacker then uses all the possibilities
to crack that password [8][9]. Our thesis work focuses on the prevention of this
password attack technique.

Keyloggers:

Keylogging is a technique of recording all the keys pressed by the user on a
physical or virtual keyboard. There are many keylogging software and hardware
tools available to perform this attack. Keylogging software can be installed on any
computer which makes a log file of the keys pressed and sends it to the attacker’s
computer or email address. The attacker will then get the information of all the
keys pressed by the user [8][9]. This attack is usually done on public computers,
as it is easy for attacker to access the public computers to install the malware
before another user access that computer. Our thesis work also focuses on the
prevention of this password attack.

Phishing attack:

This attack is basically the web-based attack, in which attacker redirects the user
to the fake website which is very similar to the original website. Suppose, the user
wants to access www.gmail.com. The attacker redirects the user to the fake
webpage which can be www.gmale.com. If the user doesn’t notice the change in

the website address, he/she will enter the username and password. The attacker

will immediately steal the username and password and have access to the user’s

sensitive information [7].

1.1.2 DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM

The Diffie-Hellman key exchange algorithm is used to share a secret key between two
parties. After exchanging the secret key, the two parties can communicate with each other
on any channel. While exchanging the key there is no authentication mechanism
available so the algorithm is easily attacked by the man-in-the-middle attack.

In our thesis, we have implemented the Diffie-Hellman for exchanging the key between
the mobile and the desktop application [15] [24]. We have considered the limitation of
the Diffie Hellman and improved the key exchanging mechanism to prevent man-in-the-

middle attack.

1.1.3 HASHING

Hashing refers to the conversion of data into a fixed size smaller value that represents the
original data, but cannot be used to retrieve the original data. Hashing is done by one way
hash function which maps the fixed size data in the arbitrary size. The output of the hash
functions is called hash values, digests, hash codes, and hashes. The advantage of using
hash is, it cannot be revert back as it not an encryption process but a one-way
cryptographic function [16] [17]. We have used the hashing technique in our project to
improve the Diffie-Hellman key exchange algorithm. The hashing algorithm which we

have used is SHA 256 which generates 256-bit (32-byte) unique signature for text.

1.2 RESEARCH PROBLEM

The internet has become the basic need for the modern world and people are using it for
almost everything such as mobile banking, confidential information sharing, chatting, and
social networking. A user is not just connected with the internet but connected with the
whole world via internet. Nowadays, internet users are facing many kind of attacks,
which aim to steal the user’s ID and password. Passwords play very important role while
doing different computing tasks. They provide security against unwanted access to our
personal resources [3]. Passwords are used in ATM machines, for accessing sensitive
information, logging into the computer system, and mobile authentication [2]. Text
passwords are the most common type of passwords and are considered as insecure
because there are many attacking techniques developed to steal them. It is always
recommended that text password should be complicated and consist of alphanumeric
characters [3]. However, they should be easily remembered by the user but difficult to
guess by pretender [4]. Users who choose easy and short password can be the target of
shoulder surfing, dictionary attack and brute force attack [5][6]. Other than this, there are
many malware used to make the system vulnerable and to collect the sensitive data [1].
Some malicious software also steals the passwords such as keystroke loggers [3]. Our
research work aims to mitigate these type of attacks for which we have considered the

following research questions:

1. How to protect the passwords while using it in the public or shared computer.
2. How to prevent keylogging and shoulder surfing attacks while using passwords in

public places.

This thesis provides the proposed solution and an in-depth research study done for

solving the research problem.

1.3 Introduction to the proposed approach

Our aim is to solve the research problem which is to prevent from keylogging and
shoulder surfing. To solve the problem we have proposed a system through which user
can access the username and password secretly. Our approach uses smartphones to access
the username and password and send it to the computer, rather than typing it on the

physical or virtual keyboard.

The user have to install our desktop and mobile application. The mobile application will
store user’s credentials (User name and password) of all the websites which the user
needs to access often on the public or personal computer. The user then just need to open
the desired webpage and use our mobile application to send the credentials required for
logging into the website. Therefore, the user do not need to type the username and
password on the physical or virtual keyboard to login. This is how we can prevent
shoulder surfing and keylogging because an attacker cannot see the password over the
shoulder and none of the keylogging software or tools can record the keys as they are not
pressed. The user’s credentials can be sent to the desktop application through three
different mediums which are Wi-Fi, Bluetooth, and NFC. The user can select any of the
methods to send the credentials from the mobile to the desktop application. The data will
be sent in an encrypted form by a private key cryptosystem or symmetric key
cryptosystem. To encrypt the data, we have used AES 128 encryption algorithm. The key

required for encryption will be exchanged through the Diffie-Hellman key exchange

algorithm. As the Diffie-Hellman key exchange algorithm is vulnerable to man-in-the-
middle attack, we have used an improved version of the Diffie-Hellman which uses

SHAH 256 hashing algorithm.

The proposed approach also works as a password manager as all the passwords are saved
and can be update using the mobile application. All the passwords are stored locally in
the mobile device and cannot be accessed or managed through any other system or

webpage.

1.4 OUTLINE OF THESIS

The rest of the thesis is organized as follows: Chapter 1 introduces the various terms and
concepts that are used in the report later. It also provides a brief description of password
attacks and an introduction of the proposed approach. Chapter 2 provides the background
details of keylogging, SHA-256, symmetric key cryptography, AES-128 and the Diffie-Hellman key
exchange algorithm. In chapter 3, we have provided a literature review which describes the
work done by other researchers on the Keylogging and shoulder surfing attacks and different
approaches to mitigate these attacks. Moreover, it also discusses the security issues in Diffie-
Hellman key exchange algorithm and different methods to overcome these issues. Chapter 4
presents the proposed approach to prevent keylogging and shoulder surfing attacks. Chapter 5
discusses the implementation and technical details of the proposed approach. Chapter 6
provides an in-depth description of the experiment conducted to test the proposed approach.
Finally, the report ends with the conclusion (Chapter 7) of our thesis work and discusses the
limitations and possible enhancements that can be done in future. Appendix A contains the
screenshots of the desktop application and Appendix B contains the screenshots of the mobile

application.

CHAPTER 2 BACKGROUND

2.1 KEYLOGGING

Keyloggers are also called keystroke loggers or system monitors. It can be a hardware
device or a software, which monitors the key strokes pressed in any specific computer in
which the keylogger is installed. It can be used for negative and positive both purposes.
Parents use the keylogger to monitor their children’s activities on computer, private
investigators use it for evidence, companies use it for employee monitoring, analysts and
developers use it for studying human interaction with the system. However, there are
many unlawful uses of the keyloggers. Cybercriminals use keyloggers to steal the
confidential information, username and passwords, identities, and banking information.
Most of the time attackers do not require physical access to the victim’s computer. They
trick the user to download a spyware and execute that as a RAT Trojan horse. The
software will have two files which get installed in the same directory. The first file is the
dynamic link library (DDL) file, which is responsible for recording the keys pressed and
the second file is an executable file (.(EXE) which is responsible for installing the DDL
file and triggers it to work [10]. The keylogger software will record the keystrokes
pressed by the user and send the information to the attacker via the internet. Different
keylogging techniques are now explored by attackers in which the two main techniques

are software keyloggers and hardware keyloggers.

2.1.1 SOFTWARE KEYLOGGERS

Monitoring keys through software keyloggers is based on operating systems [11][12]
because the information of keystrokes is being passed between the computer keyboard
interface and the operating system OS. Keylogger software uses the hooking mechanism

8

through which it can capture the data from the keyboard. The data is then sent to the

attacker by copying it on a hard drive or by sending it via the internet.

2.1.2 HARDWARE KEYLOGGERS
A hardware keylogger is a circuit which is located between the computer and keyboard.

Figure 2 shows the two types of PS/2 keyloggers.

Figure 2: PS/2 keyloggers [36].

Figure 3: USB keyloggers [36].

Figure 2 and figure 3 shows that the keyloggers are directly connected to the computer.

The other way to install the hardware keylogger is to install it in a standard keyboard.

2.1.3 WORKING OF KEYLOGGERS

The Keyloggers are active during the time when the key is pressed, and the pressed key
displayed on the monitor. Figure 4 shows the working of keylogger spyware attacks. The
three users are using the different internet services. The attacker is present between them,
making sure that somehow the user installs the spyware in the computer. Software seems
to be legitimate but actually it is to fool users. When the user downloads and installs it,

all the key strokes of the keyboard are recorded and saved in the log file. Then the log file
is sent to the attacker periodically via email. The red arrows in figure 4 shows the entry of

the keylogger.

10

Figure 4: Working of keylogger [9]

Figure 5 shows that as soon as the log file is created, it is sent to the intruder. The blue
lines shows the transfer of email containing log file and confidential information from

user’s computer. If this act is done continuously then it can cause a huge loss to the user.

11

Server hostng
Keviogger

Spyware

User

Figure 5: Sending log file to the intruder [9].

2.2 SHA-256

There are a number of algorithms developed for hashing one of which is SHA-256, which
we have used to verify the secret key generated by the Diffie-Hellman key exchange
algorithm. SHA stands for secure hashing Algorithm, which was developed by the
National Institute of Standards and Technology (NIST). The newer versions SHA-256,
SHAH-384, SHAH-512 (numbers represent the length of bits) were published in 2002
[18].

The two-different version of this algorithm are SHA-1 and SHA-2. They are different in
construction and bit-length of signature. SHA-2 is the successor to the SHA-1 as it was

12

an improved version of the algorithm. SHA-1 is 160-bit hash and SHA-2 comes in a
variety of lengths in which the most popular hashing algorithm is SHA-256. Hashing
algorithm creates the unique hashes for every possible input, which is irreversible. There
are two possible values of bit which are 0 and 1. So the number of possible combinations
generated can be expressed as the number of possible values raised to the number of bits.
So, the SHA-256 will have 22°° possible combinations. The result of 22° is a huge

number and it has a less chance that two values will generate the same hash [19].

2.3 SYMMETRIC KEY CRYPTOGRAPHY

Cryptography is a modern encryption technique, which was first designed to secure the
communication of military. In this era, the internet has grown rapidly and cryptographic
techniques are required to secure the communication over the internet. Cryptography can
be classified into two types: Symmetric Key cryptography and Asymmetric key
cryptography. The Symmetric-key cryptography is also known as single-key or private-
key cryptography as it uses one private key to encrypt and decrypt the information. Some
popular symmetric key algorithms are shown in figure 6.

Asymmetric-key cryptography is also known as public key cryptography, which uses two
different keys to encrypt and decrypt the information; one is the public key and other is
the private key. Figure 6 also shows some well-known Asymmetric key algorithms [20]

[21]

13

[Cryptography

Y

y Y
Symmetric Key } ‘ Asymmetric Key J
|
Blow v 4 Two l l
ron | (o] | o) (oo [mer) | (0) o) o) (e] (o)

[Rijndael J E [Ros | [Mars | [sepent |

Figure 6: Cryptographic algorithms [21]

We have used Symmetric key cryptography in our thesis work. AES 128 is used to
encrypt and decrypt the user credentials when they are sent from mobile to desktop

application.

2.4 AES-128

AES (Advanced Encryption Standard) -128 is also known as Rijndael, which is use in the
encryption of an electronic data. It was established by the U.S NIST (National Institute of
standards and technology) in 2001. It is widely adopted and most popular symmetric
algorithm and six times faster than triple DES. Triple DES was designed to overcome the

vulnerability against exhaustive key search attack but it was found slow.
2.4.1 WORKING OF AES

AES is based on ‘substitution-permutation network’. It is based on a series of linked
operations, some operations replace inputs by specific outputs which is called

substitution. However, other operation shuffle the bits around, which is called

14

permutations. The number of rounds in AES depends on the length of key such as 10
rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit keys. Every
round uses a different 128-bit round key and it is derived from the original AES key [22].

Figure 7 shows the schematic of AES structure.

128-bit plaintext

J Round keys
transformation - K, ¢ Cipher key
| (128, 192, or 256 bits)
Round | - =
l\' og
: E R | Keysize
Round 2 -« 5 10 128
'\z % ~
. A M 12 192
i X 14 256
Round N, B Relationship between
(shightly different) | K, numbcr of rounq.s'(R)
and cipher key size

Y
128-bit ciphertext

Figure 7: Schematic of AES structure [22]

2.4.2 AES ENCRYPTION PROCESS
Each round in the encryption process consist of four sub-processes. The process of first

round is shown in Figure 8.

15

Cipher key Plaintext

! !

Ko (128 bits) —— AddRoundKey

SubBytes
~ ShifiRows

Ki(128 bits) —+—> AddRoundKey

' Round 1

Figure 8: AES encryption process [22].

a) Byte substitution: In this step, each byte is replaced with another byte according

to the lookup table. Figure 9 shows the byte substitution.[23]

&

0| Ha| Rz Sz B, by 2| By 5

SubByles
Q.0 =i bl.u bl,z b1,3

%?EE '%gg

30| 3.1 3283 by 2

S~ —

=

NdEdl

Figure 9: Byte substitution [23].

b) Shift rows:
All the four rows of the matrix is shifted to the left side. The entries which fall off
are re-inserted from the right side of the row. It works as follows: The first row is

not shifted, second row is shifted one byte to the left, third row is shifted two

16

positions to the left, fourth row is shifted three positions to the left and at the end
the result will be new matrix which consist of the same 16 bytes [22]. Figure 10

shows the shift rows.

Mo
change EU.U aﬂ.l aU.? aﬂ.a aﬁ.ﬂ aﬂ.] a0.2 aU.S
- - - - ShiftRows al a ﬂl
Shift 11 &3 o &1 1
0| ;1.1 /15 El.3 ’ o 12 ul.E 0
Pt
SIILEZ ﬂz,n agl]_ ?2.2 ?2.3 ﬂz_z a},B az,o E?.l
s
Shjft 3| 83(85,83, fa.a Q53] B30/ 93| 852
=

Figure 10: Shift rows [23]

c) Mix columns:
It takes the four byte of one column as an input which are transformed using a
special mathematical function. It will then result in four new bytes which are

replaced by the original column. [22]. Figure 11 shows the mix column [23]

8, by, b, 5
MixColumns
5 b, b,
>
a?, bz. b2,3
a;, baj b, 5
—/
& c(x)

Figure 11: Mix column [23].

d) Add round key:

The 16 bytes of the matrix are then considered as 128 bits which is then XORed

17

to the round key of 128 bits. The output of last round is considered as cipher text

[22].

2.4.2 AES DECRYPTION PROCESS
The AES decryption process is similar to the encryption process but it is in the reverse

order. Each round have four processes: [22]

1. Add round key
2. Mix columns
3. Shift rows

4. Byte substitutions

All these process are discussed earlier in section 2.4.1.

2.5 DIFFIE-HELLMAN

The Diffie-Hellman key exchange algorithm is used to exchange the cryptographic keys
securely over a public network between two parties. It was the first public-key protocol
which was conceptualized by RALPH Merkle and it is an earliest practical example of
public key exchange in the field of cryptography. The Diffie-Hellman key exchange
algorithm allows two parties to establish a shared secret key which is used for encryption.

[24][25]

1. Alice and bob choose two prime numbers g and p which are not meant to keep
secret.
2. Alice and Bob chooses a secret number (a) and (b) respectively, but they don’t tell

anyone.

18

Now, Alice compute g* mod p and result will be called A.

Bob will compute g® mod p and result will be called B.

Alice and Bob exchange their results A and B with each other.

Now, Alice will take the number send by Bob and do the exact same operation
with it. So the operation will be Bmod p.

Bob will also do the same operation with the result send by Alice. Which will be
AP mod p.

The magic here is the answer Bob will get at the end will be the same answer

which Alice got.

Figure 12 shows the general illustration of the Diffie-Hellman key exchange algorithm.

[25]

Common paint

(shared in the clear)

Secret colours

Public transport
- (assume
that mixture separation
is expensive)

i

O'i
A

T4
|

|
A\

Secret colours

"

Common secret

B

Figure 12: Diffie-Hellman key exchange algorithm [25].

19

At the end, Alice and Bob have the same value which will be use as a secret key. Alice
and Bob get the same value because of the property of modulo exponents, which

is:[24][25]
(9® mod p) ® mod p = g® mod p
(g° mod p) @ mod p = g° mod p

Alice and Bob will get same answer no matter in which order they do the exponentiation.
Alice will do in one order and Bob will do in other order. They both will never know the
secret number they used to get the results but they arrive at the same result at the end.

[24][25]

In this thesis project we have used the Diffie-Hellman key exchange algorithm to share
the secret key between the mobile and desktop application. The Drawback of Diffie-
Hellman is the man-in-the-middle attack. The section 2.5.1 briefly describes Man-in-the-

middle attack.

2.5.1 MAN-IN-THE-MIDDLE ATTACK:
The vulnerability in the Diffie-Hellman key exchange is man-in-the-middle attack. The
following points explain how man-in-the-middle attack takes place in Diffie-Hellman key

exchange algorithm.

1. In the attack the attacker intercepts Alice’s public number and change it with new
number and sends to Bob.
2. When Bob will transmit his public value, the attacker substitutes it with new

number and sends it to Alice.

20

3. Attacker and Alice agree on the same shared secret key
4. Attacker and Bob also agree on the same shared secret key.

5. Attacker can decrypt any messages sent out by Bob or Alice.
The vulnerability is because of lack of authentication while exchange the numbers [26].

Figure 12 shows the illustration of man-in-the-middle attack

Alice

Attacker

Figure 13: MITM attack in DH [26].

21

CHAPTER 3 RELATED WORK

We are interested to answer our research questions stated in section 1.2. Our aim is to
prevent the two main password attacks which are keylogging and shoulder surfing. To
start our research work, we have studied some research papers which describes the
technique and approaches developed by other researchers to overcome the password

attacks.

This section includes the work done to prevent shoulder surfing and keylogging, some
limitations of these proposed approaches and how we have make our approach better by
overcoming these limitations. This section also discusses some work done on Diffie-

Hellman key exchange algorithm.

3.1 LITERATURE SURVEY ON KEYLOGGING AND SHOULDER
SURFING

There is a lot of work done by other researchers to prevent keylogging and shoulder surfing. Our

related work on these attacks describes the approach by other researchers.

3.1.1 KEYLOGGING

In section 2.1, we have discussed some ways through which keyloggers are stealing the
sensitive information. There are several ways of mitigating the keylogging described by
different researchers. Researcher Parekh et al [35] have described the concept of virtual
keyboard. Which is basically a software that is used to mitigate the password attack by
Trojans. Virtual keyboard is an on-screen keyboard which uses mouse to enter sensitive
data like credit card details or passwords. Virtual keyboards has a limitation as Trojans

are becoming advanced which takes the screenshots on the mouse click event. The

22

screenshots are then sent to hackers at later time. Moreover, virtual keyboards are also
susceptible to shoulder surfing as attackers can observe the monitor screen and mouse
clicks over the shoulder. The researchers have further described their proposed technique
related to the virtual keyboard, which is anti-screenshot virtual keyboard. Researcher
have proposed a keyboard on which, when mouse curser move to any key, all the keys in
that row of the keyboard are changed to some special symbol like a hash (#) or an
asterisk(*). Figure 14 shows that when the mouse cursor moves on an Anti-Screenshot

Virtual Keyboard the top row has changed the key values to asterisk(*) [35].

Figure 14: Virtual Keyboard [35].

When any particular key is pressed, all the keyboard keys will change to asterisk. As a
result, the Trojan capturing the screenshot on mouse click will no longer be useful for the

attacker. Figure 15 shows that all the keys are changed by asterisks [35]

23

AR ARRARnAE:
DoooBoBBOBnoG
aRRERnEr -
e L e e]

Figure 15: Virtual Keyboard changing all values [35].

=

—
5
s———

The keyboard proposed by researcher is divided into different sections as shown in figure
16. Each time the key is pressed or the page is loaded, the order of the keys is changes in
each section. As a result, Trojan cannot find the input key, even if Trojan have captured
any picture of the virtual keyboard. Figure 16 shows the areas of which the keys are

changed [35]

Figure 16: Virtual keyboard area division [35].

Assume that if user has 8-bit password which only consist of characters, then the Trojan

will need approximately two million attempts to find the password and if user wants to

24

enter bank information then bank account usually get block after three unsuccessful

attempts. Anti-screenshot virtual keyboard provides high level of security.

Tom Olzak [36] describes some of the defensive measures that can be taken to prevent

keyloggers, which includes:

1. Lock the computer when not in use

2. Implement the physical security controls

3. Block the access to malicious websites

4. Apply security patches

5. Use keylogger detection software

6. Use screen-based virtual keyboards rather than giving input through the physical
keyboard.

7. Use automatic form filler software

8. There are some software solutions like GuardedID, which encrypts the keyboard

input so that keyloggers cannot detect the input.

3.1.2 SHOULDER SURFING

There is a lot of work done for the prevention of shoulder surfing such as the
implementation of graphical passwords, two way authentication, and virtual keyboards.
Virtual keyboard provides the protection against the keyloggers but still vulnerable for
shoulder surfing. There are many recent attempts made to improve the virtual keyboards
by loading and changing the layout dynamically to confuse the attacker. There are many
graphical password techniques introduced to authenticate the user but still they are

vulnerable to the attacks such as screenshot capturing or observing CCTV camera.

25

Md.Haque et al [38] have also proposed an approach of graphical passwords. In their

proposed approach the graphical password replaces the text passwords.

There are two phases for proposed approach. First is registration phase and second is

login phase.

REGISTRATION PHASE:

1. User will create his/her profile by giving proper information including username.

2. The user will be presented with the 25 images from which user will select any
number of image, user can also select one image or choose an image more than
once. The selection of images will be considered as password. This graphical
password will work as a first step of authentication. Figure 17 shows the set of

images which are presented to user on the registration phase.

€. D>
9

D,

SN

Y
).
®f
o

Figure 17: Set of images [38]

il
frwg 5
v

8
<

€ &

26

3. After selecting the images, user will be asked to choose any one picture from that
for the further authentication process.

4. After that user will be presented with the set of different questions and for
answering each question user must point a region on the image. If there are three
questions, so user will point three regions on the image which will be called

region-of-answer (ROA). Figure 18 shows the selection of region on an image.

Figure 18: Selection region on an image [38].

LOGIN PHASE:

1. For logging into account, the system will ask the two-way authentication which user has
setup while registering.

2. Inthe first step, user will be asked for his/her username and graphical password which
was selected in the registration phase.

3. The order of the images provided to the user will be random each time user logs in.

4. After providing the correct images, the user will be provided with questions to

authenticate him/her second time.

27

5. Questions will also be random and to answer the question user have to choose the ROA
on the image.

6. If the authentication is successful, then user will be allowed to access the account.

There is a couple of limitations which we have considered for this approach which are as

follows:

1. The user has to remember a lot of images and regions to authenticate every time when
he/she tries to login. If the user has multiple accounts, then user needs to remember
the images and their ROA for each account to login. Our proposed approach gives the
better solution of this limitation as users don’t need to remember the any password to
authenticate themselves.

2. If the attacker is observing the user via CCTV while the user is selecting the images and
their ROA, then there is still a possibility of shoulder surfing attack. Our proposed
approach also gives the better solution as user don’t need to enter any password to

authenticate themselves.

Researcher Nand et al [63] have also considered these limitations and proposed an
approach named ‘PassBoard’ to tackle these limitation. PassBoard uses dynamic layout
that does not have any pattern therefore it is difficult for attacker to memorize or guess
next layout of the PassBoard. It is an extension in a google chrome browser which have a
randomized virtual keyboard containing keyboard keys in a square matrix format. There
are two separate matrices for alphanumeric and special characters. Alphanumeric is in
first block and special characters are in second block. Both have a same input method. To
select the desire character user will perform two button clicks. The first click (will be for

row click) can be any key in the same row of the desired character in the PassBoard. The

28

second click (will be for column click) can be any key in the same column of the desired
character in the PassBoard. This way user can input the whole password without pressing
any characters of his/her password. After the user is done, he/she can press the ‘Done’
button through which the password is copied into the clipboard and paste it in the
password field where it is required. This will also prevent the keyloggers to capture the
keystrokes and it would be difficult for an attacker to shoulder surf. Figure 19 shows the

working of PassBoard.

PassBoard PassBoard
ODEO0RE DOE0OR8
800600 B80QG00
0080080 0808080
MOS80 DOO (WE<][s][oN)
SO0800 OO0DBB0O
003800 000800
~ B { Caps
ODDEEDE DDEBEs
S00E8E 800888
8800 80880
008000 0D0EROD
S00ES0 BONEe80D
RN R-<R-0 BN RN Q-<Q-0 |
v Done v Done

Figure 19: Working of PassBoard. [63]

3.2 LITERATURE SURVEY ON DIFFIE-HELLMAN KEY EXCHANGE
ALGORITHM
In any type of network, the communication is very important part of it. It is important that

the data transfer from one node to another is always secure. Security is becoming very

29

important for the computer users and military. When the data is transferred between web
users and web servers or between mobile application and web server, it is necessary to
ensure the confidentiality, authenticity and integrity. The transfer of users’ credentials is
also very risky when it is transferred on an insecure channel. It is important to send it in
an encrypted form and communication between both the parties is always secure. Our
approach uses the Diffie-Hellman key exchange algorithm which shares the secret key in
a secure manner on an insecure channel. The shared secret key is important for both the
parties who may not have communicated with each other ever previously. With the help
of key, both the parties can encrypt their communication on an insecure channel. There
are many protocols which also uses the Diffie-Hellman to share the secret key such as
SSL, SSH and IPSec. [64] Michel Abdalla [65] have proposed a Diffie-Hellman based
encryption scheme which is also known as DHIES and DHAES and used in many draft
standards. DHIES is based on Diffie-Hellman which combines (a) symmetric encryption
method, (b) a message authentication code, and (c) a hash function. DHIES is chosen to

provide the security against cipher text attacks.

Furthermore, authors Chirstoph et al [30] uses some variations of Diffie-Hellman key
exchange algorithm to solve the secure key distribution problem in their system. Authors
further mentioned that they are using key authentication center (KAC) for authenticating
all public keys which was a major problem. In this approach, the facility only wants the
name of the partner that the user wants to communicate and a public key signed by KAC.
In our application, we have used Diffie-Hellman to do a security handshake between two
devices to develop a secure communication medium for exchange of credential. Diffie-

Hellman can further be extended for security purposes with cryptography as mentioned

30

by Victor Boyco et al [31] that they are designing a password protected key exchange
protocol using cryptographically secured keys which should be kept secret between the
users to avoid the attacker from launching offline dictionary attacks. Authors have also
discussed an extended protocol called PAK-X in which the user has the plaintext version
of the passwords and server just has the verifier of the password, so even when the server

is compromised, the information is still safe.

The Diffie-Hellman itself is not secure as discussed by Nan Li [32]. Author says that the
Diffie-Hellman protocol can be easily attacked by the man-in-the-middle attack and the
attacker may pretend to be the authentic person for fraud. The Diffie-Hellman is a non-
authenticated key exchange protocol and does not offers authentication for the
communicating users and hence it is vulnerable to the man-in-the-middle attack. An
attacker in the middle can generate two distinctive Diffie-Hellman key exchanges with
both Alice and Bob and pretend to be Alice against Bob and vice versa, which will allow
the attacker to decrypt the message, read it and then re-encrypt the message and pass it
along. As we are aware of this limitation of man-in-the-middle attack, we have used the
hashing technique to overcome this limitation. We have used hashing to hash our secret
key and then send it to the other party so that attacker in the middle cannot decrypt that

key.

Researcher Bao et al [34] further discusses various problems of the Diffie-Hellman with
computational and decisional means. Authors are trying to find the relationship between
the variation of the Diffie-Hellman problem, which also includes the computational and
decisional cases. By finding the relation between them they could obtain reduction that

are valuable and that advantage could be used against all other variation as well. Authors

31

quote three main variation in their words as “We show that all three variations of
computational Diffie-Hellman problem: square Diffie-Hellman problem, inverse Diffie-
Hellman problem and divisible Diffie-Hellman problem, are equivalent with optimal
reduction” [34]. The authors used polynomial reduction and transformation for relating
the complexities. They didn’t find any appropriate solution for these problems but they
left these interesting problems for future researchers. With all these problems in the
Diffie-Hellman key exchange protocol and the research done on them | found that using
just Diffie-Hellman would not be enough, so in my application, | have used hashing to
further secure Diffie-Hellman where the user has created a hash function and the server

match that has function with the one that user has for authentication purpose.

32

CHAPTER 4 METHODOLOGY

4.1 Brief Overview of Proposed Approach

In this section, we will discuss a brief overview of the proposed approach. The proposed
approach consists of two components the mobile application that runs on a smartphone,
and the desktop application that runs on the client machine. The mobile application stores
all the credentials (username and password) related to a particular URL and transfers it to

the desktop application.

Request credentials

JesKiop Vohile
Send credentials

Figure 20: Overview of the proposed approach.

We have divided our proposed approach into four major phases as follows, all these

phases are discussed in detail in section 4.2.

1- Creating connections between two devices
2- Diffie-Hellman key exchange

3- Verify Secret Key

33

4- Encrypt and Decrypt data.

4.2. Detailed Description of proposed approach
In this section, we will discuss the proposed approach phase by phase in detail. Various
tasks are performed by the desktop and the mobile application. Figure 20 and 21 gives an

overview of the tasks performed by each application.

Scan QR code

Get URL port #

Random string
from QR code

Initiate connection

' |
Bluetooth
= D

Diffie Hellman
key exchange

Verify key using
hashing

Encrypt Key Discard
credentials and verified connection
send to server

Figure 21: Overview of the mobile application.

34

The mobile application performs various tasks including the QR code scanning, initiating
a connection, computing secret key using the Diffie-Hellman key exchange algorithm,

verifying the secret key, and encryption using the cryptographic algorithm.

User access a website from
Web Browser

Required
credential

Accept connection

Scan OR code using
Maobile app

Diffie Hellman key exchange

Receive Encrypted credentials

Decrypt credential & logged in

User

Figure 22: Overview of the desktop application.

35

The desktop and the mobile application works together to get the desired outcome. To
better understand the approach we will consider an example of a user that wants to login
to a website such as (facebook.com, gmail.com, etc.) the traditional method is to type the
username and password using a keyboard, and the user is easily logged into that website.
However, it can lead to some attacks such as shoulder surfing and keylogging. If any
keylogger is installed on the system, the credentials can be easily compromised. Our
approach proposed that instead of typing the credentials using a keyboard the user can
transfer the credentials from the smartphone using our mobile application. The user can
save all the credentials in the mobile application that he wants to access in public places.
The following table structure shows a snapshot of how the data can be stored in the

mobile application.

Credential
Id integer
username string
password string

url string

Figure 23: Database table structure

The mobile application provides the feature to insert, view and update credentials, so a

user can perform these tasks using the mobile application.

When a user wants to login to a website using our desktop application, he/she has to scan
the QR code through our mobile application. The QR code will be displayed on the

desktop application as the user selects a medium (NFC, Bluetooth, or Wi-Fi). The

36

following figure shows the screen shot of the desktop application and how the QR code

will be displayed.

=
>~
e 9 L’J 1 - Select any medium to display QR code.
Email or Phone Password
facebook I
Recent Logins | New Account
Click your picture or add an account. [. ays will be.
Q o NERE
° 2 - Dispfay'GR%ode to be
o or¥papned
John Add Account

Why do | need to provide my
1999ﬂ birthday?

U Female ' Male

By clicking Create Account, you agree to our Terms and that you
have read our Data Policy, including our Cookie Use. You may
receive SMS Notifications from Facebook and can opt out at any vl

Figure 24: Screenshot of the desktop application

Once the QR code is scanned, the mobile application will extract the information from
the QR code, get the credentials from the database, encrypts it and transfer it to the
desktop application using the selected medium. The desktop application will decrypt the
credentials and automatically login user to the website. During this process, there are
some significant tasks that are performed in the background which is discussed in detail

in the following subsections.

4.2.1 CREATING CONNECTIONS BETWEEN TWO DEVICES
There are three mediums (Wi-Fi, Bluetooth, and NFC) through which both the devices
(the client machine on which the desktop application is installed and the smartphone on

which the mobile application is installed) can connect. If the user selects the Wi-Fi

37

medium on both ends, the desktop application will generate and display a QR code. The
QR code contains the IP address of the client machine which is captured on runtime, the
port number on which the client machine is listening for any incoming connection and a
randomly generated string. The value of this string is different and random each time
when the user selects a medium. To make a connection over Wi-Fi the IP-address and

port number are the essential components.

When the mobile application scans the QR code it extracts the encoded information and
gets the IP-Address of the client machine, the port number on which the client machine is
ready to accept the connection and a random string (the use of this randomly generated
string is discussed in detail in section 4.2.3). Using the extracted IP-address and the port
number the mobile application initiates a connection and wait for the client machine to
accept the connection. Once the connection is established between both devices the
applications move to the next phase. The following diagram shows the tasks performed

by both the applications when the user selects the Wi-Fi medium.

38

Desktop Application Mobile Application

T 5= 2500 A User select Wi-Fi

Get IP address port

number and random Open camera to scan
gtring QR code

Encode IP address,
port number and

S Scan QR code
random string in QR

code

- . Extract IP address .
Display QR code port number and

random string

Listen for incoming
SR B Initiate connection

Figure 25: Initiating connection through Wi-Fi

Instead of the Wi-Fi connection, if the user selects the Bluetooth connection on both

ends. The desktop application will display a list of all the devices that are discoverable
via Bluetooth and are in range. From the list of devices the user needs to selects the
device that has the mobile application installed on it. If the device is not previously paired

with the desktop application it will initiate the pairing process. The pairing is not needed

39

if both the application is already paired. After that the desktop application will display the
QR Code that only contains the random string as for the Bluetooth connection the device
do not need IP-address or port number. The mobile application will then scan the QR
Code and continue to the next phase of the proposed approach. The following diagram
shows the tasks performed by both the applications when the user selects the Bluetooth

medium.
Desktop Application

User select Bluetooth

Display list of all
Bluetooth devices in Mobhile Application

range

User select Bluetooth

Select the
appropriate

Bluetooth devices

Cpen camera to scan
QR code

Initiate pairing

Scan QR code
Get random string

Encode random
string into QR code

Accept Connection

and display QR code

Figure 26: Initiating connection through Bluetooth

40

The NFC approach is slightly different from the W-Fi and the Bluetooth approach. The
smartphone on which the application is installed should be NFC enabled. For the desktop
application to receive data via NFC either an NFC reader should be attached to the
machine or the machine should be NFC enabled. The NFC reader reads the NFC data and
transfers it to the USB port. We have used an NFC enabled device (phone or tablet) and
developed an application that reads the NFC data and passes it through the USB port; this

will act as a NFC reader.

If NFC is selected on both the applications, the user has to bring the smartphone and the
NFC reader closer to send data via NFC. After that, the desktop application will wait
until it receives the NFC message that contains some information. It will then display a
QR code that needs to be scanned by the mobile application which contains some Diffie-
Hellman key exchange parameters, random string, and the initialization vector. We will
discuss all these parameters in detail in the following subsections. When the mobile
application scans the QR code it extracts the information and proceed to the next phase.
The following diagram shows the tasks performed by both the applications when the user

selects the NFC medium.

Our proposed approach is designed in such a way that user needs to select a medium (Wi-
Fi, Bluetooth or NFC) in order to transfer the credentials. The approach can be extended
to make a default connection type so that user do not have to select a medium each time
when the user needs to login to a web account. The advantage of implementing the
default connection type is user do not have to perform any additional action on the
desktop application. The desktop application will automatically show the QR code

41

whenever there is a web page that requires credentials. The mobile application will then
scan the QR code to proceed to next phases. There will not be a significant change in the
mobile application as the user needs to perform an action to open the camera for scanning
the QR code. The default connection type will always show a QR code on each page
containing some login fields; and if the user wants to manually login to the web account
it will be annoying for the user. The type of the connection can also be encode in the QR
code due to which the user will not have to manually select the medium from the mobile

application.

Eavesdropping, data modification and interception are some type of the attacks that can
be performed on all of the three mediums. Although to transfer the NFC data the devices
need to be close to each other, but the attacker can use some equipment such as antenna
to perform these types of attacks. Furthermore, Bluejacking, Bluesnarfing and
Bluebugging are some Bluetooth attacks that can be done on the Bluetooth devices.
Considering all these types of attacks we need to transfer the credentials in a secure way.
We have used AES-128 encryption to encrypt the credentials before sending it out on any

medium. The encryption process is discuss in section 4.2.4.

42

Mobhile Application

User select NFC

Generate NDEF
message that
contains differ-
Hellman parameters

Desktop Application ERE

Send MDEF message

via NFC reader

Listen to the USB
port for any

Cpen camera to scan

inCcoming message QR code

Generate Diffie-
Hellman parameters Scan QR code
encode it in QR code

and display

Figure 27: Initiating connection through NFC

4.2.2 DIFFIE-HELLMAN KEY EXCHANGE

After the connection is made between the two devices, both the applications need a secret
key to encrypt and decrypt credentials. The secret key is generated using Diffie-Hellman

key exchange algorithm. The mobile application generates two random prime number ‘p’

and ‘g’, generates a random secret integer and computes TA. Except for the secret

43

integer, all these values are transmitted to the desktop application using the selected
medium. The desktop application acknowledges for each value received. The desktop
application then generates a random secret integer and compute the TA using the
received ‘p’ and ‘g’. The desktop application then sends the computed TA to the mobile
application. Both the applications have ‘p’, ‘g’ and TAsS, the secret integer is not
transmitted and kept secret from others. Both the devices have all the parameters to

compute the secret key that will be used to encrypt and decrypt data.

4.2.3 Verify Secret Key

Once the secret key is generated it needs to be verified as there is a chance of MITM
attack. The Diffie-Hellman key exchange algorithm and how the secret key can be
compromised through MITM attack is discussed in detail in section 2.3. To verify that the
secret key is not compromised through MITM attack both the devices must have same

secret key.

The one-way hash function and the random string that was generated in section 4.2.1 is
used to verify the secret key. Both the application uses the randomly generated string and
the one-way hash function (SHA-256) to compute a message digest. The desktop
application sends the message digest to the mobile application. The mobile application
verifies whether the received message digest is equal to the message digest generated by
the mobile application. If both the message digest are equal, that means both the devices
have the same secret key, and the key is not compromised via MITM attack. The
following diagram shows the overview of the Diffie-Hellman and the key verification

process.

44

Mobile Desktop

Appiil:atian Application
Generate P & O

Send P

Acknowledee

Send G

Acknowledee

Compute & Send TA

Acknowledee

Compute & Send TA

Acknowledge

Send hash message

Acknowledge

If key verified transfer data

Figure 28: The Diffie-Hellman timing diagram.

4.2.4 ENCRYPT AND DECRYPT DATA

Now using the secret key both the applications can encrypt and decrypt data. The
proposed approach uses symmetric key AES-128 encryption algorithm. The algorithm
needs a secret key and an initialization vector to perform the cryptographic operations.
The initialization vector is generated by the desktop application and transferred it to the
mobile application. The mobile application uses the same initialization vector to perform
encryption and decryption. The following figure shows the overall encryption and

decryption phase.

45

Web Application Mobile Application

Generate IV of RS
128 bit SRE

l

Send IV to Get credentials
Mobile App from Database

Receive

Encrypted AES Encrypt

Credentials

AES Decrypt Encrypted

|

Login user to
the web

Credentials

Send to server

Figure 29: Encryption and decryption process.

Once the mobile application receives the initialization vector, it queries the database and
gets the desired credentials. The mobile application then encrypts the credentials using
the initialization vector and the secret key and sends it to the desktop application. Upon
receiving the encrypted credentials, the desktop application decrypts the credentials and

automatically login user on that website.

The overall proposed approach is useful when the user needs to login to any web account
using the desktop system. Although most of the users use smartphone for performing
their daily computational task such as for banking related activities, using social media or
checking or replying to emails; but there are some cases where the user have no option

other than to use desktop systems. If the user wants to access some legacy system or

46

wants to login to a remote location the user is bound to use desktop system as smart
phones are not capable enough to perform such tasks. Also, organizational accounts are
easy and convenient to use in a desktop system rather than on a smartphone such as

accessing a printer or project management tools.

47

CHAPTER 5 IMPLEMENTATION

5.1 DEVELOPMENT ENVIRONMENT

The proposed approach consists of two applications the desktop application and the
mobile application. The desktop application was developed using C# on a Windows 8.1
operating system. The following table shows the development environment used for

developing the Desktop application.

Operating System Windows 8.1

IDE Microsoft visual studio 2017

Programming language C#

Processor Intel® core™ i5-5200U CPU @
2.20GHz

Installed Memory (RAM) 4.00 GB

Table 1: Development environment for the Desktop Application.

The Android mobile application was also developed on the same machine using the IDE
android studio 2.3.3. The programing language JAVA was used for developing the
Android application. Table 3 and 4 shows the development and testing environment for

the mobile app.

Operating System Windows 8.1

48

IDE Android Studio 2.3.3

Programming language Java1.8.0 112

Minimum Android Support Version | 4.0.3 (IceCreamSandwich)

Processor Intel® core™ i5-5200U CPU @
2.20GHz
Installed Memory (RAM) 4.00 GB

Table 2: Development environment for the Mobile Application.

Device Samsung Galaxy S4

Android 4.3

Table 3: Mobile Device Used for testing.

5.1.1 PROGRAM ARCHITECTURE

To implement the proposed approach, we have used the peer-to-peer architecture. We
have developed two applications a mobile app and a Desktop app. These two applications
can communicate peer-to-peer with each other using WIFI, Bluetooth or NFC. The

confidential data is sent in an encrypted form and is decrypted on the other hand.

5.1.2 JAVA ENVIRONMENT AND LIBRARIES USED

Java is an object-oriented computer programming language which is designed to have
minimum implementation dependencies. Java gains popularity due to its WORA (write
once run anywhere) feature which means that once the java code is compiled it lets the
application to run on any machine without recompiling. Java was initially developed at

Sun Microsystems by James Gosling, but it is now acquired by Oracle. As our approach

49

consists of a mobile application, we have developed the application for Android, which is

an open source mobile operating system and Java is used as the fundamental component

for developing Android applications [49]. There are many libraries and packages

available which are responsible for performing various tasks. We have used some of the

packages in our application which are discussed below.

java.security: The package java.security contains many classes that provide
various cryptographic operations. In our proposed approach we have used this

package for generating message digest using SHA-256 [44].

java.crypto: The package java.Crypto contain classes that are responsible for

the cryptographic operations such as encryption, generating keys, and generating
Message Authentication Code (MAC) [46]. We have used this package to secure
the communication between the desktop and the mobile app. We have used AES-

128 encryption to encrypt and decrypt user credentials.

java.net.Socket: This java.net package provides classes for implementing
network related tasks. The package provides the high and low-level API to deal
with sockets, addresses, interfaces, connections, URLs, and URIs [47]. We have
used Socket class of the java.net package for endpoint communication between

the desktop and the mobile app.

50

Iv. android.nfc: The android.nfc was added in API level 9 which is responsible for
providing access to the NFC for reading and writing NDEF messages. The
NfcManager class of the android.nfc API represents the high-level manager to get
the device NFC adapter. The NfcAdapter class represents the NFC adapter of the
device which is responsible for performing NFC operations. We can get an
instance of the NFC adapter by ‘getDefaultAdapter()’ method and can use the

NdefMessage message class to encapsulate data in NDEF format.[]

V. android.bluetooth: The android.bluetooth APl was added in API level 5 which
provides functionality including Bluetooth device scanning, making a connection

between devices and transferring data between connected devices.

vi. Zxing: Zxing is an open source library for Java to scan barcodes/QR codes [50].
We have used this library in our approach to scan QRCode that is displayed on

the Desktop application and extract the information from it.

Other packages used for the development of the Android application are java.io used for
input and output operations on particular sockets, java.math used for performing
mathematical operations including exponents, power and modulus, and java.util used for

collections objects including mutable array lists.

51

5.1.3 C# ENVIRONMENT AND LIBRARIES USED

C# is a general purpose object-oriented programming language developed by Microsoft

[51]. C# can be used to develop a wide variety of applications including Windows Form

applications, client-server applications, and database applications. [52]. We have used

C# to develop the desktop app and used the following libraries to implement various

tasks.

System.Net.Sockets: The socket API provides classes to implement network
related tasks. The API is used to create sockets, accept incoming connections,
send and receive data over the network. We have used Socket API in our desktop

app to perform socket creation and data related task over local WIFI network.

32Feet.Net: The 32Feet is shared source project to make Bluetooth and
Infrared technologies easily accessible with the C# code [53]. We have used this
project in our desktop app to discover and pair with the Bluetooth devices and to

transfer and receive data from the connected Bluetooth device

System.Security.Cryptography: The security library provides services
related to cryptography such as secure encryption and decryption of data, random
number generation, hashing, and message authentication [54]. We have used this
library in our desktop app for AES encryption and decryption and to generating

message digest using SHA-256.

52

iv. System.Threading.Tasks: The threading library provides classes to perform
concurrent and asynchronous tasks [55]. We have used this library in our

approach to listen for any incoming connection asynchronously.

v. QRCoder: The QRCoder is responsible for generating QR Codes. The library is
written in C# which has no other dependencies [56]. We have used this library to
encode useful information such as IP-address and port number into a QR Code,

which will be scanned by the mobile application to retrieve such information.

Other libraries used for the development of the desktop app are System.Numerics used to
perform mathematical operation including exponents, modulus and power, and

System.Drawing used for displaying QR Codes.

5.2 IMPLEMENTATION DETAILS OF THE PROPOSED APPROACH
This section describes the implementation details of the proposed approach. The step by
step process between the mobile and the desktop app is discussed in detail in chapter 4. In
this section, we will discuss the implementation details of each step. Following are the

details of the major classes and their functionality of the desktop application.

I. MainForm.cs: This class plays a vital role in the desktop application as it
contains the fundamental logic of the entire application. This class is responsible
for all the primary operation including the main Ul design. All the callbacks such
as button clicks, RunWorkerCompletedEventHandler were implemented in this

class. This class is also responsible for the WIFI, Bluetooth, and NFC socket

53

connections.

ii. AESEncryption.cs: As the name suggests, this class is responsible for the
encryption and decryption of the data using the AES algorithm. The
‘EncryptStringToBytes Aes’ method takes data, secret key, and the initialization
vector as input parameters and returns the encrypted bytes. Similarly, the
‘DecryptStringFromBytes Aes’ method takes the ciphertext along with the secret

key and initialization vector as input parameters and returns the decrypted text.

iii. DiffieHellman.cs: This class is generating and computing all the values that are
used in Diffie-Hellman key exchange. For example generating secret integer,
computing ‘TA’ based on the value of ‘p’ and ‘g’ and deriving secret key based

on the value of ‘TA1’ (sent by the mobile device), ‘P’ and ‘g’.

Unlike the desktop application which is a single page application, the mobile application
consists of multiple pages called Activity. Each functionality such as WIFI
communication, Bluetooth communication, NFC communication, insert and view
credentials are implemented in separate activities. Each activity is tightly integrated with
the java and an XML file. The java file contains the core logic of the class whereas the
XML file only deals with the Ul related task. Some of the important classes and their

details are explained below.

I. NfcActivity.java: This class contains the basic logic for sending data via NFC.

The basic functionality of this class is to create and push NDEF message via

54

NFC. This class also implements the ‘onNdefPushComplete’ call back which is

triggered when the NDEF message is successfully sent.

ii. BluetoothActivity.java: The class contains basic logic for the Bluetooth
feature. It is responsible for requesting Bluetooth permission, listening for any
incoming Bluetooth connections, and sending and receiving data over the

Bluetooth channel.

iii. WifiActivity.java: Similar to the Nfc and Bluetooth activity class, this class also

contains the basic logic for communication but over a wifi medium.

iv. DiffieHellman.java: This class gives similar functionality as of

DiffieHellman.cs except for it is written in Java for the mobile application.

V. AESEncryption.java: This class is identical to the AESEncryption.cs class
except for it contribute to the mobile application rather than the desktop

application.

All these classes work closely with each other to give the desired functionality. We will
discuss the major operations that are performed in the proposed approach and how they

are implemented in the respective mobile and desktop application.

55

5.2.1 RANDOM STRING GENERATION:

The desktop application generates a 128-bit random string which is encoded in the form
of QR Code along with some other information (such as IP address and port number).
The QR Code is then displayed on the screen to be decoded by the mobile application. A
different random string is generated each time when the user selects a medium, or a
Diffie-Hellman key exchange is done. The following code snippet is used to generate the

random string.

Random random = new Random() ;

return randomString = new string (Enumerable.Repeat (chars,
stringLength)

.Select (s => s[random.Next (s.Length)]) .ToArray());

5.2.2 QRCODE GENERATION:

The QRCoder library is used to generate the QR Codes from the given data. The QR code
contains the IP-address, port number, the URL for which we need the credentials and the
random string generated above. All these values are concatenated using a predefined
string which will be parsed on the mobile end. The QRCode class takes the data as input
and returns the QR Code in the Bitmap format which is then displayed in the picture box.

The following code snippet shows the generation of QR code.

QRCodeGenerator grGenerator = new QRCodeGenerator();
QRCodeData grCodeData =

grGenerator.CreateQrCode (GetLocalIPAddress () + "$$" +
PORTNUMBER.ToString () + "S" + textBoxl.Text + "S$$" +

diffieHellman.getRandomString (), QRCodeGenerator.ECCLevel.Q);

56

QRCode grCode = new QRCode (grCodeData) ;

Bitmap grCodeImage = grCode.GetGraphic (pixels);

5.2.3 SOCKET CONNECTIONS:
Sockets are used for communication between the two applications. Data is transferred
and received using the input and output stream. Following code is used to listen to any

incoming connection on the desktop application.

TcpListener serverSocket = new TcplListener (PORTNUMBER) ;
TcpClient clientSocket = default (TcpClient);
serverSocket.Start () ;

clientSocket = serverSocket.AcceptTcpClient ()

On the other hand, the mobile application initiates the connection using the following

code snippet.

Socket socket = new Socket (ipAddtess, port);

Once the connection is successfully established between the two applications, the data is
sent and read using the BufferedReader and DataOutputStream class. The object of the
BufferedReader class is created by passing the input stream of the socket to the
constructor, and the method readLine is used to read any incoming data. The following

code snippet shows how the data is read and write on the mobile end.

BufferedReader bufferedReader = new BufferedReader (new

InputStreamReader (socket.getInputStream())) ;

57

dataReceived = bufferedReader.readLine () ;

The data is written to the socket using the DataOutputStream class, the constructor takes
output stream of the socket as the input parameter to create the instance, and the

writeBytes method is used to write any data to the socket.

DataOutputStream dOut = new
DataOutputStream(socket.getOutputStream()) ;
dOut.writeBytes (data) ;

dout.flush () ;
On the desktop app, ‘NetworkStream’ class is used to read and write data over the

sockets. Following code snippet shows how the data is read and write on the desktop app.

NetworkStream stream = socket.GetStream():;
byte[] myReadBuffer = new byte[bytelLenght];

stream.Read (myReadBuffer, 0, byteLenght);

stream.Write (sendBytes, 0, sendBytes.Length);

stream.Flush () ;

5.2.4 GENERATING 'p’ ‘g’ AND 'TA":

For the Diffie-Hellman key exchange, both the desktop and mobile app should agree
upon a common value of p and g. The mobile app generates a 1024 bit random prime
number for the value of ‘p’ and ‘g’ along with a 256-bit secret integer to compute the

value of ‘TA’. Following code snippet shows how these values are generated.

58

Random rand = new Random() ;

P new BigInteger (bitLength, certinity, rand);

g = new BigInteger (bitLength, certinity, rand);

TA = g.modPow (secretInteger,p);

Once these values are generated, it is transferred to the desktop application. The desktop
application then computes the TA and the secret key through which it can encrypt and
decrypt data. The code snippet shows how the values of TA and the secret key is

computed on the desktop application.

TA = BigInteger.ModPow (g, getSecretNumber (), p):;

secretKey = BigInteger.ModPow (mobileTA, getSecretNumber (), p):;

5.2.5 GENERATING RANDOM SECRET INTEGER:
The desktop and the mobile app generates a random integer which is kept secret. These
random integers are used to compute the values of TA and the secret key. On the desktop

app, the random integer is generated using the following code snippet.

byte[] buffer = new bytel[Length];
Random rand = new Random() ;
rand.NextBytes (buffer) ;

secretNumber = new BigInteger (buffer);

The mobile app uses the following code snippet to generate the random integer.

Random rand = new Random() ;
secretInteger = new BigInteger (bitLength, rand);

59

5.2.6 EXCHANGE P’ ‘G’ AND 'TA":

The value of ‘p” and ‘g’ is generated on the mobile side, and these values along with the
“TA’ is transferred to the desktop app. The desktop app acknowledges for each value
received. The following code snippet shows how the values of ‘p’, ‘g’ and ‘TA’ is sent

from the mobile application.

dataOutStream.writeBytes (getG() .toString());
dataOutStream.flush () ;

String acknowledgment = bufferedReader.readLine () ;

dataOutStream.writeBytes (getP () .toString())
dataOutStream.flush () ;

acknowledgment = bufferedReader.readLine () ;

dataOutStream.writeBytes (getTA () .toString()) ;
dataOutStream.flush();

acknowledgment = bufferedReader.readLine () ;

We have used the following code snippet to read these values, send the acknowledgments

and to send the computed ‘TA’ to the mobile app.

String message = readNetworkStream (networkStream, bufferSize);
BigInteger.TryParse (message, out diffieHellman.q);

writeNetworkStream (networkStream, ack);

60

message = readNetworkStream (networkStream, bufferSize);
BigInteger.TryParse (message, out diffieHellman.p):;

writeNetworkStream (networkStream, ack);

message = readNetworkStream(networkStream, bufferSize);
BigInteger.TryParse (message, out diffieHellman.mobileTA);
writeNetworkStream (networkStream,

diffieHellman.getTA () .ToString()) ;

5.2.7 VERIFY SECRET KEY USING HASHING:

Both the applications have computed the secret key using the power, modulus and
exponential operations. However, there is a chance that the secret key is compromised
and is different on each end due to the MITM attack, so the key needs to be verified. On
the mobile end, java.security package provides MessageDigest class for hashing. The
‘getInstance()’ method of the MessageDigest class is used to get the specific instance
(such as SHA-256, MD5, etc.). The following code snippet shows an instance of the

SHA-256 message digest.

MessageDigest digest = MessageDigest.getInstance ("SHA-256");

The desktop app uses ‘SHA256Managed’ class to generate the digest. Following code
snippet is used to create an instance of the ‘SHA256Managed’ class and generate the

digest of the random string that was generated in section 5.2.1 and the secret key.

SHA256Managed hashstring = new SHA256Managed () ;

byte[] hash = hashstring.ComputeHash (bytes) ;

61

The mobile app generates a new digest using the random string that was scanned and
decoded from the QR Code and the secret key. It then matches the new digest with the
digest received from the desktop app. If the two digests are same, then both the
applications have same keys. We have used the following code snippet to generate and

compare message digest.

MessageDigest digest = MessageDigest.getInstance ("SHA-256");
byte[] hash = digest.digest (str.getBytes());
String newHash = String.format (flag, new

java.math.BigInteger (hash));

if (serverHash.equal (newHash))
verifiedKEY = true;
else

verifiedKEY = false;

5.2.8 ENCRYPT AND DECRYPT DATA:

Once the secret key is generated and verified, the mobile application gets the user
credentials against the URL. The credential is then encrypted using the AES encryption
algorithm and send to the desktop application. The AES encryption algorithm needs
initialization vector to perform the encryption and decryption operations. The
initialization vector is generated by the desktop application using the following code and

sent it to the mobile application.
using (AesManaged myAes = new AesManaged())

62

return myAes.IV;

The mobile application uses the initialization vector to encrypt credential and sent it to

the desktop application.

Cipher AesCipher = Cipher.getInstance("AES");
SecretKeySpec skeySpec = new SecretKeySpec (secKey.getBytes ("UTF-

8"), "AES"),.

IvParameterSpec ivParameterSpec = new
IvParameterSpec(initializationVector);
AesCipher.init (Cipher.ENCRYPT MODE, skeySpec, ivParameterSpec);

encryptedBytes = AesCipher.doFinal (plainText.getBytes()):;

The desktop application then decrypts the credential and automatically logged in user.

The code snippet used for decrypting the credentials on the desktop app is as follows.

using (AesManaged aesAlg = new AesManaged())
{

aesAlg.Key = Key;

aesAlg.IV = IV;

ICryptoTransform decryptor =

aesAlg.CreateDecryptor (aesAlg.Key, aesAlg.IV);

63

using (MemoryStream msDecrypt = new
MemoryStream (encryptedBytes))
{
using (CryptoStream csDecrypt = new
CryptoStream (msDecrypt, decryptor,

CryptoStreamMode.Read))

{
using (StreamReader srDecrypt = new

StreamReader (csDecrypt))

{

plaintext = srDecrypt.ReadToEnd() ;

5.2.8 DATABASE ACCESS AND QUERIES

The mobile application uses a database to store user credentials. The ‘DatabaseHandler’
class is created to perform the database related tasks including insert, get and delete
operations. The ‘getCredential’ method of the DatabaseHandler class takes the URL as

input and returns the credential. Following code snippet is used to get credentials.

DatabaseHandler databaseHandler = new DatabaseHandler (this);

Credential credential = databaseHandler.getCredential (url);

64

5.2.9 PERMISSIONS REQUIRED FOR ANDROID APPLICATION:

As our mobile application accesses some of the hardware such as NFC, Bluetooth,
camera, and Wifi. The application needs user permission to access all these hardware
from the application. Each Android application contains a manifest file that defines all
the permissions needed for that application. The following code is used to define

permissions for our mobile application.

<uses-permission android:name = "android.permission.INTERNET" />
<uses-permission android:name =
"android.permission.ACCESS NETWORK STATE" />

<uses-permission android:name =
"android.permission.ACCESS WIFI STATE" />

<uses-permission android:name = "android.permission.BLUETOOTH"/>
<uses-permission android:name =

"android.permission.BLUETOOTH ADMIN"/>

<uses-permission android:name = "android.permission.CAMERA"/>
<uses-permission android:name = "android.permission.NFC" />
<uses-feature android:name = "android.hardware.nfc"

android:required="true" />

Other than permission we also have to define an action when we received an NDEF

message in our manifest file.

<activity android:name=".NfcActivity">

<intent-filter>

65

<action android:name =
"android.nfc.action.NDEF DISCOVERED" />
<category android:name =
"android.intent.category.DEFAULT" />
<data android:mimeType = "text/plain" />
</intent-filter>

</activity>

66

CHAPTER 6 EXPERIMENTAL RESULTS AND
ANALYSIS

In this chapter, we have discussed the experimental environment along with the results.
The main objective of the proposed approach is to prevent keylogging and shoulder
surfing. We have proposed an approach through which we can prevent these type of
attacks. As the proposed approach consists of the mobile and desktop application the data
transferred between these two applications should be in encrypted form. The following
sections of this chapter discusses the experimental scenario and results. In section 6.1 we
have discussed the experimental setup, the device and environment used to test the
proposed approach. Later in section 6.2, we have discussed the evaluation of the

approach by performing traffic analysis using Wireshark.

6.1 EXPERIMENTAL SETUP
To test the proposed approach the desktop application was installed on a Windows based

computer with the following specifications.

e Operating System: Windows OS 8.1

e RAM: 4GB

e Hard Disk Storage Capacity: 500GB

e Processor: Intel® Core™ i5-5200U CPU @ 2.20GHz 2.20GHz
e System Type: 64-bit Operating System, x64-based processor.

e Visual Studio 2017

67

The mobile application was installed on the android based smart phone which has the

following specifications.

e Device Model: Samsung Galaxy S4

e Android Version: Android 5.0.1 (Lollypop)
e RAM: 2GB

e Processor: ARMv7 Quad-core 1.9 GHz

e Internal Storage: 16GB

6.2 EVALUATION OF THE PROPOSED APPROACH
To test the proposed approach we have used Wireshark and UBlyzer to capture and

analyze network traffic. We have divided the evaluation phase in three major category.

1. Testing over the Wi-Fi medium.
2. Testing over the Bluetooth medium.

3. Testing over the NFC medium.

6.2.1 Testing over the Wi-Fi medium.

We have used Wireshark Version 2.0.3 to capture network packets over the Wi-Fi
medium. We have created testing accounts for website such as Facebook, Gmail and
Amazon to analyze the proposed approach. The password for these websites are stored in
the mobile application so that we can automatically login to the website through the
desktop application. When the user selects the Wi-Fi medium on both the applications
and scanned the QR code, the mobile application initiate a TCP connection as shown in

the following figure.

68

1 0. rLOdLe

LOLELLUI 225 LLi D5

DIUGULESL

L WU Md> L9£.100.9. 107 I1€LL 1¥£.100.9.10

42 6.912081 Te80::9e34:26ff:feb.. feB80::349¢:8f5a:195.. ICMPvE 86 Neighbor Solicitation for feB8@::349e:8f5a:195f:da8d from 9c:34:26:bB:4e:67
43 6.912229 fe8@::349e:8f5a:195.. Ted@::9e34:267f:feb.. ICMPVE 86 Neighbor Advertisement fe3@::349e:8f5a:195f:da8d (sol, ovr) is at e4:f8:9¢
44 7.867819 fe80::9e34:26ff:feb.. ::349e:815a:195f:da.. ICMPvE 86 Neighbor Solicitation for ::349e:8f5a:195f:daB8d from 9c:34:26:b@:4e:67
45 7.867900 ::349e:8f5a:195f:da.. Ted@::9e34:267f:feb.. ICMPVE 86 Neighbor Advertisement ::349e:8f5a:195f:dadd (sol, ovr) is at e4:f8:9c:35:
46 7.109810 Te80::9e34:26ff:feb.. ff82::1:ff5f:dasd ICMPwE 86 Neighbor Solicitation for ::349e:8f5a:195f:daBd from 9c:34:26:b8:4e:67
47 7.109112 ::349e:875a:195f :da.. fes8e::9e34:267f:feb.. ICMPVE 36 Neighbor Advertisement ::349e:8f5a:195f:dadd (sol, ovr) is at e4:f3:9c:35:

192.168.8.16
T82.108.0.10

58 7.238966 192.168.0.13

T52.168.0.15

66 57929 + 5881 [ACK] Seq=1 Ack=1 Win=87688 Len=8 TSval=96139 TSecr=181812614

BT 7. 501005

Frame 48: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface @

Ethernet II, Src: SamsungE_ae:45:d3 (f@:25:b7:ae:45:d3), Dst: IntelCor 35:1c:54 (ed4:f8:9c:35:1c:54)
Internet Protocol Version 4, Src: 192.168.8.13, Dst: 192.168.0.16

Transmission Control Protocol, Src Port: 57929 (57929), Dst Port: 5881 (58@1), Seq: @, Len: @

b7 ae 45 d3 @38 @@ 45 0@
51 7 c@ a8 @@ ed c@ as
18 de @0 @0 00 @2 ad 82
85 b4 B4 B2 83 Ba @8 @1
a3 e7 Werouwan ou

68 e4 8 9c 35 1lc 54 f@ 25
1 @@ 3c 67 57 40 @0 48 @6
@8 18 e2 49 13 89 22 66
338 ff ff 25 f1 @0 66 02 04
348 77 B9 0D B0 @0 8@ @l 83

Figure 30: Initiating Wi-Fi connection between Desktop and Mobile App.

The above figure shows the packets captured through Wireshark when both the
applications are establishing a TCP connection. The desktop application has the IP
address 192.168.0.16 and the mobile application has the IP address 192.168.0.13. The
mobile application initiate the connection and once the desktop application accepts the
connection both the applications exchange the Diffie-Hellman parameters. The following
figures show the value of ‘P’, ‘G” and ‘TA’ transferred from Mobile application to
desktop application. Note that these values are sent in plain text and not in encrypted

form as they do not need to be kept secret.

69

58 7.238966 192.168.8.13 192.1@.0.16 TCP 66 57929 =+ 5881 [ACK Seg=1 Ack=1 Win=87688 Lei
51 7.3@1995 192.168.8.13 192.168.6.16 TCP 185 57929 - 5881 [PSH, ACK] Seq=1 Ack=1 Win=876:
- B w16 N T TP = [P, eq=1 Ack= 1n=56"
53 7.311749 192.168.8.13 192.168.6.16 TCP 66 57929 » 5881 [ACK] Seq=48 Ack=13 Win=87688 |
54 7.319851 192.168.8.13 192.168.8.16 TCP 1@5 57929 = 5881 [PSH, ACK] Seq=48 Ack=13 Win=8
55 7.325973 192.168.8.16 192.168.6.13 TCP 78 5881 - 57929 [PSH, ACK] Seq=13 Ack=79 Win=6i
56 7.329349 192.168.8.13 192.168.8.16 TCP 185 57929 = 5881 [PSH, ACK] Seq=72 Ack=25 Win=8
57 7.336728 192.168.8.16 192.168.8.13 TCP 186 5881 -+ 57929 [PSH, ACK] Seq=25 Ack=118 Win=t
58 7.339814 192.168.8.13 192.168.8.16 TCP 69 57929 = 5881 [PSH, ACK] Seq=118 Ack=65 Win
59 7.345159 192.168.8.16 192.168.8.13 TCP 131 588l = 57929 [PSH, ACK] Seq=65 Ack=121 Win=i
(1% 3520464 19 1A fa 13 19 A 8 1A TR AO 57979 = SAA1 [TPSH ACK en=121 &ck=130 Win:

Frame 51: 185 bytes on wire (848 bits), 185 bytes captured (848 bits) on

interface @

Ethernet II, Src: SamsungE_ae:45:d3 (f@:25:b7:ae:45:d3), Dst: IntelCor_35:1c:54 (e4:f8:9c:35:1c:54)
Internet Protocol Wersion 4,

[=]
o
rt
b

25689

e

sSrc:

192.168.8.13, Dst:
Transmission Control Protocol, Src Port: 57929 (57929), Dst Port: 5881 (5801), Seq:

192.168.8.16

323536383932383337303134393530323037363232383437. . .
2837814959297622547548184857378977

1

i,

Ack: 1, Len: 39

: §

[

=}
8
8
2 ez
8
8
8

52 7.3@9812
53 7.311749

@MW Rk

54 7.319851

54

8888

32

ds
asd

L=1:)

1b
77

18
(=8 as
3e
34

3@ 34

92976228
B5737@97

PR
83781495
47548164

Figure 31: Sending Diffie-Hellman parameter P via Wi-Fi

192.168.8.16
192.168.8.13

192.168.9.13
192.168.08.16

TCP
TCP
TCP

78 5881 + 57920 [PSH, ACK] Seq=1 Ack=48 Win=66560 Len=12 TSval=18181I

66 57929 + 5881
185 57929 = 5881

[ACK SEE=49 Ack=13 Win=87688 Len=@ TSval=06147 TSecr
[PSH, ACK] Seq=48 Ack=13 Win=8768@ Len=39 TSval=9614f

1 z z 10 TCF LF>H, £q=. Ck= 1n=1 £n=. val=
56 7.329349 192.168.8.13 192.168.8.16 TCP 185 57929 + 5881 [PSH, ACK] Seq=79 Ack=25 Win=87688 Len=39 TSval=9614¢
57 7.336728 192.168.0.16 192.168.8.13 TCP 186 5881 + 57929 [PSH, ACK] Seq=25 Ack=118 Win=66384 Len=48 TSval=181¢
58 7.339814 192.168.8.13 192.168.0.16 TCP 69 57929 = 58@1 [PSH, ACK] Seq=118 Ack=65 Win=8768@ Len=3 TSval=9615¢
59 7.345169 192.168.8.16 192.168.8.13 TCP 131 5881 -+ 57929 [PSH, ACK] Seq=65 Ack=121 Win=66384 Len=65 TSval=181¢
A@ 7 357045 107 168 @ 13 107 168 6 16 e A0 57070 » SAA1 [DSH ACK] Sen=121 Ark=13@ Win=R7AR6 | an=2 TSual=0R1C

4
4
-4
>

Frame 54: 185 bytes on wire (848 bits), 185 bytes captured (848 bits) on
Ethernet II, Src: SamsungE_ae:45:d3 (f@:25:b7:ae:45:d3), Dst: IntelCor_35:1c:54 (e4:f8:9c:35:1c:54)
Internet Protocol Version 4, Src: 192.168.8.13, Dst: 192.168.8.16

Transmission Control Protocol, Src Port: 57929 (57929), Dst Port: 5881 (58@1), Seq: 48, Ack: 13, Len: 39

Data E3B bytes)

interface @

Data: 323938383433393439383134383539333634353634343936. ..

Text: 298843040814859364564406467446154743243

[Length: 39]
eeee ed T8 9c 35 1c 54 f@ 25 b7 ae 45 d3 83 68 45 80 LLL5LTLE
2012 @@ Sh 67 5b 42 B0 48 @6 51 d4 cP a8 @0 od <@ a8 .[g[@.@.
GE20 BB 1@ e2 49 13 39 22 66 11 @6 @f b 1b &d 8@ 18 s
o302 82 ad a8 do @8 B8 81 @1 B3 Ba @8 81 77 94 86 85 e
@e4n 54 8F 32 39 38 38 34 33 39 34 39 38 31 34 38 35 T.298843 94931485
G058 39 33 36 34 35 36 34 34 39 36 34 36 37 34 34 36 93645644 96467446
GOGE 31 35 34 37 34 33 32 34 33 15474324 3

Figure 32: Sending Diffie-Hellman parameter G via Wi-Fi

70

7.329348

192.168.8.13

152.168.0.16

58 7.339814 192.168.8.13 152.168.0.16 TCP 89 57929 -
59 7.345169 192.168.0.16 192.168.8.13 TCP 131 5881 »
7.352948 192.168.8.13 152.168.0.16 TCP 69 57929 -
1A 197 168 @ 13 TP R SAAT o
» Frame 56: 185 bytes on wire (848 bits), 185 bytes captured (848 bits) on interf
» Ethernet II, Src: SamsungE_ae:45:d3 (f@:25:b7:3e:45:d3), Dst: IntelCor 35:1c:54
» Internet Protocol Version 4, Src: 192.168.€.13, Dst: 192.168.8.16

Aamissian . ort: 5801 (5081),

Data (39 bytes
Data: 323733393937363839363738383533343633363235343336. ..

Text: 2739976B9678853463625436383194368128329
[Length: 29]

35 1c 54 @ 25 b7 ae 45 d3 @8 @@ 45 @@ ...5.T.% ..E...E.
Sc 40 80 48 @6 51 d3 c@ a8 @8 8d c@ a8 .[g\@.@. Q.......
49 13 89 22 66 11 2d @f b@ 1b 99 80 18 ...I.."f .-......
bl 8@ 8@ @1 @1 ©% @a @@ @1 77 95 86 @5

37 33 39 39 37 36 38 39 38 37 38 38 35 T.273997 BB967885
33 38 32 35 34 33 36 33 38 33 31 39 34 34636254 36383194
31 32 38 33 32 39 3g@l2esz 9

Figure 33: Sending Diffie-Hellman parameter TA via Wi-Fi.

After receiving each Diffie-Hellman parameter the desktop application send an
acknowledgment packet to ensure that the parameter is received on the other end. The
following figure show the acknowledgment packet sent from desktop application to the

mobile application.

71

5@ 7.230966 192.168.8.13 192.168.8.16 Tcp 66 57929 » 5001 [ACK] Seq=1 Ack=1 Win-87688 Len-8 TSval-
b 517.301995 192.168.8.13 192.168.0.16 TcP 185 57929 > 5001 [PSH, ACK] Seg=1 Ack=1 Win=87688 Len=33
52 7.309012 192.168.8.16 192.165.8.13 TCP 78 5001 + 57929 [PSH, ACK] 5eq-1 Ack=48 Win-66568 Len-12
| : T1e8.0. 15 To2.168.0.16 Ter = S0-28 ACK=15 Win= en=0 Tave
54 7.319051 192.168.8.13 192.168.8.16 Tcp 185 57929 = 5001 [PSH, ACK] Seq=48 Ack=13 Win=87688 Len=:
55 7.325973 192.168.8.16 192.168.8.13 Tcp 78 5001 » 57929 [PSH, ACK] Seq=13 Ack=79 Win=66568 Len=1
56 7.329349 192.168.8.13 192.168.8.16 Tcp 185 57929 = 5001 [PSH, ACK] Seq=79 Ack=25 Win=87688 Len=:
57 7.336728 192.168.8.16 192.168.8.13 Tcp 186 5001 » 57929 [PSH, ACK] Seq=25 Ack=118 Win=66384 Len-
58 7.339814 192.168.8.13 192.168.8.16 Tcp 69 57929 = 5001 [PSH, ACK] Seq=118 Ack=65 Win=87688 Len-
59 7.345169 192.168.8.16 192.168.8.13 Tcp 131 5001 » 57929 [PSH, ACK] Seq=65 Ack=121 Win=66384 Len=
AR 7 35204/ 192 1648 @4 13 192 168 A 1A TIre RO 579720 = SAAT [PSH Ark]l Sen=121 Ack=13A Win=R7A2A | ar

Frame 52: 78 bytes on wire
Ethernet II, Src: IntelCor_ .
Internet Protocol Version 4, Src: 192.168.8.16, Dst: 192.168.8.13

Transmission Control Protocol, Src Port: 5801 (5@81), Dst Port: 57929 (57929), Seq: 1, Ack: 48, Len: 12

(624 bits), 78 bytes

captured (624 bits) on interface @

35:1c:54 (e4:T8:9c:35:1c:54), Dst: SamsungE_ae:45:d3 (f@:25:b7:a3e:45:d3)

Data:
Text: Acknowledge'n
[Length: 12]

Data (12 bytes)

41636b6e6T776CE56467650a

f@ 25 b7 ae 45 d3 e4 f8
28 48 48 ef 40 @0 30 @6
2@ ed 13 89 e2 49 af be
@l e4 7b 7T @@ @@ o1 el
77 92 41 63 6b 6e &F 77

35
Sb
81

®
o

65

1c 54 @3 @@ 45 a8
c@ aB @@ 1@ cé as
22 66 11 @6 8@ 13
@6 85 54 8 @8 el
64 67 65 @a

Figure 34: Acknowledgment packet.

. P
w.Acknow ledge.

Once both the devices have received the Diffie-Hellman parameters they compute the

secret key. The Desktop application sends a message digest of random string and the

secret key using SHA-256 so that the mobile application can verify that the secret key is

authentic. The following figure shows the message digest sent to the mobile application.

72

192 163 813 192 168_8_16 TP 3 e I 1 s I T
192.168.08.16 152.168.8.13 TCP 83 5881 » 57929 [PSH, ACK] Seq=
.16 TP TST Brocs = Soor Bgﬁ, e gEq=

61 7.356481

64 7.369736 192.168.8.16 192.168.8.13 5881 -+ 57929 [ACK] Seq=147 A

66 7.376488 192.168.8.13 192.168.8.16 TCP 66 57929 + 5881 [ACK] Seq=198 A
A7 7 30181 197 168 A 1A 31 13 2R 36 TiSwl 2 1351 &nnliration Nata
Frame 61: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on interface @
Ethernet II, Src: IntelCor 35:1c:54 (e4:¥8:9c:35:1c:54), Dst: SamsungE_ae:45:d3 (f@:25:b7:ae:45:d3)
Internet Protocol Version 4, Src: 192.168.8.16, Dst: 182.168.8.13
Transmission Control Protocol, Src Port: S@@l (58@1), Dst Port: 57929 (57929}, Seq: 13@, Ack: 124, Le
Data (17 bytes)

Data: 3Tf3f51e8b3f3F3f15593F3T1871443F788a

Text: ?2Q\w??P\@25Y??\@2eqD?pi\n

[Length: 17]

LY

coen f@ 25 b7 ae 45 d3 e4 f8 9c 35 1c 54 @3 88 45 @0 .%..E... .5.T..E.
GE10 BB 45 48 f3 40 6@ B0 86 38 52 c@ ab 8P 18 < ad LE@.@... BR......
G20 ee ad 13 89 e2 49 ef b@ 1c B2 22 66 11 5a 8@ 18 I.. .."f.Z..
@e32 @1 @3 6b 1b @@ @ 81 @1 @3 @a @6 @5 54 92 88 @l wakeaaas PRI PR
goae 77 97 3f 3F 51 eb 3f 3f 3f 15 59 3F 3f 18 71 44 w.?Q.?7 2.¥?PP.qD
aasa 3t 70 @a ’p.

Figure 35: Sending message digest.

After the secret key is verified the mobile application encrypts the credentials and
transferred it to the desktop application. The following figure shows that the credentials

are sent in encrypted form.

68 7.352946 192.168.8.13 192.168.8.16 TCP 69 57929 =+ 5881 |PSH, ACK] Seq=121 Ack=138 Win=8768@

61 7.356481 192.168.8.16 192.168.08.13 TCP 53 2001 o 57929 [PoH, ACK] Seg=136 Ack=124 Win=66384

62 7.369361 192.168.8.13 192.168.08.16 TCP 131 57929 -+ 5881 [PSH, ACK] Seq=124 Ack=147 Win=87688

64 7.369736 192.168.8.16 192.168.8.13

5881 + 57929 [ACK] Seq=147 Ack=198 Win=663@4 Len=@

66 7.376488 192.168.8.13 192.168.8.16 TCP 66 57929 3 5881 [ACK] Seq=19@ Ack=148 Win=37680 Len=0
A7 7 306181 192 168 @ 164 31 13 26 3A TiSwl 2 1351 Annlication Data
Frame 62: 131 bytes on wire (1848 bits), 131 bytes captured (1848 bits) on interface @
Ethernet II, Src: SamsungE_ae:45:d3 (f@:25:b7:ae:45:d3), Dst: IntelCor_35:1c:54 (e4:f8:9c:i35:1c:54)
Internet Protocol Version 4, Src: 192.168.8.13, Dst: 192.168.8.16
Transmission Control Protocol, Src Port: 57020 (57929
Data (65 bytes)
Data: 6d6c73364c6TE177676b4T366333666T537a325047583075. ..
Text: mls6lLoawgk06c3foSz2PaX@xstewj+eyHIQ+nYhyZkmIHeCyz5]IWHBwwmALIF4s\n

[
[
[
[

: 124, Ack: 147, Len: 65

|

43 79 7a 35 4a 49 57 48 38 77 77 6d 41 31 69 46 Cyz5]IWH BwwmAliF
34 73 @a 4s.

[Length: B5]

oe00 e4 8 9c 35 1c 54 T8 25 b7 ae 45 d3 @8 8@ 45 @@ ...5.T.% ..E...E.
@016 @8 75 67 5T 40 @@ 48 @6 51 b6 c® a8 @0 @d c@ a8 .ug @.@. Q.. .
£e20 @@ 18 e2 49 13 89 22 66 11 Sa of be 1c 13 88 18 ...I.."f .Z......
o232 @2 ad fb 65 @8 @8 @1 @1 @3 Ba @8 61 77 99 86 65 ...e.... W
oe40 54 92 6d 6c 73 36 4c 6f 61 77 67 6b 4F 36 63 33 T.mls6lo awgkD6C3
o560 66 6F 53 7a 32 58 47 58 3@ 78 73 74 36 77 6a 2b foSz2PGX Bxstewi+
G260 36 79 48 Sa 51 2b 6e 59 68 79 5a 6b 6d 39 48 65 6yHIQ+nY hyZkmIHe
2878

LLET)

ol

Figure 36: Sending Encrypted Credentials.

73

6.2.2 Testing over the Bluetooth medium.

To capture the packets on a Bluetooth medium we have enabled the ‘Bluetooth HCI
snoop logging’ on device. The device captures all the packets that are sent and received
over the Bluetooth. The log file is maintained under the location
“\Phone\Android\data\btsnoop hci.log”. We have import the log file to the Wireshark to
analyse the captured packets. The following figure shows the packet captured during

Bluetooth transfer.

4528 131.5442.. controller host HCI_EVT 7 Rcvd Command Status (Read Clock offset)

4521 131.5452.. controller host HCI_EVT 8 Rcvd Read Clock Offset Complete

4522 131, 2471, controller host HCT EVT &

4523 131.5485.. IntelCor_35:1c:58 () SamsungE_cf:b7:46 (MY TESTING DEVICE) L2CAP 17 Rcwd Connection Request (SDP, SCID: ex@e4a)

4524 131.5585.. SamsungE cf:b7:46 (.. IntelCor 35:1c:58 () L2CAP 15 sent Information Reauest Extended Features
“A525 131.5504. host controller HCI_CMD 6 Sent Read Remote Verslon Information

4526 131.5621.. controller host HCI_EVT 7 Rcvd Command Status (Read Remote Version Inf

4527 131 5654 controllsr host HCI EVT 11 Rcvd Read Remote Version Information Comglet

4528 131.5676.. SamsungE_cf:b7:46 (.. IntelCor_35:1c:58 () L2CAP 21 sent Connection Response - Pending (SCID: @x

> Frame 4523: 17 bytes on wire (136 bits), 17 bytes captured (136 bits)
> Bluetooth

> Bluetooth HCI H4

> Bluetooth HCI ACL Packet

> Bluetooth L2CAP Protocol

82 Bb 20 6c 8@ @3 @8 B1 08 82 6c B4 B A1 88 40 B I |
8 .

Figure 37: Packets captured during Bluetooth transfer.

As shown in the above figure the desktop application initiates the connection and once
the mobile application accepts the connection both the devices transfers the Diffie-
Hellman parameters. All the data is transferred in the plain text except for the credentials

which is sent in an encrypted form as shown in the following figures.

74

4329 139,3242.. controller host HC

139.3585.. SamsungE_cf:b7:46 (.. IntelCor_35:1c:58 (RAHIL-PC)

4332 139,3841.. controller host HC
4333 139.4444.. IntelCor_35:1c:58 (.. SamsungE_cf:b7:46 (MY TESTING DEVICE) RF
4334 139.4457.. IntelCor 35:1c:58 (.. SamsungE_cf:b7:46 (MY TESTING DEVICE) RF

4835 139.4465.. SamsungE_cf:b7:46 (.. IntelCor 35:1c:58 (RAHIL-PC) RF
4336 139.4642.. controller host HC
4837 139.5172.. controller host HC

I e e W v B e W s W el Y ek ke a1 1 . L

Frame 4838: 53 bytes on wire (424 bits), 53 bytes captured (424 bits)
Bluetooth

Bluetooth HCI H4

Bluetooth HCI ACL Packet

Bluetooth L2CAP Protocol

Bluetooth RFCOMM Protocol

Data: 333834323136333934363237373931363139383536333137. ..

Text: 384216394627791619856317831986775515333

el il 0

[xs]

82 Bb 20 30 ed 2c el 41 8. 29 ff 4f 21 33 38 34 L. BL,LA L).0! 384
32 31 38 33 39 34 38 32 37 37 39 31 36 31 39 38 21639462 77918198
35 38 33 31 37 38 33 31 39 3@ 36 37 37 35 35 351 56317831 98677551
35 33 33 33 Vo 5333w

[I I s R

'..'-l |’\-| I. =

Figure 38: Sending Diffie-Hellman parameter P via Bluetooth

. .. IntelCor 35:1c:58 (.. SamsungE cf:b7:46 (My TESTING DEVICE) RFCOMM 26 Rcwd UIH Channe
4835 139.4465.. SamsungE_cf:b7:46 (.. IntelCor_35:1c:58 (RAHIL-PC) RFCOMM 53 Sent UIH Channe

4837 139.5172.. controller host HCI_EVT 8 Rcvd Number of
4338 139.5276.. controller host HCI_EVT 43 Rcwd LE Meta (L

Frame 4835: 53 bytes on wire (424 bits), 53 bytes captured (424 bits)
Bluetooth

Bluetooth HCI Ha

Bluetooth HCI ACL Packet

Bluetooth L2CAP Protocol

Bluetooth RFCOMM Protocol

>
>
>
>
kS
kS
F

Data: 333B3B373139313532383431393838393836383636393339...
Text: 38@71915234]1988398686693989659@383752959
[Length: 39]

4t vl 33 Jb 5@ .. B.,.A.).0.300
37 31 39 31 35 32 38 34 31 39 38 38 39 38 36 38 71915284 193898638
36 36 39 33 39 38 39 36 35 39 3@ 38 3@ 33 37 35 66939896 59888375
32 39 35 39 76 2959y

Figure 39: Sending Diffie-Hellman parameter G via Bluetooth.

75

:b7:46 (.. IntelCor_35:1c:58 (RAHIL-PC) 51 Sent UIH Ch:
er Rost ACL_EUT . 30 Rcva LT Met:

4845 139.6648.. controller host HCI_EVT 15 Revd LE Met:

> Frame 4843: 51 bytes on wire (488 bits), 51 bytes captured (488 bits)
> Bluetooth

> Bluetooth HCI H4

[Bluetooth HCI ACL Packet

[Bluetooth L2CAP Protocol

[Blystooth RFCOMM Protocol

Data (37 bytes)
Data: 39323135353735363753239363734375363235363238333635...
Text: 92155756729674762562836541563238660222
[Length: 37]

[ex]

@2 @b 20 2= 8@ 2a @2 41 @8 29 ff 4b 81 39 32 31 e W TUA L) LKL921
35 35 37 35 36 37 32 39 36 37 34 37 36 32 35 36 55756729 67476256
32 38 33 36 35 34 31 35 36 33 32 33 38 36 36 32 28365415 63238662
32 32 76 22v

[= I I v
[l s e I]
[~ B]

[T S

Figure 40: Sending Diffie-Hellman parameter TA via Bluetooth

4832 139.384L. controller host HCI_EVT 15 Recwe
4333 130, 4444, IntelCor 35:1c:58 (.. 14 Rcwe
4834 139.4457.. IntelCor_35:1c:58 (.. 26 Rcwe

W Samsungt_ctib/s: 351 en
4836 139.4642. controller host HCI EVT 38 Rowe

I Frame 4834: 26 bytes on wire (208 bits), 26 bytes captured (288 bits)
[Bluetooth

[Bluetooth HCI H4

[Bluetooth HCI ACL Packet

[Bluetooth L2CAP Protocol

Data (12 bytes)
Data: 41636bBe6f776c656467650a
Text: Acknowledgehn

[Length: 12]
GocE B2 8b 28 15 @@ 11 @@ 41 88 2b T 19 88 41 63 6b P S T 1.4
2e1e 6e 6F 77 Bc B5 B4 67 B5 Ba ac nowledge ..

Figure 41: Bluetooth Acknowledgment packet.

76

4858 139,9319.. controller host HCI_EWT 38 Rcwd LE Met
4359 139.9326.. controller 15 Rcvd LE Met

4860 139.9799.. IntelCor 35:1c:58 (.. SamsungE_cf:b7:46 (MY TESTING DEVICE) RFCOMM 31 Revd UTIH Ch

Frame 4860: 31 bytes on wire (248 bits), 31 bytes captured (248 bits)

Bluetooth

Bluetooth HCI H4

Bluetooth HCI ACL Packet

Bluetooth L2CAP Protocol

Bluetooth RFCOMM Protocol

Data (17 bytes)
Data: 653F3F3f3f3f433f59273F773F3f3Teara
Text: e? 222203V 2w???

[Length: 17]

M v v TFV

82 8b 2@ 1a @@ 16 @@ 41 @@ 2b ff 23 @1 65 3Ff 3f A +.H.e??
3f 3f 3f 43 3f 59 27 3f 77 3f 3f 3f @8 8a ac ROV wIPPLLL

Figure 42: Sending message digest via Bluetooth.

4862 148.8383.. controller host HCI_EVT 3@ Rcvd LE Meta (LE Advertising Report)
i HCT FvT 15 isd rt)
4864 148.8401.. SamsungE_cf:b7:46 (.. IntelCor_35:1c:58 (RAHIL-PC) RFCOMM 79 Sent UIH Channel=5 UID

Frame 4864: 79 bytes on wire (632 bits), 79 bytes captured (632 bits)
Bluetooth
Bluetooth HCI H4
Bluetooth HCI ACL Packet
Bluetooth L2CAP Protocol
COMM _Protocal
Data (65 bytes)
Data: 4369656b71684b5877316e4a79367564323237335736414b. ..
Text: CiekqhKXwlnly6ud2273W6AKSickh7dosTZh9apzNz18+,/90507965ukAuPgHULT \n
[Length: 65]

>
>
>
3
>
>

@2 @b 20 4a @0 46 @@ 41 @@ 29 ff 83 @1 43 69 65 +o JLFLA L)L ..Cie
6b 71 68 4b 58 77 31 6e 4a 79 36 75 64 32 32 37 kghKXwln Jy6ud227
33 57 36 41 4b 35 69 63 6b 68 37 64 6 73 66 S5a 3WEAKSic kh7dosfZ
68 39 61 78 7a 4e 7a 31 38 2b 2f 39 4f 35 44 37 h9apzNzl 8+/905D7
39 36 35 75 6b 41 75 58 67 48 55 4c 54 @a 76 965ukAuUP gHULT.v

Figure 43: Sending encrypted credentials via Bluetooth.

6.2.3 Testing over the NFC medium

The NFC packets are transferred from the mobile application to the desktop application
over the USB port. To test the NFC data we have attached another NFC enabled device
(android tablet) and we have written an application that takes the NFC data and send it to
the USB port. The data that should be sent over the USB port from the mobile application
are Diffie-Hellman parameters and the credentials. The Diffie-Hellman parameters are

sent as a plain text while the credentials are sent in encrypted form. We have used

77

USBlyzer version 2.2 to capture the traffic on the USB port as shown in the following

figures.

Type Seq Time Elapsed Duration Request Request Details Raw Data /0 CLE Device Obj.. Device Name ™
URB 0091-0090 23:15:44.250 15.0588.. 893 us Bulk or Interrupt Transfer 24 bytes data 57525445020000.. i 01 FFFFEOO1A.. 00000041

URB 0092 44,250 15.0580.., Bulk or Interrupt Transfer 512 bytes buffer i FFFFEOD1A... 00000041

44,250 | 15.0591... | 136us | Bulk or Interrupt Transfer | 126 bytes data 3303 3036 .. [l | FFFFEQD1A... | 00000041

URB 0094 231544250 15.0396... Bulk or Interrupt Transfer 512 bytes buffer in 01:01:85 FFFFEOD1A.. 0000DD4T

URB 0095 23:15:44.250 15.0600... Bulk or Interrupt Transfer 24 bytes data 4F4B4159140000.. out 01:01:04 FFFFEO0TA.. 0DDODDAT

URB 0096-0095 23:15:44.250 15.0601.. 98us Bulk or Interrupt Transfer 24 bytes buffer out 01:01:04 FFFFEDOTA.. 0DODD041

URB 0097-0094 23:15:44.250 15.0607.. 1.1684ms Bulk or Interrupt Transfer 24 bytes data 434C5345020000... in 01:01:85 FFFFEOO1A.. O0DDODO41

URB 0092 231544250 15.0612... Bulk or Interrupt Transfer 512 bytes buffer in 01:01:85 FFFFEOD1A.. 00000041

URB 0099 231544250 15.0613... Bulk or Interrupt Transfer 24 bytes data 434C5345140000.. out 01:01:04 FFFFEO0TA.. 0DDODO41

URB 0100-00%9 23:13:44.250 15.0674.. S7us Bulk or Interrupt Transfer 24 bytes buffer out 01:01:04 FFFFEOD1A.. 0DOODD4T

UREB 0101 23:15:47.103 17.9086... Bulk or Interrupt Transfer 24 bytes data 4F50454E150000... out 01:01:04 FFFFEO01A.. 0DDODDAT

URB 0102-0101 23:15:47.103 17.9087.. 91us Bulk or Interrupt Transfer 24 bytes buffer out 01:01:04 FFFFEDOTA.. 0DOOD0D41

URB 0103 23:15:47.103 17.9088... Bulk or Interrupt Transfer G bytes data T463703A4363030.. out 01:01:04 FFFFEOOTA.. 0DDODO41 b
£ >
Raw Data

3% 39 37 36 38 33 38 33 38 34 37 38 36 31 34 38 3Z 36 35 38 30 33 37 @34706199768383847861482658037
24 40 21 40 24 233 33 33 38 3% 233 37 22 30 34 32 37 32 35 24 32 34 33 028885533993720427294249
3Z 35 35 37 37 3% 34 30 30 37 30 3% 35 Z4 40 Z1 40 24 395 3Z 33 37 39 374263512557 7240070995@ 18592323
30 24 23& 34 32 230 231 32 23 30 231 32 24 3% 38 37 234 31 35 238 21 35 35| 2638735504642012301246874158155
15

Figure 44: Sending Diffie-Hellman parameters via NFC

The value of ‘P’, ‘G’ and ‘TA’ and concatenated using a predefined string “$@!@$” and
is sent to the desktop application. Once the secret key is generated and verified the
mobile application send the credentials to the desktop application in encrypted form. The

following figure shows the credential packet sent over the NFC.

78

Type Seg Time Elapsed Duration Request Request Details Raw Data IfO CkE Device Obj... Device Name
| 0163-0162 | 23:15:57.155 | 27.9628... | 91 us | Bulk or Interrupt Transfer | 68 bytes data 1595253367438 74... |in |01:01:85 | FFFFEO01A.

URB 0184 2315:57.155 27.9632.. Bulk or Interrupt Transfer 512 bytes buffer in 01:01:85 FFFFECO1A.. 00000041

URB 0165-0164 23:13:57.155 27.9633.. 100us Bulk er Interrupt Transfer 24 bytes data 434C5345030000.. in 00:01:85 FFFFEOO1A.. 00000041

URB 0166 2315:57.155 27.9638... Bulk er Interrupt Transfer 24 bytes data 4F4B41591E0000... out 00:01:04 FFFFEOO1A.. 0000004

URB 0167-0166 23:15:57.155 27.9639.. 90us Bulk or Interrupt Transfer 24 bytes buffer out 01:01:04 FFFFEOD1A.. 00000041

URB 0168 23:15:57.155 27.9640... Bulk or Interrupt Transfer 512 bytes buffer in 01:01:85 FFFFEOD1A.. 00DDOO4T

URB 0169 2315:57.155 27.9642... Bulk or Interrupt Transfer 24 bytes data 434C53451E0000.. out 01:01:04 FFFFEOO1A.. 000000

< >

Raw Data

E52 53 36 T4 38 T4 2ZF 42 TA 58 47 48 77 T2 32 43 46 £E 75 78 54 &F 4C €1 78 @& ZB 5€ 41 4D ERS\':CSt_/BzXC—sz2IFnuxl’cLaxf+V&M

48 30 7€ €1 4R 33 €8 70 73 73 &C 4D €1 ZB T4 58 53 33 76 €3 35 31 32 4F 4F 34 53 68 V0 &F 42 HOvaJ3hpsslMat+tKY¥Y3vi51l20045hpod
76 36 02 24 24 24 VE. 553

Figure 45: Sending credentials via NFC

6.3 SUMMARY OF THE EXPERIMENTAL RESULTS

The experimental results of the network traffic from the Wireshark and the USBlyzer
shows that, all the Diffie-Hellman parameters ‘P, ‘G’ and ‘TA” are sent in plain text. The
secret Integer and the secret key is never transmitted to one another. Once the key is
computed on both ends, the secret key is verified using one-way hash function. If the key
is compromised using the MITMA the verification fails and the credentials are not
transferred to the desktop application. If the key is verified, the credentials are sent in the

encrypted form which is then decrypted on the other end.

79

Chapter 7 CONCLUSION AND FUTURE WORK

Smart phones have become part of our daily living and almost every person carries a
smart phone with them all the time. Our proposed approach is an attempt to overcome the
shoulder surfing and keylogging attacks using a smart phone. The motivation behind this
proposed approach is to use the smart phone to authenticate users to different website that

can prevent them from various attacks such as shoulder surfing and keylogging.

The proposed approach has three major phases: the connection phase, where the user can
select any medium (Wi-Fi, Bluetooth, NFC) to transfer credentials; the key exchange
phase, where both the devices compute the secret key using Diffie-Hellman key
exchange; and the encryption phase, where the credentials are encrypted and transfer to

the desktop application.

The proposed approach also uses QR code to verify the secret key. If any Trojan is install
on the system that captures the screenshot of the QR code and sent it to the attacker, it
will be of no use because the QR code is changed each time when the user selects a

medium.

The Wireshark traffic analysis shows that all the Diffie-Hellman parameters, ‘P, ‘G’ and
“TA’, are sent in plain text. The secret Integer and the secret key are never transferred to
another device. The Diffie-Hellman key exchange algorithm is susceptible to MITMA;
the proposed approach uses one-way hash function to verify that the secret key is not
altered and is same on both ends. The credentials are transferred and sent in encrypted

form using the verified secret key.

80

Based on the available resources and security situations user can select different medium
to transfer credentials. NFC is the most secure way to transfer the credentials as the
devices needs to be as close as 10mm to transfer the NFC data. In order to steal the data
via NFC, the attacker needs to be physically present near the user. If the system does not
have support for NFC, the user can select Bluetooth as the second option to transfer
credentials. The user should always keep the Wi-Fi as a last option if they are using a

public Wi-Fi or the Wi-Fi is not personal.

7.1 LIMITATIONS

We have captured and analyzed the traffic between the mobile and the desktop
application to ensure that the credentials are sent in an encrypted form. Although the
proposed approach uses standard AES-128 encryption to encrypt and decrypt data, the
packets need to be tested against various attacks as the packets contains credentials that
are private and sensitive. One of the other limitations is users are bound to use our
desktop application to automatically login to the websites, which might not be feasible
for all users. This limitation is due the web browsers, as most of the web browsers do not
allow extensions to access system resources, such as Bluetooth or USB port. Our
proposed approach require access to these resources to transfer credentials between the

mobile and the desktop application.

7.2. Future Work
The proposed approach only focuses on preventing shoulder surfing and keylogging

attacks and can be extended as a tool for password management. Nowadays, the growth

81

of web accounts are increasing day by day and it is difficult to remember different
passwords for different web accounts. It is recommended to use strong passwords with a
combination of alpha numeric characters and special symbols which makes it difficult for
attackers to crack the passwords. The proposed approach can be extended to add the
functionality of a password manager. With the proposed approach, the user can manually
enter their password for websites and can be managed on the device. These passwords
cannot be accessed from any other device or website as they are stored locally on the
device which makes it difficult to manage. If the device is lost, all the passwords are lost
as well. In order to provide the functionality of the password manager, the database can
be host to any hosting server and a simple user interface can be developed to manage the

passwords.

Our proposed approach requires the users to manually enter their credentials in the
mobile application. The proposed approach can be extended to add functionality to
automatically capture user credentials from the desktop application. If the user creates a
new account or changes the password of any existing account, the desktop application
can suggest strong passwords. Additionally, it can automatically capture the new
password set by the user and can transfer it to the mobile application. As a result, the user
does not have to manually manage the passwords each time when they creates a new

account or changes the password of an existing account.

User study can be done to understand different aspect of the proposed approach such as
user-friendliness and efficiency in terms of time. Furthermore, this study might also help

us to understand whether the user uses web accounts on their personal or public

82

computers. All the results from the study will help us to understand the need and

importance of the proposed approach in our daily living.

83

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

“Malware,” Wikipedia, 12-Nov-2017. [Online]. Available:
http://en.wikipedia.org/wiki/Malware. [Accessed: 13-Nov-2017].

Raza, M., Igbal, M., Sharif, M., & Haider, W. (2012). A survey of password
attacks and comparative analysis on methods for secure authentication. World
Applied Sciences Journal, 19(4), 439-444.

Haque, M. A., & Imam, B. (2014). A New Graphical Password: Combination of
Recall & Recognition Based Approach. World Academy of Science, Engineering
and Technology, International Journal of Computer, Electrical, Automation,
Control and Information Engineering, 8(2), 320-324.

Stallings, W., & Brown, L. (2012). Computer security. Principles and practice (2
nd ed). Edinburgh Gate: Pearson education limited.

Suo, X., Zhu, Y., & Owen, G. S. (2005, December). Graphical passwords: A
survey. In Computer security applications conference, 21st annual (pp. 10-pp).
IEEE.

Md. Asraful Haque, Babbar Imam, Nesar Ahmad, “2-Round Hybrid Password
Scheme”, International Journal of Computer Engineering and Technology
(NCET), Vol. 3, Issue 2, July-September (2012), page. 579-587.

The Activity Lifecycle,” Android Developers. [Online]. Available:
https://developer.android.com/guide/components/activities/activity-lifecycle.html.
[Accessed: 3-Sep-2017].

Kessler, G. C. (2002). Passwords-Strengths and Weaknesses. Jan-1996. URL.:
http://lwww. garykessler.net/library/password.html.

Pathak, N., Pawar, A., & Patil, B. (2015). A Survey on Keylogger: A Malicious
Attack. International Jourcal of Advanced Research in Computer Engineering and
Technology.

Fujita, K., & Hirakawa, Y. (2008, September). A study of password
authentication method against observing attacks. In Intelligent Systems and

84

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Informatics, 2008. SISY 2008. 6th International Symposium on (pp. 1-6). IEEE.

Canbek, G. (2005). Analysis, design and implementation of keyloggers and anti-
keyloggers. Gazi University, Institute Of Science And Technology, M. Sc. thesis
103.

Lynch, P. (2004). The Naked Employee: How Technology Is Compromising
Workplace Privacy. Journal of Applied Management and Entrepreneurship, 9(2),
116.

Feng, H., & Choong Wah, C. (2002). Private key generation from on-line
handwritten signatures. Information Management & Computer Security, 10(4),
159-164.

Kieseberg, P., Leithner, M., Mulazzani, M., Munroe, L., Schrittwieser, S., Sinha,

M., & Weippl, E. (2010, November). QR code security. In Proceedings of the 8th
International Conference on Advances in Mobile Computing and Multimedia (pp.
430-435). ACM.

“Diffie-Hellman Protocol,” from Wolfram MathWorld. [Online]. Available:
http://mathworld.wolfram.com/Diffie-HellmanProtocol.html. [Accessed: 14-Nov-
2017].

“Hash function,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Hash_function. [Accessed: 14-Nov-2017].

“Movable Type Scripts,” SHA-256 Cryptographic Hash Algorithm implemented
in JavaScript | Movable Type Scripts. [Online]. Available: http://www.movable-
type.co.uk/scripts/sha256.html. [Accessed: 14-Nov-2017].

Burr, W. E. (2003). Selecting the advanced encryption standard. IEEE Security &
Privacy, 99(2), 43-52.

V. Lynch, “Difference Between SHA-1, SHA-2 and SHA-256?,” [Online].
Available: https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-

hash-algorithms/. [Accessed: 14-Nov-2017].

Ebrahim, M., Khan, S., & Khalid, U. B. (2014). Symmetric algorithm survey: a
comparative analysis. arXiv preprint arXiv:1405.0398.

85

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Massey, J. L. (1988). An introduction to contemporary cryptology. Proceedings of
the IEEE, 76(5), 533-549.

Advanced Encryption Standard - tutorialspoint.com.” [Online]. Available:
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm.
[Accessed: 14-Nov-2017].

“Advanced Encryption Standard,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard. [Accessed: 14-
Nov-2017].

Diffie-Hellman Key Exchange,” cryptography - Information Security Stack
Exchange. [Online]. Available:
https://security.stackexchange.com/questions/45963/diffie-hellman-key-
exchange-in-plain-english. [Accessed: 4-Nov-2017].

“Diffie—Hellman key exchange - Wikipedia.” [Online]. Available:
https://en.wikipedia.org/wiki/Diffie-Hellman_key exchange. [Accessed: 14-Nov-
2017].

“How does the man in the middle attack work in Diffie—Hellman?,” public key
encryption - [Online]. Available:
https://stackoverflow.com/questions/10471009/how-does-the-man-in-the-middle-
attack-work-in-diffie-hellman. [Accessed: 14-Nov-2017].

Bresson, E., Chevassut, O., & Pointcheval, D. (2002). Group Diffie-Hellman key
exchange secure against dictionary attacks. Advances in Cryptology—
ASIACRYPT 2002, 603-610.

“Dictionary attack,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Dictionary_attack. [Accessed: 14-Nov-2017].

Steiner, M., Tsudik, G., & Waidner, M. (1996, January). Diffie-Hellman key
distribution extended to group communication. In Proceedings of the 3rd ACM
conference on Computer and communications security (pp. 31-37). ACM.

Gunther, C. G. (1989, April). An identity-based key-exchange protocol. In

Workshop on the Theory and Application of of Cryptographic Techniques (pp.
29-37). Springer, Berlin, Heidelberg.

86

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Boyko, V., MacKenzie, P., & Patel, S. (2000). Provably secure password-
authenticated key exchange using Diffie-Hellman. In Advances in Cryptology—
Eurocrypt 2000 (pp. 156-171). Springer Berlin/Heidelberg.

Li, N. (2010, April). Research on diffie-hellman key exchange protocol. In
Computer Engineering and Technology (ICCET), 2010 2nd International
Conference on (Vol. 4, pp. V4-634). IEEE.

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.
A & VanderSloot, B. (2015, October). Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (pp. 5-17). ACM.

Bao, F., Deng, R. H., & Zhu, H. (2003, October). Variations of diffie-hellman
problem. In International Conference on Information and Communications
Security (pp. 301-312). Springer, Berlin, Heidelberg.

Parekh, A., Pawar, A., Munot, P., & Mantri, P. (2011). Secure authentication
using anti-screenshot virtual keyboard. International Journal of Computer Science
Issues (IJCSI), 8(5).

Olzak, T. (2008). Keystroke logging (keylogging). Adventures in Security, April.

“What is Shoulder surfing,” Solutions 24h. [Online]. Available:
http://solutions24h.com/what-is-shoulder-surfing/. [Accessed: 14-Nov-2017].

Haque, M. A., & Imam, B. (2014). A New Graphical Password: Combination of
Recall & Recognition Based Approach. World Academy of Science, Engineering
and Technology, International Journal of Computer, Electrical, Automation,
Control and Information Engineering, 8(2), 320-324.

Martin, J., & Leben, J. (1994). TCP/IP networking: architecture, administration,
and programming. Prentice-Hall, Inc..

Xue, M., & Zhu, C. (2009, May). The socket programming and software design

for communication based on client/server. In Circuits, Communications and
Systems, 2009. PACCS'09. Pacific-Asia Conference on (pp. 775-777). IEEE.

87

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Law, K. E., & Leung, R. (2003). A design and implementation of active network
socket programming. Microprocessors and Microsystems, 27(5), 277-284.

Meier, R. (2012). Professional Android 4 application development. John Wiley &
Sons.

Rogers, R., Lombardo, J., Mednieks, Z., & Meike, B. (2009). Android application
development: Programming with the Google SDK. O'Reilly Media, Inc..

“Package java.security,” java.security (Java Platform SE 7) [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html.
[Accessed: 11-Nov-2017].

“Package Javax.crypto.” Javax.crypto (Java Platform SE 7) [Online]. Available:
docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html.
[Accessed: 21-Oct-2017].

“Package java.net,” java.net (Java Platform SE 7) [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/net/package-summary.html.
[Accessed: 11-Nov-2017].

Socket (Java Platform SE 7), 09-Oct-2017. [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html. [Accessed: 11-
Nov-2017].

“Java (programming language),” Wikipedia, 08-Nov-2017. [Online]. Available:
https://en.wikipedia.org/wiki/Java_(programming_language). [Accessed: 11-Nov-
2017].

Zxing, “zxing/zxing,” GitHub. [Online]. Available:
https://github.com/zxing/zxing. [Accessed: 11-Nov-2017].

“C Sharp (programming language),” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/C_Sharp_(programming_language). [Accessed: 11-
Nov-2017].

BillWagner, “Introduction to the C# Language and the .NET Framework,”
Microsoft Docs. [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-

88

https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

framework. [Accessed: 11-Nov-2017].

[52] Inthehand, “inthehand/32feet,” GitHub [Online]. Available:
https://github.com/inthehand/32feet. [Accessed: 11-Nov-2017].

[53] System.Security.Cryptography Namespace [Online]. Available:
https://msdn.microsoft.com/en-
us/library/system.security.cryptography(v=vs.110).aspx. [Accessed: 11-Nov-
2017].

[54] “System.Threading Namespaces” [Online]. Available:
https://msdn.microsoft.com/en-us/library/mt481587(v=vs.110).aspx. [Accessed:
11-Nov-2017].

[55] Codebude, “QRCoder,” GitHub. [Online]. Available:
https://github.com/codebude/QRCoder/wiki. [Accessed: 11-Nov-2017].

[56] “Android (operating system),” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Android_(operating_system). [Accessed: 11-Nov-
2017].

[57] “Android 6.0 APIs,” Android Developers. [Online]. Available:
https://developer.android.com/about/versions/marshmallow/android-6.0.html.
[Accessed: 11-Nov-2017].

[58] Wireshark [Online]. Available: https://www.wireshark.org/. [Accessed: 11-Nov-
2017].

[59] “An Overview of the Android Architecture,” [Online]. Available:
http://www.techotopia.com/index.php/An_Overview_of the_Android_Architectu
re. [Accessed: 11-Nov-2017].

[60] “USBlyzer - USB Protocol Analyzer and USB Traffic Sniffer,” [Online].
Available: http://www.usblyzer.com/. [Accessed: 11-Nov-2017].

[61] Soon, T.J. (2008). QR code. Synthesis Journal, 2008, 59-78.
[62] Liu, Y., Yang, J., & Liu, M. (2008, July). Recognition of QR Code with mobile

phones. In Control and Decision Conference, 2008. CCDC 2008. Chinese (pp.
203-206). IEEE.

89

[63]

[64]

[65]

Nand, P., Singh, P. K., Aneja, J., & Dhingra, Y. (2015, March). Prevention of
shoulder surfing attack using randomized square matrix virtual keyboard. In
Computer Engineering and Applications (ICACEA), 2015 International
Conference on Advances in (pp. 916-920). IEEE.

Vinothini, Saranya, and Vasumathi, “A Study On Diffie-Hellman Algorithm in
Network Security,” International Journal Of Engineering And Computer Science
ISSN:2319-7242, vol. 3, no. 7 July 2014, pp. 7346—-7349.

Michel Abdalla, Mihir Bellare, and Phillip Rogaway, “DHIES: An encryption

scheme based on the Diffie-Hellman Problem”, In Proc.of ACM CCS ’01, ACM
Press September18,2001.

90

APPENDIX A

= W

Email or Phone Password

facebook .

Forgc

Recent Logins Create a New Account

Click your picture or add an account. It's free and always will be.

o (1]

First name Last name

o Mobile number or email

New password

Birthday
Why do | need fo provide my
Nov 14 1992[v|

birthday?

John Add Account

O Female © Male

By dlicking Create Account, you agree to our Terms and that you
have read our Data Policy, including our Cookie Use. You may
receive SMS Notifications from Facebook and can opt out at any

Figure 46: Screenshot of the desktop application home page.

@0 0

facebook I

Email or Phone Password

Recent Logins \ New Account

Click your picture or add an account.

o (1]

ays will be.

Last name

or email

L+

John Add Account 1952 Why do | need to provide my
birthday?

' Female) Male

By clicking Create Account, you agree to our Terms and that you
have read our Dala Policy, including our Cookie Use. You may
receive SMS Motifications from Facebook and can opt out at any

Figure 47: Desktop application displaying QR code.

91

View

rol

Untitled2.png - Paint

facebook.com

faceboco

Click your picture

Select Bluetooth Device

B280 i MY TESTING DEVICE
Keyboard Fﬁi Phone
j LG HBS900 i Rahil Karim Ali (Galaxy AT)
Recent L % Bluetooth headset P:ulnﬁa”m e v Account
B mohsin khoja DSCS9
e Phone Phone

(]

Last name

¢ Casey Donovan's MacBook
P Laptap

@ If you don't see the device that you want to add, make sure that it is turned on. Follow the setup instructions
that came with the device, and then click Search Again.

John

ihy do | need to provide my

Search Again oK Cancel frthday?

By clicking Create Account, you agree to our Terms and that you
have read our Data Policy, including our Cookie Use. You may
receive SMS Nofifications from Facebook and can opt out at any [v]

Figure 48: Desktop application searching Bluetooth devices.

92

APPENDIX B

N 3 7T .l 4% & 3:40 PM @ #E B NNXTF il 8% 3:40 PM

My Application My Application

Username
Password
SEND VIA WIFI
Url
SEND VIA BLUETOOTH
SAVE
SEND VIA NFC
INSERT CREDENTIALS
VIEW CREDENTIALS

Figure 49: Mobile application home page. Figure 50: Mobile application insert credential page

93

My Application

facebook.com
testingforthesis123@gmail.com

fb.com
testingforthesis123@gmail.com

gmail.com
testingforthesis123@gmail.com

Figure 51: View Credential page

94

Q= EH B NNXFT 4%m 3:43 PM

My Application

Figure 52: Scan QR code

LIl N 2 NXT il 6% 5 3:43 PM

My Application

1-TAP

2- SCAN QRCODE

3-TAP

Figure 53: NFC page

95

