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Abstract 

This research presents the development of a life-oriented, agent-based 

integrated transport land use and energy (iTLE) model. A life-oriented theory 

and perspective is adopted to accommodate life-trajectory dynamics of key 

longer-term household-level decisions within the integrated urban modelling 

system. This study develops the following components of the proposed 

integrated urban model: population synthesis, vehicle ownership level 

synthesis, life-stage transition, residential location, vehicle transaction, and 

mode transition. The modelling and computation procedure of the integrated 

model addresses evolution of location choice and vehicle transaction over the 

life-course of the households in response or anticipation to decisions and 

changes at different life-domains. One of the mechanisms adopted to 

accommodate the temporal dimension of such multi-way decision interactions 

is through introducing lead and lag events. Advanced econometric models are 

developed to accommodate the effects of repeated choices during the life-course 

of the households, as well as capture unobserved heterogeneity. For example, 

a dynamic vehicle transaction model is developed utilizing a latent 

segmentation-based logit (LSL) modelling technique. Moreover, residential 

location and vehicle transaction are assumed to have an underlying process 

orientation. For instance, residential location is conceptualized as a two-stage 

process of: 1) mobility, and 2) location choice. Methodologically, the second 

stage of location choice is modelled as a two-tier process of location search and 

choice, by utilizing a fuzzy logic-based modelling method and LSL modelling 

technique. Vehicle transaction is modelled as a process of first time purchase, 

acquisition, disposal, and trade. Finally, this research implements a proto-type 

version of the iTLE model for Halifax, Canada. The proto-type generates a 

synthesis-based population and vehicle ownership level information for the 

base year 2006. The model microsimulates life-stage transition, residential 

location, and vehicle transaction for a 15-year period of 2007-2021. This 

research also presents validation of the iTLE proto-type model results, and 

predicts the evolution of life-stage, mobility, location, and vehicle transaction 

for the Halifax population. This simulation modelling system would be useful 

for analyzing complex, integrated land use and transport policy scenarios.   
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Chapter 1  

1 Introduction 

1.1 Background and Motivation 

The increasing urban sprawl and dependence on private vehicles posit 

challenges for planning healthy communities, and promote equitable and 

sustainable travel opportunities for people. Since location and travel choices 

are inter-dependent decisions, effective integrated transport and land use 

policies are required to trigger a shift towards balanced urban growth and 

sustainable travel choices for the current population and generations to come. 

Integrated urban models facilitate a modelling platform to effectively evaluate 

complex land use and transport policies, since large-scale urban models 

simulate the essential decision processes of the individuals/households to 

represent the evolution of urban form and transport. Therefore, the 

development of integrated urban models have emerged from the need to mimic 

such two-way interactions between land use and transport.  

In addition to the two-way inter-dependency, there exists a multi-way decision 

interactions as travel behaviour and location choice evolve in response or 

anticipation to decisions and changes at different life-domains. For example, 

the decisions of where to live, where to work, how many vehicles to own, and 

what mode to choose, interacts with each other. Although the interaction 

between land use and transport is well recognized within the existing models, 

such as UrbanSim, ILUTE, and PUMA (Waddell 2002, Salvini and Miller 2005, 

Ettema et al. 2007); the evolving life-oriented interactions among the multi-

domain decisions have not been well addressed within the integrated urban 

modelling literature. Life-history, its evolution, and influence on different 
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essential decision processes need to be addressed within the integrated urban 

models as these models simulate individuals’ decisions over a long multi-year 

time frame. During this period, individuals’ demographic career evolves, such 

as a single person become married, have children, get divorced, and finally 

decease. A change in the demographic status influences individuals’ decisions 

at different life-domains. For example, birth of a child influences residential 

location choices (Strom 2010), as well as vehicle transactions (Oakil et al. 

2014). To adequately address the decision dynamics, population life-course and 

associated changes are required to evolve within the simulation environment 

of the integrated models. Hence, it is imperative for integrated models to 

respond to the changes across the agents’ life-stages, starting with the long-

term and medium-term decisions, and life-stage transitions.  

Among the several components of an integrated urban model, location choice, 

vehicle ownership, and mode choice, are critical elements. Residential location 

is a long-term decision (Habib 2009), which predicts the spatial distribution of 

an urban region. Location choice decisions have an inherent process 

orientation. For instance, residential location is a process of decision to move 

(i.e. mobility) and location choice. Following the decision to move, households 

chooses a location to move in, which itself can be characterized as a two-tier 

process of home search and location choice. In this process, first households 

undertake a search process to identify a pool of potential location alternatives 

and finally choose a location from the pool. However, the process orientation of 

the decisions are rarely accommodated within the operational integrated 

urban models. In addition, an important dimension is to examine how a change 

in the long-term state such as residential location influences travel activities 

such as commute mode choice.  

Another critical component of integrated models is medium-term decisions 

such as vehicle ownership that directly influences short-term decisions of 

travel activity. Vehicles are a major source of greenhouse gas (GHG) emission. 
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In Canada, a quarter of the total GHG emission is from the transportation 

sector (Environment Canada 2014). The forecasting of vehicle ownership offers 

the opportunity to test the impacts of strategies targeting the promotion of 

sustainable travel choices, such as use of fuel efficient vehicles, and use of 

alternative/clean fuel vehicles, among others. However, limited of the existing 

urban models include vehicle ownership component. Furthermore, vehicle 

ownership decisions have an underlying process orientation, since households 

add, dispose, and trade vehicles. Hence, it is not only necessary to 

microsimulate vehicle ownership within the integrated urban modelling 

platform, but also required to address the process orientation of the 

phenomenon.  

The motivation of this research is to mimic the multi-domain interactions and 

process orientation of the household-level decisions within an integrated urban 

modelling system. This study presents the development of a proto-type, life-

oriented integrated Transport Land Use and Energy (iTLE) model. The iTLE 

is an agent-based model that follows life-course perspectives and theories 

(Chatterjee and Scheiner 2015). Life-course perspectives focus on how 

transitions along the life-time and interactions among decisions taken at 

different domains along the life-course influence individuals’ choices and 

behaviour (Chatterjee and Scheiner 2015, Zhang 2017, Zhang 2015). The iTLE 

simulates agents’ decisions longitudinally at each simulation time-step along 

their life-course. The process orientation and multi-domain interaction among 

the decisions are addressed within the micro-modelling structures and 

computational procedures of the iTLE. This research addresses the 

development of the following core components of iTLE: life-stage transition, 

residential location, vehicle transaction, and mode transition. In addition, the 

study generates baseline information including, population synthesis, and 

vehicle ownership level synthesis. This research also offers predicted spatio-

temporal evolution of the urban population for the Halifax Regional 
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Municipality, in-terms of their demographic distribution, housing pattern, 

neighbourhood composition, and vehicle ownership and transaction 

configuration.   

1.2 Objectives 

The goal of this thesis is to develop a state-of-the-art agent-based integrated 

urban model that addresses the process orientation and interactions among a 

number of decisions along the life-course of the agents within the empirical 

and microsimulation environment. To achieve this goal, the specific objectives 

of this thesis evolves within the following four dimensions: 

1. To develop micro-models of household location processes, including 

residential mobility, location choice, and commute mode transition 

associated with relocation. 

2. To develop econometric models of vehicle transaction processes, such as 

first time vehicle purchase, acquisition, disposal, and trade. 

3. To generate baseline synthesis, life-stage transition, and proto-type 

implementation of household decision processes within a life-oriented 

urban systems model. 

4. To predict micro-level spatio-temporal evolution of an urban region by 

utilizing integrated urban systems model. 

1.3 Significance 

The contribution of this research encompasses the modelling and 

microsimulation paradigms of the integrated urban modelling literature. It has 

theoretical as well as applied implications. From a theoretical perspective, this 

study adopts a life-oriented approach to investigate how decisions in different 

life-domains such as location choice, vehicle ownership, and mode choice 
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interact along the life-course of the individuals/households. The investigation 

provides important behavioural insights towards understanding of how 

changes along the life-course shapes individuals/households behaviour. The 

process orientation of the decisions are addressed within the modelling 

framework through utilizing innovative modelling techniques. Developing 

such advanced mathematical models that also warrants improved empirical 

results significantly contributes to the literature of travel demand modelling 

techniques.  

In terms of the applied implications, this research is one of the first attempts 

to translate the multi-directional interactions and process orientation of the 

decisions from the micro-behavioural models to the computational procedure 

of integrated urban models. Such multi-way feedback mechanisms within the 

simulation environment of an urban model adds the capacity to test the 

response of population at different life-stages under alternative land use and 

transport policy scenarios. Particularly, this research microsimulates 

individuals/households life-stages, residential location, and vehicle transaction 

decisions within an agent-based integrated urban modelling system. The 

microsimulation results offer insights towards the micro-level spatio-temporal 

evolution of an urban region, including demographic distribution, housing 

pattern, neighbourhood configuration, and vehicle ownership pattern. Such 

information will be useful inputs for the development of a state-of-the-art 

activity-based travel model. The findings have important implications towards 

making effective integrated land use and transport policies. 

1.4 Thesis Outline 

This thesis is comprised of nine chapters. Chapter two reviews the relevant 

literatures, including a typology of the integrated urban models, followed by 

literature review on modelling residential location, mode transition, and 
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vehicle transaction decisions. This chapter concludes with a summary of the 

literature review to identify research gaps, and then poses research questions 

and concluding remarks.  

Chapter three discusses the conceptual framework and data used to develop 

an integrated urban model for Halifax. This chapter also provides details on 

the independent variables considered during the model estimation processes 

of different components of the urban model.  

Chapter four describes the methods and results of modelling residential 

location processes. Discussions on modelling residential mobility, location 

search, location choice, and mode transition decisions are presented in this 

chapter.  

Chapter five provides the modelling methods and estimation results of the 

vehicle transaction model.  

Chapter six presents the development of a proto-type version of the iTLE model 

for Halifax, Canada. This chapter focuses on the results of microsimulating 

life-stages, and generating baseline synthesis information including 

population and vehicle ownership level synthesis.  

Chapter seven provides the details on microsimulating residential location 

within the iTLE model. This chapter discusses the spatial and temporal 

evolution of housing pattern and neighbourhood composition of Halifax.  

Chapter eight presents the microsimulation results of the vehicle transaction 

component of the iTLE model.  

Finally, chapter nine summarizes the research findings and list of 

contributions, and offers insights towards future research directions.         
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Chapter 2  

2 Literature Review 

2.1 Introduction 

This research attempts to fill some gaps in the existing literature of modelling 

and microsimulating residential location and vehicle transaction decisions 

within an integrated urban modelling system. Integrated urban models 

(alternatively termed as IUM in this study) are large-scale modelling systems 

that simulate population’s decisions to predict the evolution of urban form and 

transport. The potential of IUMs in enhancing the effective evaluation of 

complex land use and transport policies have resulted in the development of 

several large-scale models, such as ILUTE, UrbanSim, PUMA, SelfSim, and 

SimMobility, among others. The components of IUMs can be categorized into 

long-term decision models (e.g. location choice), medium-term decision models 

(e.g. vehicle ownership), and short-term decision models (e.g. mode choice). 

Long-term and medium-term decisions are critical components of an IUM 

which have a dynamic nature, as these decisions interact with each other. For 

example, the decision of where to live influences the decision of how many 

vehicle to own, and vice-versa (Rashidi and Mohammadian 2011). These 

crucial decisions evolve over the life-course as well as interact with life-stage 

transitions; for instance, birth of a child influences residential location choices 

(Strom 2010). Majority of the IUMs do not tackle such multi-domain 

interactions among decisions taken at different life-stages of the population. 

Although significant advances is made in developing the short-term models, 

also known as the transport component of the IUMs; one of the criticisms of 

most of the IUMs has been the lack of behavioural representation for the long-

term and medium-term models. To effectively evaluate land use and transport 
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policies, integrated urban models need to be responsive to the decision 

dynamics across the agents’ decision making domains and life-stages. The 

empirical settings as well as the computation procedure of the IUMs are 

required to accommodate the multi-way feedback mechanism among the 

decision processes.  

This chapter reviews relevant literatures on integrated urban models and 

modelling of essential decision processes to identify the scope for this research. 

First, a typology of the existing integrated urban models with a brief 

description is presented. Then, a review of modelling longer-term decision 

processes including residential location choice followed by mode transition and 

vehicle transaction are described. After that a discussion on the modelling 

issues of the existing integrated urban models is presented. Finally, some 

research questions are formulated, which pegs the scope for the contributions 

of this research.    

2.2 Typology of Integrated Urban Models 

To-date, a number of integrated urban models are developed, starting from the 

Lowry model (Lowry 1964) in early 1960s to the recent SelfSim (Zhuge et al. 

2016) model. A number of review articles on integrated urban models already 

exist (Huang et al. 2014, Iacono et al. 2008, Hunt et al. 2005, Miller 2009, 

Wegener 2004, Timmermans 2003). This section reviews the recent 

developments and updates on the most noteworthy models that are currently 

available. Based on the operating principles, IUMs can be subdivided into the 

following five categories: (1) Economic Activity-based Models, (2) Market 

Principle Models, (3) Quasi Market-based Models, (4) Hybrid Models of 

Heuristic, Utility, and Market Principles, and (5) Emerging Complex System 

Models. A brief description of the above mentioned five categories of integrated 

urban models are presented below.  
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2.2.1 Economic Activity-based Models 

Economic activity-based integrated urban models are developed on the basis of 

modelling urban spatial economy using input-output modelling methodology. 

Input-output models assume a constant production function where a fixed 

proportion of production is allocated for consumption. The model makes an 

equilibrium production-consumption assumption. These are aggregate level 

zonal models. Such integrated urban models include PECAS (Hunt and 

Abraham 2003, 2005), MEPLAN (Echenique et al. 1969, Echenique et al. 1990), 

and TRANUS (de la Berra et al. 1984).  

One of the widely used operational models in North America is the Production, 

Exchange, Consumption Allocation System (PECAS), which was implemented 

in different cities all around world including, Sacrament, San Diego, 

California, Atlanta, Baltimore, and Calgary, among others. PECAS has two 

core modules: space development, and activity allocation (Hunt and Abraham 

2003). Space development module follows a logit modelling technique to 

represent the aggregate changes of land and floor space. Activity allocation 

module follows a make (production of commodities) and use (consumption of 

commodities) input-output table that represents the aggregate allocation of 

activities within the space and interaction among the activities. The 

interaction is the movement of commodities, which generates the flow from 

production zone to exchange zone, and from exchange zone to consumption 

zone. PECAS operates at a yearly time-step with an equilibrium assumption 

between production and consumption.    

Another well-known model is the MEPLAN, which operates at the zonal-level 

with an input-output model at the core (Echenique et al. 1969). The land use 

component of MEPLAN allocates demand into zones based on the random 

utility concept. The interaction between production and consumption zones 

generate demand for travel, which is converted into traffic for mode choice and 



 

  10 
 

route choice models. The output from the economic activity model is fed back 

to the land use model. MEPLAN was implemented in Sacramento, and 

California, among others. The MEPLAN was also implemented for the 

following European cities: Bilbao, (Spain), Dortmund (West Germany) and 

Leeds (England) (Echenique et al. 1990). Similar to MEPLAN is TRANUS, 

another integrated urban model using input-output matrix for modelling (de 

la Berra et al. 1984). TRANUS has a supply model for land and floor space 

developers, where price is endogenously determined using static equilibrium 

assumption. The supply model was developed using a logit modelling 

technique. TRANUS was implemented in Sacramento, Baltimore, Maryland, 

and Oregon, USA. 

2.2.2 Market Principle Models 

The basic of the market principle models is to conceptualize the urban system 

as a market/combination of multiple markets where consumers and suppliers 

interact and negotiate. Among the existing models, ILUTE (Miller et al. 2004, 

Savini and Miller 2005), MUSSA (Martinez 1996, Maritnez and Donoso 2004), 

CPHMM (Anas and Arnott 1993, 1994), NYMTC-LUM (Anas 1998), and 

SelfSim (Zhuge et al. 2016) follow market principle-based assumptions.  

Integrated Land Use, Transportation, and Environment (ILUTE) modelling 

system is one of the most notable state-of-the-art integrated urban models, 

which is designed to be a fully agent-based microsimulation modelling 

platform. It is one of the most comprehensive models as it includes the 

simulation of population demographics, location choice, auto ownership, and 

travel activities. The decision processes within the system are abstracted as 

market interaction between buyers and sellers (Savini and Miller 2005). For 

example, the process of residential location choice is conceptualized to take 

place in the housing market as a three-stage process of mobility, bid, and 
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location choice. Once a household is determined to become active in the 

mobility stage, bid is made on a dwelling, and finally households move to a 

location through buying a house. The relocation component follows a random 

utility-based discrete choice modelling technique. The demographic updating 

component simulates the following demographic processes: birth, death, 

marriage, divorce, move out, driver’s licence, education level, and in- and out-

migration. This component follows a rule-based, random utility-based, and 

hazard-based modelling methods (Chingcuanco and Miller 2012a). The vehicle 

ownership component is conceptualized as a nested structure (Mohammadian 

2002). In the upper-level of the nest, vehicle transaction decisions of purchase, 

disposal, trade, and do nothing are modelled. In the lower-level, vehicle type 

choice decisions are modelled, categorizing vehicles by size and vintage. In a 

recent update of the transaction model of ILUTE, the trade decision is 

conceptualized to be sensitive to both purchased and disposed vehicle types 

(Duivestein 2013). Whereas, in the earlier version of the trade component, only 

the purchased vehicle type influenced the disposed vehicle type 

(Mohammadian 2002). ILUTE does not assume any system equilibrium for the 

market clearing process. The system state of ILUTE moves forward at a yearly 

time-step by operating at the dwelling unit level. 

MUSSA is an aggregate level urban model, developed by Martinez (1996).  At 

the core of its framework, there is an auction mechanism based on the theory 

of willingness to pay to determine the location of households and firms. The 

auction process is performed with an equilibrium solution algorithm using a 

bid function. Households bid for multiple dwellings based on the dwelling 

attribute and finally chooses the one with the highest utility. The demand and 

supply are generated using a rate-based model in accordance to the national 

growth. 

Another market principle model is the Chicago Proto-type Housing Market 

Model (CPHMM), which was initially developed as a land use model (Anas and 
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Arnott 1993, 1994)). Later CPHMM was connected with a travel demand model 

developed for the New York region, which is known as the New York 

Metropolitan Transit Corporation Land Use Model (NYMTC-LUM) (Anas 

1998). The central idea of the CPHMM is based on equilibrium assumption of 

labour market, housing market, and commercial space market. The simulation 

of each market is operated through the following three sub-modules: “asset bid-

price” sub-module determines the value of housing and land at the beginning, 

“stock adjustment” sub-module determines buyers and sellers decision on the 

basis of utility and profit, and “market clearing” sub-module clears market 

through allocating households into different housing units by adjusting rent 

and price to balance demand and supply. The sub-modules were developed 

using a logit modelling technique and represent aggregate-level behaviour of 

households, housing units, and land owners. The model operates at the zonal 

level of traffic analysis zones (TAZ) on a yearly basis.       

One of the recent market-based urban model is the SelfSim. It is an agent-

based model, which is currently under development. Conceptually, SelfSim has 

six major models: demographic model, travel demand model, accessibility 

model, residential location model, activity location model, and transport 

development model (Zhuge et al. 2016). At the core, residential location and 

real estate price (RLC-REP) models were developed taking a market-based 

approach. In the RLC-REP framework, first, active households are identified 

heuristically based on their affordability and inducement (i.e. marriage). Then, 

a negotiation between households and owners is conducted, where active 

households temporarily choose a house on the basis of its utility (i.e. price and 

accessibility attributes). The utility function was developed using utility 

maximization and prospect theory. Finally, the negotiation is completed as 

owners update price and households move to a house. SelfSim simulates at the 

aggregate level of road node (where all the houses and activity facilities along 

a road are assumed to be a community, and centered at the node of the road) 
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at a yearly time-step. A proto-type of SelfSim, basically the RLC-REP model 

was calibrated for the city of Baoding, China. The activity location model and 

transport development model are under development (Zhuge et al. 2016).       

2.2.3 Quasi Market-based Models 

Quasi market-based models partially follow market principle where the 

interaction between buyers and sellers takes place in the market; however, 

finally the market is cleared heuristically. Such models include: UrbanSim 

(Waddel et al. 2003, Waddell 2002, 2010), SimTRAVEL (Pendyala et al. 2012), 

UrbanSim and Metropolis integration in Paris (De Palma et al. 2007), 

Integrated Land Use and Transport Model of Brussels (Efthymiou et al. 2013), 

and ILUMASS (Wagner and Wegener 2007, Moeckel et al 2002).  

UrbanSim is one of the most widely implemented integrated urban models 

(Waddell 1998, 2002). It has six major components: economic and demographic 

transition, mobility, location choice, real estate development, land price, and 

travel demand model. The transition and mobility components are heuristic 

models, location choice follows multinomial logit modelling  technique, real 

estate is a semi-log linear regression model, land price is a hedonic price model, 

and travel demand follows conventional four-stage modelling technique. 

UrbanSim represents the behaviour of households, persons, and firms through 

a market clearing process. During the initial development of UrbanSim, the 

market was cleared on the basis of willingness to pay theory with the 

assumption of market equilibrium. Later, the market clearing process was 

updated by undertaking a capacity constrained algorithm using a first come 

first serve technique of allocating dwellings to the households. In this 

technique, if a house is selected by a household, it is taken out of the market, 

making it unavailable for other households even if they bid higher. UrbanSim 

simulates at a yearly basis and can be operated at different spatial levels: 
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parcel, grid cell (150m X 150m), traffic analysis zone, and/or other spatial 

units. The proto-type was implemented in Eugene-Springfield, Oregon 

(Waddell 1998). Later, it was also implemented in the Salt Lake City and 

Seattle. UrbanSim has recently adopted an open source licensing for the 

software, which was written in the Python programming language and known 

as the Open Platform for Urban Simulation (OPUS). UrbanSim takes a 

modular-based approach in developing the software architecture, which has 

facilitated advancing the experimentation with new methods to improve the 

model components, and implement UrbanSim in different cities around the 

world. As a result, UrbanSim has been adopted as the land use component of 

a number of existing integrated urban models. SimTRAVEL is one of such 

initiatives, which integrates UrbanSim with an activity travel demand 

(OpenAMOS) model and a traffic assignment (MALTA) model. Under the 

SustainCity project, funded by the European Union, UrbanSim is adopted to 

develop integrated urban models for Paris (De Palma et al. 2007), Brussels 

(Efthymiou et al. 2013), and Zurich (Lochl and Axhausen 2010).  

Integrated Land-Use Modelling and Transportation System Simulation 

(ILUMASS) is another notable quasi market-based model. ILUMASS was 

designed to have three major modules: land use, transport, and environment 

(Wagner and Wegener 2007). Each component has multiple sub-modules. For 

instance, the sub-modules of the land use component are: population, firm, 

residential location, firm location, residential building, and non-residential 

building. The residential location choice was modelled as a demand and supply 

function between households and landlord in the housing market. The spatial 

choice unit in ILUMASS has three-levels of resolutions: micro (100 X 100 

meters grid cell), meso (traffic analysis zone), and macro (municipality). The 

simulation time-scale is at a yearly-level. ILUMASS was tested for the 

metropolitan area of Dortmund in the Ruhr industrial district in Germany.    



 

  15 
 

2.2.4 Hybrid Models of Heuristic, Utility, and Market Principles 

Hybrid models are developed as a combination of the heuristic, utility, and 

market theories. Such models include: PUMA (Ettema et al. 2007, Ettema 

2011), CEMUS (Eluru et al. 2008), SimDELTA (Simmonds et al. 2011, 

Feldsman et al. 2007), RAMBLAS (Veldhuisen et al. 2000, 2005), SILO 

(Moeckel 2016), TRESIS (Hensher and Ton 2002), and LUSDR (Gregor 2007).  

Predicting Urbanisation with Multi-Agents (PUMA) is an agent-based 

integrated urban model that conceptually includes a variety of land use and 

transport components. While operationalizing, a much simpler system was 

implemented for the northern part of the Dutch Randstad (Ettema et al. 2007). 

The operational system implemented the longer-term decisions, leaving the 

travel activity component for future development. The implemented 

components include, demographic events, residential location, and work 

location choice models. At the center of the system is the residential location 

choice component, which was modelled as a three stage process: decision to 

search, decision to move, and choice of location. The first two stages were 

modelled using a binary logit modelling technique and location choice was 

modelled using a multinomial logit modelling approach. Choice of location is 

made through interaction between buyers and sellers in the market on the 

basis of maximum lifetime utility. In estimating utility, transaction cost for the 

movement was incorporated with the utility of the new housing. If derived 

utility from the new house is higher, households move, otherwise they return 

to their previous house. Recently, a joint model of residential choice and real 

estate price was developed based on the perceptions of housing market 

probabilities; however it was tested as an experiment only (Ettema 2011). The 

demographic events simulated within PUMA includes: ageing, birth, marriage, 

divorce, and leave parental home. The temporal resolution of the system is at 

a yearly basis and the spatial resolution is 500 X 500 meters grid cell.   
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Comprehensive Econometric Microsimulator for Urban Systems (CEMUS) was 

developed with the focus to represent greater behaviour of the household- and 

individual-level decisions using state-of-the-art modelling techniques. It has 

the following two major components: socio-economic and land use component 

known as CEMSELTS (Guo et al. 2005), and activity scheduler known as 

CEMDAP (Pinjari et al. 2006). CEMSELTS has two major modules: the 

migration module, and the socio-economic evolution module. The migration 

module comprises of emigration and immigration models for the households 

and individuals. The socio-economic evolution module has three major 

components: individual-level demographic update, household formation, and 

household-level long-term choice models for residential relocation, automobile 

ownership, information and communication technology adoption, and bicycle 

ownership. One of the interesting dimensions of CEMUS is to include the 

automobile ownership component, which simulates households’ vehicle 

ownership level of 0, 1, 2, 3, and 4 or more vehicles. Households’ and 

individuals’ behaviour are represented by developing a number of advanced 

econometric models, such as binary logit models, multinomial logit models, 

ordered-response probit models, heuristic models, and rate-based probability 

models. CEMUS operates at the zonal-level at a yearly basis. A proto-type of 

CEMUS was tested for the Dallas-Fort Worth region, which focuses on the 

validation of the base year population update component (Eluru et al. 2008).   

SimDELTA developed by the David Simmonds Consulting Ltd in UK 

(Simmonds et al. 2011, Feldsman et al. 2007) is the advanced version of the 

earlier integrated urban models, DELTA and MASTER (Mackett 1993). 

SimDELTA has the following sub-models: demographic change, household 

location, employment location, auto ownership, and transport model. Majority 

of the components of SimDELTA are rate-based models using monte-carlo 

simulation. Only in the case of auto ownership, an ordered probit modelling 

technique is used for probability estimates. A change in the vehicle ownership 
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level is forecasted using a monte-carlo simulation technique. The model 

operates at the zonal level with a simulation time-step of one year.  SimDELTA 

was implemented in South and West Yorkshire, UK.  

RAMBLAS is a national-level integrated urban model for the Netherlands. 

RAMBLAS is basically a heuristic and rate-based model using national 

statistics and housing survey data. It extensively uses monte-carlo simulation 

technique for modelling majority of the decision processes. For the residential 

location decisions, a logit model was developed for probability estimation; then 

monte-carlo simulation is used to match households to available housing 

(Veldhuisen et al. 2005). The model operates at the spatial levels of postal code, 

municipality, or any other zonal resolutions. The model is implemented in the 

North Wing of the Randstad region, which includes Amsterdam and its 

surroundings.  

Another hybrid model is the Simple Integrated Land-use Orchestrator (SILO), 

which was first developed as a proto-type for the Minneapolis-St. Paul, 

Minnesota; and currently implemented in Maryland. SILO has four major 

components: demographic change, real estate development, household 

relocation, and travel demand model (Moeckel 2017). The spatial choice 

decisions, such as residential location and housing development are discrete 

choice models. Residential location was modelled on the basis of three 

constraints: price of a dwelling, the travel time to work, and the monetary 

transportation budget. SILO simulates at the zonal-level at a yearly basis. In 

addition, hybrid models include Transportation and Environment Strategy 

Impact Simulator (TRESIS) for Sydney (Hensher and Ton 2002), Autralia; and 

Land Use Scenario DevelopeR (LUSDR) for Oregon, USA (Gregor 2007).   
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2.2.5 Emerging Complex System Models 

The emerging complex system models are the new developments in the field of 

integrated urban modelling. These models are designed to capture the complex 

behaviour of the individuals/households in the urban system through agent-

based microsimulation, and also extend the dimension of integrated urban 

models towards emission and energy estimation. The emerging complex 

system models include: SimMobility (Lu et al. 2015, Adnan et al. 2016), 

SynCity (Keirstead et al. 2010), POLARIS (Auld et al. 2016, Hope et al. 2014), 

and iTEAM (Ghauche 2010).  

SimMobility is a multi-level, modular-based, mobility-sensitive micro-

simulation platform for urban system. The design of SimMobility comprises of 

three simulators: (1) long-term simulator representing house and job 

relocation, car ownership; (2) medium-term simulator (known as DYNAMIT) 

representing daily activity scheduling, mode, route, destination, and departure 

time choice; and (3) short-term simulator (known as MITSIM) representing 

lane changing, braking, and acceleration. SimMobility is an event-based 

modelling platform; where agents make decisions only after being active, 

which is triggered by their perception of an event. For instance, the residential 

relocation module operates in the following four stages: (1) ‘awakening’ 

households to begin the search; (2) eligibility, affordability, and screening 

constraints; (3) market bidding; and (4) developer behaviour to construct built 

space. In the case of vehicle ownership, the assessment of ownership is 

triggered if agents change their residential location. SimMobility was 

implemented at the postal code level for Singapore (Adnan et al. 2016).  

One of the emerging models with a focus to extend urban modelling towards 

urban energy system modelling is SynCity. It utilizes a mathematical 

modelling technique to optimize urban energy policies. SynCity consists of four 

major components: (1) layout model (Input) for residential and commercial 



 

  19 
 

buildings, available transportation infrastructures and modes, and average 

activity profiles of the citizens; (2) agent activity model; (3) network model; and 

(4) service network model. SynCity was tested at the building-level for a 

proposed hypothetical eco-town in UK (Keirstead et al. 2010).  

Planning and Operation Language for Agent-based Regional Integrated 

Simulation (POLARIS) is an agent-based modelling (ABM) software. It is an 

innovative ABM platform, where several separate models can be integrated 

into a single system and implemented in a computationally efficient manner. 

Auld et al. (2016) utilized the software tool kit to integrate a travel demand 

model with a network model. Specifically, a proto-type integration of ADAPTS 

with a dynamic traffic assignment model was implemented for the Chicago 

Metropolitan Area. However, integration of long-term and medium-term 

decisions within the POLARIS platform have not occurred yet. 

Another emerging model is the Integrated Transport and Energy Activity-

based Model (iTEAM), which is designed to be a decision support tool to inform 

sustainable policies and investments (Ghauche 2010). It is a multi agent-based 

microsimulation model with a modular design. iTEAM microsimulates 

household and firm behaviour by integrating land use, transportation, and 

energy consumption in an urban area. The models were developed using bid-

rent, hedonic price, and random utility-based modelling techniques. The long-

term choice is integrated with the short-term activities through the concept of 

life-style stress. Energy is estimated by converting transportation and 

equipment usage into resource consumed. 

Furthermore, another stream of integrated urban modelling is the cellular 

automata (CA) models (Ye and Li 2002, Kii and Doi 2005, Ottensmann 2005, 

Levinson and Chen 2005). CA-based models are simpler urban models that 

represent an urban region through cells. In such models, cells are the agents, 

not the households or individuals. The evolution of urban regions was modelled 
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through the changing states of the cells, which can be dependent on the 

observed probability or a function of the states in the adjacent cells. Such 

mechanistic approach of modelling does not represent household or individual 

behaviour, which is one of the major limitations of the CA models.   

As discussed above, longer-term decisions of location choice, and vehicle 

ownership are the most critical components of an integrated urban model. A 

comparison among the most notable integrated urban models in-terms of their 

longer-term decision components is presented in Table 2-1. Although all the 

models include residential location choice component, few of them contain 

residential mobility. Limited of the models are consist of life-stage transition, 

and vehicle ownership components. Particularly, inclusion of vehicle 

transaction component is even rare. 

Table 2-1 Longer-term Decision Components of the Most Notable Existing 

Integrated Urban Models 

         Components 

 

 

Models 

Life-stage 

Transition 

Residential Location Vehicle Ownership 

 Mobility Location 
Choice 

Ownership 
Level 

Transaction 

CEMUS 
(Eluru et al. 

2008) 

    × 

ILUMASS 
(Wagner and 

Wegener 2007) 
× ×  × × 

ILUTE  
(Salvini and 

Miller 2005) 

   ×  

PUMA 
(Ettema et al. 

2007) 

   × × 

SelfSim 
(Zhuge et al 2016) 

× ×  × × 

SimMobility 
(Adnan et al. 

2016) 
× ×   × 

UrbanSim  
(Waddell 2002) 

×   × × 
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2.3 Modelling Location Choice, Mode Transition, and 

Vehicle Transaction Decisions 

Long-term location choice process is the skeletal component of an integrated 

urban model, which predicts the spatial configuration of an urban region. 

Vehicle ownership is another essential component, since it predicts the vehicle 

ownership information of the population that directly feeds into the transport 

models to predict the traffic flow as well as test the impacts of strategies 

targeting the promotion of sustainable travel choices. Although, generally 

commute mode choice is conceptualized as a short-term decision, it has a 

longer-term dimension as well. Unless the modelling paradigm of these critical 

decision components represent the behaviour adequately, reasonable 

understanding and forecasting of the phenomenon might be challenging. A 

review of modelling such longer-term decisions is presented in the section 

below. 

2.3.1 Modelling Residential Location  

Residential location decisions have an inherent process orientation in relation 

to mobility and determination of location. In the process of relocation, 

households first decide to move, then they choose a location. Moreover, the 

location component itself is a two-tier process of search and choice of a location.  

In this process, households first undertake a search process to identify 

potential location alternatives, and finally move to a location. Although a vast 

amount of literature exists on modelling location choice decisions, limited 

studies have addressed the mobility (Habib and Miller 2008) and search 

processes (Rashidi and Mohammadian 2011). Particularly, one of the major 

challenges in modelling spatial choice decisions such as residential location is 

to address the search process. One approach is to consider all available location 

alternatives (e.g., Thill and Horowitz 1991); however, this method is not 
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behaviourally realistic as households do not evaluate all the alternatives 

during relocation (Fotheringham 1988). Moreover, the estimation process is 

computationally burdensome due to a substantial number of location 

alternatives. The most widely used method for reducing computational burden 

is to randomly select a subset from the all available alternatives (Ben-Akiva 

and Lerman 1985, Guevara 2010). Although the random sampling approach 

provides a consistent estimate (McFadden 1978, Guevara and Ben-Akiva 

2013), it is merely a statistical method to reduce the number of location 

alternatives and ignores behavioural realism of the search process. Another 

method is the constrained-based sampling technique, where all the 

alternatives within a certain threshold range of a parameter are considered in 

the choice set (Zheng and Guo 2008). The underlying deterministic nature of 

this technique lacks to capture behavioural realism adequately. 

A more plausible approach is to develop behaviourally realistic search model, 

where households formulate a pool of potential location alternatives (Habib 

and Miller 2007). In this line of research, a number of studies have attempted 

to address the search process (Rashidi and Mohammadian 2015, Fatmi et al. 

2016). One of the limitations of these studies is to develop the search model on 

the basis of single attribute. For instance, Rashidi and Mohammadian (2015) 

developed a hazard-based screening model for spatial search based on average 

commute distance. Fatmi et al. (2015) considered the influence of prior 

locations in generating the potential choice set for the subsequent location on 

the basis of distance to the CBD. Advancing the research on residential search, 

Bhat (2015) developed a search model that probabilistically generates choice 

set using multidimensional housing attributes. One of the most notable 

contributions in this paradigm is made by Rashidi et al. (2012), who developed 

a hazard-based search model to generate household-specific choice set on the 

basis of commute distance and average land value. However, the location 

choice model developed using choice set generated from the hazard-based 
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search model did not improve the model fit compared to the random sampling 

model (Zolfaghari et al. 2012). 

Further, the choice of residential location evolves over the life-time of the 

households, as they move from one location to another along the life-course. 

Most of the previous researches ignore such dynamics and are static in nature 

(Pinjari et al. 2011, Eluru et al. 2010, Gehrke et al. 2014, Lee and Waddell 

2010). Few studies have taken a dynamic approach to examine how changes 

along the life-time influences location choice. For example, Habib and Miller 

(2009) developed a reference dependent mixed logit model to investigate the 

role of status quo and response towards gains and losses during location 

decisions. Chen and Lin (2011) investigated the effects of historical deposition 

on location decisions and argued that the choice of prior locations has an 

influence on the choice of the subsequent locations. Strom (2010) tested the 

effects of life-cycle events and revealed that the birth of the first child is 

associated with the choice of larger-sized dwelling with a higher number of 

rooms. Kim et al. (2005) argued that households with young children prefer to 

reside in locations on the basis of educational opportunities, residential 

facilities, and open spaces. They also revealed that households start to value 

job accessibility as children grow older. Recently, some studies have examined 

the effects of timing of the life-cycle events on vehicle ownership level (Oakil et 

al. 2014), and mode transition decisions (Oakil et al. 2011). It is critical to 

address the timing of an event, since households require time to adjust prior 

to or after an event in the life-course. Further examination on the life-

trajectory dynamics of residential location choice decisions is necessary.  

2.3.2 Modelling Commute Mode Transitions 

As residential relocation is a significant decision in the life-time of the 

households, a change in location might be directly associated with different 
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decision processes such as mode choice. Mode choice, particularly for commute, 

is an important travel decision that has a profound longer-term dimension, as 

many change their commute mode over the course of life in response to 

changing life circumstances (Oakil et al. 2011). Commuting is the most 

frequently made daily trip, as a result individuals become habitual in their 

choice of commute mode (Gardner 2009). Since habit persistency is a natural 

phenomenon of human behaviour (Bamberg et al. 2010), individuals are 

resistant to changes in their commute mode (Kenyon and Lyons 2003). 

Commute mode changes are more often the result of key long-term change of 

state such as, residential/work location change (Stanbridge et al. 2004, van der 

Waerden et al. 2003), change in auto ownership level (Zhang 2006), or 

occurrence of life-cycle events, such as household formation, birth of a child, or 

residence members moving in or out (Oakil et al. 2011, Verhoeven et al. 2005).  

Among the long-term changes, change in residential location considerably 

influences a change in commute mode (Dargay and Hanly 2007, Stanbridge et 

al. 2004). Stanbridge et al. (2004) demonstrated that a change in residential 

location might trigger a change in commute mode choice. Indeed, over one-

quarter (27%) of home movers surveyed changed their commute mode 

following relocation (Stanbridge and Lyons 2006). Similarly, Dargay and 

Hanly (2007) found that the occurrence of commute mode changes was 

associated with residential relocation among the respondents in the British 

Household Panel Survey. Clark et al. (2003) developed a probability model to 

investigate how one worker and two worker households evaluate commute 

distance in choosing their work locations.  

The reason for a close association between relocation and mode switch is 

attributed by the fact that a change in residential location changes the built 

environment, and accessibility characteristics of the home neighbourhood; 

which influences the choice of commute mode. For instance, individuals living 

in urban areas are more likely to commute by transit/walking/biking, whereas 
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suburban residents tend to be more auto-dependent (Schwanen and 

Mokhtarian 2005). Locations with higher mixed land use encourages the use 

of transit and active transportation, and discourages the use of car (Cao et al. 

2009). Individuals living in urban areas walk more (Coogan et al. 2007) and 

choose to take more transit trips (Kitamura et al. 1997). On the other hand, 

individuals who prefer single-detached dwellings and single occupancy 

vehicles (SOV), live in sub-urban areas (Mae 1997) and own cars (Wachs and 

Crawford 1992). Although the relationship between residential location choice 

and commute mode choice is evident in the literature, limited studies have 

examined how a change in residential location influences a change in commute 

mode choice. 

Mode transition has been investigated as a longer-term decision by Oakil et al. 

(2011), Fatmi and Habib (2017), and as a shorter-term decision by Hess et al. 

(2007), among others. Shorter-term mode changes have been examined in 

response to temporary incentives (Nurdeen et al. 2007) and acquisition of 

specific travel information (Athena et al. 2010). Recently, researchers have 

shown interest in analyzing individuals’ mode transition behaviour as a longer-

term decision. For instance, Oakil et al. (2011) developed a panel model to 

investigate how individuals’ switch commute mode to and from car. Clark et 

al. (2015) developed a logistic regression model to analyze the behaviour of car 

commute and transition to and from car, active transportation commute and 

transition to and from active transportation. Wang and Chen (2021) developed 

a structural equation model of mode switching behaviour between single 

occupancy vehicle driving (SOV) and carpooling using data from the Puget 

Sound Transportation Panel (PSTP) survey. Idris et al. (2015) used a stated 

preference survey to investigate the mode shift behaviour of car drivers. They 

focused on the behaviour of continuing with car and shifting from car to transit 

and other modes. Although, the importance of understanding mode transition 

as a longer-term decision has been identified, a gap nonetheless exists in the 
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literature regarding how mode-specific mode transition occurs along the life-

course of the individuals in response to relocation.  

2.3.3 Modelling Vehicle Transactions 

Modelling vehicle ownership has emerged from the concern for energy security 

and emission reduction. Vehicle ownership is an important medium-term 

decision, which interacts with the long-term decisions of where to live, where 

to work, as well as short-term decisions of what mode to choose, where to 

travel. It is one of the most explored phenomenon in the field of modelling 

travel behaviour. A review of literature suggests that a wide-array of 

dimensions of the phenomenon is investigated, including vehicle ownership 

level (Anowar et al. 2014), vehicle type choice (Garikapati et al. 2014), vehicle 

transaction (Mohammadian and Miller 2003), vehicle vintage type (Bhat et al. 

2009), and vehicle holding and usage (Bhat and Sen 2006). For example, 

Anowar et al. (2014) investigated the vehicle ownership level in four categories: 

zero, one, two, and three or more vehicles. Garikapati et al. (2014) estimated a 

joint model of vehicle count for the following five vehicle types: car, SUV, van, 

pickup, and motorbike. Vehicle transaction was investigated as the transaction 

decisions of purchase, disposal, do nothing, and trade of vehicles by 

Mohammadian and Miller (2003). Bhat et al. (2009) investigated the choice of 

vehicles by the following two categories of vintage types: new vehicles (vehicle 

age less or equal to five years), and old vehicles (vehicle age more than five 

years). Bhat and Sen (2006) developed a vehicle holding model by examining 

households’ usage (annual miles travelled) of different types of vehicles.    

Vehicle transaction is a dynamic decision making process which refers to 

addition, disposal, and trading of vehicles. Recently, researchers have 

attempted to extend the dynamics of the model by accommodating the effects 

of life-cycle events on vehicle transaction decisions (Kitamura 2009, Oakil et 
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al. 2014). For example, Yamamoto (2008) investigated vehicle transaction 

decisions using longitudinal data from two surveys conducted in France and 

Japan. In the case of France, the study developed a competing-risk hazard-

based duration model to examine acquisition, disposal, and replacement 

decisions utilizing data from a nationwide panel survey conducted in France. 

For Japan, the study developed a multinomial logit model to examine increase, 

decrease, and no change in the number of household vehicles using data from 

a retrospective component of the person trip survey conducted in Kofu City, 

Japan. The study found that life-cycle events, such as residential relocation, 

and change in the number of adults in the household significantly affect the 

vehicle transaction decisions. Rashidi and Mohammadian (2011) investigated 

the interdependencies among residential relocation, employment relocation, 

and vehicle transaction utilizing panel data from the Puget Sound 

Transportation Study conducted in the Seattle Metropolitan Area, U.S.A. They 

formulated a hazard-based system of equations, where residential and 

employment relocations are included as endogenous variables in the vehicle 

transaction model to predict the timing of vehicle ownership change. They 

found that a change in job is more likely to influence a household to make a 

vehicle transaction; whereas, a residential relocation was found to show a 

lower likelihood to change the household vehicle fleet size. In this line of 

research, Oakil et al. (2014) further tested the effects of timing of life-cycle 

events on vehicle transactions. They developed a mixed logit model to 

investigate vehicle transaction decisions; particularly, focusing on the vehicle 

acquisition and disposal decisions. The study revealed that households require 

adjustment period before and after a life-cycle event. For example, households 

were found to purchase a vehicle in anticipation of the child birth and dispose 

of a vehicle after changing a job. However, further investigation is required 

regarding developing dynamic models for vehicle transaction decisions. 
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2.4 Issues in the Existing Integrated Urban Models 

In summary, long-term, medium-term, and short-term decisions are essential 

components of IUMs. There is an inherent inter-dependency among these 

decisions. For example, long-term decision of where to live influences medium-

term and short-term decisions of whether or not to own a vehicle, what mode 

to choose, and vice versa. Integrated urban models need to be responsive to 

these decision dynamics across the agents’ life-stages; starting with residential 

location, vehicle transaction, and life-stage transitions. However, such multi-

way feedback mechanism is not well addressed within the existing urban 

modelling framework. 

It is also required to examine how a change in critical long-term state such as 

residential location triggers a change in decisions of other life-domains such as 

commute mode choice. In the existing literature, dynamic modelling of 

commute mode transition decisions associated with the changes in residential 

location over the life-time of the individuals have not occurred to any 

significant extent. Moreover, limited studies have considered mode-specific 

mode transition among a comprehensive set of modes, such as car, transit, and 

active transportation (walk/bike).  

An important aspect is addressing the process orientation of the essential 

decisions, which is limited in the existing urban modelling literature. For 

example, residential location is a two-stage process of mobility and location 

choice. Majority of the integrated models focuses on the location choice 

decision. Only a few, such as ILUTE, CEMUS, UrbanSim, and ILUMASS have 

the mobility component. However, to avoid complexity during implementation, 

some of the models, for example, UrbanSim and ILUMASS use historical rates 

in-place of behavioural models for the mobility module. Even the location 

choice component can be characterized as a two-tier process of home search 

and location choice. In the modelling paradigm of residential location, some 
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attempts have been made to address the search process. Such efforts have not 

warranted improvements in the empirical estimation of location choice models 

(Zolfaghari et al. 2012). Further examination is necessary on how to address 

the process orientation of the decisions; particularly, the long-term and 

medium decisions of residential location and vehicle transaction. 

Although vehicle ownership is an important element for both the land use and 

transport components of the IUMs, few of the existing IUMs such as ILUTE, 

CEMUS, and SimMobility have this module. Only ILUTE accommodates 

vehicle transaction simulation, including acquisition, disposal, and trade. 

However, acquisition of a vehicle has an underlying dimension of whether the 

household is purchasing the first vehicle in their lifetime or the household is 

adding a vehicle to the already existing vehicle fleet. It is critical to identify 

the transaction decision of the first time vehicle purchase, since purchasing the 

first vehicle is a key event itself in the lifetime of the household which might 

trigger a mode shift to car. Therefore, in addition to implementing the vehicle 

transaction, such extension towards first vehicle purchase is necessary.  

To address the life-trajectory dynamics of different decision processes within 

the IUM framework, individuals’ life-stages have to be simulated. A large body 

of literature exists on the population demographic microsimulation (Nelissen 

1993, Gribble 2000, Orcutt et al. 1976, King et al. 1999); however, integrated 

urban models have not sufficiently addressed life-stage transition processes. 

In addition, one of the major purposes of integrated urban models is to predict 

the evolution of urban form. Limited of the existing models are operational to 

report the spatio-temporal evolution of an urban region at the disaggregate-

level of individuals as well as at the micro-spatial resolution.   

In terms of modelling techniques, innovative methods need to be developed 

that accommodate the life-trajectory dynamics such as the process orientation 

of the decisions, and hold the potential to improve the empirical estimation 
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procedure. Models are also required to capture the multi-way decision 

dynamics; particularly, interactions among longer-term decisions of residential 

location, vehicle transaction, and life-stage transitions. These decisions are 

significant events in the life-time of the households, which require considerable 

investment of time and money. Hence, households might need adjustment 

period prior to or after an event/decision in the life-course. It is important to 

accommodate such time dimension of decisions and life-cycle events within the 

model estimation technique. Another temporal dimension is the repeated 

choices made by the same households along their life-course when panel 

observations are considered. For instance, in the case of residential location, 

households repeatedly move from one location to another along their housing 

career. Due to the repeated location choices, there exists a correlated sequence 

of choices, which demands accommodation within the empirical formulation of 

the models. Furthermore, models should address the heterogeneity among the 

households/individuals during the decision making processes.  

Although considerable progress has been made in developing integrated urban 

models based on fundamental theories and approaches, such as economic 

activity-based models, market principle models, quasi market-based models, 

hybrid models, and agent-based complex system models; however, life-oriented 

approach is rarely adopted in developing urban models. A life-oriented 

perspective and theory is required to address the life-trajectory dynamics of 

key household-level decision processes, such as residential location and vehicle 

transaction. Life-oriented approach focuses on how transitions along the life-

time and interactions among decisions taken at different life-domains shape 

individuals’ choices and behaviour (Chatterjee Scheiner, 2015, Zhang 2017, 

Zhang 2015). Life-oriented approach and perspective offers the opportunity to 

disentangle a wide-ranging modelling issues such as multi-domain decision 

interactions, evolution of life-stages of individuals and households, evolving 
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nature of the decisions along the life-course, and process orientation of the 

decisions, among others.  

2.5 Research Questions and Concluding Remarks 

From the above discussion, it is evident that a wide-ranging theories, 

modelling methodologies, and simulation frameworks are developed to address 

the evolution of urban systems through integrated urban modelling. However, 

representing greater behaviour of the agents during longer-term decision 

processes as well as adding the capacity to reasonably predict the spatio-

temporal evolution of the urban region demand further investigation. 

Particularly, the following research questions need to be addressed: 

1. How to accommodate life-trajectory dynamics within key household-

level longer-term decision models? 

2. How to represent process orientation within the micro-modelling 

structure as well as computational procedure of an integrated urban 

model? 

3. How to advance development of integrated urban systems model taking 

a life-course perspective and predict the micro-level evolution of the 

urban region? 

This research attempts to address the above mentioned research questions. 

Specifically, this study adopts a life history-oriented approach to develop an 

agent-based integrated urban model that encompasses the modelling and 

simulation of longer-term decision processes, including life-stage transitions, 

residential location, first time vehicle purchase, and vehicle transaction. 

Interactions among these decisions are established within the empirical and 

computational procedures. The process orientation of the agents’ decisions are 

accommodated during developing the modelling methodologies, which is later 

translated to the simulation framework. Further in the modelling paradigm, 
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this study investigates how a change in commute mode is associated with a 

change in residential location. Innovative modelling techniques are developed 

to accommodate the life-trajectory dynamics of the decision processes. The 

proto-type integrated urban model developed in this study is capable of 

predicting the micro-level spatio-temporal evolution of the population in an 

urban region.  
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Chapter 3 

3 Conceptual Framework and Data 

3.1 Theoretical Context 

The need to recognize the multi-directional interactions among the household 

decision processes has motivated this research to develop a life-oriented 

integrated Transport Land Use and Energy (iTLE) Model. The proposed model 

is developed on the basis of solid theoretical foundation, and includes a 

comprehensive set of decision components. To address the multi-way 

interactions and temporal dimension, the software architecture including the 

micro-modelling structures and computational procedures consistently adopts 

the concept of life-oriented approaches and theories. Life-oriented approach 

focuses on the inter-dependencies among the decisions and changes occurring 

at different life-domains of people (Zhang 2017, Zhang 2015). Zhang et al. 

(2011) identified nine major life-domains, such as residence, job, education and 

learning, health, family life, family budgets, neighbourhood, leisure and 

recreation, and travel behaviour; and revealed that interactions exist among 

the decisions taken in different life-domains (Zhang 2014). To develop better 

empirical and simulation models of household-level decision processes, it is 

imperative to examine the interactions among changes in multiple life-

domains, since choices at any domain are part of the extended inter-connected 

choices made hierarchically across different domains (Salomono and Ben-

Akiva 1983, Lanzendorf 2003).  

A life-oriented approach could take a life-course perspective, also known as life 

history-oriented approach. Life history-oriented approach focuses on the 

temporal variation of the multi-domain interactions over the life-course. 
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Particularly, it emphasizes on the effects of changes at different domains along 

the life-course in shaping individuals’ or households’ behaviour (Chatterjee 

and Scheiner 2015). The changes during life-course include life-events and 

decisions taken at different stages along the life-time (Oakil et al. 2014). Such 

life-events and decisions include birth of a child, getting a job, job change, and 

household formation, among others (Habib and Miller 2009). Unlike 

conventional cross-sectional modelling approaches, which focus on a snapshot 

of an individual’s life-time; the life history-oriented approach considers the 

whole life-time or a segment of the life-time (Chatterjee and Scheiner 2015). 

Among the decisions taken at different life-domains, life-stage transitions, 

residential location choice, and vehicle ownership are the most critical 

decisions. A schematic representation of how the concept of life-oriented 

approach is translated into the development of the proposed integrated urban 

model is presented in Figure 3.1.  

 

 

 

 

 

  

 

Figure 3-1 Conceptual Framework of the Proposed Life-oriented Integrated 

Urban Model 

The proposed life-oriented integrated urban systems model simulates 
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of the life-time. Figure 3.1 represents that individuals enter the proposed 

urban system through birth. They grow older within the system, and exit 

through death. Along their life-course, changes at different life-domains 

occurs, such as marriage, child birth, job change, residential location change, 

vehicle transaction,  and mode change, among others. These decisions and 

changes interact with each other. Such multi-way interactions have a temporal 

dimension. For example, households require an adjustment period to adapt 

prior or after a change in life-stage, due to the limitations in time and money 

budget. One of the mechanisms adopted to accommodate the interaction among 

the multi-domain changes is through introducing lead and lag events. A lead 

event refers to an event on occurrence, and a lag event refers to an event in 

anticipation. Based on this concept, the iTLE software architecture is 

developed. A description of the iTLE framework and modelling components are 

discussed below.  

3.2 Modelling Framework of the Proposed Integrated 

Urban Model  

The proposed integrated Transport Land Use and Energy (iTLE) model is an 

agent-based microsimulation model for urban systems. It is designed to 

address the multi-domain interactions and recognize the process orientation of 

a wide range of decisions. The conceptual iTLE modelling framework is 

presented in Figure 3.2. The model system consists of five core modules: 

baseline synthesis, population life-stage transition, residential location 

transition, vehicle ownership transition, and activity-based travel. To 

represent the behaviour of the agents within each module, a number of micro-

behavioural econometric models are developed accommodating life-trajectory 

dynamics. A brief description of the main elements within the iTLE are given 

below: 
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Figure 3-2 The Conceptual iTLE Modelling Framework  
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3.2.1 Baseline Synthesis   

The baseline synthesis component generates micro-level information of the 

population for an entire urban region, which is used as an input for the 

microsimulation engine of iTLE. The baseline synthesis involves population 

synthesis and vehicle ownership level synthesis for the initial time-step. 

Population synthesis for the iTLE is performed as a two-stage process. First, a 

synthetic population is generated controlling for both household-level and 

individual-level characteristics at the smallest zonal level of dissemination 

area (DA). In the second stage, households are allocated into the micro-spatial 

unit of parcel. In addition, relevant baseline information, for instance, vehicle 

ownership level for the synthetic population is generated. 

3.2.2 Population Life-stage Transition  

Population life-stage transition module focuses on the evolution of the 

demographic career of the agents. Relevant life-stage transitions along the life-

course of the individuals and households are simulated. This process includes 

simulation of eight transitions: ageing, death, birth, out-migration, in-

migration, household formation, in- and out-of labour force, and job transition.  

3.2.3 Residential Location Transition 

Residential location transition module follows the theory of residential stress 

(Rossi 1955), which postulates that households decision to move or stay at a 

location is triggered by the residential stress developed at that location. Stress 

is generated by the experienced or desired changes in life-stages (Miller 2005), 

dwelling characteristics (Van Ham and Feijten 2008), and neighbourhood 

attributes (Van Ham and Clark 2009), among others. Such stress arises from 
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the discrepancies between the desired and current situation of a household. As 

a result, households’ relocate to a new location that minimizes the stress.  

Residential location transition is conceptualized as a two-stage process: 

residential mobility, and residential location choice. In the first stage of 

mobility, households are assigned to move or stay at a particular location. 

Households who are assigned to move in this stage, are considered in the 

second stage. The second stage of location choice is assumed as a two-tier 

process of location search and choice. In this stage, households first search for 

locations, and then choose a location. The search process is conceptualized as 

a stress releasing mechanism, where households generate a pool of location 

alternatives, which has the potential to minimize the stress. Finally, 

households are allocated to one of the locations from the pool of alternative 

locations. In addition, the location transition module includes a commute mode 

transition component. Following a relocation, individuals are conceptualized 

to reassess their commute mode. After reassessing, individuals either continue 

with the same mode, or make a transition to a new mode. A description of the 

micro-behavioural models and microsimulation results of the residential 

location transition process are presented in Chapter 4 and Chapter 6 

respectively.  

3.2.4 Vehicle Ownership Transition  

Vehicle ownership transition module is conceptualized as a three stage process: 

vehicle ownership state, vehicle transaction, and vehicle type choice. The first 

stage of vehicle ownership state has two components: no vehicle ownership 

state, and transient ownership state, as conceptualized by Khan and Habib 

(2016). Households not having a transaction history in their lifetime are 

assumed to be in the no vehicle ownership state. Households having a 

transaction history in their lifetime are assumed to be in the transient 
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ownership state. The second stage of vehicle transaction focuses on the 

transaction decisions of the households. This component involves the following 

four transaction elements: first time vehicle purchase, acquisition, disposal, 

and trade. In the third stage, vehicle type choice behaviour is simulated for the 

households making the decisions of first vehicle purchase, acquisition, and 

trade in the earlier stage. In this stage, the simulation determines the choice 

among six vehicle types: sub-compact, compact, mid-size, luxury, SUV, and 

van. The micro-behavioural models and microsimulation results for the vehicle 

transaction component is reported in Chapter 5 and Chapter 7 respectively. 

The vehicle type choice model is developed by Khan and Habib (2016), and will 

be implemented later.  

3.2.5 Activity-based Travel  

This module simulates the travel activities of the individuals, following an 

activity-based modelling technique. Microsimulation of activity generation, 

scheduling, and mode choice behaviour are included in this module. Finally, 

the travel patterns/trips of the individuals are simulated on the transport 

network using a dynamic traffic assignment method. This module is currently 

under development, and beyond the scope of this study.  

3.2.6 Population and Urban Form Representation 

The efficiency and accuracy of an urban systems simulation model largely 

relies on how closely it replicates individuals’ behaviour, and relationships 

with built environment. In terms of representing individuals’ behaviour, agent-

based microsimulation modelling is necessary to effectively abstract a complex 

and dynamic system like an urban region. Therefore, the iTLE represents 

population at the most disaggregate-level, assuming individuals and 

households as the agents.  
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Urban form is represented at the most micro geographic unit of parcel, since 

residential location component is conceptualized to be modelled considering 

parcels as the spatial unit of analysis. The micro-scale spatial resolution 

improves the capability of the model to represent better individual behaviour 

and effectively analyze micro-scale land use policies. Each parcel acts as a 

property object, which is characterized by its location (centroid of a parcel), 

size, type, and accessibility to major activity points and service destinations. 

The parcel database also maintains the characteristics of more aggregate 

spatial information, such as dissemination area (DA) based on its location. 

Maintaining the relationship between parcels and corresponding DAs assists 

in generating numerous statistics and maps at different aggregation levels for 

further analysis of the simulation results. 

3.3 Data Sources and Description 

Development of a life-oriented agent-based microsimulation model for urban 

system like iTLE requires a tremendous amount of data. Particularly, the focus 

of iTLE is to address interactions among different decisions along the life-

course of the agents as well as process orientation of the decisions. To 

accommodate such dynamics within the empirical settings, data from 

conventional cross-sectional surveys are not adequate. Longitudinal survey 

data are required, which provides information about the life history of 

respondents. Therefore, this research utilizes retrospective survey data to 

develop the micro-behavioural components of the iTLE model. A description of 

the retrospective survey data is presented below.  

3.3.1 Retrospective Survey Data 

The data source for developing the micro-behavioural models is a retrospective 

Household Mobility and Travel Survey (HMTS). The HMTS was administered 
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from September 2012 to April 2013 in Halifax (Peterlin and Habib 2013, 

Heffernan and Habib 2013). The design of the HMTS was in accordance with 

previous retrospective surveys, including Residential Mobility Survey I and II 

(Haroun and Miller 2004), and Residential Search Survey, which were 

conducted in Toronto, Canada (Habib and Miller 2009). The HMTS collected 

life-history information across the life-domains of the households, including 

housing history, vehicle ownership history, compositional change, and 

employment record, among others. A brief description of these components are 

given below: 

1. Housing history: The housing history component collected information 

regarding the three most recent residential episodes of the respondents. 

For each residential episode, respondents were asked to provide the 

following information: 

 

 Location information including civic address and postal code. 

 Year and month of relocation.  

 Primary reasons for relocation. The reasons are thematically 

aggregated into the following four major categories: (1) to live in 

proximity to work or key activity locations, such as school, shopping 

center, entertainment, and transit stop; (2) to live in desirable 

neighbourhood or dwelling; (3) due to life-cycle events such as change 

in household size and formation of a new household; and (4) other 

reasons. 

 Socio-economic and demographic configuration of the household, 

including household income, household size, number of children, 

number of vehicles, number of driver’s licence, number of bicycles, 

and monthly transit pass ownership, among others. 

 Dwelling characteristics, which includes dwelling type, tenure type, 

number of rooms, and number of bedrooms, among others.  
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 Choice of primary commute mode, which can be broadly categorized 

into the following options: car, transit, and active transportation 

(walk/bike).  

 

2. Vehicle ownership history: This component collected information 

regarding households’ vehicle ownership history up to four current and 

four previous vehicle ownerships. The following information of the 

vehicles are collected: make, model, manufacturing year, purchase year, 

new or used, purchased or leased, and purchase price, among others.  

 

3. Household compositional change: Household compositional change 

refers to the change in size of the household and number of employed 

household members. This component includes the following 

information: 

 

 Year of a change in the household size as a result of birth, death, a 

member moving out, or a new member moving in. 

 Year of a change in the employment size as a result of addition of a 

job, loss of a job, retirement, withdrawal from the labour force, or a 

return to school. 

 

4. Employment records: The employment career component collected 

information of the three most recent employments, including 

employment location, employment type, employment starting and 

ending year and month. 

 

5. Attitudinal and other information: The survey contained 33 statements 

concerning attitudes. The respondents were asked attitudinal questions 

on a three point agree-disagree likert scale to specify their level of 
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agreement or disagreement. In addition, travel time and travel mode of 

a number of major travel activities are collected. 

The HMTS provided a total response from 475 households. The proportion of 

men and women in the sample is almost equal. In the case of age distribution, 

54% of the respondents’ age are below 35 years, and 16% of the respondents 

are above 54 years. 33% respondents earn a household income of above 

$100,000 (CAD), and 31% earn a household income of below $50,000 (CAD). 

Around 38% of the respondents represent two-person households, and 9% 

represent five or more person households. Around 50% of the respondents 

reside within the regional centers, and 38% lives in suburban areas. The 

HMTS sample was compared with the Statistics Canada Census for Halifax 

Regional Municipality (HRM) by Salloum and Habib (2015). They found that 

majority of the stratums of household and individual characteristics are within 

a 3% variability of the 2011 Census information. Hence, the HMTS can be 

considered as a representative sample. Further detail of the validation and 

exploratory analysis of the survey can be found in Salloum and Habib (2015). 

3.3.2 Secondary Data Sources 

This study utilizes information from a number of secondary data sources 

during the model estimation and simulation procedures. A list of these 

secondary data sources are presented in Table 3-1. A brief description of the 

data is presented below.    
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Table 3-1 List of Secondary Data Sources Utilized to Develop the 

Components of the Proposed Integrated Urban Model    

Data Items Data Sources Data Descriptions Model Components  

Micro sample of 

the population 

PUMF Individual- and household-level 

socio-economic characteristics of 

a random micro sample  

Zonal-level 

Population 

Synthesis 

Target total of 

the population 

at the zonal level 

of DA 

Census Distribution of the population 

falling under different categories 

of socio-economic characteristics 

at the DA-level 

Zonal-level 

Population 

Synthesis, 

Validation 

Parcel 

information 

Nova Scotia 

Property 

Database 

Parcel location, size, and type Logit link, Search, 

Location Choice 

Historical rates Census Historical rates of different 

demographic events  

Life-stage 

Transition 

Activity point 

location 

DMTI** Location of schools, central 

business district (CBD), business 

parks, health services, park 

areas, and shopping centers 

MM* 

Transport 

service location 

DMTI** Location of bus stops MM* 

Neighbourhood 

characteristics  

Census Socio-economic and demographic 

characteristics at the DA-level 

MM*  

DA boundaries Census DA boundary file in the GIS 

platform 

Zonal-level 

Population 

Synthesis and MM* 

Road network HRM*** Road network layer in the GIS 

platform 

MM* 

Land use 

information 

HRM*** Polygon file of different land uses 

at the DA-level in the GIS 

platform 

MM* 

*MM refers to all developed micro-models of the iTLE system, which includes residential mobility, search, 

location choice, mode transition, vehicle transaction, logit link, and vehicle ownership level synthesis. 

**DMTI refers to Desktop Mapping Technologies Inc. 

***HRM refers to Halifax Regional Municipality 
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3.3.2.1 Census Data 

The data used for generating the population synthesis includes: 2006 Public 

Use Microdata File (PUMF), and 2006 Census information at the 

dissemination area (DA) level. The PUMF data is used as the micro sample 

and the Census data is used as the control total for the population synthesis. 

The 2006 PUMF data includes micro-level information of the population in 

Atlantic Canada. The sample size is 20,954 individuals and 8,907 households. 

The sample size of the 2006 Census data for Halifax is 372,679 individuals and 

155,060 households. The spatial resolution of the collected census data is at 

the smallest zonal-level of dissemination area (DA). The Halifax region 

includes a total of 572 DAs. For validation purposes of the iTLE, 2011 Census 

information are collected. The 2011 Census includes 390,325 individuals, 

165,155 households, and 594 DAs. This data is also utilized to represent the 

neighbourhood characteristics at the DA-level.  

3.3.2.2 Land Use Data 

To represent the urban form, parcel-level data is collected from the Nova Scotia 

Property Database 2013. This parcel database provides information regarding 

parcel attributes, including location, size, and type, among others, of all the 

parcels in the Province of Nova Scotia. Following the cleaning process, a total 

of 110,995 parcels for Halifax are derived. Additional data sources include 

location of different activity points, such as location of schools, central business 

district (CBD), business parks, health services, park areas, and shopping 

centers; which are collected from the Desktop Mapping Technologies Inc. 

(DMTI). Location of transportation services such as transit stop locations are 

collected from the DMTI. Land use data referring to the percentage of different 

land uses at the DA level are collected from the Halifax Regional Municipality 

(HRM). Road network is collected from the HRM as well. 
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3.4 Derived Independent Variables  

The micro-behavioural models for residential location, vehicle transaction, and 

mode transition, developed in this study, accommodate the effects of a wide 

range of independent variables, such as, life-cycle events, socio-demographics, 

dwelling characteristics, parcel characteristics, accessibility measures, and 

neighbourhood characteristics, among others. A brief description of the 

variables derived from the above discussed data sources are presented below.  

3.4.1 Life-cycle Events 

One of the unique features of this study is to develop micro-models that are 

capable of exploring the priori hypotheses regarding the interactions among 

multi-domain longer-term changes. These longer-term changes along the life-

course of the individuals and households are termed as life-cycle events. Life-

cycle events include, birth of a child, death of a member, move-in of a member, 

move-out of a member, household formation, residential relocation, addition of 

a job, loss of a job, job change, retirement, and vehicle transaction, among 

others. Vehicle transaction decision includes the decision of vehicle acquisition 

and purchase of the first vehicle. “Vehicle acquisition” refers to the addition of 

a vehicle to the existing vehicle fleet of the household. “Purchase of the first 

vehicle” refers to the purchase of the first vehicle in the life-time of the 

household. “Job change” is defined as getting a job following the loss of a job 

within the same month of the same year. “Addition of a job” refers to getting 

the first job or getting a new job after one month of losing the previous job. 

“Loss of a job” refers to losing a job and failing to secure another job within the 

same month. Households require adjustment period before/after a life-cycle 

event. The adjustment period is accommodated within the models by 

considering the events as lead and lag events. Lead events refer to the effects 

of an event on occurrence, and lag events refer to the effects of an event in 
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anticipation. Hence, a lead event indicates to a lagged effect, and a lag event 

indicates to a lead effect. The micro-models consider lead and lag events for the 

following periods: same year, one-year lead, two-year lead, three-year lead, 

one-year lag, two-year lag, and three-year lag. “Same-year” refers that two 

events occurred in the same calendar year. “1 year lead” refers that an event 

occurred one to two calendar years before another event. Two-year lead and 

three-year lead can be described similarly. “One-year lag” indicates that an 

event occurred one to two calendar years after another event. Similarly, two-

year lag and three-year lag can be described. The variables representing life-

cycle events are derived from the HMTS data.  

3.4.2 Accessibility Measures 

Accessibility characteristics refer to the distance from home location to 

different activity points. The location of activity points and transportation 

services are utilized to determine the accessibility measures. The accessibility 

measures are generated on the basis of the road network distances using the 

Network Analyst tool in ArcGIS. The accessibility measures include commute 

distance, distance to the CBD, and closest distance to the following locations: 

transit stop, business center, school, health service, park area, and shopping 

center, among others.  

3.4.3 Land Use and Neighbourhood Characteristics 

Land use information refers percentages of different land uses measured using 

the ArcGIS platform at the DA-level. The data includes land use measures in 

the following categories: residential, commercial, open space, park, industrial, 

government, and water body. The land-use information is utilized to determine 

land-use mix index, which follows the measures proposed in Bhat and Gossen 
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(2004)1. The index value ranges from 0 to 1, where a value of 0 indicates perfect 

homogeneity and 1 indicates perfect heterogeneity. Micro-level land use 

characteristics, such as parcel size information is derived for estimating the 

location choice model. In addition, neighbourhoood characteristics are derived 

at the DA-level, which include population density, dwelling density, 

percentage of owned dwellings, percentage of rented dwellings, percentage of 

single-detached dwellings, average property value, labour force participation 

rate, employment rate, percentage of household share of shelter cost to income 

less than 30%, and percentage of  non-movers, among others.  

3.4.4 Socio-demographic and Dwelling Characteristics 

The models test a number of socio-demographic characteristics, such as gender, 

age, and education level of the head of the household, household size, 

household income, presence of children, and number of vehicle ownership. 

Dwelling characteristics include, number of rooms in the dwelling unit, 

dwelling type, and tenure type, among others.  

3.5 Conclusions 

This chapter proposes the development of a life-oriented agent-based 

integrated urban modelling system, and discusses the conceptual framework 

and data utilized to address the multi-dimensional interactions among 

different decision processes within the proposed urban systems model. The 

theoretical context of the proposed model is discussed in this chapter. 

Particular emphasis is given on how life-oriented theory and perspective is 

                                            

1 Land − use mix index = 1 − {
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}, where, R = residential land use, C = commercial or 

industrial land use, O = other land use, and T = total land use. All land use measures are in acres. 
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mapped within an integrated modelling framework. Conceptualizing on this 

approach, the essential components of an urban model are identified, which 

includes: baseline synthesis, population life-stage transition, residential 

location transition, and vehicle ownership transition. To develop a 

comprehensive multi-domain feedback-based microsimulation model, the 

requirement for a tremendous amount of data is discussed. Data is collected 

from a number of sources and through undertaking specialized surveys. The 

primary data source to develop the micro-behavioural models for different core 

components of the iTLE is a retrospective survey, known as the HMTS. To 

develop the population synthesis module, PUMF and Census data are used. 

Description of these data are provided in this chapter. Finally, priori 

hypotheses are presented by discussing the independent variables considered 

to develop the micro-models. The mechanism to test multi-way interaction 

through lead and lag effects of a number of life-cycle events are described.  The 

next two chapters (Chapter 4 and 5) presents the empirical estimation results 

of residential location transition, mode transition, and vehicle transaction 

components. The results of baseline synthesis and population life-stage 

transition module are presented in Chapter 6. The microsimulation results of 

residential location and vehicle transaction are reported in Chapter 7 and 8, 

respectively. 
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Chapter 4 

4 Modelling Residential Location 

Processes 

4.1 Introduction 

This chapter focuses on modelling the residential location transition processes 

of the iTLE model. This study also investigates how a change in residential 

location influences a change in commute mode choice. This research 

disentangles the following key issues in modelling location choice: 1) 

accommodating the process orientation of the phenomenon by modelling 

location decision as a two-stage process of mobility and location choice, 2) 

addressing the location search process during modelling location choice and 

examining whether the incorporation of search process improves the empirical 

estimation of the location choice, 3) investigating the effects of multi-domain 

decision interactions through introducing life-cycle events as lead and lag 

events, and 4) testing how a long-term change such as residential relocation 

influences individuals to reassess their commute mode. 

As discussed earlier, the residential location process adopts the theory of 

residential stress (Rossi 1955). Households’ are conceptualized to relocate due 

to the continual generation of residential stress along their life-time.  

 

This chapter is largely derived from the following journal papers: 

 Fatmi, M.R., Chowdhury, S., and Habib, M.A. (2017). Life History-Oriented 

Residential Location Choice Model: A Stress-Based Two-Tier Panel Modelling 

Approach. Transportation Research Part A: Policy and Practice, 104, 293-307. 
 Fatmi, M.R., and Habib, M.A. (2015). Spatial Transferability of a Micro Residential 

Mobility Model in the Integrated Land Use, Transportation and Environment 

Modelling System. Transportation Research Record:  Journal of Transportation 
Research Board, 2494(2), 29-36. 
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Residential stress is induced by the experienced or desired changes in different 

life-domains, such as change in life-stages, dwelling characteristics, and 

neighbourhood attributes, among others. Moreover, residential relocation 

evolves over the life-time of the households, as they move from one location to 

another along the life-course. Ignoring such temporal dimension of the 

households’ housing career might produce biased and inconsistent parameter 

estimates. Furthermore, heterogeneity exists across the 

households/individuals, which needs to be addressed within the model 

formulation technique. To tackle the notion of addressing life-trajectory 

dynamics and capture unobserved heterogeneity within the modelling 

framework, this research develops innovative methods for modelling 

residential location processes. The study conceptualizes that residential 

location transition process involves mobility, search, location choice, and mode 

transition decisions. Figure 4-1 shows the location transition process and 

modelling methods developed for each component of the process.  

 

 

 

 

 

 

 

 

 

Figure 4-1 Residential Location Transition Process 
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Residential mobility decision is modelled utilizing a continuous time hazard-

based duration modelling technique. Duration refers to the length of stay at a 

particular location. Traditional single-episode duration model is extended to a 

multiple episode shared frailty framework to accommodate the effects of 

repeated durations along the housing career of the households. Both sets of 

models are estimated for a number of distributions including lognormal, log 

logistic, and Weibull. In the case of residential search, the model is developed 

using a fuzzy logic-based modelling method. The model conceptualizes on the 

theory of residential stress, and accommodates the inter-dependencies between 

push and pull factors. Constraints regarding households’ affordability are imposed 

by introducing household income and property value within the fuzzy framework. 

The location choice model is developed utilizing a latent segmentation-based logit 

(LSL) modelling technique. The LSL model accommodates correlated sequence of 

repeated choices through introducing joint probability of choice sequence. 

Unobserved heterogeneity in the decision making process is captured by 

formulating a flexible latent segment allocation model within the LSL framework. 

Finally, the commute mode transition model adopts a random-parameters logit 

(RPL) modelling technique. Similar to the LSL framework, the RPL model 

formulation accommodates the joint probability of choice sequence. The model 

captures unobserved heterogeneity by allowing parameters to vary across the 

individuals.  

The organization of the rest of the chapter is as follows: section 4.2 discusses 

the modelling of residential mobility, particularly, the mathematical 

formulation of the model and discussion of the parameter estimation results. 

Section 4.3 describes the methods and results of the location search and 

location choice model. Section 4.4 presents discussion on the mode transition 

behaviour, including the mathematical model formulation and estimation 

results. Finally, section 4.5 concludes with a summary of contributions.  
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4.2 Residential Mobility 

The first stage of residential location decision is mobility, which refers to the 

decision to move or stay at a particular location. The mobility model is 

developed utilizing a continuous time hazard-based duration modelling 

technique. Duration modelling is widely used in medical sciences, economics 

and urban economics (Haurin and Gill 2002, Jenkins and García-Serrano 

2004); for example, analyzing the duration of unemployment (Jenkins and 

García-Serrano 2004). However, in the residential mobility literature, few 

studies have adopted this approach (Decoster et al. 2005, Habib and Miller 

2008). This method offers the opportunity to test the influence of life-stages, 

dwelling characteristics, land use, accessibility, and neighbourhood 

characteristics on the length of stay at a particular location. To address the 

life-trajectory dynamics, a household’s housing career is characterized as the 

sequence of duration (i.e. episodes/spells) in different dwellings during their 

lifetime. The conventional duration model is extended to a multiple episode 

shared frailty model. This research also examines whether the multiple 

episode shared frailty extension of the model improves the model fit or not.   

4.2.1 Methodology 

The residential mobility model is developed utilizing a continuous time hazard-

based duration modelling technique. In the formulation of the hazard-based 

duration model, duration is specified as the period that a household will 

remain in a specific residence and the failure (termination) event is a move to 

a different location. Hence, the hazard model considers duration at a particular 

residential location as the dependent variable. The data for the model is 

extracted from the HMTS survey that contains 475 households with 762 

episodes representing duration at a particular residential location, including 

censored spells. The data is right censored in April, 2013. The average duration 
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is 2170.924 days (5.96 years) with a minimum of 23 days and a maximum of 

15462 days (42.45 years). The duration spells are considered to be continuous 

time-periods. This model examines time constant covariates only, meaning 

covariates that are constant or can be assumed to be time-independent for the 

entire duration of the episode. Examples of these covariates include: birth year 

of the head of the household, gender of the head of the household, and land use 

and accessibility measures, among others.  

In developing the hazard-based duration model, assume T is the duration at a 

particular location, which is a non-negative random covariate. The probability 

density function f(t), considered as an unconditional distribution of durations 

T can be expressed as: 

 𝑓(𝑡) =  lim
∆𝑡→0

𝑃(𝑇≤𝑡+∆𝑡)

∆𝑡
                                          (1)  

Here, t  represents a short interval, within which a household decides to 

move at or after a particular time t while the household is still passive until 

time t. Therefore, the cumulative probability of a household’s mobility decision 

before time t is: 

𝐹(𝑡) =  𝑃(𝑇 < 𝑡) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
                                                                                    (2) 

Now, f(t) can be explained as the first derivative of F(t) with respect to time. 

The probability of a household being passive until time t can be expressed as 

the survivor function S(t). 

 𝑆(𝑡) =  1 − 𝐹(𝑡) =  𝑃(𝑇 ≥ 𝑡) =  ∫ 𝑓(𝑡)𝑑𝑡
−∝

𝑡
                                              (3)  

Essentially, the hazard function h(t) can be written as:  

ℎ(𝑡) =  lim
∆𝑡→0

𝑃 (𝑡≤𝑇<𝑡+∆𝑡|𝑇≥𝑡)

∆𝑡
=  

𝑓(𝑡)

𝑠(𝑡)
                                                                       (4)   
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The hazard function can take different forms, such as: monotonically 

increasing, monotonically decreasing, constant, or U-shaped (Kalbfeisch and 

Prentice 2002, Lawless 1982), which depends on the distribution assumptions 

of the probability density function f(t). This study employs Weibull, log logistic, 

and lognormal distributions, which are given below: 

Weibull distribution: ℎ(𝑡) =  𝜔𝛾(𝛾𝑡)𝜔−1      𝜔, 𝛾 > 0                                                         (5)   

Log logistic distribution: ℎ(𝑡) =  
𝜔𝛾(𝛾𝑡)𝜔−1

1+(𝛾𝑡)𝜔                                                                              (6) 

Lognormal distribution: ℎ(𝑡) =

1

(2𝜋)1/2𝜎𝑡
 exp [0.5 (

log 𝑡−𝜇

𝜎
)

2
]

1−∫
1

(2𝜋)
1
2

𝑒
−

𝜇2

2 𝑑𝑢(
log 𝑡−𝜇

𝜎
)

𝑡
−∝

                                                     (7) 

Where, 𝛾 is a scale parameter and 𝜔 is a shape parameter.  

This research employs a parametric hazard modelling approach instead of non-

parametric or semi-parametric models since clear identification of the baseline 

hazard is necessary for predicting timing of residential moves in the micro 

simulation-based urban modelling system. It considers the effects of different 

types of covariates (such as life-cycle events, socio-demographics, dwelling, 

neighbourhood, land use and accessibility measures) in addition to the effects 

of duration in the model estimation process. Hence, the underlying hazard 

model can be expressed as: 

ℎ(𝑡, 𝑥) =  ℎ0(𝑡) exp(𝑥(𝑡))                                                                                                (8) 

Here, 𝑥(𝑡) is the observed vector covariates, and  ℎ0(𝑡) is the baseline hazard. 

For the purpose of ease in interpretation, the model follows an accelerated 

failure time assumption, which can be expressed as the following log-linear 

form: 

𝑙𝑛(𝑇) =  𝛽𝑖𝑥 +  𝛼𝜖                                                                                                                   (9) 
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Here, 𝛽𝑖 is the coefficient of the time independent covariate x and 𝜖 is a 

stochastic error term with type-I extreme value distribution scaled by 𝛼. 

Finally, the hazard function of the accelerated failure time model can be 

expressed as: 

ℎ(𝑡, 𝑥) =  ℎ0(𝑡 exp(−𝛽𝑥))exp (−𝛽𝑥)
                                                                      (10) 

At first, parameters are estimated for the single spell duration of a household 

using the full information maximum likelihood estimation method (Kalbfeisch 

and Prentice 2002), which can be expressed as: 

𝐿 =  ∏ [ℎ(𝑡𝑗 , 𝑥𝑗)]𝛿𝑗[𝑆(𝑡𝑗 , 𝑥𝑗)]𝑛
𝑗                                                                                      (11)          

Here, 𝛿𝑗 is the censoring parameter, taking the value “zero” if duration of case 

j is not terminated (censored). It takes the value of “one” if duration of case j is 

terminated (not censored).  

However, as explained earlier, a single spell model assumes the independence 

of spells even if multiple episodes are reported for the same household. Failure 

to account for this repeatability might violate the independence assumption on 

the occurrence of events taken in single-spell models. Since repeated events 

are evident in the retrospective HMTS survey, this study proposes shared 

frailty models of multiple episodes that accounts for the group heterogeneity 

across households due to repeated choices. In effect, the shared frailty models 

assume a stochastic variation across the parameters that are common among 

households. The hazard rate for shared frailty model is given below: 

ℎ(𝑡𝑗𝑖) =  ℎ0(𝑡)exp (𝛽′𝑥𝑗𝑖)𝜏𝑗                                                                                         (12)   

Here, j represents a household that has multiple episodes i, 𝜏𝑗 represents group 

specific heterogeneity. 𝜏𝑗 is distributed across households with repeated 
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episodes according to the distribution function G(𝜏𝑗). The likelihood function 

for the shared frailty model can be written as: 

𝐿 =  ∏ ∫ (∏ [ℎ(𝑡𝑗𝑖 , 𝑥𝑗𝑖)]𝛿𝑗𝑖[𝑆(𝑡𝑗𝑖 , 𝑥𝑗𝑖)]
𝑛𝑗

𝑖=1
)𝑑𝐺(𝜏𝑗)

∝

0
𝑘
𝑗=1                           (13) 

This likelihood function is maximized using expectation-maximization (EM) 

algorithm to estimate the parameters and the likelihood ratio test is used to 

assess the requirement of the frailty component 𝜏𝑗. The goodness-of-fit of the 

models are compared on the basis of adjusted pseudo r-squared2 and Bayesian 

Information Criteria (BIC)3.  

4.2.2 Discussion of Model Results 

The first set of the residential mobility models are estimated as single episode 

models, considering each spell as a separate observation. These models 

consider lognormal, log logistic, and Weibull distributions for the baseline 

hazard. In addition, multiple episode shared frailty models are estimated. The 

multiple episode models assume a gamma frailty distribution. The parameter 

estimation results of the models are reported in Table 4-1. 

The goodness-of-fit measures suggest that the Weibull shared frailty model 

with gamma distribution provides a higher adjusted pseudo r-squared and 

lower BIC values than that of other models. Therefore, it is considered as the 

final model. The model considers an accelerated failure time assumption, so a 

positive coefficient means an increase in the duration with the increase in the 

parametric value. 

                                            
2 Adjusted Pseudo R − squared = 1 −

LLconvergence

LLconstant
 

3 BIC = (−2(LLconvergence) + K ∗ ln (N)), where, n= sample size, and k = number of parameters to 

be estimated. 
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Table 4-1 Parametric Estimation Results of Single-episode and Multiple-

episode Hazard-based Duration Models for Residential Mobility 

Covariates 

Single episode model 

(without frailty) 

Multiple episode model (Gamma 

Shared frailty) 

Log 

normal 

Log 

logistic 

Weibull Log 

normal 

Log 

logistic 

Weibull 

Co-eff. 

(t-stat) 

Co-eff. 

(t-stat) 

Co-eff. 

(t-stat) 

Co-eff. 

(t-stat) 

Co-eff. 

(t-stat) 

Co-eff. 

(t-stat) 

Socio-demographics and Life-cycle Events 

Male HH head  
-0.199 

(-2.19) 

-0.188 

(-2.14) 

-0.265 

(-3.22) 

-0.199 

(-2.19) 

-0.188 

(-2.14) 

-0.225 

(-2.32) 

Year of birth of the 

head of the HH 

0.000001 

(0.02) 

-0.00001 

(-0.20) 

0.00004 

(0.70) 

0.000001 

(0.02) 

-0.008 

(0.20) 

0.00002 

(0.38) 

First spell after 

HH formation 

-0.467 

(-5.37) 

-0.454 

(-5.50) 

-0.500 

(-6.33) 

-0.467 

(-5.37) 

-0.454 

(-5.50) 

-0.619 

(-6.00) 

Dwelling Characteristics 

Number of rooms 

in the dwelling unit 

0.047 

(2.68) 

0.051 

(2.87) 

0.066 

(4.05) 

0.048 

(2.68) 

0.051 

(2.87) 

0.056 

(3.19) 

Dwelling type - 

rowhouse  

-0.315 

(-1.96) 

-0.351 

(-2.19) 

-0.258 

(-1.77) 

-0.315 

(-1.96) 

-0.351 

(-2.19) 

-0.326 

(-2.03) 

Tenure type - 

rented  

-1.351 

(-12.71) 

-1.321 

(-12.72) 

-1.224 

(-12.44) 

-1.351 

(-12.71) 

-1.32 

(-12.72) 

-1.354 

(-12.62) 

Land Use and Neighbourhood Characteristics 

Land-use mix 

index 

0.250 

(0.76) 

0.074 

(0.23) 

0.303 

(0.94) 

0.250 

(0.76) 

0.074 

(0.23) 

0.291 

(0.94) 

Dwelling density  
0.00002 

(1.24) 

0.00001 

(1.13) 

0.000008 

(0.71) 

0.00002 

(1.24) 

0.00001 

(1.13) 

0.00001 

(1.16) 

Ratio of non-

movers  

0.004 

(1.34) 

0.003 

(1.18) 

0.002 

(0.88) 

0.004 

(1.34) 

0.003 

(1.18) 

0.002 

(0.80) 

Labour force 

participation rate 

-0.007 

(-2.19) 

-0.006 

(-1.77) 

-0.005 

(-1.83) 

-0.007 

(-2.19) 

-0.005 

(-1.77) 

-0.005 

(-1.64) 

*HH refers to Household 
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Table 4-1 Parametric Estimation Results of Single-episode and Multiple-

episode Hazard-based Duration Models for Residential Mobility 

(Continued) 

Covariates 

Single episode model 

(without frailty) 

Multiple episode model (Gamma 

Shared frailty) 

Log 

normal 

Log 

logistic 

Weibull Log 

normal 

Log 

logistic 

Weibull 

Coeff. 

(t-stat) 

Coeff. 

(t-stat) 

Coeff. 

(t-stat) 

Coeff. 

(t-stat) 

Coeff. 

(t-stat) 

Coeff. 

(t-stat) 

Accessibility Measures 

Distance from 

home to work place 

0.004 

(1.77) 

0.004 

(1.80) 

0.004 

(1.55) 

0.005 

(1.77) 

0.005 

(1.80) 

0.004 

(1.58) 

Distance from 

home to CBD 

0.166 

(1.45) 

0.193 

(1.76) 

0.068 

(0.64) 

0.166 

(1.45) 

0.193 

(1.76) 

0.124 

(1.14) 

Constant 
8.229 

(40.96) 

8.189 

(41.87) 

8.450 

(44.47) 

8.229 

(40.97) 

8.19 

(41.87) 

8.393 

(40.25) 

Model Information Criteria 

BIC 1569.318 1555.393 1571.181 1569.318 1555.393 1548.632 

Adjusted Pseudo R-

squared 
0.18985 0.20309 0.20316 0.18985 0.20309 0.21526 

The model results reveal that socio-demographic characteristics, dwelling 

characteristics, neighbourhood characteristics, and land use and accessibility 

measures are significant factors in explaining residential mobility decisions. 

Among the socio-demographic characteristics, households with male head are 

found to show a shorter duration than their female counterpart. Households 

with older head demonstrate shorter durations. Interestingly, life-cycle event 

represented by first spell after household formation shows a shorter duration. 

This implies that households have shorter duration in their first spell than in 

subsequent spells, which is expected.   

In the case of dwelling characteristics, households living in dwellings with a 

greater number of rooms remain for longer durations in their residences. 
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Arguably, this suggests that households with larger residences might stay for 

longer duration in owned properties. Individuals living in row houses exhibit 

a shorter duration. Perhaps, row houses cater to low income student groups, 

who might change residential location more frequently. As anticipated, renters 

are found to be more active than home owners. As renters have lower locational 

capital and lesser cost of moving than owners, they are likely to move more 

frequently.   

Among the land use and neighbourhood characteristics, households living in 

neighbourhoods with higher land-use mix index exhibit longer duration, since 

neighbourhoods with greater land-use mix offer nearby services and facilities 

that encourage residents to stay for a longer duration. Households living in 

higher dwelling density neighbourhoods exhibit longer durations. This may be 

explained by the fact that neighbourhoods with higher dwelling density have 

better facilities for inhabitants, which encourage them to live there for longer 

periods. Households living in stable neighbourhoods with high ratios of non-

movers stay for longer durations, as expected. Interestingly, households 

exhibit shorter duration in neighbourhoods with a high labour force 

participation rate.       

In the case of the accessibility measures, commute distance is found to be a 

significant factor for the mobility decisions. Households residing farther from 

their workplace, possibly in suburban areas, demonstrate longer durations as 

they generally own the property in a stable neighbourhood. Distance from 

home to the CBD reveals a positive relationship. This implies that households 

living nearby to the CBD are likely to relocate more frequently than 

households residing in suburban areas. Thus, suburban inhabitants tend to be 

more stable at a particular location after purchasing their dwellings. 

In addition, a number of variables are tested during the model estimation 

process. For instance, distance from home to the closest school, shopping 
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center, and transit stop, average household income in the neighbourhood, and 

percentage of immigrant in the neighbourhood, among others. These variables 

did not confirm priori hypotheses, as well as did not yield reasonable statistical 

significance. As a result, these variables are not retained in the final model.    

4.3 Residential Location Choice 

Following the decision to move in the mobility stage, the next step is the 

location choice. The choice of location itself has an underlying process 

orientation in relation to location search and determination of location. In this 

process, households first undertake a search process to identify potential 

location alternatives and finally move to a location. Therefore, residential 

location choice is modelled as a two-tier process of location search and location 

choice. The search model assumes that households search for locations on the 

basis of the residential stress. The residential stress acts as a push factor and 

the characteristics of the location that holds the potential to minimize the 

stress acts as a pull factor. The search model assumes that households’ search 

process is constrained by their affordability. Hence, constraints regarding 

household income and property value are imposed in the search model. The 

proposed search model follows a fuzzy logic-based modelling method, which 

offers a mechanism to recognize the release of stress by minimizing 

discrepancies between the current and aspiration level. The modelling process 

of fuzzy logic accommodates the stress-driven theoretical framework by 

addressing the inter-dependencies between push and pull factors. The push 

and pull factors continuously evolve with the changing stress of households 

over their life-course. 

In the final stage of location choice, households choose a location from the pool 

of alternatives generated in the search process. The model follows a random 

utility-based discrete choice modelling technique. To address the repeated 
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choices made by the same households during their housing career, the 

conventional logit modelling methods are extended to more advanced latent 

segmentation-based logit (LSL) modelling technique. The LSL model assumes 

that repeated choices made by the households along their life-course are 

correlated. The model captures unobserved heterogeneity by implicitly 

allocating the households into discrete latent segments using a flexible 

segment allocation model within the LSL framework. The inter-dependencies 

between location choice and life-cycle events are explored by testing a number 

of hypotheses. For example, how the plan to buy a car influences residential 

location choice? does the acquisition of a car in the existing vehicle fleet and 

the first time vehicle purchase have the same influence? how a change in job 

affects residential location choice? and does a change in job and addition of a 

job have the same influence? To explore the influence of timing of critical 

events, the effect of adjustment period required to adapt prior or after an event 

is tested as the lead and lagged effects. The major hypotheses regarding the 

effects of adjustment period includes, how the effects of an event in anticipation 

and an event on occurrence differs? and how the adjustment period varies for 

different events? In addition, the study examines whether the influence of life-

cycle events varies by population segments or not? Such influence of life-

history is tested in interaction with the attributes of the location, including 

parcel, accessibility, and neighbourhood characteristics. The unit of analysis 

for the location model is at the parcel-level. 

4.3.1 Methodology 

Figure 4-2 presents a conceptual framework of the fuzzy logic-based location 

search model developed in this study. The first step in the stress-based fuzzy 

logic model is fuzzification that generates constraint sets for the push factors 

and opportunity sets for the pull factors. The constraint sets represent input 
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sets and the opportunity sets represent output sets in the fuzzy logic modelling 

framework.  

Four major reasons for relocation derived from the HMTS data are considered 

the push factors: to live in proximity to work/key activity locations (14.29%), to 

live in desirable neighbourhood/dwelling (46.75%), due to life-cycle events 

(21.56%), and other reasons (17.40%). Since households’ choices of residential 

locations are strongly influenced by their affordability, such as income (Guo 

and Bhat 2007) and average value of the property (Rashidi et al. 2012), this 

study makes a priori assumption that each push factor is constrained by these 

two parameters. Therefore, in the fuzzification stage, constraint sets in 

relation to household income and average value of the property for each push 

factor are generated.  

The pull factors are the characteristics of locations that attract households to 

consider a location to relocate. This study conceptualizes that an inter-

dependent relationship exists between the push and pull factors. For example, 

households relocating to live closer to work locations are expected to search for 

locations that are closer to their work place on the basis of their income and 

average value of the property. Hence, the push factor “to live in proximity to 

work/key activity locations” is assumed to correspond to the pull factor 

“distance to work location”. In the case of households relocating to live in a 

desirable neighbourhood/dwelling, households are assumed to search for 

locations that have a higher percentage of non-movers in the neighbourhood. 

Generally, desirable neighbourhoods refer to the neighbourhoods with reputed 

schools and open spaces (i.e. park areas) in close proximity, and lower crime 

rates, among others (Latkin and Curry 2003, Guo and Bhat 2002). Population 

residing in such quality neighbourhoods are expected to move less frequently. 

Hence, the push factor “to live in desirable neighbourhood/dwelling” is 

assumed to correspond to the pull factor “percentages of non-movers in the 

neighbourhood”. 
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Figure 4-2 Conceptual Framework of the Fuzzy Logic-based Location Choice 

Model 

 

Location Search Model 

Push Factor Pull Factor 

Constraint Set, Ak 

 

Opportunity Set, Az 

 

Matching Process of Push and Pull Factor 

Probability of Choosing Location Alternatives 

Pool of Locations/Choice Set 

Location Choice Model 

Latent Segmentation-based Logit Model 

Defuzzification 

If-Then Statement 

Max-min Method 

Fuzzy sets 𝐴̃ 

Fuzzification 

Fuzzy Inference 



 

  65 
 

Households relocating due to the life-cycle events are assumed to search for 

locations based on the distance from CBD. Life-cycle events such as household 

formation (due to marriage/living common-law) and change in household size 

(due to birth of a child/death of a member/move-in or -out of members) 

influence households’ decisions to live in urban or suburban/rural 

neighbourhoods. For example, households with children prefer suburban 

areas, since they value accessing open space, cleaner air and water (Cummins 

and Jackson 2001). On the other hand, households without children prefer 

urban areas, as they prioritize commuting and convenient access to different 

amenities (Van Ommeren et al. 1999). In general, one of the most common 

proxies used to represent urban and suburban/rural neighbourhoods is 

distance to the CBD (Habib and Miller 2008). Therefore, the push factor “due 

to life-cycle events” is assumed to correspond to the pull factor “distance to 

CBD”. In the case of households with “other reasons”, behavioural information 

regarding their reason for relocation is not available. Hence, their location 

alternatives are generated using traditional method of random sampling. Since 

pull factors are the attractors of a location, the fuzzy sets generated for each of 

the three pull factors are termed as the opportunity sets in this study.  

In the second stage, fuzzy inference, a matching process of the push and pull 

factors is performed on the basis of “If-Then” statements. The most commonly 

used methods to conduct fuzzy inferences are max-min and sugeno methods 

(Guney and Sarikaya 2009). Sugeno method is popular in optimization 

problems. In contrast, max-min is widely used for decision support modelling 

due to its intuitive and interpretable nature. Moreover, max-min method offers 

the flexibility of validating the scales of fuzzy membership functions using 

known fuzzy rules (Teodorovic 1999, Verkuilen 2005). Therefore, this study 

uses max-min method for fuzzy inferences. The third stage is defuzzification, 

where household-specific probability of choosing a parcel is determined by 

using the center of gravity method. The next step is to generate a pool of 
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alternative locations for each household. Below is a brief description of the 

fuzzy logic-based search model developed in this study.   

Let’s assume, 𝑃 to be the universe of discourse and 𝐴̃ is the fuzzy set of 𝑃, where 

𝜇𝐴(𝑥) is the membership function of the fuzzy set 𝐴̃ and  𝜇𝐴𝜖[0,1]. Fuzzy sets 

are represented by intervals and the crisp input is denoted as 𝑥. Fuzzy set 𝐴̃ 

representing both constraint sets (input sets) and opportunity sets (output 

sets) are classified into fuzzy groups. The expression below represents the 

membership function for the constraint sets, which gives the association 

between the crisp input and the fuzzy groups in correspondence to the 

membership value:  

𝜇𝐴𝑘
(𝑥) =  {

𝑙𝑜𝑤                𝑥 ≤ 𝑥1

𝑙𝑜𝑤/𝑚𝑒𝑑𝑖𝑢𝑚    𝑥1 ≤ 𝑥 ≤ 𝑥2

  𝑚𝑒𝑑𝑖𝑢𝑚/ℎ𝑖𝑔ℎ  𝑥2 ≤ 𝑥 ≤ 𝑥3  
ℎ𝑖𝑔ℎ              𝑥 ≥ 𝑥3

                                        (14) 

Here, 𝐴𝑘 denotes constraint sets, where 𝐾 can take values of 1 and 2 

representing household income and average property value respectively. 

Figure 4-3 illustrates the two constraint sets developed for each push factor. A 

triangular shape is adopted for the membership functions following Postorino 

and Versaci (2008). Both the constraint sets are classified into three fuzzy 

groups: low, medium, and high. For the constraint set regarding households’ 

income, the threshold for low income is assumed to be ≤ $50,000 CAD4, and 

high income threshold is assumed to be ≥ $100,000 CAD5. For the constraint 

set regarding average property value, the lower price threshold is assumed to 

                                            
4Low income threshold is determined on the basis of the low income cut-off for Canada, which 

is estimated to be $47,878 CAD before tax (Statistics Canada 2015). Low income cut-off refers 

to an income threshold where a household is likely to spend a higher proportion of its income 

on food, shelter, and clothing than the average household, leaving less income available for 

other expenses. 
5High income threshold is determined following the assumption in Prouse et al. (2014), which 

suggests that households with an income greater than 120% of the average household income 

($76,210 CAD) in Halifax are considered as high income households.  
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be ≤ $300,000 CAD, and higher price threshold is assumed to be ≥ $400,000 

CAD6. 

 

 

Figure 4-3 Fuzzy Membership Functions for the Constraint Sets Considered 

in the Location Search Model 

                                            
6 The lower and higher property price threshold is assumed according to the Canada Mortgage 

and Housing Corporation (2015, 2016). The average and median price of house in Halifax was 

$282,951 CAD and $387,500 CAD respectively. The higher median value compared to the 

average value reveals a left skewed distribution of the prices, which means majority of the 

prices are above the average price. Hence, the lower threshold is assumed to be around the 

average price. On the other hand, the higher threshold is assumed to be around the median 

price. 
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Assuming 𝐴𝑧 is the opportunity set and 𝜇𝐴𝑘𝑧
(𝑥) is the corresponding 

membership function. Here, 𝑧 can take values of 1, 2, and 3; which represent 

distance to work location, percentages of non-movers in the neighbourhood, 

and distance to CBD, respectively. The value of 𝑧 is conditional on the push 

factor. For the push factor “to live in proximity to work/key activity locations”, 

an example of the expression for the opportunity set “distance to work” can be 

given as:  

𝜇𝐴𝑘1
(𝑥) =  {

𝑔𝑜𝑜𝑑                𝑥 ≤ 0.45
𝑔𝑜𝑜𝑑/𝑝𝑜𝑜𝑟    0.45 ≤ 𝑥 ≤ 0.54

𝑝𝑜𝑜𝑟                 𝑥 ≥ 0.54
                                       (15) 

Similar expressions are constructed for the opportunity sets “distance to CBD”, 

and “percentages of non-movers in the neighbourhood”. Figure 4-4 shows the 

opportunity sets of the pull factors. Similar to the constraint sets, a triangular 

shape is adopted. Each of the opportunity sets are classified into two fuzzy 

groups. Opportunity set, “distance to work location” is categorized into “good” 

(< 10km from the work location) and “poor” (≥ 10km from the work location) 

accessibility to work place7. “Percentages of non-movers in the neighbourhood” 

is classified into “not stable” (< 50% non-movers in the neighbourhood) and 

“stable” (≥ 50% non-movers in the neighbourhood) neighbourhoods8. “Distance 

to CBD” is categorized into “urban” (< 10km from the CBD) and “suburban and 

rural” (≥ 10km from the CBD) areas9.  

                                            
7 The threshold for the distance between work place and home is assumed to be 10km, since 

the average commute distance in Halifax is 10.50km (Tang 2011). 
8 The threshold for the percentage of non-movers in the neighbourhood is considered at the 

50% point. This study assumes a neighbourhood to be stable if it has more non-movers than 

movers’ population. On the other hand, if a neighbourhood has more movers than non-movers, 

it is considered as a not stable neighbourhood.  
9 In the context of Halifax, neighbourhoods within 10km (approximately) from the CBD that 

encompasses peninsula Halifax and Dartmouth, are collectively known as “regional center” in 

the Regional Planning Strategy (Halifax Regional Municipality, 2014). Hence, 10km distance 

from the CBD is considered as the threshold to define urban and suburban areas. 
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Figure 4-4 Fuzzy Membership Functions for the Opportunity Sets Considered 

in the Location Search Model 
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Following the fuzzification stage, the matching process between a push factor 

and the corresponding pull factor is conducted in the fuzzy inference stage. 

Particularly, fuzzy inferences handle the degree of match between the 

constraint set (If) and the opportunity set (Then) by using “If-Then” logic 

statements (Andrade et al. 2006). The logic statements are derived from 

observing the general trend of the data. A total of twelve logic statements are 

developed for the “push-pull” combination of “to live in proximity to work/key 

activity locations - distance to work location”. A typical format of the logic 

statements is as follows: 

IF household’s income is [HIGH] and average value of the property is [HIGH], 

THEN the household chooses residential location with [GOOD] accessibility to 

work place 

A total of twelve and ten logic statements are developed for the “push-pull” 

combinations of “to live in desirable neighbourhood/dwelling - percentages of 

non-movers in the neighbourhood” and “due to life-cycle events - distance to 

CBD” respectively. The logic statements developed for the “push-pull” 

combinations are presented in Table 4-2.  

In the fuzzy inference stage, the constraint set determines the boundaries of 

the search process which results in the probability of the selection of a parcel 

in the pool of alternative locations. As indicated earlier, the max-min method 

is used to conduct the inferences, which can be expressed as the following 

equation, 

𝜇𝐴(𝑥) = 𝑚𝑎𝑥{𝑚𝑖𝑛[𝜇1(𝑥), 𝜇2(𝑥), … … 𝜇𝑛(𝑥)]}                             (16) 

 

 

 



 

  71 
 

Table 4-2 “IF-Then” Logic Statements of the Fuzzy Logic Model for Location 

Search 

 IF THEN 

“Push-Pull” Combination of “To Live in Proximity to Work/Key Activity Locations - 

Distance to Work Location” 

Rule No. Household Income Avg. Value of Property Accessibility to Work 

Place 

1 Low Low Good 

2 Low Medium Good 

3 Medium High Good 

4 Medium Medium Good 

5 High Low Good 

6 High Medium Good 

7 High High Good 

8 Low Low Poor 

9 Medium Low Poor 

10 Medium Medium Poor 

11 High Low Poor 

12 High Medium Poor 

“Push-Pull” Combination of “To Live in Desirable Neighbourhood/Dwelling - Percentages 

of Non-movers in the Neighbourhood” 

Rule No. Household Income Avg. Value of Property Neighbourhood Type 

1 Low Low Not Stable 

2 Low Medium Not Stable 

3 Medium Low Not Stable 

4 Medium Medium Not Stable 

5 High Low Not Stable 

6 High Medium Not Stable 

7 Low Medium Stable 

8 Medium Medium Stable 

9 Medium High Stable 

10 High Low Stable 

11 High Medium Stable 

12 High High Stable 
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Table 4-2 “IF-Then” Logic Statements of the Fuzzy Logic Model for Location 

Search (Continued) 

 IF THEN 

“Push-Pull” Combination of “Due to Life-cycle Events - Distance  to CBD” 

Rule No. Household Income Avg. Value of Property Neighbourhood Type 

1 Low Medium Urban 

2 Medium Medium Urban 

3 Medium High Urban 

4 High Medium Urban 

5 High High Urban 

6 Low Low Suburban 

7 Medium Low Suburban 

8 Medium Medium Suburban 

9 High Low Suburban 

10 High Medium Suburban 

 

For the defuzzification stage, the center of gravity method is adopted to 

determine a crisp output (Ceder et al. 2013). The center of gravity method is 

expressed as,  

𝑦∗ =  
∫ 𝜇(𝑦)𝑦 𝑑𝑦

∫ 𝜇(𝑦)𝑑𝑦
                                                                         (17) 

Here, 𝑦∗ is the crisp output determined using the center of gravity method, 

which represents household-specific probability of choosing a parcel. For 

example, in the case of a household with push factor “to live in proximity to 

work/key activity locations”, if the crisp output derived from the opportunity 

set is 𝑦∗ < 0.50, which falls under the area of parcels with good accessibility to 

the work place (parcels < 10km from the work location), such household is 

assumed to consider parcels within 10km from the work location compared to 

those parcels that are ≥ 10km from the work location. Therefore, the potential 

location alternatives for that household will include those parcels, which are 
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within 10km from the work location. For 𝑦∗ ≥ 0.50, the potential alternatives 

include those parcels which are ≥ 10km from the work location. Similarly, 

potential location alternatives for the households with the other two push-pull 

combinations are developed. Note that the number of potential alternative 

parcels varies for each household, which ranges from approximately 1,500 to 

84,000. To reduce the computational complexities of the location choice model 

in the second tier, a feasible pool of parcel alternatives for each household is 

developed by randomly selecting a sub-set from the large number of household-

specific potential parcels. The pool of alternatives for each household includes 

a total of ten parcels including the chosen parcel.   

In the next step, a location choice model is developed utilizing the pool of 

alternatives generated in the search model. The location choice model follows 

a latent segmentation-based logit (LSL) modelling technique. The LSL model 

captures unobserved heterogeneity by allocating households into discrete 

latent segments using a segment allocation component. The segment allocation 

component can be fixed across the segments if the segments are not defined 

using observed attributes (Fatmi and Habib 2014). This study formulates a 

flexible segment allocation model within the LSL framework and defines the 

segments utilizing observed socio-demographic and neighbourhood 

characteristics (Sobhani et al. 2013, Fatmi et al. 2014). Assuming that 

household 𝑖 is allocated to segment 𝑠, the segment allocation model can be 

expressed in the following multinomial logit form: 

𝜙𝑖𝑠 =
𝑒𝜔𝑠+𝜃𝑠𝑍𝑖

∑ 𝑒𝜔𝑠+𝜃𝑠𝑍𝑖𝑆
𝑠=1

             (18) 

Here, 𝑍 is the observed attributes of the households, 𝜔 is the segment 

membership constant, and  𝜃 is the segment membership vector parameter. 

For the identification purpose of the model, one segment is assumed to be the 

reference segment, considering 𝜔 and  𝜃 to be fixed for that segment. 
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Since, this study utilizes the restrospective HMTS data, correlated sequence of 

choice exists due to the repeated choices of locations made by the same 

households during their housing career. To accommodate such correlated 

sequence of choices, the repeated choice probability is estimated by deriving 

the joint probability of the choice sequence. Assuming that household 𝑖  

allocated to segment  𝑠 chooses alternative location  𝑗 at  𝑡 choice situation, the 

joint choice probability can be expressed as:  

𝑃𝑖𝑗(𝑖 ∈ 𝑠) = ∏
𝑒

𝑋𝑖𝑐𝑖𝑡𝑡𝛽𝑠

∑ 𝑒
𝑋𝑖𝑗𝑡𝛽𝑠𝐽

𝑗=1

𝑇
𝑡=1           (19) 

Here, 𝑋 is the observed vector parameter, 𝛽 is the segment specific vector 

parameter, and  𝑐 is the location chosen by household  𝑖 at  𝑡 choice situation 

from a sequence of location choices 𝑐 =  𝑐𝑖1, 𝑐𝑖2, … … … 𝑐𝑖𝑇. The likelihood of 

household  𝑖 choosing an alternative location j can be written as: 

𝑃𝑖(𝑗) = ∏ 𝜙𝑖𝑠𝑃𝑖𝑗(𝑖 ∈ 𝑠)𝑆
𝑠=1             (20) 

The model estimates parameters by maximizing the likelihood function using 

an expectation-maximization (EM) algorithm. The analytic second derivative 

matrix of the likelihood function is inverted to calculate the asymptotic 

covariance matrix for the full set of parameter estimators. The likelihood 

function can be written as: 

𝐿𝐿𝑚𝑎𝑥 = ∑ 𝑙𝑛𝑃𝑖(𝑗)𝛾𝑖𝑗𝑁
𝑛=1                      (21) 

Here, 𝑁 is the total number of observations, and  𝛾 is a dummy variable. 𝛾 

takes a value of 1 while household 𝑖 chooses location  𝑗 and 0 otherwise. The 

model estimates segment specific parameter vector 𝛽 for 𝑆 segments, and 

segment membership parameter vector  𝜔 and  𝜃 for 𝑆 − 1 segments. The model 
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is evaluated on the basis of the model fit measures of adjusted pseudo r-

squared and BIC.  

4.3.2 Goodness-of-fit Measures 

First, the appropriate number of segments of the LSL model is determined on 

the basis of the BIC measures, due to the hierarchical nature of the model 

(Table 4-3). The results suggest that the BIC measure is minimum for the 

model with two segments. Therefore, the final model is assumed to have two 

latent segments. 

Table 4-3 Number of Segment Determination of the Residential Location 

Choice Model 

Goodness-of-fit Measures Latent Segmentation-based Logit Model  

No. of Segments 

1 

No. of Segments 

2 

No. of Segments 

3 

Log-likelihood (at convergence) -797.09 -682.57 -651.80 

Log-likelihood (at constant) -886.50 -886.50 -886.50 

No. of Parameters 21 43 65 

No. of total Observations 385 385 385 

BIC 1719.20 1621.13 1690.56 

For comparison purposes, in addition to the proposed fuzzy logic-based location 

choice model, another location choice model is developed using choice set 

generated from the traditional random sampling method. The models are 

compared on the basis of the predictive adjusted likelihood ratio index and 

average probability of correct prediction, which are used by Zolfaghari et al. 

(2012) to evaluate several choice set generation techniques. To compute the 

goodness-of-fit measures, 75% of the data are used to estimate the models and 

the remaining 25% of the data are used for validation purposes. The results 

suggest that the proposed fuzzy logic-based model improves model fit with a 

higher predictive adjusted likelihood ratio index and average probability of 

correct prediction values than that of the traditional model (Table 4-4). 



 

  76 
 

Moreover, the proposed model exhibits a higher adjusted pseudo r-squared 

value (0.23) than that of the traditional model (0.19). Therefore, it can be 

concluded that the proposed fuzzy logic-based location choice model 

outperforms the traditional random sampling-based model in terms of 

goodness-of-fit measures. This study considers the fuzzy logic-based model as 

the final model for further discussion on the parameter estimation results. A 

description of the variables retained in the final model along with their 

summary statistics is presented in Table 4-5. 

Table 4-4 Goodness-of-fit Measures of the Proposed and Traditional 

Residential Location Choice Models 

Goodness-of-fit Measures Proposed Fuzzy Logic-

based Location Choice 

Model 

Traditional Random 

Sampling-based 

Location Choice Model 

Predicted Log-likelihood (at 
convergence)* 

-464.47 -452.46 

Predicted Log-likelihood (at constant)* -644.72 -591.76 

Predictive Adjusted Likelihood Ratio 

Index** 

0.27 0.23 

Average Probability of Correct 

Prediction*** 

0.29 0.24 

*Predicted Log-likelihood is the log-likelihood value of the validation sample, which is computed by 

maximizing the likelihood function during the estimation of the validation sample 

**Predictive Adjusted Likelihood Ratio Index is computed using the predicted log-likelihood values (at 

convergence and constant)  

***Average Probability of Correct Prediction = (∑ ∑ 𝑦𝑖𝑗𝑝𝑖𝑗𝑗𝑖 )/𝑁, where 𝑦𝑖𝑗 indicates that whether 

household 𝑖 actually resides in parcel 𝑗,  𝑝𝑖𝑗 indicates the predictive probability of household 𝑖 resides 

in parcel 𝑗, and 𝑁 is the total number of observation in the validation sample   
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Table 4-5 Summary Statistics of Explanatory Variables used in the 

Estimation of Residential Location Choice Model 

Variables Description Mean/ 

Proportion 

Std. 

Dev. 

Socio-demographic Characteristics 

Age  Age of the head of the household 31.77 23.81 

Income above 100K 

(Dummy Variable) 

Household income above $100,000 CAD 48.05% - 

Children (Dummy 

Variable) 

Household with children 53.24% - 

No Vehicle Ownership 

(Dummy Variable) 

Household not owning vehicle in the life-

time 

3.5% - 

Life-cycle Events 

Birth of a 

Child_1Year Lag 

(Dummy Variable) 

Birth of a child one year after residential 

relocation  

3.6% - 

New Job_Same Year 

(Dummy Variable) 

Addition of a job occurring in the same 

year of  residential relocation  

24.67% - 

Job Change_1 Year 

Lead (Dummy 

Variable) 

Change of a job occurring one year prior 

to  residential relocation 

13.24% - 

First Vehicle_2 Year 

Lead (Dummy 

Variable) 

Purchase of the first vehicle in the life-

time of the household occurring two 

years prior to  residential relocation 

1% - 

Vehicle Acquisition_1 

Year Lead (Dummy 

Variable) 

Addition of a vehicle to the exiting 

vehicle fleet of the household occurring 

one year prior to  residential relocation 

7.01% - 

Vehicle Acquisition_2 

Year Lead (Dummy 

Variable) 

Addition of a vehicle to the exiting 

vehicle fleet of the household occurring 

two years prior to  residential relocation 

5.19% - 
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Table 4-5 Summary Statistics of Explanatory Variables used in the 

Estimation of Residential Location Choice Model (Continued) 

Variables Description Mean/ 

Proportion 

Std. 

Dev. 

Accessibility Characteristics  

Dist to Work Distance from home to the work place in 

km 

25.45 28.29 

Dist to nearest School Distance from home to the nearest 

school in km 

2.98 5.45 

Dist to nearest 

Transit Stop 

Distance from home to the nearest 

transit stop in km 

11.17 24.75 

Dist to nearest 

Business Center 

Distance from home to the nearest 

regional business center in km 

11.56 10.33 

Dist to CBD Distance from home to the Central 

Business District (CBD) in km 

24.40 27.67 

Dist to nearest Health 

Service 

Distance from home to the nearest 

health service in km 

4.49 7.62 

Dist to nearest Park 

Area 

Distance from home to the nearest park 

area in km 

2.06 4.50 

Parcel and Neighbourhood Characteristics 

Lot Size  Parcel lot size in acre  0.64 5.02 

Population Density Population per acre area in the home 

dissemination area 

1530 2258 

% of Owned Dwelling Percentage of owned dwelling in the 

home dissemination area 

80.01% 22.74% 

Avg. Property Value  Average property value (CAD X 1000) in 

the home dissemination area  

266.92 102.91 

% of HH’s Share of 

Shelter Cost to 

Income less than 30% 

Percentage of households spending less 

than 30% of their household income on 

shelter cost in the home dissemination 

area 

80.90% 12.37% 

% of Non-movers Percentage of non-movers in the last five 

years in the home dissemination area 

66.74% 16.82% 
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4.3.3 Discussion of Model Results 

4.3.3.1 Characterization of the Latent Segment Allocation 

Component 

The results of the latent segment allocation component are reported in Table 

4-6. The model is estimated considering segment two as the reference segment. 

The model results suggest a negative sign for the variable representing 

household income above $100,000 CAD for segment one, which indicates a 

lower likelihood of such households to be allocated to segment one. The positive 

sign of the variable representing age of the head of the household reveals that 

older head households are more likely to be allocated to segment one. Among 

the neighbourhood characteristics, the negative sign of the variables 

representing percentage of owned dwellings in the neighbourhood, and 

distance from home to the CBD in segment one indicate that urban dwellers 

have a higher likelihood to be included in segment one. In summary, segment 

one has a higher propensity to include urban dwellers with lower household 

income and older head. Presumably, segment one can be identified as a 

segment for “urbanite households”. On the other hand, segment two can be 

identified as a segment for “suburbanite households”.   

Table 4-6 Results of the Latent Segment Allocation Component of the 

Residential Location Choice Model 

 Latent Segment 1 Latent Segment 2 

 co-efficient (t-stat)  co-efficient (t-stat)  

Segment Membership Probabilities 0.51 0.49 

Constant 2.2529 (3.22)  - 

Socio-demographic Characteristics 

Income above 100K (Dummy 

Variable) 
-0.8002 (-2.219)  - 

Age  0.0124 (1.63) - 

Neighbourhood Characteristics 

% of Owned Dwelling -0.0259 (-3.16)  - 

Dist to CBD -0.0181 (-1.60) - 



 

  80 
 

Table 4-7 Parameter Estimation Results of the Fuzzy Logic-based LSL Model 

for Residential Location Choice 

Variables 

Latent Segmentation-based Logit Model 

Latent Segment 1 Latent Segment 2 

co-efficient (t-stat) co-efficient (t-stat) 

Parcel Characteristics and Interaction with Life-cycle Events 

Lot Size -0.1134 (-1.03) 0.1605 (2.13) 

Lot Size × Birth of a Child_1Year Lag 1.2932 (1.00) 1.4578 (1.34) 

Lot Size × Job Change_1 Year Lead -4.6300 (-1.00) 2.3653 (2.49) 

Lot Size × New Job_Same Year 0.0979 (0.3) 0.3033 (2.10) 

Accessibility Characteristics and Interaction with Life-cycle Events and Socio-demographics 

Dist to Work -0.0462 (-3.23) -0.0462 (-3.23) 

Dist to Work × Vehicle Acquisition_1 

Year Lead 
0.0049 (0.20) 0.0263 (0.44) 

Dist to Work × First Vehicle_2 Year 

Lead 
0.0953 (1.35) 0.0953 (1.35) 

Dist to Work × Children 0.0331 (1.93) -0.4197 (-8.21) 

Dist to nearest School 0.4117 (2.72) -0.291 (-0.23) 

Dist to nearest School × Children -0.4296 (-2.28) 0.3026 (1.86) 

Dist to nearest Transit Stop -0.0081 (-0.60) -0.0081 (-0.60) 

Dist to nearest Transit Stop × No Car 

Ownership 

-3.8791 (-1.60) -3.8791 (-1.60) 

Dist to nearest Business Center 0.0230 (1.00) 0.0403 (2.08) 

Dist to nearest Business Center × 

Vehicle Acquisition_2 Year Lead 

0.0215 (0.23) 0.1221 (1.00) 

Dist to nearest Health Service -0.0485 (-1.00) -0.4231 (-4.83) 

Dist to nearest Park Area -0.3763 (-2.08) 0.2815 (1.78) 

Dist to nearest Park Area × Children 0.3331 (1.40) -0.6954 (-2.20) 

Neighbourhood Characteristics  

Population Density 0.0001 (1.94) 0.0001 (4.77) 

Avg. Property Value  0.0022 (2.18) 0.0018 (2.82) 

% of HH’s Share of Shelter Cost to 

Income less than 30% 

0.0130 (1.32) 0.0219 (3.41) 

% of Non-movers 0.1065 (10.41) -0.0266 (-4.89) 
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4.3.3.2 Discussion of the Latent Segmentation-based Logit (LSL) 

Model Results  

Parameter estimation results of the fuzzy logic-based LSL model are reported 

in Table 4-7. A brief discussion of the model results are presented below. 

4.3.3.2.1 Parcel Characteristics and Interaction with Life-cycle Events  

The model results suggest that location choice is significantly influenced by 

parcel characteristics. For instance, the variable representing lot size reveals 

a positive relationship in segment two. Segment two is identified to include 

suburbanite households who are higher income suburban dwellers. 

Essentially, suburbanite households prefer larger dwellings (i.e. parcel size), 

potentially in the suburban areas. In contrast, urbanite households in segment 

one show a negative relationship. Interestingly, while a life-cycle event 

represented by birth of a child is interacted with the lot size, a positive 

relationship is found for urbanite and suburbanite households in both 

segments. An increase in the household size due to the birth of a child might 

trigger the requirement of a larger dwelling. Therefore, households prefer 

larger-sized lots, which is consistent with the findings of Strom (2010). The 

model confirms a one-year lead effect of this life-cycle event. Life-cycle event 

represented by job change shows a heterogeneous behaviour as evident in 

parametric values in the two segments. Households in segment two exhibit a 

positive relationship. Suburbanite households in segment two belong to the 

high-income group and arguably a change in job might be associated with 

further increase in income. Thus, such households reveal preference for larger 

dwellings following a job change. In the case of addition of a job, urbanite and 

suburbanite households reveal a higher likelihood for larger-sized lots. 

Addition of a job refers to increased affordability, which is expected to 

positively influence the choice of larger dwellings. The model confirms a longer 

adjustment period for a job change (one-year lagged effect) than that of the 
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addition of a new job (same year effect). The increased affordability associated 

with the addition of a job might influence households to relocate to larger-sized 

lots within a much shorter time from the occurrence of the event. 

4.3.3.2.2 Accessibility Characteristics and Interaction with Life-cycle Events 
and Socio-demographics 

In general, households are found to be more likely to reside closer to their work 

place, which reflect their preferences for shorter commute distance. To 

examine how vehicle transaction decisions influence location choice, the 

following two variables are interacted with commute distance: vehicle 

acquisition, and purchase of the first vehicle. Urbanite and suburbanite 

households reveal a positive relationship for both the variables. Interestingly, 

a longer adjustment period is observed for the first time vehicle purchase (two-

year lagged effect) compared to a vehicle acquisition (one-year lagged effect). 

First time vehicle purchase is a key event in the life-time of the household. Due 

to the limitation in time and money budgets, a longer adjustment period is 

expected between two large investments of purchasing a house and first car. 

When the presence of children is interacted with commute distance, a variation 

in relationship is found in two segments.  Suburbanite households (i.e. segment 

two) who have children show a higher likelihood to reside closer to work place, 

which might offer them the flexibility of trip chaining to day care centers or 

schools on the way to and from work. On the other hand, urbanite households 

with low income (i.e. segment one) show a higher probability to compromise 

with the longer commute. Locations closer to work place might be expensive 

and they might be trading off longer commute with the opportunity to reside 

in proximity to other potential amenities for their children. One such amenity 

might be the location of school, as argued by Kim et al. (2005). Furthermore, 

when the presence of children in the household is interacted with distance to 
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the closest school, urbanite households show a higher likelihood to reside closer 

to school.  

Distance to the closest transit stop reveals a negative relationship. 

Interestingly, when this variable is interacted with a dummy variable 

representing households not owning a vehicle in their life-time, the negative 

effect substantially increases. This reflects the fact that households prefer to 

live closer to transit stop; however, the propensity to reside closer to transit 

stop increases for households without vehicle ownership. Distance to the 

nearest regional business center shows a positive relationship. Since, 

households prefer locations farther away from regional business centers, which 

is characterized as big-box retails in the case of Halifax. A similar positive 

relationship is found while distance to the nearest regional business center is 

interacted with vehicle acquisition. This result reflects that addition of a 

vehicle might offer added freedom and convenience for longer trips. 

Households exhibit a higher probability to choose locations closer to the health 

care services, since locations closer to health services offer easier access to daily 

and periodic medical services. Distance to the closest park area exhibits 

heterogeneous relationship in the two segments. Urbanite households are 

found to be extremely sensitive to distance to the nearest park area and prefer 

to live closer to park area. Locations closer to park areas are preferable due to 

the convenient access to open space, which can serve as a regular recreational 

place for the household members. In contrast, households in segment two 

reveal a positive relationship. Interestingly, while distance to the closest park 

area is interacted with presence of children in the household, suburbanite 

households exhibit a strong preference for locations closer to park areas. In 

summary, the model results reflect that the effects of accessibility 

characteristics in choosing home locations are substantially dictated by life-

cycle events.   
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4.3.3.2.3 Neighbourhood Characteristics  

Regarding the neighbourhood characteristics, households have a higher 

probability to live in neighbourhoods with higher population density. Average 

property value in the neighbourhood shows a positive relationship, since 

higher average property value indicates high income neighbourhoods with 

better housing and access to diversified amenities (Guo and Bhat 2002), which 

are expected to be desirable. The variable representing percentage of 

households with a shelter cost to income share of less than 30% reflects high 

income neighbourhoods with more disposable income after housing related 

payments. This variable exhibits a strong positive relationship, which extends 

the fact that locations with more disposable income are more attractive. 

Interestingly, stable neighbourhoods represented by percentage of non-movers 

show significant variations between the two segments. Urbanite households 

prefer stable neighbourhoods and suburbanite households show affinity to 

evolving neighbourhoods in Halifax. This result is a deviation from an earlier 

Toronto study (Habib and Miller 2009), in which households generally 

preferred stable neighbourhoods. This may reflect a unique continual growth 

of new subdivisions in Halifax, which has become an interesting feature of the 

city as documented in Brewer and Grant (2015).      

In addition to the above discussed variables, the model tests a number of 

variables such as, death of a member, member move out, loss of a job, distance 

to the nearest shopping center, average household income, employment rate, 

percentage of immigrant, and land-use mix index. These variables could not be 

included in the final model due to discrepancies in the hypothesis confirmation 

along with reasonable statistical significance. The model also could not confirm 

statistically significant effects of how neighbourhood characteristics varies by 

life-cycle events. One of the possible attributing factors might be the 

unavailability of historical records for changes in urban form. 
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4.4 Modelling Mode Transitions 

This research offers insights towards how a change in one life-domain is 

associated with a change in another domain. Particularly, this study 

investigates how residential relocation decisions influence individuals to 

change their commute mode. The study conceptualizes that individuals 

reassess their commute mode when they relocate to a new location. Following 

reappraisal, they either continue using the same mode, which is considered 

mode loyalty, or make a transition to a new mode, which is considered mode 

transition. In this study, the mode transition scenario is developed by 

comparing the choice of commute mode between two distinct temporal points 

of consecutive residential locations, which offers the opportunity to examine 

how changes in socio-demographic and accessibility characteristics between 

these two temporal points affect the decision. These transitional variables are 

generated by comparing household characteristics between two subsequent 

residential locations. In addition, the effects of life-cycle events are tested. To 

account for the correlated sequence of repeated choices of the same individuals 

over their life-time, a random-parameters logit (RPL) model is developed. The 

model also captures unobserved heterogeneity.  

4.4.1 Modelling Methods 

This study utilizes the retrospective HMTS data to generate the mode 

transition scenarios. A sample of 288 households are utilized from the HMTS 

data, who have reported at least two consecutive housing records. The dataset 

yields a total sample of 453 mode loyalty and transition instances. The mode 

loyalty and transitions are determined by comparing the choice of commute  

This section is largely derived from the following journal paper: 

 Fatmi, M.R., and Habib, M.A. (2016). Life-Oriented Approach of Modelling of Commute 

Mode Loyalty and Transition Behaviour. Transportation Research Record:  Journal of 
Transportation Research Board, 2565(1), 37-47. 
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mode in two consecutive residential locations. The results reveal that 67.10% 

respondents are loyal to the commute mode used at their previous location and 

continue with the same one at the subsequent location. On the other hand, 

32.90% of the respondents make a transition in commute mode when moving 

to a new location. To understand mode-specific transition and loyalty, this 

study considers the following nine choice scenarios as the dependent variable:  

1. Loyal to Car: respondent’s primary commute mode is car in their prior and 

subsequent location 

2. Loyal to Transit: respondent’s primary commute mode is transit in their 

prior and subsequent location  

3. Loyal to Active Transportation: respondent’s primary commute mode is 

active transportation (walk/bike) in their prior and subsequent location  

4. Transition from Car to Transit: respondent makes a transition in primary 

commute mode from car in prior location to transit in subsequent location 

5. Transition from Car to Active Transportation: respondent makes a 

transition in primary commute mode from car in prior location to active 

transportation in subsequent location 

6. Transition from Transit to Car: respondent makes a transition in primary 

commute mode from transit in prior location to car in subsequent location  

7. Transition from Transit to Active Transportation: respondent makes a 

transition in primary commute mode from transit in prior location to active 

transportation in subsequent location  

8. Transition from Active Transportation to Car: respondent makes a 

transition in primary commute mode from active transportation in prior 

location to car in subsequent location 

9. Transition from Active Transportation to Transit: respondent makes a 

transition in primary commute mode from active transportation in prior 

location to transit in subsequent location 
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Table 4-8 Distribution Matrix of the Mode Loyalty and Mode Transition 

Associated with Residential Relocation  

                                       To  

 Mode Car Transit Active Transportation 

 

From 

 

Car 34% 5.3% 8.39% 

Transit 3.09% 8.17% 4.86% 

Active Transportation 6.4% 4.86% 24.72% 

 

The statistical distribution of the choice scenarios reveals that the highest 

percentage (34%) of individuals are loyal to car and prefer to continue with car 

as their primary commute mode in two consecutive locations (Table 4-8). 25% 

of the individuals are loyal to active transportation (walk/bike) and only 8% 

are transit loyal. Among the mode transitions, the highest percentage of 

transition (8%) occurs from car to active transportation, and the lowest 

percentage of transition (3%) occurs from transit to car.  

In the case of developing the random-parameters (RPL) logit model, let’s 

assume that the utility derived by individual 𝑖 from choosing commute mode 

transition alternative 𝑐 at 𝑡 choice situation can be expressed as: 

𝑈𝑖𝑐𝑡 =  𝛽i𝑋𝑖𝑐𝑡 +  𝜀𝑖𝑐𝑡              (22) 

Here, 𝑋 is the observed attribute,  𝛽 is the coefficient of the parameter to be 

estimated, and 𝜀 is the random error term, which is independent over 

individuals, alternatives, and choice situation with independently and 

identically distributed (iid) extreme value. Since this study accommodates 

repeated choices from the same individual during their life-time, assuming  

𝑗(𝑖, 𝑡) is the alternative chosen by individual 𝑖 at 𝑡 choice situation from a 

sequence of alternative choices 𝑗𝑖1, 𝑗𝑖2, … … . . 𝑗𝑖𝑇. Now, the conditional probability 

of making a choice from this sequence of choices can be expressed as: 
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𝑃𝑖(𝛽i) =  ∏
𝑒

𝛽i 𝑋𝑖𝑗(𝑖,𝑡)𝑡

∑ 𝑒𝛽i𝑋𝑖𝑐𝑡𝑚

𝑇
𝑡=1              (23) 

Here, 𝑚 is the total number of alternatives. This choice probability is 

conditional on 𝛽. Interestingly, the analyst observes 𝑋 and does not observe 𝛽. 

Therefore, the choice probability cannot be conditional on 𝛽, and the 

unconditional choice probability is derived by integrating conditional 

probability over all possible values of 𝛽. The unconditional choice probability 

can be written as following: 

𝑃𝑖 =  ∫ ∏
𝑒

𝛽i 𝑋𝑖𝑗(𝑖,𝑡)𝑡

∑ 𝑒𝛽i𝑋𝑖𝑐𝑡𝑚

𝑇
𝑡=1  𝑓(𝛽i|𝜇, 𝜗)𝑑𝛽i                                    (24)  

Here, 𝛽 is distributed over each individual with a density function of 𝑓(𝛽i|𝜇, 𝜗), 

where, 𝜇 and 𝜗 are the mean and standard deviation of the function. This study 

assumes a normal distribution of the density function, following a similar 

assumption by Revelt and Train (1998). 𝛽 is an individual specific parameter, 

representing individual’s taste and other associated unobserved factors. 

Individual’s taste and unobserved factors might vary among the sample 

population, which could be captured by estimating the parameters (𝜇, 𝜗) of the 

density function. One approach for estimating the choice probability is by 

maximizing the likelihood function: 𝐿𝐿 =  ∑ 𝑙𝑛 𝑃𝑖
𝐼
𝑖=1 . This likelihood function 

cannot be maximized analytically, since it is a multivariate integral. Therefore, 

the probabilities are estimated through simulation. In this process, a value of 

𝛽 is drawn from the density function 𝑓(𝛽i|𝜇, 𝜗) and considered as the first draw. 

Using this draw, the corresponding choice probability is estimated. Similarly, 

several draws of 𝛽 are taken and corresponding choice probabilities are 

estimated. Finally, the average of the choice probabilities from several draws 

is estimated in order to approximate the choice probability, which can be 

expressed as:  
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𝑃𝑖̅ =
1

𝑅
 ∑ 𝑃𝑖(βi

r)𝑅
𝑟=1                        (25) 

Here, 𝑃𝑖̅ is the average of the simulated choice probability, which is an unbiased 

estimator of the unconditional choice probability 𝑃𝑖, 𝑅 is the total number of 

draws, and βi
r is the rth draw from 𝑓(𝛽i|𝜇, 𝜗). The variance of 𝑃𝑖̅ decreases as 𝑅 

increases. 𝑃𝑖̅  is smooth (twice differentiable) and facilitates the numerical 

search for the maximum likelihood function. The simulated log likelihood 

function is developed using the average of the simulated probabilities and can 

be expressed as:  

𝑆𝐿 = ∑ ln 𝑃𝑖̅
𝐼
𝑖=1 =  ∑ ln

1

𝑅
 ∑ 𝑃𝑖(βi

r)𝑅
𝑟=1

𝐼
𝑖=1                      (26)  

Here, 𝐼 is the total number of observations. This simulated log likelihood is 

maximized for 500 Halton draws using a Monte-Carlo simulation approach. 

Monte-Carlo simulation approach generates a faster convergence rate 

compared to other methods (Train 2003.). Moreover, the use of Halton draws 

improves the performance of Monte-Carlo simulation compared to random 

draws (Bhat 2003). The model estimates coefficient parameter 𝛽, and 𝜇 and 𝜗 

of the density function. For comparison purposes, a conventional multinomial 

logit model (MNL) is developed. The models are compared on the basis of 

goodness-of-fit measures of adjusted pseudo r-squared, and likelihood ratio 

test.  

4.4.2 Model Results 

This study examines the effects of life-cycle events. One of the key features of 

the study is to test the effects of life-oriented socio-demographic and 

accessibility related transitional variables. The dynamic nature of the mode 

transition phenomenon offers the opportunity to derive life-oriented socio-

demographic transitional variables by comparing socio-demographic 
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information between two subsequent residential locations. Such transitional 

variables refer to the change in individuals’ socio-demographic and dwelling 

characteristics in the current residential location compared to the previous 

location. Socio-demographic transitional variables include increase and 

decrease in household income, car ownership, and number of bedroom, as well 

as transition from rented to owned dwelling and vice versa. Similarly, 

transitional variables for accessibility measures to different activity points and 

transportation services are estimated; which include moving closer to or 

farther away from work location, transit station, or central business district 

(CBD), as well as other accessibility-related transitional variables. In addition, 

socio-demographic, accessibility, land use, and neighbourhood characteristics 

are considered during the model estimation process. Table 4-9 presents the 

summary statistics of the variables retained in the final model. 

For comparison purposes, a multinomial logit (MNL) model is developed in 

addition to the RPL model. The goodness-of-fit measures suggest that the RPL 

model performs better with a higher adjusted pseudo r-squared value 

compared to the MNL model. In addition, the RPL model outperforms the MNL 

model with a chi-squared statistic of 388.49 (critical value of chi-square 106.32 

with 75 degrees of freedom) at the 1% significance level. Therefore, the RPL 

model is considered as the final model. The model estimation results of the 

RPL model is presented in Table 4-10.  
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Table 4-9 Summary Statistics of Explanatory Variables used in the 

Estimation of Commute Mode Transition Model 

Variables Description 
Mean/ 

Proportion 

Socio-demographic Characteristics 

Gender (Male) (Dummy 

Variable) 

Gender of the individual is male  38.63% 

Age  Age of the individual 41.45 years 

Income below 50K  (Dummy 

Variable) 

Household income below $50,000 30.02% 

Income above 75K  (Dummy 

Variable) 

Household income above $75,000 49.44% 

Income above 150K  (Dummy 

Variable) 

Household income above $150,000 13.02% 

Presence of Children (Dummy 

Variable) 

Household with children  34.88% 

No Children (Dummy Variable) Household without children  66.12% 

Owned Dwelling (Dummy 

Variable) 

Household residing in owned dwelling  56.95% 

Education up to College 

(Dummy Variable) 

Individual’s educational qualification is 

up to community college  

15.67% 

Single-Worker (Dummy 

Variable) 

Single-worker household  50.55% 

Full-Time Dual-Worker 

(Dummy Variable) 

Two-worker household both have full 

time employment  

30.68% 

Life-oriented Socio-demographic Transition 

Increase in Household Income 

(Dummy Variable) 

Increase in household income  47.02% 

Decrease in Household Income 

(Dummy Variable) 

Decrease in household income  13.69% 

Decrease in Household Car 

Ownership (Dummy Variable) 

Decrease in household car ownership  22.74% 

No Car Ownership (Dummy 

Variable) 

Household does not own car in previous 

and current residential location  

11.26% 
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Table 4-9 Summary Statistics of Explanatory Variables used in the 

Estimation of Commute Mode Transition Model (Continued) 

Variables Description 
Mean/ 

Proportion 

Life-oriented Socio-demographic Transition (Continued) 

Increase in Number of 

Bedrooms (Dummy Variable) 

Increase in number of bedrooms  39.96% 

Decrease in Number of Rooms 

(Dummy Variable) 

Decrease in number of rooms  30.02% 

Moved from Rented to Owned 

(Dummy Variable) 

Individual relocating from rented to 

owned dwelling  

26.27% 

Moved from Owned to Rented 

(Dummy Variable) 

Individual relocating from owned to 

rented dwelling  

10.15% 

Life-cycle Events  

Birth of a Child_1 Year Lead 

(Dummy Variable) 

Birth of a child 1 year prior to commute 

mode transition  

11.04% 

New Household Formation 

(Dummy Variable) 

Reason for residential relocation is the 

formation of new household  

10.38% 

Addition of a Job_1 Year Lead 

(Dummy Variable) 

Addition of a job 1 year prior to commute 

mode transition 

16.56% 

Addition of a Job_2 Year Lead 

(Dummy Variable) 

Addition of a job 2 year prior to commute 

mode transition 

12.58% 

Lost Job_1 Year Lead (Dummy 

Variable) 

Lost job 1 year prior to commute mode 

transition 

9.71% 

Lost Job_2 Year Lead (Dummy 

Variable) 

Lost job 2 year prior to commute mode 

transition 

6.62% 

Addition of Car_Same Year 

(Dummy Variable) 

Addition of a car to the household vehicle 

fleet in the same year of commute mode 

transition 

19.42% 

Traded Car_Same Year 

(Dummy Variable) 

Household traded car in the same year of 

commute mode transition 

18.98% 
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Table 4-9 Summary Statistics of Explanatory Variables used in the 

Estimation of Commute Mode Transition Model (Continued) 

Variables Description 
Mean/ 

Proportion 

Accessibility Measures 

Dist to nearest Transit Station Distance from home to the nearest transit 

station in km 
3.11km 

Dist to nearest Park Area Distance from home to the nearest park 

area in km 

2.31km 

Dist to CBD Distance from home to the Central 

Business District (CBD) in km 

10.40km 

Life-oriented Accessibility Transition 

Moved Closer to Work Location 

(Dummy Variable) 

Moved closer to work place compared to the 

previous location 

77.26% 

Moved Closer to School (Dummy 

Variable) 

Moved closer to school compared to the 

previous location 

72.41% 

Moved Closer to Transit Station 

(Dummy Variable) 

Moved closer to transit station compared to 

the previous location 

58.28% 

Moved Farther from Transit 

Station (Dummy Variable) 

Moved farther away from transit station 

compared to the previous location 

36.87% 

Moved Closer to Park Area 

(Dummy Variable) 

Moved closer to park area compared to the 

previous location 

60.26% 

Moved Closer to CBD (Dummy 

Variable) 

Moved closer to CBD compared to the 

previous location 

56.29% 

Moved Farther from CBD 

(Dummy Variable) 

Moved farther away from CBD compared to 

the previous location 

37.97% 

Neighbourhood Characteristics 

% of Single-detached Percentage of single-detached dwelling in 

the home dissemination area 

44.89% 

Land-use Mix Index Land-use mix index 0.1709 

% of Transit Trips Percentage of commute trips made by 

transit in the neighbourhood 

12.54% 

% of Active Transportation 

Trips 

Percentage of commute trips made by 

walking/biking in the neighbourhood 

18.78% 
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Table 4-10 Parameter Estimation Results of the RPL Model for Commute 

Mode Transition  

Variables 

Random-parameters Logit 

Model (RPL) 

Co-efficient t-stat 

Loyal to Car 

Age 0.0239 1.235 

Income above 150K   2.2741 3.398 

Presence of Children  0.7325 1.600 

Education up to College  0.8985 1.535 

Full-Time Dual-Worker  0.8449 1.852 

Owned Dwelling  0.3390 0.637 

Traded Car_Same Year  0.9990 2.133 

Moved Closer to Work Location  0.2965 0.623 

Loyal to Transit 

Age -0.0277 -1.138 

Education up to College  2.5133 3.702 

Single-Worker  0.8512 1.355 

No Car Ownership  0.7883 0.935 

Addition of a Job_1 Year Lead  0.7627 1.080 

Dist to nearest Transit Station -0.3229 -0.524 

Loyal to Active Transportation 

No Children  3.5433 1.125 

No Car Ownership  0.6407 0.964 

Addition of a Job_1 Year Lead  -0.6260 -1.112 

Dist to CBD -0.5240 -2.660 

% of Active Transportation Trips 3.8750 2.460 

Transition from Car to Transit 

Age -0.0159 -0.690 

Income above 75K  1.1875 1.899 

Decrease in Household Income  1.3222 1.606 

Moved from Owned to Rented  1.9581 2.155 

Lost Job_1 Year Lead  1.0167 1.314 

Moved Closer to Work Location  0.6934 1.000 
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Table 4-10 Parameter Estimation Results of the RPL Model for Commute 

Mode Transition (Continued) 

Variables 

Random-parameters Logit 

Model (RPL) 

Co-efficient t-stat 

Transition from Car to Active Transportation 

Gender (Male)  -0.8945 -1.216 

Age 0.0336 1.247 

Decrease in Household Income  1.2154 1.408 

Decrease in Household Car Ownership  1.2531 1.654 

Dist to CBD -0.3523 -2.696 

Moved Closer to CBD  2.1050 2.253 

Moved Closer to Park Area  1.2207 1.264 

Transition from Transit to Car 

Gender (Male)  -4.3260 -1.179 

Presence of Children  3.3878 2.022 

Full-Time Dual-Worker  1.5023 1.200 

Moved from Rented to Owned  4.6358 2.342 

Addition of Car_Same Year  2.2094 1.728 

Moved Closer to CBD  2.5476 1.859 

% of Single-detached 0.3543 1.600 

Land-use Mix Index 1.3193 0.358 

Transition from Transit to Active Transportation 

Income below 50K   1.4632 1.677 

Education up to College  1.8856 1.885 

Decrease in Household Income 1.6389 1.807 

Decrease in Number of Rooms  3.0333 2.961 

Lost Job_2 Year Lead  2.9367 2.619 

Dist to nearest Park Area -6.0247 -2.388 

Moved Closer to School  3.1335 2.184 

Moved Farther from Transit Station  1.4822 1.658 

Transition from Active Transportation to Car  

Increase in Household Income  6.1449 2.041 

Moved from Rented to Owned  2.0658 0.627 

Birth of a Child_1 Year Lead  5.5368 1.000 
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Table 4-10 Parameter Estimation Results of the RPL Model for Commute 

Mode Transition (Continued) 

Variables 

Random-parameters Logit 

Model (RPL) 

Co-efficient t-stat 

Transition from Active Transportation to Car (Continued) 

New Household Formation  4.7371 3.078 

Moved Farther from CBD  3.2739 2.197 

Transition from Active Transportation to Transit 

Gender (Male)  -4.1596 -1.977 

Income below 50K   2.1196 2.550 

Increase in Number of Bedrooms  2.0377 2.523 

Addition of a Job_2 Year Lead  0.8414 1.000 

Moved Closer to Transit Station  0.8858 1.167 

% of Transit Trips 10.2416 2.955 

Constants (Reference = Transition from Transit to Car) 

Loyal to Car 9.8240 2.366 

Loyal to Transit 10.9956 2.578 

Loyal to Active Transportation 14.0003 3.316 

Transition from Car to Transit 10.1496 2.391 

Transition from Car to Active Transportation 8.8482 2.101 

Transition from Transit to Active Transportation 6.4415 1.453 

Transition from Active Transportation to Car 1.4161 0.260 

Transition from Active Transportation to Transit 7.2663 1.694 

Standard Deviation of the Random Parameters 

Moved Closer to Work Location [Loyal to Car] 1.1434 2.261 

Dist to CBD [Loyal to Active Transportation] 0.2128 2.426 

Moved Closer to Park Area [Transition from Car to Active 

Transportation] 
2.1781 3.187 

Gender (Male) [Transition from Transit to Car] 6.1904 2.015 

Decrease in Number of Rooms [Transition from Transit to 

Active Transportation] 
1.4589 1.503 

[ ] choice scenarios   



 

  97 
 

Table 4-10 Parameter Estimation Results of the RPL Model for Commute 

Mode Transition (Continued) 

Variables 

Random-parameters Logit 

Model (RPL) 

Co-efficient t-stat 

Standard Deviation of the Random Parameters (Continued) 

Moved Farther from Transit Station [Transition from 

Transit to Active Transportation] 
1.3034 1.635 

Moved from Rented to Owned [Transition from Active 

Transportation to Car] 
5.8190 2.160 

Gender (Male) [Transition from Active Transportation to 

Transit] 
3.2471 2.450 

Goodness-of-fit Measures 

Log-likelihood (at Convergence) -354.4494 

Log-likelihood (at Constant) -548.6948 

Adjusted Pseudo R-squared 0.3540 

[ ] choice scenarios 

4.4.2.1 Discussion of the Random-parameters Logit (RPL) Model 

Results 

4.4.2.1.1 Loyal to Car 

Model results suggest that older individuals are more likely to be car loyal, as 

probability of remaining loyal to car increases with age. Similarly, the high 

income group, characterized by household income above $150000, two-worker 

household both having full time job status, and individual residing in an owned 

dwelling, prefers to be car loyal for commuting. Presence of children in the 

household is positively associated with car loyalty, since individuals might 

require a car to travel with children, for example, trip chain to day care 

centers/schools on their way to work. Trading (i.e., changing) car and 

residential relocation occurring in the same year is associated with a higher 

likelihood of continuing to commute by car. This result might relate to high 
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income individuals’ self-selecting car as their commute mode following 

residential relocation, or it may represent a reverse causality. Surprisingly, 

relocating to a location closer to the workplace than the previous location 

reveals a higher probability to continue commuting with car. However, this 

variable yields a statistically significant standard deviation, with a mean and 

standard deviation of 0.2965 and 1.1434, respectively. This large standard 

deviation suggests that a sizable variation exists among the individuals in 

being car loyal if their commute distance is shortened. Therefore, shortening 

commute distance does not necessarily trigger a change in mode, arguably from 

car to alternative modes. Many external attributes may influence this 

relationship. For instance, the characteristics of the transit system and the 

active transportation infrastructure in the home and workplace locations 

might have considerable influence on the choice of commute mode.  

4.4.2.1.2 Loyal to Transit 

Younger individuals are more likely to be transit loyal for commuting, as are 

single-worker households. Both of these findings likely reflect the fact that 

lower income might restrict the choice of mode. Similarly, individuals with 

education up to community college show a positive parametric value. 

Individuals with no car ownership over their life-time also remain transit loyal, 

as expected. Interestingly, addition of a new job in the household is associated 

with a higher probability to continue with transit as commute mode, despite 

assuming the variable as a one-year lead event. Potentially, transit riders 

might find it challenging to make a transition to another mode (i.e., car) due to 

budgetary constraints, and therefore continue using transit. The model results 

also suggest that the shorter the distance to the nearest transit station in the 

new location, the higher the probability of continued transit use.   
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4.4.2.1.3 Loyal to Active Transportation 

Individuals with no children in the household are loyal to active transportation 

(walk/bike) for commuting, likely because they do not need to accommodate the 

additional travel demand of children. Individuals not owning a car over their 

life-time, prefers to commute by walking/biking. The same variable represents 

a stronger positive relationship in the choice occasion “loyal to transit”, which 

indicates that individuals who do not own a car over their life-time have a 

higher probability of being transit loyal compared to walk/bike loyal. Addition 

of a job in the household increases the affordability and reveals a decreased 

probability of active transportation loyalty. The same variable exhibits a 

positive relationship for the choice occasion “loyal to transit”, such that those 

individuals are less likely to be loyal to active transportation and more likely 

to be loyal to transit with an increase in affordability. This variable exhibits a 

one-year lagged effect in both cases. Individuals residing closer to the CBD 

exhibit a higher propensity to continue with walking/biking as their commute 

mode. Since, the majority of the employment opportunities are located close to 

the CBD and individuals residing in such urban areas might have shorter 

commute distance, which is suitable for the use of active transportation. This 

variable demonstrates heterogeneity with a statistically significant standard 

deviation. Moreover, individuals residing in walk/bike-supportive 

neighbourhoods, characterized as neighbourhoods with a higher percentage of 

trips made by active transportation, exhibit a significantly higher probability 

of being loyal to active transportation for commuting. 

4.4.2.1.4 Transition from Car to Transit 

Younger individuals have a higher probability of making a transition in 

commute mode from car to transit; arguably many younger adults of this 

generation are environmentally concerned, and would choose sustainable 
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modes of transportation (Schoettle and Sivak 2014). Reduced affordability, 

represented by decrease in household income, a move from owned to rented 

dwelling, positively influences the likelihood of such transition. The loss of a 

job is also associated with a higher propensity of transition from car to transit, 

which is not surprising considering the budgetary consequences of such life-

event. The model confirms a one-year lagged effect of this life-cycle event. 

Shortening of commute distance (i.e., relocating to a location closer to work) is 

associated with a transition from car to transit. Indeed, this variable reveals a 

two times stronger positive relationship for this transition (coefficient value 

0.6934) compared to the choice occasion of “loyal to car” (coefficient value 

0.2965).  

4.4.2.1.5 Transition from Car to Active Transportation 

Male individuals exhibit a lower preference for making a transition in 

commute mode from car to active transportation (walk/bike). Older individuals 

have a higher probability of making a transition from car to walk/bike, which 

might represent either their preference for healthier lifestyle or that their age 

is restricting them from using a car. Reduced affordability, represented by 

decrease in household income and decrease in household car ownership, is also 

associated with transition in commute mode from car to walk/bike. Individuals 

living closer to the CBD are more likely to make a transition from car to 

walk/bike, most likely due to the shorter commute distance. This hypothesis is 

further supported by the positive relationship of another variable, 

representing relocating closer to the CBD compared to the previous location. 

Locations closer to park area are considered as walk/bike supportive 

neighbourhoods; therefore, relocating closer to park area is positively 

associated with a transition from car to walk/bike. This variable is assumed to 

be a random parameter with a mean and standard deviation of 1.22047 and 

2.1781, respectively. The large value of the standard deviation reveals that 
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individuals relocating closer to park area exhibit significant heterogeneous 

behaviour, such that some are less likely than others to make this transition. 

4.4.2.1.6 Transition from Transit to Car 

The model results suggest that female individuals have a higher probability to 

make a transition in commute mode from transit to car compared to their male 

counterparts. The large standard deviation of this random parameter indicates 

that females might not prefer this transition in certain cases. The presence of 

children exhibits a higher probability of triggering a transition to car as the 

commute mode. The high income group, characterized by two-worker 

household both having full time job status, has a higher probability of making 

a transition from transit to car. Increased affordability, represented by 

relocating from a rented to an owned dwelling, addition of a car to the 

household’s vehicle fleet, reveals a higher propensity for transition from transit 

to car. The relationship associated with increased size of the household vehicle 

fleet might reflect self-selection of car as commute mode. Interestingly, 

individuals relocating closer to the CBD are more likely to make a transition 

from transit to car. Presumably, housing prices are higher in the peninsula 

Halifax (i.e., locations closer to the CBD), where higher income individuals are 

likely relocating. Therefore, a transition from transit to car as commute mode 

is observed.  

4.4.2.1.7 Transition from Transit to Active Transportation 

The low income group, represented by household income below $50,000 and 

educational qualification up to community college, exhibits a higher 

probability of making a transition in commute mode from transit to active 

transportation (walk/bike). Reduced affordability, represented by a decrease in 

household income, and a decrease in number of rooms in the new dwelling, is 
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associated with a transition from transit to walk/bike as commute mode. A 

decrease in number of rooms in the new dwelling is assumed to be a random 

parameter. The model reveals that loss of a job triggers a transition from 

transit to walk/bike mode. In this case, a two-year lagged effect is observed. 

Locations closer to park areas show a positive influence on triggering a 

transition to walk/bike. Interestingly, moving closer to school shows a higher 

probability of making a transition from transit to walk/bike. Relocating farther 

away from transit stations also asserts a positive influence on the transition 

from transit to walk/bike. Perhaps individuals self-select their residences for 

commuting by active transportation.   

4.4.2.1.8 Transition from Active Transportation to Car 

Increased affordability, represented by an increase in household income, and 

relocating from a rented to an owned dwelling, is associated with a higher 

probability of triggering a transition from walk/bike to car as commute mode. 

The variable related to relocating from rented to owned dwelling is assumed 

as a random parameter. The large standard deviation of the variable indicates 

that significant heterogeneity exists among the sample individuals, such that 

some individuals might not prefer this transition. Life-cycle events such as, an 

one-year lagged effect of birth of a child and relocating due to new household 

formation, exhibit a positive influence on the probability of making a transition 

to car. Both of these life-cycle events involve an increase in household size, 

which might generate additional travel demand in the household necessitating 

a transition to car for commuting. Relocating farther from the CBD compared 

to the previous location reveals a strong positive effect on the probability of 

making a transition to car. Arguably, neighbourhoods farther away from CBD 

are low density areas and individuals might be self-selecting to use a car as the 

primary mode of transportation upon relocation. 
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4.4.2.1.9 Transition from Active Transportation to Transit 

Males are less likely to make a commute mode transition from walk/bike to 

transit. However, significant heterogeneity exists, as revealed by the standard 

deviation of this random parameter. Addition of a new job in the household is 

associated with an increased probability of making a transition from walk/bike 

to transit. The model confirms a two-year lagged effect of this life-cycle event. 

Transitional variable represented by relocating to a larger dwelling with a 

higher number of bedrooms positively influences the transition from walk/bike 

to transit. Relocating closer to transit stations compared to previous location 

indicates shorter and more convenient access to transit services, and triggers 

a transition of commute mode to transit. Moreover, transit-oriented 

neighbourhood, represented by a higher percentage of transit trips, has a 

positive influence on the probability of transitioning to transit as commute 

mode.      

In addition, this study examines a number of variables, such as job change, 

distance to the nearest school, and distance to the work place, among others. 

However, these variables could not be included in the final model due to 

discrepancies in prior hypothesis and poor statistical significance.  

4.5 Conclusions and Summary of Contributions 

This research presents the modelling of residential location choice processes, 

as well as investigates commute mode choice decisions after relocation. 

Residential location is modelled as a two-stage process of mobility and location 

choice. The second stage of location choice is conceptualized to have an 

underlying process orientation, which is a two-tier process of location search 

and location choice. This two-tier process of modelling location choice improves 

the empirical estimation of the model compared to traditional techniques. In 

addition, this study tests how a change in commute mode is associated with a 
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change in residential location. Advanced econometric models are developed to 

accommodate the correlated sequence of repeated choices of the households 

and address unobserved heterogeneity. The models accommodate inter-

dependencies among different decisions by testing lead and lagged effects of 

the life-cycle events occurring at different domains and stages of the life-

course. 

The first stage of residential location decision is residential mobility, which is 

defined as the decision to move or stay at a particular location. The mobility 

model follows a continuous time hazard-based duration modelling technique. 

In the hazard setting, duration is specified as the period that a household 

remain in a specific residence, and the failure event is a move to a different 

location. Two sets of hazard models are estimated for lognormal, log logistic, 

and Weibull distributions. The first set of models are single episode models, 

which are estimated considering each duration as an independent observation. 

The next model set includes multiple episode shared frailty models, which 

accounts for the effects of the repeated duration along the housing career of 

the same household. The goodness-of-fit measures suggest that the multiple 

episode shared frailty model outperforms the single episode model. The model 

examines how the characteristics of life-stages, dwelling, land use, 

accessibility, and neighbourhood affect the termination or continuation of stay 

at a residential location. The model results suggest that households show a 

shorter duration in the case of first spell after household formation. Renters 

have shorter duration and move more frequently. Households residing in areas 

with higher land-use mix index exhibit longer duration. Households having 

longer commute show longer duration. Households living nearby to the CBD 

are likely to relocate more frequently. Longer duration is found for households 

residing in neighbourhoods with higher dwelling density as well as higher ratio 

of non-movers.  
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In the second stage, location choice is conceptualized as a two-tier process of 

location search and choice. In the first-tier of location search, households 

search for locations to identify potential location alternatives. Following the 

search, households move to one of the potential locations. The location search 

model is developed adopting a fuzzy logic-based modelling method. The model 

accommodates inter-dependencies between the stress-driven push and pull 

factors. The search model generates pool of alternative locations for each 

household on the basis of constraint and opportunity sets identified in the fuzzy 

logic-based model. The constraint for households’ affordability is imposed by 

introducing constraint sets of household income and property value within the 

fuzzy framework. The location alternatives generated in the search model, 

feeds the location choice model as choice set.  

The location choice model is developed adopting a latent segmentation-based 

logit (LSL) modelling technique. The LSL model assumes that correlated 

sequence of repeated choices exists due to the households housing career. The 

unobserved heterogeneity is addressed through formulating a flexible latent 

segment allocation model within the LSL framework. Households’ allocation 

to different discrete latent segments is defined by the following variables: 

household income, age of the household head, percentage of owned dwelling in 

the neighbourhood, and distance to the CBD. The model results suggest that 

life-cycle events, parcel characteristics, and accessibility measures 

significantly influence the choice of residential locations. For instance, most 

households prefer larger lots. Households in general are found to prefer 

locations closer to work place, transit stop, and health service. Life-cycle events 

are found to significantly affect location preferences. For instance, birth of a 

child magnifies the need of larger lots. Vehicle transaction represented by 

vehicle acquisition, and purchase of the first vehicle in the life-time of the 

household show a higher propensity to choose locations farther away from work 

place. The adjustment period is found to be longer for the first time vehicle 
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purchase than that of a vehicle acquisition. The model results suggest 

considerable variation in location choice behaviour by the life-cycle events in 

the two latent segments. For example, suburbanite households in segment two 

show a higher likelihood to choose larger lots following the life-cycle event of a 

job change. On the other hand, urbanite households in segment one show a 

negative relationship. Interestingly, addition of a new job positively influence 

urbanite and suburbanite households to choose larger lots. The adjustment 

period for a job change is found to be longer than that of addition of a new job. 

Suburbanite households with children prefer to reside closer to work place. 

Urbanite households with children are more likely to live closer to school. 

Households without ownership of car in their life-time have a higher likelihood 

to choose locations closer to the transit stops.    

For comparison purposes, another location choice model is developed utilizing 

choice set generated from traditional random sampling-based method. The 

fuzzy logic and random sampling models are compared on the basis of the 

predictive adjusted likelihood ratio index and average probability of correct 

prediction. In-terms of the above-mentioned goodness-of-fit measures, the 

proposed fuzzy logic-based search and location choice modelling process is 

found to outperform the traditional random sampling-based model.  

In the case of the mode transition, this study conceptualizes that individuals 

reassess their commute mode when they relocate to a new residential location. 

Following reappraisal, they either continue using the same mode, which is 

considered mode loyalty, or make a transition to a new mode, which is 

considered mode transition. During the estimation process of mode transition, 

the following nine dynamic mode specific choice scenarios are considered: (1) 

loyal to car, (2) loyal to transit, (3) loyal to active transportation (walk/bike), 

(4) transition from car to transit, (5) transition from car to active 

transportation, (6) transition from transit to car, (7) transition from transit to 

active transportation, (8) transition from active transportation to car, and (9) 
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transition from active transportation to transit. This study develops a random-

parameters logit (RPL) model, which accounts for the correlated sequence of 

repeated choices and unobserved heterogeneity. The model tests the influence 

of life-cycle events, socio-demographic transitions, and accessibility 

transitions. The model results suggest that moving closer to the workplace 

positively influences car loyalty. The large value of the standard deviation of 

this parameter reveals that significant heterogeneity exists among the 

individuals. Individuals residing closer to the transit station and those with no 

car ownership over the life-time exhibit a higher propensity to be transit loyal. 

Individuals with no children in the household and residing in neighbourhoods 

with a higher percentage of walk/bike trips show loyalty to active 

transportation. In the case of mode transitions, a decrease in household income 

and the loss of a job positively influence a transition from car to transit. Tenure 

transition from rental to owned dwelling and an increase in household vehicle 

fleet by addition of a car trigger a transition from transit to car. An increase in 

household income is associated with a higher propensity for transition from 

active transportation to car. Birth of a child and new household formation are 

positively associated with a transition from active transportation to car. 

Individuals relocating from rental to owned dwelling have a higher probability 

of making a transition from active transportation to car. The large standard 

deviation of this parameter suggests that significant heterogeneity exists 

among the individuals.   

This study has certain limitations. For instance, this study could not capture 

the effects of historical evolution of land-use and urban form due to the 

unavailability of such information. Moreover, this study could not consider the 

historical evolution of the transportation system measures, which includes 

travel time, travel cost, and transit level of service (LOS), among others. 

Future research should focus on building a GIS database to maintain historical 

record of urban form and transportation system measures. Another limitation 
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is the use of a small sample size as longitudinal surveys are challenging and 

expensive. Particularly, in the case of the mode transition model, a LSL model 

could not be developed due to the small sample size, since analyzing different 

domains of contrasts with respect to multiple choice dimensions and latent 

segmentation are challenging with a small sample size. For the mobility model, 

the effects of time-varying covariates were not included in the model. Testing 

time-varying covariates within the duration model formulation will be an 

interesting future work. In the case of modelling mode transition, this study 

could not impose availability of car as a constraint. Future research should 

focus on accommodating car ownership constraint within the model estimation 

process.    

Nevertheless, the proposed modelling framework significantly contributes to 

the dynamic modelling of location choice processes and commute mode 

transitions. The development of the two-tier fuzzy logic-based residential 

location model is a methodological contribution to the literature of travel 

demand modelling technique. The adoption of life history-oriented approach 

offers important behavioural insights towards understanding what triggers 

households’ relocation and mode change decisions, which is critical for 

transportation and urban planning. It will also be interesting to implement 

such life-trajectory dynamics of the location choice decision processes within 

the iTLE simulation environment.  
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Chapter 5 

5 Modelling Vehicle Transactions 

5.1 Introduction 

This chapter focuses to model the vehicle transaction component of vehicle 

ownership transition module of the iTLE. The contribution of this research is 

four-fold: 1) investigating the transaction decisions as a process of first time 

vehicle purchase, vehicle acquisition, vehicle disposal, and vehicle trade, 2) 

examining the multi-domain decision interaction, 3) developing econometric 

model to accommodate the temporal dimension of the households life-time and 

address latent heterogeneity, and 4) accommodating the influence of 

adjustment period among decisions as lead and lag events. The inclusion of 

first vehicle purchase of the households during their lifetime is a crucial 

dimension, as it might be associated with a mode shift to car.  

In terms of modelling methods, literature suggests that a number of 

methodologies are applied for vehicle ownership modelling including, 

unordered models ranging from conventional multinomial logit models (Bhat 

and Pulugurta 1998) to latent segmentation-based logit models (Anowar et al. 

2014), hazard-based duration models ranging from single duration models (De 

Jong 1996) to competing risk models (Mohammadian and Rashidi 2007), and 

ordered models (Kim and Kim 2004), among others. To accommodate the life-

trajectory dynamics, this study develops a latent segmentation-based logit  

 

This chapter is largely derived from the following journal paper:  
 Fatmi, M.R., and Habib, M.A. (2016). Longitudinal Vehicle Transaction Model: 

Assessment of Lead and Lagged Effects of Longer-Term Changes and Life-cycle 

Events. Transportation Research Record:  Journal of Transportation Research Board, 
2566(2), 11-21.   
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(LSL) model. The model accommodates repeated transaction decisions by 

addressing the correlated sequence of repeated choices. A flexible segment 

allocation component is formulated within the LSL framework to capture the 

unobserved heterogeneity.  A life-oriented approach is taken to examine how 

vehicle transaction decisions are influenced by life-cycle events such as, birth 

of a child, death of a member, residential relocation, job relocation, addition of 

a job, and loss of a job, among others. The effects of adjustment period between 

events is accommodated as the lead and lag events. In addition, the model 

accommodates the effects of socio-demographic, accessibility measure, and 

neighbourhood characteristics.     

The organization of this chapter is as follows: section 5.2 describes the 

modelling methods and the descriptions of vehicle transaction scenarios 

considered as dependent variables. Section 5.3 discusses the model estimation 

results. Finally, section 5.4 summarizes the contributions and limitations of 

this research and directions for future works.   

5.2 Modelling Methods 

The vehicle transaction model is developed utilizing data from the HMTS. The 

vehicle ownership history component of the HMTS provides information up to 

four current and four previous vehicle ownerships.  Following the cleaning 

process, this study considers a total of 613 vehicle transaction instances. Out 

of the 613 transaction instances, 62.65% are acquisition of a vehicle, 9.13% are 

disposal of a vehicle, and 28.22% are trading of a vehicle. The retrospective 

nature of the survey enables this study to identify the first time vehicle 

purchase decisions from the total acquisition instances. Out of the 62.65% of 

acquisition instances, 17.46% are first time purchases and the remaining 

45.19% are adding a vehicle to the existing vehicle fleet. This study 
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investigates households’ vehicle transaction decisions by considering the 

following four transaction scenarios as the dependent variables:  

1. First Time Vehicle Purchase: purchase of the first vehicle in the lifetime of 

the household 

2. Vehicle Acquisition: addition of a vehicle to the existing vehicle fleet of the 

household 

3. Vehicle Disposal: reduction of a vehicle from the existing vehicle fleet of the 

household 

4. Vehicle Trade:  disposal decision followed by a purchase decision within the 

same calendar year  

A latent segmentation-based logit (LSL) model is formulated for modelling the 

vehicle transaction decisions, which is similar to the location choice model 

developed in chapter 4. Assume that household 𝑖 belonging to latent segment 

𝑠 makes a transaction decision 𝑗 at 𝑡 choice occasion. The utility derived from 

the transaction can be expressed as: 

𝑈𝑖𝑗𝑡(𝑖 ∈ 𝑠) = 𝑋𝑖𝑗𝑡𝛽𝑠 + 𝜀𝑖𝑗𝑡           (1) 

Here, 𝑋 is the observed attributes, 𝛽 is the segment specific vector parameter, 

and 𝜀 is the random error term. 𝜀 is assumed to have a type I extreme value 

distribution and is independently and identically distributed. Due to the 

existence of repeated choice, the joint probability of the choice sequence can be 

written as following: 

𝑃𝑖𝑗(𝑖 ∈ 𝑠) = ∏
𝑒

𝑋𝑖𝑐𝑖𝑡𝑡𝛽𝑠

∑ 𝑒
𝑋𝑖𝑗𝑡𝛽𝑠𝐽

𝑗=1

𝑇
𝑡=1           (2) 
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Here, 𝑐 is the transaction made at 𝑡 choice occasion from a sequence of 

transaction choices 𝑐 =  𝑐𝑖1, 𝑐𝑖2, … … . . 𝑐𝑖𝑇. The latent segment allocation model 

takes the following form: 

𝜙𝑖𝑠 =
𝑒𝜔𝑠+𝜃𝑠𝑍𝑖

∑ 𝑒𝜔𝑠+𝜃𝑠𝑍𝑖𝑆
𝑠=1

            (3) 

Here, 𝑍 is the observed attributes, 𝜔 is the segment membership constant, and  

𝜃 is the segment membership vector parameter. The maximum log likelihood 

can be written as: 

𝐿𝐿𝑚𝑎𝑥 = ∑ 𝑙𝑛{∏ 𝜙𝑖𝑠𝑃𝑖𝑗(𝑖 ∈ 𝑠)𝑆
𝑠=1 }

𝛾𝑖𝑗𝑁
𝑛=1           (4) 

Here, 𝑁 is the total number of observations, and  𝛾 is a dummy variable. 𝛾 

takes a value of 1 while household 𝑖 makes transaction  𝑗 and 0 otherwise. The 

parameters are estimated by maximizing the log likelihood function using 

expectation-maximization (EM) algorithm. Asymptotic covariance matrix for 

the full set of parameter estimators are determined by inverting the analytic 

second derivative matrix of the log likelihood function. Additionally, a MNL 

model is estimated for comparison purposes. The models are compared on the 

basis of adjusted pseudo r-squared, and Bayesian Information Criteria (BIC) 

measures.    

5.3 Model Results 

The LSL model is estimated for several number of segments. The model with 

the appropriate number of segments that best fits the data is determined on 

the basis of BIC measure. The model results suggest that the BIC value for two 

latent segments is 1420.47, which increases to 1594.69 for three latent 

segments. The lower BIC measure of the two segments indicate a better model 

fit. Therefore, this study assumes two segments for the final LSL model.   
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Table 5-1 Descriptive Statistics of Explanatory Variables used in the 

Estimation of Vehicle Transaction Model 

Variables Definition 
Mean/ 

Proportion 

Std. 

Deviation 

Socio-Demographic  Characteristics 

Gender (Male) (Dummy 

Variable) 

Gender of the head of the 

household is male  

53% - 

Age  Age of the head of the household 

in years 

46.84 12.25 

Education Minimum Under 

Graduation (Dummy 

Variable) 

Educational qualification of the 

head of the household is 

minimum under graduation  

74% - 

Income above 100K  

(Dummy Variable) 

Household income above 

$100,000 

44% - 

Household Size Number of members in the 

household 

2.87 1.18 

Life-cycle Events    

Birth of a Child/Member 

Move in _Same Year 

(Dummy Variable) 

Birth of a child or member move 

in occurring in the same year of 

vehicle transaction  

55% - 

Birth of a Child/Member 

Move in _1 Year Lead 

(Dummy Variable) 

Birth of a child or member move 

in 1 year prior to vehicle 

transaction  

3% - 

Birth of a Child/Member 

Move in _2 Year Lead 

(Dummy Variable) 

Birth of a child or member move 

in 2 years prior to vehicle 

transaction  

4% - 

Birth of a Child_1 Year 

Lead (Dummy Variable) 

Birth of a child 1 year prior to 

vehicle transaction 

2% - 

Birth of a Child_2 Year 

Lead (Dummy Variable) 

Birth of a child 2 year prior to 

vehicle transaction 

3% - 

Death/Move out of a 

Member _Same Year 

(Dummy Variable) 

Death or move out of a member  

occurring in the same year of 

vehicle transaction 

69% - 
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Table 5-1 Descriptive Statistics of Explanatory Variables used in the 

Estimation of Vehicle Transaction Model (Continued) 

Variables Definition 
Mean/ 

Proportion 

Std. 

Deviation 

Life-cycle Events (Continued) 

Death/Move out of a 

Member _1 Year Lead 

(Dummy Variable) 

Death or move out of a member  

1 year prior to vehicle 

transaction  

2% - 

Addition of a Job_1 Year 

Lead (Dummy Variable) 

Addition of a job 1 year prior to 

vehicle transaction 

3% - 

Addition of a Job_3 Year 

Lead (Dummy Variable) 

Addition of a job 3 year prior to 

vehicle transaction 

12% - 

Lost Job_1 Year Lead 

(Dummy Variable) 

Lost job 1 year prior to vehicle 

transaction 

7% - 

Residential Move_1 Year 

Lead (Dummy Variable) 

Residential relocation 1 year 

prior to vehicle transaction  

4% - 

Residential Move_2 Year 

Lead (Dummy Variable) 

Residential relocation 2 years 

prior to vehicle transaction  

7% - 

Residential Move_1 Year 

Lag (Dummy Variable) 

Residential relocation 1 year 

after vehicle transaction  

7% - 

Residential Move_2 Year 

Lag (Dummy Variable) 

Residential relocation 2 years 

after vehicle transaction  

7% - 

Residential Move_3 Year 

Lag (Dummy Variable) 

Residential relocation 3 years 

after vehicle transaction  

5% - 

Accessibility Measures 

Dist to Work Location Distance from home to work 

location in km  

15.50 29.23 

Dist to CBD Distance from home to the 

Central Business District (CBD) 

in km 

20.08 42.74 

Dist to CBD above 10km 

(Dummy Variable) 

Distance from home to the 

Central Business District (CBD) 

above 10 km 

34% - 

Dist to nearest School Distance from home to the nearest 

school in km 

9.46 10.87 
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Table 5-1 Descriptive Statistics of Explanatory Variables used in the 

Estimation of Vehicle Transaction Model (Continued) 

Variables Definition 
Mean/ 

Proportion 

Std. 

Deviation 

Accessibility Measures (Continued) 

Dist to nearest Health Service Distance from home to the nearest 

health service in km 

6.30 10.82 

Dist to nearest Park Area Distance from home to the nearest 

park area in km 

5.68 29.70 

Dist to nearest Park Area 

below 1km (Dummy Variable) 

Distance from home to the nearest 

park area below 1km 

87% - 

Dist to nearest Shopping 

Center 

Distance from home to the nearest 

shopping center in km 

15.07 41.51 

Neighbourhood Characteristics 

Dwelling Density Dwelling per acre area in the 

home dissemination area 

1341.43 1802.92 

% of Owned Dwelling Percentage of owned dwelling in 

the home dissemination area 

70.08% 28.81% 

% of Single-detached Percentage of single-detached 

dwelling in the home 

dissemination area 

57.86% 33.25% 

Avg. Property Value  Average property value (CAD) in 

the home dissemination area  

295242 115095 

Employment Rate Employment rate in the home 

dissemination area 

64.97% 10.64% 

In addition to the LSL model, this study develops a multinomial logit (MNL) 

model for comparison purposes. The model results suggest that the LSL model 

improves the goodness-of-fit measures, as evident in the higher adjusted 

pseudo r-squared value (0.26) in comparison to that of the MNL model (0.10). 

In terms of log likelihood ratio test, the LSL model yields a chi-squared 

statistics of 325.32 (critical value 112.33 with 80 degrees of freedom), which 

confirms that the LSL model outperforms the MNL model at the 1% 
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significance level. Hence, this study considers the LSL model as the final 

model.  The descriptive statistics of the variables retained in the final LSL 

model are presented in Table 5-1.  

5.3.1 Results of the Segment Allocation Model 

The model results of the segment allocation component of the LSL model is 

presented in Table 5-2. The results suggest that the segment membership 

probabilities for segment one and two are 0.54 and 0.46 respectively. Segment 

membership probability is the average probability over the sample households 

belonging to each segment.  

The segment allocation model is estimated using several socio-demographics 

and neighbourhood characteristics. The final segment allocation model retains 

the following variables: household income above $100,000, household size, 

dwelling density, and percentage of owned dwellings in the neighbourhood 

(Table 5-2). The model is estimated assuming segment two as the reference 

segment. The model results reveal a negative sign for household size in 

segment one, which refers to smaller-sized households. Moreover, membership 

of segment one is positively influenced by household income above $100,000. 

Among the neighbourhood characteristics, the positive sign for dwelling 

density and negative sign for owned dwellings in segment one indicates urban 

dwellers. Therefore, segment one can be identified as a segment for smaller-

sized urban dwellers with income above $100,000. On the other hand, segment 

two can be identified as a segment for larger-sized suburban dwellers with 

income below $100,000. 
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Table 5-2 Results for the Latent Segment Allocation Component of the 

Vehicle Transaction Model 

 
Segment 1 Segment 2 

co-efficient (t-stat) co-efficient (t-stat) 

Segment Membership Probabilities 0.54 0.46 

Constant 1.47(0.60) - 

Socio-demographic Characteristics 

Household Size -1.45(-2.11) - 

Income above 100K   5.90(2.14) - 

Neighbourhood Characteristics 

Dwelling Density 0.002(2.08) - 

% of Owned Dwelling -0.05(-1.60) - 

5.3.2 Discussion of the Latent Segmentation-based Logit (LSL) 

Model Results 

Table 5-3 presents the parameter estimation results of the LSL model. The 

majority of the variables retained in the final model exhibit statistical 

significance at the level of 95% confidence interval for at least one latent 

segment. A brief discussion of the final model results is presented below.   

5.3.2.1 First Time Vehicle Purchase 

Life-cycle event represented by birth of a child or member move in positively 

influences the transaction decision for purchasing the first vehicle. Birth of a 

child or member move in is a key life-event that refers to an increase in the 

household size, which generates an additional travel demand. Therefore, 

households exhibit a higher probability for purchasing their first vehicle. The 

model results reveal a one-year lagged effect of this life-cycle event; perhaps, 

households require adjustment time period following a key life-event. 

Interestingly, while the influence of only birth of a child is tested, the model 

results reveal a heterogeneous effect across the two segments. Segment one 
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identified to include smaller-sized urban dwellers with income above $100,000, 

exhibits a higher probability for purchasing the first vehicle. In contrast, 

households in segment two reveal a negative relationship. The model confirms 

a two-year lagged effect of this variable. Death or move out of a member 

referring to a decrease in household size, exhibits a lower probability for 

purchasing the first vehicle. Another life-cycle event represented by addition 

of a job in the household refers to increased affordability and reveals a 

heterogeneous effect across the two segments. Households in segment two 

identified as larger-sized suburban dwellers with income below $100,000, show 

a higher probability for purchasing their first vehicle. The added budgetary 

flexibility due to addition of a job might provide the freedom for purchasing the 

first vehicle to these larger-sized suburban dwellers in segment two. In 

contrast, households in segment one exhibit a negative relationship. The model 

confirms a three-year lagged effect of this variable. Residential relocation 

decision reveals a positive relationship in segment two, which is identified to 

include larger-sized suburban dwellers with income below $100,000. 

Residential relocation might imply a decreased accessibility to activity 

locations and transportation services for these larger-sized suburban dwellers, 

which triggers the purchase of their first vehicle. On the other hand, 

households in segment one reveal a lower probability for purchasing their first 

vehicle. The model confirms a one-year lead and a one-year lagged effect of 

residential relocation decision.  

Among the accessibility and neighbourhood characteristics, households 

residing farther away from the closest school locations have a higher 

probability for purchasing their first vehicle. A negative relationship is found 

for the accessibility measures representing distance to the CBD and distance 

to the nearest health services.  
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Table 5-3 Parameter Estimation Results of the LSL model for Vehicle 

Transaction  

Variables 

LSL 

Segment 1 Segment 2 

co-efficient  

(t-stat) 

co-efficient  

(t-stat) 

First Time Vehicle Purchase 

Gender (Male)  -.54 (-1.25) 0.64 (1.75) 

Birth of a Child/Member Move in _1 Year Lead  3.27 (3.73) 3.27 (3.73) 

Birth of a Child_2 Year Lead  3.18 (2.08) -15.17 (-0.10) 

Death/Move out of a Member _Same Year  -1.72 (-2.71) -1.66 (-4.28) 

Addition of a Job_3 Year Lead  -1.27 (-1.90) 2.18 (5.44) 

Residential Move_1 Year Lead  -3.41 (-2.26) 14.35 (0.10) 

Residential Move_1 Year Lag  -0.67 (-0.75) 1.09 (1.40) 

Dist to CBD -0.15 (-1.83) -0.0004 (-0.10) 

Dist to nearest School 0.14 (1.72) 0.02 (1.41) 

Dist to nearest Health Service -0.23 (-1.67) -0.02 (-1.61) 

Dist to nearest Park Area 0.30 (2.79) 0.001(0.10) 

Avg. Property Value -0.00003(-1.90) -0.00009(-3.73) 

Vehicle Acquisition 

Age -0.02 (-2.11) -0.02 (-2.11) 

Birth of a Child/Member Move in _Same Year  0.30 (0.60) 0.05 (0.30) 

Birth of a Child_2 Year Lead  2.66 (1.73) -1.87 (-0.71) 

Addition of a Job_1 Year Lead  1.76 (1.17) 1.42 (1.98) 

Residential Move_3 Year Lag  1.87 (1.98) -0.78 (-1.10) 

Dist to Work Location 0.003(0.77) 0.002(1.22) 

Dist to CBD 0.02 (0.435) 0.06 (1.67) 

Dist to nearest Health Service 0.10 (0.91) 0.003 (0.55) 

Dist to nearest Park Area 0.02 (0.20) -0.009 (-0.74) 

Dist to nearest Shopping Center -0.05 (-1.51) -0.05 (-1.51) 

% of Single-detached -0.005 (-2.32) -0.005 (-2.32) 

Vehicle Disposal 

Gender (Male)  -1.15 (-2.98) -1.15 (-2.98) 

Education Minimum Under Graduation  0.69 (0.78) -0.93 (-2.13) 

Death/Move out of a Member _Same Year  0.60 (1.37) 0.60 (1.37) 
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Table 5-3 Parameter Estimation Results of the LSL model for Vehicle 

Transaction (Continued) 

Variables 

LSL 

Segment 1 Segment 2 

co-efficient  

(t-stat) 

co-efficient  

(t-stat) 

Vehicle Disposal (Continued) 

Lost Job_1 Year Lead  0.81 (0.67) 0.84 (1.43) 

Residential Move_2 Year Lead  1.27 (2.71) 1.27 (2.71) 

Dist to Work Location 0.001 (0.70) 0.001 (0.70) 

Dist to nearest Shopping Center 0.06 (1.00) 0.008 (2.23) 

% of Single-detached -0.002 (-0.44) -0.002 (-0.44) 

Vehicle Trade 

Education Minimum Under Graduation  2.80 (2.47) 0.62 (2.04) 

Birth of a Child/Member Move in _2 Year Lead 0.94 (1.16) 0.94 (1.16) 

Birth of a Child_1 Year Lead  3.93 (2.54) 3.93 (2.54) 

Death/Move out of a Member _1 Year Lead  2.86 (1.96) -0.05 (-0.10) 

Residential Move_1 Year Lead  -3.20 (-1.32) 12.98 (0.10) 

Residential Move_2 Year Lag         2.34 (2.14) -11.56 (-0.10) 

Dist to CBD above 10km  -1.12 (-1.43) 1.55 (5.05) 

Dist to nearest Park Area below 1km  -0.77 (-0.65) 0.71 (1.99) 

Employment Rate 0.04 (2.18) -0.004 (-2.16) 

Constants (Reference = Vehicle Disposal) 

First Time Vehicle Purchase 5.97 (4.00) 2.47 (2.56) 

Vehicle Acquisition 3.10 (2.65) 2.17 (2.69) 

Vehicle Trade -2.43 (-1.00) -0.96 (-1.26) 

Goodness-of-fit Measures 

Log Likelihood (at convergence) -453.50 

Log Likelihood (at constant) -616.16 

Adjusted Pseudo R-squared 0.26 
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5.3.2.2 Vehicle Acquisition 

Birth of a child or member move in reveals a higher probability for vehicle 

acquisition. The same year effect of this variable indicates that an increase in 

household size triggers the requirement for immediate addition of a vehicle to 

the existing fleet. While birth of a child is tested separately in the model, the 

variable reveals a heterogeneous effect across the two segments. Addition of a 

job in the household reveals a higher probability for vehicle acquisition. This 

variable reveals a one-year lagged effect. The same variable shows a three-year 

lagged effect with heterogeneity across the two segments in the case of first 

time vehicle purchase. A change in residential location exhibits a 

heterogeneous effect in the two segments. For instance, smaller-sized urban 

dwellers with income above 100,000 belonging to segment one have a higher 

propensity for vehicle acquisition. On the other hand, larger-sized suburban 

dwellers with income below 100,000 belonging to segment two show a lower 

probability for adding a vehicle to the existing fleet of the household. The model 

confirms a three-year lead effect of this life-cycle event. The same variable 

reveals an opposite relationship across the two segments for a one-year lead 

and a one-year lagged effect in the case of first time vehicle purchase. 

Households residing farther away from work locations have a higher 

propensity for vehicle acquisition.  

5.3.2.3 Vehicle Disposal 

Life-cycle event represented by death or move out of a member shows a higher 

propensity for vehicle disposal. Death or move out of a member refers to a 

decrease in household size, which reflects reduced travel demand. Hence, 

households prefer reduction in the vehicle fleet by disposing vehicle. The model 

results suggest a same year effect of the occurrence of this life-cycle event and 

the disposal of vehicle. Loss of a job reveals a higher probability for vehicle 
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disposal. Loss of a job indicates reduction in the affordability of the household, 

which might trigger a disposal decision due to the budgetary constraints. The 

parameter estimates reveal a one-year lagged effect of this variable. 

Households prefer to dispose vehicle following a residential move with a two-

year lagged effect. Neighbourhood characteristics, represented by the 

percentage of single-detached dwellings, exhibit a negative relationship. This 

result reflects that households residing in neighbourhoods with a lower 

percentage of single-detached dwellings are more likely to dispose vehicles. 

Presumably, neighbourhoods with a lower percentage of single-detached 

dwellings represent urban areas, which might have a well-connected 

alternative mode of transportation (i.e. transit, active transportation) network. 

Hence, households residing in such neighbourhoods prefer to dispose vehicles.   

5.3.2.4 Vehicle Trade 

Vehicle trade refers to a disposal decision followed by a purchase decision, 

which indicates no change in the vehicle ownership level. Household size 

increase represented by birth of a child or member move in reveals a positive 

relationship, which suggests a higher probability for vehicle trading. The 

model confirms a two-year lagged effect of this life-cycle event. A similar 

positive relationship is found, when only birth of a child is tested in the model. 

Household size decrease represented by death or move out of a member shows 

a heterogeneous effect across the two segments. Households prefer to trade 

vehicle if they belong to segment one. In contrast, segment two shows a 

negative relationship. Residential relocation reveals heterogeneous 

relationship across the two segments for a one-year lagged and a two-year lead 

effect. Households in segment one have a lower probability of trading a vehicle 

after one year of residential move. On the other hand, households in segment 

two prefer to trade car after one year of residential move. An opposite 

relationship is found across the two segments when residential relocation 
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decision is examined for a two-year lead effect. Accessibility measures 

represented by distance to the CBD above 10km and distance to the nearest 

park area below 1km indicate heterogeneous relationships across the two 

segments.  

In addition to the above mentioned variables retained in the final model, this 

study tests a number of variables during the model estimation process. For 

instance, the study tests the effects of retirement, job move, distance from 

home to the nearest transit station, dwelling type, and percentage of different 

land uses in the neighbourhood, among others. Moreover, the study tests a 

number of variables to estimate the latent segment allocation model, such as 

presence of children, percentage of rented dwellings in the neighbourhood, and 

land-use mix index, among others. However, the above mentioned variables 

could not be included in the final model due to discrepancies in the hypotheses 

confirmation along with poor statistical significance. Additionally, the final 

model includes some variables below the level of 95% confidence interval as 

they offer important behavioural insights and have significant policy 

implications. These variables are retained with an assumption that they might 

show statistical significance if a larger dataset were available. 

5.4 Conclusions and Summary of Contributions 

This research presents the findings of a dynamic household-level vehicle 

transaction model. A latent segmentation-based logit (LSL) model is developed 

to investigate four types of transaction decisions, including first time vehicle 

purchase, vehicle acquisition, vehicle disposal, and vehicle trade. One of the 

unique features of this study is to identify the transaction decision of the first 

time vehicle purchase. The LSL model captures repeated transactions of the 

same households during their life-course. A segment allocation model is 

formulated within the LSL framework to address latent heterogeneity. The 
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allocation of households into different latent segments is estimated on the 

basis of household income, household size, dwelling density of the 

neighbourhood, and percentage of owned dwelling in the neighbourhood. This 

study tests the lead and lagged effects of life-cycle events. The model results 

suggest that considerable heterogeneity exists, as evident in the parametric 

values of two latent segments. For instance, addition of a job could trigger first 

time vehicle purchase in one segment and deter in another segment. Similar 

heterogeneous effect is found for the variable representing birth of a child for 

vehicle acquisition. The effect of historical deposition is also confirmed on 

vehicle transaction decisions. For example, birth of a child confirms a two-year 

lagged effect on vehicle acquisition. Interestingly, the first time vehicle 

purchase behaviour is found to be considerably different than vehicle 

acquisition decisions (addition of a vehicle to the existing vehicle fleet). For 

instance, addition of a job reveals significant heterogeneity across the two 

segments in the case of first time vehicle purchase. The model confirms that 

households require three years of adjustment period after getting a job to 

purchase their first vehicle. The same variable exhibits a higher probability for 

vehicle acquisition in both segments, and confirms a smaller adjustment period 

of one year. Additionally, the model confirms a one-year lead and a one-year 

lagged effect of residential move for first time vehicle purchase decisions, 

which exhibit heterogeneity across the two segments. On the other hand, the 

same variable shows an opposite relationship across the two segments for 

vehicle acquisition decision with a three-year lead effect.  

One of the limitations of this study is that it could not consider the historical 

evolution of the transportation system. As a result, the effects of certain 

variables including transit availability, transit level of service (LOS), travel 

time, and travel cost, among others could not be addressed in the model. A 

travel demand forecasting model for Halifax is currently under development, 

which is expected to provide better information regarding travel time, transit 
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LOS, and other relevant information for further modelling. Another limitation 

is the use of a small sample size. Particularly, analyzing different domains of 

contrasts with respect to multiple choice dimensions and latent segmentation 

are challenging with a small sample size. If larger sample becomes available, 

one interesting future direction could be testing genearational effects and other 

influences of time-varying factors. One of the future directions in the domain 

of model development is to consider car availability constraints during choice 

set formulation for the transaction instances, which might improve the model 

estimation results. In addition, future studies should focus on developing a 

latent segmentation-based nested logit modelling framework to capture 

endogeneity within the decision process.  

In summary, this study contributes significantly towards the vehicle 

ownership literature by developing a life-oriented vehicle transaction model. 

The model disentangles a crucial behaviour regarding first time vehicle 

purchase decisions of the households. The study examines lead and lagged 

effects of life-cycle events. The historical deposition effects of the key life-events 

found in this study offer important behavioural insights in understanding 

vehicle transaction decisions. It will be interesting to microsimulate this 

dynamic vehicle transaction model within the iTLE framework. 
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Chapter 6 

6 Baseline Synthesis and 

Microsimulation of Life-stage 

Transitions 

6.1 Introduction 

This chapter presents the implementation of the baseline synthesis and life-

stage transition modules of the life-oriented integrated Transport Land Use 

and Energy (iTLE) model. Baseline synthesis involves the generation of 

relevant baseline information of the agents such as demographic and vehicle 

ownership information. Life-stage transition includes the simulation of the 

demographic career of the agents. The contributions of this research is three-

fold: 1) performing population synthesis at the micro-spatial resolution of 

parcel, 2) synthesizing vehicle ownership level, and 3) microsimulating the life-

stages of the agents. A full-scale validation of the baseline synthesis and life-

stage transition simulation results are also performed.  

This chapter is organized as follows: section 6.2 discusses the implementation 

of the iTLE model. Section 6.3 presents population synthesis process and 

results. Section 6.4 describes the vehicle ownership level synthesis. Section 6.5 

discusses the implementation of the life-stage transition module, including the 

microsimulation processes, validation, and simulation results. The chapter 

concludes with a summary of contributions in section 6.6.   

 
The following journal paper is an earlier version of this chapter:  

 Fatmi, M.R., and Habib, M.A. (2017). Baseline Synthesis and Microsimulation of Life-

stage Transitions within an Agent-based Integrated Urban Model. Procedia Computer 
Science, 109, 608-315. 
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6.2 Implementation of the iTLE Proto-type Model 

A proto-type version of the iTLE model is operationalized for Halifax, Canada. 

The proto-type version implements the following modules: baseline synthesis, 

life-stage transition, residential location transition, and vehicle ownership 

transition. The program code is written using C# dotNET programming 

language. The iTLE proto-type contains a total of approximately 1700 lines of 

code. The proto-type version generates baseline synthetic information for the 

year 2006, and runs simulation for a 15-year period from 2007 to 2021 at a 

yearly time-step. The run-time of the model for each simulation year is around 

23 hours on a computer with Core i7-4770 processor and 16 GB of RAM, 

running on a 64-bit Windows 7 operating system.  

The proto-type iTLE simulates agents’ decisions longitudinally at each 

simulation year. The simulation starts with a sample of baseline population, 

and the relationships among the agents in the population are maintained 

throughout the simulation period. An agent can enter the population through 

birth or in-migration and exit through death or out-migration. The system 

state of iTLE does not hold the equilibrium assumption, rather it is always in 

a dynamic dis-equilibrium state. iTLE is designed as a modular-based 

modelling system, which allows the application of each module and subsequent 

micro-models in isolation and offers the opportunity to improve any component 

without affecting the whole simulation framework. All urban form elements 

are considered as exogenous in the current version of iTLE software. Following 

the simulation at each time-step, the system output is stored at the individual 

agent- and object-level; which can be used to generate numerous statistics and 

maps at different aggregation levels. This chapter presents the results of 

population synthesis, vehicle ownership level synthesis, and life-stage 

transition components of the iTLE model. 
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6.3 Population Synthesis  

6.3.1 Synthesis Process 

The population for the base year is generated in the following two-stages: (1) 

generation of synthetic population at the zonal-level, and (2) allocation of the 

synthetic population at the micro-spatial unit of parcel. The first stage involves 

synthesizing the population at the zonal-level of dissemination area (DA). A 

100% synthetic population is generated following an Iterative Proportional 

Updating (IPU) technique (Ye et al., 2009) for the base year 2006. In the IPU 

technique, control for both household-level and individual-level characteristics 

is maintained by adjusting weights iteratively among the attribute types of the 

households until attribute types at the household- and individual-level are 

matched. The synthesis is performed using an open source population 

synthesizer, PopGen. For the synthesis, the household-level control variables 

include, household income, household size, tenure type, and dwelling type; and 

the individual-level control variables include, age, sex, marital status, and 

employment status.  A list of categories for the household-level and individual-

level control variables are presented in Table 6-1. 

The iTLE model is designed to operate at the finest disaggregate spatial unit 

of parcel. Hence, the second stage involves allocation of the households into the 

parcels using a logit link model. To control the allocation of the households into 

parcels of the DA it belongs (according to stage one), a constraint is introduced 

in the logit link model. This constraint generates household-specific choice set, 

which only includes the parcels of the specific DA that the household is 

allocated through synthesis. A multinomial logit model (MNL) is developed to 

generate the initial parcel-level residential locations (Table 6-2). The allocation 

of households into the parcels is determined based on parcel characteristics 

and its interaction with households’ socio-economic characteristics.  
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Table 6-1 List of Categories of the Household-level and Individual-level 

Control Variables for Population Synthesis 

Control Variables 

Household-level Individual-level 

Attributes Categories Attributes Categories 

Household Income 

X 1000 CAD 

(5 Categories) 

under 20, 20-49, 50-

79, 80-99, 100 and 

above 

Age (years) 

(13 Categories) 

under 9, 10-14, 15-

19, 20-24, 25-29, 30-

34, 35-39, 40-44, 45-

49, 50-54, 55-64, 65-

74, 75 and above 

Household Size 

(5 Categories) 

1 person, 2 person, 3 

person, 4-5 person, 

6 person and above 

Gender 

(2 Categories) 

female, male 

Tenure Type 

(2 Categories) 

own, rent Marital Status 

(5 Categories) 

single, married, 

separated, divorced, 

widowed 

Dwelling Type 

(8 Categories) 

single-detached, 

semi-detached, row, 

apt above 5 storeys, 

apt less than 5 

storeys, duplex, 

movable, others 

Employment Status 

(3 Categories) 

Employed, 

unemployed, not in 

the labour force 

 

Table 6-2 Parameter Estimation Results of the Base Year Logit-link Model 

for the Population Synthesis Procedure 

Explanatory 

Variables 

Variable Description Multinomial Logit Model 

co-efficient  t-stat 

Parcel Size Size of the property 

(acres) 

6.23440  8.16 

Parcel Size X Income 

below 50k 

Size of the property 

(acres) interacted with 

household income below 

$50,000 (CAD) 

-4.31527  -1.60 

Goodness-of-fit Measures 

Log-likelihood (at convergence) -827.880 

Log-likelihood (at constant) -881.890 

Adjusted Pseudo R-squared 0.061 
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6.3.2 Synthesis Results 

The results suggest that the population synthesis module generates a synthetic 

population of 155,140 households in comparison to the observed total 

households of 155,060 in 2006 for Halifax. This is a slight over-representation 

by only 0.05%. The number of synthetic individuals is 363,820, which is an 

under-representation of the observed number of individuals by 2.38%. The 

performance of the population synthesis is evaluated on the basis of the 

following two goodness-of-fit measures: (1) Standard Root Mean Square Error 

(SRMSE)10, and (2) Absolute Percent Error (APE)11. The SRMSE value for the 

overall synthetic population is 0.37. The APE measures evaluate the 

performance of the spatial distribution of the synthetic population in 

comparison to the observed population. The APE measures are determined at 

the DA-level, which is shown in Figure 6-1. The analysis results suggest that 

around 89% of the DAs show an APE value of less than 5%. Only around 2.5% 

of the DAs show an APE value of greater than 10%. 
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Figure 6-1 APE measures of the Synthetic Population for the Base Year 2006 

Furthermore, a comparison between the characteristics of the synthetic and 

observed population is presented in Table 6-3. The results reveal that majority 

of the characteristics of the synthetic population represent a slight difference 

from the observed population, which is less than 1%. For example, in the case 

of gender, the synthetic female population share slightly over-represents 

observed female share by 0.53% only. In the case of tenure type, the synthetic 

owned households over-represent observed owned households by 0.06%, only. 

Similar results are found for most of the categories of the individual- and 

household-level attributes. Only “single persons” category  of marital status 

and “not in the labour force” category of employment status show a difference 

of greater than 1%, to be specific 1.02% and 1.08% respectively. Hence, it can 

be concluded that the synthetic population module generates satisfactory 

estimates of population. 
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Table 6-3 Comparison of the Synthetic and Observed Population 

Characteristics for the Base Year 2006 

Variables Synthetic Population 

(%) 

Observed Population 

(%) 

Difference 

(%) 

Gender 

Female 52.55 52.02 0.53 

Male 47.45 47.98 -0.53 

Age (years) 

0 to 9 10.39 10.16 0.23 

10 to 14 6.14 5.99 0.15 

15 to 19 6.06 6.53 -0.47 

20 to 24 7.49 7.55 -0.06 

25 to 29 6.94 6.98 -0.04 

30 to 34 7.02 6.93 0.09 

35 to 39 7.58 7.35 0.22 

40 to 44 8.93 8.79 0.14 

45 to 49 8.50 8.47 0.03 

50 to 54 7.66 7.57 0.09 

55 to 64 11.65 11.62 0.03 

65 to 74 6.36 6.50 -0.14 

75 and Above 5.29 5.56 -0.26 

Marital Status 

Single 37.04 36.01 1.02 

Married 47.06 47.27 -0.21 

Separated 3.26 3.44 -0.18 

Divorced 7.54 7.73 -0.19 

Widowed 5.10 5.55 -0.45 

Employment Status 

Employed 63.58 64.55 -0.97 

Unemployed 4.21 4.32 -0.11 

Not in Labour Force 32.21 31.13 1.08 
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Table 6-3 Comparison of the Synthetic and Observed Population 

Characteristics for the Base Year 2006 (Continued) 

Variables Synthetic 

Population (%) 

Observed 

Population (%) 

Difference 

(%) 

Household Size 

1 person 27.76 27.74 0.03 

2 person 35.57 35.56 0.00 

3 person 16.67 16.65 0.02 

4-5 person 18.54 18.51 0.03 

6 person and Above 1.46 1.54 -0.07 

Household Income (1000 $CAD) 

Under 20 15.31 15.36 -0.04 

20 to 49 30.90 30.96 -0.06 

50 to 79 24.11 24.06 0.05 

80 to 99 10.89 10.97 -0.08 

100 and Above 18.79 18.65 0.14 

Tenure Type 

Own 64.07 64.01 0.06 

Rent 35.93 35.99 -0.06 

Dwelling Type 

Single-detached 51.52 51.57 -0.05 

Semi-detached 6.74 6.81 -0.07 

Row House 3.51 3.51 0.00 

Apartment with 5 and Above 

Storey 9.59 9.53 0.06 

Apartment with Less than 5 

Storey 22.15 22.09 0.06 

Duplex Apartment 4.04 4.04 0.01 

Movable 2.26 2.28 -0.02 

Other 0.19 0.19 0.01 
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6.4 Vehicle Ownership Level Synthesis 

Vehicle ownership level synthesis component generates the vehicle ownership 

level for the baseline population in the following four classes: zero vehicle, one 

vehicle, two vehicle, and three or more vehicle. Since, vehicle ownership 

information is not available in the census and Public Use Microdata File 

(PUMF), the population synthesis procedure does not include vehicle 

ownership as a control variable. A multinomial logit (MNL) model is developed 

to generate the baseline vehicle ownership level utilizing the HMTS data.  

6.4.1 Model Estimation  

The parameter estimation results of the vehicle ownership synthesis model is 

presented in Table 6-4. The model results suggest that socio-demographic 

characteristics significantly influence vehicle ownership level. For example, in 

the case of zero vehicle ownership, the model confirms the effects of age, 

income, and household size. Younger head households represented by age 

below 30 years show a higher likelihood to have zero vehicle ownership, which 

is aligned with the past literature. For instance, Kuhnimhof et al. (2012) found 

a reduction in vehicle ownership, and Schoettle and Sivak (2014) revealed a 

higher use of sustainable modes among the younger population. Such lower 

vehicle ownership might be triggered by the change in transportation and 

communication technologies, and growing environmental concern among the 

younger adults. Low income population represented by household income 

below $50,000 reveals a higher probability to have zero vehicle. Constrained 

affordability of the low income households might limit their vehicle ownership 

level. Single person households are more likely to have zero vehicle, which is 

intuitive for smaller sized households and aligned with the findings of 

Anastasopoulos et al. (2012).  
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Table 6-4 Parameter Estimation Results of the Vehicle Ownership Level 

Synthesis Model 

Explanatory Variables Variable Description Multinomial Logit 

Model 

co-efficient (t-stat) 

Zero Vehicle Ownership 

Constant  0.08135 (0.32) 

Age below 30 Years

  

Age of the head of the household below 

30 years 

0.69595 (3.43) 

Income below 50k Household income below $50,000(CAD) 1.89429 (7.66) 

Household Size 1 Single person household 1.07394 (4.53) 

One Vehicle Ownership 

Constant  1.75972 (8.34) 

Income below 50k Household income below $50,000(CAD) 0.60362 (2.98) 

Presence of Children  Households with children 1.10638 (4.56) 

Rented Dwelling Household residing in rented dwelling 0.26514 (1.63) 

Two Vehicle Ownership 

Constant  1.14346 (5.47) 

Age above 50 Years

  

Age of the head of the household above 

50 years 

0.39609 (2.34) 

Income above 100k Household income above $100,000(CAD) 0.56649 (3.19) 

Presence of Children  Households with children 1.53327 (6.20) 

Three or More Vehicle Ownership (Constant = Reference) 

Income above 100k Household income above $100,000(CAD) 1.60610 (5.11) 

Household Size > 3 Number of persons in the household 

more than 3 

0.88812 (3.03) 

Goodness-of-fit Measures 

Log-likelihood (at convergence) -987.439 

Log-likelihood (at constant) -1142.241 

Adjusted Pseudo R-squared 0.131 

The model results reveal that the vehicle ownership level increases as 

household income, age, and household size increases, which is expected. For 

instance, households with income above $100,000 show a higher likelihood for 
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two vehicle ownership. In the case of three or more vehicles, the effect of the 

same variable representing income above $100,000 increases by 3 times. Older 

head households with age above 50 years show a positive association with two 

vehicle ownership; since, older population of this generation are more 

dependent on cars and prefer higher vehicle ownership (Hjorthol et al., 2010). 

Interestingly, presence of children in the household show a positive 

relationship for one vehicle ownership and two vehicle ownership. Arguably, 

individuals with children might require to trip chain to day care 

centers/schools on their way to work, and require car for convenience. This 

variable shows a 1.5 times stronger relationship for two vehicle ownership than 

one, which is expected as multiple vehicles might offer added flexibility to both 

the parents or other members of the household to travel with children. All the 

variables retained in the final model exhibit statistical significance at the level 

of 95% confidence interval. 

6.4.2 Vehicle Ownership Level Synthesis Results 

The MNL model described above is utilized to determine the probability of a 

household to own zero, one, two, and three or more vehicles. Households are 

assigned to a vehicle ownership level following the order of probability 

estimation. The distribution of the generated baseline vehicle ownership level 

for 2006 is illustrated in Figure 6-2. The results suggest that 22.55% of the 

households do not own a vehicle, 37.40% own one vehicle, 32.16% own two 

vehicles, and 7.89% own three or more vehicles. Due to the unavailability of 

the actual vehicle ownership information in 2006 for Halifax, the results could 

not be validated.  
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Figure 6-2 Vehicle Ownership Level Synthesis Results for the Year 2006  

6.5 Population Life-stage Transition Module  

6.5.1 Microsimulation Process 

The current version of iTLE simulates the following six life-stage transitions: 

ageing, death, birth, out-migration, in-migration, and household formation. 

The proto-type implements this module at a yearly time-step for the simulation 

years 2007 to 2021. A 10% sample of the synthesized Halifax population is used 

for the simulation.  

The life-stage transitions are simulated as binary probabilities of a transition 

to occur or not. This module follows a heuristic modelling approaches, where 

average of the historical rates (Appendix A) are used to determine the rate of 
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an event and consequently develop the rules. For example, the microsimulation 

process of the birth component is presented in Figure 6-3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3 Process Diagram for the Birth Component of the Life-stage 

Transition Module 

Figure 6-3 depicts that the birth component heuristically evaluates the 

candidacy of a household based on the presence of female in the household, 

their age, and marital status. Then, a child birth is assigned to a household 

controlling for the historical birth rate from Statistics Canada. The simulation 

of rest of the life-stage elements follows a similar technique. For the death 

component, individuals above a lower limit cut-off point of age are only 

Select Individual 

Female, Age<45, 

Married 

 

Number of Birth 

 

Birth Occurs 

Exit 

Check Rule 

Check Rate 

No 

Yes 

Yes 

No 



 

  139 
 

considered. The number of individuals to experience the death event in a year 

is determined by using the historical death rate information. 

The out-migration and in-migration simulate the migration of the entire 

household in the study area and update of the lists, including individual, 

household, and location lists, subsequently. The household formation 

component determines the occurrence of marriage between two adult 

candidates of opposite sex. The candidacy of a male and a female for a marriage 

is evaluated on the basis of their age, age difference, and marital status. 

Finally, marriage is assigned to occur between two potential individual 

candidates using historical marriage rate. Following the formation of a new 

household, both individuals are assumed to leave their former household and 

move to a new location, which is determined during the residential location 

transition module. Subsequently, individual and household lists are updated. 

Moreover, individuals’ age is updated by following a deterministic process. In 

this technique, the age of all individuals in the system is increased by one in 

each simulation year.  

6.5.2 Validation Results 

The simulation results of the life-stage transition module is validated at the 

2011 time point using the census information. The results suggest that the 

iTLE under-represents the total number of population by 3.86%. Since the 

synthetic population under-represented the observed population in 2006 and 

the simulation for each year is processed using information from the previous 

simulation year, the error propagation causes a systematic under-estimation 

of population over time. A comparison between the characteristics of the 

simulated and observed population is presented in Table 6-5. The comparative 

results suggest that the iTLE performs reasonably well, as majority of the 

categories of the population attributes show a difference of less than 1%. For 
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example, in the case of marital status, the simulated single population share 

slightly under-represents observed single population by 0.40% only. 

Table 6-5 Comparison of Simulated and Observed Population Characteristics 

for the Year 2011 

Variables Simulated Population (%) Observed Population (%) Difference (%) 

Gender 

Female 52.77 51.65 1.12 

Male 47.23 48.35 -1.12 

Age (years) 

0 to 9 5.51 10.03 -4.52 

10 to 14 10.24 5.25 4.99 

15 to 19 5.90 6.11 -0.21 

20 to 24 5.63 8.01 -2.38 

25 to 29 7.50 7.29 0.21 

30 to 34 7.37 6.68 0.69 

35 to 39 7.10 6.79 0.31 

40 to 44 7.18 7.14 0.04 

45 to 49 8.68 8.49 0.19 

50 to 54 7.87 8.11 -0.24 

55 to 64 6.68 13.14 -6.46 

65 to 74 10.27 7.30 2.97 

75 and Above 10.06 5.64 4.42 

Marital Status 

Single 39.92 40.32 -0.40 

Married 45.77 45.95 -0.18 

Separated 2.98 2.83 0.15 

Divorced 6.95 5.91 1.04 

Widowed 4.39 5.00 -0.61 

Household Size 

1 person 29.19 28.56 0.63 

2 person 34.26 36.50 -2.24 

3 person 15.61 16.35 -0.74 

4-5 person 18.25 17.06 1.19 

6 person and Above 2.70 1.54 1.16 
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Table 6-5 Comparison of Simulated and Observed Population Characteristics 

for the Year 2011 (Continued) 

Variables Simulated Population 

(%) 

Observed Population 

(%) 

Difference 

(%) 

Household Income (1000 $CAD) 

Under 20 14.53 7.60 6.93 

20 to 49 33.15 26.98 6.17 

50 to 79 23.49 25.07 -1.58 

80 to 99 10.57 13.42 -2.85 

100 and Above 18.27 26.93 -8.66 

Tenure Type 

Own 58.31 63.42 -5.11 

Rent 41.69 36.58 5.11 

Dwelling Type 

Single-detached 50.87 51.00 -0.13 

Semi-detached 6.27 6.84 -0.57 

Row House 3.19 3.73 -0.54 

Apartment with 5 and Above 

Storey 12.73 10.67 2.06 

Apartment with Less than 5 

Storey 20.48 21.46 -0.98 

Duplex Apartment 4.09 3.80 0.29 

Movable 2.18 2.39 -0.21 

Other 0.18 0.14 0.04 

 

The iTLE model is also validated by performing a cross comparative analysis 

of the simulated and observed population attributes, as shown in Figure 6-4 to 

6-7. The age distribution of the predicted female and male is compared with 

the Census (Figure 6-4). The iTLE generates reasonably accurate distribution 

of the age cohorts for both female and male population, with a difference of less 

than 1% in majority of the cases. For example, the simulation performs 

reasonably well for males and females in different age cohorts between 15 to 

54 years. However, males and females below 10 years of age, and above 64 
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years show a difference of more than 1%. Figure 6-5 and 6-6 demonstrate the 

distribution of marital status by age for female and male, respectively. 

Majority of the attributes show a difference of less than 1%. However, the 

results show a slightly higher under-representation of single population under 

10 years of age, and over-representation of married and divorced population 

over 64 years, which correspond to the under- and over-representation of male 

and female of the same age cohorts in Figure 6-4. Similarly, the iTLE produces 

reasonably representative distribution of household income by dwelling type, 

as shown in Figure 6-7.  

 

 

Figure 6-4 Age Distribution of Female and Male of Simulated and Observed 

Population for the Year 2011                            
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Figure 6-5 Age and Marital Status Distribution of Female of Simulated and 

Observed Population for the Year 2011                      

 

Figure 6-6 Age and Marital Status Distribution of Male of Simulated and 

Observed Population for the Year  
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Figure 6-7 Household Income and Dwelling Type Distribution of Simulated 

and Observed Population for the Year 2011                      

6.5.3 Microsimulation Results 

The predicted life-stage transition rates from 2007 to 2021 are presented in 

Figure 6-8. Note the two Y-axis and the scale difference. The black lines in the 

graph represent rates for different demographic events per 1000 population 

and correspond to the Y-axis on the left side. The red lines represent rates per 

1000 households and correspond to the Y-axis on the right side. The iTLE 

predicts an increase of population in each simulation years. A total of 14.08% 

population is predicted to increase in 2021 compared to 2006. This net increase 

is attributed by a consistent higher rate of birth and in-migration compared to 

death and out-migration over the years, as illustrated in Figure 6-8. In 2021, 

the iTLE predicts the rates for birth, death, and marriage to be 11.73, 6.72, 

and 5.97 per 1000 individual, respectively. The predicted rates for in-



 

  145 
 

migration, out-migration, and movers are 40.71, 24.33, and 152.04 per 1000 

households respectively in 2021.  

 

Figure 6-8 Predicted Life-stage Transition Rates for the Years 2007-2021 

6.6 Conclusions and Summary of Contributions 

This study contributes to the integrated urban modelling literature by 

developing micro-level population synthesis, vehicle synthesis, and 

microsimulation of life-stage transitions within a life-oriented agent-based 

iTLE model. A proto-type version of the iTLE is implemented for Halifax, 

Canada. Baseline information is generated for 2006, and simulation is run for 

a 15-year period from 2007 to 2021. The baseline synthesis includes, population 

synthesis at the parcel-level and vehicle ownership level synthesis. Population 

synthesis for the iTLE is a two-stage process: 1) population synthesis at the 

DA-level following an Iterative Proportional Updating (IPU) technique, and 2) 

allocation of the synthetic population to the parcels utilizing a logit link model. 

The iTLE generates a 100% synthetic population. The goodness-of-fit measures 

of the population synthesis results suggest a SRMSE value of 0.37. In addition, 
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around 89% of the DAs are found to show an APE measure of less than 5%. In 

the case of vehicle ownership level synthesis, a MNL model is developed to 

generate vehicle ownership in the following four levels: zero, one, two, and 

three or more vehicle. The synthesis results suggest that 22.55%, 37.40%, 

32.16%, and 7.859% of the households own zero, one, two, and three or more 

vehicles, respectively.  

The population life-stage transition module simulates a number of life-stages, 

such as ageing, birth, death, in-migration, out-migration, and household 

formation. Population life-stages are simulated following a heuristic modelling 

approaches. In this process, historical rates and rules are developed to 

determine the occurrence of an event for an individual/household in a 

particular simulation year. The life-stage transition module is validated with 

the Census 2011 information. A cross comparative analysis of the simulated 

and observed population attributes is performed. The cross comparative 

validation results suggest that majority of the categories of the population 

socio-demographic attributes show a difference of less than 1%. In the case of 

forecasting, the iTLE predicts an increase of 14.08% population in 2021 

compared to 2006. The results suggest that the iTLE generates reasonably 

satisfactory population estimates for further model development and 

implementation.  

In summary, the baseline synthesis and life-stage transition module developed 

in this study resolve some key issues in integrated urban modelling, which will 

assist in implementing state-of-the-art residential location and vehicle 

transaction decision components within the iTLE framework. For example, the 

life-stage transition component will assist in maintaining the multi-domain 

decision interactions along the life-course of the agents. In addition, population 

synthesis at the micro-spatial level enables iTLE to simulate agents decisions 

and changes at the disaggregate spatial-level. Finally, the vehicle ownership 
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synthesis adds the capacity to the iTLE to perform vehicle ownership 

simulation.  
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Chapter 7 

7 Microsimulation of Residential 

Location Processes 

7.1 Introduction 

This chapter presents the microsimulation of residential location transition 

module of the iTLE model. The residential location module is implemented by 

utilizing the micro-behavioural models developed in Chapter 4. This research 

contributes to the mircosimulation paradigm of residential location in the 

following three dimensions: 1) addressing the multi-domain interactions and 

life-course dynamics during the simulation procedure, 2) accommodating the 

process orientation of the phenomenon by implementing location decision as a 

two-stage process of mobility and location choice, and 3) predicting the spatio-

temporal evolution of the population and demographic configuration of the 

neighbourhoods. This study also offers a validation of the residential location 

simulation results.   

The organization of this chapter is as follows: section 7.2 discusses the 

microsimulation processes of the mobility and location choice components of 

the location transition module. Section 7.3 provides the validation results of 

the module.  Section 7.4 presents the microsimulation results, particularly, 

prediction of the evolution of urban population. Finally, section 7.5 concludes 

with a summary and potential use of the model.   

 
The following paper is an earlier version of this chapter:   

 Fatmi, M.R., and Habib, M.A. (2017). Development of a Proto-type Integrated Urban 

Model: Microsimulation of Life-stage Transitions and Residential Location 

Transitions. Published in the peer-reviewed proceedings of the 96th Annual Meeting of 

Transportation Research Board, Washington DC, USA, January 8-12. 
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7.2 Microsimulation Processes 

The residential location transition module determines the choice of location as 

a process of mobility and location choice. To reduce the computational 

complexity, more compatible and simplified versions of the micro-behavioural 

models developed in Chapter 4 are considered for the implementation within 

the iTLE proto-type model system (Appendix B).  The models maintain the 

basic principle of the life-course perspective through accommodating the 

effects of life-cycle events as lead and lag events. A description of the 

microsimulation processes is provided below. 

7.2.1 Residential Mobility   

The household-level residential mobility decision is simulated in each year by 

implementing a discrete time binomial logit model (Appendix B). The purpose 

for developing this discrete time binomial logit model is that it is more 

compatible for implementing within the discrete time simulation framework of 

the iTLE than the continuous time duration model developed in Chapter 4. The 

mobility model determines the probability of move of a household at a 

particular simulation year. The predictors’ equation for the mobility model is 

written below:   

𝑌𝑖 =  𝑐 + 𝛼𝑋𝑖 + 𝜀                    (1) 
 

Here, 𝑖 is household, 𝑋 is the predictor, 𝑐 is the constant term, 𝜀 is the random 

error term, and 𝛼 is the coefficient of the parameter to be estimated. Now the 

probability equation can be written as: 

𝑃(𝑌𝑖) =
𝑒𝑐+𝛼𝑋𝑖 

1+𝑒𝑐+𝛼𝑋𝑖
                      (2) 

Households are assigned to move or stay list by comparing the estimated 

probability of the move against a randomly generated probability using Monte 
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Carlo Simulation technique. If the estimated probability is higher than the 

random probability, then households are assigned to move list and enter the 

location choice process. In contrary, households are assigned to stay list and 

exit the location transition module.   

7.2.2 Residential Location Choice   

The location choice of the households is simulated by using a multinomial logit 

(MNL) model (Appendix B), which is a simplified version of the model 

developed in Chapter 4. The spatial unit of simulation is at the parcel-level. 

The utility function for the location choice model can be written as: 

𝑉𝑖𝑗 = 𝛼𝑗𝑋𝑗 + 𝛼𝑗𝑖𝑋𝑗𝑋𝑖 + 𝜀                         (3) 

Here, 𝑖 is household, 𝑗 is parcel, 𝑋 is the predictor, 𝜖 is the random error term, 

and 𝛼 is the coefficient of the parameter to be estimated. The term 𝑋𝑗𝑋𝑖 

represents interaction variables. The probability function can be written in the 

following logit form: 

𝑃𝑖𝑗 =  
𝛼𝑗𝑋𝑗+𝛼𝑗𝑖𝑋𝑗𝑋𝑖

∑ 𝛼𝑗𝑋𝑗+𝛼𝑗𝑖𝑋𝑗𝑋𝑖𝑗
               (4) 

This location choice model determines the probability of choosing a location 

from a pool of randomly generated alternative locations. Based on the 

probability estimation, households are either assigned to move to the new 

location or stay at their current location. The allocation of a parcel to a 

household is sequential and follows the order of probability estimation. If a 

parcel is allocated to a household, it is made unavailable for other households. 

Based on the choice of new location, household, individual, and parcel lists are 

updated accordingly. The current version of the model only estimates location 

choice of the home owners’. Renters’ location are simulated using a simplified 

heuristic process. 
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7.3 Validation Results 

The performance evaluation of the location transition module is shown in 

Figure 7-1 and 7-2. Figure 7-1 shows the APE measures at the DA-level. The 

results suggest that around 21% of the DAs show an APE value of less than 

10%. Moreover, around 31% of the DAs show an APE measures of 10%-30%.    

 

Figure 7-1 APE measures of the Simulated Households for the Year 2011 

Figure 7-2 illustrates the difference in the number of households in each DA 

between the simulated and observed population. The graph shows the 

percentage of DAs falling under different categories of difference bands. The 

model predicts that around 37% of the DAs represent the observed population 

within the difference range of ±50 number of households. Only 8% of the DAs 

show a difference of greater than ±300. In summary, it can be concluded that 

the iTLE performs reasonably well in predicting the residential location of the 

population.   
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Figure 7-2 Difference between the Simulated and Observed Number of 

Households in the DAs for the Year 2011 

7.4 Predicted Evolution of the Halifax Population 

Behaviour 

This section presents the predicted temporal and spatial evolution of the 

mobility, housing pattern, and neighbourhood compositions for Halifax.  

7.4.1 Predicted Evolution of Duration of Stay 

To evaluate the demographic distribution of the predicted residential movers 

over the simulation years, a non-parametric density function for the duration 

of stay is utilized. Particularly, a kernel density estimation technique is 

adopted with the assumption of Gaussian kernel function for optimal 

bandwidth selection (Silverman 1986). Figure 7-3 to 7-6 present the kernel 
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density plots of the predicted duration of stay for different age groups. Here, 

age represents the age of the head of the household. The results suggest that 

the density is skewed to the left for households with younger head. The density 

is skewed to the right and is more variable as age increases. This implies that 

younger head households are predicted to be more frequent movers than their 

older counterpart. The mean of the duration for population with age <40, 40-

54, 55-64, and 65 and above are predicted to be 3.53, 6.05, 6.60, and 7.24 years 

respectively.  

  

Figure 7-3 Predicted Duration of Stay of Population Aged < 40 Years for the 

Years 2007-2021 
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Figure 7-4 Predicted Duration of Stay of Population Aged 40-54 Years for the 

Years 2007-2021 

 

Figure 7-5 Predicted Duration of Stay of Population Aged 55-64 Years for the 

Years 2007-2021 
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Figure 7-6 Predicted Duration of Stay of Population Aged > 64 Years for the 

Years 2007-2021 

To evaluate the predicted spatial evolution of duration of stay by 

demographics, duration plot by location distance from CBD and age is 

demonstrated in Figure 7-7. Location distance from CBD refers to the distance 

of home parcel to the CBD, and age refers to the age of the head of the 

household. Duration is predicted to increase as age and location distance from 

CBD increases. This implies that younger head households residing closer to 

the CBD are predicted to be more frequent movers than older head households 

residing farther away from the CBD. As illustrated, duration is predicted to be 

substantially high to the right of 45 years and above 10 km from the CBD, 

revealing middle aged to older population residing in the suburban and rural 

neighbourhoods are predicted to be less frequent movers. Similarly, the plot of 

duration by location distance from CBD and household income in Figure 7-8 

suggests that duration increases with household income and distance from 

CBD. This implies that low income households residing closer to the CBD are 

more frequent movers than their high income suburban and rural counterpart.   
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Figure 7-7 Predicted Duration of Stay of Population by Age and Location of 

the Residence for the Years 2007-2021                          

 

Figure 7-8 Predicted Duration of Stay of Population by Household Income and 

Location of Residence for the Years 2007-2021 
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7.4.2 Predicted Evolution of the Spatial Distribution of the 

Halifax Population 

Figure 7-9 illustrates population density change at the DA-level from 2006 to 

2021. A higher increase in density is predicted in the high density urban core 

(i.e. Halifax and Dartmouth urban core) and close by suburban areas (i.e. 

Clayton Park, Bedford, and Sackville). Interestingly, a higher density increase 

is predicted in the North End neighbourhoods of the Halifax Peninsula, which 

is documented by Roth, (2013) as neighbourhoods experiencing gentrification.  

 

Figure 7-9 Predicted Household Density Change from 2006 to 2021 

The spatial distribution of the Halifax population in 2021 is presented in 

Figure 7-10. The plot depicts the density of the households based on the 

location (parcel) distance from the CBD. A higher proportion of the households 
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is predicted in the locations within 25km from the CBD. Similar findings can 

be observed for the years 2007-2020, as reported in Appendix C. In the context 

of Halifax, these are the high density urban core and nearby suburban 

neighbourhoods, which corresponds to the high density areas in Figure 7-9. 

The proportion of the population residing in these high density neighbourhoods 

has increased over the 15 year periods. For example, 68% of the total 

households were predicted in these high density areas in 2007, which increased 

to 71% in 2021. The predicted evolution of the demographic composition of the 

high density neighbourhoods is discussed in the next section. 

 

Figure 7-10 Predicted Spatial Distribution of the Halifax Population for the 

Year 2021 
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7.4.3 Predicted Demographic Composition of the High Density 

Neighbourhoods in Halifax 

The predicted average density of the high density12 neighbourhoods over the 

simulation years is presented in Figure 7-11. The plot shows the yearly average 

of the household density in each DA that falls under the high density category. 

As illustrated, average household density is predicted to increase in the high 

density DAs; to be specific, an average increase by around 632 household/sqkm 

in 2021 compared to 2007.  

 

Figure 7-11 Predicted Yearly Avg. Household Density of the High Density 

DAs in Halifax for the Years 2007-2021 

The distribution of the predicted average household income and average age 

in the high density DAs from 2007-2021 is shown in Figure 7-12 to 7-15. The 

                                            
12 High density neighbourhoods refer to the DAs with greater than 600 households per square 

km. 
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high density DAs are classified into low income13 and high income14 DAs. 

Figure 7-12 and 7-13 illustrate the yearly distribution of the average household 

income by DA in low income and high income high density DAs respectively. 

The average household income in low income DAs is predicted to increase over 

the years. The mean value of average income increased from around $40,000 

in 2007 to $50,000 in 2021. The average household income in the high income 

DAs is predicted to be stable over the years. The mean value is around $70,000.  

   

Figure 7-12 Predicted Yearly Avg. HH Income in Low Income High Density 

DAs in Halifax for the Years 2007-2021    

                                            
13 Low income high density DAs refer to the high density DAs with average household income 

less than $50,000  
14 High income high density DAs refer to the high density DAs with average household income 

greater than $50,000 
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Figure 7-13 Predicted Yearly Avg. HH Income in High Income High Density 

DAs in Halifax for the Years 2007-2021 

Figure 7-14 and 7-15 portray the yearly distribution of the average age by DA 

in low income and high income high density DAs respectively. Note that age 

refers to the age of the head of the household. Average age of the head of the 

household is predicted to increase in both the low and high income DAs. In the 

case of the low income DAs, the mean value of average age increased from 

around 50 years in 2007 to 58 years in 2021. For high income DAs, the mean 

value increased from around 52 years in 2007 to 61 years in 2021.          
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Figure 7-14 Predicted Yearly Avg. Age of HH Head in Low Income High 

Density DAs in Halifax for the Years 2007-2021    

 

Figure 7-15 Predicted Yearly Avg. Age of HH Head in High Income High 

Density DAs in Halifax for the Years 2007-2021 
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The configuration of the high density neighbourhoods in terms of its 

population’s demographics and household composition in 2021 is illustrated in 

Figure 7-16 to 7-20. Kernel density is plotted against the home location (parcel) 

distance from CBD for population with different household composition. In 

each figure from 7-16 to 7-20, three kernel density are estimated for low 

income15, medium income16, and high income17 households. The kernel density 

estimation assumes a Gaussian kernel function for optimal bandwidth 

selection. Fig 7-16 depicts that the density is skewed towards the left of 5km 

for single person households. Interestingly, the density is predicted to be more 

variable and skewed towards the right of 5km as household composition 

changes through life-events (i.e. marriage, having children), as shown in Fig 7-

17 to 7-20. For example, a secondary peak in the density is predicted for couple 

without children for locations within 10-15km. Locations within 10-15km from 

the CBD in Halifax refer to suburban neighbourhoods. This implies that as 

household composition changes through marriage and birth of a child, 

households’ density is skewed towards the suburban neighbourhoods. In the 

case of variation by household income, the density of high income households 

is skewed to the left of 5km and within 10-15km. For low and medium income 

households, density is skewed to the left of 10km. Interestingly, for couple with 

more than two children, the variation by income is predicted to be relatively 

small. Similar observations can be made for other simulation years as well. 

 

                                            
15 Low income refers to household income less than $50,000 
16 Medium income refers to household income between $50,000 and $100,000 
17 High income refers to household income above $100,000  
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Figure 7-16 Predicted Distribution of Single Person HH in the High Density 

Neighbourhoods of Halifax for the Year 2021 

 

Figure 7-17 Predicted Distribution of Couple without Child HH in the High 

Density Neighbourhoods of Halifax for the Year 2021 
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Figure 7-18 Predicted Distribution of Couple with One Child HH in the High 

Density Neighbourhoods of Halifax for the Year 2021 

  

Figure 7-19 Predicted Distribution of Couple with Two Child HH in the High 

Density Neighbourhoods of Halifax for the Year 2021 
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Figure 7-20 Predicted Distribution of Couple with more than Two Child HH 

in the High Density Neighbourhoods of Halifax for the Year 2021 

7.5 Conclusions and Summary of Contributions 

This research presents the microsimulation of residential location transition 

processes within a proto-type version of the iTLE model. A life history-oriented 

perspective is adopted to address the interactions and feedbacks among the 

multi-domain decisions and transitions during the simulation of residential 

locations. Residential location is simulated as a two-stage process of mobility 

and location choice. The mobility and location choice models are implemented 

from 2007-2021 for Halifax, Canada. This research presents microsimulation 

results regarding residential mobility, micro-level spatial distribution of the 

population, and demographic compositions of the neighbourhoods. A validation 

of the simulation results of location transition module is performed. The spatial 

analysis results suggest that around 21% of the DAs show an APE value of less 

than 10%. Around 37% of the DAs represent the observed population within 
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the difference range ±50 number of households. Hence, the simulation results 

are considered as satisfactory.  

Further microsimulation results provide interesting insights towards the 

micro-level spatio-temporal evolution of population mobility, housing pattern, 

and household compositions of the neighbourhoods. The mobility results 

suggest that younger head households are more frequent movers than their 

older counterpart. The mean duration of stay of the population with age <40, 

40-54, 55-64, and 65 and above are predicted to be 3.53, 6.05, 6.60, and 7.24 

years, respectively. Particularly, younger head households residing closer to 

the CBD are predicted to be more frequent movers than older head households 

residing farther away from the CBD. The spatial distribution suggests that a 

higher density of the households is consistently predicted in the locations 

within 25km from the CBD over the simulation years of 2007-2021. The 

proportion of total households is predicted to increase from 68% in 2007 to 71% 

in 2021 in these high density neighbourhoods. In terms of the DA-level 

demographics and household compositional configuration of the high density 

neighbourhoods, higher density of single person households are predicted in 

the urban core. As household composition changes through marriage and 

having child, the density is predicted to be more variable and skewed towards 

the suburban neighbourhoods.  

The capacity of iTLE to generate micro-level spatial distribution of the 

population will be useful for testing alternative land use and transport policies. 

It will also feed important information to develop state-of-the-art activity-

based travel models. For instance, the micro-level prediction of the spatio-

temporal evolution of population demographics will be useful for destination 

choice procedure. It will assist in addressing the variation in activity 

generation and scheduling procedure for population at different life-stages 

residing in different locations. Moreover, the iTLE will support substantial 
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intra-household interactions during the simulation of travel activities, such as 

scheduling, vehicle allocation, and mode choice.  
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Chapter 8 

8 Microsimulation of Vehicle 

Transactions 

8.1 Introduction 

This chapter presents the microsimulation of vehicle transaction component of 

the iTLE model. The contributions of this research is three-fold: 1) 

microsimulating vehicle transaction decisions, 2) addressing the process 

orientation of the phenomenon through simulating first time purchase, 

transaction or do nothing, acquisition, trade, and disposal decisions, and 3) 

accommodating the multi-way interaction of various life-cycle events and 

decisions during the simulation procedure. This research presents the 

validation results and offers insights towards how vehicle transaction as well 

as ownership is spatio-temporally evolving by population demographics.     

This chapter is organized as follows: section 8.2 discusses the microsimulation 

processes of the vehicle transaction component within the iTLE. Section 8.3 

describes the simulation results including validation and predicted evolution 

of vehicle ownership for the Halifax population. Finally, section 8.4 concludes 

with a summary of key findings.  

 

 

The following paper is an earlier version of this chapter:   

 Fatmi, M.R., and Habib, M.A. (2017). Microsimulation of Vehicle Transaction 

Decisions within an Integrated Urban Modeling Framework. Published in the peer-

reviewed proceedings of the 96th Annual Meeting of Transportation Research Board, 

Washington DC, USA, January 8-12. 
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8.2 Microsimulation Processes 

The operational framework of the vehicle transaction component within the 

iTLE model is presented in Figure 8-1. The process starts with a vehicle 

ownership synthesis component to generate baseline vehicle ownership 

information. Description of this component is provided in Chapter 6. Following 

the generation of baseline vehicle information, vehicle transaction component 

operates as a sequential process of vehicle ownership state and transaction. 

The first step in this process is to assign households into the following two 

categories of vehicle ownership state: no vehicle ownership state, and transient 

ownership state. The next step is to determine the following vehicle transaction 

decisions: first time purchase, transaction or do nothing, acquisition, disposal, 

and trade. Simplified version of the model developed in Chapter 5 are 

implemented within the iTLE proto-type. Discussion on the microsimulation 

processes and methods are provided below.  

8.2.1 Vehicle Ownership State 

In this stage, the vehicle ownership state of each household is determined in 

each simulation year. Households are heuristically assigned into one of the 

following two categories of vehicle ownership state: no vehicle ownership state, 

and transient ownership state. Households without a vehicle transaction 

history in their life-time are assigned to the list of no vehicle ownership state, 

and households with a transaction history are assigned to the list of transient 

ownership state. 
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Figure 8-1 Operational Framework of the Vehicle Transaction Component of 

iTLE 
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8.2.2 First Time Vehicle Purchase 

In each simulation year, the first time vehicle purchase decision is simulated 

for the households in the no vehicle ownership state list, since they never 

owned a vehicle in their life-time. For the first vehicle purchase, a discrete time 

binomial logit model is developed utilizing the HMTS data (Appendix B). 

Households are identified to purchase the first vehicle or not by comparing the 

estimated probability with a randomly generated probability using Monte 

Carlo Simulation technique. If the estimated probability is higher, households 

are assigned to the list of first vehicle purchase and enter vehicle type choice 

component. Otherwise, households exit the vehicle ownership transition 

module.  

8.2.3 Vehicle Transaction or Do Nothing 

In the case of the households in the list of transient ownership state, their 

transaction or do nothing decisions are simulated. A discrete time binomial 

logit modelling technique (similar method to the first vehicle purchase model) 

is utilized to determine the probability of a household to make a transaction 

(Appendix B). The estimated probability is compared with a random 

probability to identify whether households make a transaction or not in a year. 

Households assigned to the list of transaction, enter vehicle transaction type 

component. Households assigned to the list of no transaction, exit the module.  

8.2.4 Vehicle Transaction Type 

Vehicle transaction type component involves the simulation of acquisition, 

disposal, and trade. Transaction type model is developed utilizing a 

multinomial logit modelling technique (Appendix B). The model determines 

the probability of a household to make one of the three transactions following 



 

  173 
 

the order of probability estimation. Households assigned to acquire or trade 

enter vehicle type choice component. Households assigned to make a disposal 

exit the module. Subsequently, the vehicle ownership level of the households 

making a transaction is updated accordingly.  

The next step is to simulate vehicle type choice. In this stage, the simulation 

determines the choice among the following six vehicle types: sub-compact, 

compact, mid-size, luxury, SUV, and van. The micro-behavioural model of the 

vehicle type choice component is recently developed (Khan and Habib 2016), 

and will be implemented later. 

8.3 Validation Results 

The iTLE proto-type runs vehicle transaction simulation from 2007 to 2021. 

The simulation results of the vehicle transaction component are validated for 

the 2016 simulation year using the NovaTRAC18 2016 survey data. A 

comparison of the vehicle ownership level between the predicted and observed 

population is presented in Figure 8-2. The comparative analysis suggests that 

the iTLE under-represents zero vehicle ownership by 1%. Two, and three or 

more vehicle ownerships are over-represented by 2%, and 3% respectively. The 

largest difference is found for one vehicle ownership, which is an under-

representation of 4%, only. Therefore, the validation results reveal that the 

performance of the vehicle transaction component can be considered 

reasonably satisfactory.  

 

                                            
18 NovaTRAC is a travel activity survey conducted in the Province of Nova Scotia. The survey 

collected vehicle ownership information as well as travel activities of the population.  
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Figure 8-2 Vehicle Ownership Level Comparison of the Predicted and 

Observed Halifax Population for the Year 2016 

8.4 Predicted Evolution of Vehicle Ownership in Halifax  

8.4.1 Predicted Spatial Distribution of the Household Vehicle 

Ownership Level  

The predicted spatial distribution of the vehicle ownership level of the 

households are shown in Figure 8-3. This figure only depicts the results for the 

year 2007. The results for the rest of the simulation years (2008-2021) are 

presented in Appendix D.  A non-parametric density function for different 

vehicle ownership levels; particularly, kernel density estimates are plotted 

against the home location (parcel) distance from CBD. One of the major 

advantages of the non-parametric kernel density function is to identify 

bimodality in the distribution. For each year, four kernel density are estimated 

for zero vehicle, one vehicle, two vehicle, and three or more vehicle ownership. 

A Gaussian kernel function is assumed for optimal bandwidth selection. The 

figure 8-3 shows that the density for zero vehicle ownership is predicted to be 
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skewed to the left of 10km over the years, which are urban core neighbourhoods 

in Halifax. The density is predicted to be more variable as households’ vehicle 

ownership level goes higher. For example, two, and three or more vehicle 

ownership are predicted to be more variable and skewed to the left of 25km. In 

the context of Halifax, parcels within 25km of the CBD represent both urban 

and suburban neighbourhoods. This implies that households with higher 

vehicle ownership are not only distributed in the suburban neighbourhoods, a 

reasonable share is distributed in the urban core as well. Interestingly, the 

density of households with three or more vehicle ownership is predicted to 

increase to the left of 10km over the years. This increase of three or more 

vehicle ownership in the Halifax urban core over the years might be attributed 

by the positive relationship of the variable “distance from home to CBD less 

than 10km”, retained in the vehicle acquisition choice scenario of the 

transaction type model (see Appendix B).   

 

Figure 8-3 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2007 
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Figure 8-4 to 8-7 add another dimension by representing households’ vehicle 

ownership levels in each DA through maps. The figure focuses on the urban 

core and surrounding suburban DAs in Halifax for the year 2021. Fig 8-4, 8-5, 

8-6, and 8-7 represent the percentages of total households’ in a DA with zero 

vehicle ownership, one vehicle ownership, two vehicle ownership, and three or 

more vehicle ownership, respectively. The spatial distribution shows that a 

higher percentage of households in the urban DAs are predicted to have zero 

vehicle ownership, which include DAs of the Halifax and Dartmouth 

Downtown (Figure 8-4). A higher percentage of households in the DAs 

throughout the urban core and surrounding suburban areas are predicted to 

have one vehicle ownership (Figure 8-5). A significantly higher proportion of 

one vehicle ownership is predicted in some of the suburban areas. For instance, 

above 50% of the households are predicted to have one vehicle ownership in 

some DAs of Bedford, Clayton Park, and Herring Cove areas. A higher 

percentage of two vehicle ownership is predicted in the suburban areas (Figure 

8-6). A higher percentage of three or more vehicle ownership is predicted in the 

suburban areas as well as in some specific urban areas, which are well known 

as high income neighbourhoods (Figure 8-7). For example, more than 25% of 

the households in some of the South End DAs of the Halifax Peninsula are 

predicted to have three or more vehicles. Note that the South End of the 

Halifax Peninsula is known as one of the richest neighbourhoods in Canada. 



 

  177 
 

 

Figure 8-4 Predicted Spatial Distribution of Zero Vehicle Ownership 

Households in the DA for the Year 2021 

 

Figure 8-5 Predicted Spatial Distribution of One Vehicle Ownership 

Households in the DA for the Year 2021   
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Figure 8-6 Predicted Spatial Distribution of Two Vehicle Ownership 

Households in the DA for the Year 2021 

 

Figure 8-7 Predicted Spatial Distribution of Three or More Vehicle Ownership 

Households in the DA for the Year 2021 
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8.4.2 Predicted Vehicle Transactions by Population Demographics   

A 2-dimensional kernel density is estimated to evaluate the predicted vehicle 

transaction types by population demographics. Similar to the above kernel 

estimates, a Gaussian kernel function for optimal bandwidth selection is 

assumed. Figure 8-8 to 8-11 illustrate the 2-dimensional kernel estimates for 

different transaction types for the year 2021. The kernel plots for the first 

purchase, acquisition, disposal, and trade are shown in Figure 8-8, 8-9, 8-10, 

and 8-11, respectively. In each figure, x-axis represents age of the head of the 

household, y-axis represents household income, and z-axis is the color bar 

representing kernel density. For the first vehicle purchase, density is skewed 

to the left of 45 years and household income of less than $80,000 (Figure 8-8). 

This implies that higher proportion of the first vehicle purchase is made by 

younger head households with lower and middle income. The average age and 

household income for first vehicle purchase is 39 years and $33,000 

respectively, which further indicates a higher share of lower income younger 

groups. In the case of vehicle acquisition, the density is predicted to be more 

variable than first purchase. The density is skewed within the age range of 35-

65 years and income of less than $120,000 (Figure 8-9). This reflects that 

population with a wider range of demographics are predicted to be involved in 

vehicle acquisition. The average age and household income for acquisition is 

49 years and $47,000 respectively. For disposal, density is skewed within 35-

65 years and $30,000-$110,000 (Figure 8-10). The average age is 53 years and 

household income is $73,000. In the case of trade, density is skewed within 40-

80 years and within the income range of $130,000-$170,000 (Figure 8-11). This 

implies that older head high income households are predicted to make a higher 

proportion of vehicle trade. The average age is 60 years and household income 

is $80,000 for the trade. The average income of $80,000 is lower than the 

skewed range of $130,000-$170,000. This can be explained by the secondary 

peaks in the kernel estimates for the same age range but lower income range. 
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For instance, a secondary peak is observed for household income of $30,000-

$100,000 and age range 40-80 years. Similar findings can be drawn from the 

plots for the rest of the simulation years.  

 

Figure 8-8 Predicted Distribution of Age and Income of Households 

Purchasing First Vehicle for the Year 2021 

 

Figure 8-9 Predicted Distribution of Age and Income of Households Acquiring 

Vehicles for the Year 2021 
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Figure 8-10 Predicted Distribution of Age and Income of Households 

Disposing Vehicles for the Year 2021 

 

Figure 8-11 Predicted Distribution of Age and Income of Households Trading 

Vehicles for the Year 2021 
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8.4.3 Predicted Vehicle Ownership per Household Member   

The average vehicle per household member is predicted to be 0.72 in 2021. 

Around 75% of the households are predicted to own at least one vehicle per 

household member in 2021. Figure 8-12 represents the plot of vehicle 

ownership per household member by location (parcel) distance from CBD and 

household income for 2021. Vehicle per household member is predicted to 

increase with the increase in household income and decrease in location 

distance from the CBD. Vehicle per household member is predicted to be 

significantly higher to the right of $120,000 and below 20km, which reflects 

high income suburban and urban dwellers. Ownership of vehicles per member 

is as high as 1 for these affluent suburban and urban dwellers. Interestingly, 

low and middle income suburban and urban dwellers are predicted to have 

around 1 vehicle ownership for every 2 household members. Similarly, Figure 

8-13 represents vehicle ownership per household member by location distance 

from CBD and age for 2021. Vehicle per household member is predicted to 

increase with the increase in age and decrease in location distance from the 

CBD.         

 

Figure 8-12 Predicted Spatial Distribution of Vehicle Ownership per 

Household Member by Income for the Year 2021 
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Figure 8-13 Predicted Spatial Distribution of Vehicle Ownership per 

Household Member by Age for the Year 2021 

8.4.4 Predicted Vehicle Ownership Composition of the 

Neighbourhoods   

Figure 8-14 shows a 15 year evolution of the average vehicle ownership per 

household in the DA between 2007 and 2021. For the overall Halifax DAs, the 

median value of the average vehicle ownership per household is predicted to 

increase from 1.37 in 2007 to 1.41 in 2021; however, the 75th percentile 

decreases from 1.67 in 2007 to 1.63 in 2021. Interestingly, the average vehicle 

per household is predicted to increase in the Halifax urban core DAs during 

this period. The median value increases from 1.21 in 2007 to 1.5 in 2021, and 

the 75th percentile value increases from 1.53 in 2007 to 1.69 in 2021.  
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Figure 8-14 Predicted 15 Year Evolution of Average Vehicle Ownership per 

Household in the DA for the Years 2007-2021 

Another dimension is added by plotting average vehicle ownership per 

household in the DA with the location and average household income of the 

DAs for 2021 (Figure 8-15). The figure illustrates that the average vehicle per 

household in the DA increases with an increase in average household income 

in the DA and a decrease in distance of the DA from CBD. The average 

ownership is significantly higher for the DAs with average income above 

$130,000 and distance from CBD below 20km. This implies that higher income 

DAs in the urban core and surrounding suburban areas are predicted to have 

higher average vehicle ownership per household, which is as high as 2.2. High 

income rural DAs (distance more than 50km) are predicted to have less than 

1.8 vehicles per household on an average.   
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Figure 8-15 Predicted Spatial Distribution of the Avg. Vehicle Ownership per 

Household in the DA by Avg. Household Income in the DA for the 

Year 2021 

8.5 Conclusion 

This research presents the findings of the microsimulation of vehicle 

transaction component within the iTLE proto-type model. The process 

orientation of vehicle transaction is addressed by microsimulating first time 

purchase, transaction or do nothing, acquisition, trade, and disposal decisions. 

The effects of multi-domain decision interactions and life-stage transitions on 

vehicle transaction decisions is accommodated within the simulation 

framework.  

The iTLE proto-type simulates vehicle transactions for 2007-2021 for Halifax. 

The validation results at the 2016 time point suggests that majority of the 

categories of the predicted vehicle ownership levels lie within a few percentage 
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point of the observed ownership level. For example, zero vehicle ownership is 

under represented by 1%, only. Therefore, it can be concluded that the iTLE 

generates reasonably representative vehicle ownership estimates for the 

population.  

This research also presents simulation results regarding the spatio-temporal 

distribution of vehicle ownership for the Halifax population. A yearly spatial 

variation of different vehicle ownership levels is presented by kernel density 

estimates. It is found that higher proportion of the households with zero vehicle 

ownership is predicted in the Halifax urban core. The density is predicted to 

be more variable and distributed in the suburban areas as well as urban areas 

with the increase in vehicle ownership level. One of the interesting findings is 

that an increase in density of three or more vehicle ownership households is 

predicted in the urban core areas over the years. Similar distribution is found 

while the percentage of different vehicle ownership level in the DAs is 

represented through maps for the year 2021. The map shows that a higher 

percentage of three or more vehicle ownership is predicted in some specific 

urban areas, which are well known as high income neighbourhoods. The 

demographic distribution of the vehicle transaction types suggests that higher 

proportion of the first vehicle purchase involves younger head (average age 39 

years) lower income (average household income $33,000) households. The 

distribution of acquisition suggests that population with a wider range of 

demographics are involved in acquisition, such as age range of 35-65 years and 

income of less than $120,000. The average vehicle per household member is 

predicted to be 0.72 in 2021 and around 75% of the households are predicted 

to own at least one vehicle per household member in 2021. High income urban 

dwellers are predicted to have a higher number of vehicles per member, which 

is as high as 1 in 2021. The vehicle ownership level composition analysis of the 

neighbourhoods (DA-level) suggests that the higher income DAs in the urban 
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core and surrounding suburban areas are predicted to have higher average 

vehicle ownership per household, which is as high as 2.2 in 2021. 

In summary, this study contributes significantly to the literature by 

simulating vehicle transaction decisions as a process of first time purchase, 

acquisition, disposal, trade, and transaction or do nothing decisions, within an 

integrated urban modelling platform. Multi-way decision dynamics are 

accommodated within the simulation procedure. The simulation results of 

vehicle transaction decisions are reasonably satisfactory and offers promising 

insights towards the spatio-temporal evolution of vehicle ownership in an 

urban region. Future research should focus on the implementation of vehicle 

type choice model. Finally, the implementation of vehicle transaction decisions 

promises to improve the prediction of travel activities and facilitates the 

opportunity to extend iTLE into the prediction of emission and energy use 

under different policy scenarios.     
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Chapter 9 

9 Conclusions 

9.1 Summary 

The development of integrated urban models have emerged from the need to 

predict the evolution of urban region, and test alternative land use and 

transport policy scenarios. Integrated urban models simulate a wide range of 

household- and individual-level decision processes. Residential location and 

vehicle ownership are two most critical components of integrated urban 

models, since these are crucial household-level long-term and medium-term 

decisions. One of the major limitations of the existing urban models is their 

lack of behavioural representation during the modelling and simulation of 

essential decision components. Unless the behaviour of the 

individuals/households are reasonably addressed, the purpose for developing 

integrated urban models will be challenging to achieve. This research 

contributes to the modelling and microsimulation paradigms of integrated 

urban models by representing greater behaviour of the population. 

Particularly, this study presents the development and implementation of the 

residential location and vehicle transaction components within an integrated 

Transport Land Use and Energy (iTLE) modelling system. This study also 

presents the implementation of population synthesis, vehicle ownership level 

synthesis, and life-stage transition components within the iTLE model. 

The research gaps in integrated urban modelling are identified through a 

review of the literature. The literature review suggests that the existing 

integrated urban models lack in addressing the multi-way interactions among 

different decision components such as residential location and vehicle 
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transaction. These longer-term decisions have a time dimension as they evolve 

over the life-course of the population, which is not well addressed in the 

literature. To microsimulate the decision interactions along the life-time, 

population life-stages are required to be simulated. Microsimulation of 

demographic career of the population is rare in the current integrated urban 

modelling literature. Further, there is a process orientation of the longer-term 

decisions like residential location and vehicle transaction. Accommodating the 

process orientation within the integrated modelling framework is also limited 

in the existing literature. Moreover, investigation of how a change in long-term 

state such as residential location influences a change in decision in another 

life-domain such as mode choice has not occurred to any significant extent. 

Modelling and predicting vehicle transaction demands further investigation as 

limited of the existing urban models include this component. Nonetheless, 

advanced econometric models need to be developed that are capable of 

accommodating the life-trajectory dynamics of the decision processes.  

Based on the needs and gaps identified in the literature review, this research 

proposes a life-oriented agent-based integrated urban model, known as 

integrated Transport Land Use and Energy (iTLE) model. The proposed model 

adopts the theory of life-course perspectives to accommodate the multi-way 

feedback mechanism among decisions along the life-time of the agents. The 

model is conceptualized to microsimulate agents’ life-stages and associated 

changes and decisions longitudinally at each simulation time-step. The core 

components of the model includes: baseline synthesis, life-stage transition, 

residential location transition, and vehicle transaction. Baseline synthesis 

involves the generation of population synthesis and vehicle ownership level 

synthesis. Life-stage transition module addresses the evolution of demographic 

career of the agents. Household location is conceptualized as a two-stage 

process of mobility and location choice. The second stage of location choice is 

assumed as a two-tier process of location search and choice. This study tests 
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how a relocation influences commute model choice decisions. Vehicle 

transaction is assumed as a process of first time vehicle purchase, vehicle 

acquisition, disposal, and trade decisions. One of the mechanisms adopted to 

address multi-way decision interactions is through introducing lead and lag 

events.  

The development of a life-oriented urban system simulation platform such as 

the iTLE is a data intensive effort. The primary data source for developing the 

micro-models of residential location, vehicle transaction and mode transition 

is a retrospective Household Mobility and Travel Survey (HMTS) conducted in 

Halifax, Canada. The survey collected life-history information of the 

respondents, including housing history, vehicle ownership history, 

employment records, household and employment compositional change, and 

socio-demographics, among others. The HMTS data provides information on 

the life-cycle events including, birth of a child, death of a member, move-in of 

a member, move-out of a member, household formation, residential relocation, 

addition of a job, loss of a job, job change, retirement, and vehicle transaction, 

among others. In addition, secondary data includes parcel information from 

the Nova Scotia Property Database 2013, location of different activity points 

and transportation services from the Desktop Mapping Technologies Inc. 

(DMTI), land use information from the Halifax Regional Municipality (HRM), 

and neighbourhood characteristics from the 2011 Census tabulations. 

Independent variables such as life-cycle events, accessibility measures, 

neighbourhood, and land use characteristics are derived from the above 

mentioned data, and tested during the model estimation process. In addition, 

2006 Public Use Microdata File (PUMF), and 2006 Census information are 

utilized to develop the population synthesis component.  

The residential location decision is modelled as a two-stage process: 1) 

residential mobility, and 2) residential location choice. The first stage of 

mobility refers to the decision to move or stay at a particular location. The 
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mobility model is developed utilizing a continuous time hazard-based duration 

modelling technique. According to the hazard formulation, duration is 

considered to be the continuous time-period a household has spent at a location 

and the termination is the event where a household moves to a new location. 

Single episode models are extended towards multiple episode models to 

accommodate the repeated duration along the housing career of the same 

households. Multiple episode shared frailty models are estimated for different 

distributions. The goodness-of-fit-measures suggest that the multiple episode 

shared frailty model outperforms the single episode model. Particularly, 

multiple episode gamma shared frailty model with Weibull distribution is 

considered as the final model. The model results suggest that life-stages, 

dwelling, land use, accessibility, and neighbourhood characteristics 

significantly affect mobility decisions. For example, households in their first 

spell after formation show a shorter duration. Households residing in higher 

mixed land use areas have a longer duration. Households having longer 

commute show a longer duration. Households residing closer to the CBD reveal 

a shorter duration.  

The second stage of location choice is modelled as a two-tier process of: 1) 

location search, and 2) location choice. Based on this concept, following a 

decision to move in the mobility stage, households first undertake a search 

process to generate a pool of potential alternative locations and finally move to 

a location from the pool. The search model is developed utilizing a fuzzy logic-

based modelling technique that accommodates the stress-driven push and pull 

factors. The search model assumes that households’ search process is 

constrained by their affordability. Hence, constraints regarding household 

income and property value are imposed within the fuzzy framework. The pool 

of locations generated in the search process are used as the choice set for the 

location choice model in the second tier. The model is developed at the micro-

spatial resolution of parcel. For comparison purposes, a traditional location 
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choice model is developed utilizing choice set generated from a random 

sampling technique. The goodness-of-fit measures suggest that the proposed 

fuzzy logic-based search and location choice modelling process outperforms the 

traditional model. 

The location choice model utilizes a latent segmentation-based logit (LSL) 

modelling technique. The LSL model accommodates the correlated sequence of 

repeated choices of the households during their housing career. The model 

captures latent heterogeneity by allocating households into flexible discrete 

latent segments. The segment allocation model is defined on the basis of 

household income, age of the household head, percentage of owned dwelling in 

the neighbourhood, and distance to the CBD. The LSL model results suggest 

that life-cycle events, parcel characteristics, and accessibility measures 

significantly influence the location choice decisions. For instance, birth of a 

child magnifies the need of larger lots. The influence of vehicle transaction is 

tested by considering vehicle acquisition, and purchase of the first vehicle in 

the life-time of the household. Both the variables reveal a higher propensity to 

choose locations farther away from work place. In the case of first vehicle 

purchase, a longer adjustment period is found than that of a vehicle 

acquisition. The model results suggest significant variation in location choice 

by life-history attributes. For example, suburbanite households in segment two 

exhibit a higher probability to choose larger lots following a job change. In 

contrast, urbanite households in segment one show a negative relationship. 

Interestingly, addition of a new job positively influence the choice for larger 

lots. Households are found to require longer adjustment period following a job 

change than that of addition of a new job. Moreover, most households are found 

to prefer larger lots. Households in general show a higher likelihood to choose 

locations closer to work place, transit stop, and health service. 

This study examines how a change in residential location influences the choice 

of commute mode. It is conceptualized that individuals reassess their commute 
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mode following a long-term change of state such as residential location. 

Following the reappraisal, continuation with the same mode is considered as 

mode loyalty; whereas, a change is considered as mode transition. This study 

investigates mode specific mode transition and loyalty decisions by comparing 

the choice of commute mode between two distinct temporal points of 

consecutive residential locations. The following nine dynamic choice scenarios 

are considered: (1) loyal to car, (2) loyal to transit, (3) loyal to active 

transportation (walk/bike), (4) transition from car to transit, (5) transition from 

car to active transportation, (6) transition from transit to car, (7) transition 

from transit to active transportation, (8) transition from active transportation 

to car, and (9) transition from active transportation to transit. A random-

parameters logit (RPL) model is developed to account for the correlated 

sequence of repeated choices and unobserved heterogeneity. The model results 

suggest that life-cycle events significantly affect commute mode choice 

decisions. For instance, birth of a child, and new household formation are found 

to positively influence a transition from active transportation to car. Loss of a 

job is associated with a transition from car to transit. One of the key features 

of this study is to examine the effects of temporal changes in socio-demographic 

and accessibility as households change their location.  For instance, a decrease 

in household income positively influence a transition from car to transit. 

Tenure transition from rental to owned dwelling trigger a transition from 

transit to car. The model results suggest that considerable heterogeneity exists 

among the sample individuals. For example, moving closer to the workplace is 

positively associated with car loyalty. A large value of the standard deviation 

of this parameter reveals the existence of significant heterogeneity among the 

individuals. 

In the case of vehicle transaction, a dynamic model is developed to investigate 

the following four types of transactions: first time vehicle purchase, vehicle 

acquisition, vehicle disposal, and vehicle trade. One of the key features of this 
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study is to examine the first time vehicle purchase decisions of the households 

during their lifetime. The purchase of the first vehicle might be associated with 

a mode shift to car; therefore, it is important to examine the first time vehicle 

purchase decisions. A latent segmentation-based logit (LSL) model is 

developed to investigate the vehicle transaction decisions. The model 

addresses repeated transactions of the same households during their life-

course, as well as accommodates latent heterogeneity through allocating 

households into flexible discrete latent segments. The households are allocated 

to different segments based on household income, household size, dwelling 

density of the neighbourhood, and percentage of owned dwelling in the 

neighbourhood. The model results suggest that life-cycle events, accessibility 

measures, neighbourhoods, and socio-demographic characteristics 

considerably influence vehicle transaction decisions. Significant heterogeneity 

is found across the two latent segments. For example, birth of a child or 

member move in positively influences vehicle acquisition in segment two and 

deter in segment one. The temporal dynamics of the inter-dependencies among 

decisions is confirmed through lead and lagged effects of the life-cycle events. 

For instance, birth of a child confirms a two-year lagged effect on vehicle 

acquisition. The model results suggest that first vehicle purchase behaviour is 

significantly different than vehicle acquisition. For example, addition of a job 

exhibits heterogeneous relationship in the two segments for first time vehicle 

purchase with an adjustment period of three years. The same variable exhibits 

a positive relationship for vehicle acquisition in both segments with a smaller 

adjustment period of one year. 

In the case of developing the integrated Transport Land Use and Energy 

(iTLE) modelling system, a proto-type version of the iTLE model is 

implemented for Halifax, Canada. The program code is written using C# 

dotNET programming language. The iTLE proto-type starts with generating 

the baseline information for 2006, and runs simulation for a 15-year period 
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from 2007 to 2021 at a yearly time-step. The baseline synthesis includes, 

population synthesis and vehicle ownership level synthesis. Population 

synthesis is performed in the following two-stages: 1) population synthesis at 

the zonal level of dissemination area (DA) following an Iterative Proportional 

Updating (IPU) technique, and 2) allocation of the synthetic population to the 

micro-spatial level of parcels utilizing a logit link model. The population 

synthesis engine generates a 100% synthetic population for Halifax. The 

goodness-of-fit measures suggest a SRMSE value of 0.37. In terms of the 

spatial distribution, around 89% of the DAs show an APE measure of less 5%. 

The vehicle ownership synthesis is performed utilizing a MNL model. The 

synthesis results suggest the following baseline distribution for zero, one, two, 

and three or more vehicle ownership: 22.55%, 37.40%, 32.16%, and 7.859%. In 

the case of microsimulating population demographic career, the iTLE 

simulates the following life-stages: ageing, birth, death, in-migration, out-

migration, and household formation. This module follows a heuristic modelling 

approach that utilizes historical rates and rules to determine the occurrence of 

an event for an individual/household in a simulation year. The life-stage 

transition module is validated with the 2011 Census information. For example, 

a cross comparative analysis results suggest that majority of the simulated 

population attribute categories show a difference of less than 1% with the 

observed population. Therefore, it can be concluded that the iTLE generates 

reasonably satisfactory population estimates for further model development 

and implementation. In the case of microsimulation results, the iTLE predicts 

an increase of 14.08% population in 2021 compared to 2006.  

This study presents the microsimulation results of residential mobility and 

location choice models within the iTLE proto-type. The models are 

implemented for a 15-year simulation run, starting from 2007 to 2021. The 

location choice simulation results are validated for the 2011 time point. The 

validation results suggest that around 21% of the DAs show an APE value of 
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less than 10%. Around 37% of the DAs represent the observed population 

within the difference range of ±50 number of households. The validation 

results suggest that the iTLE generates reasonably satisfactory spatial 

distribution of the population. Furthermore, this study presents a 15-year 

prediction results regarding residential mobility, housing pattern of the 

population, and demographic composition of the neighbourhoods. The mobility 

results suggest that younger head households are more frequent movers than 

their older counterpart. The mean duration of stay of the population with age 

<40, 40-54, 55-64, and 65 and above are predicted to be 3.53, 6.05, 6.60, and 

7.24 years, respectively. Adding a spatial dimension to the mobility analysis 

suggests that younger head households residing closer to the CBD are 

predicted to be more frequent movers than older head households residing 

farther away from the CBD. The spatial distribution of the population from 

2007-2021 suggests that a higher density of the households is consistently 

predicted in the locations within 25km from the CBD. The proportion of total 

households in these high density neighbourhoods is predicted to increase from 

68% in 2007 to 71% in 2021. In terms of the DA-level demographics and 

household compositional configuration of the high density neighbourhoods, 

higher density of single person households are predicted to live in the urban 

core. As household composition changes through marriage and having child, 

the density is predicted to be more variable and skewed towards suburban 

neighbourhoods.  

Finally, vehicle transaction is simulated within the iTLE proto-type as a 

process of first time purchase, transaction or do nothing, acquisition, trade, 

and disposal decisions. The iTLE proto-type generates a 15-year vehicle 

transaction simulation results, starting from 2007 to 2021. The model is 

validated at the 2016 time point. The validation results suggest that majority 

categories of the predicted vehicle ownership levels lie within a few percentage 

points of the observed population. For instance, zero vehicle ownership shows 
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a deviation of 1%, only. This research also discusses the spatio-temporal 

distribution of vehicle ownership for the Halifax population. The results 

suggest that a higher proportion of zero vehicle ownership households is 

predicted in the Halifax urban core. The density is predicted to be more 

variable and distributed in the suburban areas with the increase in vehicle 

ownership level. The demographic distribution of the vehicle transaction 

suggests that the first vehicle purchase involves a higher proportion of younger 

head (average age 39 years) and lower income (average household income 

$33,000) households. The results reveal that the average vehicle per household 

member will be 0.72 in 2021 and around 75% of the households will own at 

least one vehicle per household member. The vehicle ownership level 

composition analysis at the DA-level suggests that the higher income DAs in 

the urban core and surrounding suburban areas are predicted to have higher 

average vehicle ownership per household, which is as high as 2.2 in 2021. 

9.2 Contributions of this Research 

The contributions of this research encompass the modelling and 

microsimulation paradigms of integrated urban modelling literature. Overall, 

this study tackles the notion to accommodate life-trajectory dynamics of 

longer-term decision processes within the empirical and computational 

procedure of an integrated Transport Land Use and Energy (iTLE) modelling 

system. Innovative and advanced econometric modelling methods are 

developed to disentangle the interactions among decisions in different life-

domains along the life-course of the population, as well as address the process 

orientation of the decisions. The computational procedure of the iTLE is 

developed to microsimulate agents’ longer-term decisions longitudinally along 

their life-course. The major contributions of this research are briefly discussed 

below: 



 

  198 
 

1. Develops new method for process-oriented location modelling. An 

innovative fuzzy logic-based modelling method is developed for the 

location search process. The search model accounts for households’ 

continual stress at different life-domains by addressing 

interdependencies between push and pull factors within the fuzzy logic 

modelling process. Constraint regarding household affordability is 

imposed through introducing constraint sets of household income and 

average property value within the fuzzy model.  

2. Offers new behavioural insights regarding lead and lagged effects. This 

study confirms hypothesis regarding the effects of life-cycle events on 

longer-term decisions. For example, residential location model results 

suggest the effects of first time vehicle purchase as a 2-year lead event, 

and vehicle acquisition as a 1-year lead event. This result reveals that 

households require longer adjustment period to relocate following first 

time vehicle purchase than that of a vehicle acquisition. Similarly, for 

vehicle transactions, households require a longer adjustment period to 

purchase first vehicle than making a vehicle acquisition following an 

addition of job in the household.  

3. Develops advanced econometric models to address the correlated 

sequence of repeated choices, and capture unobserved heterogeneity 

among the sample households. In the case of vehicle transaction, a LSL 

model is developed to capture unobserved heterogeneity that allocates 

households into flexible discrete latent segments. The model results 

reveal that vehicle transaction varies by life-history attributes among 

households in different segments. For example, addition of a job could 

trigger first time vehicle purchase for larger-sized suburban dwellers in 

one segment and deter for smaller-sized urban dwellers in another 

segment. 

4. Implements a new longer-term decision simulator, known as the iTLE. 

The simulator includes following components: population synthesis, 
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vehicle ownership level synthesis, life-stage transition, residential 

location, and vehicle transaction. The model micrsimulates for a 15-year 

period at a yearly time-step, starting from the base year 2006 to 2021. 

A validation of the iTLE model results is performed. In addition, 

microsimulation results regarding the predicted spatio-temporal 

evolution of an urban region, including demographic distribution of the 

population, housing pattern, neighbourhood configuration, and vehicle 

ownership and transaction pattern are presented. 

9.3 Future Directions 

This research presents the development of a state-of-the-art life-oriented 

proto-type integrated Transport, Land Use, and Energy (iTLE) model. 

Particularly, this study focuses on modelling and microsimulating long-term 

and medium-term decisions such as residential location, vehicle transaction, 

and mode transition. The 15-year simulation results provide promising 

insights towards the long-range evolution of population in the Halifax region 

at the micro-level. However, the simulation results are validated for a single 

year. One of the immediate future researches should focus on performing a 

historical validation. For example, as the 2016 census information becomes 

available, a validation of the results should be in the agenda. Another future 

direction should be the development of the other longer-term components of 

the iTLE model, which are not implemented in this study. For instance, 

implementation of the job transition element. Job transition is conceptualized 

as an important longer-term component of iTLE as it updates employment 

status of the individuals. Future research should also focus to implement the 

longer-term commute mode transition model, which will add another layer of 

validation for the mode choice model within the travel activity module. The 

incorporation of the mode transition model will be beneficial to further advance 

the iTLE towards a dynamic, longitudinal, and evolutionary-based integrated 
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urban modelling system. A parallel research agenda should be the 

implementation of vehicle type choice component. Further, this study develops 

a novel two-tier modelling process for location search and location choice. 

However, the stress-based search model is not implemented within the iTLE 

simulation model, since microsimulating stress/reasons for relocation is 

challenging. Future research should emphasize on developing methods to 

accommodate such stress and process orientation within the simulation 

environment of the iTLE, which holds the potential to improve the forecasting 

accuracy.  

This research presents the microsimulation results within a proto-type version 

of the iTLE model, which deals with 10% population of the Halifax region. 

Future effort should focus on the simulation of 100% population. One of the 

reasons for the proto-type implementation is the long run time of the model. 

Further research is required to update the programming code through 

incorporating parallel computing. In this proto-type iTLE, some simpler 

version of the advanced econometric models are implemented. Further effort 

is necessary to investigate how the developed state-of-the-art empirical models 

such as latent segmentation-based logit model can be implemented within the 

iTLE framework. The current version of the life-stage module follows heuristic 

modelling methods. One of the important areas to contribute is to develop 

micro-behavioural models for advancing the life-stage transition module.  

In terms of modelling residential location, vehicle transaction, and mode 

transition, the historical evolution of transportation system could not be 

accommodated. As a result, the effects of certain variables including transit 

availability, transit level of service (LOS), travel time, and travel cost, among 

others could not be addressed in the model. Future research should focus on 

developing and maintaining multi-year travel models, which offer information 

regarding the historical evolution of transportation system measures. 

Additionally, a GIS database needs to be built to maintain historical record of 



 

  201 
 

urban form. The location choice model only includes owner households. 

Further investigation should focus to investigate renters’ location choice. One 

of the major challenges during the model estimation process was the small 

sample size. In fact, the mode specific mode transition model could not employ 

a LSL modelling technique due to the small sample size hindrance. Since 

analyzing different domains of contrasts with respect to multiple choice 

dimensions and latent segmentation are challenging with a small sample size. 

Hence, more effort is required to collect larger datasets with longitudinal 

information.    

9.4 Concluding Remarks 

Integrated urban models are complex large-scale modelling systems, involving 

the influence of a wide array of decisions of the population. The major challenge 

in integrated urban modelling is the balance of how much complexity is 

practical and comprehensive enough for valid implementation. This research 

advances the integrated urban modelling literature towards a dynamic, 

longitudinal, and evolutionary-based modelling framework. The iTLE model 

developed in this study represents greater behaviour by accommodating multi-

domain feedback mechanism among a wide range of decisions along the life-

course of the population, and offers insights towards the evolution of the urban 

population by providing micro-scale demographic distribution, housing 

pattern, neighbourhood configuration, and vehicle ownership pattern. The 

micro-level land use and vehicle information generated in this study will 

directly feed the activity-based travel model, and enhance its capacity to 

support substantial intra-household interactions, and improve activity 

generation, scheduling, and destination choice procedures. Finally, this study 

is a significant step forward towards adding the capacity in integrated urban 

models to test the response of population at different life-stages under 

alternative land use and transport scenarios. 
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Appendix A: Historical Rates  

Table A-1: Historical Birth Rates 

Year Birth Rate* 

1997 13.58083 

1998 11.89293 

1999 11.78685 

2000 11.68171 

2001 11.57751 

2002 11.45662 

2003 10.77708 

2004 10.68095 

2005 10.58568 

2006 10.49126 

2007 10.47819 

2008 10.27037 

2009 10.17876 

2010 10.08797 

2011 9.99799 

*Number of birth per 1000 population 
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Table A-2: Historical Death Rates 

Year Death Rate* 

1997 6.4862 

1998 6.957921 

1999 6.895858 

2000 6.834349 

2001 6.773389 

2002 6.702663 

2003 7.106526 

2004 7.043138 

2005 6.980315 

2006 6.918053 

2007 6.909431 

2008 7.252021 

2009 7.187335 

2010 7.123226 

2011 7.059689 

*Number of death per 1000 population 
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Table A-3: Historical Marriage Rates 

Year Marriage Rate* 

1981 7.8 

1986 7.2 

1991 6.4 

1996 5.8 

2001 5.3 

2006 5.1 

*Number of marriage per 1000 population 
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Table A-4: Historical In-migration Rates 

Year In-migration Rate* 

2001 42.43813 

2002 42.0596 

2003 41.68444 

2004 41.31262 

2005 40.94412 

2006 42.65065 

2007 42.27021 

2008 41.89318 

2009 41.5195 

2010 41.14916 

2011 40.74638 

*Number of in-migration per 1000 households 
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Table A-5: Historical Out-migration Rates 

Year Out-migration Rate* 

2001 40.37749 

2002 40.01733 

2003 39.66039 

2004 39.30663 

2005 38.95602 

2006 39.44413 

2007 39.0923 

2008 38.74361 

2009 38.39803 

2010 38.05553 

2011 37.68303 

*Number of out-migration per 1000 households 
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Appendix B: Parameter Estimation 

Results of the Reduced Version of the 

Micro-behavioural Models  

Table B-1 Parameter Estimation Results of the Residential Mobility Model 

Explanatory Variables Variable Description Discrete Time 

Binomial Logit 

Model 

co-efficient (t-stat) 

Constant  -2.09539 (-7.10) 

Birth of a Child_Same 

Year  

Birth of a child occurring in the 

same year of residential 

mobility  

1.39920 (5.47) 

Death of a Member_Same 

Year  

Death of a household member 

occurring in the same year of  

residential mobility 

2.17776 (1.68) 

Age below 40 Years  Age of the head of the 

household below 40 years 

0.29203 (2.17) 

Age above 55 Years Age of the head of the 

household above 55 years 

-0.34465 (-2.09) 

Income below 50K Household income below 

$50,000 (CAD) 

0.28516 (2.29) 

Own Vehicle Household own vehicle -0.62974 (-4.27) 

Dist to CBD above 10km  Distance from home to the 

Central Business District 

(CBD) above 10 km 

-0.52684 (-2.67) 

Dist to nearest Bus Stop 

below 1km  

Distance from home to the 

nearest bus stop below 1km 

0.45825 (2.08) 

Goodness-of-fit Measures 

Log-likelihood (at convergence) -1261.314 

Log-likelihood (at constant) -1351.317 

Adjusted Pseudo R-squared 0.067 
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Table B-2 Parameter Estimation Results of the Residential Location Choice 

Model 

Explanatory Variables Variable Description Multinomial Logit 

Model 

co-efficient (t-stat) 

Parcel Size x Birth of a 

Child_Same Year 

Size of the property (acres) 

interacted with birth of a child 

occurring at the same year of 

residential relocation 

0.07882 (1.93) 

Dist to CBD x Birth of a 

Child_Same Year 

Distance from home to the 

Central Business District 

(CBD) in km interacted with 

birth of a child occurring at the 

same year of residential 

relocation 

-0.02511 (-2.38) 

Dist to CBD x No Car 

Ownership 

Distance from home to the 

Central Business District 

(CBD) in km interacted with 

household not owning vehicle 

-0.17151 (-2.34) 

Dist to nearest Business 

Center 

Distance from home to the 

nearest regional business 

center in km 

-0.13655 (-3.64) 

Dist to nearest Business 

Center x Single-detached 

Distance from home to the 

nearest regional business 

center in km interacted with 

household residing in single-

detached dwelling 

0.16206 (4.14) 

Dist to nearest School x 

Presence of Children 

Distance from home to the 

nearest school in km interacted 

with presence of children in the 

household  

-0.11315 (-1.90) 

Dist to nearest Bus Stop Distance from home to the 

nearest bus stop in km 

-0.02395 (-2.07) 

Dist to nearest Park Area Distance from home to the 

nearest park area in km 

-0.10128 (-1.47) 

Population Density Population per acre area in the 

home dissemination area 

0.00013 (5.34) 
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Table B-2 Parameter Estimation Results of the Residential Location Choice 

Model (Continued) 

Explanatory Variables Variable Description Multinomial Logit 

Model 

co-efficient (t-stat) 

% of Owned Property Percentage of owned dwelling 

in the home dissemination area 

0.00441 (1.60) 

Avg. Property Value X 

Income above 100K 

Average property value (CAD X 

1000) in the home 

dissemination area interacted 

with household income above 

100,000 (CAD) 

0.00204 (3.14) 

Goodness-of-fit Measures 

Log-likelihood (at convergence) -773.474 

Log-likelihood (at constant) -886.495 

Adjusted Pseudo R-squared 0.134 
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Table B-3 Parameter Estimation Results of the First Time Vehicle Purchase 

Model 

Explanatory Variables Variable Description Discrete Time 

Binomial Logit 

Model 

co-efficient (t-stat) 

Constant Constant -3.44912 (-8.71) 

Household 

Formation_Same Year 

First time vehicle purchase and 

household formation occurring 

in the same calendar year  

-1.43051 (-1.31) 

Residential Move_Same 

Year 

First time vehicle purchase and 

residential relocation occurring 

in the same calendar year  

0.29572 (1.00) 

Age below 30 Years  Age of the head of the 

household below 30 years 

1.09653 (3.09) 

Age between 30 to 40 

Years  

Age of the head of the 

household between 30 to 40 

years 

1.10918 (3.33) 

Income above 100k Household income above 

$100,000(CAD) 

0.72391 (3.12) 

Household Size less than 

4 

Number of persons in the 

household less than 4 

0.65059 (2.60) 

Owned Dwelling Household residing in owned 

dwelling 

0.98089 (2.96) 

Single-detached Dwelling Household residing in single-

detached dwelling 

-0.92243 (-3.40) 

Goodness-of-fit Measures 

Log-likelihood (at convergence) -348.908 

Log-likelihood (at constant) -367.336 

Adjusted Pseudo R-squared 0.050 
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Table B-4 Parameter Estimation Results of the Transaction or Do Nothing 

Model 

Explanatory Variables Variable Description Discrete Time Binomial 

Logit Model 

co-efficient (t-stat) 

Constant Constant -1.97879 (-9.96) 

Household 

Formation_Same Year 

Vehicle transaction and 

household formation 

occurring in the same 

calendar year  

-1.19280 (-1.60) 

Residential Move_Same 

Year 

Vehicle transaction and 

residential relocation 

occurring in the same 

calendar year  

0.23221 (1.20) 

Age below 30 Years  Age of the head of the 

household below 30 years 

0.18306 (1.74) 

Age above 50 Years  Age of the head of the 

household above 50 years 

0.33636 (1.61) 

Income above 100k Household income above 

$100,000(CAD) 

0.34737 (3.31) 

Household Size less than 

4 

Number of persons in the 

household less than 4 

0.25415 (2.33) 

Dist to nearest Bus Stop 

less than 1km 

Distance from home to 

the nearest bus stop less 

than 1 Km 

0.21895 (1.91) 

Dist to nearest School 

less than 3 km 

Distance from home to 

the nearest school less 

than 3 km  

-0.34588 (-1.86) 

Goodness-of-fit Measures 

Log-likelihood (at convergence) -1445.404 

Log-likelihood (at constant) -1460.900 

Adjusted Pseudo R-squared 0.011 
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Table B-5 Parameter Estimation Results of the Vehicle Transaction Type 

Model 

Explanatory Variables Variable Description Multinomial Logit 

Model 

co-efficient (t-stat) 

Acquisition 

Constant Constant 0.68757 (1.41) 

Age below 30 Years  Age of the head of the 

household below 30 years 

0.55453 (1.56) 

Income below 50k Household income below 

$50,000(CAD) 

0.79447 (2.66) 

Number of Adults Number of adults in the 

household 

0.22424 (1.63) 

Vehicle Fleet Size 1 Household owns one vehicle -0.84867 (-3.83) 

Dist to CBD less than 10 

km 

Distance from home to CBD 

less than 10 Km 

0.59233 (2.92) 

Trade 

Constant  0.75031 (2.13) 

Residential Move_1 Year 

Lead 

Residential relocation occurring 

1 year prior vehicle transaction  

1.27835 (2.58) 

Age above 65 Years  Age of the head of the 

household above 65 years 

0.88865 (1.98) 

Income above 100k Household income above 

$100,000(CAD) 

0.43413 (2.19) 

Disposal (Constant = Reference) 

Residential Move_2 Year 

Lead 

Residential relocation occurring 

2 years prior vehicle 

transaction  

0.96537 (2.05) 

Gender (Female)  Gender of the head of the 

household is female  

0.50058 (1.71) 

Vehicle Fleet Size above 1 

1 

Household owns more than one 

vehicle 

-0.00190 (-1.88) 

Goodness-of-fit Measures 

Log-likelihood (at convergence) -467.189 

Log-likelihood (at constant) -497.751 

Adjusted Pseudo R-squared 0.050 
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Appendix C: Predicted Spatial 

Distribution of the Halifax Population 

 

Figure C-1 Predicted Spatial Distribution of the Halifax Population for the 

Year 2007 
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Figure C-2 Predicted Spatial Distribution of the Halifax Population for the 

Year 2008 

 

Figure C-3 Predicted Spatial Distribution of the Halifax Population for the 

Year 2009 
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Figure C-4 Predicted Spatial Distribution of the Halifax Population for the 

Year 2010 

 

Figure C-5 Predicted Spatial Distribution of the Halifax Population for the 

Year 2011 
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Figure C-6 Predicted Spatial Distribution of the Halifax Population for the 

Year 2012  

 

Figure C-7 Predicted Spatial Distribution of the Halifax Population for the 

Year 2013  
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Figure C-8 Predicted Spatial Distribution of the Halifax Population for the 

Year 2014  

 

Figure C-9 Predicted Spatial Distribution of the Halifax Population for the 

Year 2015  
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Figure C-10 Predicted Spatial Distribution of the Halifax Population for the 

Year 2016 

 

Figure C-11 Predicted Spatial Distribution of the Halifax Population for the 

Year 2017 
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Figure C-12 Predicted Spatial Distribution of the Halifax Population for the 

Year 2018 

 

Figure C-13 Predicted Spatial Distribution of the Halifax Population for the 

Year 2019 
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Figure C-14 Predicted Spatial Distribution of the Halifax Population for the 

Year 2020 
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Appendix D: Predicted Evolution of 

the Vehicle Ownership of Halifax 

Population  

 

 

Figure D-1 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2008     
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Figure D-2 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2009    

 

Figure D-3 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2010  
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Figure D-4 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2011   

 

Figure D-5 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2012   
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Figure D-6 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2013   

 

Figure D-7 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2014   



 

  246 
 

 

Figure D-8 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2015  

 

Figure D-9 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2016   
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Figure D-10 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2017  

 

Figure D-11 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2018  
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Figure D-12 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2019  

 

 

Figure D-13 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2020  
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Figure D-14 Predicted Distribution of Vehicle Ownership Level by Home 

Location for the Year 2021 

 

 

 

 


