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Abstract

This thesis introduces several structures based on Cockett and Lack’s restriction cat-
egories which find applications in partial computation, geometry, topology and two-
dimensional category theory.

As monads may be thought of as modelling computation, we introduce restriction
monads as a candidate to model partial computation. These structures are defined
in the hope that any dependencies on the restriction structure of a category can be
abstracted instead into an endofunctor on it. For example, we prove that the data of
a small restriction category can be encoded as a restriction monad in Span(Set). We
introduce restriction bimodules (bimodules whose actions are partially defined) and
prove that they are algebras for these monads.

The Ehresmann-Schein-Nambooripad theorem asserts an equivalence between the
categories of inverse semigroups and that of certain groupoids. We prove that this
equivalence can be extended to an equivalence between inverse categories (categories
in which all arrows are partially invertible) and top-heavy locally inductive groupoids
(categories in which all arrows are totally invertible, all arrows have a notion of re-
striction and corestriction, and the objects may be partitioned into meet-semilattices)
in two different ways (using two different notions of morphism). For any join inverse
category X, we prove that the corresponding top-heavy locally inductive groupoid
G(X) is locally localic and that each morphism in X gives an equivalence between the
locales generated by the principal order ideals of its source and target. We then prove
that G(X) can be naturally given the structure of an Ehresmann site, which then mo-
tivates our definition of ideally covering and ideally flat functors between Ehresmann
sites that make the constructions of Lawson and Steinberg functorial.

Finally, we introduce double restriction categories (a double category equipped
with two compatible restriction structures) and restriction bicategories (bicategories
with a “weak” restriction operator). We show that the bicategory of restriction mod-
ules can be given the structure of a restriction bicategory and use these to organize
restriction monads, restriction modules, monad morphisms, and module morphisms
into a double restriction category.

vi



List of Abbreviations and Symbols Used

Notation Description
□ End of proof.
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Chapter 1: Introduction

Consider the real-valued functions f(x) = x+2 and g(x) =
√
x. We teach our students

to identify the domain of f to be the entirety of the real numbers and the domain of

g to be only non-negative real numbers. In effect, we teach our students to identify

the (largest) subset of the real numbers on which a real-valued function is defined. In

this sense we could say that f is totally defined on R while g is only partially so. To

compute the composite g ◦ f of these functions, we teach students to again identify

the domain on which the composite is defined by intersecting the image of f and the

domain of g. This process can be described structurally by considering f and g as

partial functions f, g : R • →→R .

Definition 1.0.1. A partial function f : A • →→B (of sets) is a pair of (total, or fully

defined) functions

Df
←↑i

↙↙

f

↘↘

A B

where

• i is just inclusion of Df into A, and

• we think of Df as the domain of definedness of f. ♢

One composes two partial functions A f
• →→B

g
• →→C

Df
←↑i

↙↙

f

↘↘

Dg
←↑j

↙↙

g

↘↘

A B C

1
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by first taking the pullback and then composing along the legs:

Df ×B Dg

π1

↙↙

π2

↘↘

Df← ↑
i

↙↙

f

↘↘

Dg
←↑j

↙↙

g

↘↘

A B C

=
Df ×B Dg
←↑iπ1

↙↙

gπ2

↘↘

A C

The chosen pullback, explicitly, is

Df ×B Dg = {(a, b) ∈ Df ×Dg : b = f(a)}

= Im(f) ∩Dg

In other words, this is exactly how one is taught in precalculus to “find the domain”

of the composite (g ◦ f)(x). With a structural interpretation of composing partial

functions, we can then organize these data into a category Par of sets and partial

functions, with composition as described above.

It may be interesting to model partially defined “functions” in other categories

whose objects may not be sets. Pullbacks may not exist or a category may not

even have enough objects (a category could, indeed, have only one) to talk about

“subobjects”. We solve this in a category by phrasing our definitions in terms of

the arrows and their composites. We can solve the object problem if we can define

“domain of definedness” in terms of other partial functions (more generally, arrows),

rather than relying on sets (more generally, objects). We then will want to impose

some axioms about how this domain of definedness behaves with other arrows.

In Par, for each partial function f : A • →→B, define a new partial function
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f : A • →→A by

f(x) =

⎧⎪⎪⎨⎪⎪⎩
x, if x ∈ Df

Not defined, otherwise

This translates a set-based definition into a partial function-based one so that we can

use it in an arbitrary category.

Restriction Categories

Categorical modelling of partial maps is well studied [1, 21, 22, 31, 34]. The algebraic

theory of partially defined functions, using a partial identity on the domain to encode

the domain of definedness for the partial functions, can be described nicely by Cockett

and Lack’s notion of restriction category, which allows us to very naturally reason

about partial maps in an equational manner.

This thesis uses restriction categories as a basis for developing data structures

used in the study of partial computation, geometry, topology and higher dimensional

restriction categories.

Definition. A restriction structure on a category X is an assignment of an arrow

f : A → A to each arrow f : A → B in X satisfying the following four conditions:

(R.1) For all maps f, f f = f.

(R.2) For all maps f : A → B and g : A → B′, f g = g f.

(R.3) For all maps f : A → B and g : A → B′, g f = g f.

(R.4) For all maps f : B → A and g : A → B′, g f = f gf.
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A category equipped with a restriction structure is called a restriction category.

Definition. A restriction functor F : X → Y between restriction categories is a

functor which preserves the restriction idempotents; F
(
f
)

= F (f) for all f ∈ X1.

Chapter 2 includes a more detailed review of restriction categories.

Partial Computation

Chapter 3 introduces restriction monads, a structure encoding partially defined ab-

stract computations which is analogous to the encoding of (totally defined) abstract

computations in the language of monads in [33]. Thinking of a monad T in a bicate-

gory B (with an object E which will in some way “choose elements”) as playing the

role of a category, whose composition is defined by µ and whose units are given by

η, a restriction structure on T is a family of functions ρA,B indexed by certain 1-cells

in B of the form A,B : E → X (which are playing the role of “E-elements of X”).

This family of functions satisfies four conditions analogous to (R.1) through (R.4).

Indeed, Proposition 3.1.2 shows that these axioms are exactly those for which small

restriction categories are in correspondence with restriction monads in Span(Set).

A small category also corresponds to a monad in Set-Mat (sets and matrices

– full details in Chapter 5) encoding the data as a category enriched in Set. This

correspondence extends to restriction monads, given by Proposition 3.1.3.

We then define algebras for restriction monads by equipping ordinary algebras

with a restriction structure. As right X-modules are the algebras for the ordinary

monad corresponding to a small category X, Theorem 3.2.2 states that the algebras

for restriction monads in the bicategory Span(Set) are certain restriction (bi)modules:
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a restriction bimodule φ is a bimodule between restriction categories X and Y so that

each element α ∈ φ(y, x) can be assigned a restriction idempotent α : x → x of X

which behaves as a restriction structure with respect to the actions of X and Y on φ.

In Chapter 5, restriction bimodules provide a motivating example of a two dimen-

sional restriction structure (see the subsection below).

Geometry and Topology

Chapter 4 introduces top-heavy locally inductive groupoids, groupoids whose objects

can be partitioned into meet-semilattices and whose arrows have a notion of restriction

and corestriction. Our motivation for these groupoids comes from the Ehresmann-

Schein-Nambooripad Theorem, which asserts a correspondence between inductive

groupoids (ordered groupoids whose objects form one meet-semilattice) and inverse

semigroups, stated in full in Theorem 4.1.9.

Partitioning a top-heavy locally inductive groupoid into meet-semilattices, we

prove that these groupoids are the suitable “multi-object” version of inductive groupoids,

in the sense that Theorem 4.1.9 can be generalized to inverse categories. For any in-

verse category X, we construct a top-heavy locally inductive groupoid G(X) (Propo-

sition 4.2.7) whose objects are the restriction idempotents and whose arrows are the

arrows of X (with their sources and targets suitably defined). We prove that this

construction is functorial, fully faithful and essentially surjective in Theorem 4.2.15.

The object function of the functors forming this equivalence was independently

discovered by Lawson in an unpublished preprint, which was communicated by private

communication after our submission for publication. Lawson’s proof, in addition to
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omitting the arrow function of the functors, takes advantage of the units of an inverse

category. Our proof, taking advantage rather of the partition has the added benefit

that the Ehresmann-Schein-Nambooripad Theorem is a corollary (since single-object

inverse semicategories are inverse semigroups).

The category of top-heavy locally inductive groupoids above has inductive functors

(functors which preserve any meets that exist). If we replace these functors with

order preserving functors, our proof yields a further generalization (Theorem 4.2.19)

of the Ehresmann-Schein-Nambooripad Theorem: the category of top-heavy locally

inductive groupoids and ordered functors is equivalent to the category of inverse

categories and oplax functors.

Two arrows in a restriction category are compatible [8] if f g = g f ; that is, if

f and g agree where they are both defined. For each x in the intersection of the

domains of two partial functions (of sets) f and g, it must be the case that f(x) =

g(x), lest x be mapped to two different places and the join will not be a partial

function. In general, the join of two arrows in a restriction category will be possible

only if the two arrows are compatible. Restriction categories with joins were used

in [8] as a setting for constructing manifolds. We show that the top-heavy locally

inductive groupoid associated to a join inverse category is locally localic; for each

object of G(X), its principal order ideal (Definition 4.3.5) is a locale (Theorem 4.3.7).

In addition, Proposition 4.3.8 asserts that locale homomorphisms in this groupoid are

given by the morphisms of the inverse category. Corollaries 4.3.9 and 4.3.11 construct

covariant and contravariant locale-valued functors defined on G(X). Finally, we prove

in Theorem 4.3.12 that these functors give an equivalence between the locales given

by the principal order ideals.
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An Ehresmann site [28] is an ordered groupoid equipped with an Ehresmann

topology: for each object, a family of order ideals of that object satisfying some

conditions reminiscent of a Grothendieck topology on a category. The locally localic

structure of G(X) allows us to equip it with a natural Ehresmann topology, as defined

in Theorem 4.3.18.

Theorems 4.4.8(d) and 4.4.11(d) establish a correspondence between Grothendieck

topologies on a left cancellative category and Ehresmann topologies on ordered groupoids.

Using these correspondences, Definition 4.4.13 gives the appropriate notion of mor-

phisms between Ehresmann sites, which can be constructed from morphisms of left-

cancellative categories using the construction given in Theorem 4.4.15.

Two Dimensional Restriction Categories

Chapter 5 introduces double restriction categories and restriction bicategories. Double

restriction categories are data structures with two compatible restriction structures,

while restriction bicategories are such that the restriction structure on the 1-cells

extends functorially to its 2-cells (with the restriction axioms holding up to coherent

isomorphisms).

We first define a restriction structure in the language of internal categories, so that

we can take restriction categories internal to the category of restriction categories; a

restriction category (in Set) contains the following data:

X1 t×s X1 c
→→ X1

s →→

t
→→

r

↑↑
X0u←←



8

The full definition can be found in Definition 5.1.1, but the main takeaway is that

the morphism r : X1 → X1 is thought of as the restriction operator. As such, in

addition to the usual unit and associativity axioms, a restriction category internal

to Set must satisfy the (suitably re-stated) restriction axioms, as well as an axiom

forcing the source of r(f) to be the source of f.

We may also take such structures internal to any category with pullbacks over

s and t. In particular, a restriction category internal to Set is a small restriction

category with f = r(f). As such, a restriction category internal to Set satisfies

equations corresponding to facts about restriction categories (cf. Proposition 2.0.3).

Having a suitable diagrammatic description of restriction categories, we define

a double restriction category to be a restriction category internal to the category

of restriction categories (with restriction functors). One can then verify that this

definition is equivalent to defining a double restriction category as a double category

– which is expressed in terms of objects, vertical arrows, horizontal arrows and double

cells – whose horizontal and vertical categories are equipped with a vertical restriction

structure (−) and horizontal restriction structure (̃−) such that (−)◦ (̃−) = (̃−)◦(−).

This is detailed in Definition 5.1.5.

Example 5.1.11 shows that the double categorical span construction can be gen-

eralized to restriction categories where pullbacks may also not be completely defined,

via a suitable subcategory of partial maps.

Finally, we recall that certain restriction bimodules are the algebras for the restric-

tion monad in Span(Set) corresponding to the small restriction category X. We show

that the composite of two restriction bimodules (defined by the standard coequalizer

diagram) is again a restriction bimodule. This composition is associative only up to
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invertible 2-cell. In addition, we show that any restriction bimodule φ can be assigned

a new restriction bimodule φ and that this assignment satisfies the restriction axioms

up to invertible 2-cell.

As such, we consider the restriction bimodules as a motivating example of a re-

striction bicategory, which is a like a restriction category whose restriction axioms

hold up to canonical invertible 2-cell.

Tying all of these structures together, we define two double categories.

RModule(rCat) RMod(Span(Set))

Objects Rest. Cats. Rest. Monads in Span(Set)

Vertical Arrows Rest. Functors Monad Morphisms

Horizontal Arrows Rest. Modules Algebras

Double Cells Equivariant Maps Equivariant Maps

Table 5.1: The double categories RModule(rCat) and RMod(Span(Set)).

X
α

|
M →→

F
↓↓

X′

F ′

↓↓

Y |
M ′

→→Y′

RModule(rCat))

T

α

|
A →→

F
↓↓

T ′

F ′

↓↓

N |
B

→→ N ′

RMod(Span(Set)

Analogous to range categories [7], a range module is a restriction bimodule φ :

X | →→Ywhich encodes range in addition to domain. A supported range module is a

module whose range structure is also a co-restriction structure.

Consider the double category sRModule(iCat), with supported range modules

between inverse categories as horizontal arrows, with functors as vertical arrows and
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with restriction module morphisms as double cells. Similarly, we define the double

category sRModule(tliGrpd). We then conjecture the existence of an extension of

the functor I : tliGrpd → iCat to a biequivalence I : srModule(tliGrpd) →

srModule(iCat) which further extends to an equivalence of the double categories

sRModule(iCat) and sRModule(tliGrpd).



Chapter 2: Preliminaries

Restriction Categories

Definition 2.0.1 ([11]). A restriction structure on a category X is an assignment of

an arrow f : A → A to each arrow f : A → B in X satisfying the following four

conditions:

(R.1) For all maps f, f f = f.

(R.2) For all maps f : A → B and g : A → B′, f g = g f.

(R.3) For all maps f : A → B and g : A → B′, g f = g f.

(R.4) For all maps f : B → A and g : A → B′, g f = f gf.

A category equipped with a restriction structure is called a restriction category. ♢

A
f
→→

f ↘↘

A

f
↓↓

B

A
f
→→

g
↓↓

A

g
↓↓

A
f

→→ A

A
f
→→

gf ↘↘

A

g
↓↓

A

A
f
→→

gf
↓↓

B

g
↓↓

A
f
→→ B

Figure 2.1: The axioms of a restriction category, diagrammatically.

Definition ([11]). A restriction functor F : X → Y between restriction categories is

a functor which preserves the restriction idempotents; F
(
f
)

= F (f) for all f ∈ X1.

Example 2.0.2. Examples of restriction categories:

11



12

(a) Par as defined above is the prototypical example of a restriction category. The

axioms (R.1) – (R.4) required for Par to be a restriction category are easily

verified. We can interpret expressions such as f g as “f restricted to where g is

defined”.

(b) Let C be an ordinary category equipped with a stable system M of monics (all

details of this example can be found in [11]). Define a category Par(C,M) with

the following data:

• Objects: Same objects as C.

• Arrows: Isomorphism classes of spans

X D←←i←←
f
→→ Y,

where i ∈ M. We will sometimes denote such an arrow (actually, its isomor-

phism class) as (i, f).

• Composition: Composition is given by pullback.

• Restrictions: Given any arrow (i, f), the assignment (i, f) = (i, i) defines a

restriction structure on Par(C,M). ▲

The next lemma lists some useful identities that will be used, without reference,

to make calculations in restriction categories.

Lemma 2.0.3 ([11]). If X is a restriction category, then:

(i) f is idempotent;

(ii) f gf = gf ;
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(iii) gf = gf ;

(iv) f = f ;

(v) gf = gf ;

(vi) if f is monic, then f = 1;

(vii) fg = f implies f = fg.

Note. A restriction category X has a natural, locally partially ordered 2-category

structure: for any two parallel arrows f, g : C → D in X, we define a partial order by

f ≤ g if and only if f = gf. Notice that if f ≤ g, then

gf = gf = gf = f

and thus f ≤ g.

Proposition 2.0.4. Suppose that a,A, b and B are arrows in a restriction category

X with a ≤ A and b ≤ B. If the composites ab and AB exist, then ab ≤ AB.

Proof. Suppose that a,A, b and B are arrows in X with a ≤ A, b ≤ B and such that

the composites ab and AB exist. Then

ABab = ABb ab = Abab = Aab = ab

and thus ab ≤ AB.

Definition 2.0.5. A map f in a restriction category X is called total whenever

f = 1. ♢
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Lemma 2.0.6 ([11]). If X is a restriction category, then:

(i) every monomorphism is total;

(ii) if f and g are total, then gf is total;

(iii) if gf is total, then f is total;

(iv) the total maps form a subcategory, denoted Tot(X).

Definition 2.0.7. A morphism F : X → Y of restriction categories (a restriction

functor) is a functor such that F
(
f
)

= F (f) for each f ∈ X1. ♢

Inverse Categories

As groupoids are for groups, we will use a structure describing multi-object inverse

semigroups. Inverse semigroups with units are exactly single-object inverse categories,

so it seems that inverse (semi)categories could be appropriate for such a role.

Definition 2.0.8 ([23]). A category X is said to be an inverse category whenever,

for each arrow f : A → B in X, there exists a unique f ◦ : B → A in X such that

f ◦ f ◦ ◦ f = f and f ◦ ◦ f ◦ f ◦ = f ◦. ♢

Definition 2.0.9. A map f in a restriction category X is called a restricted isomor-

phism whenever there exists a map g – called a restricted inverse of f – such that

gf = f and fg = g. ♢

Following from the commutation of idempotents (Restriction Category Axiom

2.0.1), we have the following property of restricted isomorphisms:
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Theorem 2.0.10 (Lemma 2.18(vii), [11]). If f is a restricted isomorphism, then its

restricted inverse is necessarily unique.

Note. If a category X has the property of being an inverse category, one can define a

restriction structure on X by defining f = f ◦f. Indeed, with this restriction structure,

every arrow in X is a restricted isomorphism and the restricted inverse of an arrow f

is exactly f ◦. This justifies the following notation and definition.

Notation. Given a map f in a restriction category X, we denote its restricted inverse

(if it exists) by f ◦.

Definition 2.0.11. A restriction category X is called an inverse category, whenever

every map f is a restricted isomorphism. ♢

Example 2.0.12. Some inverse categories:

(a) The category of sets and partial bijections.

(b) Any inverse semigroup with unit is a single-object inverse category.

(c) Any groupoid is an inverse category with all arrows total. ▲

Lemma 2.0.13 ([11]). If F : X → Y is a restriction functor, then F preserves

(i) total maps,

(ii) restriction idempotents,

(iii) restricted sections and

(iv) restricted isomorphisms.
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Note. Any functor between inverse categories is a restriction functor preserving re-

stricted isomorphisms. This follows from the restriction structure and restricted iso-

morphisms being defined as specific composites. We will therefore omit the words

“inverse” and “restriction” when speaking of functors between inverse categories.

As expected, restriction idempotents are their own restricted inverse.

Proposition 2.0.14. In an inverse category,
(
f
)◦

= f for all arrows f.

Proof. Since all arrows in an inverse category are restricted isomorphisms,

(
f
)◦

= (f ◦f)◦ = f ◦(f ◦)◦ = f ◦f = f.

It is clear that inverse categories, interpreted as restriction categories in Definition

2.0.11, are exactly the same as inverse categories interpreted as multi-object inverse

semigroups in Definition 2.0.8. In this thesis, we choose to think in terms of restriction

categories for two reasons: firstly, the choice of notation in restriction categories

facilitates calculations. Secondly, we prefer to think of (finite) inverse semigroups as

collections of partial automorphisms on a (finite) set whose idempotents are partial

identities – inverse categories in terms of restriction categories explicitly make use of

this intuition.

Notation. We denote the category of inverse categories and functors by iCat.

Proposition 2.0.15. If X and Y are inverse categories, then XY (the category whose

objects are functors Y → X and whose arrows are natural transformations) is an

inverse category.
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Proof. Consider any natural transformation α : F ⇒ G : Y → X. For any arrow

f : A → B in Y, that (−)◦ is an involution together with the naturality of α applied

to f ◦ imply that

Ff.α◦
A = (αA.Ff ◦)◦ = (Gf ◦.αB)◦ = α◦

B.Gf,

or that the following diagram commutes:

FA
Ff
→→ FB

GA
Gf
→→

α◦
A

↑↑

GB

α◦
B

↑↑

That is, there is a natural transformation α◦ : G ⇒ F defined by (α◦)A = α◦
A for all

objects A ∈ Y. It follows immediately, then, that α◦αα◦ = α and αα◦α = α, and that

α◦ is unique with respect to this property.



Chapter 3: Partial Computation

Categorical structures as abstractions of computation have been well studied; for

example, the effective topos [22, 34], categories of domains [1], total combinatory

algebras [31], and Cartesian closed categories (as equivalent to lambda theories) [21].

A commonality of these models is that all computations are assumed to be com-

pletely defined, or are total. When programming, however, a computation (or func-

tion, method, program, etc.) takes a (perhaps empty) set of inputs and produces some

observable effect (for example, the square of an integer or changing the brightness of a

laptop screen). This notion of function often differs from that of a pure mathematical

function:

• The function int.random(m,n) (returns a random integer between m and n) is

non-determined in the sense that its output is not determined completely by its

inputs.

• The function open("file") (opens the file whose name is given by a character

string and returns it as an input/output stream) is not defined on the entirety

of its domain (all character strings), failing if a file by that name does not exist.

That is, ordinary and everyday computations need not be defined on all inputs and

the total models are thus insufficient. Restriction categories have since been used to

unify these concepts; so-called Turing categories are classifying categories for partial

combinatory logics [6] and invertible computation has been treated using Cartesian

inverse categories [18].

Our preferred approach to modelling partial computations stems from the follow-

ing observation: though many functions are not honest mathematical functions, we

18
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still use them as if they are. Specifically, we commonly compose functions (for exam-

ple, open a file and then pass that output through a text parser and then close the

file). As humans, we know that such composites can break down if, along the way,

one of the functions fails. Also as humans, we must then use different methods of

error-catching which are provided by our language of choice (for example, nested if

then or try do statements). In addition to the code produced this way being cum-

bersome and unsightly, the programmer cannot possibly foresee every possible way

in which a complicated algorithm can fail (or, practically, every possible way that a

student can enter an answer in an online assignment).

Composing such functions in a way that reduces programming errors and main-

tenance time, while still being readable, is facilitated by separating the types of a

language from the computations of those types. For example, consider a language

whose types are sets (for example, int, char, etc.).

• For a setA, the power set P(A) can model non-determinism. A non-deterministic

function f : A → B can be interpreted as an honest function f : A → P(B),

which sends an element a ∈ A to a subset of B containing all of its possible

outputs.

• Let E be a set of error messages (strings). Then for a set A, the set A∐E (E is

a set of error messages) can be used to model exception handling. If f : A → B

is a possibly failing function, an element a ∈ A will be mapped to either some

element of B if no error occurs, or some error message in E otherwise; that is,

f can be interpreted as an honest function f : A → B
∐
E.

At first glance, it seems that such honest functions are not all too useful; since
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the domains and codomains of these functions no longer match, we can not compose

them as functions. However, this does not pose a problem in practice: in the case

of non-determinism, we can take the union of all subsets in the image of f to get a

subset of B and in the exception handling, we can break the composite at the first

sight of an error.

In general, an assignment A ↦→ T (A) (for example, T (A) = P(A) or T (A) =

A
∐
E) can be thought of as a notion of computation [33] (or a structured type).

The functions f : A → B in a language are then interpreted as honest functions

fT : A → T (B) (we call fT the T -interpretation of f) and T must be defined so that

for each pair f : A → B and g : B → C, their interpretations fT : A → T (B) and

gT : B → T (C) are composable.

If T is a monad, these interpretations can be collected into a category whose objects

are the types and whose arrows are the T -interpretations of functions. Recall that

such a category is called the Kleisli category of T. In many functional programming

languages (for example, Haskell), it is these Kleisli structures that are called monads.

In this section, we propose the use of monads equipped with a restriction structure

as a new model of partial computation.

3.1 Restriction Monads

This section introduces restriction monads, a so-called theory of partial computation;

we equip a monad (T, η, µ) with sufficient structure so that we may interpret T as

having a restriction structure with respect to µ. The advantage of this approach is

that computations involving monads are strictly typed.
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A small category may be interpreted as a monad in two different bicategories, each

offering a different perspective of what a category “is”:

1. A small category corresponds to a monad in Span(Set), encoding the data as a

category internal to Set. In general, if C is a category with all pullbacks over

the source and target maps, then a monad in Span(C) is a category internal to

C.

2. A small category also corresponds to a monad in Set-Mat, encoding the data as

a category enriched in Set. In general, if V is a monoidal category with small

sums (over which its tensor product distributes from both sides), then a monad

in V-Mat is a category enriched in V .

Given the appropriate definition of a restriction monad, one would expect that the

correspondence between small categories and monads in Span(Set) would generalize

to a correspondence between small restriction categories and restriction monads in

Span(Set). Similarly, one would expect that small restriction categories correspond

to restriction monads in Set-Mat. Our primary motivation for defining a restriction

monad comes from the internal case, since we will use internal restriction categories

to define double restriction categories in Chapter 5.

With this in mind, we will now explore the structure required to give a monad

(T, η, µ) on X0 in Span(Set) a “restriction structure”; that is, a structure which

translates to a restriction structure on its corresponding category. Recall that such a

monad is a span of the form X0 X1
s←← t →→X0 . The corresponding category X has

objects X0, arrows X1, identities defined by η and composition defined by µ.

A naïve approach to equipping T with a restriction structure is to define a 2-cell
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ρ : T ⇒ T playing the part of the restriction operator. A sensible choice, but we

immediately stumble when trying to write down an axiom corresponding to (R.1)

of restriction categories. We know that it must conclude with µ, that ρ must be

somewhere applied, and that the result of this µ-application must be the identity on

T. That is, the composite

T →→ · · · →→ T 2 Tρ
→→ T 2 µ

→→ T

must be the identity. Attempting to fill in this diagram, we run into problems: how do

we get from T to T 2 while adding non-trivial information (that is, without using η)?

This approach also does not encode the primitive intuition of a restriction structure,

an endomorphism on the source of an arrow which captures its definedness. With no

way of encoding “endomorphism” or even “source”, we must then impose these as ad-

ditional structure: we require additional 1-cells D encoding “source” and E encoding

“endomorphism”. Naturally, we then require 2-cells to allow us to manipulate them.

Though possible to define such structures so that a restriction monad in Span(Set)

can be constructed from any small restriction category, the layering of the extra data

D and E on top of T breaks the correspondence (an arbitrary restriction monad in

Span(Set) does not uniquely determine a small restriction category). Instead, we will

define restriction structure within the monad; we will assume that B has an object E

which in some senses allows to to “choose elements”. We will then define the restric-

tion structure locally within the hom-category B(E, x). In Span(Set), E turns out to

be a(ny) single element set.

Suppose that X is a small restriction category. For each element A of X0, we can
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define a span A⃗ : {∗} | →→X0 by

{∗}
id
↙↙

A
↘↘

{∗} X0

.

Composing such a span with T, then is of the form

{∗}A×sX1
id
←←

tπ1
→→{∗} X0

;

that is, the composite TA⃗ contains as data all arrows of X with source A. Given

another object B ∈ X0, a span morphism f : B⃗ | →→TA⃗, of the form

{∗}
id

←←

B

→→
f

↓↓

{∗} X0

{∗}A×sX1

π1

←←

tπ2

→→

is therefore equivalent to the choice of an arrow f in X whose source is A and

whose target is B; the hom-set Span(Set)({∗},X0)(B⃗, T A⃗) may be identified with

the hom-set X(A,B). Such an identification seems, at first, a needlessly complicated

workaround to accessing the elements of T. However, this identification allows us to

define the restriction operator ρ as a family of set functions

ρA,B : Span(Set)({∗},X0)(B⃗, T A⃗) → Span(Set)({∗},X0)(A⃗, T A⃗)
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of arrows f : A → B to arrows ρ(f) : A → A, which has the immediate advantage of all

activity happening within the same hom-category Span(Set)({∗},X0) and eliminating

our typing problems. Because the hom-categories of a bicategory are hom-categories,

we can take advantage of the familiar diagonal ∆X : X → X × X and canonical flip

τX,Y : X × Y ∼= Y ×X afforded by the category of sets.

Identifying Span(Set)({∗},X0)(B⃗, T A⃗) with X(A,B), we must therefore consider

how to “compose” elements of the set

Span(Set)({∗},X0)(B⃗, T A⃗) × Span(Set)({∗},X0)(C⃗, T B⃗).

Noting that such an element is of the form

C | →→ TB

B | →→ TA,

it is not surprising that we define, for all A,B,C ∈ X0, a composition map µ̃ to be

the (Kleisli-inspired) composite

Span(Set)({∗}, X0)(B⃗, T A⃗) × Span(Set)({∗}, X0)(C⃗, T B⃗)

Span(Set)({∗},X0)(T,T )×id

↓↓

Span(Set)({∗}, X0)(TB⃗, TT A⃗) × Span(Set)({∗}, X0)(C⃗, T B⃗)

◦Span(Set)({∗},X0)
TTA⃗,T B⃗,C⃗

↓↓

Span(Set)({∗}, X0)(C⃗, TT A⃗)

Span(Set)({∗},X0)(C⃗,µ)

↓↓

Span(Set)({∗}, X0)(C⃗, T A⃗)
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Describing these concretely first requires an interpretation of the set

Span(Set)({∗},X0)(TB⃗, TT A⃗).

Its elements are span morphisms of the form

{∗} B×s X1
π1

←←

tπ2

→→
f

↓↓

{∗} X0

{∗}A×sπ1(X1 t×s X1)
π1

←←

tπ2π2

→→

and are therefore assignments of arrows f with source B to composable pairs of arrows

with source A and target tf :

(B → C) ↦−→ (A → C ′ → C).

The morphism Span(Set)({∗},X0)(T, T ), then, is defined by

[
f : A → B

]
↦−→

[
(f,−) : (g : B → C) ↦−→ (f : A → B, g : B → C)

]

We can then compute this composite

(f : A → B, g : B → C) ↦→ ((f,−), g) ↦→ (f, g)(g) ↦→ g ◦ f = µ(f, g);

that is, the composition defined by µ coincides with the T -Kleisli composition within

the hom-categories.
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Finally, with the above structures guiding our intuition, we define a restriction

monad in certain bicategories.

Definition 3.1.1. Suppose that B is a bicategory with an involution on 1-cells con-

taining an object E satisfying B(E,E)0 ∼= B0. We call a 1-cell A E-elemental whenever

A∗A ∼= idE.

A restriction monad on x in B is a monad (T, η, µ) on x together with a family

ρA,B : B(E, x)(B, TA) → B(E, x)(A, TA)

of functions indexed by E-elemental one-cells A,B : E → x. Let ∆ be the diagonal

map ∆X : X → X ×X, τX,Y : X × Y ∼= Y ×X (in Set), and define

µ̃A,B,C : B(E, x)(B, TA) × B(E, x)(C, TB) → B(E, x)(C, TA)

by the composite

(
B(E, x)(T, T ) × id

)
.
(

◦B(E,x)
TTA,TB,C

)
.B(E, x)(C, µA).

For every triple of 1-cells A,B,C : E → x, we require that the following diagrams

commute:

(R.1)

B(E, x)(B, TA) ∆ →→ B(E, x)(B, TA) × B(E, x)(B, TA)

ρ×id

↓↓

B(E, x)(B, TA) B(E, x)(A, TA) × B(E, x)(B, TA)
µ̃

←←
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(R.2)

B(E, x)(B, TA) × B(E, x)(C, TA) ρ×ρ
→→

τ

↓↓

B(E, x)(A, TA) × B(E, x)(A, TA)
µ̃
↓↓

B(E, x)(C, TA) × B(E, x)(B, TA)
ρ×ρ
↓↓

B(E, x)(A, TA)

B(E, x)(A, TA) × B(E, x)(A, TA)
µ̃

→→

(R.3)

B(E, x)(B, TA) × B(E, x)(C, TA) ρ×id
→→

ρ×ρ

↓↓

B(E, x)(A, TA) × B(E, x)(C, TA)
µ̃
↓↓

B(E, x)(C, TA)
ρ

↓↓

B(E, x)(A, TA) × B(E, x)(A, TA)
µ̃

→→ B(E, x)(A, TA)
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(R.4)

B(E, x)(B, TA) × B(E, x)(C, TB)
id×ρ

→→

∆×id

↓↓

B(E, x)(B, TA) × B(E, x)(B, TB)

µ̃

↓↓

B(E, x)(B, TA) × B(E, x)(B, TA) × B(E, x)(C, TB)

id×µ̃

↓↓

B(E, x)(B, TA) × B(E, x)(C, TA)

id×ρ

↓↓

B(E, x)(B, TA) × B(E, x)(A, TA)
µ̃.τ

→→ B(E, x)(B, TA)

♢

Proposition 3.1.2. Small restriction categories are in one-to-one correspondence

with restriction monads in Span(Set).

Proof. Consider a monad T on X0 in Span(Set) as above, with its corresponding

category denoted by X. An set E with Span(Set)(E,E) ∼= Set0 is a single element

set and therfore is (bijective to) the intial object in Set. E therefore chooses elements

of sets and an E-element 1-cell is neccesarily of the form A⃗ for some set A. We have

seen that

(1) the ρ maps assign each arrow to an endomorphism on its source,

(2) the hom-sets Span(Set)({∗},X0)(B⃗, T A⃗) can be identified with X(A,B), and

(3) the T -Kleisli composition coincides with µ (that is, composition in X).
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We may then verify that the axioms (R.1) through (R.4) are satisfied, making ρ a

restriction structure on X.

(R.1):

f = µ̃.(ρ× id)(f, f) = µ̃.(ρ(f), f) = f ρ(f)

(R.2):

µ̃.(ρ× ρ).τ(f, g) = µ̃.(ρ× ρ)(g, f) = µ̃.(ρ× ρ)(ρ(g), ρ(f)) = ρ(f) ρ(g)

is equal to ρ(g) ρ(f).

(R.3):

ρ.µ̃.(ρ× id)(f, g) = ρ.µ̃(ρ(f), g) = ρ(g ρ(f))

is equal to ρ(g) ρ(f).

(R.4):

µ.τ.(id × ρ).(id × µ̃).(∆ × id)(f, g) = µ.τ.(id × ρ).(id × µ̃)(f, f, g)

= µ.τ.(id × ρ)(f, gf)

= µ.τ(f, ρ(gf))

= f ρ(gf)
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is equal to

µ.(id × ρ)(f, g) = µ(f, ρ(g)) = ρ(g) f.

Given a small restriction category X, define a restriction monad by the following

data:

• Its 0-cell is X0.

• We define T : X0 X1
s←← t →→X0 .

• We define ρA,B : f ↦→ f.

In this direction, it is immediate that this data comprises a restriction monad and

establishes a one-to-one correspondence between small restriction categories and re-

striction monads in Span(Set).

Proposition 3.1.3. Restriction monads in Set-Mat are in one-to-one correspondence

with small restriction categories.

Proof. Set-Mat (see [3]) is the bicategory whose 0-cells are sets, whose 1-cells are

matrices A → B encoded by functors B × A → Set, and whose 2-cells are matrix

morphisms (matrices of functions defining a componentwise morphism). Composition

of two 1-cells is done by “matrix multiplication”; for matrices A M →→B M ′
→→C , the

composite M ′ ⊗M : A → C is defined componentwise by

(M ′ ⊗M)(c, a) =
∑
b∈B

M ′(c, b) ×M(b, a)
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A monad T : X0 → X0 in Set-Mat then is a matrix encoded by a functor T :

X0 ×X0 → Set. Such monads are well known to be in one-to-one correspondence with

small categories with a set of objects X0 and X(A,B) = T (B,A). The multiplication

maps

µA,B,C :
∑
B∈X0

T (C,B) × T (B,A) → T (C,A)

then encodes composition of composable pairs of arrows, and the unit maps

ηA : A ↦→ 1A ∈ T (A,A)

encode the identity morphisms.

Each object A ∈ X0 can be identified with a (row) matrix A⃗ : {∗} → X0 which is

empty everywhere except at the “Ath” component and {∗} at the “Ath” component.

We note that, similarly to the span case, E will be any one-element set and all

E-elemental 1-cells will be of this form. Then the composite TA⃗ is a row matrix

containing of T (A,B), one for each B ∈ X0. A morphism then from B⃗ to TA⃗ will be

a row vector which is empty except at T (B,A), which can be identified with the set

T (B,A) (and thus X(A,B)) itself.

The family of restriction maps

ρA,B : Set-Mat({∗},X0)(B⃗, T A⃗) → Set-Mat({∗},X0)(A⃗, T A⃗)

then corresponds as above to an assignment of arrows f : A → B to endomorphisms

f := ρ(f) : A → A satisfying the restriction axioms.
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Algebras for Restriction Monads

In this section, we define an algebra for a restriction monad. Much like the monads,

we must be able to keep track of “sources” so that we can define “restrictions” on those

sources. We must also have ways of taking diagonals of “elements” of our algebras

and generalized structure maps to move between these structures.

Suppose that T is an ordinary monad in Span(Set) and that X is its corresponding

small category. Recall that algebras (S, h) for T are in correspondence with a class of

right-X modules on the apex set of S = X0 M
a←← b →→Y with the action given by

h : ST ⇒ S

X1 t×aM
sπ1
←←

bπ2
→→

h

↓↓

X0 Y

M
a

←←

b

→→

by defining α · f = h(f, α) for all (f, α) ∈ X1 t×aM.

Similarly to how we identify the hom-set Span(Set)({∗},X0)(B⃗, T A⃗) with X(A,B),

we identify Span(Set)({∗}, Y )(B⃗, SA⃗) with the module set S(B,A). This identifica-

tion allows us to define a restriction operator r as a family of set functions

rA,B : Span(Set)({∗}, Y )(B⃗, SA⃗) → Span(Set)({∗},X0)(A⃗, T A⃗)

of module elements α : A | →→B to arrows r(α) : A → A. We will require that each

r(α) is a restriction idempotent of X and we will therefore require that Im(rA,B) ⊆

∪A′:1→xIm(ρA,A′).

Identifying Span(Set)({∗}, Y )(B⃗, SA⃗) with S(B,A), we must therefore consider
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how to “h-act” with elements of the set

Span(Set)({∗},X0)(A⃗, T A⃗′) × Span(Set)({∗}, Y )(B⃗, SA⃗)

We define, for all A,B,C ∈ X0, an h-action map h̃ to be the composite

Span(Set)({∗}, X0)(A⃗, T A⃗′) × Span(Set)({∗}, Y )(B⃗, SA⃗)

Span(Set)({∗},SX0)(S,S)×id

↓↓

Span(Set)({∗}, Y )(SA⃗, ST A⃗′) × Span(Set)({∗}, Y )(B⃗, SA⃗)

◦Span(Set)({∗},Y )
STA⃗′,SA⃗,B⃗

↓↓

Span(Set)({∗}, Y )(B⃗, ST A⃗′)

Span(Set)({∗},Y )(B⃗,h)

↓↓

Span(Set)({∗}, Y )(B⃗, SA⃗′)

Describing these concretely first requires an interpretation of the set

Span(Set)({∗}, Y )(SA⃗, ST A⃗′).

Its elements are span morphisms of the form

{∗} A×aM
π1

←←

bπ2

→→

↓↓

{∗} Y

{∗}A′×sπ1(X1 t×aM)
π1

←←

bπ2π2

→→

and are therefore assignments of elements α ∈ M with source A to actionable pairs
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with source A′ and target bα :

(A | →→B ) ↦−→ (A′ → A | →→B ).

The morphism Span(Set)({∗}, SX0)(S, S), then, is defined by

[
f : A′ → A

]
↦−→

[
(f,−) : (α : A | →→B ) ↦−→ (f, α)

]

We can then compute this composite

(f : A′ → A,α : A | →→B ) ↦→ ((f,−), α)) ↦→ (f, α) ↦→ α · f = h(f, α);

that is, the action defined by h coincides with the h̃ action within the hom-categories.

Definition 3.1.4. Suppose that B is a bicategory with an involution on 1-cells con-

taining an object E satisfying B(E,E)0 ∼= B0.

An algebra for a restriction monad (T, η, µ, ρ) on x in B is an algebra (S, h) for

(T, η, µ) together with a family rA,B : B(E, y)(B, SA) → B(E, x)(A, TA) of func-

tions, indexed by 1-cells of the form A : 1 → x and B : 1 → y, with Im(rA,B) ⊆

∪A′:1→xIm(ρA,A′). Define

h̃A′,A,B : B(E, x)(A, TA′) × B(E, y)(B, SA) → B(E, y)(B, SA′)

by the composite

(
B(1, Sx)(S, S) × id

)
.
(

◦B(E,y)
STA′,SA,B

)
.B(E, y)(B, hA′)
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For every triple of 1-cells A,B,C : E → x, we require that the following diagrams

commute:

(R.1)

B(E, y)(B, SA) ∆ →→ B(E, y)(B, SA) × B(E, y)(B, SA)

r×id

↓↓

B(E, y)(B, SA) B(E, x)(A, TA) × B(E, y)(B, SA)
h̃

←←

(R.3)

B(E, y)(B, SA) × B(E, y)(B′, SA) r×id
→→

r×r

↓↓

B(E, x)(A, TA) × B(E, y)(B′, SA)

h̃
↓↓

B(E, y)(B′, SA)
r

↓↓

B(E, x)(A, TA) × B(E, x)(A, TA)
µ̃

→→ B(E, x)(A, TA)

(R.4)

B(E, x)(B, TA) × B(E, x)(C, TB) id×r
→→

∆×id
↓↓

B(E, x)(B, TA) × B(E, x)(B, TB)

µ̃

↓↓

B(E, x)(B, TA) × B(E, x)(B, TA) × B(E, x)(C, TB)

id×h̃
↓↓

B(E, x)(B, TA) × B(E, x)(C, TA)
id×r

↓↓

B(E, x)(B, TA) × B(E, x)(A, TA)
µ̃.τ

→→ B(E, x)(B, TA)
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♢

The restriction algebra constructed for a restriction monad T in Span(Set) corre-

sponding to a small restriction category X can therefore be considered as a right-X

module on a set together with some restriction structure (with respect to the action).

We call such a structure a restriction module.

3.2 Restriction Modules

Definition 3.2.1. A restriction (left Y-, right X-bi)module φ : X | →→Y is a collec-

tion

{φ(y, x) : y ∈ Y0, x ∈ X0}

of sets indexed by the objects of X and Y together with:

• for all objects y, y′ ∈ Y and x, x′ ∈ X, a pair of action maps

λφy′,y,x : Y(y, y′) × φ(y, x) −→ φ(y′, x)

ρφy,x,x′ : φ(y, x) × X(x′, x) −→ φ(y, x′)

(subscripts will be omitted when no ambiguity exists) such that the following

diagrams commute:

(Mod.1) (Associativity Laws)

Y(y, y′) × Y(y′, y′′) × φ(y, x) 1×λ
→→

◦×1
↓↓

Y(y′, y′′) × φ(y′, x)
λ
↓↓

Y(y, y′′) × φ(y, x)
λ

→→ φ(y′′, x)
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φ(y, x) × X(x′′, x) × X(x, x′) ρ×1
→→

1×◦
↓↓

φ(y, x′′) × X(x′′, x′)
ρ

↓↓

φ(y, x) × X(x′′, x) ρ
→→ φ(y, x′′)

Y(y, y′) × φ(y, x) × X(x′, x) λ×1
→→

1×ρ
↓↓

φ(y′, x) × X(x′, x)
ρ

↓↓

Y(y, y′) × φ(y, x′)
λ

→→ φ(y′, x′)

(Mod.2) (Unit Laws)

Y0 × φ(y, x) u×1
→→ Y(y, y) × φ(y, x)

λ
↓↓

φ(y, x)
y×−

←←
φ(y, x) × X(x, x)

ρ

↓↓

φ(y, x) × X0
1×u
←←

φ(y, x)
−×x

→→

We will write both λ(g, α) and ρ(α, f) using the dot notation g · α and α · f.

• a map assigning each α ∈ φ(y, x) to some α : x → x in X satisfying:

(RMod.0) for each α ∈ φ(y, x), α is a restriction idempotent of X.

(RMod.1) for each α ∈ φ(y, x), α · α = α;

(RMod.3) for each α ∈ φ(y, x) and β ∈ φ(y′, x), α · β = α ◦ β;

(RMod.4) (a) for each α ∈ φ(y, x) and f : x′ → x in X, α ◦ f = f ◦ α · f ;

(b) for each α ∈ φ(y, x) and g : y → y′ in Y, g · α = α · g · α. ♢

Note the omission of (RMod.2); since (RMod.0) requires that the restrictions

must be restriction idempotents in the source category, the idempotents must already

commute.
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Proposition 3.2.2. Let X be a small restriction category and let (T, η, µ, ρ) denote

its corresponding restriction monad in Span(Set). An algebra

(S = X0 M
a←← b →→Y , h, r)

corresponds to a right-X restriction module, whose right X-action is defined by h-

evaluation. Y is a set viewed as a discrete category.

Proof. We will define a right X-restriction module

φ : X | →→ Y

by

φ(B,A) = {α ∈ M | aα = A, bα = B} = Span(Set)({∗}, Y )(B⃗, SA⃗)

That the h-maps are span morphisms will force any well defined action to be

contained in some φ(y, x). We use the dot notation to denote the evaluation of the

h-maps, which will be the right action of X on M. We define the restriction of each

element α ∈ M by α = rA,B(α) ∈ Im(ρA,B). (RMod.0) is then satisfied by definition,

since Im(ρ) contains exactly the restriction idempotents of X. We prove now that the

remaining restriction axioms are satisfied.
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(RMod.1) The commutativity of

B(E, y)(B, SA) ∆ →→ B(E, y)(B, SA) × B(E, y)(B, SA)

r×id

↓↓

B(E, y)(B, SA) B(E, x)(A, TA) × B(E, y)(B, SA)
h̃

←←

implies that, for all α ∈ M,

α = h̃.(r × id).∆(α) = h̃.(r × id).(α, α) = h̃.(r(α), α) = α · α

(RMod.3) The commutativity of

B(E, y)(B, SA) × B(E, y)(B′, SA) r×id
→→

r×r

↓↓

B(E, x)(A, TA) × B(E, y)(B′, SA)

h̃
↓↓

B(E, y)(B′, SA)
r

↓↓

B(E, x)(A, TA) × B(E, x)(A, TA)
µ̃

→→ B(E, x)(A, TA)

implies that, for all α, β ∈ B with aα = aβ, µ̃.(r × r)(α, β) = α ◦ β is equal to

r.h̃.(r × id)(α, β) = r.h̃(r(α), β) = r(β · r(α)) = β · α
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(RMod.4) The commutativity of

B(E, x)(B, TA) × B(E, x)(C, TB) id×r
→→

∆×id
↓↓

B(E, x)(B, TA) × B(E, x)(B, TB)

µ̃

↓↓

B(E, x)(B, TA) × B(E, x)(B, TA) × B(E, x)(C, TB)

id×h̃
↓↓

B(E, x)(B, TA) × B(E, x)(C, TA)

id×r
↓↓

B(E, x)(B, TA) × B(E, x)(A, TA)
µ̃.τ

→→ B(E, x)(B, TA)

implies that, for all f ∈ X1 and α ∈ M with aα = tf,

µ̃.(id × r)(f, α) = µ̃(f, r(α)) = α ◦ f

µ̃.τ.(id × r).(id × h̃).(∆ × id)(f, α) = µ̃.τ.(id × r).(id × h̃)(f, f, α)

= µ̃.τ.(id × r)(f, α · f)

= µ̃.τ(f, r(α · f))

= f ◦ α · f

We end this section with a short discussion on restriction presheaves, as introduced

by Lin in his thesis and detailed in a recent preprint [17].

Definition 3.2.3. Let X be a restriction category. A restriction presheaf on X is a

contravariant functor P : Xop → Set together with a family of restriction assignments

P (x) → X(x, x) : f ↦→ f
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satisfying

(A0) f is a restriction idempotent of X;

(A1) P (f)(f) = f ;

(A2) P (f)(g) = g ◦ f, where f : x → x is a restriction idempotent in X;

(A3) g ◦ f = f ◦ P (f)(g), for each f : y → x in X. ♢

Proposition 3.2.4. Given one of Lin’s restriction presheaves P on X, one can con-

struct a right-X restriction module.

Proof. Define φ : X | →→{∗} by φ(y, x) = P (x).

The action is defined, as usual, by x · f = P (f)(x) and the assignment of each

α ∈ φ(∗, x) to some α : x → x in X is given by Lin’s family P (x) → X(x, x) of

restriction assignments, which will then satisfy the conditions making φ a restriction

module.

3.3 Future Work

The constructions of restriction monads from small restriction categories and vice

versa detailed in this chapter are defined only on the objects of (what we would

suppose to be) the categories of interest. These constructions are unfortunately not

functorial (not even in the ordinary case, without a restriction structure), since the

maps between monads do not give functors between their corresponding categories

(unless they each have the same set of objects). To make these constructions func-

torial, one needs to keep track of how the source and target 0-cells are interacting.
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Indeed, this construction is functorial when defined on the double category of spans

[15]. While the conversion of this bicategorical definition into double monads and

double categories is straightforward, future work includes attempting to take advan-

tage of this additional information and define the right double categorical definition

in the hope that the 2-cell ρ can be defined a little more cleanly and to establish an

adjunction (or similar) in the appropriate setting.

In the longer term, I would like to sort out the algebraic structure of restriction al-

gebras for arbitrary restriction monads. This is certainly open-ended and exploratory,

but following are three short-term goals for applying this framework.

Question. A restriction monad in Span(Set) is a small restriction category. This

leads immediately to questioning how similar structures are related: Is an ordinary

monad in rCat a restriction monad? Is an ordinary monad in Span(rCat) a restriction

category?

Question. The work of Cockett and Cruttwell [8] introduces the data of a restriction

tangent bundle, which gives a categorical model of differentiation in a suitable abstract

setting. A tangent bundle is a restriction endofunctor equipped with some structure

reminiscent of a structured comonad (in the appropriate setting). I would like to

know how much of the restriction structure can be moved into the comonad.

Question. Partially invertible computation has been modelled recently by Giles [18]

using Cartesian inverse categories. I would like to better understand the role that

the Cartesian structure plays in computation, and how this model compares to a

restriction monad on an inverse category.



Chapter 4: Geometry and Topology

This chapter explores the equipment of certain restriction categories with topological

structure. We show that any inverse category is equivalent to what we call a top-

heavy locally inductive groupoid and this groupoid can be naturally equipped with

what Lawson calls an Ehresmann topology.

4.1 Ehresmann-Schein-Nambooripad Theorem

The Ehresmann-Schein-Nambooripad (ESN) Theorem asserts the existence of an

equivalence between the category of inverse semigroups (with semigroup homomor-

phisms) and the category of (inductive) ordered groupoids (with inductive functors).

A groupoid is called ordered in this context if there is a compatible (functorial) order

on both objects and arrows with a notion of restriction on the arrows such that an

arrow f : A → B has a unique restriction f ′ : A′ → B′ with f ′ ≤ f for any object

A′ ≤ A. For the precise definition see Definition 4.1.1, but a cateogry theorist may

like to think of these as groupoids internal to the category of posets with some ad-

ditional properties. Ordered functors between these are functors that preserve the

order. Furthermore, an ordered groupoid is called inductive when the objects form a

meet-semilattice and an ordered functor is inductive when it preserves the meets. The

correspondence of the ESN Theorem is directly extendable to inverse semigroups and

prehomomorphisms when one takes ordered functors, rather than inductive functors,

between the inductive groupoids.

This theorem has been extended to various larger classes of semigroups such as

regular semigroups [35, 36, 37], two-sided restriction semigroups (also called Ehres-

mann semigroups) [29] and more general restriction groups [20] with either semigroup

43
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homomorphisms or ∧- or ∨-prehomomorphisms. The main ideas in this context have

focused on either changing the requirement for a meet-semilattice structure to a dif-

ferent order structure on the objects of the groupoid, or on generalizing to inductive

categories rather than groupoids.

Our approach here is to generalize this equivalence in a different direction. Semi-

groups can be viewed as single-object semicategories and we want to obtain a ‘multi-

object’ version of the correspondence. As groupoids can be thought of as the multi-

object version of groups, we think of inverse categories as a multi-object version of

inverse semigroups. In this thesis, we prove a new generalization of the ESN theorem

which extends the result to inverse categories. Since we are generalizing the concept

of inverse semigroup, we will remain within the category of groupoids. They will

still be ordered, but the order structure will only be locally inductive in a suitable

sense: the objects need to form a disjoint union of meet-semilattices. Since inverse

categories have identities, we further require that the meet-semilattices have a top-

element. If we instead generalize to inverse semicategories, this last requirement is

not needed. Locally inductive functors, ordered functors that preserve all meets that

exist, will correspond to functors of inverse semicategories (Corollary 4.2.16). We will

also show that the category of inverse categories and oplax functors is equivalent to the

category of top-heavy locally inductive groupoids and ordered functors, generalizing

the classical result that the category of inverse semigroups and prehomomorphisms

is equivalent to the category of inductive groupoids and ordered functors (Theorem

4.2.19).

The groupoid we construct for an inverse category was independently considered

in the work of Linckelmann [30] on category algebras. Linckelmann observes that
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this groupoid has the same category algebra as the original inverse category, giving

the category algebra of an inverse category the structure of a groupoid algebra: a

groupoid algebra over a commutative ring is a direct product of matrix rings. In

this thesis, we introduce this groupoid with an ordered structure and observe the

important characterizing properties of the order structure to obtain an equivalence

of categories between the category of inverse categories and the category of these

top-heavy locally inductive groupoids.

From the semigroup perspective, this raises the question of whether there are

appropriate multi-object versions of the other classes of semigroups mentioned above

which then may be shown to be equivalent to appropriate versions of locally inductive

categories.

Ordered Groupoids

Inductive groupoids are a class of groupoids whose arrows are equipped with a partial

order satisfying certain conditions and whose objects form a meet-semilattice. Charles

Ehresmann used ordered groupoids to model pseudogroups while inverse semigroups

(introduced by Gordon Preston [38]) were concurrently used as an alternate model

for pseudogroups. Ehresmann was certainly aware of the connection between ordered

(inductive) groupoids and inverse semigroups, as it was Ehresmann who first intro-

duced the tensor product required to make the correspondence work. Boris Schein

[39] made this connection explicit, requiring that the set of objects form a meet-

semilattice, thus guaranteeing the existence of this tensor product for all arrows of

the groupoid. K.S.S. Nambooripad [35, 36, 37] independently developed the theory
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of so-called regular systems and their correspondence to so-called regular groupoids.

This theory is, in fact, more general and specializes to the correspondence between

inverse semigroups and inductive groupoids. A more detailed history of inverse semi-

groups, inductive groupoids and their applications can be found in Hollings’ [19]. In

this section, we present the modern exposition of this correspondence, which can be

found in Mark Lawson’s book [26], where these constructions and their equivalence

were first explicitly given.

Definition 4.1.1. A groupoid G is said to be an ordered groupoid whenever there is

a partial order ≤ on its arrows satisfying the following four conditions:

(i) For each arrow f, g ∈ G, f ≤ g implies f−1 ≤ g−1.

(ii) For all arrows a,A, b, B ∈ G such that a ≤ A, b ≤ B and the composites ab and

AB exist, ab ≤ AB.

(iii) For each arrow f : A′ → B in G and each object A ≤ A′ in G, there exists

a unique restriction of f to A, denoted [f |∗A], such that dom[f |∗A] = A and

[f |∗A] ≤ f.

(iv) For each arrow f : A → B′ in G and objects B ≤ B′ in G, there exists a

unique corestriction of f to B, denoted [B ∗|f ], such that cod[B ∗|f ] = B and

[B ∗|f ] ≤ f.

An ordered groupoid is said to be an inductive groupoid whenever its objects form a

meet-semilattice. ♢

Though it is sometimes convenient to explicitly give both the restrictions and
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corestrictions in an ordered groupoid, the following proposition makes it necessary

only to include one of them in any proofs.

Proposition 4.1.2 ([26]). In Definition 4.1.1, conditions (iii) and (iv) are equivalent.

Definition 4.1.3. Let G be an ordered groupoid with arrows α, β ∈ G. If dom(α) ∧

cod(β) exists, the tensor product α⊗ β of α and β is defined as

α⊗ β = [α |∗ dom(α) ∧ cod(β)][dom(α) ∧ cod(β) ∗| β]. ♢

Proposition 4.1.4 ([26]). Let G be an inductive groupoid. This tensor product is

associative and admits pseudoinverses given by the inverses in the inductive groupoid,

making (G1,⊗) an inverse semigroup.

Proof sketch. For any pair of arrows in G, one can show that the set

⟨α, β⟩ = {(α′, β′)| cod(α′) = dom(β′), α′ ≤ α, β′ ≤ β}

contains a unique maximal element (α′, β′) with α ⊗ β = β′ ◦ α′. Since defined by

composition, this tensor product is therefore associative.

Proposition 4.1.5. For all objects A ≤ B of an ordered groupoid, [1B |∗ A] = 1A =

[A ∗| 1B].

Proof. The partial order on arrows induces the partial order on the objects of an

ordered groupoid. Since an object of a category is identified by the identity arrow
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on that object, we have that 1A ≤ 1B. Since the (co)domain of 1A is A, we have

[1B |∗ A] = 1A = [A ∗| 1B] by the uniqueness of (co)restrictions

Definition 4.1.6. A morphism F : G → H of ordered groupoids (an ordered functor)

is a functor such that, for all arrows f ≤ g in G, F (f) ≤ F (g) in H. An ordered functor

between inductive groupoids is said to be inductive whenever it preserves the meet

structure on objects. ♢

Notation. We denote the category of ordered groupoids and ordered functors by

oGrpd and the category of inductive groupoids and inductive functors by iGrpd.

We will now briefly review Lawson’s description of functorial constructions that

form the equivalence of categories between the category of inverse semigroups and the

category of inductive groupoids. We remind the reader that full details can be found

in [26].

Construction 4.1.7 (Inverse Semigroups to Inductive Groupoids). Given an inverse

semigroup (S, •), define an inductive groupoid G(S) with the following data:

• Objects: G(S)0 = E(S), the idempotents in S. Since S is an inverse semigroup,

E(S) is a meet-semilattice with meets given by the product in S.

• Arrows: For each element s ∈ S, there is an arrow s : s•s → ss• (we remind

the reader that s• denotes the partial inverse of s). Composition is given by

multiplication in S and identities are the elements of E(S).

• Inverses: For each arrow s : s•s → ss• in G(S), define s−1 = s•, its pseudoinverse

in S.
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• The partial order on arrows is given by the natural partial order (s ≤ t if and

only if s = te for some idempotent e) on the elements of S. It can be checked

that this partial order satisfies conditions (i) and (ii) of an ordered groupoid.

• The (co)restrictions are also given by multiplication in S. This can be checked

to satisfy condition (iii) of an ordered groupoid. ♢

Construction 4.1.8 (Inductive Groupoids to Inverse Semigroups). Given an induc-

tive groupoid (G,≤), define an inverse semigroup S(G) whose elements are the arrows

of G and whose multiplication is given by the tensor product. This is an inverse semi-

group operation with inverses those from G (Proposition 4.1.4). ♢

Theorem 4.1.9 (ESN, [26]). The constructions G and S are functorial and form an

equivalence of categories

iGrpd
S →→ iSgp
G
←←

4.2 Ehresmann-Schein-Nambooripad Theorem for Inverse Categories

In this section, we introduce the notion of top-heavy locally inductive groupoids:

ordered groupoids whose objects may be partitioned into meet-semilattices, each of

which contain a top element. We will then give functorial constructions of top-heavy

locally inductive groupoids from inverse categories, and vice versa. These construc-

tions will then be seen to give an equivalence of categories between iCat and tliGrpd

(the category of top-heavy locally inductive groupoids). The identities of an inverse

category are seen to correspond to the tops of the meet-semilattices in a top-heavy
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locally inductive groupoid and the equivalence can thus be immediately generalized to

an equivalence between the category of inverse semicategories and semifunctors and

the category of locally inductive groupoids and locally inductive functors. Finally, we

end this section with a short discussion of a categorical analogue of the classical result

in semigroup theory that the category of inverse semigroups and prehomomorphisms

is equivalent to the category of inductive groupoids and ordered functors. Explicitly,

we show that the category of inverse categories and oplax functors is equivalent to

the category of top-heavy locally inductive groupoids and ordered functors.

Definition 4.2.1. Let A be an object of a restriction category X. Let EA denote the

set of restrictions of all endomorphisms on A. That is,

EA =
{
f : A → A|f : A → A ∈ X

}
. ♢

Notice that, for any f : A → B in X, we have f : A → A ∈ EA, since f = f. The

reason for specifying that the restrictions in EA come from endomorphisms in X, then

serves no use further than simply reminding us that the equivalence we are trying to

establish here is based on the observation that an inverse category is, at each object,

an inverse semigroup (with identity).

Proposition 4.2.2. For each object A of a restriction category X, EA is a meet-

semilattice with meets given by a ∧ b = ab. In addition, EA has top element 1A.

Proof. First of all, EA is a poset with the natural partial order inherited from X. We

now show that EA has finite meets given by a ∧ b = ab :
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• First, it is a lower bound:

a a ∧ b = a ab = a ab = a b = a ∧ b

and thus a ∧ b ≤ a. Similarly, a ∧ b ≤ b.

• This lower bound is unique up to isomorphism (equality): suppose that d is

such that d ≤ a, d ≤ b and a ∧ b ≤ d. Then

d = a d = a b d = d a b = d a ∧ b = a ∧ b.

Finally, since 1A = 1A, 1A ∈ EA. Also, given any f : A → A, 1Af = f and thus

f ≤ 1A and 1A is the top element of EA.

Proposition 4.2.3. For each pair of objects A and B of a restriction category X, if

A ̸= B, then

EA ∩ EB = ∅.

Proof. If f ∈ EA ∩ EB, then A = dom
(
f
)

= B.

We may now give the (functorial) constructions giving an equivalence between the

category of top-heavy locally inductive groupoids and inverse categories.

Construction 4.2.4. Given an inverse category
(
X, ◦, (−)

)
, define a groupoid

(G(X), •,≤) with the following data:

• Objects: G(X)0 =
∐

A∈X0

EA.
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• Arrows: Every arrow in G(X) is of the form f : fA → f ◦
B for each arrow

f : A → B in X.

– Composition: for arrows f : f → f ◦ and g : g → g◦ with f ◦ = g, we define

their composite g • f : f → g◦ in G(X) to be their composite in X. This

composite is indeed an arrow, for

gf = gf = f ◦f = f

and

(gf)◦ = f ◦g◦ = f ◦g◦ = gg◦ = g◦.

– Identities: For any object f : A → A in G(X), define 1f = f (which is well-

defined since f = f). The identity then satisfies the appropriate axiom:

for each g : g → g◦ with g = f and g◦ = f ◦, we have f ◦g = g◦g = g and

gf = gg = g.

– Inverses: Given an arrow f : f → f ◦, define f−1 : f ◦ → f to be f ◦, the

unique restricted inverse of f from X’s inverse structure. The composites

are ff ◦ = f ◦ = 1f◦ and f ◦f = f = 1f as required. ♢

Definition 4.2.5. An ordered groupoid is said to be a locally inductive groupoid

whenever there is a partition {Mi}i∈I of G0 into meet-semilattices Mi with the prop-

erty that any two comparable objects be in the same meet-semilattice Mi. A locally

inductive groupoid is said to be top-heavy whenever each meet-semilattice Mi admits

a top-element ⊤i. ♢
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Note. The requirement that any two comparable objects of a locally inductive groupoid

be in the same meet-semilattice corresponds to our intuition that if the meet A ∧ B

of two objects A and B exists in Mi, then A and B, both sitting above this meet,

should also be elements of Mi.

Definition 4.2.6. An ordered functor between locally inductive groupoids is said to

be locally inductive whenever it preserves all meets that exist. In particular, a locally

inductive functor will preserve empty meets and thus top elements and there is no

requirement to define so-called “top-heavy locally inductive functors”. ♢

Notation. We denote the category of locally inductive groupoids and locally induc-

tive functors by liGrpd and the category of top-heavy locally inductive groupoids

and locally inductive functors by tliGrpd.

Proposition 4.2.7. For each inverse category X, G(X) is a top-heavy locally induc-

tive groupoid.

Proof. Recall that the partial order on the objects f in G(X) is that which is induced

by the partial order on the arrows of X. That is, f ≤ g if and only if f = gf = gf. We

now prove that this partial order gives G(X) the structure of an ordered groupoid:

(i) Suppose that f and g are arrows in G(X) with f ≤ g. That is, we suppose that

gf = f (since these are also arrows in X). Then

f ◦ = (gf)◦ = f
◦
g◦ = fg◦ = fg◦gg◦ = g◦gfg◦

= g◦gf fg◦ = g◦gf f
◦
g◦ = g◦gf(gf)◦ = g◦ff ◦

= g◦f ◦
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and thus f−1 = f ◦ ≤ g◦ = g−1.

(ii) This follows directly from Proposition 2.0.4.

(iii) Given an arrow α : α → α◦ with an object e ≤ α, we define the restriction [α|∗e]

of α to e to be αe. This is indeed an arrow whose domain is e : αe = α e = e.

Also, ααe = αα e = αe, so that αe ≤ α.

If β ≤ α is any other arrow with dom(β) = e, we have αβ = β and β = e, so

that β = αe and thus [α|∗e] as defined is unique.

(iv) Given an arrow α : α → α◦ with an object e ≤ α◦, we define the corestriction

[e ∗|α] of α to e to be eα. This is indeed an arrow whose codomain is e : (eα)◦ =

α◦e = a◦ e = e.

Also, αeα = αeα = α(eα)◦eα = αα◦e◦eα = e◦eαα◦α = eα, so that eα ≤ α.

If β ≤ α is any other arrow with cod(β) = e, we have β◦ ≤ α◦ (property (i) of

ordered groupoids) and thus α◦β◦ = β◦ and β◦ = e, so that β◦ = α◦e = (eα)◦

and thus [e ∗|α] as defined is unique.

Given the choice of objects for G(X), it follows immediately from Propositions 4.2.2

and 4.2.3 that G(X) is a top-heavy locally inductive groupoid.

The composition in G(X) of f and g exists exactly when f = g◦ and is defined

by the composition in X. The tensor product in G(X) is a natural extension of this

composition in the sense that it exists whenever the meet f ∧ g◦ exists. This lemma

shows that this extension is also defined by the composition in X.
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Lemma 4.2.8. If X is an inverse category, then in G(X) the tensor products (when

defined) are given by composition in X :

f ⊗ g = fg.

Proof. Recall that, for any arrow f in X, dom(f) = f and cod(f) = f ◦. Then

f ⊗ g = [f |∗ dom(f) ∧ cod(g)] [dom(f) ∧ cod(g) ∗| g]

=
[
f |∗ f ∧ g◦

] [
f ∧ g◦ ∗| g

]
=
[
f |∗ f g◦

] [
f g◦ ∗| g

]
= ff g◦ f g◦g = ff g◦g = fg

Proposition 4.2.9. Locally inductive functors preserve tensors.

Proof. This follows immediately from the definition of a locally inductive functor

and the fact that any ordered functor preserves restrictions and corestrictions [26,

Proposition 4.1.2(1)].

Proposition 4.2.10. For each functor F : X → Y between inverse categories, there

exists a locally inductive functor G(F ) : G(X) → G(Y).

Proof. We claim that F : X → Y induces a locally inductive functor G(F ) between

the groupoids G(X) and G(Y). Since F is a functor of inverse categories, we have, for

each f in X, that Ff = F (f) is a restriction idempotent in Y. We can then define,

for any object f in G(X), G(F )(f) = Ff and this is a well-defined object function.

Given an arrow f : f → f ◦ in G(X), we define

G(F )(f) :=
[
F (f) : F

(
f
)

→ F
(
f ◦
)]

=
[
F (f) : F (f) → F (f ◦)

]
.
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We check that this is indeed an arrow in G(Y). Clearly, F (f) has the correct domain.

We check, then, that it has the correct codomain; that is, we verify that (F (f))◦ =

F (f ◦). By Lemma 2.0.13(iv), (F (f))◦ = F (f ◦). It follows, then, that (F (f))◦ = F (f ◦)

and thus F is well defined on arrows.

Since the objects of G(X) are specific arrows in X and the composition in G(X)

is, when defined, given by composition in X, the functoriality of G(F ) follows from

the functoriality of F.

We check now that F is an ordered functor. That is, we must check that F

preserves partial orders. Suppose that f ≤ g are arrows in G(X). Then gf = f and

thus

F (g)F (f) = F (g)F (f) = F (gf) = F (f).

Therefore, F (f) ≤ F (g) in G(Y) and F is an ordered functor.

Finally, we verify that F is a locally inductive functor. If a ∧ b exists in G(X),

then a and b are endomorphisms on the same object and are thus composable and

in the same meet-semilattice. Then, by the functoriality of F, F
(
a ∧ b

)
= F

(
a b
)

=

F (a)F
(
b
)

= F (a) ∧ F
(
b
)
.

Corollary 4.2.11. Construction 4.2.4 is the object function of a fully faithful functor

G : iCat → tliGrpd.

Proof. By the proof of Proposition 4.2.10, G is clearly a faithful functor.

Let X and X′ be inverse categories and suppose that F : G(X) → G(X′) is a

locally inductive functor. We seek, then, a functor F ′ : X → X′ with G(F ′) = F.

For any two restriction idempotents e and f in EA, we have F (e ∧ f) = Fe ∧ Ff

since F is locally inductive. This implies that Fe and Ff are X′-endomorphisms on
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the same object and thus F (EA) ⊆ EB for some object B ∈ X′. So we can define, for

each object A ∈ X, F ′(A) to be the object in X′ satisfying F (EA) ⊆ EF ′(A) in G(X′).

Given any arrow f : A → B in X, we must define an arrow F ′(f) : F ′(A) → F ′(B)

in X′. We know that f corresponds to the arrow f : f → f ◦ in G(X), whose image

under F is F (f) : Ff → Ff ◦ in G(X′). Since Ff ∈ F (EA) and Ff ◦ ∈ F (EB), this

F (f) corresponds to an arrow F ′(f) : F ′(A) → F ′(B) in X′.

Clearly, identity arrows in X, corresponding to identity arrows in G(X) and

mapped to identities in G(X′) under F, will be mapped to identities in X′ under

F ′. We check that composition is preserved. Suppose that f and g are arrows whose

composite gf exists in X. Both g and f correspond, then, to arrows g : g → g◦ and

f : f → f ◦, respectively, in G(X). Notice that the composite gf does not necessarily

exist (as an arrow) in G(X), but that, since g, f ◦ ∈ EB, the tensor g⊗f does and that

this tensor product uniquely corresponds to gf by Proposition 4.2.8. By Proposition

4.2.9 (since F preserves meets), then, F (g⊗ f) = F (g) ⊗F (f) and, again by Lemma

4.2.8 and the definition of F ′, corresponds to F ′(g)F ′(f).

Construction 4.2.12. Given a top-heavy locally inductive groupoid

(G, •,≤, {Mi}i∈I) , define an inverse category
(
I(G), ◦, (−)

)
with the following data:

• Objects: The objects are the meet-semilattices Mi.

• Arrows: I(G)(M1,M2) = {f : A1 → A2 in G |A1 ∈ M1, A2 ∈ M2}. Note that

every object of G is in some Mi, and the Mi are disjoint, so that every arrow in

G will be found in exactly one of these hom-sets.

– Composition: A composable pair of arrows f : M1 → M2 and g : M2 → M3

in I(G), corresponds to a pair of arrows f : A1 → A2 and g : A′
2 → A3 in G
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with A1 ∈ M1, A2, A
′
2 ∈ M2 and A3 ∈ M3. Since M2 is a meet-semilattice,

the meet A2 ∧A′
2 exists. We can therefore define the composite of f with g

as g◦f = g⊗f = [g |∗ A2 ∧A′
2][A2 ∧A′

2 ∗| f ]. This composition is associative

by Proposition 4.1.4.

– Identities: For each objectM1, define 1M1 : M1 → M1 to be 1⊤1 = ⊤1 → ⊤1

in G. Let f : M1 → M2 be an arrow corresponding to f : A1 → A2 in G.

Note that [1⊤1 |∗ A1 ∧ ⊤1] = 1A1 by Proposition 4.1.5. Then

f ◦ 1⊤1 = [f |∗ A1 ∧ ⊤1] • [A1 ∧ ⊤1 ∗| 1⊤1 ] = [f |∗ A1] • 1A1 = f.

Similarly, 1⊤2 ◦ f = f.
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– Restrictions: Given an arrow f : M1 → M2 corresponding to an arrow

f : A1 → A2 in G, define f : M1 → M1 by f = 1A1 : A1 → A1. Conditions

(R.1) – (R.4) saying that I(G) is a restriction category follow readily from

the fact that all restriction idempotents are identities on some object in G

and that restrictions in an ordered groupoid are unique.

– Partial Isomorphisms: For each arrow f : M1 → M2, define f ◦ : M2 → M1

as f−1 : A2 → A1. To check that this is a restricted inverse, we check the

required composites. First,

f ◦ f ◦ = f ⊗ f ◦ = [f |∗ A1 ∧ A1] • [A1 ∧ A1 ∗| f−1] = f • f−1 = 1A2 = f−1.

Similarly, f ◦ ◦ f = f. ♢

Proposition 4.2.13. For each locally inductive functor F : G → H, there exists a

functor I(F ) : I(G) → I(H).

Proof. We show that F induces a functor I(F ) : I(G) → I(H).
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Given any object in I(G), a meet-semilattice M1, define I(F )(M1) to be the

meet-semilattice M ′
1 such that F (M1) ⊆ M ′

1. Note that this assignment of M ′
1 to M1

is unique since the M ′
i are a partition of H0.

For any arrow f : M1 → M2 in I(G) corresponding to f : A1 → A2 in G, we

define I(F )(f) = F (f) : F (A1) → F (A2), an arrow F (f) : F (M1) → F (M2) in I(G′).

That this assignment is functorial follows from the functoriality of F.

Corollary 4.2.14. Construction 4.2.12 is the object function of a functor

I : tliGrpd → iCat.

Proof. Let G F →→G′ G →→G′′ be a composable pair of locally inductive functors.

Then, on objects of I(G) (meet-semilattices forming the partition of G0),

I(G)I(F )(M) = I(G)(M ′), where M ′ such that FM ⊆ M ′

= M ′′, where M ′′ such that M ′′ ⊇ G(M ′) = G(FM) = (GF )M

= I(GF )(M), by the uniqueness of M ′′ ⊇ (GF )M.

Equality of the functors I(GF ) and I(G)I(F ) follows immediately. That I preserves

identity functors follows from the observation that I(1G)(M) = M for all objects M

in I(G).

Theorem 4.2.15. The functors G and I form an equivalence of categories,

iCat
G
→→ tliGrpd

I
←←
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Proof. By Corollary 4.2.11, the functor G is fully faithful. We show now that G is

essentially surjective by demonstrating a natural isomorphism GI ∼= 1tliGrpd.

We start with a top-heavy locally inductive groupoid (G, •,≤, {Mi}i∈I) and we

consider the composite GI(G). Recall that I(G) has as objects the meet-semilattices

Mi and arrows of the form f : M1 → M2, where f : A1 → A2 is an arrow in G with

A1 ∈ M1 and A2 ∈ M2. Further recall that every arrow in G is found exactly once in

I(G). Note that for each object Mi,

EMi
= {f : Mi → Mi|f : Mi → Mi} = {1Ai |Ai ∈ Mi} ∼= Mi.

Then the locally inductive groupoid GI(G) contains the following data:

• Objects:
∐
i∈I
EMi

∼=
∐
i∈I
Mi = G0.

• Arrows: For each f : M1 → M2 in I(G) corresponding to f : A1 → A2 in G,

there is an arrow f : f → f ◦ = f : 1A1 → 1A2
∼= f : A1 → A2 in GI(G).

Since arrows of G are appearing exactly once in I(G), we have, then, that

(GI(G))1 ∼= G1.

– Composition: Given two composable arrows corresponding to f : A1 → A2

and g : A2 → A3 in GI(G), we have in I(G) that

g ◦ f = g ⊗ f = [g |∗ A2 ∧ A2] • [A2 ∧ A2 ∗| f ] = g • f.

Their composite, then, is

g⋆f in GI(G) = g ◦ f in I(G) = g • f in G.
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That is, composition in GI(G) is the same as that in G up to isomorphism.

– Restrictions: Given an arrow f : 1A1 → 1A2
∼= f : A1 → A2 and A′

1 ≤ A1,

we have that

(f |∗ A′
1) in GI(G) ∼= f ◦ 1A′

1
in I(G) = f ⊗ 1A′

1
in G

= [f |∗ A1 ∧ A′
1] • [A1 ∧ A′

1 |∗ 1A′
1
]

= [f |∗ A′
1] • 1A′

1
= [f |∗ A′

1].

That is, the restrictions of the two ordered groupoids G and GIG are the

same up to isomorphism.

This description of GI(G) is written so that the isomorphism G ∼= GI(G) follows

immediately.

Note. In an inverse semigroup (S, •), every idempotent is of the form s• • s for some

s ∈ S. In addition, all idempotents commute. We can then consider the groupoid

associated to an inverse semigroup as the Karoubi envelope of the single-object inverse

category (with unit) associated to S. In a general inverse category, this fact ensures

that every restriction idempotent will appear as an object in the associated top-heavy

locally inductive groupoid, and that every object in this groupoid is a restriction

idempotent.

The definition of the functor G relies on the top-heavy property of a locally in-

ductive groupoid G only when defining identities on the meet-semilattices partitioning

G0. Similarly, the identities of an inverse category X are essential only as top elements

of the meet-semilattices EA. In other words, removing identities from an inverse cate-
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gory is equivalent to removing top elements from the meet-semilattices partitioning a

locally inductive groupoid. As a result, the equivalence established in Theorem 4.2.15

generalizes immediately.

Corollary 4.2.16. The functors G and I form an equivalence

isCat
G
→→ liGrpd,

I
←←

where isCat is the category of inverse semicategories.

Since single-object inverse categories are precisely inverse semigroups with identity,

it is clear that single-object inverse semicategories are precisely inverse semigroups.

With inverse semicategories as multi-object inverse semigroups, we see that Theorem

4.1.9 – the equivalence between inductive groupoids and inverse semigroups – then

follows immediately from Corollary 4.2.16.

We will end this section with a short discussion on a generalization of Theorem

4.2.15.

Recall that prehomomorphisms of inverse semigroups are functions between inverse

semigroups satisfying ϕ(ab) ≤ ϕ(a)ϕ(b). Theorem 4.1.9 can then be generalized to

Theorem 4.2.17 ([26], Theorem 8). The category of inverse semigroups and preho-

momorphisms is equivalent to the category of inductive groupoids and ordered functors.

Since the arrows of an inverse category are playing the part of “elements” in each

of the “local inverse semigroups”, a clear candidate for an inverse categorical analogue

arises.
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Definition 4.2.18. An oplax functor F : X → X′ of inverse categories consists of

the following data:

• for each object A ∈ X, an object F (A) ∈ X′;

• for each arrow f : A → B, an arrow F (f) : F (A) → F (B) such that

– for each composable pair f : A → B and g : B → C in X, F (gf) ≤

F (g)F (f), and

– for each object A ∈ X, F (1A) ≤ 1F (A). ♢

Clearly, since composition in G(X) is defined by composition in X, any oplax

functor F : X → X′ between inverse categories induces an ordered functor G(F ) :

G(X) → G(X′).

Suppose now that F : G → G′ is an ordered functor between top-heavy locally

inductive groupoids. Recall that composition in I(G) is defined by the tensor product

in G. Then

F (g ⊗ f) = F (g |∗ dom(g) ∧ cod(f))F (dom(g) ∧ cod(f) ∗| f)

= (Fg |∗ F (dom(g) ∧ cod(f)))(F (dom(g) ∧ cod(f)) ∗|Ff)

≤ (Fg |∗ F (dom(g) ∧ F cod(f))(Fdom(g) ∧ F cod(f) ∗|Ff)

= Fg ⊗ Ff

and thus F induces an oplax functor I(F ) : I(G) → I(G′). Specifically, since the

identities in I(G) are the top elements of G, I(F ) is strict on identities.

These arguments can then be easily extended to prove the following.
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Theorem 4.2.19. The category of top-heavy locally inductive groupoids and ordered

functors is equivalent to the category of inverse categories and oplax functors.

4.3 Etendues, Sheaves and Morphisms

In this section, we equip inverse categories with structure which encodes topolog-

ical data. Equipping inverse categories with joins allows us to “glue” compatible

morphisms together and equipping their corresponding top-heavy locally inductive

groupoid given by Theorem 4.2.15 with Ehresmann topologies allow us to take sheaves

on these groupoids. We take the construction of sheaves on ordered groupoids with

Ehresmann topologies given by [28] and study it in context of our top-heavy locally

inductive groupoids. We will also introduce a suitable notion of morphism for ordered

groupoids equipped with Ehresmann topologies.

Join Inverse Categories

Definition 4.3.1 ([26]). Let X be a restriction category. Two arrows f and g in X

are compatible – denoted f ⌣ g – if and only if fg = gf. A subset S ⊆ X1 of arrows

in X is called a compatible set whenever every pair of arrows in S is compatible. ♢

Definition 4.3.2 ([9]). A join restriction category is a restriction category in which

for every compatible set (fi : A → B)i∈I , there is a map ⋁i∈I fi : A → B such that

(i) for all i ∈ I, fi ≤ ⋁
i∈I fi,

(ii) if there exists a map g such that fi ≤ g for all i ∈ I, then ⋁ fi ≤ g,

(iii) for any h : B → C, h (⋁i∈I fi) = ⋁
i∈I hfi.
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Note that these facts follow:

(i) for any j ∈ I, fj (⋁i∈I fi) = fj,

(ii) for any h : C → A, (⋁i∈I fi)h = ⋁
i∈I fih,

(iii) ⋁i∈I fi = ⋁
i∈I fi. ♢

Definition 4.3.3. A morphism of join inverse categories is a functor preserving all

joins. The category of join inverse categories and join-preserving functors is denoted

jiCat. ♢

We consider a join inverse category X. Clearly, since X is an inverse category with

an additional property, we can apply the functor G to X to obtain a top-heavy locally

inductive groupoid. We study now what properties the groupoid G(X) inherits from

the join structure on X.

Definition 4.3.4. An order ideal A of a poset (P,≤) is a subset A ⊆ P with the

following two properties:

(i) For every x ∈ A, if y ≤ x then y ∈ A; A is down-closed.

(ii) For every x, y ∈ A, there exists z ∈ A such that x ≤ z and y ≤ z; A is a directed

set. ♢

Definition 4.3.5. For each object f in G(X), the principal order ideal of f is the set

of objects

↓ f =
{
e ∈ G(X)0 : e ≤ f

}
. ♢

The following proposition is a direct consequence of the definition of compatible

set along with the commutativity of restrictions.
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Proposition 4.3.6. For each object f ∈ G(X), the principal order ideal ↓ f is a

compatible set.

Proposition 4.3.7. Let X be a join inverse category. For each object f ∈ G(X), the

principal order ideal ↓ f is a locale with all joins inherited from X and meet defined

by a ∧ b = ab.

Proof. Together with the partial order and joins inherited from X, ↓ f is a poset

with all joins by Proposition 4.3.6. That ↓ f has finite meets is analogous to the

proof of Proposition 4.2.2. Finally, in ↓ f, finite meets distribute over arbitrary joins

since joins come from X, composition distributes over joins and our meet is defined

by composition.

Proposition 4.3.8. Let X be a join inverse category. For each arrow α : α → α◦ in

G(X), there is a frame homomorphism α∗ :↓ α →↓ α◦ defined by α∗
(
b
)

= (b α◦).

Proof. We first verify that α∗ is well defined: for any b ∈↓ α,

α◦
(
(b α◦)

)
= α◦(bα◦) = α◦ (b α◦) = (b α◦) = (bα◦)

and thus (b α◦) ≤ α◦ and α∗
(
b
)

∈↓ α◦.

Second, we verify that α∗ preserves the partial order: suppose that b ≤ c in ↓ α.
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Then

α∗(c)
(
α∗(b)

)
= (c α◦) (b α◦)B = (c α◦) (b α◦)

= (c α◦) (b α◦) =
(
c α◦ (b α◦)

)
=
(
c b α◦

)
=
(
c b α◦

)
= (b α◦) = α∗

(
b
)

and thus α∗
(
b
)

≤ α∗(c) in ↓ α◦.

Thirdly, we check that α∗ preserves finite meets:

α∗
(
b
)

∧ α∗(c) = α∗
(
b
)
α∗(c)

= (b α◦) (c α◦) = (bα◦) (cα◦)

=
(
b α◦(c α◦)

)
= (b c α◦)

=
(
b c α◦

)
= α∗

(
b c
)

= α∗
(
b ∧ c

)

Finally, we check that α∗ preserves arbitrary joins: suppose that S ⊆ ↓ α is any

subset of ↓ α. Since S is a compatible set and the join in ↓ α is inherited from X,

α∗

( ⋁
s∈S

s

)
=
(( ⋁

s∈S
s

)
α◦

)
=
( ⋁
s∈S

sα◦

)
=
⋁
s∈S

(s α◦) =
⋁
s∈S

α∗(s)

Corollary 4.3.9. Let X be a join inverse category. There is a contravariant functor

(−)∗ : G(X)op → Loc,
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where Loc is the category of locales and locale morphisms.

Proof. We show that (−)∗ is a covariant functor G(X) → Frm, where Frm is the

category of frames and frame homomorphisms.

The object function f ↦→
(
fA
)

∗
=↓ f is well defined by Lemma 4.3.7 and for each

α : α → α◦, the arrow function α ↦→ α∗ is a frame homomorphism by Lemma 4.3.8.

This arrow function preserves identities: for all objects f and cA ∈↓ f,

(
1f
)

∗
(c) =

(
f
)

∗
(c) =

(
c
(
f
)◦)

= c f = c = 1↓f (c) .

This arrow function also preserves composition: given any composable pair α :

α → α◦ and β : β → β◦ of arrows (i.e., β = α◦) and any object c ∈↓ α,

(βα)∗(c) = (c (βα)◦) = (c α◦β◦) =
(
(c α◦)β◦

)
= (α∗(c) β◦) = (β∗α∗)(c).

We may also define a contravariant version of the frame homomorphism in Lemma

4.3.8. The following Lemma and its corresponding Corollary can be proved exactly

as were Lemma 4.3.8 and Corollary 4.3.9.

Lemma 4.3.10. Let X be a join inverse category. For each arrow α : α → α◦ in

G(X), there is a frame homomorphism α∗ :↓ α◦ →↓ α defined by α∗ (e) = (e α).

Corollary 4.3.11. Let X be a join inverse category. There is a covariant functor

(−)∗ : G(X) → Loc,

where Loc is the category of locales and locale morphisms.
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One would expect from our choice of notation for the frame homomorphisms in

Lemmas 4.3.8 and 4.3.10 that, for each arrow α in G(X), that there is an adjunction

α∗ ⊣ α∗. Note that, for all eA ∈↓ αA, we have that

α∗α∗ (e) = α∗(e α◦) =
(
(e α◦)α

)
= (e α◦ α) = e α = e.

Similarly, for all f ∈↓ α◦, we have α∗α
∗f = f. That is, there is indeed an adjunction

α∗ ⊣ α∗, whose unit and counit are natural isomorphisms.

Theorem 4.3.12. Let X be a join inverse category. For each arrow α : α → α◦ in

G(X), there is an equivalence of categories

↓ α
α∗ →→ ↓ α◦
α∗
←←

We end this subsection with a class of examples of join inverse categories: complete

inverse semigroups.

Definition 4.3.13 ([26]). Two elements s and t of an inverse semigroup are compatible

whenever both st−1 and s−1t are idempotents of S. A subset A of an inverse semigroup

S is compatible whenever any pair of elements in A is compatible. ♢

Definition 4.3.14 ([26]). An inverse semigroup S is said to be complete whenever

every non-empty compatible subset of S has a join. ♢

Proposition 4.3.15. Complete inverse semigroups with identity are single-object join

inverse categories.
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Proof. Let S = Hom(∗, ∗) be the hom-set of a single-object join inverse category.

Then S is an inverse semigroup with identity. We show that the compatibility relations

coincide.

Let f, g ∈ S and first suppose that fg = gf. Then fg◦fg◦ = fgg◦fgg◦ =

gg◦gfg◦ = fgg◦ = fg◦ and thus fg◦ ∈ E(S). Similarly, f ◦g ∈ E(S); f and g are

compatible in the inverse semigroup sense.

Conversely, suppose that both f ◦g and fg◦ ∈ E(S). We claim that f ∧ g exists

and that f ∧ g = fg. This argument follows closely that given in [Lemma 13, Lawson

1998]. Note first that fg = fg◦g ≤ f, g. Suppose that w is such that w ≤ f, g.

Then w ≤ g and thus w = ww ≤ fw ≤ fg. Therefore, f ∧ g = fg. Since fg◦ is an

idempotent, f ◦g = (fg◦)◦ = g◦f is also an idempotent and, by symmetry, f ∧ g = gf.

Then fg = f ∧ g = gf ; f and g are compatible in the restriction category sense.

The Ehresmann Site Associated to a Join Inverse Category

Definition 4.3.16. Define a relation ≤J on the objects of an ordered groupoid by

a ≤J b if and only if there exists an object a′ ∼= a such that a′ ≤ b. That is, a is

isomorphic to some object sitting below b. ♢

Definition 4.3.17 ([28]). Let (G, ◦,≤) be an ordered groupoid. An Ehresmann

topology on G is an assignment of, for each object e ∈ G, a collection T (e) of order

ideals of ↓ e – called covering ideals – satisfying

(i) ↓ e ∈ T (e) for each object e ∈ G.

(ii) Let e and f be objects of G such that f ≤J e. Then for each x : f ∼= e′ ≤ e and

A ∈ T (e), we have x−1 ⊗ A ⊗ x ∈ T (f).
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(iii) Let e be an object of G, let A ∈ T (e) and let B⊴ ↓ e be an arbitrary order

ideal of ↓ e. Suppose that, for each x : f ∼= e′ ≤ e (where e′ ∈ A), we have

x−1 ⊗ B ⊗ x ∈ T (f). Then B ∈ T (e).

An ordered groupoid equipped with an Ehresmann topology is an Ehresmann site. ♢

Notation. We denote the category of Ehresmann sites and ordered functors as ESite.

The following theorem gives an explicit relationship between a (locally localic) join

inverse category and the topological data attached to its corresponding groupoid.

Theorem 4.3.18. If X is a join inverse category, then G(X) admits an Ehresmann

site with, for each object e ∈ G(X),

T (e) =
{
S⊴ ↓ e :

⋁
S = e

}
.

Proof. We check that each of the three conditions required of T being an Ehresmann

topology are satisfied:

(i) Since ↓ e is principal, it has top element ⋁ ↓ e = e and thus ↓ e ∈ T (e).

(ii) Let e and f be objects of G(X) such that f ≤J e, let α : fB → e′ ≤ e be arbitrary

and let A ∈ T (e). Notice that, for any object x ∈ G(X), x = idx : x → x so that

dom(x) = cod(x) = x. Then

⋁
a∈A

α◦ ⊗ a⊗ α =
⋁
a∈A

α◦ ⊗
(
aα
)

=
⋁
a∈A

α◦ aα = α◦
( ⋁
a∈A

a

)
α

= α◦ e α = α◦ α◦ e α = α◦ e′ e α = α◦ e′ α

= α◦ α◦ α = α◦ α = f
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and thus α◦ ⊗ A ⊗ α ∈ T
(
f
)
.

(iii) Let e be an object of G(X), let A ∈ T (e) and let B⊴ ↓ e be an arbitrary order

ideal of ↓ e. Suppose also that, for all arrows α : f → e′ ≤ e with e′ ∈ A, we

have that α◦ ⊗ B ⊗ α ∈ T
(
f
)
. That is, for all such α,

f =
⋁
α◦ ⊗ B ⊗ α = α◦

(⋁
B
)
α

and thus

α◦
(⋁

B
)
α◦ = α f α◦ = αα◦ = α◦.

In particular, each identity map a : a → a ≤ e, where a ∈ A, is such a map and

a
(⋁

B
)
a = a.

Since ⋁B is a restriction map with domain X and ⋁B ≤ e, we see that ⋁B

commutes with every restriction map with domain X and e⋁B = ⋁B. Then for

all a, a (⋁B) a = a
⋁B and thus

e =
⋁
a∈A

a =
⋁
a∈A

a
(⋁

B
)

=
( ⋁
a∈A

a

)⋁
B = e

⋁
B =

⋁
B

and B ∈ T (e).

We can now define a functor GE : jiCat → ESite defined by assigning, for each

join inverse category X, the above Ehresmann topology to the ordered groupoid G(X).
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Join Inverse Categories from Ehresmann Sites

While Ehresmann topologies can be constructed from inverse categories with joins,

there is no clear reason that an Ehresmann topology will imply the existence of joins,

at least coherently (coherent in the sense that the joins in X are the same as those in

the Ehresmann topology admitted by G(X)). Consequently, the functor GE seems not

to be part of an equivalence of categories between jiCat and ESite. We may seek,

however, a left or right adjoint to GE which, in some way, is given by the equivalence

established by G and I in Theorem 4.2.15.

This adjoint functor can be discovered by investigating the image of a join inverse

category under G and asking: where do the joins land and how can we get back from

them?

4.4 The Etendue of Sheaves on an Ehresmann Site

Etendues are toposes which are “locally like a space” (in a sense that will be explained

below). Etendues can be presented as sheaves on a left-cancellative site [25]. Lawson

and Steinberg use this presentation to formally interpret the theory of étendues in

the language of ordered categories [28]. Funk has also shown that étendues can be

interpreted via the classifying topos of an inverse semigroup [16].

It seems natural, then to consider join inverse categories and ask how the topo-

logical data given in Section 4.3 can be used to extend Lawson and Steinberg’s work

to the context of join inverse categories (and locally inductive Ehresmann sites).
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Ehresmann Sites from Left Cancellative Sites

As noted, most definitions, results and details for this subsection can be found in [27,

28]. Note, however, that we have translated all statements from Lawson’s “category

as a set with a partial monoid operation” language into the “categories as objects and

arrows” language to better suit this thesis.

Definition 4.4.1. A left cancellative category is a category in which every morphism is

monic. The category of left cancellative categories and functors is denoted lcCat. ♢

Construction 4.4.2 ([27], Left Cancellative Categories to Ordered Groupoids). A

span (f, f ′) in C is a pair of co-initial arrows f and f ′. We say that two spans (f, f ′)

and (g, g′) are isomorphic whenever there is a C-isomorphism u : dom(f) → dom(g)

with gu = f and g′u = f ′. Given a left cancellative category C, define an ordered

groupoid GC(C) with the following data:

• Objects: Isomorphism classes of spans of the form

[f, f ] =
⎡⎣ Af

←←

f

→→
B B

⎤⎦
in C.

• Arrows: an arrow [f, f ′] : [f, f ] → [f ′, f ′] is an isomorphism class of spans

[f, f ′] =
⎡⎣ Af

←←

f ′

→→
B B′

⎤⎦
in C. Note that these arrows are not defined as traditional maps between spans

are.
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– Composition: If dom[g, g′] = cod[f, f ′], then there exists an isomorphism

u in C such that gu = f ′. We then define the composite [g, g′][f, f ′] to be

the isomorphism class

[f, g′u] =
⎡⎣ Af

←←

g′u
→→

B B′′

⎤⎦

For completeness, we show that this composition is well defined (proof of

this is omitted in [27]). Suppose that [f, f ′] = [φ, φ′] and [g, g′] = [γ, γ′] are

arrows in GC(C) with dom[g, g′] = cod[f, f ′] and dom[γ, γ′] = cod[φ, φ′].

That is, there are C-isomorphisms v : dom(f) → dom(φ), v′ : dom(g) →

dom(γ), u : dom(f) → dom(g) and u′ : dom(φ) → dom(γ) such that the

following diagram is commutative:

A u →→

f

↙↙

f ′

↘↘

v

↓↓

C
g

↙↙

g′

↘↘

v′

↓↓

B B′ B′′

A′
u′

→→

φ

↖↖

φ′

↗↗

C ′
γ

↖↖

γ′

↗↗

We demonstrate the equality [f, g′u] = [g, g′][f, f ′] = [γ, γ′][φ, φ′] = [φ, γ′u′],

then, by giving a C-isomorphism s : A → A′ satisfying φs = f and

γ′u′s = g′u. We claim that v, immediately satisfying the first condition, is

such an isomorphism. To verify the second condition, we first note that

φ′v = f ′ = gu = γv′u = φ′(u′)−1v′u.
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Therefore, since C is left cancellative, v = (u′)−1v′u and thus

γ′u′v = γ′u′(u′)−1v′u = γ′v′u = g′u.

– Identities: We define 1[f,f ] = [f, f ]. Since cod[f, f ] = [f, f ] = dom[f, f ′],

the isomorphism u : dom(f) → dom[f ] is the identity and we get that

[f, f ′][f, f ] = [f, f ′1dom(f)] = [f, f ′1dom(f ′)] = [f, f ′].

Similarly, [f ′, f ′][f, f ′] = [f, f ′].

– Inverses: Given an arrow [f, f ′], we define [f, f ′]−1 = [f ′, f ]. Then the

required identities [f, f ′][f ′, f ] = [f ′, f ′] and [f ′, f ][f, f ′] = [f, f ] are easily

seen to hold.

• Partial order: We define a partial order on the arrows by [f, f ′] ≤ [g, g′] if and

only if (f, f ′) = (g, g′)p = (gp, g′p) for some arrow p ∈ C. ♢

This construction turns out to be functorial with respect to the following assign-

ment: a functor F : C → D of left cancellative categories is assigned to an ordered

functor

GC(F ) : GC(C) → GC(D)

defined by GC(F )[f, f ′] = [Ff, Ff ′].

Theorem 4.4.3 ([27], Theorem 2.3). The construction GC is the object function of a
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weakly essentially surjective functor

GC : lcCat → oGrpd.

Question. Is this functor part of a biequivalence of bicategories?

Definition 4.4.4. A sieve on an object e in a category C is a collection of morphisms

with codomain e that are closed under precomposition with morphisms in X. ♢

Definition 4.4.5. A Grothendieck topology on a category C is a function J assigning

to each object e a collection J(e) of sieves (called covering sieves) satisfying the

following three conditions:

(i) (Identity) eC = {f ∈ C : cod(f) = e} ∈ J(e).

(ii) (Change of Base) If f : e → e′ is an arrow in C and S ∈ J(e′), then

f ∗S = {g ∈ eC : fg ∈ S} ∈ J(e).

(iii) (Local Character) If S ∈ J(e′) and R is any sieve on e′ such that f ∗S ∈ J(e) for

all f : e → e′, then R ∈ J(e′). ♢

Definition 4.4.6. A category C equipped with a Grothendieck topology is called a

site. If all arrows in C are monomorphisms, we call C a left cancellative site. ♢

Definition 4.4.7. A morphism F : (C, J) → (C′, J ′) of sites is a functor F : C → C′

satisfying the following two conditions:
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(i) (F is covering-preserving) If U ∈ J(e) then FU = {FU |U ∈ U} ∈ J ′(Fe).

(ii) (F is covering-flat) For each diagram D : I → C and each cone ε : e ⇒ FD, the

sieve

Tε = {vt → e | t : u → vt in C′ such that ∃ cone η : e′ ⇒ D

in C with Fη.t′ = ε.t for some t′ : e → e′
t → Fe′ in C′}

is a covering sieve in J ′(e). ♢

Comparing the definition of a Grothendieck topology to that of an Ehresmann

topology, we see that the two are quite similar if we substitute the conjugation

of A by x with the sieve x∗A. Indeed, there are bijective correspondences between

Grothendieck topologies on left-cancellative categories and Ehresmann topologies on

ordered groupoids. These correspondences are worked out in detail in [28] and we

present those results here for our use.

Theorem 4.4.8 ([28], Lemma 3.2 and Theorem 3.5). Let C be a left cancellative

category and e an object of C.

(a) (i) Let S be a sieve on e in C. Then

[S] = {[f, f ] : f ∈ S}

is an order ideal of ↓ [e, e].
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(ii) If J is a Grothendieck topology on C, then

T [e, e] = {[S] : S ∈ J}

defines an Ehresmann topology on GC(C).

(b) (i) Let A be an order ideal of ↓ [e, e]. Then

||A|| = {f ∈ C : [f, f ] ∈ A}

is a sieve on e in C.

(ii) If T is an Ehresmann topology on GC(C), then

J(e) = {||A|| : A ∈ T [e, e]}

defines a Grothendieck topology on C.

(c) The operations S ↦→ [S] and A ↦→ ||A|| are mutually inverse; there is a bijection

between the sets of sieves on e in C and the set of order ideals of ↓ [e, e] in GC(C).

(d) There is a bijective correspondence between Grothendieck topologies on C and

Ehresmann topologies on GC(C).

Left Cancellative Sites from Ehresmann Sites

Construction 4.4.9 ([28], Ordered Groupoids to Left Cancellative Categories).

Given an Ehresmann site (G, T ), define a left cancellative category LC(G, T ) with

the following data:
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• Objects: Same objects as G.

• Arrows: An arrow f : A → B is an arrow f from G with dom(f) = A and

cod(f) ≤ B :

B

A
f
→→ B′≤

– Composition: Consider two composable arrows:

C

B
g
→→ C ′≤

A
f
→→ B′≤

We define their composite as gf = g ⊗ f = [g |∗ cod(f)]f : A → C.

– The identities are given by the identities in G. ♢

This construction turns out to be functorial with respect to the following assign-

ment: an ordered functor F : G → H is assigned to a functor

LC(F ) : LC(G) → LC(H)

defined by LC(F )(f) = Ff.

Theorem 4.4.10 ([27], Theorem 2.3). The construction LC is the object function of

a functor LC : oGrpd → lcCat.

Theorem 4.4.11 ([28], Lemma 3.6 and Theorem 3.8). Let G be an ordered groupoid

and e an object of G.
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(a) (i) Let A be an order ideal of ↓ e in G. Then

A♭ = ({e} × A)G

is a sieve on (e, e) in LC(G).

(ii) Let T be an Ehresmann topology on G. Then

J(e, e) = {A♭ : A ∈ T (e)}

defines a Grothendieck topology on LC(G).

(b) (i) Let S be a sieve on (e, e) in LC(G). Then

S♯ = {f : (e, f) ∈ S}

is an order ideal of ↓ e in G.

(ii) Let J be a Grothendieck topology on LC(G). Then

T (e) = {S♯ : S ∈ J(e, e)}

defines an Ehresmann topology on G.

(c) The operations S ↦→ S♯ and A ↦→ A♭ are mutually inverse; there is a bijection

between the sets of sieves on (e, e) in LC(G) and the set of order ideals of ↓ e in

G.

(d) There is a bijective correspondence between Ehresmann topologies on G and Groth-
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endieck topologies on LC(G).

Having now reviewed the necessary structures from Lawson and Steinberg, we in-

troduce the structures required to define a suitable morphism of Ehresmann sites. The

intuition underlying the following definitions stems from thinking of the tensor prod-

uct as the composition (which will be guaranteed to exist in any (locally) inductive

groupoid).

Definition 4.4.12. A ⊗-cone ε of a diagram D : I → G in an ordered groupoid

G with vertex e ∈ G0 – denoted ε : e⊗⇒D – is a collection {εi : e → ei ≤ Di} of

G-isomorphisms satisfying, for all fij : Di → Dj in I, fij ⊗ εi = εj. ♢

Note. Observe that if ε is a ⊗-cone in G, then ε is a (strict) cone in LC(G).

Definition 4.4.13. A morphism F : (G, T ) → (G′, T ′) of Ehresmann sites is an

ordered functor F : G → G′ satisfying the following two conditions:

(i) (F is ideal-preserving) If A ∈ T (e) then FA = {Fa | a ∈ A} ∈ T ′(Fe).

(ii) (F is ideally-flat) For each diagram D : I → G and each ⊗-cone ε : e⊗⇒FD,

the order ideal

Qε = {vt ≤ e | ∃t : u → vt in G′ such that ∃ ⊗-cone η : e′⊗⇒D

in G with Fη ⊗ t′ = ε⊗ t for some t′ : e → e′
t ≤ Fe′ in G′}

is a (covering) ideal in T (e). ♢

Proposition 4.4.14. Let G be an ordered groupoid. For each diagram D : I → G

and each ⊗-cone ε : e⊗⇒FD, Qε as defined above is indeed an order ideal of ↓ e.
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Proof. Clearly, Qε ⊆↓ e. We now show that it is down-closed. Suppose that vt ∈ Qε

and v ≤ vt. Then there is a ⊗-cone η : e′⊗⇒D in G with Fη ⊗ t′ = ε ⊗ t for some

t′ : e → e′
t ≤ Fe′ in G′. The following diagram will be helpful in reading through this

argument:

e

≤

εi →→ ei

≤

u
≤

t →→ vt

≤

[εi |∗ vt]
→→ B

≤

A
[v∗| t]

→→ v
[εi |∗ v]

→→ C

We claim that the ⊗-cone η guaranteed to exist by vt still functions as desired with v

when we consider [t′ |∗ A] in the place of t′, which exists since A ≤ dom(t) = dom(t′).

We first note that

Fη ⊗ [t′ |∗ A] = [Fη ⊗ t′ |∗ A] = [ε⊗ t |∗ A].

Now, for each i ∈ I, we have

[εi ⊗ t |∗ A] =
[
[εi |∗ vt] • t |∗ A

]
=
[
[εi |∗ vt] |∗ cod[t |∗ A]

]
• [t |∗ A]

=
[
[εi |∗ vt] |∗ v

]
• [v |∗ t]

= [εi |∗ v] • [v |∗ t]

= εi ⊗ [v |∗ t]

and thus Fη ⊗ [t′ |∗ A] = [ε ⊗ t |∗ A] = ε ⊗ [v |∗ t]. Since cod[v |∗ t] = v ≤ e, we have

v ∈ Qε and Qε is an order ideal of ↓ e.
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Theorem 4.4.15. If F : (C, J) → (C′, J ′) is a map of left cancellative sites (i.e., is

both covering-preserving and covering-flat), then

GC(F ) : (GC(C),GC(J)) → (GC(C′),GC(J ′))

is a morphism of Ehresmann sites.

Proof. We first prove that GC(F ) is ideal-preserving. Suppose that [1e, 1e] ∈ GC(C)0

and A ∈ GC(J)[1e, 1e]. Then e ∈ C0 and A = [S] for some S ∈ J(e). Since F is

covering-preserving, then, FS ∈ J ′(Fe). Therefore, GC(F )(A) = GC(F )[S] = [FS] ∈

GC(J ′)[F1e, F1e] = GC(J ′)(F [1e, 1e]) and GC(F ) is ideal-preserving.

We now prove that GC(F ) is ideally-flat. Suppose that D : I → GC(C) is a diagram

in GC(C) and that ε : [e, e]⊗⇒GC(F )(D) is a tensor cone over GC(F )(D) in GC(C′).

Let Qε be defined as above. Explicitly,

Qε = {[vt, vt] ≤ [e, e] | [t, vt] : [t, t] → [vt, vt] in GC(C′)

such that ∃ ⊗-cone η : [e′, e′]⊗⇒D in GC(C)

with GC(F )(η) ⊗ [t′, e′
t] = ε⊗ [t, vt] for some [t′, e′

t]}

Recall that ⊗-cones in GC(C′) are cones in LC(GC(C′) and composition in LC(GC(C′))

is given by ⊗ in GC(C′). It is then immediate by the definition of LC on ordered

functors that

Q♭
ε = {[t, vt] : [t, t] → [vt, vt] | vt ∈ Qε}

is a sieve satisfying the properties required in Definition 4.4.7(ii). Note also that
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LC(GC(F )) ≃ F. Since F is covering-flat, then,

Q♭
ε ∈ LC(GC(J))[e, e]

and thus (Q♭
ε)♯ = Qε ∈ GC(J)[e, e] by Theorem 4.4.11.

4.5 Future Work

As previously mentioned, we note that Construction ?? gives a complete inverse

semigroup. Considering ideally flat and ideally covering functors as the morphisms

between Ehresmann sites, one may wonder if there exists a canonical choice of such

functors given an functor between inverse categories. After having defined the arrow

part of the functors IE and GE, we may ask

Question. Does IE(G, T ) define the object function of a left adjoint IE ⊣ GE?

We may also wonder if it is possible to generalize this adjunction to include more

than complete inverse semigroups.

Question. Is there some information encoded in the Ehresmann topology T of an

Ehresmann site (G, T ) that allows us to interpret G (freely or otherwise) as only

locally inductive, so that IE(G, T ) is a multi-object inverse semicategory. If so, are

there top-heavy locally inductive groupoids so that we can construct join inverse

categories?
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Maps Between the Topoi of Sheaves on Ehresmann Sites

Theorem 4.4.15 implies that ideally flat and ideally covering functors between Ehres-

mann sites correspond to geometric morphisms between their corresponding topoi of

sheaves. In the construction of some double category whose objects are Ehresmann

sites, these ideally flat and covering functors will comprise the vertical category. The

horizontal category, then, is up for discussion.

Our future approach will use “generalized maps” between Ehresmann sites, namely

“special” modules. What is to be meant here by special is not yet clear, but it is

likely that we will want these modules to correspond to “interesting” maps between

the corresponding topoi of sheaves, be these geometric morphisms or otherwise. We

will now explore the choice of putting ordinary modules between the Ehresmann sites,

in the sense that they are ordinary modules between the underlying groupoids (as of

now, no interaction with the Ehresmann topologies on these groupoids seems to be

needed).

Question. Consider a module M : (G, T ) | →→(G′, T ′) . How should one define a

functor

M∗ : Sh(G, T ) → Sh(G′, T ′)?

Sheaves on Ehresmann Sites

Definition 4.5.1. Consider G0 as a posetal category. A presheaf on an Ehresmann

site (G, T ) is a contravariant functor F : Gop
0 → Set. A matching family {ai}i∈A for

an order ideal A ∈ T (e) is a family of ai ∈ F (i) for each i ∈ A with the following

property: if j ≤ i, then F (j ≤ i)(ai) = aj. An amalgamation of a matching family
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{ai}i∈A for an order ideal A ∈ T (e) is an element a ∈ F (e) such that F (i ≤ e)(a) = ai

for all i ∈ A. A presheaf is called a sheaf if every matching family has a unique

amalgamation. ♢

A topos is a category which can be thought of as a generalized space [32]. Etendues

were originally defined by Grothendieck in [2, Ex. 9.8.2] as topoi that are “locally like

spaces” in the following sense:

Definition 4.5.2 ([2]). An etendue is a topos T with an object E ∈ T such that

! : E → 1 is an epimorphism and the slice category T /E is equivalent to the category

of sheaves on a topological space. ♢

The following two theorems allow us to think of étendues from the perspective of

ordered groupoids.

Theorem 4.5.3 ([28], Theorem 3.10). Every étendue is presented by a site constructed

from an ordered groupoid equipped with an Ehresmann topology.

Theorem 4.5.4 ([28], Theorem 4.5). Every étendue is equivalent to the topos of

sheaves on an Ehresmann site.

Conjecture 4.5.5. The equivalence in Theorem 4.5.4 induces a weakly essentially

surjective functor ShES : ESite → Et.

Question. Should Conjecture 4.5.5 be true, is this functor part of a biequivalence?

Sheaves on Join Inverse Categories

By Lemma 4.3.7, we know that a join inverse category is locally localic. Since there

is a notion of sheaves on a locale and there is some relationship between join inverse
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categories and Ehresmann sites, the following question naturally arises.

Question. What do sheaves on a join inverse category look like? In particular, what

information do we get for free about sheaves on its corresponding Ehresmann site?

Since join inverse categories have a corresponding groupoid and are locally localic,

we make the following conjecture:

Conjecture 4.5.6. Every topos of sheaves on a localic groupoid is equivalent to the

topos of sheaves on some join inverse category.



Chapter 5: Two-Dimensional Restriction Categories

This chapter introduces double restriction categories and restriction bicategories as

settings for the study of two-dimensional restriction categories. Double restriction

categories are data structures with two compatible restriction structures, while re-

striction bicategories are such that the restriction structure on the 1-cells extends

functorially to its 2-cells.

We define restriction category objects so that restriction categories internal to Set

are small restriction categories and therefore restriction categories internal to rCat

are double restriction categories. We show in general that categories internal to a

suitable C can be viewed as restriction monads internal to Span(C).

Restriction bicategories are bicategories equipped with a restriction operator on

its 1-cells which is functorial in that it extends to a vertical restriction structure on

its 2-cells. We give as a motivating examples the restriction bicategory of restriction

bimodules, and that restriction Cat-categories are restriction (strict) bicategories (i.e.,

strict 2-categories).

Finally, these two structures together are used to define a double restriction cate-

gory whose horizontal bicategory is given by (supported range) restriction bimodules

and whose (total) vertical category is given by (restriction) functors. This double

category provides a convenient setting in which we conjecture a generalization of the

Ehresmann-Schein-Nambooripad Theorem.

90
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5.1 Double Categories

Internal Restriction Categories

This section defines restriction categories diagrammatically in such a way that (ordi-

nary) restriction categories are restriction categories internal to Set. The motivation

for this definition, and consequently the assurance that it is complete, is the fact

that monads in Span(C) (for a category C with enough pullbacks) can be interpreted

as categories internal to C. This definition, then, is such that restriction monads in

Span(C) can be interpreted as restriction categories internal to C.

Definition 5.1.1. A restriction category (in Set) contains the following data:

C c
→→ X1

s →→

t
→→

r

↑↑
X0u←←

C and D denote the pullbacks

CπC
1
↙↙

πC
2
↘↘

X1

t ↘↘

X1

s↙↙

X0

and

DπD
1
↙↙

πD
2
↘↘

X1

s ↘↘

X1

s↙↙

X0

We require that

(i) s.u = 1 and t.u = 1,

(ii) s.c = s.π1 and t.c = t.π2,

(iii) (assoc.) c.(1 × c) = c.(c× 1),
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(iv) (unit) c.(u× 1) = π2 and c.(1 × u) = π1,

(v) (rest.) sr = s = tr,

and the following diagrams commute (where ∆ and τ are the usual diagonal and

canonical flip in Set) :

X1
∆ →→

1

↓↓

D

r×1

↓↓

X1 Cc
←←

(R.1)

D τ →→

r×r
↓↓

D
r×r
↓↓

C
c ↘↘

C
c↙↙

X1

(R.2)

D r×r
→→

r×1
↓↓

C
c
↓↓

C
c
↘↘

X1

X1

r

↗↗

(R.3)

C ψ
→→

1×r
↓↓

D
r×1
↓↓

C
c ↘↘

C
c↙↙

X1

(R.4)
♢

One can quickly verify that

• In (R1): (f, g) ∈ D implies that (rf, g) ∈ C, or that r× 1 : D → C is a function;

• In (R2): (f, g) ∈ D implies that (rf, rg) ∈ C, or that r×r : D → C is a function;

and

• In (R4): (f, g) ∈ C implies that (f, rg) ∈ C, or that 1 × r : C → C is a function.

Consider now that we take such objects internal to any category with pullbacks

over s and t. We should check, then, that the maps used in the conditions (R.1)
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through (R.4) can actually be defined. For example, the map r×r : D → C is defined

by the universal property of the pullback (C, πC
1 , π

C
2 ) over X1 t

→→X0 X1s
←← , over

which (D, rπD
1 , rπ

D
2 ) is also a cone:

D
r×r
↓↓

rπD
1

↙↙

rπD
2

↘↘

X1

t
↘↘

C
πC

1

←←

πC
2

→→X1

s
↙↙

X0

In this case, that (D, rπD
1 , rπ

D
2 ) is a cone is easy to see since

trπD
1 = sπD

1 = sπD
2 = srπD

1 .

We have no qualms naming this universal map r × r since this is how it (by

universality, it is unique) behaves if our category of residence is Set.

Define X0 ×s X1 and X1 ×π1 C by the pullback squares

X0 ×s X1
πs1

↙↙

πs2

↘↘

X0 X1

s↙↙

X0

and

X1 ×π1 C
π∆

1

↙↙

π∆
2

↘↘
X1 C

πC
1↙↙

X1

.

Over the cospan X1 t
→→X0 X1s
←← , we define the maps

• 1 × r : C → C as the universal arrow induced by the cone (C, πC
1 , rπ

C
2 ),

• r × 1 : D → C as the universal arrow induced by the cone (D, rπD
1 , π

D
2 ),
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• u× 1 : X0 ×s X1 → C as the universal arrow induced by the cone

(X0 ×s X1, uπ
s
1, π

s
2);

over X1 s
→→X0 X1s
←← , the maps

• ∆ : X1 → D as the universal arrow induced by the cone (X1, 1, 1),

• τ : D → D as the universal arrow induced by the cone (D, πD
2 , rπ

D
1 ),

• ψ : C → D as the universal arrow induced by the cone (C, c, πC
1 ),

• ψ̃ : X1×π1C → D as the universal arrow induced by the cone (X1×π1C, π∆
1 , cπ

∆
2 );

over X0 X0 X1s
←← , the map

• 1 × r : X0 ×s X1 → X0 ×s X1 as the universal arrow induced by the cone

(X0 ×s X1, π
s
1, rπ

s
2);

and over X1 X1 C
πC

1

←← , the map

• ∆ × 1 : C → X1 ×π1 C as the universal arrow induced by the cone (C, πC
1 , rπ

C
2 ).

A restriction category internal to Set is a small restriction category with f = rf.

As such, a restriction category internal to Set can be used as a model to encode

Proposition 2.0.3 in the language of internal categories.

Proposition 5.1.2. A restriction category internal to a category with pullbacks sat-

isfies the following equations:

(i) c.(r × r).∆ = r;

(ii) c.(r × r).τ.ψ̃.(∆ × 1) = r.c;
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(iii) r.c.(1 × r) = r.c;

(iv) r.r = r;

(v) r.c.(r × r) = c.(r × r);

(vii) If c.(r × 1) = π2, then r.π2 = π2.(1 × r).

Proof. The statements follow from the commutativity of the following diagrams,

where the individual cells commute by the rules indicated in parentheses:

(i)

X1

(R.1)

∆ →→ D

(R.3)

r×1
↓↓

D
r×r
↓↓

C
c
↓↓

C
c
↓↓

X1 X1 r
→→X1

(ii)

D r×r
→→ C

c

↓↓

C

(R.1)

∆×1
→→X1 ×π1 C

(⋆)

ψ̃
→→

r×1×1
↓↓

D

(R.3)

r×r
→→

τ

↑↑

r×1
↓↓

C

(R.2)

c

↓↓

C2

(assoc.)

1×c
→→

c×1
↓↓

C
c

↓↓

C C c
→→X1 r

→→X1 X1

The cell (⋆) commutes since

π1.(r × 1).ψ̃ = r.π1.ψ̃ = r.π1 = π1.(r × 1 × 1) = π1.(1 × c).(r × 1 × 1)
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and

π2.(r × 1).ψ̃ = π2.ψ̃ = c.π2 = c.π2.(r × 1 × 1) = π2.(1 × c).(r × 1 × 1).

(iii)

C

c

↓↓

C
(⋆)∆×1

↓↓

C
(R.4)

1×r
→→

ψ

↓↓

C c →→X1
r →→X1

X1 ×π2 C

ψ̃
↓↓

D
r×1

→→ C
(R.3)

c

↑↑

D τ
→→ D

r×r
→→ C c

→→X1

X1

(ii)

r
→→X1

The cell (⋆) commutes since

π1.τ.ψ̃.(∆ × 1) = π2.ψ̃.(∆ × 1) = c.π2.(∆ × 1) = c.π2 = π1.ψ

and

π2.τ.ψ̃.(∆ × 1) = π1.ψ̃.(∆ × 1) = π1.(∆ × 1) = π1 = π2.ψ.
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(iv) The commutativity of the diagram

X1
r →→X1 X1

X0 ×s X1
u×1

→→

(unit)π2

↑↑

C c →→X1

X0 ×s X1

π2

↑↑

X0 ×s X1
u×1

→→

π2
↓↓

1×r

↑↑

C 1×r
→→

c

↓↓

C c →→X1

r

↓↓

X1

(unit)

X1

(iii)

r
→→X1

implies that r.π2 = r.r.π2. Since (X0 ×s X1, π1, π2) is the pullback of the cospan

(1,X0, s), π2 is monic and therefore r = r.r.

(v)

D

r×r

↓↓

D r×r
→→

r×1
↓↓

C
(R.3)

c →→X1
r →→X1

C c →→X1

r

↓↓

r →→X1

(iv)

C

(R.3)

c
→→X1 X1

(vii)

D

(assum.)πD
2

↓↓

D

(R.3)

r×r
→→

r×1
↓↓

C c →→X1

C
c
↓↓

X1 X1 r
→→X1

Proposition 3.1.2 shows that restriction monads internal to Set are precisely small
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restriction categories. This correspondence can be extended to restriction categories

internal to any suitable category C.

Theorem 5.1.3. Suppose that C is a category with all pullbacks over s and t, and

all coproducts (in particular, a terminal object). Suppose also that the terminal object

1 is a generator for C. Restriction categories internal to C correspond to restriction

monads in Span(C).

Proof. Given a restriction monad

T = X1
s
↙↙

t
↘↘

X0 X0

in Span(C), the underlying monad (T, η, µ) corresponds to an ordinary category in-

ternal to C. We now define the restriction map r. Following the discussion in Chapter

3.1, recall that the “objects” of X are morphisms of the form A : 1 → X0 and each is

encoded by a span

A⃗ = {∗}
id
↙↙

A
↘↘

{∗} X0

.

Additionally, each “arrow” of X is a morphism f : 1 → X1 and fits into some diagram

1
id

←←

B⃗

→→
f

↓↓

1 X0

1 A×s X1
π1

←←

X0

→→

which is a span morphism in Span(C)(1,X0)(B⃗, T A⃗) and encodes f with source A
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and target B. We can then identify the coproduct of all such hom-sets with X1 and

use ρ to define r as the composite

X1 ∼=
∐
A

∐
B

Span(C)(1,X0)(B⃗, T A⃗) ρ−→
∐
A

Span(C)(1,X0)(A⃗, T A⃗)

Similarly, given a restriction category internal to C, one defines ρ locally using r.

Double Restriction Categories

Internalizing the definition of a restriction category results immediately in a coherent

way of generalizing restriction categories to two dimensions using double categories,

allowing us to simultaneously keep track of two interacting restriction structures.

Definition 5.1.4. A double restriction category is a restriction category internal to

rCat. ♢

It is well known that double categories, seen as category objects internal to Cat,

are equivalent to double categories interpreted as a suitably structured collection of

objects, horizontal arrows, vertical arrows and double cells. A similar description for

double restriction categories facilitates reasoning about double restriction categories

in a graphical way.

Definition 5.1.5. A double restriction category is a double category

D = (Obj(D),Ver(D),Hor(D),Dbl(D))

such that
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• The horizontal category (Ver(D),Dbl(D)) is equipped with a restriction opera-

tor (−) which is an assignment of double cells

A

α

f
→→

•u
↓↓

B

•v
↓↓

C g
→→ D

↦−→
A

α

f
→→

•u
↓↓

A

•u
↓↓

C
g
→→ C

which satisfies (R1) through (R4).

• The vertical category (Hor(D),Dbl(D)) is equipped with a restriction operator

(̃−) which is an assignment of double cells

A

α

f
→→

•u
↓↓

B

•v
↓↓

C g
→→ D

↦−→
A

α̃

f
→→

ũ
↓↓

B

ṽ
↓↓

A
f
→→ B

which satisfies (R1) through (R4).

• The restriction operations commute: (−) ◦ (̃−) = (̃−) ◦ (−). ♢

That Definitions 5.1.4 and 5.1.5 are equivalent can be easily verified using the

intuition that

• (X0)0 corresponds to Obj(D),

• (X0)1 corresponds to Hor(D),

• (X1)0 corresponds to Ver(D), and

• (X1)1 corresponds to Dbl(D).
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The horizontal restriction category structure (Ver(D),Dbl(D)) will then corre-

spond to the restriction category structure of X1 and the vertical restriction category

structure (Hor(D),Dbl(D)) will correspond to the internal restriction category (i.e.,

that whose composition is c and whose restriction will be defined by r).

The restriction structure in X1 and the functoriality of r (together with sr =

tr = s) ensures that a typical double cell α in a double restriction category then has

restriction endocells of the appropriate type:

A

α

f
→→

•u
↓↓

A

•u
↓↓

C
g
→→ C

(−)⇐=
A

α

f
→→

•u
↓↓

B

•v
↓↓

C g
→→ D

(̃−)=⇒
A

α̃

f
→→

ũ
↓↓

B

ṽ
↓↓

A
f
→→ B

Finally, that r is in particular a restriction functor on X1 means that the vertical and

horizontal restriction structures commute:

α̃ = rα = rα = α̃

Limits in Restriction Categories

We briefly review restricted limits in restriction categories, which will allow us to

define two examples of double restriction categories.

Definition 5.1.6. Suppose that F,G : C⇒ D are 2-functors. A lax natural transfor-

mation α : F ⇝ G is a family (αA : FA → GA)A∈C of 1-cells in D, indexed by 0-cells

in C, such that, for each 1-cell f : A → B in C, there is 2-cell αf : (Gf)αA ⇒ αB(Ff)
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in D :

FA
Ff
→→

αA
↓↓

FB

αB
↓↓

GA
Gf
→→ GB

↗↑αf

♢

Definition 5.1.7. Let F : J → C be a diagram in the 2-category C. Let L be a 0-cell

of C and let L : J → C be the constant 2-functor on L; that is, all 0-cells are sent to

L and all 1- and 2-cells are sent to identities. A lax cone over the diagram F is a lax

natural transformation α : L ⇝ F. We call a lax cone a universal lax cone whenever

it has the following universal property: if α′ : L′ ⇝ F is any other lax cone over F,

there is a unique 1-cell φ : L′ → L in C such that, for all 1-cells f : A → B in J, there

exist 2-cells φA : αAφ ⇒ α′
A and φB : αBφ ⇒ α′

B in C such that α′
f .φA = φB.αfφ.

That is, these 2-cells fit into the following diagram in the appropriate way (imagine

the 2-cell α′
f running along the front face of this tetrahedron):

L′

α′
A

↓↓

α′
B

↓↓

φ

↓↓↑↖
φA L
αA

←←

αB

→→

↗↑φB

FA
Ff

→→

→→
αf

FB

A lax limit L of a 2-diagram F is a universal lax cone α : L⇝ F. ♢

Definition 5.1.8 ([10]). Let X be a restriction category and J an ordinary category.

A restricted limit of a diagram F : J → X in X is a universal lax cone α : L⇝ F over

F such that each component αA is total. In addition, if α′ : L′ ⇝ F is another lax cone
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(whose components need not be total) over F, then the universal arrow φ : L′ → L

has restriction φ = α′
FA α

′
FB α

′
FC . . . , the meet of restrictions of the components of

α′. ♢

We make a few comments on the intuition of this definition. First, that we have

the factorization through the universal arrow be only up to 2-cell (which, in the 2-

category rCat, are ≤ given by the restriction order) corresponds with our intuition

that “taking a detour” through the universal arrow has the possibility of being less

defined than the “direct route” from L′ to any of the objects in our diagram. Second,

that the restriction idempotent corresponding to the universal arrow is the meet of the

restriction idempotents of the lax cone over our diagram corresponds to our intuition

that this universal arrow should be the “most possibly defined” arrow having this

universal property.

Example 5.1.9. Here are some examples of restricted limits in a restriction category.

(a) Restricted products in a restriction category X : Given any two objects A and B

in X, a restricted product is a cone consisting of an object P and total arrows

πA : P → A and πB : P → B satisfying the following universal property: for each

(lax) cone (P ′, π′
A, π

′
B) over A and B, there is a unique arrow φ : P ′ → P such

that πA.φ ≤ π′
A and πB.φ ≤ π′

B and φ = π′
A π

′
B :

P ′

π′
A

↓↓

φ

↓↓ π′
B

↓↓

≥ P

πA
↙↙

πB
↘↘

≤

A B
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(b) Restricted pullbacks in a restriction category X : Given any cospan

A →→ C B←← ,

a restricted pullback is cone consisting of an object P and total arrows pA,B,C :

P → A/B/C satisfying the following universal property:

For each lax cone (P ′, p′
A, p

′
B, p

′
C) over A →→ B C←← , there is a unique φ :

P ′ → P such that φ ◦ p ≤ p′ and φ = p′
A p

′
B p

′
C :

≤

P ′

p′
A

↙↙

p′
C

↓↓

A →→ C

P ′

p′
A

↓↓

φ

↓↓ p′
B

↓↓

≥ P

pA
↙↙

pB
↘↘

≤

A →→ C B←←

▲

Examples of Double Restriction Categories

Two natural examples of double restriction categories can be given, one of which

requiring a restriction category with restricted pullbacks.

Example 5.1.10. Let X be a restriction category. Define a double restriction cate-

gory with the following data:

• Objects: Objects of X.

• Vertical Arrows: Total arrows in X. Denote the identity arrow as 1A. The re-

striction structure on the vertical arrows is that from X and is trivial: f = 1
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for all f.

• Horizontal Arrows: Arrows in X. The horizontal restriction is also just the

restriction from X.

• Double cells: A typical double cell is a 2-cell

A

≤u•
↓↓

f
→→ B

v•
↓↓

C g
→→ D

– Vertical and horizontal composition of double cells are defined as usual (by

composition along the boundaries) and preserve the partial order defining

the double cells.

– The vertical restriction of a double cell is defined by taking the verti-

cal restriction of the vertical arrows comprising its horizontal domain and

codomain. Horizontal restrictions of double cells are similarly defined. ▲

The following example is a natural generalization of the restriction category

Par(X,M) using the methods of the span construction [12].

Example 5.1.11. Let X be a restriction category with restricted pullbacks. Define

a double restriction category with the following data:

• Objects: Objects of X.

• Vertical Arrows: Total arrows in X. Denote the identity arrow as 1A. The re-

striction structure on the vertical arrows is that from X and is trivial: f = 1

for all f.
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• Horizontal Arrows: Arrows in Par(X,M), where M is a system of monics

stable under restricted pullbacks (cf. Example 2.0.2(b)). Denote the identity as

idA = (1A, 1A). Recall that the horizontal restriction structure can be given by

(i, f) = (i, i) for each (i, f).

• Double cells: A typical double cell Γα is defined by an arrow α : D → D′ in X

such that i′α ≤ ui and f ′α ≤ vf in X :

Γα =
X

≥•u
↓↓

D

≤α
↓↓

←←i←←
f
→→ Y

•v
↓↓

X ′ D′←←

i′
←←

f ′
→→ Y ′

– Vertical Composition: Given by composition in X :

X

≥•u
↓↓

D

≤α
↓↓

←←i←←
f
→→ Y

•v
↓↓

X

≥•u′
↓↓

D

≤α′
↓↓

←←i′←←
f ′
→→ Y

•v′
↓↓

X ′′ D′′←←

i′′
←←

f ′′
→→ Y ′′

=
X

≥•u′•u
↓↓

D

≤α′•α
↓↓

←←i←←
f
→→ Y

•v′•v
↓↓

X ′ D′←←

i′′
←←

f ′′
→→ Y ′

The resulting composite is a double cell since v′vf ≤ v′f ′α ≤ f ′′α′α and

i′′α′α ≤ u′i′α ≤ u′ui.

– Vertical Restriction: For each such Γα, define the vertical restriction Γ̃α to

be

Γ̃α =
X

≥u=1X

D

≤α
↓↓

←←i←←
f
→→ Y

1Y =v

X D←←
i

←←

f
→→ Y
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Notice that ii α = i i α = iα and thus iα ≤ i. Similarly, fα ≤ f and the

vertical restriction as defined is indeed a double cell. The conditions (R.1)

– (R.4) making the vertical category of double cells and horizontal arrows

a restriction category are easily verified.

– Horizontal Composition: We wish to horizontally compose the double cells

Γα and Γβ :

X

≥•u
↓↓

S

≤

←←i←←
f
→→

α
↓↓

Y

≥•v
↓↓

T

≤

←←d←← x →→

β
↓↓

Z

•w
↓↓

X ′ S ′←←
j
←←

g
→→ Y ′ T ′←←

c
←←

y
→→ Z ′

First take the restricted pullbacks:

S ⊗Y T
a

↙↙

b
↓↓

c

↘↘
X

≥•u
↓↓

S

≤

←←i←←
f

→→

α
↓↓

Y

≥•v
↓↓

T

≤

←←
j

←←
g
→→

β
↓↓

Z

•w
↓↓

X ′ S ′←←
i′
←←

f ′
→→ Y ′ T ′←←

j′
←←

g′
→→ Z ′

S ′ ⊗Y ′ T ′
a′

↖↖

b′

↑↑

c′

↗↗

Recall that this means, instead of strict equality in the cones, we have

jc ≤ b, fa ≤ b, f ′a′ ≤ b′ and j′c′ ≤ b′. Note that j′βc ≤ vjc ≤ vb and
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f ′αa ≤ vfa ≤ vb, so there is a lax cone

S ⊗Y T
αa

↙↙

βc

↘↘

vb

↓↓

S ′

f ′
↘↘

≤ T ′≥

j′
↙↙

Y ′

over

S ′ g
→→ Y ′ T ′c←←

and there is therefore a unique φ : S⊗Y T → S ′ ⊗Y ′ T ′ such that a′φ ≤ αa,

b′φ ≤ vb, c′φ ≤ βc and φ = αaβc vb, fitting into a double cell

X

≥•u
↓↓

S ⊗Y T

≤

←←ia←←
gc

→→

φ

↓↓

Z

•w
↓↓

X ′ S ′ ⊗Y ′ T ′←←

i′a′
←←

g′c′
→→ Z ′

since

(i) a, a′ ∈ M by stability of M and thus ia, i′a′ ∈ M,

(ii) g′c′φ ≤ g′βc ≤ wgc and i′a′φ ≤ i′αa ≤ uia and thus the required

inequalities hold.

– Horizontal Restriction: For each such Γα, define the horizontal restriction

Γα to be

Γα =
X

≥•u
↓↓

D

≤α
↓↓

←←i←← →→ i →→ X

•u
↓↓

X ′ D′←←
j
←← →→

j
→→ X ′
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With Γα being a double cell, it follows immediately that Γα is, too. The

conditions (R.1) – (R.4) making the horizontal category of double cells and

vertical arrows a restriction category are easily verified.

– It is quickly seen that the restriction structures commute:

X

≥•u
↓↓

D

≤α
↓↓

←←i←←
f
→→ Y

•v
↓↓

X ′ D′←←

i′
←←

f ′
→→ Y ′

(̃−)−→
X

≥

D

≤α
↓↓

←←i←←
f
→→ Y

X D←←
i

←←

f
→→ Y

(−)−→
X

≥

D

≤α
↓↓

←←i←← →→ i →→ X

X D←←
i

←← →→
i
→→ X

X

≥•u
↓↓

D

≤α
↓↓

←←i←←
f
→→ Y

•v
↓↓

X ′ D′←←

i′
←←

f ′
→→ Y ′

(−)−→
X

≥•u
↓↓

D

≤α
↓↓

←←i←← →→ i →→ X

•u
↓↓

X ′ D′←←
j
←← →→

j
→→ X ′

(̃−)−→
X

≥

D

≤α
↓↓

←←i←← →→ i →→ X

X D←←
i

←← →→
i
→→ X

• The middle-four interchange law for vertical and horizontal composition follows

from the universal property of the restricted pullbacks defining composition. ▲

We end this section with a short note on the appropriate definition of double

inverse semigroups. A double inverse semigroup, as defined in [24], is a set equipped

with two inverse semigroup operations satisfying the middle-four interchange law. A

set equipped with two such group operations is improper – the operations coincide –

and commutative; this is known as the Eckmann-Hilton argument [14]. This result

extends to double inverse semigroups [13] and thus an element-based definition of a

double inverse semigroup is not useful. Brown [5] redefined a double group as a single-

object double groupoid. The benefit of this definition is that we encode two group

operations interacting via the interchange law on the double cells, but the underlying

sets on which the group operations are defined need not be equal. Motivated by this,
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we make the following definition:

Definition 5.1.12. A double inverse semigroup is a single-object double inverse sem-

icategory. ♢

One may immediately wonder if Definition 5.1.12 has any interesting applications.

Question. Which results in inverse semigroup theory can be appropriately “doubled”

to this context of double inverse semigroups?

A crossed module is an action of a group G on a group H together with a group

homomorphism

φ : H → G

satisfying φ(g · h) = gφ(h)g−1 and φ(h1) · h2 = h1h2h
−1
1 . In some sense, crossed

modules are two-dimensional groups (two group structures behaving nicely with each

other) and were first used to relate topological structure: if (X,A, x) is a pointed pair

of topological spaces, then the boundary map

∂ : π2(X,A, x) → π1(A, x)

is a crossed module with the induced functor

Π : PairsPointedSpaces → CrossedModules

satisfying the van Kampen Theorem [4].

Replacing these groups with inverse semigroups, a very open ended question we

would like to see answered in the long term:
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Question. Is there a generalized notion of homotopy so that the formulation of the

fundamental inverse category (versus the fundamental groupoid) makes sense? Then,

do crossed modules translate to the language of inverse semigroup actions? Can these

be seen as a restriction module of an inverse category acting somehow on a space?

As this structure would be in some sense a two-dimensional inverse semigroup,

it would then be interesting to know if these can be reformulated as double inverse

semigroups (or double inverse categories).

5.2 Restriction Bicategories

This section contains a motivating example for the definition of a restriction bicate-

gory, a bicategory with a functorial restriction structure on its 1-cells satisfying (R1)

through (R4) up to invertible 2-cell.

Composing Restriction Bimodules

We compose restriction bimodules (cf. Definition 3.2.1) in the usual way:

Definition 5.2.1. If X φ
| →→Y ψ

| →→Z are restriction bimodules then ψ⊗φ : X | →→Z

is defined by the coequalizer diagram

∐
y1,y2∈Y0

ψ(z, y) × Y(y1, y2) × φ(y2, x)
λψ×1

→→

1×ρφ
→→

∐
y∈Y0

ψ(z, y) × φ(y, x) →→ (ψ ⊗ φ)(z, x)

with left and right action defined by (β⊗α)·f = β⊗(α·f) and g·(β⊗α) = (g·β)⊗α. ♢

Without loss of generality, we consider an arbitrary element of ψ ⊗ φ as having

the form β ⊗ α with α ∈ φ(y, x) and β ∈ ψ(z, y).
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Proposition 5.2.2. If X φ
| →→Y ψ

| →→Z are restriction bimodules then ψ⊗φ : X | →→Z

is a restriction bimodule with β ⊗ α = β · α.

Proof. To prove (RMod.0), suppose that β ⊗ α ∈ (ψ ⊗ φ)(z, x) with α ∈ φ(y′, x) and

β ∈ ψ(z, y′). Then β · α ∈ φ(y′, x) and thus

β ⊗ α = β · α

is a restriction idempotent in X by (RMod.0) of φ.

To prove (RMod.1), suppose that β ⊗ α ∈ (ψ ⊗ φ)(z, x). Then

(β ⊗ α) · β ⊗ α = (β ⊗ α) · β · α

= β ⊗ (α · β · α)

= β ⊗ (β · α)

= (β · β) ⊗ α

= β ⊗ α.

To prove (RMod.3), suppose that β⊗α ∈ (ψ⊗φ)(z, x) and γ⊗ δ ∈ (ψ⊗φ)(z′, x).

Then

(β ⊗ α) · γ ⊗ δ = β ⊗ (α · γ · δ)

= (β · α) · γ · δ

= β · α ◦ γ · δ

= β ⊗ α ◦ γ ⊗ δ.
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To prove (RMod.4), suppose that β ⊗ α ∈ (ψ ⊗ φ)(z, x) and γ ⊗ δ ∈ (ψ ⊗ φ)(z′, x).

Then

f ◦ (β ⊗ α) · f = f ◦ β ⊗ (α · f)

= f ◦ β · (α · f)

= β · α ◦ f

= β ⊗ α ◦ f

and

(β ⊗ α) · g · (β ⊗ α) = (β ⊗ α) · (g · β) ⊗ α

= β ⊗ (α · (g · β) · α)

= β ⊗ (g · β · α)

= β ⊗ (g · β · α)

= (β · g · β) ⊗ α

= (g · β) ⊗ α

= g · (β ⊗ α).

Restriction Bicategory of Restriction Bimodules

With composition of restriction bimodules associative only up to invertible 2-cell, we

only require that conditions (R1) through (R4) would hold up to (coherent) invertible

2-cells.

Definition 5.2.3. Let X be a bicategory. A restriction structure on X is a famiy of
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functors

(−) : X(A,B) → X(A,A)

indexed by the 0-cells of X together with invertible 2-cells

(i) ρ1 : ff ∼= f

(ii) ρ2 : f g ∼= g f

(iii) ρ3 : gf ∼= gf

(iv) ρ4 : gf ∼= f gf

The assignment of restriction operators being functorial, in particular, implies that if

α : f ∼= g then α : f ∼= g.

In addition to the usual pentagonal and unit coherence diagrams, the following

diagrams must also commute for any isomorphism α : f ∼= g :

f
ρ1

→→

α

↓↓

f f

αα

↓↓

g ρ1
→→ g g

g g

g α−1
↘↘

f g
αg

←←
f α−1

→→

ρ2
↓↓

f f

αf↙↙

g f

g f
ρ3

→→

α−1 α
↓↓

g f

α−1α
↓↓

f g ρ3
→→ g f

f ′ f
ρ4

→→

α′ α
↓↓

f f ′f

αα′α
↓↓

g′ g ρ4
→→ g g′g

♢

Question. Are these diagrams sufficient to show coherence in a restriction bicategory,

or are more conditions required?
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That two isomorphic 1-cells must have isomorphic restrictions allows us to prove

that all of the usual conditions for a restriction category are satisfied, with equality

being up to distinguished invertible 2-cell. E.g., that f f ∼= f or that f gf ∼= gf :

f gf
∼=
ρ2
→→ gf f

∼=
ρ−1

3

→→ gff
∼=

1g ρ1

→→ gf

For the next example, one needs a new condition: if φ : X | →→Y is a restriction

bimodule, then we require that

(*) For all f : x → x′ in X, α ∈ φ(y, x) and α′ ∈ φ(y′, x′), there exists g : y → y′

such that g ·α = α′ · f. That is, the following diagram can always be completed

to be commutative:

x α
| →→

f
↓↓

y

∃g
↓↓

x′
α′
| →→ y′

Such a condition is quite strong in the case of restriction categories but is quite

natural when restricted to inverse categories; given the following diagram, there exist

g, g′ with (gg′g) · α = g · α and (g′gg′) · β = g′ · β :

y

g

↓↓

x

α
→→

β →→
y′

g′

↑↑

The necessity of this condition will become clear when proving that ρ4 exists for the

bicategory of restriction bimodules.
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Definition 5.2.4. A morphism F : φ ⇒ ψ : X | →→Y of left-Y right-X restriction

bimodules φ and ψ is a family of functions Fy,x : φ(y, x) → ψ(y, x) such that

• F is equivariant with respect to the action of X and Y on φ and ψ :

F (α · f) = F (α) · f and F (g · α) = g · F (α).

• F is compatible with the restriction structure in the sense that, for all α,

Fα = α. This condition on a morphism of restriction bimodules is analogous

to requiring that restriction functors between restriction categories preserve re-

striction idempotents. ♢

Example 5.2.5. This example defines the restriction bicategory rModule(rCat) of

restriction bimodules. If φ : X | →→Y is a restriction bimodule satisfying condition

(*), define a new module φ : X | →→X

φ(x′, x) = {f ◦ α : α ∈ φ(y, x), f : x → x′}

Actions are given by composition. Conditions for being a restriction bicategory:

(i) φ⊗ φ ∼= φ

Define a map by

ρ1 : α⊗ (fβ) ↦→ α · (fβ).

Note that this map is immediately left and right equivariant and therefore a

bimodule morphism.
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We show now that it is well defined. Suppose that there is a map v : x′ → x′′ in

X making the following diagram commute:

x′

v

↓↓

α
|

→→x

fβ
→→

f ′β′ →→

y

x′′ α′
|

→→

Then

α · (fβ) = (α′ · v) · (fβ)

= α′ · (v(fβ))

= α′ · (f ′β′)

and this map is well defined. There is also a map φ → φ⊗φ defined by α ↦→ α ·α

which is similarly a well define module morphism. This map is the inverse of ρ1,

making ρ1 an isomorphism of bimodules:

α ↦→ α⊗ α ↦→ α · α = α
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and

α · (fβ) ↦→ [α · (fβ)] ⊗ α · (fβ)

= α⊗ fβ α · (fβ)

= α⊗ α(fβ)

= α · α⊗ fβ

= α⊗ fβ

↦→ α · (fβ)

(ii) φ⊗ ψ ∼= ψ ⊗ φ

Define a map by

ρ2 : (gβ) ⊗ (fα) ↦→ (gfα) ⊗ β · f

This map is clearly left equivariant. We also quickly see that it is right equiv-

ariant:

ρ2([gβ ⊗ fα] · A) = ρ2(gβ ⊗ fαA)

= ρ2(gβ ⊗ fAα · A)

= gfAα · A⊗ β · (fA)

= gfαA⊗ β · (fA)

= gfα⊗ A(β · f)A

= gfα⊗ (β · f)A

= ρ2([gβ ⊗ fα]) · A
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We show now that it is well defined. Suppose that there is a map v : x′′ → x′′′

in X such that vfα = f ′α′ and g′β′v = gβ. Then

g′f ′α′ ⊗ β′ · f ′ = g′f ′α′ β′ · f ′ ⊗ β′ · f ′

= g′f ′β′ · f ′ α′ ⊗ β′ · f ′

= g′β′f ′ α′ ⊗ β′ · f ′

= g′β′vf α⊗ β′ · f ′

= gβf α⊗ β′ · f ′

= gfβ · f α⊗ β′ · f ′

= gfβ · f β′ · f ′ α⊗ β · f

= gβf β′ · f ′ α⊗ β · f

= g′β′vf α β′ · f ′ ⊗ β · f

= g′β′f ′ α′ β′ · f ′ ⊗ β · f

= g′β′f ′ β′ · f ′ α′ ⊗ β · f ⊗ β · f

= g′β′ β′f ′ α′ ⊗ β · f

= g′β′ vf α⊗ β · f β · f

= gβ f α⊗ β · f

= gfβ · f α⊗ β · f

= gfα⊗ β · f
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and this map is well defined. Injective: consider

(gβ) ⊗ (fα) and (g′β′) ⊗ (f ′α′)

and assume that

(gfα) ⊗ β · f = (g′f ′α′) ⊗ β′ · f ′.

Then this map is injective since

(gfα) ⊗ β · f = gfgf β · f α⊗ 1

= gfβ · f α⊗ 1

= gβfα⊗ 1

= gβ ⊗ fα.

Surjective: given (fα) ⊗ (gβ) ∈ φ⊗ ψ(x′, x), we have

(fgβ) ⊗ α · g ∈ ψ ⊗ φ

with

(fgβ) ⊗ α · g ↦→ (fg α · g fg β fg) ⊗ 1

= (fg α · g β) ⊗ 1

= (f α g β) ⊗ 1

= (fα) ⊗ (gβ)
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(iii) φ⊗ ψ ∼= φ⊗ ψ

Define a map by

ρ3 : f α⊗ (gβ) ↦→ (f α · g) ⊗ β

This map is clearly left equivariant. We also quickly see that it is right equiv-

ariant:

ρ3(fα⊗ gβA) = ρ3((fA)α⊗ gβA)

= ρ3((fA)α⊗ gAβ · A)

= fAα · (gA) ⊗ β · A

= fA (α · g) · A) ⊗ β · A

= f (α · g)A⊗ β · A

= f (α · g) ⊗ Aβ · A

= f (α · g) ⊗ βA

= ρ3(fα⊗ gβ) · A

We show now that it is well defined. Suppose that there is a map v : x → x′′ in

X making the following diagram commute:

x

v

↓↓

α
|

→→x′

gβ
→→

g′β′ →→

y

x′′ α′
|

→→
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Then

(f α · g) ⊗ β = f(α′ · v) · g ⊗ β

= f(α′ · v) · g ⊗ (α′ · v) · g β

= f(α′ · v) · g ⊗ (α′ · v) · g · β

= fα′ · (vg) ⊗ α′ · (g′ · β′)

= fα′ · (vg) ⊗ α′ · g′ β′

= fα′ · (vg)α′ · g′ β′ ⊗ β′

= f(α′ · (vg)) · (α′ · g′ β′) ⊗ β′

= f(α′ · (vgβ)) · α′ · g′) ⊗ β′

= f(α′ · (g′β′)) · α′ · g′) ⊗ β′

= fα′ · (g′β′ α′ · g′) ⊗ β′

= fα′ · (g′α′ · g′ β′) ⊗ β′

= f((α′ · g′) · α′ · g′) β′) ⊗ β′

= fα′ · g′ β′ ⊗ β′

= fα′ · g′ ⊗ β′

and this map is well defined.

Injective: consider

f α⊗ (gβ), f ′ α′ ⊗ (g′β′) ∈ φ⊗ ψ(x′, x)



123

and assume that

(f α · g) ⊗ β = (f ′ α′ · g′) ⊗ β′

Then this map is injective since

(f α · g) ⊗ β = f α · g β ⊗ 1

= f α g β ⊗ 1

= f α g β ⊗ 1

= f α⊗ (gβ) ⊗ 1

Surjective: given (fα) ⊗ gβ ∈ φ⊗ ψ(x′, x), we have

fg α⊗ (gβ) ∈ φ⊗ ψ(x′, x)

with

fg α⊗ (gβ) ↦→ fg α · g ⊗ β

= fαg ⊗ β

= fα⊗ gβ.

(iv) ψ ⊗ φ ∼= φ⊗ ψ ⊗ φ
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Recall that an element in φ⊗ ψ ⊗ φ(y, x) is of the shape α⊗ fβ ⊗ γ :

x

f
↓↓

•
γ
→→ y′

∃g
↓↓

•
β
→→ z

x′ •
α
→→ y

Where the map g is guaranteed by condition (*). Define a map by

ρ4 : fβ ⊗ α ↦→ ((fβ) · α) ⊗ β ⊗ α

with inverse

ρ−1
4 : α⊗ f β ⊗ γ ↦→ (gβ) ⊗ γ

This map is clearly left equivariant and is easily seen to be right equivariant

since

ρ4(fβ ⊗ (α · A)) = (fβ) · (α · A) ⊗ β ⊗ (α · A)

= ((fβ) · α) · A⊗ (β ⊗ α) · A

= ((fβ) · α) ⊗ A(β ⊗ α) · A

= ((fβ) · α) ⊗ (β ⊗ α)A

= ρ4(fβ ⊗ α) · A

We show now that it is well defined. Suppose that there are maps v : y → y′
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u : y → y′′ in Y making the following diagrams commute:

y

v

↓↓

β
|

→→x

α
|

→→

α′
|

→→

z

y′ β′
|

→→

y

u

↓↓

fβ

→→x

α
|

→→

α′
|

→→

z

y′′ f ′β′

→→

Then

(fβ) · α⊗ β ⊗ α = (f ′β′u) · α⊗ β′ · v ⊗ α

= (f ′β′) · (u · α) ⊗ β′ ⊗ v · α

= (f ′β′) · α′ ⊗ β′ ⊗ α′

and this map is well defined.

Injective: follows from

α⊗ f β ⊗ γ = (α · f) ⊗ β ⊗ γ

= (g · γ) ⊗ β ⊗ γ

= (g · γ)β ⊗ γ ⊗ 1

= (gβ) · γ ⊗ 1

= gβ ⊗ γ.
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Surjectivity is immediate:

(g · γ) ⊗ β ⊗ γ ↦→ gβ ⊗ γ.

Finally, if F : φ ∼= ψ, we define

F : φ → ψ

by

F (f ◦ α) = f ◦ Fα.

Since Fα = α, this map is the identity and the four restriction coherence conditions

are easily satisfied. ▲

5.3 Restriction Enriched Categories

Definition 5.3.1. If V is a Cartesian monoidal category, then a restriction V-category

X is a V-category equipped with, for each pair A,B ∈ X0 of objects, a V-morphism

rA,B : X(A,B) → X(A,A)

such that the following diagrams commute for all A,B ∈ X0 :
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X(A,B) ∆ →→

1

↓↓

X(A,B) × X(A,B)

r×1

↓↓

X(A,B) X(A,A) × X(A,B)µ
←←

(R.1)

X(A,B) × X(A,C)
τ

→→

r×r

↓↓

X(A,C) × X(A,B)
r×r
↓↓

X(A,A) × X(A,A)
µ
↓↓

X(A,A) × X(A,A)

µ←←

X(A,A)

(R.2)

X(A,B) × X(A,C)
r×r

→→

r×1

↓↓

X(A,A) × X(A,A)
c

↓↓

X(A,A) × X(A,B)

c
→→

X(A,A)

X(A,B)

r

↑↑

(R.3)
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X(A,B) × X(A,B) × X(B,C)

id×µ

↓↓

X(A,B) × X(B,C)

∆×id

→→

id×r

↓↓

X(A,B) × X(A,C)

id×r

↓↓

X(A,B) × X(B,B)

µ

→→

X(A,B) × X(A,A)

µ.τ

↓↓

X(A,B)

(R.4)

♢

Proposition 3.1.3 shows that restriction monads in Set-Mat are precisely small –

that is, Set-enriched – restriction categories. This correspondence can be extended

to restriction categories enriched in any suitable category V .

Theorem 5.3.2. If V is a Cartesian monoidal category, then restriction V-categories

correspond to restriction monads in V-Mat.

Proof. It is well known that a monad T : X0 → X0 in V-Mat (the bicategory whose

0-cells are sets and whose 1-cells are V-valued matrices) – a matrix T : X0 ×X0 → V –

corresponds to a V-category X whose hom-objects are defined by X(A,B) = T (B,A),

whose multiplication is given by the V-morphism µ : T 2 ⇒ T and whose unit is given

by the V-morphism η : idX0 ⇒ T. As before, the hom-set V-Mat({∗},X0)(B⃗, T A⃗) can
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be identified with the V-object T (B,A) = X(A,B). The restriction V-morphisms

ρA,B : V-Mat({∗},X0)(B⃗, T A⃗) → V-Mat({∗},X0)(A⃗, T A⃗)

are then in correspondence with the V-morphisms

rA,B : X(A,B) → X(A,A),

which, by virtue of the V-morphisms ∆ and τ afforded by V being Cartesian monoidal,

satisfy each of (R1) through (R4).

Example 5.3.3. Cat-categories B are strict bicategories (or, 2-categories). A restric-

tion structure on such a B, then, is a family of functors rA,B : B(A,B) → B(A,A)

satisfying (R1) through (R4). In particular, the existence of an invertible α : f ⇒ g

automatically gives an isomorphism r(α) : rf ∼= rg; a restriction Cat-category is a

strict restriction bicategory. ▲

5.4 Supported Range Modules

In this section we introduce the double categories RModule(rCat) and

sRModule(rCat), using blackboard bold to differentiate these from their horizontal

bicategories rModule(rCat) and srModule(rCat).

The Double Category RModule(rCat)

Definition 5.4.1. Let C be a restriction category. Define the double category

RModule(rCat) as follows:
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• Obj(RModule(rCat)) = rCat0.

• Ver(RModule(rCat)) = rCat1.

• Hor(RModule(rCat)) = rModule(rCat).

• Dbl(RModule(rCat)) : a double cell M in RModule(rCat)

X φ
| →→

F
↓↓

M

X′

F ′

↓↓

Y
ψ
| →→Y′

is a bimodule morphism M : φ → ψ which is equivariant with respect to F

and F ′ : for all appropriate f ∈ X and g ∈ Y, M(α · f) = (Mα) · (Ff) and

M(g · α) = (F ′g) · (Mα). ♢

Finally, we can organize the data structures defined in this thesis into two double

categories (should we take the restriction monads in a double category so that the

constructions are functorial):

RModule(rCat) RMod(Span(Set))

Objects Rest. Cats. Rest. Monads in Span(Set)

Vertical Arrows Rest. Functors Monad Morphisms

Horizontal Arrows Rest. Modules Algebras

Double Cells Equivariant Maps Equivariant Maps

Table 5.1: The double categories RModule(rCat) and RMod(Span(Set)).
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X
α

|
M →→

F
↓↓

X′

F ′

↓↓

Y |
M ′

→→Y′

RModule(rCat))

T

α

|
A →→

F
↓↓

T ′

F ′

↓↓

N |
B

→→ N ′

RMod(Span(Set)

These are double restriction (bi)categories (whose vertical morphisms are total) in the

sense that we can assign to each module M some M which behaves as the restriction

idempotent of M.

Question. Should these be inverse categories with joins, with restriction (bi)modules

and restriction functors, there will then be a double category of Ehresmann sites, with

ideally flat/covering morphisms and inductive functors. How is this related to the

category of étendues, geometric morphisms and functors?

Supported Range Modules

Analogous to range categories [7], a range module is a restriction bimodule φ :

X | →→Ywhich encodes range in addition to domain: there is an assignment of each

α ∈ φ(y, x), to some α̂ ∈ Y(y, y) satisfying:

(i) α̂ = α̂

(ii) α̂ · α = α

(iii) ĝ · α = gα̂ and α̂ ◦ f = αf̂

(iv) ĝα̂ = ĝ · α and α̂ · f̂ = α̂ · f
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If a range module satisfies the stronger condition of gα̂ = ĝ · αg and α · f̂ = α̂ · f · α

in place of Condition (iv), we call it a supported range module.

We note that an inverse category is always a supported range category with

f = f ◦f and f̂ = ff ◦ :

ĝfg = gf(gf)◦g = gff ◦g◦g = gg◦gff ◦ = gf̂

We also note that in an inverse category, we have

f = f ◦f = f ◦f ◦◦ = f̂ ◦

(and similarly, f̂ = f ◦). This corresponds to the intuition that a partially invertible

morphism is defined exactly by the range of its inverse.

Range modules between categories need to be supported to define composition

because the tensor product of two range categories is not a range category unless

they are both supported. In this case, the resulting tensor product is also supported,

permitting the definition of a bicategory srModule(X), where X is a category, of

supported range modules between categories.

Suppose that φ : X | →→Y is a range module between inverse categories (i.e.,

an arrow in srModule(iCat)). Recall that the equivalence between inverse categories

and top-heavy locally inductive groupoids relies on having the restriction and range

idempotents (which form the meet-semilattices). It would therefore be interesting to

know if the construction G : iCat → tliGrpd can be extended to a construction

G : srModule(iCat) → srModule(tliGrpd)
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and whether this extension is also an equivalence. To start, we construct a supported

range module G(φ) between the groupoids G(X) and G(Y) corresponding to X and

Y.

Construction 5.4.2. Given a supported range module φ : X | →→Y , we define a

module G(φ) between the corresponding groupoids G(X) and G(Y) by

G(φ)(g, f) = {α ∈ φ(sg, sf) : α = f, α̂ = g}

We define the left G(Y)-action by

(f α
| →→ g

g
→→ g◦) � →→ g · α

which is well defined since

g · α = g · α = α̂ · α = α = f

ĝ · α = ĝα̂ = ĝg = ĝ = g◦

and we define the right G(X)-action by

(f ◦ f◦
→→ f

α
| →→ g) � →→ α · f ◦

which is well defined since

α · f ◦ = α · f ◦ = f · f ◦ = f ◦
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α̂ · f ◦ = α̂ · f̂ ◦ = α̂ · f = α̂ · α = α̂ = g ♢

Question. Is G pseudofunctorial? Is it a biequivalence between the module bicate-

gories? This can possibly be proven by extending the functor I : tliGrpd → iCat to

a functor I : srModule(tliGrpd) → srModule(iCat) in such a way that φ ∼= IG(φ),

making G essentially surjective.

A potential extension of I can be given by the following construction.

Construction 5.4.3. Given a module φ : G | →→H of top-heavy locally inductive

groupoids, we define a module I(φ) between the corresponding inverse categories

I(G) and I(H) by

I(φ)(N,M) = {α : x | →→y : x ∈ M, y ∈ N} ♢

Note that

IG(φ)(Ey, Ex) = {α : f | →→g ∈ G(φ) : f ∈ Ex, g ∈ Ey}

= {α : x | →→y ∈ φ(y, x) : α = f, α̂ = g}

We can then define a map φ(y, x) → IG(Ey, Ex) by α : x | →→y ↦→ α : 1x | →→1y .

Consider the double category sRModule(iCat), with supported range modules

between inverse categories as horizontal arrows, with functors as vertical arrows and

with restriction bimodule morphisms as double cells. Similarly, we define the double

category sRModule(tliGrpd). We then conjecture the existence of an extension of

the functor I : tliGrpd → iCat to a pseudofunctor I : srModule(tliGrpd) →
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srModule(iCat) in such a way that φ ∼= IG(φ), making G essentially surjective (cf.

Construction 5.4.3).

Conjecture 5.4.4. sRModule(iCat) and sRModule(tliGrpd) are equivalent as dou-

ble categories; that is, we extend the Ehresmann-Schein-Nambooripad theorem to two

dimensions in an additional way.



Chapter 6: Conclusion

This thesis took advantage of Cockett and Lack’s restriction categories, an algebraic

abstraction of partial functions, to introduce several categorical structures which form

a framework for studying partial computation, certain geometric topological struc-

tures and double categories equipped with two compatible restriction structures.

We introduced restriction monads, showed that restriction monads in the bicate-

gory of spans of sets are small restriction categories and showed that the algebras for

these monads are certain restriction modules.

We then introduced top-heavy locally inductive groupoids, showed them to be

equivalent to inverse categories and equipped them with joins. We showed that the

top-heavy locally inductive groupoids corresponding to join inverse categories are

Ehresmann sites and we then defined a suitable morphism of Ehresmann sites to be

that of an ideally covering and ideally flat functor.

Finally, we studied two dimensional restriction categories, first by defining double

restriction categories and second by defining restriction bicategories. We were then

able to organize the other data structures of this thesis into a single two-dimensional

structure; e.g., restriction modules between restriction monads can be placed in a

natural double category and the composition of restriction bimodules gives a natural

restriction bicategory.

136



Bibliography

[1] S. Abramsky and A. Jung. Handbook for Logic in Computer Science, chapter
Domain Theory. Clarendon Press, Oxford, 1994.

[2] M. Artin, A. Grothendieck, and J. Verdier. Théorie des Topos et Cohomolo-
gie Étale des Schémas, SGA4, tome 1, volume 269 of Lecture Notes in Math.
Springer-Verlag, New York, 1972.

[3] R. Betti, A. Carboni, R. Street, and R. Walters. Variation through enrichment.
Journal of Pure and Applied Algebra, 29(2):109 – 127, 1983.

[4] R. Brown. Topology and Groupoids. Booksurge LLC, 2006.

[5] R. Brown, December 2010. http://pages.bangor.ac.uk/ mas010/hdaweb2.htm,
Accessed: July 2013.

[6] J. Cockett and P. Hofstra. Introduction to turing categories. Annals of Pure and
Applied Logic, 156(2):183 – 209, 2008.

[7] J. Cockett, P. Hofstra, and X. Guo. Range categories i: General theory. Theory
and Applications of Categories, 26:412–452, 2012.

[8] J. R. B. Cockett and G. S. H. Cruttwell. Differential structure, tangent structure,
and sdg. Applied Categorical Structures, 22(2):331–417, 2014.

[9] J. R. B. Cockett, G. S. H. Cruttwell, and J. D. Gallagher. Differential restriction
categories. Theory and Applications of Categories, 25(21):537–613, 2011.

[10] J. R. B. Cockett and S. Lack. Restriction categories III: colimits, partial limits
and extensivity. MSCS, 17(4):775–817, 2007.

[11] R. Cockett and S. Lack. Restriction categories I: categories of partial maps.
Theoretical Computer Science, 270:223–259, 2002.

[12] R. Dawson, R. Paré, and D. Pronk. The span construction. Theory and Appli-
cations of Categories, 24(13):302 – 377, 2010.

[13] D. DeWolf and D. Pronk. On Double Inverse Semigroups. arXiv, Jan. 2015.
1501.03690v2.

[14] B. Eckmann and P. J. Hilton. Group-like structures in general categories. I.
Multiplications and comultiplications. Math. Ann., 145:227–255, 1961.

[15] T. Fiore, N. Gambino, and J. Kock. Monads in double categories. Journal of
Pure and Applied Algebra, 215:1174–1197, 2011.

[16] J. Funk. Semigroups and Toposes. Semigroup Forum, 75(3):480–519, 2007.

137



138

[17] R. Garner and D. Lin. Cocompletion of restriction categories. ArXiv e-prints,
1610.07164, October 2016.

[18] B. Giles. An investigation of some theoretical aspects of reversible computing.
PhD thesis, University of Calgary, 2014.

[19] C. Hollings. The Ehresmann–Schein–Nambooripad Theorem and its successors.
European Journal of Pure and Applied Mathematics, pages 1–39, 2009.

[20] C. Hollings. Extending the Ehresmann-Schein-Nambooripad theorem. Semigroup
Forum, 80(3):453–476, 2010.

[21] G. Huet. Cartesian closed categories and lambda-calculus. In Combinators and
Functional Programming Languages, Thirteenth Spring School of the LITP, Val
d’Ajol, France, May 6-10, 1985, Proceedings, pages 123–135, 1985.

[22] J. Hyland. The effective topos. volume 110, Noordwijkerhout, January 1982. The
L.E.J. Brouwer Centenary Symposium, North Holland Publishing Company.

[23] J. Kastl. Inverse Categories, volume 7 of Studien zur Algebra und ihre Anwen-
dungen. Akademie-Verlag, 1979.

[24] A. Kock. Natural bundles over smooth etendues. pages 1–22, Nov. 2009.

[25] A. Kock and I. Moerdijk. Presentations of étendues. Cahiers de Topologie et
Géométrie . . . , 32(2):145–164, 1991.

[26] M. Lawson. Inverse Semigroups: The Theory of Partial Symmetries. World
Scientific Publishing Co., 1998.

[27] M. Lawson. Ordered Groupoids and Left Cancellative Categories. Semigroup
Forum, 68(3):458–476, 2004.

[28] M. Lawson and B. Steinberg. Ordered groupoids and etendues. Cahiers de
topologie et géométrie différentielle catégoriques, 45(2):82–108, 2004.

[29] M. V. Lawson. Semigroups and ordered categories. I. The reduced case. J.
Algebra, 141(2):422–462, 1991.

[30] M. Linckelmann. On inverse categories and transfer in cohomology. Proceedings
of the Edinburgh Mathematical Society. Series II, 56(1):187–210, 2013.

[31] G. Longo and E. Moggi. A category theoretic characterization of functional
completeness. Theoretical Computer Science, 70(2):193–211, 1990.



139

[32] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Springer-Verlag,
1992.

[33] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55 – 92, 1991.

[34] P. Mulry. Generalized banach-mazur functionals in the topos of recursive sets.
Journal of Pure and Applied Algebra, 26:71–83, 1982.

[35] K. Nambooripad. Structure of Regular Semigroups. PhD thesis, University of
Kerala, 1973.

[36] K. Nambooripad. Structure of regular semigroups, I. Fundamental regular semi-
groups. Semigroup Forum, 9(1):354–363, 1975.

[37] K. Nambooripad. Structure of regular semigroups, II. The general case. Semi-
group Forum, 9(1):364–371, 1975.

[38] G. Preston. Some Problems in the Theory of Ideals. PhD thesis, University of
Oxford, 1953.

[39] B. Schein. On the theory of inverse semigroups and generalised groups. American
Mathematical Society Translations, 2(113):89–122, 1979.


	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Preliminaries
	Partial Computation
	Restriction Monads
	Restriction Modules
	Future Work

	Geometry and Topology
	Ehresmann-Schein-Nambooripad Theorem
	Ehresmann-Schein-Nambooripad Theorem for Inverse Categories
	Etendues, Sheaves and Morphisms
	The Etendue of Sheaves on an Ehresmann Site
	Future Work

	Two-Dimensional Restriction Categories
	Double Categories
	Restriction Bicategories
	Restriction Enriched Categories
	Supported Range Modules

	Conclusion
	Bibliography

