

USING SMARTPHONE TO PREVENT KEYLOGGING AND SHOULDER SURFING

by

RAHIL KARIM ALI

Submitted in partial fulfilment of the requirements

for the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

December 2017

© Copyright by Rahil Karim Ali, 2017

ii

I dedicate this thesis work to

My beloved parents Karim Ali and Mehrbano Ali for their unconditional love,

My Supervisor Dr. Srinivas Sampalli for his guidance, support and motivation

throughout the research work,

My Siblings Shoaib Ali and Sanam Ali who believed in me

And

To my best friend Sehrish Khawaja who stood by my side.

iii

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT .. x

LIST OF ABBREVIATIONS USED ... xi

ACKNOWLEDGEMENTS .. xiii

CHAPTER 1 INTRODUCTION ... 1

1.1 BRIEF INTRODUCTION OF THE TERMS AND CONCEPTS .. 1

1.1.1 PASSWORD ATTACKS .. 1

1.1.2 DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM .. 4

1.1.3 HASHING ... 4

1.2 RESEARCH PROBLEM ... 5

1.3 Introduction to the proposed approach .. 6

1.4 OUTLINE OF THESIS ... 7

CHAPTER 2 BACKGROUND ... 8

2.1 KEYLOGGING .. 8

2.1.1 SOFTWARE KEYLOGGERS .. 8

2.1.2 HARDWARE KEYLOGGERS ... 9

2.1.3 WORKING OF KEYLOGGERS .. 10

2.2 SHA-256 ... 12

2.3 SYMMETRIC KEY CRYPTOGRAPHY ... 13

2.4 AES-128 .. 14

2.4.2 AES ENCRYPTION PROCESS ... 15

2.4.2 AES DECRYPTION PROCESS ... 18

2.5 DIFFIE-HELLMAN .. 18

2.5.1 MAN-IN-THE-MIDDLE ATTACK: ... 20

CHAPTER 3 RELATED WORK ... 22

3.1 LITERATURE SURVEY ON KEYLOGGING AND SHOULDER SURFING 22

3.1.1 KEYLOGGING ... 22

3.1.2 SHOULDER SURFING ... 25

3.2 LITERATURE SURVEY ON DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM 29

iv

CHAPTER 4 METHODOLOGY .. 33

4.1 Brief Overview of Proposed Approach .. 33

4.2. Detailed Description of proposed approach .. 34

4.2.1 CREATING CONNECTIONS BETWEEN TWO DEVICES .. 37

4.2.2 DIFFIE-HELLMAN KEY EXCHANGE ... 43

4.2.3 Verify Secret Key ... 44

4.2.4 ENCRYPT AND DECRYPT DATA .. 45

CHAPTER 5 IMPLEMENTATION .. 48

5.1 DEVELOPMENT ENVIRONMENT .. 48

5.1.1 PROGRAM ARCHITECTURE ... 49

5.1.2 JAVA ENVIRONMENT AND LIBRARIES USED ... 49

5.1.3 C# ENVIRONMENT AND LIBRARIES USED ... 52

5.2 IMPLEMENTATION DETAILS OF THE PROPOSED APPROACH .. 53

5.2.1 RANDOM STRING GENERATION: .. 56

5.2.2 QRCODE GENERATION: ... 56

5.2.3 SOCKET CONNECTIONS: .. 57

5.2.4 GENERATING ‘p’ ‘g’ AND ‘TA’: .. 58

5.2.5 GENERATING RANDOM SECRET INTEGER: ... 59

5.2.6 EXCHANGE ‘P’ ‘G’ AND ‘TA’: ... 60

5.2.7 VERIFY SECRET KEY USING HASHING: ... 61

5.2.8 ENCRYPT AND DECRYPT DATA: ... 62

5.2.8 DATABASE ACCESS AND QUERIES ... 64

5.2.9 PERMISSIONS REQUIRED FOR ANDROID APPLICATION: .. 65

CHAPTER 6 EXPERIMENTAL RESULTS AND ANALYSIS 67

6.1 EXPERIMENTAL SETUP ... 67

6.2 EVALUATION OF THE PROPOSED APPROACH.. 68

6.2.1 Testing over the Wi-Fi medium. ... 68

6.2.2 Testing over the Bluetooth medium. .. 74

6.2.3 Testing over the NFC medium .. 77

6.3 SUMMARY OF THE EXPERIMENTAL RESULTS .. 79

Chapter 7 CONCLUSION AND FUTURE WORK .. 80

7.1 LIMITATIONS .. 81

7.2. Future Work .. 81

v

REFERENCES ... 84

APPENDIX A .. 91

APPENDIX B .. 93

vi

LIST OF TABLES

Table 1: Development environment for the Desktop Application. 48

Table 2: Development environment for the Mobile Application. 49

Table 3: Mobile Device Used for testing. .. 49

vii

LIST OF FIGURES

Figure 1: Shoulder surfing [37] .. 2

Figure 2: PS/2 keyloggers [36]. .. 9

Figure 3: USB keyloggers [36]. .. 10

Figure 4: Working of keylogger [9] ... 11

Figure 5: Sending log file to the intruder [9]. ... 12

 Figure 6: Cryptographic algorithms [21] ... 14

Figure 7: Schematic of AES structure [22] .. 15

Figure 8: AES encryption process [22]. ... 16

Figure 9: Byte substitution [23]. ... 16

Figure 10: Shift rows [23] .. 17

Figure 11: Mix column [23]. .. 17

Figure 12: Diffie-Hellman key exchange algorithm [25]. .. 19

Figure 13: MITM attack in DH [26]. .. 21

Figure 14: Virtual Keyboard [35]. .. 23

Figure 15: Virtual Keyboard changing all values [35]. .. 24

Figure 16: Virtual keyboard area division [35]. ... 24

Figure 17: Set of images [38] ... 26

Figure 18: Selection region on an image [38]. ... 27

Figure 19: Working of PassBoard. [63] .. 29

Figure 20: Overview of the proposed approach. .. 33

Figure 21: Overview of the mobile application. ... 34

Figure 22: Overview of the desktop application. ... 35

viii

Figure 23: Database table structure .. 36

Figure 24: Screenshot of the desktop application ... 37

Figure 25: Initiating connection through Wi-Fi ... 39

Figure 26: Initiating connection through Bluetooth ... 40

Figure 27: Initiating connection through NFC ... 43

Figure 28: The Diffie-Hellman timing diagram. .. 45

Figure 29: Encryption and decryption process. .. 46

Figure 30: Initiating Wi-Fi connection between Desktop and Mobile App. 69

Figure 31: Sending Diffie-Hellman parameter P via Wi-Fi ... 70

Figure 32: Sending Diffie-Hellman parameter G via Wi-Fi ... 70

Figure 33: Sending Diffie-Hellman parameter TA via Wi-Fi. ... 71

Figure 34: Acknowledgment packet. .. 72

Figure 35: Sending message digest. ... 73

Figure 36: Sending Encrypted Credentials. .. 73

Figure 37: Packets captured during Bluetooth transfer. ... 74

Figure 38: Sending Diffie-Hellman parameter P via Bluetooth 75

Figure 39: Sending Diffie-Hellman parameter G via Bluetooth. 75

Figure 40: Sending Diffie-Hellman parameter TA via Bluetooth 76

Figure 41: Bluetooth Acknowledgment packet. ... 76

Figure 42: Sending message digest via Bluetooth. ... 77

Figure 43: Sending encrypted credentials via Bluetooth. ... 77

Figure 44: Sending Diffie-Hellman parameters via NFC ... 78

Figure 45: Sending credentials via NFC ... 79

ix

Figure 46: Screenshot of the desktop application home page. ... 91

Figure 47: Desktop application displaying QR code. ... 91

Figure 48: Desktop application searching Bluetooth devices. ... 92

Figure 49: Mobile application home page………….……………………………………93

Figure 50: Mobile application insert credential page ... 93

Figure 51: View Credential page……………………. ... 94

Figure 52: Scan QR code……………..... ... 94

Figure 53: NFC page .. 95

x

ABSTRACT

Intruders have developed many methods to obtain sensitive information- some of the

information is private and confidential such as username and password. Although strong

cryptographic algorithms and authentication schemes have been developed by other

researchers, the credentials can be easily cracked through attacks such as brute-force,

dictionary, shoulder surfing, and keylogging. This thesis presents a new approach to

prevent two attacks, namely, keylogging and shoulder surfing. We propose a technique to

login users into a secure account without entering their usernames and passwords on a

physical or virtual keyboard. The usernames and passwords are stored in the smartphone

and can be transferred to the system using Wi-Fi, NFC (Near-field communication) or

Bluetooth technologies. Furthermore, the usernames and passwords are encrypted using

AES-128 encryption algorithm. Since AES-128 encryption algorithm requires a secure

key to encrypt data, we have used Diffie-Hellman key exchange algorithm to generate

the secure key. Moreover, the secure key is verified using the one-way hash function

SHA-256 as Diffie-Hellman is susceptible to man-in-the-middle attacks. A proof of

concept prototype has been implemented and tested using Wireshark and USBlyzer to

analyze the network traffic and to ensure that the credentials are transferred to the

desktop application in an encrypted form.

xi

LIST OF ABBREVIATIONS USED

WORA Write Once Run Anywhere

SDK Software Development Kit

NFC Near-Field Communication

IDE Integrated Development Environment

API Application Programming Interface

NDEF NFC Data Exchange Format

USB Universal Serial Bus

MITMA Man In The Middle Attack

RAT Remote Administration Trojan horse

CCTV Closed Circuit Television

PC Personal Computer

ATM Automated Teller Machine

DH Diffie Hellman

Wi-Fi Wireless Fidelity

SSL Secure Sockets Layer

xii

SSH Secure Shell

IPSec Internet Protocol security

AES Advanced Encryption Standard

xiii

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Dr. Srinivas Sampalli for his guidance and

support. This work would not have been possible without his support.

I wish to express my sincere thanks to my family, my parent Karim Ali and Mehrbano

Ali for their unconditional love and support in all aspect of my life, my siblings Shoaib

Ali and Sanam Ali for their support, trust and love.

I would also like to thank my best friend Sehrish Khawaja who was always there for

helping me in my difficult times, for all the emotional support, for believing in me and

for motivating me in all my ups and downs.

Last but not the least I would like to thank all teachers of my entire academic career for

sharing their knowledge and wisdom throughout my entire life and for making me

capable to achieve this milestone.

1

CHAPTER 1 INTRODUCTION

We will begin our journey of this thesis by providing a brief introduction about various

terms and concepts that are used in different chapters. We will then discuss the research

problem followed by an overview of the proposed solution and the work done for

preventing keylogging and shoulder surfing.

1.1 BRIEF INTRODUCTION OF THE TERMS AND CONCEPTS

1.1.1 PASSWORD ATTACKS

Passwords are the key component to authenticate the user to any system. Depending on

the authentication scheme the type of password can be in text, graphical, or biometric

form. Passwords play a vital role to authenticate users to various type of applications

such as ATM machines, online accounts, computer logins etc. As the password protects

the system from non-legitimate users, cybercriminals develop techniques to perform

malicious activities such as stealing data, identity, and passwords. Intruders make the

system vulnerable by accessing the important information or by using different software

programs and can steal sensitive information from the system. In this section, we will

briefly discuss the various types of attacks through which passwords and other

information can be stolen.

a) Brute force attack:

For cracking short passwords, Brute force attack is very a fast technique. It

usually works for short passwords and is not very useful for longer passwords. It

is an attack in which attacker uses all possible combinations to retrieve password

2

or PIN. Therefore, it is recommended to use strong and longer passwords with the

combination of alpha, numeric and special characters.

b) Dictionary attack:

Users commonly uses their names, date of births or simple words taken from the

dictionary which can be easily judged by the attacker [8]. Attackers make a list of

the most commonly used words and apply all these words to crack the password,

which is also referred to as a dictionary attack. This attack is sometimes faster

than brute force attack [7].

c) Shoulder surfing:

Shoulder surfing is done by observation technique. The attacker can spy over

victim’s shoulder to get the password, PINs, and other sensitive information while

the victim is typing it in his/her personal or public computer.

Figure 1: Shoulder surfing [37]

3

Usually, this attack takes place in public places where there are many people

around the user such as at a library’s computer, an ATM machine, a public

internet cyber cafe, or a shopping mall. There are various techniques for the

shoulder surfing which includes observing the hidden CCTV Camera or observing

the number of keys pressed by the user. The attacker then uses all the possibilities

to crack that password [8][9]. Our thesis work focuses on the prevention of this

password attack technique.

d) Keyloggers:

Keylogging is a technique of recording all the keys pressed by the user on a

physical or virtual keyboard. There are many keylogging software and hardware

tools available to perform this attack. Keylogging software can be installed on any

computer which makes a log file of the keys pressed and sends it to the attacker’s

computer or email address. The attacker will then get the information of all the

keys pressed by the user [8][9]. This attack is usually done on public computers,

as it is easy for attacker to access the public computers to install the malware

before another user access that computer. Our thesis work also focuses on the

prevention of this password attack.

e) Phishing attack:

This attack is basically the web-based attack, in which attacker redirects the user

to the fake website which is very similar to the original website. Suppose, the user

wants to access www.gmail.com. The attacker redirects the user to the fake

webpage which can be www.gmale.com. If the user doesn’t notice the change in

the website address, he/she will enter the username and password. The attacker

4

will immediately steal the username and password and have access to the user’s

sensitive information [7].

1.1.2 DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM

The Diffie-Hellman key exchange algorithm is used to share a secret key between two

parties. After exchanging the secret key, the two parties can communicate with each other

on any channel. While exchanging the key there is no authentication mechanism

available so the algorithm is easily attacked by the man-in-the-middle attack.

In our thesis, we have implemented the Diffie-Hellman for exchanging the key between

the mobile and the desktop application [15] [24]. We have considered the limitation of

the Diffie Hellman and improved the key exchanging mechanism to prevent man-in-the-

middle attack.

1.1.3 HASHING

Hashing refers to the conversion of data into a fixed size smaller value that represents the

original data, but cannot be used to retrieve the original data. Hashing is done by one way

hash function which maps the fixed size data in the arbitrary size. The output of the hash

functions is called hash values, digests, hash codes, and hashes. The advantage of using

hash is, it cannot be revert back as it not an encryption process but a one-way

cryptographic function [16] [17]. We have used the hashing technique in our project to

improve the Diffie-Hellman key exchange algorithm. The hashing algorithm which we

have used is SHA 256 which generates 256-bit (32-byte) unique signature for text.

5

1.2 RESEARCH PROBLEM

The internet has become the basic need for the modern world and people are using it for

almost everything such as mobile banking, confidential information sharing, chatting, and

social networking. A user is not just connected with the internet but connected with the

whole world via internet. Nowadays, internet users are facing many kind of attacks,

which aim to steal the user’s ID and password. Passwords play very important role while

doing different computing tasks. They provide security against unwanted access to our

personal resources [3]. Passwords are used in ATM machines, for accessing sensitive

information, logging into the computer system, and mobile authentication [2]. Text

passwords are the most common type of passwords and are considered as insecure

because there are many attacking techniques developed to steal them. It is always

recommended that text password should be complicated and consist of alphanumeric

characters [3]. However, they should be easily remembered by the user but difficult to

guess by pretender [4]. Users who choose easy and short password can be the target of

shoulder surfing, dictionary attack and brute force attack [5][6]. Other than this, there are

many malware used to make the system vulnerable and to collect the sensitive data [1].

Some malicious software also steals the passwords such as keystroke loggers [3]. Our

research work aims to mitigate these type of attacks for which we have considered the

following research questions:

1. How to protect the passwords while using it in the public or shared computer.

2. How to prevent keylogging and shoulder surfing attacks while using passwords in

public places.

6

This thesis provides the proposed solution and an in-depth research study done for

solving the research problem.

1.3 Introduction to the proposed approach

Our aim is to solve the research problem which is to prevent from keylogging and

shoulder surfing. To solve the problem we have proposed a system through which user

can access the username and password secretly. Our approach uses smartphones to access

the username and password and send it to the computer, rather than typing it on the

physical or virtual keyboard.

The user have to install our desktop and mobile application. The mobile application will

store user’s credentials (User name and password) of all the websites which the user

needs to access often on the public or personal computer. The user then just need to open

the desired webpage and use our mobile application to send the credentials required for

logging into the website. Therefore, the user do not need to type the username and

password on the physical or virtual keyboard to login. This is how we can prevent

shoulder surfing and keylogging because an attacker cannot see the password over the

shoulder and none of the keylogging software or tools can record the keys as they are not

pressed. The user’s credentials can be sent to the desktop application through three

different mediums which are Wi-Fi, Bluetooth, and NFC. The user can select any of the

methods to send the credentials from the mobile to the desktop application. The data will

be sent in an encrypted form by a private key cryptosystem or symmetric key

cryptosystem. To encrypt the data, we have used AES 128 encryption algorithm. The key

required for encryption will be exchanged through the Diffie-Hellman key exchange

7

algorithm. As the Diffie-Hellman key exchange algorithm is vulnerable to man-in-the-

middle attack, we have used an improved version of the Diffie-Hellman which uses

SHAH 256 hashing algorithm.

The proposed approach also works as a password manager as all the passwords are saved

and can be update using the mobile application. All the passwords are stored locally in

the mobile device and cannot be accessed or managed through any other system or

webpage.

1.4 OUTLINE OF THESIS

The rest of the thesis is organized as follows: Chapter 1 introduces the various terms and

concepts that are used in the report later. It also provides a brief description of password

attacks and an introduction of the proposed approach. Chapter 2 provides the background

details of keylogging, SHA-256, symmetric key cryptography, AES-128 and the Diffie-Hellman key

exchange algorithm. In chapter 3, we have provided a literature review which describes the

work done by other researchers on the Keylogging and shoulder surfing attacks and different

approaches to mitigate these attacks. Moreover, it also discusses the security issues in Diffie-

Hellman key exchange algorithm and different methods to overcome these issues. Chapter 4

presents the proposed approach to prevent keylogging and shoulder surfing attacks. Chapter 5

discusses the implementation and technical details of the proposed approach. Chapter 6

provides an in-depth description of the experiment conducted to test the proposed approach.

Finally, the report ends with the conclusion (Chapter 7) of our thesis work and discusses the

limitations and possible enhancements that can be done in future. Appendix A contains the

screenshots of the desktop application and Appendix B contains the screenshots of the mobile

application.

8

CHAPTER 2 BACKGROUND

2.1 KEYLOGGING

Keyloggers are also called keystroke loggers or system monitors. It can be a hardware

device or a software, which monitors the key strokes pressed in any specific computer in

which the keylogger is installed. It can be used for negative and positive both purposes.

Parents use the keylogger to monitor their children’s activities on computer, private

investigators use it for evidence, companies use it for employee monitoring, analysts and

developers use it for studying human interaction with the system. However, there are

many unlawful uses of the keyloggers. Cybercriminals use keyloggers to steal the

confidential information, username and passwords, identities, and banking information.

Most of the time attackers do not require physical access to the victim’s computer. They

trick the user to download a spyware and execute that as a RAT Trojan horse. The

software will have two files which get installed in the same directory. The first file is the

dynamic link library (DDL) file, which is responsible for recording the keys pressed and

the second file is an executable file (.EXE) which is responsible for installing the DDL

file and triggers it to work [10]. The keylogger software will record the keystrokes

pressed by the user and send the information to the attacker via the internet. Different

keylogging techniques are now explored by attackers in which the two main techniques

are software keyloggers and hardware keyloggers.

2.1.1 SOFTWARE KEYLOGGERS

Monitoring keys through software keyloggers is based on operating systems [11][12]

because the information of keystrokes is being passed between the computer keyboard

interface and the operating system OS. Keylogger software uses the hooking mechanism

9

through which it can capture the data from the keyboard. The data is then sent to the

attacker by copying it on a hard drive or by sending it via the internet.

2.1.2 HARDWARE KEYLOGGERS

A hardware keylogger is a circuit which is located between the computer and keyboard.

Figure 2 shows the two types of PS/2 keyloggers.

Figure 2: PS/2 keyloggers [36].

10

Figure 3: USB keyloggers [36].

Figure 2 and figure 3 shows that the keyloggers are directly connected to the computer.

The other way to install the hardware keylogger is to install it in a standard keyboard.

2.1.3 WORKING OF KEYLOGGERS

The Keyloggers are active during the time when the key is pressed, and the pressed key

displayed on the monitor. Figure 4 shows the working of keylogger spyware attacks. The

three users are using the different internet services. The attacker is present between them,

making sure that somehow the user installs the spyware in the computer. Software seems

to be legitimate but actually it is to fool users. When the user downloads and installs it,

all the key strokes of the keyboard are recorded and saved in the log file. Then the log file

is sent to the attacker periodically via email. The red arrows in figure 4 shows the entry of

the keylogger.

11

Figure 4: Working of keylogger [9]

Figure 5 shows that as soon as the log file is created, it is sent to the intruder. The blue

lines shows the transfer of email containing log file and confidential information from

user’s computer. If this act is done continuously then it can cause a huge loss to the user.

12

Figure 5: Sending log file to the intruder [9].

2.2 SHA-256

There are a number of algorithms developed for hashing one of which is SHA-256, which

we have used to verify the secret key generated by the Diffie-Hellman key exchange

algorithm. SHA stands for secure hashing Algorithm, which was developed by the

National Institute of Standards and Technology (NIST). The newer versions SHA-256,

SHAH-384, SHAH-512 (numbers represent the length of bits) were published in 2002

[18].

The two-different version of this algorithm are SHA-1 and SHA-2. They are different in

construction and bit-length of signature. SHA-2 is the successor to the SHA-1 as it was

13

an improved version of the algorithm. SHA-1 is 160-bit hash and SHA-2 comes in a

variety of lengths in which the most popular hashing algorithm is SHA-256. Hashing

algorithm creates the unique hashes for every possible input, which is irreversible. There

are two possible values of bit which are 0 and 1. So the number of possible combinations

generated can be expressed as the number of possible values raised to the number of bits.

So, the SHA-256 will have 2256 possible combinations. The result of 2256 is a huge

number and it has a less chance that two values will generate the same hash [19].

2.3 SYMMETRIC KEY CRYPTOGRAPHY

Cryptography is a modern encryption technique, which was first designed to secure the

communication of military. In this era, the internet has grown rapidly and cryptographic

techniques are required to secure the communication over the internet. Cryptography can

be classified into two types: Symmetric Key cryptography and Asymmetric key

cryptography. The Symmetric-key cryptography is also known as single-key or private-

key cryptography as it uses one private key to encrypt and decrypt the information. Some

popular symmetric key algorithms are shown in figure 6.

Asymmetric-key cryptography is also known as public key cryptography, which uses two

different keys to encrypt and decrypt the information; one is the public key and other is

the private key. Figure 6 also shows some well-known Asymmetric key algorithms [20]

[21]

14

Figure 6: Cryptographic algorithms [21]

We have used Symmetric key cryptography in our thesis work. AES 128 is used to

encrypt and decrypt the user credentials when they are sent from mobile to desktop

application.

2.4 AES-128

AES (Advanced Encryption Standard) -128 is also known as Rijndael, which is use in the

encryption of an electronic data. It was established by the U.S NIST (National Institute of

standards and technology) in 2001. It is widely adopted and most popular symmetric

algorithm and six times faster than triple DES. Triple DES was designed to overcome the

vulnerability against exhaustive key search attack but it was found slow.

2.4.1 WORKING OF AES

AES is based on ‘substitution-permutation network’. It is based on a series of linked

operations, some operations replace inputs by specific outputs which is called

substitution. However, other operation shuffle the bits around, which is called

15

permutations. The number of rounds in AES depends on the length of key such as 10

rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit keys. Every

round uses a different 128-bit round key and it is derived from the original AES key [22].

Figure 7 shows the schematic of AES structure.

Figure 7: Schematic of AES structure [22]

2.4.2 AES ENCRYPTION PROCESS

Each round in the encryption process consist of four sub-processes. The process of first

round is shown in Figure 8.

16

Figure 8: AES encryption process [22].

a) Byte substitution: In this step, each byte is replaced with another byte according

to the lookup table. Figure 9 shows the byte substitution.[23]

Figure 9: Byte substitution [23].

b) Shift rows:

All the four rows of the matrix is shifted to the left side. The entries which fall off

are re-inserted from the right side of the row. It works as follows: The first row is

not shifted, second row is shifted one byte to the left, third row is shifted two

17

positions to the left, fourth row is shifted three positions to the left and at the end

the result will be new matrix which consist of the same 16 bytes [22]. Figure 10

shows the shift rows.

Figure 10: Shift rows [23]

c) Mix columns:

It takes the four byte of one column as an input which are transformed using a

special mathematical function. It will then result in four new bytes which are

replaced by the original column. [22]. Figure 11 shows the mix column [23]

Figure 11: Mix column [23].

d) Add round key:

The 16 bytes of the matrix are then considered as 128 bits which is then XORed

18

to the round key of 128 bits. The output of last round is considered as cipher text

[22].

2.4.2 AES DECRYPTION PROCESS

The AES decryption process is similar to the encryption process but it is in the reverse

order. Each round have four processes: [22]

1. Add round key

2. Mix columns

3. Shift rows

4. Byte substitutions

All these process are discussed earlier in section 2.4.1.

2.5 DIFFIE-HELLMAN

The Diffie-Hellman key exchange algorithm is used to exchange the cryptographic keys

securely over a public network between two parties. It was the first public-key protocol

which was conceptualized by RALPH Merkle and it is an earliest practical example of

public key exchange in the field of cryptography. The Diffie-Hellman key exchange

algorithm allows two parties to establish a shared secret key which is used for encryption.

[24][25]

1. Alice and bob choose two prime numbers g and p which are not meant to keep

secret.

2. Alice and Bob chooses a secret number (a) and (b) respectively, but they don’t tell

anyone.

19

3. Now, Alice compute ga mod p and result will be called A.

4. Bob will compute gb mod p and result will be called B.

5. Alice and Bob exchange their results A and B with each other.

6. Now, Alice will take the number send by Bob and do the exact same operation

with it. So the operation will be Ba mod p.

7. Bob will also do the same operation with the result send by Alice. Which will be

Ab mod p.

8. The magic here is the answer Bob will get at the end will be the same answer

which Alice got.

Figure 12 shows the general illustration of the Diffie-Hellman key exchange algorithm.

[25]

Figure 12: Diffie-Hellman key exchange algorithm [25].

20

At the end, Alice and Bob have the same value which will be use as a secret key. Alice

and Bob get the same value because of the property of modulo exponents, which

is:[24][25]

(ga mod p) b mod p = gab mod p

(gb mod p) a mod p = gba mod p

Alice and Bob will get same answer no matter in which order they do the exponentiation.

Alice will do in one order and Bob will do in other order. They both will never know the

secret number they used to get the results but they arrive at the same result at the end.

[24][25]

In this thesis project we have used the Diffie-Hellman key exchange algorithm to share

the secret key between the mobile and desktop application. The Drawback of Diffie-

Hellman is the man-in-the-middle attack. The section 2.5.1 briefly describes Man-in-the-

middle attack.

2.5.1 MAN-IN-THE-MIDDLE ATTACK:

The vulnerability in the Diffie-Hellman key exchange is man-in-the-middle attack. The

following points explain how man-in-the-middle attack takes place in Diffie-Hellman key

exchange algorithm.

1. In the attack the attacker intercepts Alice’s public number and change it with new

number and sends to Bob.

2. When Bob will transmit his public value, the attacker substitutes it with new

number and sends it to Alice.

21

3. Attacker and Alice agree on the same shared secret key

4. Attacker and Bob also agree on the same shared secret key.

5. Attacker can decrypt any messages sent out by Bob or Alice.

The vulnerability is because of lack of authentication while exchange the numbers [26].

Figure 12 shows the illustration of man-in-the-middle attack

Figure 13: MITM attack in DH [26].

22

CHAPTER 3 RELATED WORK

We are interested to answer our research questions stated in section 1.2. Our aim is to

prevent the two main password attacks which are keylogging and shoulder surfing. To

start our research work, we have studied some research papers which describes the

technique and approaches developed by other researchers to overcome the password

attacks.

This section includes the work done to prevent shoulder surfing and keylogging, some

limitations of these proposed approaches and how we have make our approach better by

overcoming these limitations. This section also discusses some work done on Diffie-

Hellman key exchange algorithm.

3.1 LITERATURE SURVEY ON KEYLOGGING AND SHOULDER

SURFING

There is a lot of work done by other researchers to prevent keylogging and shoulder surfing. Our

related work on these attacks describes the approach by other researchers.

3.1.1 KEYLOGGING

In section 2.1, we have discussed some ways through which keyloggers are stealing the

sensitive information. There are several ways of mitigating the keylogging described by

different researchers. Researcher Parekh et al [35] have described the concept of virtual

keyboard. Which is basically a software that is used to mitigate the password attack by

Trojans. Virtual keyboard is an on-screen keyboard which uses mouse to enter sensitive

data like credit card details or passwords. Virtual keyboards has a limitation as Trojans

are becoming advanced which takes the screenshots on the mouse click event. The

23

screenshots are then sent to hackers at later time. Moreover, virtual keyboards are also

susceptible to shoulder surfing as attackers can observe the monitor screen and mouse

clicks over the shoulder. The researchers have further described their proposed technique

related to the virtual keyboard, which is anti-screenshot virtual keyboard. Researcher

have proposed a keyboard on which, when mouse curser move to any key, all the keys in

that row of the keyboard are changed to some special symbol like a hash (#) or an

asterisk(*). Figure 14 shows that when the mouse cursor moves on an Anti-Screenshot

Virtual Keyboard the top row has changed the key values to asterisk(*) [35].

Figure 14: Virtual Keyboard [35].

When any particular key is pressed, all the keyboard keys will change to asterisk. As a

result, the Trojan capturing the screenshot on mouse click will no longer be useful for the

attacker. Figure 15 shows that all the keys are changed by asterisks [35]

24

Figure 15: Virtual Keyboard changing all values [35].

The keyboard proposed by researcher is divided into different sections as shown in figure

16. Each time the key is pressed or the page is loaded, the order of the keys is changes in

each section. As a result, Trojan cannot find the input key, even if Trojan have captured

any picture of the virtual keyboard. Figure 16 shows the areas of which the keys are

changed [35]

Figure 16: Virtual keyboard area division [35].

Assume that if user has 8-bit password which only consist of characters, then the Trojan

will need approximately two million attempts to find the password and if user wants to

25

enter bank information then bank account usually get block after three unsuccessful

attempts. Anti-screenshot virtual keyboard provides high level of security.

Tom Olzak [36] describes some of the defensive measures that can be taken to prevent

keyloggers, which includes:

1. Lock the computer when not in use

2. Implement the physical security controls

3. Block the access to malicious websites

4. Apply security patches

5. Use keylogger detection software

6. Use screen-based virtual keyboards rather than giving input through the physical

keyboard.

7. Use automatic form filler software

8. There are some software solutions like GuardedID, which encrypts the keyboard

input so that keyloggers cannot detect the input.

3.1.2 SHOULDER SURFING

There is a lot of work done for the prevention of shoulder surfing such as the

implementation of graphical passwords, two way authentication, and virtual keyboards.

Virtual keyboard provides the protection against the keyloggers but still vulnerable for

shoulder surfing. There are many recent attempts made to improve the virtual keyboards

by loading and changing the layout dynamically to confuse the attacker. There are many

graphical password techniques introduced to authenticate the user but still they are

vulnerable to the attacks such as screenshot capturing or observing CCTV camera.

26

Md.Haque et al [38] have also proposed an approach of graphical passwords. In their

proposed approach the graphical password replaces the text passwords.

There are two phases for proposed approach. First is registration phase and second is

login phase.

REGISTRATION PHASE:

1. User will create his/her profile by giving proper information including username.

2. The user will be presented with the 25 images from which user will select any

number of image, user can also select one image or choose an image more than

once. The selection of images will be considered as password. This graphical

password will work as a first step of authentication. Figure 17 shows the set of

images which are presented to user on the registration phase.

Figure 17: Set of images [38]

27

3. After selecting the images, user will be asked to choose any one picture from that

for the further authentication process.

4. After that user will be presented with the set of different questions and for

answering each question user must point a region on the image. If there are three

questions, so user will point three regions on the image which will be called

region-of-answer (ROA). Figure 18 shows the selection of region on an image.

Figure 18: Selection region on an image [38].

LOGIN PHASE:

1. For logging into account, the system will ask the two-way authentication which user has

setup while registering.

2. In the first step, user will be asked for his/her username and graphical password which

was selected in the registration phase.

3. The order of the images provided to the user will be random each time user logs in.

4. After providing the correct images, the user will be provided with questions to

authenticate him/her second time.

28

5. Questions will also be random and to answer the question user have to choose the ROA

on the image.

6. If the authentication is successful, then user will be allowed to access the account.

There is a couple of limitations which we have considered for this approach which are as

follows:

1. The user has to remember a lot of images and regions to authenticate every time when

he/she tries to login. If the user has multiple accounts, then user needs to remember

the images and their ROA for each account to login. Our proposed approach gives the

better solution of this limitation as users don’t need to remember the any password to

authenticate themselves.

2. If the attacker is observing the user via CCTV while the user is selecting the images and

their ROA, then there is still a possibility of shoulder surfing attack. Our proposed

approach also gives the better solution as user don’t need to enter any password to

authenticate themselves.

Researcher Nand et al [63] have also considered these limitations and proposed an

approach named ‘PassBoard’ to tackle these limitation. PassBoard uses dynamic layout

that does not have any pattern therefore it is difficult for attacker to memorize or guess

next layout of the PassBoard. It is an extension in a google chrome browser which have a

randomized virtual keyboard containing keyboard keys in a square matrix format. There

are two separate matrices for alphanumeric and special characters. Alphanumeric is in

first block and special characters are in second block. Both have a same input method. To

select the desire character user will perform two button clicks. The first click (will be for

row click) can be any key in the same row of the desired character in the PassBoard. The

29

second click (will be for column click) can be any key in the same column of the desired

character in the PassBoard. This way user can input the whole password without pressing

any characters of his/her password. After the user is done, he/she can press the ‘Done’

button through which the password is copied into the clipboard and paste it in the

password field where it is required. This will also prevent the keyloggers to capture the

keystrokes and it would be difficult for an attacker to shoulder surf. Figure 19 shows the

working of PassBoard.

Figure 19: Working of PassBoard. [63]

3.2 LITERATURE SURVEY ON DIFFIE-HELLMAN KEY EXCHANGE

ALGORITHM

In any type of network, the communication is very important part of it. It is important that

the data transfer from one node to another is always secure. Security is becoming very

30

important for the computer users and military. When the data is transferred between web

users and web servers or between mobile application and web server, it is necessary to

ensure the confidentiality, authenticity and integrity. The transfer of users’ credentials is

also very risky when it is transferred on an insecure channel. It is important to send it in

an encrypted form and communication between both the parties is always secure. Our

approach uses the Diffie-Hellman key exchange algorithm which shares the secret key in

a secure manner on an insecure channel. The shared secret key is important for both the

parties who may not have communicated with each other ever previously. With the help

of key, both the parties can encrypt their communication on an insecure channel. There

are many protocols which also uses the Diffie-Hellman to share the secret key such as

SSL, SSH and IPSec. [64] Michel Abdalla [65] have proposed a Diffie-Hellman based

encryption scheme which is also known as DHIES and DHAES and used in many draft

standards. DHIES is based on Diffie-Hellman which combines (a) symmetric encryption

method, (b) a message authentication code, and (c) a hash function. DHIES is chosen to

provide the security against cipher text attacks.

Furthermore, authors Chirstoph et al [30] uses some variations of Diffie-Hellman key

exchange algorithm to solve the secure key distribution problem in their system. Authors

further mentioned that they are using key authentication center (KAC) for authenticating

all public keys which was a major problem. In this approach, the facility only wants the

name of the partner that the user wants to communicate and a public key signed by KAC.

In our application, we have used Diffie-Hellman to do a security handshake between two

devices to develop a secure communication medium for exchange of credential. Diffie-

Hellman can further be extended for security purposes with cryptography as mentioned

31

by Victor Boyco et al [31] that they are designing a password protected key exchange

protocol using cryptographically secured keys which should be kept secret between the

users to avoid the attacker from launching offline dictionary attacks. Authors have also

discussed an extended protocol called PAK-X in which the user has the plaintext version

of the passwords and server just has the verifier of the password, so even when the server

is compromised, the information is still safe.

The Diffie-Hellman itself is not secure as discussed by Nan Li [32]. Author says that the

Diffie-Hellman protocol can be easily attacked by the man-in-the-middle attack and the

attacker may pretend to be the authentic person for fraud. The Diffie-Hellman is a non-

authenticated key exchange protocol and does not offers authentication for the

communicating users and hence it is vulnerable to the man-in-the-middle attack. An

attacker in the middle can generate two distinctive Diffie-Hellman key exchanges with

both Alice and Bob and pretend to be Alice against Bob and vice versa, which will allow

the attacker to decrypt the message, read it and then re-encrypt the message and pass it

along. As we are aware of this limitation of man-in-the-middle attack, we have used the

hashing technique to overcome this limitation. We have used hashing to hash our secret

key and then send it to the other party so that attacker in the middle cannot decrypt that

key.

Researcher Bao et al [34] further discusses various problems of the Diffie-Hellman with

computational and decisional means. Authors are trying to find the relationship between

the variation of the Diffie-Hellman problem, which also includes the computational and

decisional cases. By finding the relation between them they could obtain reduction that

are valuable and that advantage could be used against all other variation as well. Authors

32

quote three main variation in their words as “We show that all three variations of

computational Diffie-Hellman problem: square Diffie-Hellman problem, inverse Diffie-

Hellman problem and divisible Diffie-Hellman problem, are equivalent with optimal

reduction” [34]. The authors used polynomial reduction and transformation for relating

the complexities. They didn’t find any appropriate solution for these problems but they

left these interesting problems for future researchers. With all these problems in the

Diffie-Hellman key exchange protocol and the research done on them I found that using

just Diffie-Hellman would not be enough, so in my application, I have used hashing to

further secure Diffie-Hellman where the user has created a hash function and the server

match that has function with the one that user has for authentication purpose.

33

CHAPTER 4 METHODOLOGY

4.1 Brief Overview of Proposed Approach

In this section, we will discuss a brief overview of the proposed approach. The proposed

approach consists of two components the mobile application that runs on a smartphone,

and the desktop application that runs on the client machine. The mobile application stores

all the credentials (username and password) related to a particular URL and transfers it to

the desktop application.

Figure 20: Overview of the proposed approach.

We have divided our proposed approach into four major phases as follows, all these

phases are discussed in detail in section 4.2.

1- Creating connections between two devices

2- Diffie-Hellman key exchange

3- Verify Secret Key

34

4- Encrypt and Decrypt data.

4.2. Detailed Description of proposed approach

In this section, we will discuss the proposed approach phase by phase in detail. Various

tasks are performed by the desktop and the mobile application. Figure 20 and 21 gives an

overview of the tasks performed by each application.

Figure 21: Overview of the mobile application.

35

The mobile application performs various tasks including the QR code scanning, initiating

a connection, computing secret key using the Diffie-Hellman key exchange algorithm,

verifying the secret key, and encryption using the cryptographic algorithm.

Figure 22: Overview of the desktop application.

36

The desktop and the mobile application works together to get the desired outcome. To

better understand the approach we will consider an example of a user that wants to login

to a website such as (facebook.com, gmail.com, etc.) the traditional method is to type the

username and password using a keyboard, and the user is easily logged into that website.

However, it can lead to some attacks such as shoulder surfing and keylogging. If any

keylogger is installed on the system, the credentials can be easily compromised. Our

approach proposed that instead of typing the credentials using a keyboard the user can

transfer the credentials from the smartphone using our mobile application. The user can

save all the credentials in the mobile application that he wants to access in public places.

The following table structure shows a snapshot of how the data can be stored in the

mobile application.

Figure 23: Database table structure

The mobile application provides the feature to insert, view and update credentials, so a

user can perform these tasks using the mobile application.

When a user wants to login to a website using our desktop application, he/she has to scan

the QR code through our mobile application. The QR code will be displayed on the

desktop application as the user selects a medium (NFC, Bluetooth, or Wi-Fi). The

37

following figure shows the screen shot of the desktop application and how the QR code

will be displayed.

Figure 24: Screenshot of the desktop application

Once the QR code is scanned, the mobile application will extract the information from

the QR code, get the credentials from the database, encrypts it and transfer it to the

desktop application using the selected medium. The desktop application will decrypt the

credentials and automatically login user to the website. During this process, there are

some significant tasks that are performed in the background which is discussed in detail

in the following subsections.

4.2.1 CREATING CONNECTIONS BETWEEN TWO DEVICES

There are three mediums (Wi-Fi, Bluetooth, and NFC) through which both the devices

(the client machine on which the desktop application is installed and the smartphone on

which the mobile application is installed) can connect. If the user selects the Wi-Fi

38

medium on both ends, the desktop application will generate and display a QR code. The

QR code contains the IP address of the client machine which is captured on runtime, the

port number on which the client machine is listening for any incoming connection and a

randomly generated string. The value of this string is different and random each time

when the user selects a medium. To make a connection over Wi-Fi the IP-address and

port number are the essential components.

When the mobile application scans the QR code it extracts the encoded information and

gets the IP-Address of the client machine, the port number on which the client machine is

ready to accept the connection and a random string (the use of this randomly generated

string is discussed in detail in section 4.2.3). Using the extracted IP-address and the port

number the mobile application initiates a connection and wait for the client machine to

accept the connection. Once the connection is established between both devices the

applications move to the next phase. The following diagram shows the tasks performed

by both the applications when the user selects the Wi-Fi medium.

39

Figure 25: Initiating connection through Wi-Fi

Instead of the Wi-Fi connection, if the user selects the Bluetooth connection on both

ends. The desktop application will display a list of all the devices that are discoverable

via Bluetooth and are in range. From the list of devices the user needs to selects the

device that has the mobile application installed on it. If the device is not previously paired

with the desktop application it will initiate the pairing process. The pairing is not needed

40

if both the application is already paired. After that the desktop application will display the

QR Code that only contains the random string as for the Bluetooth connection the device

do not need IP-address or port number. The mobile application will then scan the QR

Code and continue to the next phase of the proposed approach. The following diagram

shows the tasks performed by both the applications when the user selects the Bluetooth

medium.

Figure 26: Initiating connection through Bluetooth

41

The NFC approach is slightly different from the W-Fi and the Bluetooth approach. The

smartphone on which the application is installed should be NFC enabled. For the desktop

application to receive data via NFC either an NFC reader should be attached to the

machine or the machine should be NFC enabled. The NFC reader reads the NFC data and

transfers it to the USB port. We have used an NFC enabled device (phone or tablet) and

developed an application that reads the NFC data and passes it through the USB port; this

will act as a NFC reader.

If NFC is selected on both the applications, the user has to bring the smartphone and the

NFC reader closer to send data via NFC. After that, the desktop application will wait

until it receives the NFC message that contains some information. It will then display a

QR code that needs to be scanned by the mobile application which contains some Diffie-

Hellman key exchange parameters, random string, and the initialization vector. We will

discuss all these parameters in detail in the following subsections. When the mobile

application scans the QR code it extracts the information and proceed to the next phase.

The following diagram shows the tasks performed by both the applications when the user

selects the NFC medium.

Our proposed approach is designed in such a way that user needs to select a medium (Wi-

Fi, Bluetooth or NFC) in order to transfer the credentials. The approach can be extended

to make a default connection type so that user do not have to select a medium each time

when the user needs to login to a web account. The advantage of implementing the

default connection type is user do not have to perform any additional action on the

desktop application. The desktop application will automatically show the QR code

42

whenever there is a web page that requires credentials. The mobile application will then

scan the QR code to proceed to next phases. There will not be a significant change in the

mobile application as the user needs to perform an action to open the camera for scanning

the QR code. The default connection type will always show a QR code on each page

containing some login fields; and if the user wants to manually login to the web account

it will be annoying for the user. The type of the connection can also be encode in the QR

code due to which the user will not have to manually select the medium from the mobile

application.

Eavesdropping, data modification and interception are some type of the attacks that can

be performed on all of the three mediums. Although to transfer the NFC data the devices

need to be close to each other, but the attacker can use some equipment such as antenna

to perform these types of attacks. Furthermore, Bluejacking, Bluesnarfing and

Bluebugging are some Bluetooth attacks that can be done on the Bluetooth devices.

Considering all these types of attacks we need to transfer the credentials in a secure way.

We have used AES-128 encryption to encrypt the credentials before sending it out on any

medium. The encryption process is discuss in section 4.2.4.

43

Figure 27: Initiating connection through NFC

4.2.2 DIFFIE-HELLMAN KEY EXCHANGE

After the connection is made between the two devices, both the applications need a secret

key to encrypt and decrypt credentials. The secret key is generated using Diffie-Hellman

key exchange algorithm. The mobile application generates two random prime number ‘p’

and ‘g’, generates a random secret integer and computes TA. Except for the secret

44

integer, all these values are transmitted to the desktop application using the selected

medium. The desktop application acknowledges for each value received. The desktop

application then generates a random secret integer and compute the TA using the

received ‘p’ and ‘g’. The desktop application then sends the computed TA to the mobile

application. Both the applications have ‘p’, ‘g’ and TAs, the secret integer is not

transmitted and kept secret from others. Both the devices have all the parameters to

compute the secret key that will be used to encrypt and decrypt data.

4.2.3 Verify Secret Key

Once the secret key is generated it needs to be verified as there is a chance of MITM

attack. The Diffie-Hellman key exchange algorithm and how the secret key can be

compromised through MITM attack is discussed in detail in section 2.3. To verify that the

secret key is not compromised through MITM attack both the devices must have same

secret key.

The one-way hash function and the random string that was generated in section 4.2.1 is

used to verify the secret key. Both the application uses the randomly generated string and

the one-way hash function (SHA-256) to compute a message digest. The desktop

application sends the message digest to the mobile application. The mobile application

verifies whether the received message digest is equal to the message digest generated by

the mobile application. If both the message digest are equal, that means both the devices

have the same secret key, and the key is not compromised via MITM attack. The

following diagram shows the overview of the Diffie-Hellman and the key verification

process.

45

Figure 28: The Diffie-Hellman timing diagram.

4.2.4 ENCRYPT AND DECRYPT DATA

Now using the secret key both the applications can encrypt and decrypt data. The

proposed approach uses symmetric key AES-128 encryption algorithm. The algorithm

needs a secret key and an initialization vector to perform the cryptographic operations.

The initialization vector is generated by the desktop application and transferred it to the

mobile application. The mobile application uses the same initialization vector to perform

encryption and decryption. The following figure shows the overall encryption and

decryption phase.

46

Figure 29: Encryption and decryption process.

Once the mobile application receives the initialization vector, it queries the database and

gets the desired credentials. The mobile application then encrypts the credentials using

the initialization vector and the secret key and sends it to the desktop application. Upon

receiving the encrypted credentials, the desktop application decrypts the credentials and

automatically login user on that website.

The overall proposed approach is useful when the user needs to login to any web account

using the desktop system. Although most of the users use smartphone for performing

their daily computational task such as for banking related activities, using social media or

checking or replying to emails; but there are some cases where the user have no option

other than to use desktop systems. If the user wants to access some legacy system or

47

wants to login to a remote location the user is bound to use desktop system as smart

phones are not capable enough to perform such tasks. Also, organizational accounts are

easy and convenient to use in a desktop system rather than on a smartphone such as

accessing a printer or project management tools.

48

CHAPTER 5 IMPLEMENTATION

5.1 DEVELOPMENT ENVIRONMENT

The proposed approach consists of two applications the desktop application and the

mobile application. The desktop application was developed using C# on a Windows 8.1

operating system. The following table shows the development environment used for

developing the Desktop application.

Operating System Windows 8.1

IDE Microsoft visual studio 2017

Programming language C#

Processor Intel® core™ i5-5200U CPU @

2.20GHz

Installed Memory (RAM) 4.00 GB

Table 1: Development environment for the Desktop Application.

The Android mobile application was also developed on the same machine using the IDE

android studio 2.3.3. The programing language JAVA was used for developing the

Android application. Table 3 and 4 shows the development and testing environment for

the mobile app.

Operating System Windows 8.1

49

IDE Android Studio 2.3.3

Programming language Java 1.8.0_112

Minimum Android Support Version 4.0.3 (IceCreamSandwich)

Processor Intel® core™ i5-5200U CPU @

2.20GHz

Installed Memory (RAM) 4.00 GB

Table 2: Development environment for the Mobile Application.

Device Samsung Galaxy S4

Android 4.3

Table 3: Mobile Device Used for testing.

5.1.1 PROGRAM ARCHITECTURE

To implement the proposed approach, we have used the peer-to-peer architecture. We

have developed two applications a mobile app and a Desktop app. These two applications

can communicate peer-to-peer with each other using WIFI, Bluetooth or NFC. The

confidential data is sent in an encrypted form and is decrypted on the other hand.

5.1.2 JAVA ENVIRONMENT AND LIBRARIES USED

Java is an object-oriented computer programming language which is designed to have

minimum implementation dependencies. Java gains popularity due to its WORA (write

once run anywhere) feature which means that once the java code is compiled it lets the

application to run on any machine without recompiling. Java was initially developed at

Sun Microsystems by James Gosling, but it is now acquired by Oracle. As our approach

50

consists of a mobile application, we have developed the application for Android, which is

an open source mobile operating system and Java is used as the fundamental component

for developing Android applications [49]. There are many libraries and packages

available which are responsible for performing various tasks. We have used some of the

packages in our application which are discussed below.

i. java.security: The package java.security contains many classes that provide

various cryptographic operations. In our proposed approach we have used this

package for generating message digest using SHA-256 [44].

ii. java.crypto: The package java.Crypto contain classes that are responsible for

the cryptographic operations such as encryption, generating keys, and generating

Message Authentication Code (MAC) [46]. We have used this package to secure

the communication between the desktop and the mobile app. We have used AES-

128 encryption to encrypt and decrypt user credentials.

iii. java.net.Socket: This java.net package provides classes for implementing

network related tasks. The package provides the high and low-level API to deal

with sockets, addresses, interfaces, connections, URLs, and URIs [47]. We have

used Socket class of the java.net package for endpoint communication between

the desktop and the mobile app.

51

iv. android.nfc: The android.nfc was added in API level 9 which is responsible for

providing access to the NFC for reading and writing NDEF messages. The

NfcManager class of the android.nfc API represents the high-level manager to get

the device NFC adapter. The NfcAdapter class represents the NFC adapter of the

device which is responsible for performing NFC operations. We can get an

instance of the NFC adapter by ‘getDefaultAdapter()’ method and can use the

NdefMessage message class to encapsulate data in NDEF format.[]

v. android.bluetooth: The android.bluetooth API was added in API level 5 which

provides functionality including Bluetooth device scanning, making a connection

between devices and transferring data between connected devices.

vi. Zxing: Zxing is an open source library for Java to scan barcodes/QR codes [50].

We have used this library in our approach to scan QRCode that is displayed on

the Desktop application and extract the information from it.

Other packages used for the development of the Android application are java.io used for

input and output operations on particular sockets, java.math used for performing

mathematical operations including exponents, power and modulus, and java.util used for

collections objects including mutable array lists.

52

5.1.3 C# ENVIRONMENT AND LIBRARIES USED

C# is a general purpose object-oriented programming language developed by Microsoft

[51]. C# can be used to develop a wide variety of applications including Windows Form

applications, client-server applications, and database applications. [52]. We have used

C# to develop the desktop app and used the following libraries to implement various

tasks.

i. System.Net.Sockets: The socket API provides classes to implement network

related tasks. The API is used to create sockets, accept incoming connections,

send and receive data over the network. We have used Socket API in our desktop

app to perform socket creation and data related task over local WIFI network.

ii. 32Feet.Net: The 32Feet is shared source project to make Bluetooth and

Infrared technologies easily accessible with the C# code [53]. We have used this

project in our desktop app to discover and pair with the Bluetooth devices and to

transfer and receive data from the connected Bluetooth device

iii. System.Security.Cryptography: The security library provides services

related to cryptography such as secure encryption and decryption of data, random

number generation, hashing, and message authentication [54]. We have used this

library in our desktop app for AES encryption and decryption and to generating

message digest using SHA-256.

53

iv. System.Threading.Tasks: The threading library provides classes to perform

concurrent and asynchronous tasks [55]. We have used this library in our

approach to listen for any incoming connection asynchronously.

v. QRCoder: The QRCoder is responsible for generating QR Codes. The library is

written in C# which has no other dependencies [56]. We have used this library to

encode useful information such as IP-address and port number into a QR Code,

which will be scanned by the mobile application to retrieve such information.

Other libraries used for the development of the desktop app are System.Numerics used to

perform mathematical operation including exponents, modulus and power, and

System.Drawing used for displaying QR Codes.

5.2 IMPLEMENTATION DETAILS OF THE PROPOSED APPROACH

This section describes the implementation details of the proposed approach. The step by

step process between the mobile and the desktop app is discussed in detail in chapter 4. In

this section, we will discuss the implementation details of each step. Following are the

details of the major classes and their functionality of the desktop application.

i. MainForm.cs: This class plays a vital role in the desktop application as it

contains the fundamental logic of the entire application. This class is responsible

for all the primary operation including the main UI design. All the callbacks such

as button clicks, RunWorkerCompletedEventHandler were implemented in this

class. This class is also responsible for the WIFI, Bluetooth, and NFC socket

54

connections.

ii. AESEncryption.cs: As the name suggests, this class is responsible for the

encryption and decryption of the data using the AES algorithm. The

‘EncryptStringToBytes_Aes’ method takes data, secret key, and the initialization

vector as input parameters and returns the encrypted bytes. Similarly, the

‘DecryptStringFromBytes_Aes’ method takes the ciphertext along with the secret

key and initialization vector as input parameters and returns the decrypted text.

iii. DiffieHellman.cs: This class is generating and computing all the values that are

used in Diffie-Hellman key exchange. For example generating secret integer,

computing ‘TA’ based on the value of ‘p’ and ‘g’ and deriving secret key based

on the value of ‘TA1’ (sent by the mobile device), ‘P’ and ‘g’.

Unlike the desktop application which is a single page application, the mobile application

consists of multiple pages called Activity. Each functionality such as WIFI

communication, Bluetooth communication, NFC communication, insert and view

credentials are implemented in separate activities. Each activity is tightly integrated with

the java and an XML file. The java file contains the core logic of the class whereas the

XML file only deals with the UI related task. Some of the important classes and their

details are explained below.

i. NfcActivity.java: This class contains the basic logic for sending data via NFC.

The basic functionality of this class is to create and push NDEF message via

55

NFC. This class also implements the ‘onNdefPushComplete’ call back which is

triggered when the NDEF message is successfully sent.

ii. BluetoothActivity.java: The class contains basic logic for the Bluetooth

feature. It is responsible for requesting Bluetooth permission, listening for any

incoming Bluetooth connections, and sending and receiving data over the

Bluetooth channel.

iii. WifiActivity.java: Similar to the Nfc and Bluetooth activity class, this class also

contains the basic logic for communication but over a wifi medium.

iv. DiffieHellman.java: This class gives similar functionality as of

DiffieHellman.cs except for it is written in Java for the mobile application.

v. AESEncryption.java: This class is identical to the AESEncryption.cs class

except for it contribute to the mobile application rather than the desktop

application.

All these classes work closely with each other to give the desired functionality. We will

discuss the major operations that are performed in the proposed approach and how they

are implemented in the respective mobile and desktop application.

56

5.2.1 RANDOM STRING GENERATION:

The desktop application generates a 128-bit random string which is encoded in the form

of QR Code along with some other information (such as IP address and port number).

The QR Code is then displayed on the screen to be decoded by the mobile application. A

different random string is generated each time when the user selects a medium, or a

Diffie-Hellman key exchange is done. The following code snippet is used to generate the

random string.

Random random = new Random();

return randomString = new string(Enumerable.Repeat(chars,

stringLength)

.Select(s => s[random.Next(s.Length)]).ToArray());

5.2.2 QRCODE GENERATION:

The QRCoder library is used to generate the QR Codes from the given data. The QR code

contains the IP-address, port number, the URL for which we need the credentials and the

random string generated above. All these values are concatenated using a predefined

string which will be parsed on the mobile end. The QRCode class takes the data as input

and returns the QR Code in the Bitmap format which is then displayed in the picture box.

The following code snippet shows the generation of QR code.

QRCodeGenerator qrGenerator = new QRCodeGenerator();

QRCodeData qrCodeData =

qrGenerator.CreateQrCode(GetLocalIPAddress() + "$$" +

PORTNUMBER.ToString() + "$$" + textBox1.Text + "$$" +

diffieHellman.getRandomString(), QRCodeGenerator.ECCLevel.Q);

57

QRCode qrCode = new QRCode(qrCodeData);

Bitmap qrCodeImage = qrCode.GetGraphic(pixels);

5.2.3 SOCKET CONNECTIONS:

Sockets are used for communication between the two applications. Data is transferred

and received using the input and output stream. Following code is used to listen to any

incoming connection on the desktop application.

TcpListener serverSocket = new TcpListener(PORTNUMBER);

TcpClient clientSocket = default(TcpClient);

serverSocket.Start();

clientSocket = serverSocket.AcceptTcpClient();

On the other hand, the mobile application initiates the connection using the following

code snippet.

Socket socket = new Socket(ipAddtess, port);

Once the connection is successfully established between the two applications, the data is

sent and read using the BufferedReader and DataOutputStream class. The object of the

BufferedReader class is created by passing the input stream of the socket to the

constructor, and the method readLine is used to read any incoming data. The following

code snippet shows how the data is read and write on the mobile end.

BufferedReader bufferedReader = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

58

dataReceived = bufferedReader.readLine();

The data is written to the socket using the DataOutputStream class, the constructor takes

output stream of the socket as the input parameter to create the instance, and the

writeBytes method is used to write any data to the socket.

DataOutputStream dOut = new

DataOutputStream(socket.getOutputStream());

dOut.writeBytes(data);

dOut.flush();

On the desktop app, ‘NetworkStream’ class is used to read and write data over the

sockets. Following code snippet shows how the data is read and write on the desktop app.

NetworkStream stream = socket.GetStream();

byte[] myReadBuffer = new byte[byteLenght];

stream.Read(myReadBuffer, 0, byteLenght);

stream.Write(sendBytes, 0, sendBytes.Length);

stream.Flush();

5.2.4 GENERATING ‘p’ ‘g’ AND ‘TA’:

For the Diffie-Hellman key exchange, both the desktop and mobile app should agree

upon a common value of p and g. The mobile app generates a 1024 bit random prime

number for the value of ‘p’ and ‘g’ along with a 256-bit secret integer to compute the

value of ‘TA’. Following code snippet shows how these values are generated.

59

Random rand = new Random();

p = new BigInteger(bitLength, certinity, rand);

g = new BigInteger(bitLength, certinity, rand);

TA = g.modPow(secretInteger,p);

Once these values are generated, it is transferred to the desktop application. The desktop

application then computes the TA and the secret key through which it can encrypt and

decrypt data. The code snippet shows how the values of TA and the secret key is

computed on the desktop application.

TA = BigInteger.ModPow(g, getSecretNumber(), p);

secretKey = BigInteger.ModPow(mobileTA, getSecretNumber(), p);

5.2.5 GENERATING RANDOM SECRET INTEGER:

 The desktop and the mobile app generates a random integer which is kept secret. These

random integers are used to compute the values of TA and the secret key. On the desktop

app, the random integer is generated using the following code snippet.

byte[] buffer = new byte[Length];

Random rand = new Random();

rand.NextBytes(buffer);

secretNumber = new BigInteger(buffer);

The mobile app uses the following code snippet to generate the random integer.

Random rand = new Random();

secretInteger = new BigInteger(bitLength, rand);

60

5.2.6 EXCHANGE ‘P’ ‘G’ AND ‘TA’:

The value of ‘p’ and ‘g’ is generated on the mobile side, and these values along with the

‘TA’ is transferred to the desktop app. The desktop app acknowledges for each value

received. The following code snippet shows how the values of ‘p’, ‘g’ and ‘TA’ is sent

from the mobile application.

dataOutStream.writeBytes(getG().toString());

dataOutStream.flush();

String acknowledgment = bufferedReader.readLine();

dataOutStream.writeBytes(getP().toString());

dataOutStream.flush();

acknowledgment = bufferedReader.readLine();

dataOutStream.writeBytes(getTA().toString());

dataOutStream.flush();

acknowledgment = bufferedReader.readLine();

We have used the following code snippet to read these values, send the acknowledgments

and to send the computed ‘TA’ to the mobile app.

String message = readNetworkStream(networkStream, bufferSize);

BigInteger.TryParse(message, out diffieHellman.g);

writeNetworkStream(networkStream, ack);

61

message = readNetworkStream(networkStream, bufferSize);

BigInteger.TryParse(message, out diffieHellman.p);

writeNetworkStream(networkStream, ack);

message = readNetworkStream(networkStream, bufferSize);

BigInteger.TryParse(message, out diffieHellman.mobileTA);

writeNetworkStream(networkStream,

diffieHellman.getTA().ToString());

5.2.7 VERIFY SECRET KEY USING HASHING:

Both the applications have computed the secret key using the power, modulus and

exponential operations. However, there is a chance that the secret key is compromised

and is different on each end due to the MITM attack, so the key needs to be verified. On

the mobile end, java.security package provides MessageDigest class for hashing. The

‘getInstance()’ method of the MessageDigest class is used to get the specific instance

(such as SHA-256, MD5, etc.). The following code snippet shows an instance of the

SHA-256 message digest.

MessageDigest digest = MessageDigest.getInstance("SHA-256");

The desktop app uses ‘SHA256Managed’ class to generate the digest. Following code

snippet is used to create an instance of the ‘SHA256Managed’ class and generate the

digest of the random string that was generated in section 5.2.1 and the secret key.

SHA256Managed hashstring = new SHA256Managed();

byte[] hash = hashstring.ComputeHash(bytes);

62

The mobile app generates a new digest using the random string that was scanned and

decoded from the QR Code and the secret key. It then matches the new digest with the

digest received from the desktop app. If the two digests are same, then both the

applications have same keys. We have used the following code snippet to generate and

compare message digest.

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hash = digest.digest(str.getBytes());

String newHash = String.format(flag, new

java.math.BigInteger(hash));

if(serverHash.equal(newHash))

 verifiedKEY = true;

else

 verifiedKEY = false;

5.2.8 ENCRYPT AND DECRYPT DATA:

Once the secret key is generated and verified, the mobile application gets the user

credentials against the URL. The credential is then encrypted using the AES encryption

algorithm and send to the desktop application. The AES encryption algorithm needs

initialization vector to perform the encryption and decryption operations. The

initialization vector is generated by the desktop application using the following code and

sent it to the mobile application.

using (AesManaged myAes = new AesManaged())

63

{

return myAes.IV;

}

The mobile application uses the initialization vector to encrypt credential and sent it to

the desktop application.

Cipher AesCipher = Cipher.getInstance("AES");

SecretKeySpec skeySpec = new SecretKeySpec(secKey.getBytes("UTF-

8"), "AES");

IvParameterSpec ivParameterSpec = new

IvParameterSpec(initializationVector);

AesCipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivParameterSpec);

encryptedBytes = AesCipher.doFinal(plainText.getBytes());

The desktop application then decrypts the credential and automatically logged in user.

The code snippet used for decrypting the credentials on the desktop app is as follows.

using (AesManaged aesAlg = new AesManaged())

{

aesAlg.Key = Key;

aesAlg.IV = IV;

ICryptoTransform decryptor =

aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);

64

using (MemoryStream msDecrypt = new

MemoryStream(encryptedBytes))

{

using (CryptoStream csDecrypt = new

CryptoStream(msDecrypt, decryptor,

CryptoStreamMode.Read))

{

using (StreamReader srDecrypt = new

StreamReader(csDecrypt))

{

plaintext = srDecrypt.ReadToEnd();

}

}

}

}

5.2.8 DATABASE ACCESS AND QUERIES

The mobile application uses a database to store user credentials. The ‘DatabaseHandler’

class is created to perform the database related tasks including insert, get and delete

operations. The ‘getCredential’ method of the DatabaseHandler class takes the URL as

input and returns the credential. Following code snippet is used to get credentials.

DatabaseHandler databaseHandler = new DatabaseHandler(this);

Credential credential = databaseHandler.getCredential(url);

65

5.2.9 PERMISSIONS REQUIRED FOR ANDROID APPLICATION:

As our mobile application accesses some of the hardware such as NFC, Bluetooth,

camera, and Wifi. The application needs user permission to access all these hardware

from the application. Each Android application contains a manifest file that defines all

the permissions needed for that application. The following code is used to define

permissions for our mobile application.

<uses-permission android:name = "android.permission.INTERNET" />

<uses-permission android:name =

"android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name =

"android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name = "android.permission.BLUETOOTH"/>

<uses-permission android:name =

"android.permission.BLUETOOTH_ADMIN"/>

<uses-permission android:name = "android.permission.CAMERA"/>

<uses-permission android:name = "android.permission.NFC" />

<uses-feature android:name = "android.hardware.nfc"

android:required="true" />

Other than permission we also have to define an action when we received an NDEF

message in our manifest file.

<activity android:name=".NfcActivity">

 <intent-filter>

66

 <action android:name =

"android.nfc.action.NDEF_DISCOVERED" />

 <category android:name =

"android.intent.category.DEFAULT"/>

 <data android:mimeType = "text/plain" />

 </intent-filter>

</activity>

67

CHAPTER 6 EXPERIMENTAL RESULTS AND

ANALYSIS

In this chapter, we have discussed the experimental environment along with the results.

The main objective of the proposed approach is to prevent keylogging and shoulder

surfing. We have proposed an approach through which we can prevent these type of

attacks. As the proposed approach consists of the mobile and desktop application the data

transferred between these two applications should be in encrypted form. The following

sections of this chapter discusses the experimental scenario and results. In section 6.1 we

have discussed the experimental setup, the device and environment used to test the

proposed approach. Later in section 6.2, we have discussed the evaluation of the

approach by performing traffic analysis using Wireshark.

6.1 EXPERIMENTAL SETUP

To test the proposed approach the desktop application was installed on a Windows based

computer with the following specifications.

 Operating System: Windows OS 8.1

 RAM: 4GB

 Hard Disk Storage Capacity: 500GB

 Processor: Intel® Core™ i5-5200U CPU @ 2.20GHz 2.20GHz

 System Type: 64-bit Operating System, x64-based processor.

 Visual Studio 2017

68

The mobile application was installed on the android based smart phone which has the

following specifications.

 Device Model: Samsung Galaxy S4

 Android Version: Android 5.0.1 (Lollypop)

 RAM: 2GB

 Processor: ARMv7 Quad-core 1.9 GHz

 Internal Storage: 16GB

6.2 EVALUATION OF THE PROPOSED APPROACH

To test the proposed approach we have used Wireshark and UBlyzer to capture and

analyze network traffic. We have divided the evaluation phase in three major category.

1. Testing over the Wi-Fi medium.

2. Testing over the Bluetooth medium.

3. Testing over the NFC medium.

6.2.1 Testing over the Wi-Fi medium.

We have used Wireshark Version 2.0.3 to capture network packets over the Wi-Fi

medium. We have created testing accounts for website such as Facebook, Gmail and

Amazon to analyze the proposed approach. The password for these websites are stored in

the mobile application so that we can automatically login to the website through the

desktop application. When the user selects the Wi-Fi medium on both the applications

and scanned the QR code, the mobile application initiate a TCP connection as shown in

the following figure.

69

Figure 30: Initiating Wi-Fi connection between Desktop and Mobile App.

The above figure shows the packets captured through Wireshark when both the

applications are establishing a TCP connection. The desktop application has the IP

address 192.168.0.16 and the mobile application has the IP address 192.168.0.13. The

mobile application initiate the connection and once the desktop application accepts the

connection both the applications exchange the Diffie-Hellman parameters. The following

figures show the value of ‘P’, ‘G’ and ‘TA’ transferred from Mobile application to

desktop application. Note that these values are sent in plain text and not in encrypted

form as they do not need to be kept secret.

70

Figure 31: Sending Diffie-Hellman parameter P via Wi-Fi

Figure 32: Sending Diffie-Hellman parameter G via Wi-Fi

71

Figure 33: Sending Diffie-Hellman parameter TA via Wi-Fi.

After receiving each Diffie-Hellman parameter the desktop application send an

acknowledgment packet to ensure that the parameter is received on the other end. The

following figure show the acknowledgment packet sent from desktop application to the

mobile application.

72

Figure 34: Acknowledgment packet.

Once both the devices have received the Diffie-Hellman parameters they compute the

secret key. The Desktop application sends a message digest of random string and the

secret key using SHA-256 so that the mobile application can verify that the secret key is

authentic. The following figure shows the message digest sent to the mobile application.

73

Figure 35: Sending message digest.

After the secret key is verified the mobile application encrypts the credentials and

transferred it to the desktop application. The following figure shows that the credentials

are sent in encrypted form.

Figure 36: Sending Encrypted Credentials.

74

6.2.2 Testing over the Bluetooth medium.

To capture the packets on a Bluetooth medium we have enabled the ‘Bluetooth HCI

snoop logging’ on device. The device captures all the packets that are sent and received

over the Bluetooth. The log file is maintained under the location

“\Phone\Android\data\btsnoop_hci.log”. We have import the log file to the Wireshark to

analyse the captured packets. The following figure shows the packet captured during

Bluetooth transfer.

Figure 37: Packets captured during Bluetooth transfer.

As shown in the above figure the desktop application initiates the connection and once

the mobile application accepts the connection both the devices transfers the Diffie-

Hellman parameters. All the data is transferred in the plain text except for the credentials

which is sent in an encrypted form as shown in the following figures.

75

Figure 38: Sending Diffie-Hellman parameter P via Bluetooth

Figure 39: Sending Diffie-Hellman parameter G via Bluetooth.

76

Figure 40: Sending Diffie-Hellman parameter TA via Bluetooth

Figure 41: Bluetooth Acknowledgment packet.

77

Figure 42: Sending message digest via Bluetooth.

Figure 43: Sending encrypted credentials via Bluetooth.

6.2.3 Testing over the NFC medium

The NFC packets are transferred from the mobile application to the desktop application

over the USB port. To test the NFC data we have attached another NFC enabled device

(android tablet) and we have written an application that takes the NFC data and send it to

the USB port. The data that should be sent over the USB port from the mobile application

are Diffie-Hellman parameters and the credentials. The Diffie-Hellman parameters are

sent as a plain text while the credentials are sent in encrypted form. We have used

78

USBlyzer version 2.2 to capture the traffic on the USB port as shown in the following

figures.

Figure 44: Sending Diffie-Hellman parameters via NFC

The value of ‘P’, ‘G’ and ‘TA’ and concatenated using a predefined string “$@!@$” and

is sent to the desktop application. Once the secret key is generated and verified the

mobile application send the credentials to the desktop application in encrypted form. The

following figure shows the credential packet sent over the NFC.

79

Figure 45: Sending credentials via NFC

6.3 SUMMARY OF THE EXPERIMENTAL RESULTS

The experimental results of the network traffic from the Wireshark and the USBlyzer

shows that, all the Diffie-Hellman parameters ‘P’, ‘G’ and ‘TA’ are sent in plain text. The

secret Integer and the secret key is never transmitted to one another. Once the key is

computed on both ends, the secret key is verified using one-way hash function. If the key

is compromised using the MITMA the verification fails and the credentials are not

transferred to the desktop application. If the key is verified, the credentials are sent in the

encrypted form which is then decrypted on the other end.

80

Chapter 7 CONCLUSION AND FUTURE WORK

Smart phones have become part of our daily living and almost every person carries a

smart phone with them all the time. Our proposed approach is an attempt to overcome the

shoulder surfing and keylogging attacks using a smart phone. The motivation behind this

proposed approach is to use the smart phone to authenticate users to different website that

can prevent them from various attacks such as shoulder surfing and keylogging.

The proposed approach has three major phases: the connection phase, where the user can

select any medium (Wi-Fi, Bluetooth, NFC) to transfer credentials; the key exchange

phase, where both the devices compute the secret key using Diffie-Hellman key

exchange; and the encryption phase, where the credentials are encrypted and transfer to

the desktop application.

The proposed approach also uses QR code to verify the secret key. If any Trojan is install

on the system that captures the screenshot of the QR code and sent it to the attacker, it

will be of no use because the QR code is changed each time when the user selects a

medium.

The Wireshark traffic analysis shows that all the Diffie-Hellman parameters, ‘P, ‘G’ and

‘TA’, are sent in plain text. The secret Integer and the secret key are never transferred to

another device. The Diffie-Hellman key exchange algorithm is susceptible to MITMA;

the proposed approach uses one-way hash function to verify that the secret key is not

altered and is same on both ends. The credentials are transferred and sent in encrypted

form using the verified secret key.

81

Based on the available resources and security situations user can select different medium

to transfer credentials. NFC is the most secure way to transfer the credentials as the

devices needs to be as close as 10mm to transfer the NFC data. In order to steal the data

via NFC, the attacker needs to be physically present near the user. If the system does not

have support for NFC, the user can select Bluetooth as the second option to transfer

credentials. The user should always keep the Wi-Fi as a last option if they are using a

public Wi-Fi or the Wi-Fi is not personal.

7.1 LIMITATIONS

We have captured and analyzed the traffic between the mobile and the desktop

application to ensure that the credentials are sent in an encrypted form. Although the

proposed approach uses standard AES-128 encryption to encrypt and decrypt data, the

packets need to be tested against various attacks as the packets contains credentials that

are private and sensitive. One of the other limitations is users are bound to use our

desktop application to automatically login to the websites, which might not be feasible

for all users. This limitation is due the web browsers, as most of the web browsers do not

allow extensions to access system resources, such as Bluetooth or USB port. Our

proposed approach require access to these resources to transfer credentials between the

mobile and the desktop application.

7.2. Future Work

The proposed approach only focuses on preventing shoulder surfing and keylogging

attacks and can be extended as a tool for password management. Nowadays, the growth

82

of web accounts are increasing day by day and it is difficult to remember different

passwords for different web accounts. It is recommended to use strong passwords with a

combination of alpha numeric characters and special symbols which makes it difficult for

attackers to crack the passwords. The proposed approach can be extended to add the

functionality of a password manager. With the proposed approach, the user can manually

enter their password for websites and can be managed on the device. These passwords

cannot be accessed from any other device or website as they are stored locally on the

device which makes it difficult to manage. If the device is lost, all the passwords are lost

as well. In order to provide the functionality of the password manager, the database can

be host to any hosting server and a simple user interface can be developed to manage the

passwords.

Our proposed approach requires the users to manually enter their credentials in the

mobile application. The proposed approach can be extended to add functionality to

automatically capture user credentials from the desktop application. If the user creates a

new account or changes the password of any existing account, the desktop application

can suggest strong passwords. Additionally, it can automatically capture the new

password set by the user and can transfer it to the mobile application. As a result, the user

does not have to manually manage the passwords each time when they creates a new

account or changes the password of an existing account.

User study can be done to understand different aspect of the proposed approach such as

user-friendliness and efficiency in terms of time. Furthermore, this study might also help

us to understand whether the user uses web accounts on their personal or public

83

computers. All the results from the study will help us to understand the need and

importance of the proposed approach in our daily living.

84

REFERENCES

[1] “Malware,” Wikipedia, 12-Nov-2017. [Online]. Available:

http://en.wikipedia.org/wiki/Malware. [Accessed: 13-Nov-2017].

[2] Raza, M., Iqbal, M., Sharif, M., & Haider, W. (2012). A survey of password

attacks and comparative analysis on methods for secure authentication. World

Applied Sciences Journal, 19(4), 439-444.

[3] Haque, M. A., & Imam, B. (2014). A New Graphical Password: Combination of

Recall & Recognition Based Approach. World Academy of Science, Engineering

and Technology, International Journal of Computer, Electrical, Automation,

Control and Information Engineering, 8(2), 320-324.

[4] Stallings, W., & Brown, L. (2012). Computer security. Principles and practice (2

nd ed). Edinburgh Gate: Pearson education limited.

[5] Suo, X., Zhu, Y., & Owen, G. S. (2005, December). Graphical passwords: A

survey. In Computer security applications conference, 21st annual (pp. 10-pp).

IEEE.

[6] Md. Asraful Haque, Babbar Imam, Nesar Ahmad, “2-Round Hybrid Password

Scheme”, International Journal of Computer Engineering and Technology

(IJCET), Vol. 3, Issue 2, July-September (2012), page. 579-587.

[7] The Activity Lifecycle,” Android Developers. [Online]. Available:

https://developer.android.com/guide/components/activities/activity-lifecycle.html.

[Accessed: 3-Sep-2017].

[8] Kessler, G. C. (2002). Passwords-Strengths and Weaknesses. Jan-1996. URL:

http://www. garykessler.net/library/password.html.

[9] Pathak, N., Pawar, A., & Patil, B. (2015). A Survey on Keylogger: A Malicious

Attack. International Jourcal of Advanced Research in Computer Engineering and

Technology.

[10] Fujita, K., & Hirakawa, Y. (2008, September). A study of password

authentication method against observing attacks. In Intelligent Systems and

85

Informatics, 2008. SISY 2008. 6th International Symposium on (pp. 1-6). IEEE.

[11] Canbek, G. (2005). Analysis, design and implementation of keyloggers and anti-

keyloggers. Gazi University, Institute Of Science And Technology, M. Sc. thesis

103.

[12] Lynch, P. (2004). The Naked Employee: How Technology Is Compromising

Workplace Privacy. Journal of Applied Management and Entrepreneurship, 9(2),

116.

[13] Feng, H., & Choong Wah, C. (2002). Private key generation from on-line

handwritten signatures. Information Management & Computer Security, 10(4),

159-164.

[14] Kieseberg, P., Leithner, M., Mulazzani, M., Munroe, L., Schrittwieser, S., Sinha,

M., & Weippl, E. (2010, November). QR code security. In Proceedings of the 8th

International Conference on Advances in Mobile Computing and Multimedia (pp.

430-435). ACM.

[15] “Diffie-Hellman Protocol,” from Wolfram MathWorld. [Online]. Available:

http://mathworld.wolfram.com/Diffie-HellmanProtocol.html. [Accessed: 14-Nov-

2017].

[16] “Hash function,” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Hash_function. [Accessed: 14-Nov-2017].

[17] “Movable Type Scripts,” SHA-256 Cryptographic Hash Algorithm implemented

in JavaScript | Movable Type Scripts. [Online]. Available: http://www.movable-

type.co.uk/scripts/sha256.html. [Accessed: 14-Nov-2017].

[18] Burr, W. E. (2003). Selecting the advanced encryption standard. IEEE Security &

Privacy, 99(2), 43-52.

[19] V. Lynch, “Difference Between SHA-1, SHA-2 and SHA-256?,” [Online].

Available: https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-

hash-algorithms/. [Accessed: 14-Nov-2017].

[20] Ebrahim, M., Khan, S., & Khalid, U. B. (2014). Symmetric algorithm survey: a

comparative analysis. arXiv preprint arXiv:1405.0398.

86

[21] Massey, J. L. (1988). An introduction to contemporary cryptology. Proceedings of

the IEEE, 76(5), 533-549.

[22] Advanced Encryption Standard - tutorialspoint.com.” [Online]. Available:

https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm.

[Accessed: 14-Nov-2017].

[23] “Advanced Encryption Standard,” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard. [Accessed: 14-

Nov-2017].

[24] Diffie-Hellman Key Exchange,” cryptography - Information Security Stack

Exchange. [Online]. Available:

https://security.stackexchange.com/questions/45963/diffie-hellman-key-

exchange-in-plain-english. [Accessed: 4-Nov-2017].

[25] “Diffie–Hellman key exchange - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange. [Accessed: 14-Nov-

2017].

[26] “How does the man in the middle attack work in Diffie–Hellman?,” public key

encryption - [Online]. Available:

https://stackoverflow.com/questions/10471009/how-does-the-man-in-the-middle-

attack-work-in-diffie-hellman. [Accessed: 14-Nov-2017].

[27] Bresson, E., Chevassut, O., & Pointcheval, D. (2002). Group Diffie-Hellman key

exchange secure against dictionary attacks. Advances in Cryptology—

ASIACRYPT 2002, 603-610.

[28] “Dictionary attack,” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Dictionary_attack. [Accessed: 14-Nov-2017].

[29] Steiner, M., Tsudik, G., & Waidner, M. (1996, January). Diffie-Hellman key

distribution extended to group communication. In Proceedings of the 3rd ACM

conference on Computer and communications security (pp. 31-37). ACM.

[30] Günther, C. G. (1989, April). An identity-based key-exchange protocol. In

Workshop on the Theory and Application of of Cryptographic Techniques (pp.

29-37). Springer, Berlin, Heidelberg.

87

[31] Boyko, V., MacKenzie, P., & Patel, S. (2000). Provably secure password-

authenticated key exchange using Diffie-Hellman. In Advances in Cryptology—

Eurocrypt 2000 (pp. 156-171). Springer Berlin/Heidelberg.

[32] Li, N. (2010, April). Research on diffie-hellman key exchange protocol. In

Computer Engineering and Technology (ICCET), 2010 2nd International

Conference on (Vol. 4, pp. V4-634). IEEE.

[33] Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.

A & VanderSloot, B. (2015, October). Imperfect forward secrecy: How Diffie-

Hellman fails in practice. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security (pp. 5-17). ACM.

[34] Bao, F., Deng, R. H., & Zhu, H. (2003, October). Variations of diffie-hellman

problem. In International Conference on Information and Communications

Security (pp. 301-312). Springer, Berlin, Heidelberg.

[35] Parekh, A., Pawar, A., Munot, P., & Mantri, P. (2011). Secure authentication

using anti-screenshot virtual keyboard. International Journal of Computer Science

Issues (IJCSI), 8(5).

[36] Olzak, T. (2008). Keystroke logging (keylogging). Adventures in Security, April.

[37] “What is Shoulder surfing,” Solutions 24h. [Online]. Available:

http://solutions24h.com/what-is-shoulder-surfing/. [Accessed: 14-Nov-2017].

[38] Haque, M. A., & Imam, B. (2014). A New Graphical Password: Combination of

Recall & Recognition Based Approach. World Academy of Science, Engineering

and Technology, International Journal of Computer, Electrical, Automation,

Control and Information Engineering, 8(2), 320-324.

[39] Martin, J., & Leben, J. (1994). TCP/IP networking: architecture, administration,

and programming. Prentice-Hall, Inc..

[40] Xue, M., & Zhu, C. (2009, May). The socket programming and software design

for communication based on client/server. In Circuits, Communications and

Systems, 2009. PACCS'09. Pacific-Asia Conference on (pp. 775-777). IEEE.

88

[41] Law, K. E., & Leung, R. (2003). A design and implementation of active network

socket programming. Microprocessors and Microsystems, 27(5), 277-284.

[42] Meier, R. (2012). Professional Android 4 application development. John Wiley &

Sons.

[43] Rogers, R., Lombardo, J., Mednieks, Z., & Meike, B. (2009). Android application

development: Programming with the Google SDK. O'Reilly Media, Inc..

[44] “Package java.security,” java.security (Java Platform SE 7) [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html.

[Accessed: 11-Nov-2017].

[45] “Package Javax.crypto.” Javax.crypto (Java Platform SE 7) [Online]. Available:

docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html.

[Accessed: 21-Oct-2017].

[46] “Package java.net,” java.net (Java Platform SE 7) [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/net/package-summary.html.

[Accessed: 11-Nov-2017].

[47] Socket (Java Platform SE 7), 09-Oct-2017. [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html. [Accessed: 11-

Nov-2017].

[48] “Java (programming language),” Wikipedia, 08-Nov-2017. [Online]. Available:

https://en.wikipedia.org/wiki/Java_(programming_language). [Accessed: 11-Nov-

2017].

[49] Zxing, “zxing/zxing,” GitHub. [Online]. Available:

https://github.com/zxing/zxing. [Accessed: 11-Nov-2017].

[50] “C Sharp (programming language),” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/C_Sharp_(programming_language). [Accessed: 11-

Nov-2017].

[51] BillWagner, “Introduction to the C# Language and the .NET Framework,”

Microsoft Docs. [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-

https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

89

framework. [Accessed: 11-Nov-2017].

[52] Inthehand, “inthehand/32feet,” GitHub [Online]. Available:

https://github.com/inthehand/32feet. [Accessed: 11-Nov-2017].

[53] System.Security.Cryptography Namespace [Online]. Available:

https://msdn.microsoft.com/en-

us/library/system.security.cryptography(v=vs.110).aspx. [Accessed: 11-Nov-

2017].

[54] “System.Threading Namespaces” [Online]. Available:

https://msdn.microsoft.com/en-us/library/mt481587(v=vs.110).aspx. [Accessed:

11-Nov-2017].

[55] Codebude, “QRCoder,” GitHub. [Online]. Available:

https://github.com/codebude/QRCoder/wiki. [Accessed: 11-Nov-2017].

[56] “Android (operating system),” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Android_(operating_system). [Accessed: 11-Nov-

2017].

[57] “Android 6.0 APIs,” Android Developers. [Online]. Available:

https://developer.android.com/about/versions/marshmallow/android-6.0.html.

[Accessed: 11-Nov-2017].

[58] Wireshark [Online]. Available: https://www.wireshark.org/. [Accessed: 11-Nov-

2017].

[59] “An Overview of the Android Architecture,” [Online]. Available:

http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architectu

re. [Accessed: 11-Nov-2017].

[60] “USBlyzer - USB Protocol Analyzer and USB Traffic Sniffer,” [Online].

Available: http://www.usblyzer.com/. [Accessed: 11-Nov-2017].

[61] Soon, T. J. (2008). QR code. Synthesis Journal, 2008, 59-78.

[62] Liu, Y., Yang, J., & Liu, M. (2008, July). Recognition of QR Code with mobile

phones. In Control and Decision Conference, 2008. CCDC 2008. Chinese (pp.

203-206). IEEE.

90

[63] Nand, P., Singh, P. K., Aneja, J., & Dhingra, Y. (2015, March). Prevention of

shoulder surfing attack using randomized square matrix virtual keyboard. In

Computer Engineering and Applications (ICACEA), 2015 International

Conference on Advances in (pp. 916-920). IEEE.

[64] Vinothini, Saranya, and Vasumathi, “A Study On Diffie-Hellman Algorithm in

Network Security,” International Journal Of Engineering And Computer Science

ISSN:2319-7242, vol. 3, no. 7 July 2014, pp. 7346–7349.

[65] Michel Abdalla, Mihir Bellare, and Phillip Rogaway, “DHIES: An encryption

scheme based on the Diffie-Hellman Problem”, In Proc.of ACM CCS ’01, ACM

Press September18,2001.

91

APPENDIX A

Figure 46: Screenshot of the desktop application home page.

Figure 47: Desktop application displaying QR code.

92

Figure 48: Desktop application searching Bluetooth devices.

93

APPENDIX B

Figure 49: Mobile application home page. Figure 50: Mobile application insert credential page

94

 Figure 51: View Credential page Figure 52: Scan QR code

95

Figure 53: NFC page

