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ABSTRACT

North American Atlantic salmon populations have declined significantly since the 1990s,

especially the elder life stages. The total average number of returned two-sea-winter (2SW)

in the period 1997 to 2007 dropped by 57% compared to that in the period 1972 to 1982.

Evidence is emerging that the decline is largely due to poor marine survival. Since the

marine phase of the salmon life cycle lasts several years and spans a large geographic

range, it remains unclear at which specific life stage the most significant decline occurs.

To address this question, I developed a new method to assess the status and fluctuations of

the North American Atlantic salmon population. By applying an optimization algorithm

to fit an age- and stage-structured matrix model to available observations for the period

from 1972 to 2011, I assess stage-specific mortality rates over time. The model is able to

closely replicate the observations and provides insights into the temporal variation of one-

sea-winter (1SW) and two-sea-winter (2SW) salmon returns. Results suggest that changes

in the relative proportion of the 1SW and 2SW returns resulted from a 28% decrease of

survival during the second year at sea since 1992. By combining model outputs, and

homewater and distant fishery catch data, I quantified the relative influence of bottom-up

(i.e., environmental changes) and top-down effects (i.e., fishing pressure). It shows the

environmental impact has a generally negative effect on Atlantic salmon survival, with a

41% decrease near West Greenland during the second year at sea and a 17% decrease near

Canadian homewater during migration to their spawning grounds since 1992. In addition

to the importance of external environmental change impacting the population dynamics of

North American Atlantic salmon, I show that the moratorium on commercial fishing is

likely insufficient for recovery of Atlantic salmon to previous abundance levels. However,

the moratorium is crucial, at least in the short term, to maintain the relatively low yet stable

abundance of Atlantic salmon.
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Abbreviations Description

1SW One-sea-winter; salmon that spend one winter at sea before they mature

2SW Two-sea-winter; salmon that spend two winters at sea before they mature

3SW Three-sea-winter; salmon that spend three winters at sea before they mature

SST Sea surface temperature
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CHAPTER 1

INTRODUCTION

Atlantic salmon (Salmo salar L.) is an anadromous fish species with a complex life-history

that encompasses their hatching and initial juvenile growth in freshwater, smoltification,

followed by a migration to productive marine feeding grounds, and a return migration to

their natal river for spawning (Asa et al., 2011). The North American Atlantic salmon

populations span a broad geographic range that historically extended from Ungava Bay,

Canada, to Long Island Sound, United States of America (Figure 1.1). Atlantic salmon that

spend more than one winter in the ocean undertake wide-ranging migrations to common

feeding grounds off West Greenland and in the Labrador Sea (Thorstad et al., 2011), during

which they are exposed to a range of environmental conditions.

Declines in North American Atlantic salmon populations have been observed in recent

decades, especially in their southernmost reaches (i.e., Gulf of Maine, Bay of Fundy and

Scotian Shelf) and among fish maturing after two winters at sea (two sea-winter salmon,

or 2SW) (Parrish et al., 1998; ICES 2015; Figure 1.2). The populations from Quebec, the

Gulf of St Lawrence and the Scotian Shelf dominate the total North American Atlantic

salmon population, and all three show a declining trend over the period 1972 to 2007.

Populations from Labrador and Newfoundland make up a relatively small fraction of

the total population over the period 1972 to 1992 and have increased since 1992, which

represents a positive response to the 1992 closure of the commercial salmon and cod

fisheries.

The commercial fishery is an obvious and significant factor impacting the salmon

population. The Government of Canada imposed a moratorium on the commercial salmon

fishery for the Maritime provinces in 1984 and for the Newfoundland and Labrador salmon
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fishery in 1992, which together with the closure of the northern cod fishery (also in 1992),

reduced the by-catch of salmon considerably (Federation 1994). The Greenland fishery

was the largest commercial salmon fishery in the world around the 1960s and it was not

until the early 1980s that quotas on the salmon fisheries were agreed to and began to result

in reduced catches. Since 1995, the West Greenland fishery has been severely restricted

due to a quota agreed to by North Atlantic Salmon Conservation Organization (NASCO)

based on pre-fishery abundance advice from International Council for the Exploration of

the Sea (ICES).

Despite substantial efforts to reduce fishing pressure and protect freshwater habitats,

Atlantic salmon stocks have shown little evidence of recovery from 1990 to 2010 (Frank

et al. 2011). Unlike during the early life stages in freshwater, salmon in their marine

environment are challenged by multiple physiological stressors and exposed to a wide

array of predators, which makes survival rates variable (Thorstad et al. 2011; Chaput 2012).

Recent studies suggest a decrease survival in response to warmer marine temperatures and

bottom-up control effects (i.e., changes in physical conditions leading to a decrease of

plankton abundance and prey availability for salmon) driven by climate change (Beaugrand

and Reid, 2012; Chaput and Benoit, 2012; Friedland et al., 2013; Mills et al., 2013).

The above studies include Atlantic salmon populations from both North American and

European continents. For example, Friedland et al. (2012) examined sea surface tempera-

ture (SST), chlorophyll, net primary production and zooplankton related to the weight of

salmon based on a correlation analysis and found that salmon growth was highly associated

with the thermal regime during winter and spring, with correlation significant at P = 0.01

or P = 0.05. Beaugrand et al. (2012) determined correlations between SST and growth,

survival and maturation of salmon during marine migrations. Mills et al. (2013) suggested

climate conditions represented by the North Atlantic Oscillation (NAO) and the Atlantic

Multi-decadal Oscillation (AMO) meteorological indexes are associated with changes in

plankton communities and prey availability (e.g., 55% correlation between capelin and

AMO), which are ultimately linked to Atlantic salmon populations. However, since most of

the studies are based on correlation or cluster analysis, a better mechanistic understanding

of climate-driven effects propagating through the food web and their impacts on different

life stages of salmon is needed.

To manage distant water fisheries (i.e., salmon near West Greenland and the Faroe
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Islands), the International Council for the Exploration of the Sea (ICES) developed a

model to forecast Atlantic salmon abundance prior to any fisheries removals: The Pre-

Fishery Abundance (hereafter denoted as PFA). The basic input data to their model are

annual returns of 1SW and 2SW salmon, which are used to estimate the maturing and

non-maturing components of PFA. The maturing component returns after one winter spent

at sea and the non-maturing component remains at sea for at least one extra winter before

migrating to spawning grounds. The ICES model assumes that natural mortality at sea

between PFA and returned salmon is constant over time (Rago et al., 1993; Chaput, 2012).

This implicitly assumes that changes in the relative proportion of 1SW and 2SW salmon

returns result from changes in the proportion of maturing PFA and not in the survival rate

at sea, which is highly unlikely (Chaput, 2012). Moreover, complex life history of Atlantic

salmon is coarsely represented in the model. The lack of separation of different life stages

make it difficult to incorporate available data to improve model performance.

In this study, I developed a new method to assess the North American Atlantic salmon

stock by applying an optimization algorithm to fit an age- and stage-structured matrix

model to the available observation data (i.e., returns of 1SW and 2SW). Matrix models,

introduced by Leslie (1945), are powerful tools for population dynamic studies (Caswell,

2001). They are based on biological fundamentals (i.e., recruitment, aging and survival,

etc.) and allow flexibility in simulating complex dynamic behaviour. Existing data can be

used in a matrix model that incorporates all life stages and key stages where additional

data required can be identified (Browne 1988). Simulation also provides a method of

investigating the effects of proposed management options by estimating future projections.

For example, Horst (1988) used a Leslie model to evaluate how changes in mortality in

different life stages could influence population growth rate of cunner, and showed that

changes in survival rate at young ages resulted in the greatest effect on the population

growth rate. Kareiva et al. (2000) applied a matrix model to assess effects of dams on

Chinook salmon in the Columbia River Basin and concluded that dam removal would

not reverse the decline of Chinook salmon. Lundqvist et al. (2008) evaluated effects of

hydropower development by increasing the return probability on the salmon population

size in a regulated river in Sweden and predicted the future population trend. Ferguson et

al. (2008) combined turbine blade-strike estimates and matrix models to assess mitigation

strategies for fish passing dams.
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However, such models require precisely estimated parameters, and for Atlantic salmon,

the abundance data of the marine phase and information on life history parameters are

often limited. To solve this problem, I applied an optimization algorithm to systematically

tune model parameters until the misfit between model and observations is minimized. This

approach assumes that the unobserved phases of the population can be derived from the

observed phases given the constraints imposed by the population model. Optimization

techniques are often applied to marine biogeochemical models (e.g., Friedrichs et al., 2007;

Bagniewski et al., 2011; Wilson et al., 2013; Kuhn et al., 2015). In this study, given the

available knowledge of the Atlantic salmon life cycle and the available observations (i.e.,

returns of 1SW and 2SW salmon), I aim to reconstruct the best representation of the hidden

marine phase. By dividing the entire simulation period into time segments, I am able to

produce time-dependent parameters, investigate their temporal variations and demonstrate

which life stages are important in explaining the population decline. Additionally, I

quantify the relative influence of fishing pressure and environmental conditions on various

salmon life-history stages and the stock. Finally, I compare the matrix model results with

PFA from ICES’s model. Implications for future fishery management are also addressed in

Chapter 4.
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Figure 1.1: Geographic range of North American Atlantic salmon, as indicated by shaded

area
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Figure 1.2: Total returns of 2SW for North America (top panel) and for each of six regions

(Labrador-LB, Newfoundland-NF, Quebec-QC, Gulf of St Lawrence-GF, Scotian Shelf-SF

and U.S.-US; bottom panel; ICES 2015)
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CHAPTER 2

METHODS

2.1 Leslie model

Before describing the specific matrix model for Atlantic salmon, I present a general

introduction to the Leslie model (Leslie, 1945) by illustrating several ideal cases using a

population with three life stages. I assume a species with three age classes (i.e., juveniles,

subadults and adults) and an initial population with 1000 females in each of the three

age classes. The survival probabilities for the first and second age classes are given by

P1 and P2 and fecundities for the second and third age classes are given by F1 and F2.

The following matrix equation describes how the population evolves over the course of

one-time step:

⎛
⎜⎜⎝

n1

n2

n3

⎞
⎟⎟⎠

t+1

=

⎛
⎜⎜⎝

0 F1 F2

P1 0 0

0 P2 0

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

n1

n2

n3

⎞
⎟⎟⎠

t

(2.1)

It can be written in a more compact form:

n(t+ 1) = Mn(t) (2.2)

where n(t) is the population vector containing the number of individuals in each age

or stage class at time t, and M is the so-called projection matrix. Parameters of survival

probabilities and fecundities are certainly affected by external environmental factors

and can vary temporally. However, here we begin with the simplest idealized situation

assuming all the parameters are constant. An investigation of the eigenvalues of the
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projection matrix can reveal a great deal of the resulting population dynamics (Caswell,

2001), and is independent of the initial population vector. I assume matrix A has three

distinct eigenvalues λ1, λ2 and λ3, and three linearly independent eigenvectors v1, v2 and

v3 such that

Mvi = λivi (2.3)

After some algebraic manipulation, (2.3) can be written as:

n(t) =
∑
i

ciλ
t
ivi (2.4)

where ci are coefficients related to the initial vector, which shows that the long-term

behaviour of n(t) is determined by the eigenvalues λi as they are raised to higher and

higher powers. (2.4) decomposes the growth of a stage-structured population into a set of

exponential contributions, one for each eigenvalue.

Several cases can be distinguished. If λi is real, then

if λi > 1, λt
i increases exponentially,

if λi = 1, λt
i is stable,

if 0 < λi < 1, λt
i decreases exponentially,

if −1 < λi < 0, λt
i exhibits damped oscillations,

if λi = −1, λt
i exhibits undamped oscillations,

if λi < −1, λt
i exhibits diverging oscillations.

If λi is complex, λt
i exhibits damped oscillations when |λi| < 1 and diverging oscillations

when |λi| > 1.

Dividing both sides (2.4) by λt
1 yields

n(t)

λt
1

= c1v1 + c2(
λ2

λ1

)t + c3(
λ3

λ1

)t + . . . (2.5)

since λ1 > |λ2| (assuming λ1 is the dominant eigenvalue),

lim
t→∞

n(t)

λt
1

= c1v1 (2.6)

which means, regardless of the initial population, the other exponential terms will

eventually become negligible and the population will grow at a rate given by the dominant

8



eigenvalue λ1 and converge to an age structure proportional to the dominant eigenvector

v1. From (2.5) the convergence to the stable age distribution will be more rapid the larger

λ1 is relative to the other eigenvalues. The rate of convergence is determined by the ratio

of the largest to second large eigenvalue, which is defined as the damping ratio:

d =
λ1

|λ2| (2.7)

In the simple case of three age groups, 6 different scenarios can provide a simulation of

the population dynamics over 25 years (Table 2.1). For experiments 1, 2 and 3, I assume

F1 equals 0; all reproduction is concentrated in the last age class and assumes different

survival rates and fecundities for each scenario. For experiments 4, 5 and 6, I assign

positive values to both F1 and F2. All eigenvalues λi, their magnitude |λi| and the damping

ratio are calculated.

Table 2.1: Setup of 6 scenarios with 3 by 3 projection matrix

Exp Matrix Eigenvalues(λi) Magnitude(|λi|) Damping ratio

1

⎛
⎝

0 0 2000
0.05 0 0
0 0.10 0

⎞
⎠

2.15 2.15

1.00-1.08+1.87i 2.15

-1.08 -1.87i 2.15

2

⎛
⎝

0 0 1608
0.03 0 0
0 0.02 0

⎞
⎠

1.00 1.00

1.00-0.50+0.87i 1.00

-0.50 -0.87i 1.00

3

⎛
⎝

0 0 1000
0.02 0 0
0 0.02 0

⎞
⎠

0.74 0.74

1.00-0.37+0.64i 0.74

-0.37 -0.64i 0.74

4

⎛
⎝

0 300 2000
0.05 0 0
0 0.10 0

⎞
⎠

4.17 4.17

1.203.48 3.48

0.69 0.69

5

⎛
⎝

0 30 1000
0.02 0 0
0 0.02 0

⎞
⎠

1.00 1.00

1.58-0.50+0.39i 0.63

-0.50 -0.39i 0.63

6

⎛
⎝

0 20 500
0.01 0 0
0 0.02 0

⎞
⎠

0.60 0.60

1.49-0.30+0.27i 0.41

-0.30 -0.27i 0.41

When the fecundity is limited to only one age group, the age structure oscillates with

a certain period of 3 years (experiments 1, 2 and 3 in Table 2.1 and Figure 2.1). In

contrast, the age structure will converge when the fecundity is not limited to one age group

9



Figure 2.1: Simulated results using the project matrix of Table 2.1, six panels corresponds

with six experiments. Blue, red and yellow lines represents evolution of number of

individuals for juvenile, subadult and adult age groups.
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(experiments 4, 5 and 6 in Table 2.1 and Figure 2.1). The population trend of oscillation

or convergence can be explained by the damping ratio. In experiments 1, 2 and 3 all

eigenvalues share the same magnitude and thus the damping ratio always equals 1. In

experiments 4, 5 and 6 the damping ratio doesn’t equal 1 anymore. The experiments

also illustrate how the magnitude of the dominant eigenvalue governs the trend of the

population, i.e., whether the population will increase (experiments 1 and 4), remain stable

(experiments 2 and 5) or decrease (experiments 3 and 6) when λ1 is larger, equal or

smaller than 1. Showing the idealized cases, I demonstrate the ability of the matrix model

to capture the trend, oscillation and convergence rate, but also show that an idealized

model lacking temporal variation of parameters cannot resolve complex variability of the

population dynamics.

2.2 Atlantic salmon model

For the study of Atlantic salmon, I developed a Leslie matrix model that incorporates the

major life-history stages and different maturation phenotypes: egg, smolt, 1SW, 2SW, 3SW

salmon and repeat spawners, as illustrated in Figure 2.2. I included two freshwater phases

(egg and smolt) and four maturation phenotypes at sea based on the number of winters

they spend in the ocean. These alternative maturation phenotypes are present in most

Atlantic salmon populations. For simplicity, I ignore salmon maturing in freshwater as parr

(i.e., juvenile phase of salmon between egg and smolt) and salmon that spend more than

three winters at sea. I assumed repeat spawners only spawn twice, and a 50:50 sex ratio.

I also ignore individual growth rate, the effects of density on survival and age-specific

partitioning of the freshwater phase.

The model introduces eggs and smolts as juvenile phases in freshwater. Survival

probabilities describing egg to smolt and smolt to 1SW salmon (first year at sea) are

given by P1 and P2. Different maturation strategies are included within the model and

are represented by parameters representing the proportion of post-smolts that mature to

return as spawners at a given age (Pr1, Pr2, Pr3 and Prk for 1SW, 2SW, 3SW and repeat

spawners, respectively). The term (1-Pr) then represents the proportion that stay at sea for

at least one more winter before migrating to spawning grounds. Pr increases with older

age classes. I assume that returning salmon of different age groups have the same survival

probability as Pm during their riverward migration. Salmon that mature later are subject
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to survival probabilities for their additional years at sea (P3 and P4). Considering the

paucity of data on survival probabilities during the spawning migration, the same survival

probability for all age groups during riverward migration (Pm) was assumed. A change in

Pr over time reflects a modification in the species’ maturation schedule, while changes in

P3, P4 and Pm reflect variations in survival rate as a response to both fishing pressure and

environmental conditions. Thus, the product of probabilities Pr1·Pm describes survival

rate from first year at sea salmon to returned 1SW salmon, and (1-Pr1)·P3 describes the

survival rate from first year at sea salmon to the second year at sea salmon. The same

pattern applies to the following age groups as well. Returned 1SW, 2SW and 3SW salmon

have the same survival probability as repeat spawners, given by Pk.

Figure 2.2: Schematic of the modelled salmon life cycle. Each life stage is represented

as a box and red boxes indicate spawners. Black solid arrows represent survival between

younger and older age groups and red dashed arrows represent spawners reproducing eggs.

The life-history framework described above is represented as an age- and stage-structured

matrix model in (2.2). The projection matrix has the form:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Pr1 · Pm · F1 · 0.5 Pr2 · Pm · F2 · 0.5 Pr3 · Pm · F3 · 0.5 Prk · Pm · Fk · 0.5
P1 0 0 0 0 0

0 P2 0 0 0 0

0 0 (1− Pr1) · P3 0 0 0

0 0 0 (1− Pr2) · P4 0 0

0 0 Pr1 · Pm · Pk Pr2 · Pm · Pk Pr3 · Pm · Pk 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which determines how the population vector evolves over time.

Since individual Atlantic salmon populations in North America share common marine

environmental conditions and fishing pressure in Greenland (Chaput et al., 2012), I aim
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to simulate their population dynamics at the scale of North America. It should be noted

that the freshwater productivity (i.e., egg-to-smolt survival) is highly variable between

populations both temporarily and spatially (Chaput et al. 1998), which inevitably brings

uncertainty for a continental scale study. However, the freshwater within-population

survival is thought to have remained fairly constant in the past two to three decades in

many locations (Gibson and Claytor 2012), while the marine phase survival (i.e., survival

from smolt to returning spawner) is thought to have declined since about 1990 (Chaput

2012). Therefore, I focus my analysis on the marine phase and simulate the salmon

population on the continental scale.

2.3 Parameter estimates

Some of the parameter values in the matrix model are determined from the existing

literature or based on assumptions, while the rest of the parameter values are determined by

optimization. Which subset of parameters was chosen for optimization will be discussed

later. Demographic stochasticity is taken into account by defining probability density

distributions (PDF) for some of the parameters while assuming constant values for the

others (Table 2.2). I will introduce how is each parameter quantified in the following

paragraphs.

P1 represents the survival probability from egg to smolt. Hutchings and Jones (1998)

compiled egg-to-smolt and smolt-to-grilse survival rates for 275 populations (rivers) from

Europe and North America. I used the rates for populations in my study region (Maritimes,

Newfoundland, Quebec and United States) only. P1 varies between 0.2-3.2% with an

average of 1%. Studies show that the probability density distribution for survival of early

life stages can be approximately defined as left-skewed lognormal distribution (Legault

2004), thus I defined P1 with a log-normal distribution (Figure 2.3), in which the mean

equals 0.010, as previously calculated.

P2 represents the survival probability from smolt to grilse. The relevant smolt-to-grilse

survival estimates from Hutchings and Jones (1998) vary between 1.3-15% with an average

of 5.9%. It should be noted that this estimate already includes the return phase, which

means that the smolt-to-grilse survival rate should equal the product of model parameters

P2 and Pm. To compensate for this, I assumed an average of 0.6 for Pm and divided

the smolt-to-grilse survival average by Pm, which yields an average of 0.098 for P2. I
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defined P2 with a beta distribution (similar to Lawrence et al., 2016) with a mean of 0.098

(Figure 2.3).

P3 represents the survival probability for the second year at sea. Survival estimates for

the second year at sea salmon are available for two populations in Eastern Canada and

vary between 10-20% and 20-60% (Chaput et al., 2003). I took the average of the two

populations, which is 27.5%. This estimate again includes the return phase (i.e., P3×Pm

= 27.5%). I obtained P3 by dividing 27.5% by Pm and assumed that it follows a beta

distribution with a mean of 0.458 (Figure 2.3).

P4 represents the survival probability for the third year at sea. Survival in fish is often

assumed to increase with size (fewer predators, more prey availability as fish are growing);

however, larger fish also have a higher probability to be captured by fishing assuming

they are caught by trawling. Quantitative estimates of these two opposing effects are not

available. Considering this, I assumed that the survival for the third year at sea (P4) equals

the survival for the second year at sea (P3=0.458).

Pm represents the survival probability during spawning migration. It can be impacted

by factors acting in the ocean and freshwater. Considering its large variability and lack of

available observations, I made a conjecture that Pm follows a normal distribution with a

mean of 0.6 (Figure 2.3).

Pk represents the survival probability from first-time spawner (1SW, 2SW and 3SW)

to repeat spawner. It is set to a fixed value of 11%, which is an average value for North

American salmon (Fleming and Reynolds 2004).

Pr1, Pr2, Pr3 and Prk represent the proportion of age-specific individuals to return among

the 1SW, 2SW, 3SW and repeat spawners, respectively. The above parameters are known

to be environmentally plastic and mediated by growth in fish (Thorpe et al., 1998). Based

on a recent assessment from Massiot-Granier et al. (2014), the maturation probability of

1SW salmon varies between 40-60%. It should be noted that the Massiot-Granier et al.

(2014) assessment is based on Northeast Atlantic salmon; potential regional differences

are ignored here. I thus define Pr1 as a normal distribution with a mean of 0.5 (Figure 2.3)

and assume a 75% probability to return as 2SW and 100% probability to return as 3SW

and repeat spawners (i.e., Pr2 = 0.75, Pr3 = Prk = 1).

F1, F2, F3 and Fk represent stage-specific fecundities of 1SW, 2SW, 3SW and repeat

spawners. To quantify them, I estimated the length of 1SW, 2SW and older age groups
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(i.e., 3SW, repeat spawner) based on data compiled by Hutchings and Jones (1998). Then

I used the empirical fecundity-length relationship F = 0.4667 · L2.2018 (Fleming, 1996)

to calculate the fecundities. The same length and fecundity values are used for 3SW and

repeat spawners.

Table 2.2: Parameter mean values and probability density function (PDF)

Parameter Mean PDF Applicable age-class Source

Survival probability

P1 0.010 Lognormal Egg-to-smolt Hutchings and Jones (1998)

P2 0.098 Beta 1st year at sea Hutchings and Jones (1998)

P3 0.458 Beta 2nd year at sea Chaput et al., (2003)

P4 0.458 N/A 3rd year at sea Assumption

Pm 0.600 Normal Migration riverward Assumption

Pk 0.110 N/A Repeat spawner Fleming and Reynolds (2004)

Proportion of individuals to return for spawning

Pr1 0.500 Normal 1SW Massiot-Granier et al., (2014)

Pr2 0.750 N/A 2SW Assumption

Pr3 1.000 N/A 3SW Assumption

Prk 1.000 N/A Repeat spawner Assumption

Number of eggs per female

F1 3404

N/A

1SW

Hutchings and Jones (1998)

Fleming (1996)

F2 6596 2SW

F3 8630 3SW

Fk 8630 Repeat spawner
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Figure 2.3: The parameter probability density distributions. Red lines indicate the mean

value. (A) Lognormal distribution for egg-to-smolt survival (P1): mean = 0.01; (B) Beta

distribution for survival of 1st year at sea (P2): mean = 0.098; (C) Beta distribution for

survival of 2nd year at sea (P3): mean = 0.458; (D) Normal distribution for survival of

migration riverward (Pm): mean = 0.6, CV of 15%. (E) Normal distribution for proportion

of first year at sea salmon to return (Pr1): mean = 0.5, CV of 15%.
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2.4 Data set

2.4.1 Returned 1SW and 2SW salmon

The only observation-based data available for validating and optimizing the population

model are estimates of returns of 1SW and 2SW salmon to their North American spawning

grounds. The returns for individual river systems and management areas were derived

from a variety of methods including count observations at monitoring facilities, population

estimates from mark-recapture studies, commercial catch statistics and exploitation rates

(Rego et al, 1993; ICES 2015). The total returns for North America are the sum of each

individual system. Uncertainty of these estimates is characterized by the 5th and 95th

percentiles (Appendix A and Figure 2.4).

Figure 2.4: Estimated (median, 5th to 95th percentile range) returns of 1SW and 2SW

salmon to their North American spawning grounds from 1972 to 2012 (ICES 2015)
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2.4.2 Fishery data

Atlantic salmon may be harvested in mixed stock fisheries off West Greenland feeding

grounds and near the Faroe Islands, which is referred to as the distant water fisheries

(Chaput, 2012; ICES, 2015). In this thesis, I use the term ’distant water fishery’ to refer to

fishery near West Greenland for salmon that originated in North America only, and ’home

water fishery’ to refer to fishery near Canadian home waters.

For homewater fishery data, I consulted reported total nominal catch of salmon for North

America (in tonnes round fresh weight) from 1960-2014, for small (1SW) and large (2SW

or MSW fish) salmon in ICES (2015) (Appendix B, Table B.1, Table B.2). It is important

to acknowledge that the reported landings from 1972 to 1991 likely represent considerable

underestimates of the actual catches. This is because of the by-catch of salmon in the

Newfoundland cod fisheries, notably the northern cod fishery along the northeast coast of

Newfoundland and Labrador. I selected data covering the period of interest (1972 - 2011),

and based on an average weight of 2.87kg for 1SW and 6.63kg for 2SW (ICES 2015),

I calculate the average catch number for 1SW and 2SW in the homewater fishery. For

simplicity, I ignored MSW and assume all large salmon belong to 2SW. For distant water

fishery data, I found the reported nominal catch of North America Atlantic salmon at West

Greenland from 1982 to 1992 and from 1995 to 2014 and their age compositions at sea,

which are dominated by 1SW (Appendix B, Table B.3).

2.5 Optimization method

2.5.1 Evolutionary algorithm

As mentioned in section 2.3, no precise estimates exist for many of the model parameters

due to challenges associated with making direct measurements in the marine environment,

which is an issue that many ecosystem models encounter. To cope with this problem, model

optimization techniques are frequently used in ecosystem modeling (Matear, 1995; Fennel

et al, 2001; Friedrichs et al., 2006; Bagniewski et al., 2011). The basic idea is to estimate

the parameter values through tuning model output to observations by manipulating the

model parameters. To my knowledge, there is no study applying optimization techniques

to a population matrix model. For the first time, in this thesis I aim to optimize a dynamic

population model by systematically varying a set of model parameters until the misfit
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between the available observations and their model equivalents is minimized. The misfit is

measured by a so-called cost function, similar to previous optimization studies (Wilson et

al., 2013; Kuhn et al., 2015). It is defined to estimate the difference between model output

and observations of 1SW and 2SW annual returns from 1972 to 2011 as follows:

J(p) =

∑m
j=1

√∑n
i=1(S

obs
i,j − Smod

i,j (p))2

∑m
j=1

∑n
i=1 S

obs
i,j

(2.8)

where Sobs
i,j are observations of salmon return for year i and age class j. Smod

i,j (p) are

the corresponding model outputs which depend on the vector of input parameters, p, set

previously. n is the total number of years in the time series (40). m stands for the number

of different age classes from which returns are quantified (2; returns of 1SW and 2SW).

The optimization is carried out through an evolutionary algorithm (Houck et al., 1995).

This algorithm uses mechanisms inspired by biological evolution theories, such as selection,

crossover and mutation (Figure 2.5). I start from a total of 30 initial parameter sets, which

are randomly generated based on each parameter’s probability density function (Figure 2.3).

I then evaluate the fitness of each parameter set by calculating its cost function value.

Half the parameter sets with higher cost function values are discarded and the other half

(i.e., 15) with minimum cost function values will survive and act as parents of the next

generation. Parent parameter sets breed new individuals through crossover (i.e., each

parameter in a new offspring parameter set is randomly drawn from either one of two

randomly chosen parents) and mutation (i.e., normally distributed random values with

zero mean and standard deviation of 5% of the respective parameter’s range is added)

operations to generate offspring parameter sets. Any unrealistic parameter value (i.e.,

outside its predefined range) is replaced by the corresponding minimum or maximum limit.

The resulting 30 new individuals (i.e., parameter sets) are then used in the next iteration.

The optimization algorithm is run for 1000 generations to ensure that the cost function

reaches its minimum and parameters reach an invariant state.
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Figure 2.5: Schematic of the evolutionary algorithm
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2.5.2 Hessian analysis

Previous assimilation studies have demonstrated that the optimization of ecological pa-

rameters can be challenging. For instance, Prunet et al. (1996a) showed that only some

model parameters can be constrained by the observational data. Fennel et al. (2001)

suggested the inadequacies in model formulation and insufficiencies of the data led to poor

optimization results. Friedrichs et al. (2006) found that increased model complexity would

not necessarily improve the optimization but might introduce the problem of overfitting.

Initial tests in which I applied a more complex model and optimized the whole parameter

set (i.e., allowed all parameters to vary at the same time) showed that these issues apply

here as well. No unique optimal parameter set could be identified due to the parameter

dependence problem (i.e. lack of independence between parameters). Previous studies

(Thacker, 1989; Fennel et al., 2001; Friedrichs et al., 2006) showed that from calculating

the Hessian matrix, one is able to investigate parameter dependencies systematically and

select subsets of uncorrelated model parameters to minimize the parameter dependence

problem. Another benefit of calculating the Hessian matrix is that it provides error esti-

mates of the optimal parameters. Here we applied the same approach to determine which

subset of parameters can be optimized in the Leslie matrix model.

Elements of the Hessian matrix are second-order partial derivatives of the cost function

with respect to the parameters and can be estimated by perturbing the variables by a small

quota and calculating the gradient of the cost function for each perturbation. The elements

of the Hessian can be approximate as

hij =
∂F (�p+Δpj)/∂pi − ∂F (�p−Δpj)/∂pi

2Δpj
(2.9)

where �p represents the vector of the unknown parameters. The ratio of the Hessian’s

matrix largest to smallest eigenvalue is defined as the condition number of the Hessian,

which measures how singular the optimization problem is (Thacker, 1989). A large

condition number is undesirable for optimization because it means the function is ill

conditioned with a slow convergence rate. It usually indicates that the available data are

inadequate to determine all model parameters with sufficient accuracy. Additionally, by

calculating eigenvalues and corresponding eigenvectors of the Hessian, one can measure

the magnitude of uncertainties of the optimal parameters.
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2.5.3 Twin experiment

To test whether an optimization problem is properly defined and configured, it is common

to perform so-called twin experiments where ’synthetic observations’ generated by the

model itself are used instead of real observations. This allows one to test whether the

optimal parameters, which in this case are known because they were used to generate the

synthetic observations, can be recovered during optimization. Only if the optimization

works well in a controlled twin experiment, can it be trusted to work with the observational

data. To examine the feasibility of the optimization method for the current matrix model, I

performed multiple twin experiments to address two questions: 1) is the optimization result

more accurate when optimizing only a subset the parameters; and 2) how does uncertainty

in the observations influence the optimization accuracy?

Figure 2.6: Model-generated 1SW and 2SW abundances and synthetic observations from

the first 5 years used in optimization experiments A and B.

Table 2.3: Twin experiments setup, subset refers to the most sensitive 5 parameters (P1,

P2, P3, Pm and Pr1. In experiments C, D and E, synthetic data are added with Gaussian

errors that equal to 10%, 20% and 30% of the mean of synthetic data.

Experiments A B C D E

Optimized

parameters
All Subset Subset Subset Subset

Uncertainty

added

No

uncertainty

No

uncertainty

10% of

synthetic data

20% of

synthetic data

30% of

synthetic data

I set up a model case with known initial vector and constant parameter sets and ran
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the model for 20 years. The returned 1SW and 2SW are shown in Figure 2.6. Only

the first 5 years of returned 1SW and 2SW data were sampled and used as the synthetic

observations for optimization. I performed 5 different optimization experiments (Table 2.3)

with perturbed initial parameters. Experiment A included all parameters in the optimization

while experiment B only included a subset (P1, P2, P3, Pm and Pr1) based on the Hessian

analysis. No uncertainty was added to the synthetic data in experiments A and B. In

experiments A and B, the optimization was repeated 100 times and the uncertainty of the

optimized parameters were quantified. Experiments C, D and E are similar to B, except

that Gaussian error with variance equal to 10%, 20% and 30% of the mean value was

added to the synthetic data. In experiments C, D and E, the optimization was repeated

100 times, but in each optimization, the synthetic data were randomly generated based on

the Gaussian distribution, and the uncertainty of the optimized parameters was quantified

as well. In this way, I allowed uncertainties from both methodology and observation to

propagate into the optimized parameters.

2.6 Population model experiments

2.6.1 Sensitivity experiment

A sensitivity experiment was conducted to investigate the relative importance of the

various model parameters in determining the evolution of the population. I calculated

the standardized root mean square deviation (RMSD) between a baseline simulation

and perturbed simulations for returned 1SW and 2SW, the perturbed simulations were

conducted when only one parameter is decreased or increased by 20%.

2.6.2 Optimization over varying time segments

First, I use the 40-year time series as a whole to optimize the model, which results in one

set of parameters. This case assumes that parameters are constant over 40 years, which

is not necessarily realistic. Then I split the 40-year time series into 5-year segments and

optimize the model for each. This generates time-dependent parameters and allows us

to examine their temporal variability. The uncertainty of the observations is considered

during the optimization as follows. I repeated the optimization 100 times and for each

optimization, one realization of the observations (i.e., the returns of 1SW and 2SW)
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is randomly generated within their 5th and 95th percentile range. In this way, I allow

uncertainties from the observations to propagate into the model output.

2.6.3 Optimization with fecundity parameters only

For the purpose of this study, I chose to set fecundity constant in time and focus instead on

the variations of other parameters (i.e., survival probability and proportion of individuals

to return). To validate this option, I performed an optimization only allowing fecundity

parameters to vary, while keeping the stage-control parameters constant at their mean

values. I assume a normal distribution for each fecundity with a standard deviation equal

to 20% of the mean (Figure 2.7). For the initial parameter set, each fecundity value is

randomly drawn based on its probability density function.

Figure 2.7: The fecundity parameters probability density distributions. Red line indicates

the mean value. Fecundity parameter F1, F2, F3 and Fk follow normal distribution with

mean equals 3404, 6596, 8630, 8630 respectively. The standard deviation equals 20% of

the mean.

2.6.4 Incorporating fishery data

I assume that all North American salmon after their one-year migration in the ocean

(1SW) reach West Greenland for feeding, and part of the 1SW age group stays near West
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Greenland for another year (2nd year at sea) while the rest of the 1SW group migrates

back to their natal rivers (Figure 2.8). I infer that the proportion of 1SW that stays will

suffer losses from distant water fishery impacting the survival rate during the second year

at sea (P3). The fraction that migrates back will suffer from homewater fishery impacting

the survival rate during migration back (Pm).

Figure 2.8: Atlantic salmon migration route and areas impacted by distant water fishery

and homewater fishery. The corresponded parameters are indicated.

I aim to quantify the impact from suspension of commercial salmon fishery on parameter

variations in different life stages. To do so, I combine model-simulated values with

homewater and distant fishery data from 1972 to 2011. I am using the year 1972 as

example to illustrate the procedure: 1) The 1SW catch in homewater in 1972 is 194000
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individuals. 2) The model shows 394000 1SW individuals returning in in the same year.

3) I infer that the mortality rate inflicted by homewater fishery on returned 1SW as (1-

194000/314000)×100 = 49.3%. The same calculation can be applied to all years with

fishery data (1972 to 2011) for both, returned 1SW and 2SW. Then I can quantify the

variation of survival during migration riverward (Pm) due to the suspension of homewater

fishery for 1SW and 2SW from 1972 to 2011 (Appendix B, last column of Table B.1 and

Table B.2). For distant water fishery, I use model output (i.e., the non-maturing 1SW

component which is going to survive through the second year at sea) and distant water

fishery data to quantify the variation of the second-year survival rate (P3) influenced by

distant water fishery from 1982 to 2011 (Appendix B, Table B.3).

The most important change in fisheries exploitation occurred in 1992 with the closure

of the commercial salmon fishery in the waters of Newfoundland and Labrador and with

the closure of the northern cod fishery, which reduced the by-catch of salmon considerably

(Moore et al., 1995). Considering this, I calculated the average of survival variations (last

column of Table B.1, Table B.2 and Table B.3) for all years before 1992 and for all years

after 1992, and the difference between these two periods. The model can reflect the overall

relative change of survival rate before and after 1992, which includes impacts from both

fishery and environment. And the fishery data can inform the relative change of survival

rate impacted by fishery only. Combining the two sources of information, I am able to

quantify the relative roles of environmental and fishing impacts in determining parameter

variations before and after 1992.
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CHAPTER 3

RESULTS

3.1 Method validation

3.1.1 Hessian analysis

The Hessian matrix of the cost function (equation (2.8)) in section 2.5.1 is calculated for

all parameters except fecundity. Its condition number is 8.67 × 106, indicating a nearly

singular Hessian and an ill-conditioned problem formulation (Table 3.1). The parameter

resolution, given by the eigenvalues and eigenvectors of the Hessian is shown in Figure 3.1.

The eigenvector corresponding to the smallest eigenvalue indicates which parameters

have the largest uncertainties. The smallest eigenvalue is λ1 = 3.01 × 10−3 and the

corresponding eigenvector has a significant contribution for parameter P4. Additional

parameters with large contributions to the model uncertainties are Pr2 and Pk, as revealed

by the second and third smallest eigenvalues (Figure 3.1). Among these parameters the

ones controlling the older age class (P4 for 3rd year survival rate and Pk for repeat spawner

survival rate) have the largest uncertainties. The likely explanation is that the information

contained in the observations (returns of 1SW and 2SW) does not suffice to fully estimate

the dynamics of these age classes.

I then repeated the analysis by subsequently removing the parameters with the largest

uncertainties form the Hessian (which corresponds to excluding them from the optimiza-

tion) and calculating the corresponding condition numbers and parameter uncertainties,

as shown in Table 3.1. After removing the three parameters with largest uncertainty (Pk,

P4 and Pr2), the condition number is reduced by two orders of magnitude to 1.06× 105.

Uncertainties of the remaining parameters (P1, P2, P3, Pm and Pr1) are much reduced,

although for P3 and Pr1, the uncertainties are still large. Therefore, I chose not to optimize
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Table 3.1: Condition numbers and posteriori errors for experiments E1-E4, the parameter

with largest uncertainty is removed by sequence from experiment E1 to E4. All errors are

scaled by the initial parameter values.

Exp. E1 E2 E3 E4

Cond. 8.67E+06 1.76E+06 7.85E+05 1.06E+05

Post.

P1 0.10 0.07 0.03 0.07

P2 0.35 0.39 0.38 0.37

P3 2.88 5.21 4.53 3.72

P4 28.60 17.70 N/A N/A

Pm 4.64 1.49 1.43 1.40

Pr1 0.55 2.36 2.21 2.00

Pr2 11.80 7.48 7.20 N/A

Pk 49.20 N/A N/A N/A

Figure 3.1: Eigenvalues and corresponding eigenvectors of the Hessian matrix of the

salmon model.
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Pk, P4 and Pr2. Further sensitivity experiments also show that Pk, P4 and Pr2 have the

least impact on model output (Figure 3.3). It should be noted that the decision to keep part

of the parameters constant is a compromise to avoid the parameter dependence problem.

By performing a systematic Hessian matrix examination, I managed to reduce the number

of unconstrained parameters in a systematic way while keep the feasibility of the method.

3.1.2 Twin experiment

With 5 years returned 1SW and 2SW samples and different optimization setup, I generated

the optimized parameter set for P1 (egg to smolt survival rate), P2 (1st year at sea survival

rate), P3 (2nd year at sea survival rate), Pm (migration back survival rate) and Pr1 (propor-

tion to return at 1st year) and plotted them versus the real (i.e., pre-assigned) parameter

values (Figure 3.2).

Figure 3.2: True parameters versus optimized parameters in 5 twin experiments described

in Section 2.5.3. Uncertainties of the optimized parameters in experiments A and B come

from the methodology (multiple optimizations) and uncertainties in experiments C, D and

E come from both methodology and added Gaussian errors in the synthetic observation

data.

Compared to panel A, panel B shows a much improved fit and lower uncertainty of

optimized parameters, which is consistent with the Hessian analysis, corroborating that
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applying a subset of parameters in the optimization can effectively constrain the model.

Panel C, D and E show that with increased uncertainty of the synthetic observations,

correlation coefficient between optimized and true parameters decreases while the un-

certainty of optimized parameters increases. The experiments illustrate that even with a

subset of parameters for optimization, an appropriate uncertainty range is required for the

observations to constrain the model. Panel D shows that with 20% added Gaussian error,

the uncertainty of optimized parameters grows slightly, while with 30% error (Panel E) the

optimization cannot capture the synthetic parameters very well, especially for P3, Pm and

Pr1.

3.2 Population model experiments

3.2.1 Sensitivity experiment

The sensitivity experiment shows that the most sensitive parameters are P1, P2, P3, Pm

and Pr1, the least sensitive parameters are Pk, P4 and Pr2, which is consistent with the

previous Hessian matrix analysis.

Figure 3.3: Sensitivity experiment. The blue and yellow bars stand for the variation ratio

for the sum of 1SW and 2SW returns when only one parameter is decreased or increased

by 20%.
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3.2.2 Optimization over varying time segments

I ran the optimization over different time segments (i.e., 40-year and 5-year intervals).

Model performance improves greatly with 5-year time segments compared to 40-year

time segments (Figure 3.4). It is obvious that in the 40-year case, the model is not able

to capture inter-annual variability and multi-year trends, while the 5-year case not only

reflects annual fluctuations but also the long-term trend of slightly increasing 1SW returns

and the decreasing trend in the 2SW returns. The comparison shows that introducing

temporal variation of the parameters is necessary to represent the observations. The

mechanisms responsible for the differing trends observed between the returns of 1SW

(slightly increasing) and 2SW salmon (dramatic decline from 200 000 to 50 000) will be

investigated later.

Figure 3.4: Model outputs and observations for 1SW and 2SW returns for North America

from 1972 to 2011 when the optimization algorithm is applied for 40-year and 5-year time

segments.

The modelling approach allows one to examine the temporal dynamics of parameters

that control different life-history stages of Atlantic salmon in a general sense. Figure 3.5

shows the temporal variations for the 5 most sensitive parameters. Considering that the
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most important change of commercial fishery occurred in 1992, I calculate the average

of all parameters from the 100 optimizations before and after 1992, and their difference,

as shown in Table 3.2. The survival rate of egg-to-smolt (P1) represents the freshwater

phase and the survival rate of first year at sea (P2) represents the early marine phase.

Both parameters have a significant impact on the post-smolt abundance, as shown in

the sensitivity experiment (Figure 3.3). But they do not contribute to the changes in

proportion of 1SW and 2SW salmon returns. The survival rate of riverward migration

(Pm) has impacts on all age classes simultaneously in the model, thus cannot contribute

to the changes in proportion of different returned age classes neither. The remaining two

parameters, the probability to return at 1st year (Pr1) and the survival rate during the second

year at sea (P3), are the key parameters controlling the relative change of abundance of

1SW and 2SW returns. Further interpretation of the parameter temporal variations will be

given later.

Figure 3.5: Temporal evolution of the 5 most sensitive parameters from 1972 to 2007,

shaded area indicates uncertainties from both methodology and observation. The opti-

mization was repeated for 100 times and the observations for each were drawn randomly

generated between the 5th and 95th percentile range.

32



Table 3.2: Average and standard deviation for 5 most sensitive parameters before and after

1992 and the difference. ∗ significant at p < 0.001
Parameter Before 1992 After 1992 Difference

P1 0.016±0.004 0.010±0.003 -0.006*

P2 0.091±0.018 0.134±0.025 0.043*

P3 0.489±0.043 0.209±0.022 -0.280*

Pm 0.473±0.107 0.616±0.094 0.143*

Pr1 0.519±0.026 0.477±0.028 -0.042*

To validate the idea that P3 and Pr1 are the two key parameters that control the relative

change of 1SW and 2SW abundance. I performed two more sets of experiments: one

experiment where P3 is set constant and the remaining 4 parameters (P1, P2, Pm and Pr1)

are allowed to vary, and another experiment where P3 and Pr1 are set constant and the

remaining 3 parameters (P1, P2, Pm) are allowed to vary in the optimization.

Panel b in Figure 3.6 shows that when only P3 is set constant, the model is still able

to reproduce the observation well, although with a slightly increased root mean square

deviation (RMSD) between model and observation (RMSD increased 10.1%, from 524059

to 577060). The parameter temporal variations (Figure 3.7) show that when P3 is set

constant, Pr1 becomes the parameter exhibiting the most significant variability. It fits the

expectation that an increased returning proportion of 1SW will bring higher abundance of

returned 1SW and lower abundance of returned 2SW. Panel c in Figure 3.6 shows that when

both P3 and Pr1 are set constant, the model has difficulty reproducing the observations,

with a significantly increased RMSD (it increased 54.7%, from 524059 to 810953).
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Figure 3.6: Model outputs and observations for 1SW and 2SW returns for North Amer-

ica from 1972 to 2011 in three optimization experiments. RMSD between model and

observation is indicated. Experiment a allows 5 parameters (P1, P2, P3, Pm and Pr1) to

vary. Experiment b set P3 constant and allows 4 parameters (P1, P2, Pm and Pr1) to vary.

Experiment c set both P3 and Pr1 constant and allows 3 parameters (P1, P2 and Pm) to

vary.
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Figure 3.7: Temporal evolution of the 5 most sensitive parameters from 1972 to 2007,

shaded area indicates uncertainties from observation. This optimization set P3 as constant

and allows only 4 parameters (P1, P2, Pm and Pr1) to vary.
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3.2.3 Optimization with fecundity parameters only

The resulting variations of the fecundity parameters appear random (Figure 3.8) and

the model has difficulty reproducing the observed returns of 1SW and 2SW well when

fecundity is optimized (Figure 3.9). I interpret the results of this experiment to indicate

that variations in fecundity cannot produce the observed patterns of 1SW and 2SW returns.

This justifies my choice to ignore the impacts from fecundity and instead focus on the

stage-control parameters in this study.

Figure 3.8: Fecundity parameters temporal variations from 1972 to 2007, shadow area

indicates uncertainties.
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Figure 3.9: Comparison between model outputs and observations for 1SW and 2SW

returns when the optimization algorithm is applied for fecundity parameters only (5-years

time segment).
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3.2.4 Incorporating fishery data

Using model output and fishery data, I am able to quantify the impacts from suspension

of the commercial fishery on the population dynamics and, more specifically, on the

parameters for survival during riverward migration (Pm) and the second year at sea (P3).

Homewater suspension increases the probability of survival for 1SW and 2SW riverward

migration (Pm) with increases of 25.11% and 37.70% after 1992, respectively. On average,

the suspension of homewater fishery increases Pm by 31.40% after 1992. And for second

year at sea survival, I find that suspension of distant water fishery increases P3 by 13%

after 1992 (Table 3.3). As the overall relative change of survival rate before and after

1992 is already known (increase of 14% for Pm and decrease of 28% for P3; Table 3.2),

I can infer the impact from the natural environment by subtracting the fishery impact

from the total impact. This shows that the natural impact has a generally negative effect

on salmon after 1992 compared to the two decades before 1992. The situation is much

worse near West Greenland for the second year at sea (-41%), where the impact is twice as

large compared to the natural impact in homewater (-17%). It should be noted that this

assumes the population is equally sensitive to variation of Pm and P3, which is supported

by results of the sensitivity experiment. The suspension of homewater fishery has a strong

positive impact on survival rate during riverward migration for both 1SW and 2SW (+31%

on average), strong enough to offset the negative impact from the natural environment

and increase the total effect by 14% for Pm. The suspension of the distant water fishery

contribution (+13%) is small compared to the harsh natural impact in West Greenland

(-41%), which eventually leads to the decline of returned elder salmon. Presently, both

fisheries have been reduced to historically low levels (around abundance of 50000 for

homewater catch and 6000 individuals for distant water catch), but unfortunately the

increased natural mortality as a response to environmental change cannot be fully offset by

suspension of commercial fishing near West Greenland.

Table 3.3: Relative impact of fishing and environmental pressures on parameters Pm and

P3 since 1990
Homewater

fishery suspension

Distant water

fishery suspension

Natural

impact
Total

Pm +31% N/A -17% +14%

P3 N/A +13% -41% -28%
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3.2.5 Comparison between Leslie model and ICES

As mentioned above, ICES has developed models for population assessment and forecast-

ing, by producing an intermediate salmon abundance prior to any fisheries: The Pre-Fishery

Abundance (PFA). The PFA is post-smolt abundance on January 1st of the first winter at

sea prior to any fisheries. It is obtained by a hindcast analysis to resolve the unknown

marine phase, aiming to provide management advice for distant water fisheries. The

basic input data of the model are the same observations we used in this study (i.e., annual

returns of 1SW and 2SW), which are used in the ICES model to estimate maturing and

non-maturing components of PFA.

In this section, I aim to evaluate model outputs from our model approach compared to

the approach used by ICES. Figure 3.10 shows the 1SW maturing, 1SW non-maturing and

total cohort of 1SW from the matrix model in comparison with the corresponding PFA

reported in ICES 2015. The ICES’s model shows that the 1SW maturing component shows

a decline since 1990, but the abundance of 1SW non-maturing cohort drops precipitously

and remains at a very low abundance after about 1997. There is a significant shift in the

proportion of maturing versus non-maturing 1SW (i.e., favouring an earlier maturation)

after 1982-1984. However, in the Leslie model outputs, the proportion of maturing

versus non-maturing 1SW is more variable. From 1972 to 1982, the proportion of non-

maturing component is generally higher (i.e., Pr1<0.5). From 1982 to 1997, the proportion

of maturing component is generally higher (i.e., Pr1 > 0.5). From 1997 to 2011, the

proportion of the two components is comparable (i.e., Pr1≈0.5). Both models show a

phase shift near 1990, which ends the decline of the total 1SW. But the ICES model shows

a stable and very low abundance since 1990 and an increasing trend for the maturing

component only since 2005, and an increasing trend for the non-maturing component only

since 2010. Our model looks more optimistic in that the increasing trend starts near 1992,

and the abundances in our model outputs are generally higher than in the ICES model.

It follows that the survival rate between PFA and returns in the ICES model is generally

higher compared to our model, since these two models have the same input data (i.e., 1SW

and 2SW returns; Figure 2.4).

To validate the idea that the survival rate between returned salmon and PFA is set

generally higher than that in the matrix model, I re-optimized the model by forcing it to

generate the same output as the ICES PFA and using the same input data. In this way I
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Figure 3.10: Pre-fishery abundance abundance (PFA) for 1SW maturing, 1SW non-

maturing and total cohort of 1SW generated from ICES (2015) (top panel) and corre-

sponded simulated abundance (bottom panel).
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obtain the temporally varying parameters that can produce the patterns from the ICES

estimates within the context of the matrix model. I then quantified temporal varying

parameters (Figure 3.11) when forcing the model to produce that estimates reported by

ICES (2015) within the context of the matrix model as described in section 2.2. In this

analysis the second-year survival rate remains relatively constant around 0.6 except in 1987,

which is higher than the second year survival rate obtained previously in the matrix model

(Figure 3.5), especially after 1992. This is also roughly consistent (except for the point

in 1987) with the hypothesis ICES model made that the natural mortality at sea between

PFA and returns is constant over time (Rago et al., 1993; Chaput, 2012). The proportion to

return at 1st year increased significantly from 1972 and remains around 0.7 since 1982.

This is not surprising since under the condition that survival at sea remains constant, only

an increasing proportion to return at 1st year can result in increased returning 1SW and

decreased returning 2SW. This practice verified the framework’s ability to use one model’s

output to reproduce its controlling parameters.

Figure 3.11: Temporal variations of the 5 most sensitive parameters from 1972 to 2007,

when the model is forced to generate the same output as ICES.
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CHAPTER 4

DISCUSSION

Changes in the marine ecosystem of the North Atlantic and its associated consequences

for Atlantic salmon populations have been previously noted (Beaugrand and Reid, 2003;

Friedland et al., 2009; Chaput 2012). Physical and biological factors can have either direct

or indirect influences on salmon growth, maturity and abundance through bottom-up effects

in contrast to top-down effects from fishing. In this thesis, I attempted to quantify the

relative roles of environmental and fishing effects at the scale of the continental population

complex. This study highlights the impacts from external environmental change on North

American Atlantic salmon population dynamics and shows that the relative importance

of environmental and fishing effects vary in different life stages and different regions. In

the following subsections, I will discuss several issues: 1) implications from parameter

temporal variations; 2) comparison between the Leslie matrix approach and the ICES

model approach; 3) potential improvement of the Leslie matrix model; and 4) implications

from this study for fishery management and policy making.

4.1 Parameter temporal variations

The observation-based data of returns of 1SW and 2SW salmon (Figure 2.4) shows that

the abundance of returned 2SW has declined while that of returned 1SW has increased

slightly. This can be explained either by an increase in the proportion maturing as 1SW or

by a decrease of survival rate at sea of non-maturing fish (2SW). In this thesis, temporal

variations of controlling parameters were generated using an optimization algorithm based

on available observations (Figure 3.5). It shows that the probability to mature to 1SW

(Pr1) fluctuated around 0.5 and had relatively small variability throughout last 40 years.
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By contrast, the survival rate during the second year at sea (P3) has a significant decline

between 1992 and 1997, indicating very unfavourable environmental conditions during

the second year at sea after 1992. I further calculated the average value of these two

parameters before 1992 and after 1997 (Table 3.2). The probability to mature to 1SW (Pr1)

decreased (4.2%) from 51.9% to 47.7% (two sample t-test, p < 0.001) while the survival

rate during the second year at sea (P3) decreased significantly (28.0%) from 48.9% to

20.9% (two sample t-test, p < 0.001). The changes in second year survival at sea (P3) are

much greater than that of the proportion of maturing 1SW (Pr1). The results indicate that

second year survival rate at sea (P3) is the key factor that contributes to the different trend

of 1SW and 2SW returns.

4.2 Comparison with ICES approach

The ICES model relies on a stock-recruitment concept that considers a statistical relation-

ship between spawning potential (eggs) and PFA (Massiot-Granier et al. 2014), which is

unable to capture the dynamic link between different life-history stages. By contrast, our

matrix model approach explicitly simulates Atlantic salmon’s life cycle with all typical

maturation types included. And I allow the parameters to vary systematically during the

optimization to capture the interactions between different age groups. Our optimization

approach is also more computationally efficient compared to other statistical methods (e.g.,

Hierarchical Bayesian Models) used for updating model state variables based on available

observations.

Another weakness of the ICES model is that it assumes that natural mortality at sea

between PFA and returns is constant over time (Rago et al., 1993; Chaput, 2012). This

implicitly assumes that changes in the relative proportion of returns of the 1SW and 2SW

age group result from changes in the proportion of maturing PFA and not in the survival

rate at sea (Chaput, 2012). In this thesis, I allow multiple key parameters (including the

proportion of returns of the 1SW and 2SW, survival rates at sea for 1SW and 2SW) to be

optimized simultaneously and allow parameters to vary over time. The resulting temporal

variations show that it is the significant decline of survival rate at sea that plays a key role

in controlling the relative proportion of returns of different age groups.

Moreover, Atlantic salmon’s complex life history is coarsely represented in the ICES

model with lack of separation of different life stages making it difficult to incorporate
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available data and improve model performance. In our matrix model approach, we can

easily incorporate control of varying ages of smoltification and density-dependent processes

in the freshwater phase. A matrix incorporating all available life stages is flexible in testing

available data, deciding where the major impact on population originates and making

future projections (Browne 1988). It can also be easily applied to evaluate the performance

of different management options.

4.3 Model improvement

To make the method feasible, I have to sacrifice part of the biological realism during

configuration of the model. For instance, I assumed one riverward migration survival

rate Pm for all age species, which may not be realistic. However, when tested with

homewater fishery data, I find that the impacts from homewater suspension on 1SW and

2SW migration survival rate are of similar magnitude, which means this assumption could

be validated when the fishing effect dominates the riverward migration survival.

The egg-to-smolt transition of our model could be further broken down based on varying

ages of smoltification during the freshwater phase. Massiot-Granier et al., (2014) suggests

that time-series of egg-to-smolt data available from a set of monitored rivers (Prevost et al.,

2003; ICES 2013) could be incorporated into life-history models to provide information

on density-dependent processes to improve model performance. Although the model

provides overall stock-complex assessments for North American populations, it masks

the regional and river-specific characteristics of Atlantic salmon populations. Atlantic

salmon in different regions across their North American distribution display different life-

history traits, such as different growth patterns, smoltification ages, maturation schedules,

sex ratios and reproductive contributions. An area of future research would be to adjust

the current model based on different life-history traits to allow applications at different

population scale.

4.4 Implications for fishery management

In this thesis, I find that environmental conditions are more unfavorable near West Green-

land compared to the homewater of Canada. One possible explanation is that the abundance

of capelins, important food sources for salmon, has declined precipitously across the North
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Atlantic subpolar gyre after 1990 (Department of Fisheries and Oceans Canada, 2011).

The lack of food can negatively affect Atlantic salmon during their entire marine stage

with greater cumulative effects on elder fish (Mills et al., 2013). Regional differences in

predation between mid and high latitudes may also contribute. Predators distributions are

shifting northward under the impact of global warming (Poloczanska et al., 2013) and may

reduce salmon survival in high latitudes while improve its survival in middle latitudes.

The model provides an overall framework for hind-cast analysis of North American

Atlantic salmon and could be applied to evaluate effects of fishery management options

quantitatively. Based on the latest parameter mean values (2007-2011) in our model, I

calculated the dominant eigenvalue λ of the matrix, which indicates increasing, stable or

decreasing population trend when λ is greater than, equal to, or less than one. It turns out

to be 1.0005, which means if the situation remains the same, the salmon population will

be almost stable. This also warns that the suspension of commercial fishery is necessary

in the short term unless the environmental conditions turn more favourable for salmon,

otherwise even a small perturbation from fishing will result in a decreasing trend.

Given the recent climate-driven conditions in high latitude region appear to be un-

favourable for Atlantic salmon and these conditions are expected to become even worse

with climate change (Mills et al., 2013), the forecast for recovery of North American

Atlantic salmon is not optimistic. While the climate and ecosystem variability are beyond

the control of fisheries managers, the adaptability of Atlantic salmon populations can

be reinforced at other aspects through efforts such as preventing freshwater habitat from

degradation and reducing genetic pollution from aquaculture. Enhancing the population’s

resilience is critical for buffering climate change effects in future. Future research should

focus on underlying mechanisms controlling the environmental forcings and dynamics

of physical and plankton indicators. A better understanding of how environmental fac-

tors influence Atlantic salmon population can help with the design of future policies and

recovery strategies.
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CHAPTER 5

CONCLUSION

An integrated life-history model incorporating time-dependent parameters was developed

and applied to gain insights into the population dynamics of North American Atlantic

salmon over the past four decades. Temporal variations in the parameters controlling

different life stages of Atlantic salmon populations were identified and show that the

decline of the elder age group is subject to low survival rate during its second year at sea.

The relative impact of environmental factors and anthropogenic activity (i.e., suspension

of commercial fishery) were quantified using model outputs and fishery catch data, the

importance of environmental factors on salmon survival were highlighted, especially in

the higher latitude region. Results suggest that the moratorium on commercial fishing is

likely insufficient to induce Atlantic salmon recovery to previous abundance levels unless

mitigation of environmental impacts occurs as well. However, the moratorium is crucial,

at least in the short term, to maintain the relatively low yet stable abundance of Atlantic

salmon.

The method presented here also provides a framework for an integrated life cycle

modelling approach, especially when insufficient observations or parameter information

is available. The approach helps to reconstruct the unknown phase of salmon life cycle

based on exsiting observations and considers the propogation of uncertainties. This study

includes populations for the whole eastern North American seaboard. Future research

should apply the current model to river or region-specific data to allow inferences at

different population scales.
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APPENDIX A

Table A.1: Observation-based 1SW and 2SW returns (me-

dians, 5th percentile, 95th percentile) to North American

continent from ICES 2015

Year 1SW 2SW

median 5th 95th median 5th 95th

1971 270442 224342 327872 110205 91037 132631

1972 254608 211958 305308 139249 113145 167640

1973 282113 243401 322103 146114 116683 178625

1974 337335 282685 401515 199942 163785 239883

1975 399124 329033 487325 166236 134039 199983

1976 439046 368264 522718 161269 130143 196385

1977 340625 284624 407716 217589 180968 259530

1978 250275 212784 293336 150391 121772 178892

1979 342820 289628 403622 74694 64502 90040

1980 440048 367341 530815 220631 182086 261999

1981 549530 450430 668710 152853 123465 185419

1982 461064 379911 556007 147704 113932 179629

1983 284955 237712 340798 118102 96578 142094

1984 353028 300683 409323 106808 91022 125892

1985 399292 330829 475316 124128 103649 146149

1986 515048 424491 617385 149694 118980 178904

1987 435808 356508 530108 116421 95683 139305
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1988 568002 469593 680661 123790 102476 146223

1989 357598 295657 429009 106086 91596 123601

1990 400567 340851 466263 111076 90376 130025

1991 278520 237497 323803 100184 82813 117638

1992 530854 455663 612885 112810 95756 131121

1993 507656 411632 612910 101421 73491 130481

1994 305876 261250 356270 87802 74529 104418

1995 358733 303061 421605 116387 100111 137613

1996 526261 445515 621967 100557 83552 120399

1997 339153 290702 401688 81550 67413 98518

1998 423453 352399 493767 57384 46141 67838

1999 424839 353909 494923 62786 51034 73930

2000 501150 420368 581562 64021 51210 77279

2001 367439 305531 429500 74594 61078 88186

2002 365973 304823 426514 46467 37214 56346

2003 399050 347686 449866 71834 58846 84957

2004 422114 366154 477127 68778 55809 80682

2005 518648 407447 628003 71310 56481 85715

2006 522120 415553 624454 67322 53728 80635

2007 449339 355072 542229 63473 51387 76521

2008 563254 466117 660451 68776 54118 84267

2009 361131 279672 443893 83110 61716 103006

2010 473895 416900 530770 63105 53659 74440

2011 634139 467205 754770 129588 100936 166748

2012 484231 397806 572153 68870 53430 83489

2013 453643 324494 526853 100951 76679 129817
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APPENDIX B

Table B.1: Homewater fishery data (dominated by Canada)

for 1SW salmon. For each column, 1SW catch data is from

ICES (2015). The abundance of 1SW catch is calculated by

dividing 1SW catch data by an average weight of 2.87kg.

The returned 1SW before migration is generated from model.

Mortality caused by fishing for 1SW is calculated by dividing

returned 1SW before migration by abundance of 1SW catch.

Year 1SW catch (tonnes)
abundance of

1SW catch

returned 1SW

before migration

Mortality caused by

fishing for 1SW (%)

1972 558 194425 394198 49.32

1973 783 272822 979688 27.85

1974 950 331010 610236 54.24

1975 912 317770 1155448 27.50

1976 785 273519 1028684 26.59

1977 662 230662 350877 65.74

1978 320 111498 284346 39.21

1979 582 202787 1491962 13.59

1980 917 319512 1172437 27.25

1981 818 285017 515173 55.32

1982 716 249477 699892 35.65

1983 513 178746 593463 30.12

1984 467 162718 1182288 13.76
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1985 593 206620 1072771 19.26

1986 780 271777 633723 42.89

1987 833 290244 763635 38.01

1988 677 235889 1312927 17.97

1989 549 191289 522709 36.60

1990 425 148084 826116 17.93

1991 341 118815 823207 14.43

1992 199 69338 946809 7.32

1993 159 55401 989940 5.60

1994 139 48432 422419 11.47

1995 107 37282 881327 4.23

1996 138 48084 902105 5.33

1997 103 35889 100214 35.81

1998 87 30314 775290 3.91

1999 88 30662 869258 3.53

2000 95 33101 762777 4.34

2001 86 29965 646322 4.64

2002 99 34495 644346 5.35

2003 81 28223 705350 4.00

2004 94 32753 896501 3.65

2005 83 28920 772087 3.75

2006 82 28571 780762 3.66

2007 63 21951 803502 2.73

2008 100 34843 1026399 3.39

2009 74 25784 405268 6.36

2010 100 34843 736870 4.73

2011 110 38328 928386 4.13
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Table B.2: Homewater fishery data (dominated by Canada)

for 2SW salmon. For each column, 2SW catch data is from

ICES (2015). The abundance of 2SW catch is calculated by

dividing 2SW catch data by an average weight of 6.63kg.

The returned 2SW before migration is generated from model.

Mortality caused by fishing for 2SW is calculated by dividing

returned 2SW before migration by abundance of 2SW catch.

Year 2SW catch (tonnes)
abundance of

2SW catch

returned 2SW

before migration

Mortality caused by

fishing for 2SW (%)

1972 1201 181146 342235 52.93

1973 1651 249020 282271 88.22

1974 1589 239668 389025 61.61

1975 1573 237255 359345 66.02

1976 1721 259578 473756 54.79

1977 1883 284012 473756 59.95

1978 1225 184766 352111 52.47

1979 705 106335 264095 40.26

1980 1763 265913 411096 64.68

1981 1619 244193 447982 54.51

1982 1082 163198 447982 36.43

1983 911 137406 338494 40.59

1984 645 97285 263511 36.92

1985 540 81448 317630 25.64

1986 779 117496 327080 35.92

1987 951 143439 327080 43.85

1988 633 95475 240083 39.77

1989 590 88989 282234 31.53

1990 486 73303 187821 39.03

1991 370 55807 192534 28.99

1992 323 48718 192534 25.30

1993 214 32278 212268 15.21
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1994 216 32579 225431 14.45

1995 153 23077 142515 16.19

1996 154 23228 184941 12.56

1997 126 19005 184941 10.28

1998 70 10558 98608 10.71

1999 64 9653 106627 9.05

2000 58 8748 117806 7.43

2001 61 9201 115212 7.99

2002 49 7391 115212 6.41

2003 60 9050 111057 8.15

2004 68 10256 113821 9.01

2005 56 8446 130289 6.48

2006 55 8296 129005 6.43

2007 49 7391 129005 5.73

2008 57 8597 144748 5.94

2009 52 7843 173111 4.53

2010 53 7994 134328 5.95

2011 69 10407 141482 7.36

Table B.3: Distant water fishery data near West Greenland

for salmon originated from North America. For each column,

distant water fishery catch data and percentage of 1SW catch

are from ICES (2015), abundance of 1SW catch is calculated

as product of total fishery catch and 1SW percentage. Non-

maturing 1SW is generated from the model. Mortality caused

by fishing is calculated as dividing non-maturing 1SW by

abundance of 1SW catch.

Year
Distant water

fishery catch

Percentage of

1SW catch (%)

Abundance of

1SW catch

Non-maturing

1SW

Mortality by

fishing(%)

1982 192200 N/A N/A 1476182 N/A

1983 39500 N/A N/A 1102297 N/A

1984 48800 N/A N/A 859950 N/A
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1985 143500 92.5 132738 1034284 12.83

1986 188300 95.1 179073 1069829 16.74

1987 171900 96.3 165540 939917 17.61

1988 125500 96.7 121359 689284 17.61

1989 65000 92.3 59995 809582 7.41

1990 62400 95.7 59717 539114 11.08

1991 111700 95.6 106785 552024 19.34

1992 46900 91.9 43101 428423 10.06

1993 N/A N/A N/A 472336 N/A

1994 N/A N/A N/A 501628 N/A

1995 21400 96.8 20715 317118 6.53

1996 22400 94.1 21078 411524 5.12

1997 18000 98.2 17676 1213415 1.46

1998 3100 96.8 3001 645922 0.46

1999 700 96.8 678 699088 0.10

2000 5100 97.4 4967 771344 0.64

2001 9400 98.2 9231 754402 1.22

2002 2300 97.3 2238 756378 0.30

2003 2600 96.7 2514 729306 0.34

2004 3900 97.0 3783 747273 0.51

2005 3500 92.4 3234 856033 0.38

2006 4000 93.0 3720 848044 0.44

2007 6100 96.5 5887 825304 0.71

2008 8000 97.4 7792 922444 0.84

2009 7000 93.4 6538 1104002 0.59

2010 10000 98.2 9820 854450 1.15

2011 6800 93.8 6378 901059 0.71
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