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Abstract 

The commercial and institutional sector of the building stock present a significant portion 

of energy consumption within Canada, and of that the majority is used for space 

conditioning. In order to meet reduction in greenhouse gas emission targets to combat 

climate change as outlined in the Paris Agreement, a reduction in energy use is required. 

Due to the expectations of a comfortable workspace and employee salaries outweighing 

operational costs of a building, technological changes are needed to reduce energy 

consumption, as dissatisfaction with environmental conditions impacts employee output. 

While many new technologies being developed are more efficient than existing HVAC 

solutions, they are often costly to retrofit into the existing building stock. One solution is 

to use the existing equipment in the building more efficiently through the use of advanced 

control algorithms that account for upcoming conditions, such as weather and occupancy. 

This form of predictive control can realize savings that are not possible when using 

reactive, or rule based control that is the current industry norm. 

This dissertation creates a new model predictive control (MPC) method for application to 

an institutional building using advanced surface level weather forecasts and multi-tiered 

implementation strategy. A simulation platform was created to test and evaluate various 

control strategies, followed by an experimental implementation at the operating building. 

A whole building optimization was conducted, with the surface level climatic forecasts 

used to ensure occupant comfort was maintained, via zone operative temperature, 

throughout the building zones. The simulation results show a reduction in total energy use 

of 2-3% (5-6% HVAC energy) annually, while the experimental results show a HVAC 

savings of 30% (29% for HVAC electricity and 63% for steam). Experimental results 

outperform the simulation results due to real building inefficiencies not captured in the 

simulation model benchmark assumptions and differing baseline control strategy. 

The research contributions of this dissertation include: i) the implementation of zone 

operative temperature as a whole building comfort variable ii) the usage of various models 

and objective functions to achieve improved energy and cost performance, iii) the 

introduction of emulated model predictive control for both model validation and for the 

morning start optimization of MPC, iv) the usage of surface level weather forecasts for 

predictive control, and v) the use of a randomForest regression model for buildings.  
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Chapter 1 INTRODUCTION 

Due to rising energy costs [1], the threat of climate change [2], and regulatory policies 

(such as the Paris Agreement [3]) to reduce greenhouse gas emissions, a need to improve 

the way energy is consumed exists. One potential area for energy reduction measures is the 

building stock. Commercial and institutional (C&I) buildings in Canada consumed 1,057.3 

PJ of energy in 2010 [4], which accounts for 12.5% of all energy consumed in Canada. Of 

that, 50% of the energy was used for space heating and space cooling [5]. Worldwide an 

existing trend of increasing energy consumption by buildings exists [6], and has been 

exponentially growing as population has grown. This disparity is driven by emerging 

economies that are forecasted to continue their growth and demand for energy in all sectors 

[6]. Due to the large amount of energy involved in space conditioning of C&I buildings 

through HVAC systems, new methods for cost effective energy efficient HVAC 

technologies are being studied by researchers and industry (e.g. [7], Johnson Controls1).  

Some of the physical technologies include heat pumps [8], energy storage [9], phase change 

materials [10] [11] [12], combined heat and power [13], liquid desiccant air conditioning 

[14], liquid to air membrane energy exchangers [15]. While these technologies are more 

efficient than existing systems in buildings, they can be expensive or physically difficult 

to retrofit into existing buildings and incur significant payback periods. An alternative 

technological branch is control, where changes to how the existing equipment is used can 

lead to reductions in energy consumption. There are two main methods this can be done: 

reducing the conditioning needs of a space (via zone temperature setpoints) [16] [17], or 

through optimization of the system (through system setpoints such as hot water temperature 

[18], or dual duct air temperatures [19]). The advantage of a control based strategy is they 

can be implemented as a software layer that integrates with existing building automation 

systems (BAS), and thus at a much lower cost. 

                                                           

1http://www.johnsoncontrols.com/content/us/en/news.html?newsitem=http%3A%2F%2Fjohnsoncontrols.m

ediaroom.com%2Findex.php%3Fs%3D113%26item%3D3396 
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The research objective of this dissertation is to develop an advanced HVAC control 

utilizing model predictive control (MPC) to maintain or improve occupant thermal comfort 

while reducing energy usage, demand, and/or operating costs. Conventional building 

control is both reactionary (waits for conditions to be outside of range to respond) and 

scheduled, causing HVAC equipment to operate unnecessarily or inefficiently. MPC is a 

low capital cost technology as it is an add-on software layer that utilizes forecast data of 

building operations, climate. Thus minimal or no additional hardware is required. MPC 

uses a building system model and forecasts of internal and external conditions (climate, 

occupancy, equipment), and a set of HVAC control options (such as thermal zone 

setpoints) to reduce energy usage and/or operating costs based on a desired objective 

function (cost, energy, demand, greenhouse gases). A sample system diagram is found in 

Figure 1.1 that highlights the information flow paths. 

 

Figure 1.1 MPC system diagram 

MPC strategies can reduce energy use and/or operational costs compared to conventional 

controls through the following methods: 

• Optimized start time – By forecasting climatic and occupancy conditions, the 

optimal start time can be determined to reduce energy consumption from 
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conventional rule based controls (RBC). An example of this can be found in Figure 

1.2, where the objective of achieving thermal comfort by 08:00 is met by MPC with 

a delayed start reducing thermal losses during a heating period for the building in 

comparison to RBC. A final option is that of a ramp based input, which would lead 

to a lower peak demand, but an increase in energy consumption compared to the 

MPC case. 

 

Figure 1.2 Optimized start time 

• Optimized shutdown – Similar to the optimized start time, predictions for 

occupancy and climatic conditions can determine the optimal time to turn off the 

HVAC system that allows the building thermal dynamics to maintain comfort. 

Indoor air quality requirements may limit the feasibility of this approach by 

mandating fresh air. 

• Free cooling – Free cooling refers to the use of building ventilation fans to circulate 

outdoor air through the building to chill the space overnight without the use of 
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compression based systems. Current systems typically used a dry-bulb temperature 

differential or enthalpy differential to turn on the fans. An MPC approach can 

improve upon this by calculating the optimal start time that minimizes fan runtime 

(fan use increases energy consumption) by using the forecast conditions as opposed 

to a fixed differential. 

• Demand limiting – Many C&I customers pay for energy based on both 

consumption and peak demand during the billing period. MPC can be used to 

predict future energy consumption levels and find a control solution that limits the 

peak demand by initiating conditioning systems earlier and at a lower peak power 

level. 

• Time-of-use pricing – with knowledge of future conditions and energy pricing, 

MPC can find a control solution that minimizes the total operating cost of a building 

while still maintaining thermal comfort. An example would be to pre-cool a 

building in the summer to the lower limit of thermal comfort prior to the high 

energy price period, and allow for the thermal dynamics of the building to carry the 

building through the high price period. 

• Part-load efficiency – Many HVAC systems have a design operating scenario 

where efficiency is at its highest, and should be operated around these points as 

often as possible. Traditional reactive control does not account for these efficiencies 

and often will run equipment at non-ideal part-load on efficiency curves. Predictive 

controls can anticipate the efficiency response of the HVAC equipment and turn on 

pre-emptively or later to maintain higher efficiency. 

The above objectives can be achieved by exploiting the building as a source of thermal 

storage, and the typical oversized HVAC system power that exists in buildings. 

Some of the technological barriers to using MPC for buildings have been addressed in 

recent years. These include: 
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• Advances in computing – Increased computational capability has enabled a broader 

range of control scenarios to be examined within a reasonable period for 

application, including computationally expensive options such as MPC.  

• Acquisition and storage of building data through measurement and verification – 

With increased data storage of building conditions, more information is now 

available to allow for the development of building process models and to evaluate 

the performance gains when new control strategies are implemented. 

• Conditions forecasting - With more advanced occupancy models [20] [21] and 

forecasting methods [22] and/or improved weather forecasting (accuracy and/or 

resolution) [23] the performance of the MPC strategies improves.  

• Artificial intelligence - The ability to integrate artificial intelligence into building 

models so the model can learn/evolve based on recorded measurements and real-

time data from the building, leading to more accurate models that can adapt to 

equipment or operational changes over time [24]. While initially discussed in the 

early 1990s [25], advancements are still on-going due to high degree of complexity 

in buildings and advancements in machine learning. 

This dissertation outlines the design and implementation of a new MPC control strategy 

for HVAC in a commercial building. The principal research thrust was to use MPC to 

optimize all of the modelled thermal zones within the building to minimize energy and/or 

cost while maintaining thermal comfort according to standardized metrics within a 

building. Depending on the HVAC system and thermal comfort metrics employed, energy 

can be transferred from high thermal loads (such as South facing zones with large glazing 

area2) to lower thermal load zones (such as North facing zones). This was done by utilizing 

surface level (i.e. walls and windows) forecasting for ambient environmental conditions 

(solar radiation, temperature, humidity, wind) provided by a collaborating industry 

                                                           

2 In the northern hemisphere 
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research partner, Green Power Labs Inc. (GPL). Surface level forecasting refers to 

forecasting the conditions on each zone exterior surface, as GPL produces forecasts on a 

square meter basis3. The advancement to surface level forecasts is a key catalyst for the 

research, as it can better predict the solar based loads for each thermal zone and account 

for factors such as surface/zone orientation (North vs South) and shading, which is critical 

in highly glazed C&I buildings. The individual zone level control can then adjust setpoints 

for each zone to maintain comfort based on forecast conditions, while minimizing 

energy/cost. No research has been found in the literature to indicate the use of whole 

building MPC utilizing individual surface level forecasts for individual zone optimization 

through the use of a whole building solution then being modified at the zone level. Figure 

1.3 shows the potential value for individual zone optimization, as some zones will run at 

or near cooling setpoint (central zones, high occupancy zones, high solar gain zones) while 

others operate at or near the heating setpoint (basement zones, north facing zones). Factors 

such as large predictable and unavoidable thermal loads (e.g. sun through windows), 

dynamic or time-of-use energy pricing, and ability to store thermal energy are integral for 

the value of the research. 

                                                           

3 https://greenpowerlabs.com/ 
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Figure 1.3 Measured summer zone air temperatures within the Mona Campbell building 

A second area of research within the zone level optimization of an entire building is the 

proper selection of MPC parameters, namely the forecast horizon length and update 

frequency (or timestep) as demonstrated in Figure 1.4 (e.g. a five minute timestep and eight 

hour forecast horizon). While MPC research indicates it to be a function of the forecast 

accuracy (such as occupant behavior in individual offices discussed in [26]) and system 

time constant with respect to control inputs, there has been little work completed in the 

field of whole building MPC to identify the ideal parameters as a function of building type. 

The challenge for buildings is that the time constants are a function the envelope materials, 

interior materials, usage, and HVAC systems installed within the building; the ideal 

parameter values are building specific.  
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Figure 1.4 Prediction forecast horizon and timestep 

 

A final consideration that is of critical importance is thermal comfort, as it is the primary 

function of the building. Dry bulb air temperature in a zone is a common feedback tool as 

it is the industry standard measurement and used by zone level HVAC controllers. In 

contrast, many standards use either the operative temperature, or other comfort models 

such as predicted mean vote or predicted percentage dissatisfied (discussed in detail in 

Chapter 2.3), which rely on advanced measurements such as mean radiant temperature that 

are not common in buildings. For a new technology to be widely adapted, seamless 

integration with existing building systems is paramount. A method of utilizing existing 

building measurements and solar forecast information to estimate operative temperature is 

provided in Chapter 5, and is a key development. A drawback of the method is that a 

detailed building model is currently required to generate the necessary data for creating the 

estimation. 

1.1 Research Contributions 

The main contributions to the literature during the completion of the thesis are as follows: 
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1. The use of surface level weather forecasts to allow for a single whole building 

optimization (computationally efficient) to be modified to ensure thermal comfort 

throughout the building. This is done through the usage of zone operative 

temperature (ZOT), as opposed to zone air temperature (ZAT), which accounts for 

the radiant effects of solar radiation on the building exterior. While the usage of 

ZOT is not a new aspect in terms of thermal comfort for a space [27] [28] [29], it 

is typically not used in experimental whole building MPC work due to the lack of 

measurement in most buildings. Due to ZAT being used as the feedback mechanism 

in HVAC equipment, it is commonly measured and used for control in experimental 

work. By using ZOT as a comfort control after the whole building MPC is run, a 

computationally efficient solution is achieved as opposed to running a much larger 

optimization problem where each zone is optimized simultaneously. 

2. To support operative temperature in number one above, a linear regression model 

for estimating the difference between zone mean radiant temperature (ZRT) and 

ZAT was developed to estimate ZOT. While researchers have developed methods 

for predicting either ZRT or ZOT in detail [30] [31] [32] [33] [34], no work has 

shown the use of a simplified prediction method used in conjunction with ZAT 

measurements for whole building MPC. 

3. A multi-layered, multi-model MPC was developed and tested experimentally for 

energy savings, and showed a reduction of HVAC electricity of 29% and steam of 

63% compared to the same period the previous year. The multi-layered approach is 

based on the initial whole building optimization where a single setpoint pair is used 

during optimization, and then adjusted across zones to maintain thermal comfort 

based on outdoor conditions for each zone. A layer of occupant feedback is also 

included to enhance thermal comfort, and to allow for collection of data of occupant 

satisfaction. The multi-model approach stems from the use of the randomForest 

model for daytime optimization (08:00 to 22:00) of comfort, while a detailed 

EnergyPlus model was used for morning start optimization (06:00 to 08:00). This 
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differs from current published work where a single model and single objective 

function are used for all portions of the day. 

4. A new method of evaluating simplified building prediction model performance and 

to allow the use of detailed models for some specific MPC tasks was developed. 

The method emulates MPC for simple optimizations that occur once a day and have 

a convergence period after, such as morning start optimization with constant 

daytime performance afterwards. The emulated MPC method simulates all possible 

scenarios, parses each day for the optimal choice, and stitches together these 

individual days to create a new optimal year. This method relies on the convergence 

of results prior to the next optimization to allow for the method to work. The results 

can then be used directly as was done in the experimental work, and also to evaluate 

the performance of a simplified model trained using data from the advanced model. 

The difference in MPC performance from emulated MPC shows the losses incurred 

by the simplified prediction model.  

5. A study on the impact of forecast horizon length was conducted utilizing the 

emulated MPC method for time-of-use pricing with demand mitigation. The results 

were contrasted to a pure energy minimization algorithm, and found that a 1-day 

total cost minimization saves less money a month than pure energy minimization. 

The difference is due to the competing nature between consumption and demand. 

More energy is consumed to maintain a lower demand early in a month, but an 

unavoidable increase later in the month renders the excess energy used to maintain 

the previously lower demand as waste. By forecasting the whole month as opposed 

a single day, the proper demand peak can be used and prevent the waste of energy. 

6. The use of the randomForest regression tree modeling technique to generate a 

building response model for use within MPC. While other researchers have used 

other statistical/black box models (such as neural networks [35] [36] [37]), the use 

of randomForest has not been attempted. During MPC model selection it was 

shown to have better performance than neural networks for the same training and 
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test data. The downside to the models are they can become quite large, and require 

a large amount of training data. Both of these challenges are being overcome due 

to advances in computing and storage minimizing the impacts of model size, while 

buildings are capturing more data at a higher frequency, allowing for increased 

amounts of training data from a building itself. Alternatively, an advanced 

modeling tool (such as EnergyPlus) can be used to generate the needed data for 

model training. 
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Chapter 2 BACKGROUND INFORMATION 

This chapter provides additional background information on the areas of MPC, building 

physics and how its operation can be advantaged by MPC, and how occupant comfort can 

be used within MPC. 

2.1 Model Predictive Control Overview 

MPC is a branch of control theory that utilizes a model of a system or process that is subject 

to constraints, and attempts to find an optimal solution based on current and forecast values. 

The optimal solution is typically found by solving an objective function (typically a cost 

minimization), with constraints that limit the range of output control values. A prediction 

horizon is used, along with a specified timestep to allow the optimizer to simulate into the 

future and consider complex, interrelated dynamic effects so that an optimal solution is 

found over the entire forecast, not just the current timestep. If optimization of only the 

current timestep is considered, the solution may lead to a less optimal solution over entire 

forecast, and its ability to address rate of change limitations is impaired. Because MPC 

considers future effects, it is an ideal control strategy for systems with large time constants 

(hours), such as buildings [38]. The anticipatory nature of MPC is a strategic advantage 

compared with reactionary rule-based-controls (e.g. PID4).  

MPC can account for constraints of the optimization setup and model definition 

uncertainties such as system identification errors [39]. As an example, assume a linear state 

space system of the form in Equation 2.1, where x is the system state, u is the control vector, 

y is the system output, w the system disturbance, and A, B, C, D, and F are constant state 

space matrices that can have minor uncertainties. 

 

                                                           

4 Proportional, integral, differential type controller use past and present values to control buildings and 

achieve setpoints. 
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 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐹𝑤(𝑡) 2.1 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

From the above system, it is common (but not necessary) to minimize the control input u, 

while ensuring the output y tracks a reference signal yr. An example objective cost function 

is constructed along with constraints given in the form of Equation 2.2, where α and β are 

weighting factors for the two competing components, and umin and umax represent the 

constrained space of solutions with a Δu rate of change limitation at maximum value of ρ 

(constant). The solution is summed over the prediction horizon of length N, with i 

representing the timestep interval. Only the result for the current timestep is implemented, 

and the optimization over the horizon period is then carried out at each subsequent 

timestep. The optimization is redone each timestep to account for model inaccuracies, 

change in forecasts, and changes in climatic conditions. It is not necessary to limit the cost 

function to quadratic terms, as any form of function can be implemented, with varying 

methods (linear, quadratic, non-linear, particle swarm) to find the optimal solution. 

 𝐽(𝑡) = ∑ (𝛼(𝑦(𝑡𝑖) − 𝑦𝑟(𝑡𝑖))
2

+ 𝛽𝑢(𝑡𝑖)
2)𝑁

𝑖=1    

 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥  2.2 

∆𝑢 ≤ 𝜌 

Optimization is a technique used to find the scenario which best achieves an objective 

function. The objective usually consists of a desired element to be minimized/maximized 

within hard and/or soft constraints. An example for buildings would be an objective 

function that minimizes energy consumption/cost within the hard limits of the mechanical 

systems (i.e. heating/cooling) and the soft limit of thermal zone condition for occupancy 

comfort. The latter soft limit may incur a penalty if it is exceeded. An issue arises when 

multiple minima exist for a single cost function, as the global minimum is desired (the truly 

optimal solution) as opposed to a local minimum.  

One method of ensuring a global minimum is to structure the cost function in a linear or 

quadratic form, to insure only one exists. Thus, the simplest forms of optimization are 
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linear methods with a single, global minimum. However, certain systems (such as air 

conditioning [40]) experience highly nonlinear dynamics, and consequently must be 

modelled using nonlinear techniques which may experience multiple minima. There are 

several methods of nonlinear optimization, each with specific advantages and 

disadvantages. Table 2.1 from [41] summarizes some common nonlinear optimization 

techniques. It is important to recognize that optimization results are dependent of the 

horizon forecast range, timestep used, and the accuracy of the predictions [39] [42]. Several 

nonlinear optimization approaches for MPC are explored in detail in [42]. 

 

Table 2.1 Nonlinear optimization techniques [41]5 

 

Table 2.2 summarizes a set of typical objectives and constraints when applying control 

strategies to buildings. A principal objective is typically the reduction of energy used by 

                                                           

5 Reprinted from HVAC&R, Vol 14, Iss 1, Wang & Ma, Supervisory and Optimal Control of Building 

HVAC: A Review, 3-32, Copyright 2008, with permission from Taylor and Francis 
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the building. This may be accomplished by reducing “energy requirement” or “energy 

consumption”:  

• Energy requirements of the building can be reduced by altering the necessary 

heating/cooling in the thermally conditioned zone. In the control sense this is not 

accomplished by energy efficiency retrofits (e.g. adding insulation), but rather by 

changing the thermal zone operating setpoints. For example, if strong sunlight is 

forecast for the next several hours, the blinds should be closed to reduce the 

necessary zone cooling requirements (air conditioning). 

• Energy consumption of the building can be reduced by operating the HVAC 

systems more efficiently. This may be accomplished by increasing part-load 

efficiency, decreasing cycling, or by sequencing of certain equipment. For example, 

if strong sunlight is only forecast for one hour, a multi-sequence cooling system 

should be started early and run continuously for two hours instead of all systems 

starting for only half an hour. It should be noted that a reduction in energy 

requirements often leads to a reduction in energy consumption, although this is not 

always the case (e.g. reduced lighting may necessitate increased inefficient space 

heating). 

Table 2.2 MPC objectives and constraints for buildings 

Objectives Constraints 

Energy minimization Thermal comfort range 

Cost minimization Equipment limits range 

Greenhouse gas emissions minimization Thermodynamic limits 

Thermal comfort maximization  

 

While reducing energy used by the building is often a principal objective, this may be 

motivated by an objective to reduce operational cost and/or greenhouse gas emissions. 
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These objectives are typically strongly linked when considering single energy sources (e.g. 

natural gas) and fixed rate energy billing. However, energy source switching, demand or 

time-based billing, or principal objective hierarchy may cause this to not be the case. For 

example: 

• Switching from natural gas (fluctuating price) to electricity during certain periods 

may save both energy (more efficient system) and cost, but may increase 

greenhouse gas emissions in coal-fired electricity jurisdictions. 

• The use of thermal storage may dramatically decrease electricity demand costs and 

also energy costs through time-of-use billing periods, but may increase energy 

consumption due to storage system inefficiency. 

• An objective of reduced greenhouse gas emissions may lead an organization to opt 

for a program such as Bullfrog Power6, thus paying increased costs for electricity. 

As shown in Table 2.2, thermal comfort is often the principal constraint in building 

operations. It is of most importance to operations of commercial and institutional buildings, 

as occupant discomfort impairs the building in carrying out its principal services. The 

thermal comfort constraint may consist of a range of suitable temperatures, with weighted 

penalties for excursions beyond a certain value. Additional constraints include equipment 

limits and thermodynamic limits. Equipment limits are typically the magnitude of 

operation of the HVAC system (e.g. heating and cooling power), but also include the 

sequencing and rate-of-change of equipment. Thermodynamic constraints inform the 

optimizer so that it does not attempt to breach the practical operation when searching for a 

solution. For example, a thermodynamic constraint on a liquid water loop would restrict 

the operating temperature range from 5 to 95 °C. Another example is a large decrease in 

temperature in a humid environment can cause condensation buildup, leading to damage 

and increased maintenance costs. 

                                                           

6 https://www.bullfrogpower.com/ 
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2.2 Building Physics 

In order to develop a suitable prediction model, calibrate a detailed energy model, and 

understand the value of advanced forecast information for a building, a solid understanding 

of the heat transfer mechanisms through the building envelope and within the building is 

required. Figure 2.1 highlights these flows which can be broken down into four main 

categories: conduction, convection, short wave radiation, and long wave radiation. 

Conduction occurs through the building envelope, both with the external environment and 

between adjacent zones. Within building simulation programs, there are two main method 

for solving the conduction problem: conduction transfer functions and numerical methods. 

The text by Clarke [43] is a good resource on the differences of the methods. Both methods 

use a nodal discretization of the materials as shown in Figure 2.2, where the number of 

nodes depend on the material properties and material thickness. Convection occurs 

between the air point (typically the point to be controlled) and all internal surfaces (walls, 

windows, people, equipment) to add/remove energy from the air point. In many buildings, 

the primary heating and cooling is supplied via air from the air handling unit (AHU) system 

which introduces forced convection energy loads to the air point. Infiltration through the 

building envelope (such as gaps around windows/doors) also introduce convective loads to 

the air point. Convection also occurs between the building fabric and the environment 

which alters surface temperatures and conduction rates through the building envelope. 

Short wave solar radiation from the sun is absorbed by building surfaces (both external and 

internal through window transmittance) where it can then be released to the air point 

through convection across the heated surfaces. Long wave radiation effects occur between 

surfaces within a zone, and can ultimately lead to convective transfer to the air point. Long 

wave radiation effects also occur between the building fabric and external surfaces such as 

the ground, adjacent buildings, and the sky. 
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Figure 2.1 Major energy flows in a building based on [44] 

 

Figure 2.2 Wall nodes for conduction 

It is also important to consider the energy storage effects of the building envelope, interior 

materials, and air. The storage effects offer a time-lag between peak outdoor conditions 

and indoor conditions [45], which offer another opportunity for MPC, by being able to 
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predict the time lag and magnitude shift correctly to minimize energy consumption. An 

example is shown in Figure 2.3. 

 

Figure 2.3 Heat flux time lag [45]7 

                                                           

7 Energy and Buildings, Volume 47, Jin, Zhang, Cao, & Wang, Thermal performance evaluation of the wall 

using heat flux time lag and decrement factor, 369-374, Copyright 2012, with permission from Elsevier 
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2.3 Occupant Comfort 

Occupant comfort is an expansive research topic that has been and is still being studied 

extensively. While it is necessary to maintain a comfortable space (due to occupant salaries 

outweighing operational costs for most commercial buildings [46], [47]), it is not the direct 

goals of the research to develop new metrics. Thus, existing models/techniques for 

occupant thermal comfort have been implemented. When considering thermal comfort 

there are three typical metrics employed: thermal zone temperature (both air and operative), 

predicted percentage dissatisfied (PPD), and predicted mean vote (PMV) [48]. The latter 

metrics were introduced by [49] as static models to describe thermal comfort based on 

human body heat balance consisting of air temperature, mean radiant temperature, relative 

humidity, air velocity, clothing levels, and people activity rates. The PMV model is based 

on a scale of -3 (cold) to +3 (hot) with comfort defined as the range from -0.5 to +0.5. 

Based on this definition, minimizing the absolute value of PMV is a valid comfort criteria 

for an objective function term. The challenge with such a technique is that not all the 

parameters used in the calculation are measured by a building energy management system 

and require additional sensors or approximations for the variable. For reference, the 

equations for PMV and PPD are as follows (Equations 2.3 -  2.8): 

𝑃𝑀𝑉 =  [0.303𝑒−0.036𝑀 + 0.028]{(𝑀 − 𝑊) − 3.96E−8𝑓𝑐𝑙[(𝑡𝑐𝑙 + 273)4 −

(𝑡𝑟 + 273)4] − 𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − 𝑡𝑎) − 3.05[5.75 − 0.007(𝑀 − 𝑊) − 𝑝𝑎] − 0.42[(𝑀 −

𝑊) − 58.15] − 0.0173𝑀(5.87 − 𝑝𝑎) − 0.0014𝑀(34 − 𝑡𝑎)}   

  2.3 

 𝑃𝑃𝐷 = 100 − 95e[−(0.3353𝑃𝑀𝑉4+0.2179𝑃𝑀𝑉2)]       2.4 

 𝑓𝑐𝑙 = 1.0 + 0.2𝐼𝑐𝑙 𝑜𝑟 1.05 + 0.1𝐼𝑐𝑙  2.5                    

𝑡𝑐𝑙 = 35.7 − 0.0275(𝑀 − 𝑊) − 𝑅𝑐𝑙{(𝑀 − 𝑊) − 3.05[5.75 − 0.007(𝑀 − 𝑊) − 𝑝𝑎] −

0.42[(𝑀 − 𝑊) − 58.15] − 0.0173𝑀(5.87 − 𝑝𝑎) − 0.0014𝑀(34 − 𝑡𝑎)}             2.6 

 𝑅𝑐𝑙 = 0.155𝐼𝑐𝑙              2.7 

 ℎ𝑐 = 12.1(𝑉)
1

2                               2.8 

Where the variables are outlined in Table 2.3. 
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Table 2.3 PMV/PPD variables 

Variable Description Easily Measured 

𝑓𝑐𝑙 Clothing factor No 

ℎ𝑐 Convective heat transfer coefficient No 

𝐼𝑐𝑙 Clothing insulation in clo No 

𝑀 Metabolic rate in W/m2 No 

𝑝𝑎 Vapor pressure of air in kPa Indirectly 

𝑅𝑐𝑙 Clothing insulation level No 

𝑡𝑎 Air temperature in °C Yes 

𝑡𝑐𝑙 Clothing surface temperature in °C Yes, limited 

𝑡𝑟 Mean radiant temperature in °C Yes, limited 

𝑉 Air velocity in m/s Indirectly 

𝑊 External work in W (typically 0) No 

 

It is also important to note that while occupant comfort is often thought in terms of thermal 

comfort, other factors exist. The main factor is indoor air quality, which can be impacted 

by factors such as pollution, material off gassing, CO2 buildup from lack of ventilation, 

and other irritants. These issues can lead to “sick building syndrome” [50]. Thus it is 

necessary to ensure that changes to the thermal comfort controls maintain existing flow 

rates, or that overrides for factors such as CO2 accumulation (ASHRAE Standard 62 [51] 

suggest between 1000-1200 ppm) exist to maintain a healthy and comfortable environment. 

A study done in [52] examines other indoor air quality pollutants including carbon 

monoxide, nitrogen dioxide, and formaldehyde. While outside the scope of the research, 

forecasts for environmental conditions can be used in regions where outdoor air pollution 

can become a concern to adjust the fresh air system behavior to enhance indoor air quality. 
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An analysis of the standards produced by ASHRAE [48], ISO [53], and BS-EN [54] that 

relate to thermal comfort in the built environment is shown in Table 2.4. The standards are 

typically based on PMV or PPD. 

Table 2.4 Thermal comfort standard comparison 

Standard Mechanical Systems Natural Ventilation 

ASHRAE 

55:2013 

PMV/PPD based, either graphical with assumptions 

or calculation for PPD < 10 

Zone operative temperature from psychometric 

chart for typical indoor conditions 

Local thermal discomfort (i.e. draught, radiant 

asymmetry) 

Based on outdoor 

air temperature 

ISO 7730:2015 PMV/PPD based, either graphical with assumptions 

or calculation with 3 categories of PPD (A < 6, B < 

10, C < 15) 

Local thermal discomfort (i.e. draught, radiant 

asymmetry) 

Provides design level tables based on space types 

Not listed 

BS-EN 

15251:2007 

PMV/PPD based on ISO 7730 Based on outdoor 

air temperature 

 

While Table 2.3 states which variables are measurable inputs and which are dependent 

variables to calculated, several of the inputs are difficult to measure.  

• Zone air temperature (ZAT, dry bulb) is the easiest measurement as almost all zones 

contain a thermometer as part of the thermostat.  
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• Water vapor partial pressure can be calculated from relative humidity 

measurements, which are often taken at the main AHU level.  

• Air velocity is indirectly calculated by variables such as variable air volume damper 

positions and AHU fan rate.  

• Zone mean radiant temperature (ZRT) in a space is measured using a black globe 

thermometer. However, it is a point measurement and they are not typically 

installed/connected to conventional building management systems.  

• Metabolic rate can be approximated by the common activity with a thermal zone, 

but can fluctuate when abnormal activity occurs in a space.  

• Clothing level is more challenging to approximate, as each individual person in a 

space likely is wearing different levels of clothing, which typically changes 

seasonally. [48] has an approximation chart for clothing levels based on outdoor air 

temperature and can be found in Figure 2.4.  
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Figure 2.4 Clothing insulation as a function of outdoor air dry-bulb temperature at 06:00 

[48]8 

A PMV sensitivity analysis was conducted with results tabulated in Table 2.5. An initial 

base case is used to compare the impact of changing individual components of the 

PMV/PPD calculation. The changed variable in each case is highlighted in yellow, with 

the corresponding change in PMV and PPD located at the bottom of the table. The variables 

with the largest impact are clothing and metabolic rate, both of which are not easily 

measured. 

 

                                                           

8 ASHRAE standard by AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR 

Reproduced with permission of THE SOCIETY, in the format Republish in a thesis/dissertation via 

Copyright Clearance Center.  
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Table 2.5 PMV/PPD sensitivity analysis 

Variable Reference Case Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 

Air Temperature 24 20 22 26 28 24 24 24 24 24 24 24 24 24 

Radiant Temperature 24 24 24 24 24 20 28 24 24 24 24 24 24 24 

Air Speed 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0.1 0.1 0.1 

Humidity 50 50 50 50 50 50 50 50 20 35 65 80 50 50 

Metabolic Rate 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.5 1.1 

Clothing Level 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 

PMV -0.46 -1.24 -0.83 -0.12 0.23 -1.07 0.18 -0.51 -0.68 -0.57 -0.35 -0.24 0.31 0.39 

PPD 9% 37% 20% 5% 6% 29% 6% 11% 15% 12% 8% 6% 7% 8% 

PMV change from Case 1 N/A -170% -80% 74% 150% -133% 139% -11% -48% -24% 24% 58% 167% 165% 
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Chapter 3 LITERATURE REVIEW  

Portions of this chapter have been published in the following article:  

Hilliard, T., Kavgic M., & Swan L. (2015). Model predictive control for commercial 

buildings: trends and opportunities. Advances in Building Energy Research. 10:2, 172-

190 doi:10.1080/17512549.2015.1079240 [55] 

And have been reproduced under Taylor and Francis licensing agreement section 4 vii (see 

Appendix A). 

Trent Hilliard is the principal researcher and author of the article. He conducted the 

research as part of his PhD. Thus, while he received supervision and guidance from his 

supervisor Dr. Lukas Swan and post-doctoral fellow Dr. Miroslava Kavgic, he carried out 

the work, wrote the article, and communicated with the editor of the journal. Minor 

grammatical and content changes have been made to integrate the article within this 

dissertation, and incorporate the latest literature. 

This chapter examines recently published literature of MPC (2010 to 2017) and its 

application to buildings. The initial search included all levels of MPC applications (i.e. 

equipment specific and single zone), with latter reviews focused on whole building 

implementations with experimental validation. The following information for each work is 

noted (where given by the authors): 

• building or space type 

• space conditioning HVAC system  

• model type and detail 

• simulation software 

• simulation timestep  

• required sensors  

• optimization (variables, type, and horizon) 

• constraints placed on the optimization 
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• control variables 

• results 

The details of the studies are found in a series of tables that capture the salient points and 

allow for comparison, with a brief description of each study located thereafter. The studies 

are organized by their MPC scope and then chronologically. Table 3.1 lists the type of 

model used to represent the building, also known as a building response model. The type 

of models include resistive-capacitive (RC)  networks ( [56], [18]), neural networks ( [57], 

[36]), or other black (or grey) box statistical methods ( [58], [17]), and advanced building 

simulation engine models. Research has shown there is no one ‘best’ model for predictive 

controls, as discussed in [59], [60], [61]. 

Table 3.2 lists the modeling and simulation software packages used to implement both the 

building prediction model and MPC optimization, followed by the type of optimization 

algorithm used to solve the MPC problem. It concludes with a description of the 

area/equipment that the MPC is attempting to optimize and control. Table 3.2 contains the 

information needed for the MPC controller. Typically, the optimization is calculated at 

each timestep for the forecast horizon. Table 3.2 also lists the measurements required for 

the model portion of the MPC, and concludes by defining the control outputs. Table 3.3 

outlines the strengths and weaknesses of each work, with the savings noted in each case. 

Boldface is used to identify studies in which experimental validation occurred, thus 

emphasis should be placed on these results. Given the early stage of MPC research for 

buildings, validation is crucial to give confidence in research results. 

The research is classified into three sub-categories based on the control scope as listed in 

Table 3.1: component/subsystem level, zone level, and whole building.  
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Table 3.1 Models and optimization techniques 

 Study 

Response model 

type 

Simulation 

software  

Optimization 

method Control scope 
C

o
m

p
o

n
en

t 
/s

u
b

sy
st

em
 le

ve
l 

[62] Linearized state 

space 

Matlab and 

Simulink 

Linear Single zone electric 

heater 

[58] Black box state 

space 

Scilab Weighted square 

sum (quadratic) 

Building heating 

system 

[18] RC based linear state 

space 

Scilab Quadratic and 

linear terms 

Building heating 

system 

[63] Discrete time RC Matlab Quadratic with 

linear constraints 

Single zone AC 

[9] Mixed model, RC 

and physics  

Matlab Linear Cooling storage 

tank 

[64] Physics based TRNSYS Exhaustive search Condenser 

[65] Hammerstein-

Wiener 

Matlab Weighted square 

sum (quadratic) 

Home AC heat 

pump 

[66] case II EnergyPlus EnergyPlus, 

GenOpt 

Hookes-Jeeves 

algorithm in 

GenOpt 

Radiant cooling 

slab 

[66] case III TRNSYS physics 

based 

TRNSYS, 

GenOpt 

GenOpt Hookes-

Jeeves Multi-Start 

Cogeneration plant 

for electric 

reduction 

[67] 12 dimension linear 

state space 

TRNSYS, 

Matlab 

AQR, SQP Variable flow AHU 

cooling system 

Zo
n

e 
le

ve
l 

[68] Bilinear state space Matlab Linear Single zone 

[66] case I Physics based Modelica, 

GenOpt, 

SimCon 

Hookes-Jeeves 

algorithm in 

GenOpt 

Single zone with 

shading and natural 

ventilation 

[69] EnergyPlus based 

regression statistical 

model 

EnergyPlus, 

OpenStudio 

Linear Cooling system 

with real time 

pricing, ideal loads 

[56] 12th order RC TRNSYS Linear and 

quadratic 

Single zone 

W
h

o
le

 b
u

ild
in

g 

[70] 1st order time delay 

with uncertainties, 

statespace 

Matlab Quadratic AHU with VAV 

[71] EnergyPlus based 

regression model 

EnergyPlus, 

Matlab, 

BCVTB 

Linear Entire building with 

only cooling 

[72] Generalized linear 

models 

EnergyPlus, 

Matlab 

Particle swarm Whole building 

with natural and 

mechanical 

ventilation 

[73] Linearized state 

space with RC  

Matlab Linear 

programming 

Single zone building 
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 Study 

Response model 

type 

Simulation 

software  

Optimization 

method Control scope 

[74] EnergyPlus EnergyPlus, 

Matlab 

Particle swarm Multiple scenarios, 

whole building 
W

h
o

le
 b

u
ild

in
g 

[75] EnergyPlus EnergyPlus, 

Matlab, 

MLE+ 

Exhaustive search 

(Brute force) 

Entire building 

HVAC system 

[19] 3R2C with EKF Matlab, 

Ipopt 

Interior point 

nonlinear 

programming 

Multi-zone building 

[17] Gray box model OptiCOOL Linear and 

quadratic terms 

Whole building 

[76] 3R2C with ANN Matlab Linear 

programming 

Multiple zones 

within airport 

[77] RC based regression TRNSYS Linear 

programming 

Multi-zone office 

space 

[78] Bi-linear RC physics Matlab Linear Multi-zone office 

building 

[79] Physics based Modelica Multiple layers Multi-zone building 

[80] Physics based state 

space 

N/A Linear Air handling unit 

level 

[81] RC circuit model Matlab & 

EnergyPlus 

Quadratic Multi-zone house 

[82] RC circuit model Matlab  Quadratic Multi-zone house 
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Table 3.2 System information for models and optimization 

 Study 

Forecast 

horizon 

Simulation 

timestep Input sensors Control outputs 
C

o
m

p
o

n
en

t/
su

b
sy

st
em

 le
ve

l 

[62] 5 hours 10 minutes Zone T, ambient T, electric 

power 

Electric power 

[58] Not given Not given Supply T, return T, zone T, max 

and min ambient T 

Supply water 

temperature 

[18] 2 days 20 minutes Room capacitance, wall 

resistance, zone T, ambient T, 

return T, supply T 

Supply water 

temperature 

[63] 5 hours 15 minutes Zone T, AC power AC state (on/off) 

[9] 1 day 1 hour Return T, ambient T, tank T, 

stratification height 

Cooling tower T, 

chilled water T, 

chiller run time 

[64] N/A N/A Ambient T, inlet T, outlet T, 

cooling demand 

Outlet T 

[65] 1 day 15 minutes Zone T, ambient T, AC power AC state (of/off) 

[66] case II 24 hours Not given EnergyPlus model Cooling slab charge  

[66] case III Not given Not given Heating and cooling loads, 

electricity demand and cost 

Amount of time to 

operate 

cogeneration plant 

[67] AQR–1 day 

SQP–6 hours 

10 minutes for 

both 

Zone T, mean radiant T, wall T, 

GSR, ambient T, ambient RH, 

supply air T, supply air flow 

Rate of heat 

addition/removal 

Zo
n

e 
le

ve
l 

[68] 6 days 1 hour Occupancy, zone T, zone RH, 

luminance, ambient T, ambient 

RH, GSR 

Multiple 

configurations 

[66] case I Not given Not given Zone T, ambient T, internal 

loads, GSR 

Shades and 

ventilation rate 

[69] 8 hours 1 hour Zone T, ambient T, occupancy Zone setpoint 

[56] 6 days 1 hour Occupancy, zone T, zone RH, 

luminance, ambient T, ambient 

RH, GSR 

Multiple 

configurations 

W
h

o
le

 b
u

ild
in

g 

[70] N/A 6 seconds Air Temperature, water 

temperature 

Air flow 

[71] End of day  25 minutes Zone setpoints, Zone T Zone setpoints 

[72] 24 hours 1 hour EnergyPlus model Window state 

(open/closed) 

[73] N/A N/A Room T, ambient T, solar 

radiation 

Radiator water T 
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 Study 

Forecast 

horizon 

Simulation 

timestep Input sensors Control outputs 

W
h

o
le

 b
u

ild
in

g 
[74] 7 days 1 hour EnergyPlus model  Room setpoint 

temperature 

[75] 24 hours 1 hour EnergyPlus model  Zone setpoints 

[19] 3 hours 15 minutes CO2, occupancy, zone T, zone 

RH, ambient T, ambient RH 

Stream 

temperatures and 

air volume flow 

[17] End of day  5 minutes Ambient T, zone T, occupancy, 

HVAC power 

Zone setpoints 

[76] 1 day 10 minutes Supply air T, supply air flow 

rate, neighbor zone T, CO2, 

ambient T 

Zone  temperature 

[77] 1 day 15 minutes Supply T, return T, water flow 

rate, ambient T, solar radiation 

Zone temperature 

[78] 58 hours 15 minutes Average room T, heat flux, air 

flow, internal gains, ambient T, 

solar radiation 

Water temperature 

and flow rate 

[79] 6 hours 15 minutes Heat flux, room T, solar 

radiation, ambient T 

Water temperature 

[80] 125 seconds 1 second Incoming T and humidity, heat 

transfer coefficients 

Water temperature 

and flow 

[81] N/A N/A Room humidity, room T, 

ambient T, ground T, solar 

radiation 

HVAC power and 

flow 

[82] N/A N/A Room humidity, room T, 

ambient temperature, ground 

temperature, solar radiation 

Heater power 
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Table 3.3 Strengths and weaknesses of the research (experimentally studies in boldface) 

 Study Strengths Weaknesses 

C
o

m
p

o
n

en
t/

su
b

sy
st

em
 le

ve
l 

[62] Unique aspect to thermal comfort, 37% 

thermal improvement with 14% savings 

Extremely simple, no solar aspects 

[58] Experimental validation with back 

simulation, 17-29% savings 

No forecast information given, 

limited disturbances (no solar) 

[18] Experimental validation, savings of 15-28% Questionable implementation of 

HDD 

[63] Simple, minimal inputs required, up to 70% 

savings, experimental validation 

Cooling only, not transferrable 

[9] Mixed model for building and tank system, 

75% savings, experimental validation 

Weak baseline setup, cooling only 

[64] Includes fault detection and correction. 

Savings of 5% with all features included. 

Specific to condenser behavior, only 

simulation based results. 

[65] Simplified model, uses variable electricity 

pricing, 13% savings 

Cooling only, minimal savings due 

to low thermal capacitance 

[66] case II EnergyPlus model, weather forecasting, 10% 

PPD reduction 

Assumes interpolation exists 

[66] case III Advanced method of subdividing 

optimization, 11% savings 

Assumes interpolation exists 

[67] Simplified model validated to TRNSYS, AQR 

has 26% savings 

Cooling only, SQP increased cost by 

54%, low off peak pricing  

Zo
n

e 
le

ve
l 

[68] Considers forecast uncertainty, 25% savings in 

theory 

Only 10% savings actually achieved 

with weather uncertainty 

[66] case I Offline optimization table, 57% savings Assumes interpolation exists, weak 

baseline controller  

[69] Linear regression from EnergyPlus for model, 

1-5% savings 

Need to remake model for any 

changes, minimal thermal comfort  

[56] Simplified model verified to TRNSYS, 

advanced building, 16% savings 

Single zone with adiabatic walls, no 

mention of IAQ 

W
h

o
le

 

b
u

ild
in

g 

[70] Simple models, common HVAC systems, deals 

with model uncertainties 

Plant based optimization, focus on 

signal tracking 

[71] Multizone building, 25% energy savings Cooling only, model specific results 
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 Study Strengths Weaknesses 

W
h

o
le

 b
u

ild
in

g 
[72] GLM to extract from EnergyPlus MPC, GLM 

results 70-90% of MPC 

PSO algorithm doesn’t guarantee a 

solution 

[73] Developed cost function to go from 

traditional MPC mechanics to practical 

building control. 

Single zone building with only 

heating explored. 

[74] PSO allows for nonlinear functions, use high 

fidelity models 

PSO algorithm doesn’t guarantee a 

solution, no discussion on 

implementation 

[75] Multizone building, 20% energy savings, both 

heating and cooling 

Attempts to rewind EnergyPlus, 

requires EnergyPlus models 

[19] Experimental validation, whole building 

analysis, 19-32% savings 

No optimization on weekends, gray 

box model requires lots of training 

[17] Whole building, simplified model validated 

to measured data, experimental results, 65% 

savings 

Experimental results have different 

weather, inherently inefficient 

base system 

[76] Multi-zonal study with both simulation and 

experimental results. Savings of 13% cost in 

experiment 

No accounting of solar radiation on 

the highly glazed building 

[77] Multi-zonal study with both simulation and 

experimental results. Improvement in 

thermal comfort compared to traditional 

TABS control 

Negligible energy savings, no 

discussion on fresh air impact 

[78] Whole building study with simulation and 

experimental results. Simulation showed 

energy savings of 17%. 

No energy discussion of 

experiment, only focus on 

occupant comfort. 

[79] Whole building study. Able to handle 

uncertainty in the system. Provides a pareto 

front of savings vs comfort. 

Savings levels appear minimal, but 

does enhance comfort. 

[80] Experimental validation with reduced 

settling time and smoother system response 

to step changes. 

Strictly system optimization, no 

assessment of comfort. No 

assessment of energy savings. 

[81] Detailed analysis of model simplification 

method and simulated savings of 34%. 

Complex base models, lots of data 

required for heat and moisture  

[82] Experimental simulations with 43% savings 

from base case. 

Quarter size models in 

environmental chambers. 



34 

 

 

 

3.1 Component/Subsystem Level Studies 

The work of [63] was focused on the cooling of a university computer lab using a single 

stage air conditioning heat pump. The system was modelled using a discrete time model 

based on RC circuit methods. The only sensors required by the system are room 

temperature and the power consumed by the air conditioner along with an occupancy 

schedule. The occupancy schedule is also used to modify the equipment schedule, as a base 

load is assumed, with increases in load occurring when the room is occupied. The 

optimization is done using Matlab with the objective of minimizing energy use while 

maintaining a room temperature of 22°C ± 2°C as a hard constraint, with ± 1°C incorporated 

as a penalty within the cost function for even better temperature control. The only control 

variable is whether the air conditioner is on or off, and by using MPC the cooling lag can 

be incorporated for when the power is turned off but cooling is still being done by the air 

conditioner. A prediction forecast of five hours is used, with a 15 minute timestep. 

Experimental testing show a reduction of electricity use by 30-70% from traditional two 

stage (on/off) control. The model is very simple with minimal sensors required and has 

experimental verification, but the transferability to other scenarios may be limited due to 

the single control variable and the on/off nature of it. Also of concern is how the authors 

treated the disturbances as a temperature, which is due to the decision to focus solely on 

convective heat transfer. While it simplifies the modelling greatly, other effects such as 

radiation seem to be neglected. Also the work focuses on a single zone, and coupling effects 

from adjacent zones are not considered and can play a large role if a temperature 

differential exists. 

[67] looked at an AHU cooling system with a variable flow cooling coil used to extract 

heat from a space. The system was modelled as a 12-dimension discrete time linearized 

and reduced order state space model based on the work of [83]. The work of [83] developed 

a reduced order model with validation to an advanced TRNSYS model. While the model 

is a reduced order linear model, a large amount of sensors are required which include: 

• zone air temperature 
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• mean radiant temperature 

• wall temperatures 

• solar radiation 

• ground radiation 

• ambient temperature 

• ambient relative humidity 

• supply air temperature  

• supply air flow rate 

The optimization was done based on cost, where a thermal penalty converted to dollars 

(based on salaries of employees) is used to ensure comfort. The room setpoint was set to 

26°C when occupied, and allowed to float otherwise. Two different optimization solvers 

were used in Matlab: an Affine Quadratic Regulator (AQR) with a one day horizon and a 

Sequential Quadratic Programming (SQP) using a six hour prediction horizon and both 

methods use a ten minute timestep. The AQR approach requires that all terms in the cost 

function be quadratic, while the SQP approach is more relaxed in that it requires the cost 

function to be twice continuously differentiable. The SQP then approximates the system as 

quadratic for solving the problem. The results from the study show a cost savings of 26% 

using the AQR solver, while the SQP increased cost of 54%, mainly due to thermal 

discomfort penalties (due to a different cost function and solution method). While the 

system reports savings, some concerning factors were an extremely low electricity price 

(0.01$/kWh off peak), the AHU power for only fresh air was neglected, and that the 

predictors were working with a perfect forecast, something not available in practice. 

The work of [65] analyzed dynamic load control using real time electricity pricing for a 

home air conditioning heat pump. The system model is a first order linear differential 

equation, and is modelled in Matlab using the Hammerstein-Wiener system model. The 

information required by the model is the ambient air temperature, indoor air temperature, 
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and the power consumed by the air conditioner, while the optimizer requires the day ahead 

electricity pricing at a 15 minute interval. The optimizer is focused on cost reduction under 

two cases, with the first case of holding a temperature of 25.5°C, while the second case lets 

the temperature float from 25°C to 26°C, while using a 24 hour horizon and 15 minute 

timestep. The optimization uses a weighted square sum so that an optimal solution will 

always exist, while the control variable is the state of the air conditioner (on or off). When 

using the fixed temperature, a cost savings of 5% are realized, while a floating temperature 

range improves savings to 13%. The work is experimentally validated, but without a large 

mass to store energy, the only gains are by exploiting day ahead pricing and the dynamics 

of the air conditioner where it still provides cooling after being turned off (0.25°C). The 

work is restricted to cooling only, and solar effects are not considered. By incorporating 

solar loads, a better estimation of external loads can be done and a potentially larger savings 

could be realized with better thermal performance. Also, the addition of thermal mass that 

can be precooled would allow for even more savings. 

[62] proposed a distributed MPC scheme for thermal regulation of a space during the 

heating season. The HVAC system consists solely of an electric heater, with no 

consideration for IAQ. A linearized state space model is used where the inputs required for 

the system are only temperatures (zones and outdoor) and the electric heating power. The 

optimization is done with energy as the focus and a penalty term used to ensure thermal 

comfort. A ten minute timestep is used with a five hour prediction horizon, and a constraint 

on temperature of 20°C. Three different control strategies are utilized – decentralized, 

centralized, and distributed. The decentralized controller is the simplest controller but does 

not account for temperature effects of neighboring zones, producing a suboptimal result. 

Centralized control can provide the optimal result, but the processing time required due to 

the large decision space would exceed the 10 minute timestep if implemented in real time. 

Distributed control allows the individual zone controllers to pass information amongst each 

other and allow for similar performance to a centralized controller while not exceeding the 

time period. The decentralized controller resulted in a lower energy usage, but also 

decreased thermal comfort due to the lack thermal coupling between zones. Centralized 

and distributed control experienced a 37% thermal improvement with a 14% energy 
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savings. An interesting feature by the authors is to not penalize temperature in unoccupied 

periods and heavily penalize it when occupied so that the controller focuses on occupied 

periods when doing its forecasting. However, the model is extremely simple, and does not 

account for solar radiation effects and is incapable of any cooling. 

The work of [58] and [18] look at the heating system in a university building in the Czech 

Republic. [58] developed a linear time invariant discrete time state space model using 

subspace identification from thermal response data for the test building. This amounts into 

a black box style formulation, where the state space matrices do not have any physical 

meaning. The HVAC system is a Crittal style ceiling system that uses radiant in ceiling 

tubing for water to be used for heating and cooling. The control variable for the system is 

the supply water temperature, as water is circulated by a constant volume pump. The 

system tries to follow a reference schedule of 22°C while occupied and 19°C when 

unoccupied for the heating season. The hot water that circulates in the system is limited to 

the range of 20 to 55°C, with a rate of change of no more than 20°C per minute. The 

optimization and modeling were carried out using the Scilab9 software (open source 

software for numerical computation), and the following information was needed for the 

model: supply water temperature, return water temperature, maximum and minimum 

temperature forecast, and indoor room temperature. Optimization was done to minimize 

energy while having a quadratic error tracking term to enforce temperature compliance. As 

with most work reviewed, the optimization algorithm can find the single optimal solution, 

which showed a 17-29% reduction in energy use. The authors recognized that they are 

limited by only considering the outdoor air temperature as a disturbance, and that the 

inclusion of effects such as solar radiation would further improve the performance. It would 

have been helpful if the authors had provided their forecast ranges and timestep information 

as other studies have concluded these factors can greatly affect performance. 

                                                           

9 http://www.scilab.org/ 



38 

 

 

 

[18] conducted a research project using the same building as [58] which means they were 

subjected to the same HVAC system, control variables, and measurements. However, they 

used a discrete time linear state-space RC based model as opposed to the black box model 

used by [58]. A second difference noted is that the optimization was quadratic in nature for 

both energy and setpoint tracking, where a 20 minute timestep was specified with a two 

day horizon. The results demonstrated a 15-28% reduction when experimentally 

implemented on the test building, as the building had sister towers with one using the 

existing rules based control and the other using the MPC controller. Some concerns from 

the work were the calculation and usage of heating degree days (HDD) based on the desired 

indoor temperature, which means that any internal gains are ignored, as HDD are normally 

calculated to 18°C to account for internal heat gain. However, the results of the study also 

show a reduction in peak power (drop in supply to return temperature difference of 30 °C), 

which can result in significant cost savings for commercial customers. 

The work in [9] focus on using MPC for the control a cooling plant for a building with a 

stratified storage tank for the cooled water. The modelling for the work consists of a mixed 

model with an RC model for the building, while the stratified storage tank is modelled 

using physics based equations. The MPC work is focused on the optimization of the tank 

storage, not the thermal characteristics of the building. The building model is used to 

determine the loads needed to be supplied by the tank, so the assumption is that any changes 

made to the cooling system will not affect the thermal capabilities of the building. The 

system consists of the water storage tank, an electric chiller, a cooling tower on a condenser 

loop for the chiller, and several demand loops for chilled water from the tank/chiller. The 

sensors required for the model of the tank are the chilled water return temperature, the 

ambient outdoor temperature, the temperatures in the tank, and the height of the 

stratification point in the tank. The system is constrained in that it must be able to meet the 

daily cooling loads, and that the water flow rate variable within a specific range and the 

size of the tank is fixed. The controller is responsible for determining the cooling tower 

outlet temperature, chilled water flow rate, chilled water temperature, and how long the 

chiller runs. The optimization is done to minimize costs and increase the coefficient of 

performance (COP) of the system with a one hour sampling time and a one day prediction 
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horizon. Experimental results indicate a reduction of energy cost by 75% while improving 

the COP by 20%, mainly due to running the system at more efficient periods of the day 

(such as at night). While the work shows how MPC can be used for building subsystems, 

it may be challenging to implement to a building automation system without thermal 

storage as the controller is making better use of the stratified storage tank. 

[64] developed an MPC scheme with a focus on fault detection and tolerance for a building 

condenser. While minimal details of how the MPC portion of the problem was solved were 

given, the ability to detect faults and compensate for them are a unique feature of the work. 

Results indicate that 5% savings can be achieved using the MPC scheme when faults are 

detected and corrected. 
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3.2 Single Zone Studies 

The OptiControl10 project was a joint project between researchers at the Swiss Federal 

Institute of Technology, Siemens, Gruner, and SwissElectric with a focus of predictive 

technology for building control. In their published final report [7], they detail their 

methodology used. For the models used, they started with an EnergyPlus (E+) detailed 

model of the test building, and then minimized to a high order RC circuit model. They then 

further reduced to the complexity of the high order RC model to a lower order RC model 

that was then implemented for real time control. They concluded that while models showed 

savings, a mismatch in savings and energy use between the building and simulation existed, 

and noted that models were good for long term savings and as a starting point for control, 

but to expect to have changes once the new control is implemented. The project only 

implemented high level control on the test building (a six story office in Basel), with Matlab 

being the software used for MPC. The primary heating and cooling for the building was 

provided by in-floor radiant heating/cooling pipes. Constant fresh air ventilation was only 

supplied during occupied hours, and the same water system used to heat/cool the building 

was used to condition the air heading to the zones in the building. The final report indicated 

that MPC had a reduction of energy use for HVAC by 25% compared to the original 

installed control strategy. Simulation results from this work is included in [56] and [68]. 

The work of [56] focuses on a single zone modelled with a 12th order RC circuit network 

that is calibrated to a TRNSYS model of the system to within ±0.5°C, and was part of the 

OptiControl project. Thirty-two different building envelope scenarios were tested and are 

outlined in Table 3.4. Likewise, five different setups of HVAC and other controllable 

systems (such as automated blinds) configurations were considered, with the variations 

outlined in Table 3.5. Individual linear or bilinear models were used for all the HVAC and 

other controllable systems. Measurements required by the model are occupancy, zone 

temperature and relative humidity, zone luminance, ambient temperature, ambient relative 

humidity and global solar radiation. The optimization is to minimize energy use while 

                                                           

10 http://www.opticontrol.ethz.ch/ 
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maintaining thermal comfort between 21-25°C or 22-27°C depending upon the outdoor air 

temperature to represent heating and cooling seasons. Only linear and quadratic 

optimization functions were considered due to their simplicity, with a six day forecast 

horizon and an hourly timestep. The authors also assume that the predictions for weather 

are perfect, and thus present a theoretical maximum savings achievable by their work. The 

indoor air quality (IAQ) was not directly controlled, but the ventilation rate was based on 

the occupancy schedule to try to meet IAQ requirements. The results show a reduction of 

16% of energy for advanced buildings in the climate region considered (Zurich, 

Switzerland). The positive aspects include that work focussed on an advanced test building 

(should have limited room for improvements) and simplified the system to all linear and 

bilinear components while maintaining accuracy to the original TRNSYS model (±0.5°C). 

The simplifications are aimed at portability by limiting the amount of information needed 

by the model. Some negative aspects include that the controller is designed for a single 

zone and currently does not account for thermal effects from adjacent zones (assumes 

adiabatic walls), and there is no mention in changes of airflow or impact on the IAQ in the 

results presented. 

Table 3.4 Building envelope variations [56]11 

 

 

                                                           

11 Reprinted from Energy and Buildings, Vol 58, Lehmann, Gyalistras, Gwerder, Wirth, & Carl, 

Intermediate complexity model for Model Predictive Control of Integrated Room Automation, 250-262, 

Copyright 2013, with permission from Elsevier 
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Table 3.5 HVAC and other controllable systems, “x” indicates it is in use [56]12 

 

 

A second OptiControl project was undertaken by [68]. The model used in the work is a 

bilinear state space model that uses sequential linear programming at each timestep. The 

same five HVAC systems outlined in Table 3.5 are considered in the work. A 

differentiating feature from the work of [56] is the consideration of the forecast uncertainty, 

creating a stochastic problem. The system is programmed in Matlab, with an optimizer that 

implements a linear cost function to reduce non-renewable energy usage. An hourly 

timestep is used with a forecast period of six days. The work also computes what they term 

the performance bound, or the theoretical improvements that can be achieved with perfect 

weather knowledge. The sensors required for the system are the indoor air temperature, the 

outdoor dry-bulb and wet-bulb temperatures, zone luminance, and the incoming solar 

radiation. The system is constrained to maintain the temperature between 21 and 27 °C. 

Similar to [56], the controls are blind positions, windows, fresh air and heating/cooling 

rate. From their studies, a performance bound of 25% savings exist, while the stochastic 

controller achieves a minimum savings of 10%. All the simulations were validated against 

TRNSYS simulations to ensure the simplified model was not the source of performance 

                                                           

12 Reprinted from Energy and Buildings, Vol 58, Lehmann, Gyalistras, Gwerder, Wirth, & Carl, 

Intermediate complexity model for Model Predictive Control of Integrated Room Automation, 250-262, 

Copyright 2013, with permission from Elsevier 
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improvements. The results vary from the work of [56] due to the inclusion of weather 

forecast error, as the choice of cost function varies to account for the forecast error. 

In the work of [74], two case studies are examined for MPC with application to commercial 

buildings. For both cases, a high fidelity E+ model is used of the building for predictions 

while being coupled with Matlab to perform the optimization. For both cases, a particle 

swarm optimization (PSO) technique is used. The PSO requires a set of seed values to be 

implemented to algorithm that migrate around and converge on the optimal solution by 

communicating with one another. Issues arise however when poor seeds are chosen, as the 

algorithm in not guaranteed to converge, and can be slow to converge. Due to the slow 

nature of E+ simulations and potential for long run times with the PSO, the authors chose 

to have the algorithm run once per day with a seven day forecast and hourly timestep, and 

to generate the optimal setpoints throughout the day. For the first study case, the control 

variable adjusted was the setpoint room temperature, and it was limited to a band of 22-24 

°C during occupied hours, and 16-32 °C when unoccupied. A variable electricity price 

scheme was employed for the system which consisted of a variable air volume (VAV) 

system with heating and cooling water coils. By using their MPC strategy, a savings of 

5.3% in cost are achieved. As the system was only simulated, no discussion on the required 

sensor information was given, nor was any discussion given on the nature of the forecast 

used. It is expected that exact weather data would be known and that an existing weather 

file for E+ is used for forecasting. The other limitation to the first case study is that only 

results for the cooling season were shown. In the second case study a 100% outdoor air 

system is employed that uses a low temperature radiant in floor heating and cooling system 

connected to a ground source heat pump with a bypass installed to allow for free cooling. 

The setpoint range for the system was a function of the outdoor air temperature, where if 

the outdoor air was cooler at 15°C, the setpoints were between 20-24°C, otherwise the 

setpoint range was between 23-26°C. The supply water temperature to the radiant system 

was limited to 16-28°C. The results of the MPC indicate a 54% energy savings, a vast 

improvement from the first case. The authors attribute this to the slower dynamics of the 

system, where predictive control is more impactful than in the faster dynamics of the first 

case. Similar to the first case, no discussion of sensors is given, and the forecast is assumed 
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to be perfect. While the results of these studies are done using validated software, the lack 

of discussion on practical implementation should be noted. 

In the studies of [69], a summertime cooling system with real time electricity pricing is 

considered for using MPC. The model is developed using an E+ input file and a linear 

regression statistical model to create a reduced order model from the E+ base model. The 

OpenStudio platform (particularly the software development kit) is used to create the 

baseline model and testing using E+, as it has tools such as RunManager to execute several 

E+ simulations automatically in an iterative nature. The system is modelled using ideal air 

loads, where it is assumed the electrical use scales with the cooling power needed in a 

linear fashion. For the simplified model, the parameters used are the temperature setpoint 

and occupancy, while all other disturbances are lumped into a single term. The authors note 

that the other disturbances such as ambient temperature and solar radiation can be separated 

if desired, but were lumped for simplicity. Optimization is done to minimize cost, while 

maintaining the system between 22-24°C when occupied, and 19-28°C when the space is 

unoccupied. A timestep of one hour is used, with a forecast horizon of eight hours. The 

only manipulated variable in the system is the temperature setpoint, and the MPC is shown 

to have 1-5% cost savings in the face of variable electricity pricing. The results are rather 

small, as the ideal air loads assume the HVAC can respond to any change necessary in a 

fast manner, which limits the effectiveness of predictive control, which has better 

performance for slower systems that can’t react to all the changes in the system. While the 

results are independent of the HVAC system as presented, changing the HVAC system 

would change the system dynamics, and a new linear regression model would need to be 

developed. Also, the system is specific to cooling, but could be ported over to heating with 

fuel pricing information and a relationship between heating required and fuel consumption. 

Also, the authors assume that staying within the temperature range given satisfies thermal 

comfort. 
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3.3 Whole Building Studies 

The work of [70] utilized a white box first order plus time delay model of an AHU system, 

and applied robust MPC approach for VAV AHUs. The system was simulated using 

MATLAB. One factor considered in the work that was neglected by many others was valve 

and system component wear, and the cost was computed by analyzing the changes in 

control input. While presented as a whole building study, the primary focus of the paper is 

on the optimization of the HVAC unit that does the conditioning of the building. Due to 

this focus, the impacts on thermal comfort are not explored, however they are assumed to 

be improved due to the improved response times of the HVAC system. Also, due to a much 

smaller time constant when only considering AHU dynamics, a simulation timestep of six 

seconds was used, with no mention of the forecast horizon.  

The work of [19] is based on a five zone building model, with each zone modelled as a 

3R2C model (see Figure 3.1) with an extended Kalman filter dynamic temperature model, 

developed by [84]. The model assumes the zones airpoint are well mixed and long range 

radiation is ignored. Static models for HVAC equipment were used to relate power 

consumption to the heating/cooling provided to the room. The HVAC system in the test 

building was a dual air duct system, with hot water from a boiler used for heating, and 

chilled water from an electric chiller is used for cooling. A variable air volume (VAV) fan 

is used with individual dampers for each zone to mix the hot and cold streams of air. The 

control strategy objective is to adjust the air stream temperatures (hot and cold) and to 

adjust the air delivery volume to zones to maintain a maximum of 900 ppm of carbon 

dioxide (CO2), while maintaining zone temperatures. The work does not consider humidity 

at all. The information required for the model and optimizer is CO2 readings, occupancy 

estimation, zone air temperature and relative humidity, and outdoor air temperature and 

relative humidity. The optimization is done only for operating cost, with a 15 minute 

timestep and three hour forecast horizon, and the cost function and constraints are nonlinear 

and solved using the interior-point nonlinear programming solver Ipopt13, which is 

                                                           

13 https://projects.coin-or.org/Ipopt 
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implemented in Matlab. A key constraint is that the tracking error from the reference signal 

must be within ±1°F. Results show a reduction of 65% energy consumption and 25% in 

peak power demand. The values are derived from experimental testing during back to back 

periods, which are influenced by the weather. During the testing the weather was more 

favorable for the MPC case then baseline. Ideally the controller would have also been back 

simulated through software such as E+ to further validate the results, and eliminate any 

bias introduced by weather variations. The energy reduction is significant, and that can be 

partially attributed to the inherent energy inefficiency in a dual air duct system, where 

streams of air are heated and cooled, and then mixed to generate the desired temperature 

in the end. The study was also only conducted during the heating season, and it would be 

beneficial to see performance during other periods, whether it be in the form of simulation 

or experimental testing. 

 

Figure 3.1 RC model diagram [84] 

Researchers in [72] developed an advanced model predictive controller, but due to its 

extensive run time, derived a set of lookup tables to approximate the performance of the 

MPC based controller. For their work, they used an E+ model of the target building and 

generalized linear models (GLM) to extract the set of rules to be used in the lookup table. 

The building considered was a mixed mode building, which has both natural and 

mechanical ventilation. The natural ventilation is controlled by automated windows while 

a VAV system is used to supplement the natural ventilation, or when it is inappropriate to 

use natural ventilation. Similar to [74], a PSO technique in Matlab is used to perform the 

optimization to reduce energy use with a strong penalty term to maintain thermal comfort. 

The optimization is run once per day, with 24 hour horizon and one hour timestep. The 
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control variable was the window position, and it was limited to being fully open or closed. 

The VAV system would then respond to ensure that all thermal comfort constraints are 

maintained. The GLM results compare favorably to the MPC results, where the GLM 

achieves approximately 70% of the MPC performance in the first study (9.3% reduction 

compared to 13% reduction). In the second study the MPC showed a 46% energy savings 

while the GML showed 43% savings, with the GLM capturing over 90% of the potential 

savings. By using a GLM strategy, the optimization can be done offline and the results 

uploaded and used in the real time environment. The results are also promising in that they 

work for both heating and cooling and account for all weather factors, not just temperature. 

In a similar strain of work as [72], the work of [66] focuses on offline lookup table 

generation for MPC using existing building simulation tools. In his work, the author looks 

at three distinct cases and different tools to implement MPC with offline optimization. For 

the first case study, a physics based equation model is developed and implemented into 

Modelica14. It is assumed that ideal loads are used to condition the space (i.e. the HVAC 

system has no limitations), while the controller adjusts automated shades and the 

ventilation rate. The sensor information required is the ambient temperature, zone 

temperature, internal loads, and solar radiation as direct and diffuse components. The 

optimization is designed to minimize energy while maintaining comfort, and is performed 

using GenOpt15. The software SimCon16 is used to link GenOpt with Modelica. The MPC 

results are then discretized into a series of grid points based on the disturbances, creating a 

lookup table of values for the online controller to work with and interpolate between. The 

results of the study show that full MPC can generate 57% energy savings, while the lookup 

table approximation achieves 50% savings. It should be noted that a weak baseline 

                                                           

14 https://www.modelica.org/ 

15 http://simulationresearch.lbl.gov/GO/ 

16 http://www.simconglobal.com/company.html 
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controller was used for comparison, but that the lookup table still achieves 88% of the 

savings that MPC generates. 

The second scenario considered by [66] was a radiant cooling slab system for a building. 

The restrictions were that the slab could only be charged overnight, and the controller was 

required to determine when to start charging and for what duration. For this case, the model 

was run using E+, while the optimization was again performed using GenOpt to minimize 

predicted percentage dissatisfied (PPD). The optimization is run for a 24 hour period using 

a 48 hour forecast, with no timestep information given. The system is dependent on the 

zone temperature, maximum ambient temperature, and the slab temperature. The results 

show that the lookup table captures 59% of the maximum savings. However, an issue 

occurs with the start up conditions of E+ as they cannot be manually set. Instead, the 

program runs for a set number of days prior to starting the desired simulation to reach a 

convergence temperature. To overcome this, careful selection of warm up length is needed 

to ensure to convergence value for each new timestep matches the previous timestep result. 

Results of testing show only 1% discrepancy in PPD reduction from using the default 

horizon compared to a forced seven day horizon. Secondly the simplifications used in the 

weather forecasting method of determining the minimum and maximum values and fitting 

a diurnal curve can lead to errors as not all days follow the diurnal pattern. The focus of 

this study was on parameterization of the weather forecasting (finding the minimum, 

maximum and fitting the curve) and how it affects results, and shows that on MPC the 

effect is minimal as 94% of the PPD reduction is captured compared to using the true 

forecast. 

The final case covered by [66] looks at problem decomposition of MPC, with a focus on 

reducing peak demand for a combined heat and power system. The idea behind problem 

decomposition is that the MPC can be broken down into a main high level problem that 

can be optimized offline, with a simpler, faster to execute problem to be run in real time. 

For the case study, the high level problem determines the peak electric power for the month, 

while the lower level problem determines when to run the plant and the best use of the heat 

generated by the system, as an absorption chiller is capable of turning waste heat into 
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cooling. A model for the system was developed using TRNSYS, with inputs of the heating 

demand, cooling demand, electricity demand, electric peak demand, electricity cost 

(fluctuates hourly, peak in summer), and fuel cost (no information on fluctuation). The 

minimization is first done to reduce the electric demand from the grid, along with an 

optimization to minimize total cost. The results of the study show that when installing a 

cogeneration system, the payback period is reduced by 5% with the implementation of 

MPC compared to traditional rule-based-control. The installation of a cogeneration plant 

would reduce annual energy costs by 11.6%.  

Researchers in [17] developed a gray box based model for MPC and then implemented 

their controller on two test buildings in Australia. The gray box models developed were 

multiple input linear time invariant models based on assumed physical relationships, and 

then empirically correlated to measured data to derive the needed coefficients. The model 

is based on the ambient temperature, indoor temperature, occupancy loads (as a function 

of temperature), and HVAC power consumption. The optimization is done every five 

minutes with the forecast period being until the end of the current business day (hence a 

moving horizon), and the optimization is done using OptiCOOL17 software. The 

optimization seeks to minimize power consumption and costs while maintaining a PPD of 

less than 20%, and is of a quadratic form. The controller manipulates zone setpoints to 

maintain the constraints and reduce energy consumption. The results of experimental 

testing show a 19-32% energy use reduction, and the work considers an entire building 

layout, not just a single zone. The choice of prediction horizon is interesting, in that it 

leaves the system approximately 7 hours of warm up in the morning, and the weekend 

control is limited to the last setpoint of Friday evening. 

The work of [71] implemented MPC for a VAV air system for a five zone building with 

only cooling, using Matlab connected with E+ via the Building Controls Virtual Test Bed 

(BCVTB). An autoregressive exogenous model for use in Matlab was developed from the 

                                                           

17 http://www.csiro.au/en/Organisation-Structure/Flagships/Energy-Flagship/Opticool.aspx 
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results of the E+ model. The optimization horizon was daily with a shrinking window, 

while a 15 minute timestep was used. The constraint on the system was the range of 

temperature setpoints, which is also how thermal comfort was ensured (no other metrics 

were used). The results showed a 25% energy reduction with the implementation of their 

MPC strategy. The work considers multiple thermal zones and their interactions, however 

the work is limited to strictly cooling. 

A second study with a focus on linking E+ and Matlab was conducted by [75]. A 

differentiating difference from [71] is the use of MLE+ as the connection software 

compared to BCVTB. A brute force method of optimization is used to test all possible 

scenarios and select the one with the greatest savings. The model uses a predicted mean 

vote (PMV) methodology to determine thermal comfort. No simplified model is used in 

the work. Instead, a special weather file is created which holds the weather constant for 

several timesteps to allow the brute force algorithm to find the optimal solution. However, 

the building conditions and states will change during this period, and it is not possible to 

reset E+ to the original states, leading to error. The forecast horizon for the MPC is 24 

hours, with an hourly timestep, with a piecewise objective function to first meet thermal 

comfort, and then reduce energy consumption. The simulation results indicate a 20% 

energy savings, but these should be questioned based on the E+ simulation approach 

previously discussed. However, the approach is valid for multiple zone systems, and 

incorporates both heating and cooling. 

Published in [76] is a study where a hybrid RC/artificial neural network (ANN) system 

modeled in Matlab is used to model the AHUs and uncertainties. The study uses a 10 

minute timestep and one day ahead forecast horizon. The results are experimentally 

validated on an airport in Australia with a cost savings of 13% realized for the similar 

temperature conditions. However, no mention of solar radiation was given and may have 

been a contributing factor, as images of the airport show large windows. 

In [77], a thermo-active building system is explored, with the system being modeled as a 

RC network. A two-zone building is simulated, with a similar setup used within an 
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environmental chamber as an experimental system. Simulation results show a decrease in 

pump runtime and improvements in thermal comfort, while using more energy. The 

experimental setup explored the ability for the algorithm to handle a change in internal 

loads, where when the loads were cut in half, the system still maintained a target setpoint 

temperature. While the results of the work are promising, they are limited to thermo-active 

building systems, and used a large number of sensors. 

In [78], MPC was run on a swiss office building that utilized a combination of AHU and 

radiant infloor heating/cooling. The system was modelled as a bilinear physics based 

system modelled in MATLAB. Comfort was managed using the building air temperature, 

with season shifts (22-25 °C in winter, 22-27 °C in summer). The actuated variables were 

AHU air temperature and flow, as well as the infloor water temperature and flow. For the 

experimental portion, the comfort control was measured in kelvin hours of discomfort. 

Thermal loads were controlled via automated blinds, where measurements above 200 

W/m2 activated the blinds to close to prevent glare. 

In [79], a non-linear physics based model using 16 states were developed using Modelica 

for use within MPC. The HVAC system consisted of AHUs to provide fresh air, and an 

infloor radiant heating/cooling system with a thermal storage tank. The MPC controlled 

the flow of water and supply temperature. Multiple modules are used to simplify the 

problem for computational feasibility by controlling the heat flux of the system, and 

concurrently the level of thermal storage. Thermal comfort is controlled by monitoring the 

air temperature and reported as total Kelvin-hours of discomfort. 

The authors of [80] implemented a multi-input multi-output control of an AHU with the 

heating and cooling coils modelled as third order systems. The output variables were the 

temperature and humidity of the conditioned air, with the control variables being the flow 

through the coils. The objective was to track a reference temperature and humidity, with 

comparison to an industry standard PI controller. The MPC controller showed improved 

tracking performance with lower overshoot and a shorter settling time. 
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The work of [81] explores the development of a hygrothermal effects model of heat and 

moisture transfer within a building in Matlab. The model is a state-space model with a basis 

on a 3R2C network, and assumes 1-direction heat and moisture flow. The states of the 

model are wall and indoor air temperature and relative humidity, with the inputs split into 

uncontrolled components such as weather conditions (temperature, humidity, radiation, 

wind), and controlled components such as HVAC system power. A simulation based study 

is presented with a cost function related to the error of temperature and humidity from a 

reference value compared to the cost of running the HVAC system (measured as system 

power). The target buildings used were residential buildings, with an energy savings 

potential of 37% compared to the baseline of constant temperature. A second paper, [82], 

explores the experimental setup using an environmental chamber and quarter-scale models 

of the building and HVAC system. Experimental savings of 43% are realized for the 

controlled environment, however several environmental factors (solar, wind) were not 

present in the chamber, and only heating was considered. While the results show good 

agreement with the simulation work, the large savings can be partially attributed to a poor 

base case, as a rule based setback control achieved 38% of the savings from the constant 

temperature base case. 

As has been shown by the previous studies analyzed, a large emphasis has been placed on 

finding accurate lower order models that can be used for real time control application. [85] 

developed an ANN model that accounts for thermal bridging between zones in a building. 

To build the model, first a physics based model was developed and had sensitivity analysis 

performed on it to determine the key input variables needed for the ANN. Once the inputs 

were identified, the model was built and trained using measured data from the building. 

Based on the sensitivity analysis, they only consider temperature as an input (both ambient 

and zone) and do not consider the effects of humidity and solar radiation. While currently 

many RC models exist and are common reduction method used, ANN models can provide 

better results as long as sufficient training data is available for the ANN. The authors also 

considered multi-zone buildings and the effects of thermal coupling, and show that 

prediction accuracy increased by up to 1°C when using neighboring zone temperature, with 

most improvement when the change in temperature is highest. 
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3.4 Analysis and Discussion 

In short, of the papers reviewed, 9 of them focused on the control of a single component or 

subsystem. These component studies were split evenly between heating and cooling 

applications. Some examples include: 

• Air conditioners [63], [67], [65] 

• Cooling plants [9] 

• Heating system or cooling system only [62], [58], [18], [71] 

Four studies analysed single zone systems, with two of the works derived from 

OptiControl. A key factor in zone level studies is that more than one piece of equipment is 

operating to maintain thermal comfort, and the MPC takes a coordinated approach. An 

example is automated window coverings combined with HVAC [68] [56], or natural 

ventilation in conjunction with mechanical ventilation [66]. The whole zone approach is a 

step up from single components as there are often multiple systems to control, and typically 

more information is required such as occupancy periods, solar gains, and other disturbances 

not pertinent to single component control. 

The final category of MPC research in buildings is the optimization of entire buildings, 

which are covered by the remaining 16 studies. Multizonal optimization for systems with 

both heating and cooling represents the most advanced systems and challenging control 

scenario in buildings. Such scope is advantageous because inter-zonal transfers of energy 

may be predicted. While they may not impact overall building energy use, they can be used 

to impact estimate the thermal losses and impact on comfort due to varying boundary 

conditions. The additional challenges that arise are the increased size of the solution space 

(more equipment and/or zones to control), along with the interactions between zones 

(shared thermal boundaries). These challenges require more advanced models to capture 

the thermal coupling and more advanced methods to deal with the expanded search space. 

While the number of studies is an insufficient number to conduct a thorough statistical 

investigation and draw confident conclusions, it does permit a trends analysis. These 
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resultant trends inform as to the direction that MPC research is headed, and what 

deficiencies may exist that need to be addressed.  

While a detailed description of the reviewed research has been presented in tables, it is 

important to analyse the methodologies for trends and reasoning as to why certain decisions 

or selections were made by researchers. From Table 3.1, the first noticeable trend of the 

research reviewed is the use of simplified models to represent the thermal dynamics of the 

building, whether it be RC models, linearized state space models, or black/gray box 

models. The main factor driving this decision is the computational time required for 

advanced simulation models such as E+ being prohibitively long, where the simulation of 

the range of control setpoints over the forecast horizon could potentially exceed the desired 

timestep resolution (10 or 15 minutes). While E+ can do a yearlong simulation for a single 

control strategy in approximately 15 minutes for a single control strategy, a MPC approach 

attempts many possible control strategies per timestep and would require E+ to reinitialize 

repeated, causing a large amount of runtime. A second factor for the use of reduced order 

models is the lesser amount of information needed to run the model. Advanced platforms 

such as E+ require great details about the building and how the HVAC system works, 

where an RC model requires only thermal resistivity, capacitances, and heat fluxes. The 

method of model reduction is dependent on measured data available to the modeller from 

the building. The more measured data that is available, the more likely that a gray or black 

box model was employed to generate a model to match the physics of the space. It is critical 

an accurate predictions model is used to ensure proper control decisions are made [86] [87] 

[88] [89] [90].  

Table 3.1 also give the simulation software tool, and this has been shown proportionally 

by type in Figure 3.2. Matlab is the principal software for executing models (36%), and E+ 

is the most commonly used advanced simulation engine. Matlab is a common choice as it 

has in-built toolboxes for tasks such as system identification and optimization. E+ is a 

freely-available high-resolution advanced building simulation engine. It is considered the 

industry standard and has been extensively validated. It should be noted that Figure 3.2 is 

an aggregate of the entire software count, not on a per study basis. 
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Figure 3.2 Simulation software distribution 

In terms of optimization, Table 3.1 shows most of the reviewed papers used linear or 

quadratic optimization techniques, due to their simplicity and ability to guarantee to find 

the global minimum. Some studies used other methods such as particle swarms [74] [72] 

or other nonlinear methods [19]. All of the reviewed papers show only a single controller 

on the system, but some of the research was done by groups using the same test building 

and show different results [58] [18]. This highlights the fact that the MPC optimization 

method will influence results. Figure 3.3 illustrates the proportions of optimization 

technique use. Linear and quadratic optimization constitute over two-thirds of the 

optimizers reviewed. Non-linear and particle swarm solving techniques are advantageous 

in that they allow for unique cost function structures, as they do not require derivatives 

and/or continuity. The tradeoff to using these techniques is that they can be slow, 

computationally expensive, and may not find the optimal solution if the problem is too 

complex ( [41], [42]). Because of this, it appears to date that they are of less interest. 
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Figure 3.3 Distribution of reviewed MPC optimization techniques 

Table 3.2 notes the variety of forecast horizons that are used, and these range widely from 

three hours or less to seven days. Most authors offer only limited justification for their 

selection, although it is assumed that the selected value is based on the building system 

time constant, fundamental weather periods (forecast horizon and diurnal weather trends), 

or to ensure optimization can be completed in the objective function timestep. Figure 3.4 

illustrates selections of horizon sorted by MPC scope; this differentiation in scope was 

given because time constants of components, zones, and buildings differ. It shows that a 

24 hour horizon is most widely used among the studies reviewed, which appears in building 

frequency responses due to it matching the diurnal temperature cycle. Also frequently used 

is a 12 hour forecast horizon, presumably to key on the alternating occupancy of a building 

from occupied (daytime) to unoccupied (night time). Longer forecast horizons may have 

been chosen to match other disturbance loads such workday/weekend (168 hours equals 

seven days), or based on using the maximum amount of information possible from 

forecasts (weather forecasts are typically one week ahead [91] [92]. Table 3.2 also gives 

simulation timestep, and the proportions of these are shown in Figure 3.5, again separated 

by MPC scope. Sixty minutes appears to be extensively used and is likely because climate 

data and forecasting is typically given on an one hour basis. A 60 minute period is 
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considerably longer than the time constant of conventional HVAC equipment, and is also 

longer than the minimum cycling time. As a consequence a control strategy using such a 

timestep for component level simulations is disadvantaged. This may be the reason that 

many component level MPCs use shorter timestep periods, while zones and buildings do 

use a 60 minute timestep. Shorter timesteps range from five to 25 minutes. These shorter 

values can be attributed to either the computational time to solve the MPC problem or to 

the minimum cycling time of the equipment being controlled. The ideal timestep is 

expected to be a function of the speed of the MPC execution, and the nature of the 

equipment being controlled. 

 

Figure 3.4 Distribution of MPC forecast horizon 
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Figure 3.5 Distribution of MPC simulation timestep 

Forecast accuracy for items such as climate and occupancy was examined as it may help 

drive the choice of timestep and horizon. Only the works of [68] and [66] explicitly 

consider the effects of climate forecast error, where they conclude the results can vary by 

upwards of 50% for energy consumption, but still use less energy than traditional rule-

based-control. More work in this area is needed as most researchers use forecasts from sites 

such as NOAA ( http://www.noaa.gov/) without considerations for its error, thus assuming 

a perfect forecast. 

Table 3.3 outlines strengths and potential weaknesses of each study reviewed. Energy 

savings range from a minimum of 5% to a maximum of 75%. The minimum savings case 

in [69] is for a building with little thermal mass and idealized air loads which means the 

HVAC system is sufficiently sized to match any load required. Due to the quick response 

of such a system and assumed 100% efficiency, little room for improvement exists. In 

contrast, 65% energy savings were achieved using a dual air duct system [19]. These 

systems are inherently inefficient, as one stream of air is heated while a second stream is 

cooled, and then subsequently mixed at each zone to provide the desired temperature. The 

savings were gained by lowering the hot air stream temperature and increasing the low air 

stream temperature to match the maximum and minimum desired zone temperatures. This 

contrasts to the static air temperatures previously employed that would significantly 
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overheat and overcool the air streams. A second study on a cooling system using a cooling 

tower and water storage tank [9] show significant cost savings (75%) by choosing to charge 

the tank during colder periods, such as overnight when the system efficiency is higher due 

to colder ambient temperatures.  

Modelling and simulation attempt to estimate and represent the performance of a building 

that might be reasonable expected to occur in reality. Confidence in building performance 

simulation continues to increase as additional experience is gained, however, modelling of 

new technologies still requires experimental verification. Table 3.3 notes in boldface if the 

results were experimentally verified. There is no distinction in energy savings between 

experiments or simulation verified models, so a broad range of performance results have 

indeed been verified. Ideally all the studies should have experimental verification, and a 

greater emphasis should be placed on the results containing experimental verification. 

While most researchers used an objective function aimed at minimizing energy use or cost, 

a constraint of occupant thermal comfort conditions was imposed. The way that various 

researchers approached thermal comfort varied immensely, with some authors putting a 

hard constraint on the air temperature band, while others only looked at error from the 

reference or desired setpoint, and others using comfort parameters such as PPD and PMV 

to determine comfort. In the study by [17], complaints to the building operator of 

discomfort were monitored and used as a measure to see if any changes in thermal comfort 

occurred when switching from the original control to MPC. It is impractical to consider 

occupancy comfort a hard constraint for most buildings as it is not directly measurable 

(only air temperature is typically measured and is only part of comfort), so weighted 

penalty based PPD and PMV methods likely represent the most appropriate for informing 

MPC. 
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3.5 Building Parameters for Model Predictive Control 

Based on the results of the reviewed papers, characteristics which are desirable for 

buildings utilizing MPC are as follows: 

• Heavy walls and floors 

• Thermal storage (both passive and active) 

• Large predictable loads (solar, occupancy, weather)  

• Broad thermal comfort/indoor air quality range 

• Slow HVAC systems 

• Low infiltration 

• High insulation  

These characteristics benefit MPC because they provide a building which has both thermal 

inertia and an internal environment which can be precisely controlled over a range of 

operating conditions. Heavy walls and floors substantially increased the thermal mass of 

the building and are used to store energy provided by sunlight and the HVAC system [93]. 

This allows for load shifting and peak demand mitigation. MPC can thus alter control 

strategies and take advantage of forecast information, or take advantage of time-of-day 

energy prices. The same characteristics and theory for heavy walls and floors applies to 

both active and passive thermal storage systems.  

Large predictable loads are valuable to MPC as the controller can take advantage of these 

to aid in providing the heating necessary to a space, or to counteract their effects. An 

example of this would be if there is a forecast for high solar radiation on a building to not 

heat all the way to the initial setpoint, but close to it and let the solar radiation finalize the 

heating process. This reduces the heating energy, but also prevents the need for cooling 
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that would arise if the space was already fully heated to an upper temperature and then 

exposed to the radiation.  

The idea of a broader thermal comfort or indoor air quality [94] range also allows for more 

potentially viable solutions to the MPC problem, which can lead to higher savings than in 

cases of strict environmental conditions. An example of a broad setpoint building would 

be an office building, in which the goal is to prevent thermal discomfort. In contrast, a 

hospital has strict thermal comfort and indoor air quality requirements in order to treat 

patients and prevent the spread of disease.  

Fast acting HVAC systems (e.g. electric baseboards) can quickly respond to a wide range 

of operational or climatic disturbances applied to the system. While MPC may still improve 

performance by exploiting the building thermal characteristics, a fast acting HVAC system 

does not present a good MPC opportunity due to the limited potential for savings. In 

contrast, smaller and slower response HVAC systems (e.g. in-floor radiant heat) are 

beneficial with MPC because it can make use of forecast information to insure the space is 

adequately conditioned at respective points in time. MPC prevents overheating and 

overcooling that rudimentary control algorithms experience with slower response systems. 

Low infiltration and high insulation levels help minimize the impact of outdoor conditions 

on the interior space [95], allowing for an environment that is easier to control. While 

infiltration loads can be linked with wind speeds, they are difficult to model and measure. 

They can be considered as negative disturbances to be minimized. Similarly for insulation 

levels, higher values prevents energy losses/gains through the envelope which are also 

negative disturbances that should be minimized. 

After analysing the results of the previous studies, it was determined that while consensus 

has been reached on the general characteristics of a building suitable for MPC, the terms 

are often “soft” and non-numeric. An example would be a “tight, heavy” building. Thus, a 

method of categorizing building characteristics numerically is important. Table 3.6 outlines 

building thermal envelope characteristics and categorizes these based upon numeric ranges. 

These numeric values are representative of North American commercial and institutional 
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building types and climates. Values will differ for other locations and building types of the 

world. External walls are categorized as either heavy or light based on their thermal 

capacitance in accordance with ASHRAE Standard 90.1-2004. The infiltration rate is 

categorized by air changes per hour (ACH) at 75 Pa, based on studies by [96], [97], [98], 

and [99]. The other parameters for Table 3.6 are derived from the US Department of Energy 

commercial reference buildings [100]. The characteristics for each building was analysed, 

with binning for the different levels of parameters based on range of values encountered. 

In Table 3.6, labels of “tight” and “high” are most suitable for MPC. 

Table 3.6  Building envelope characteristics 

External wall type 
Infiltration 

(L/s/m2 @ 75 Pa) 

External wall 

insulation levels 

(m2K/W) 

Windows (m2K/W) 

Solar radiation 

(window to wall 

ratio) 

Value Category Min Max Label Min Max Label Min Max Label Min Max Label 

> 102 

kJ/m2·°C  
Heavy 0 1 Tight  0 1 Low  0 0.33 Low 0 0.1 Low 

< 102 

kJ/m2·°C 
Light 

1 2 Avg. 1 2 Avg. 0.33 0.38 Avg. 0.1 0.2 Avg. 

2   Loose  2   High  0.38   High 0.2   High 

 

The internal loads and systems in a building also affect MPC and these are presented in 

Table 3.7. The values were again derived by analysing the commercial reference buildings 

developed by the US Department of Energy. Large predictable fluctuations in the internal 

loads are desirable for MPC as the controller can allow them to meet the HVAC loads. As 

load fluctuations are beneficial, buildings that experience variable occupancy are a better 

candidate then buildings that are always occupied. An example of a building with variable 

occupancy would be an office, which experiences high loads during business hours, and 

no loads overnight. Meanwhile, a constantly occupied building such as hospital or 

manufacturing facility would experience fewer fluctuations. As the commercial reference 

database does not provide specific information about HVAC system response, further 

literature by [101] and [102] was examined to considered typical HVAC component 

response times, combined with experience to determine the categorization for HVAC 
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systems. In Table 3.7, labels of “high” and “slow” are most suitable for MPC. The HVAC 

time constant refers to the time it takes to achieve 67% of a step change. 

Table 3.7 Desirable traits for MPC 

Lights (W/m2) Electric equipment (W/m2) People (m2/per) HVAC Time Constant (min) 

Min Max  Label Min Max Label Min Max Label Min Max Label 

 10 Low  10 Low  10 High   15 Fast 

10 20 Avg. 11 20 Avg. 10 20 Avg.  15 90 Avg. 

20   High 20   High 20   Low  90   Slow 
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3.6 Conclusions from the Literature 

Based on the results of the literature review several conclusions and recommendations can 

be drawn. The first is that the field of applying MPC to buildings is growing, with a greater 

emphasis being placed on experimental validation. Experimental validation is challenging 

in that along with developing a control algorithm, practical issues such as connecting to a 

building automation system exist, and often require software/coding expertise. A second 

trend is that many solutions are building specific, in that they optimize the HVAC system 

within the building. While providing energy savings, further savings could be achieved by 

also optimizing the space temperature within a building, as this is what creates the demand 

for energy.  

As shown and noted in other research, there is appears to be no single best choice for 

parameters for within MPC. Examples include the wide variety of modeling techniques 

and tools used, the various forms of objective functions employed, the solution technique 

of the objective function, and the MPC parameters of timestep and forecast horizon. It is 

expected that the objective function is tailored to the desired goal of MPC (i.e. energy 

reduction, cost savings), where factors such as energy pricing structure or carbon intensity 

can dictate terms included in the objective function. For example, a cost based MPC would 

include an electricity demand charge (used in most jurisdictions), where as an energy based 

minimization would not include such a term.  

Other parameters that are influenced by the MPC goal are the MPC system timestep and 

forecast horizon. The ideal scenario is the usage of the smallest timestep possible with the 

longest forecast horizon, but computational demand and forecast constraints place limits 

on these parameters. An example of objective function imposing limits are the potential 

need to forecast for the entire billing period for when doing demand charge mitigation, as 

only the peak power draw in the billing period is considered. This also imposes a minimum 

timestep, as hourly timesteps would be insufficient to capture a 15 minute demand peak 

event. Other factors such as the building and HVAC system time constants should be 

considered when choosing the MPC timestep and horizon, as to ensure those effects are 
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adequately captured (i.e. if your building has a one hour time constant, the forecast horizon 

should exceed it). 

Several design choices can be made based on the results of the literature review. The first 

is that an efficient method to solve the MPC problem is needed, as it appears computational 

time is a constraint on the system. Ideally an efficient whole building problem is solved, 

with an additional layer to translate results to the zone level. A second guiding factor is the 

choice of a 15 minute timestep, as it is in line with research norms for whole building 

studies, and can be used to capture demand charge effects. The time horizon should be 

chosen based off the building dynamics, objective function goals, and forecast reliability. 
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Chapter 4 BUILDING ENERGY MODEL 

As part of the advanced MPC work explored in this dissertation, a building energy model 

was required. The model serves the purpose of a virtual building during simulation testing, 

in that it acts and behaves similar to how a real building would during experimental testing. 

Thus, it is used only to provide sensor feedback information to the prediction model to 

make MPC decisions. The detailed energy model is also used as a source of data to train a 

simplified prediction model for MPC, as limited measured timestep data was available. 

The Mona Campbell Building at Dalhousie University Studley Campus in Halifax, NS, 

Canada is used for all subsequent work and validation, as it provides a benchmark of 

performance with both energy and demand data. Access was granted to both the building 

automation system (BAS) and system operator to provide their insights and experiences 

with the building and allowance for control of the building for experiments. The BAS 

contains a great deal of information, and provided additional information than what is 

typically available, providing extra information on system behavior not available with 

other buildings. 

For the development of the detailed energy model, the building performance and simulation 

package EnergyPlus (E+) was chosen. It is a software package designed specifically for 

building energy and physics analysis, and has been used extensively in industry and 

academia. E+ models the heat transfers modes as described in section 2.2 using an 

analytical solution for heat balance, TARP for inside surface convection, DOE-2 for 

outside surface convection, and conduction transfer functions. Detailed models for HVAC 

equipment components such as heat pumps, boilers, fans, coils are employed. Control and 

loads are defined using schedules that define equipment run time, operational setpoints, 

occupancy, equipment, and lights.  

While E+ is an accurate and validated building performance simulation software, it has 

some limitations that inhibits its ability for use with MPC in its native form. For reference, 

MPC relies on the use of a model and forecasts of internal and external conditions (e.g. 

climate) to determine the optimal control strategy to minimize the cost of a desired 
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objective function. For real-time applications, this requires iteration and a model that can 

be executed in a short manner, and for a variety of initial conditions. The limitations for 

E+ are: 

• It does not allow for user specified initial conditions [103] - Instead, E+ takes the 

user specified setpoints and runs a number of warm-up days (minimum of five 

typically) to allow for the system to converge to the correct value. This limits the 

ability to use exact conditions from one timestep to the next when performing 

iterative solutions. 

• Runtime of E+ is relatively long in comparison to simpler models – Due to the 

complex and physics based nature of E+, it has drastically increased runtime from 

simpler models (seconds compared to milliseconds), which would limit the number 

of options that could be calculated within a timestep for a real-time application.  

• Limitations on control logic within E+ [103] – Due to the inability to set initial 

conditions or “rewind” simulation timesteps, control logic that only is executed for 

the current timestep can be supported by the in-built Energy Management System. 

While E+ cannot be used directly as the prediction model for MPC, it can be used to 

generate data to train a prediction model to supplement the existing measured data (if there 

is any at a fine enough resolution) and can be used to test the outcome of an MPC decision. 
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4.1 Introduction 

The Mona Campbell Building, shown in Figure 4.1, is a large education building owned 

and operated by Dalhousie University in Halifax, NS, Canada. It is LEED18 Gold certified 

and operates year round. The building consists of four occupied floors, as well as a 

basement and penthouse for mechanical systems. It has an approximate 2,000 m2 footprint, 

for a total of 10,000 m2 of floor area. The main floors provide space for classrooms, open 

space, atriums, offices, and a cafeteria. The Mona Campbell building is serviced by hot 

water from Howe Hall (located across the street) that is produced from steam (with 

condensate return) from Dalhousie Central Services via Facilities Management. Electricity 

service is provided by Nova Scotia Power (NSP) on a dedicated pad mount transformer. 

Building designs and specifications were obtained from site surveys, detailed engineering 

design documents, and discussion with Glen MacDougall (embedded Efficiency Nova 

Scotia representative for Dalhousie). A three-dimensional model of the building was 

created using drafting program Google SketchUp. This was then imported using 

OpenStudio to the building energy performance simulator package E+ (version 8.2).  

The thermal envelope characteristics are derived from the building drawings, the HVAC 

system has been simplified to a two AHU system: one with heat pump reheat, and one with 

hot water (HW) coil reheat. Major assumptions of the model include occupancy, hot water 

loop system losses, building infiltration, building insulation, and domestic hot water 

(DHW) usage. 

                                                           

18 www.cagbc.org/leed 
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Figure 4.1  Mona Campbell Building 
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4.2 Thermal Envelope and Zones 

The model was developed in several stages, starting with defining the building envelope. 

The physical building envelope was modelled using Google SketchUp, with dimensions 

provided from the Mona Campbell Building drawings as shown in Figure 4.2 and Figure 

4.3. 

 

Figure 4.2 Mona Campbell Building – 3D rendering with shading surfaces 

 

  

Figure 4.3 External building dimensions (left – footprint; right – floor levels) 
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Each of the six floors is subdivided into thermal zones, as shown in Figure 4.4. Actual 

spaces were amalgamating into thermal zones on the basis of location in the building, AHU 

service, and end use. Each zone is numbered as XY, where X is the floor number, and Y is 

the direction the primary exterior walls face, C is used for the core zone, and A for where 

the atrium resides (e.g. 2E would represent the exterior zone on the second floor where the 

primary wall faces east). The only zone on the 5th floor is a penthouse for HVAC equipment 

and it is labelled as Penthouse. It should be noted that most HVAC equipment resides in 

either the penthouse or basement, but that some components may be found on other floors 

(such as heat pumps). 

After defining the physical dimensions using SketchUp, the program OpenStudio was used 

to set the various constructions of the building. The provided design drawing suite was 

used to create constructions for the interior and exterior building elements, with the 

properties outlined in Table 4.1. 
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Figure 4.4 Floor subdivision into thermal zones (bottom: basement; middle: occupied space; 

top: penthouse) 
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Table 4.1 Exterior surfaces and layer properties 

Surface Layer Thickness 

(mm) 

Thm. Conductivity 

(Wm-1K-1) 

Emissivity 

(-) 

Foundation Wall Insulation 50.8 0.03  

 Concrete 203.3 1.73  

Foundation Floor Concrete 152.4 1.73  

Exterior Walls Simulated Stone 88.9 0.04  

 Vapour barrier and air N/A 6.66 (Wm-2K-1)  

 Spray Foam 88.9 0.032  

 Insulated Steel Frame 152.4 0.1  

 Gypsum board 15.9 0.16  

Exterior Windows Outer glass 6 0.9 0.84 

 Argon gap 13 0.016 
 

 Low-E inner glass 6 0.9 0.2 

Exterior Door Outer glass 6 0.9 0.84 

 Argon gap 13 0.016  

 Low-E inner glass 6 0.9 0.2 

Roof Membrane 9.5 0.16  

 Insulation 100 0.033  

 Concrete 279.4 1.73  

Interior Walls Gypsum board 15.9 0.16  

 Insulated Steel Frame 152.4 0.1  

 Gypsum board 15.9 0.16  

Interior 

Ceiling/Floor 

Concrete 279.4 0.53  

 Air N/A 5.55 (Wm-2K-1)  

 Acoustic tile 19 0.06  
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4.3 HVAC System 

The HVAC system for the Mona Campbell Building consists of four main components:  

• Common heat pump (HP) water loop which links the heat pumps servicing the 

AHU and zone level heat pumps to the hot water loop and cooling tower. 

• Hot water loop which provides heat to the common HP loop, DHW, VAV reheat 

coils, and radiant heating panels. The hot water loop is heated from a steam 

converter located in Howe Hall. 

• Main air loop which provides supply and return air to the zones. The system 

consists of three AHUs with AHU 1 and 2 servicing classrooms and study areas 

while AHU 3 services offices. The system includes fresh air and a return air mixing 

box. There are water to air heat pumps (WAHP) integral to the AHUs to condition 

incoming air. 

• Zone level WAHP which transfer heat between the main water loop and the zone 

air. 

Figure 4.5 shows how the systems are interconnected. The hot water loop is used as the 

heating source for the common HP loop, DHW, VAV reheat terminals and the radiant 

heating panels. The common HP loop feeds the zone level heat pumps and the AHU heat 

pumps which are connected to the air stream. The main air loop heats/cools the incoming 

fresh air to the building before it is delivered to the various zones. There are three AHUs 

in the system, with AHUs 1 and 2 servicing the classrooms and common areas, while AHU 

3 services the offices. Only the offices are equipped with heat pumps, while all other areas 

use the VAV reheat and radiant heating panels for temperature regulation. Cooling is 

provided by the use of 16 °C AHU air delivery. The zone level heat pumps, VAV reheat 

coils and radiant heating panels provide the final conditioning to the zones, and will work 

to make up any deficits in heating/cooling from the main air loop.



   

 

 

 

7
5
 

 

Figure 4.5 Combined HVAC system diagram as installed 
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The hot water loop is used for 3 purposes: space heating via reheat coils in VAV boxes and 

radiant heating panels, heating of DHW, and as a heat source for the common HP loop. 

The radiant heating panels are not modelled, as their effects can be incorporated into the 

VAV reheat coils due to the small load of the panels. Pipe heat losses to the building and 

the ground in the transport from Howe Hall heat exchangers (used solely for the Mona 

Campbell building) are modelled using a nominal six inch pipe diameter with one inch of 

insulation of a length of 150 m. A diagram of the system as modelled is in Figure 4.6, with 

system parameters outlined in Table 4.2. 

Table 4.2 Hot water loop parameters 

Sensor Location Setpoint Temperature Peak Flow Rate (l/s) 

HOT WATER LOOP SUPPLY 85 °C 7.57 
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Figure 4.6 Hot water (HW) loop as modelled 

The common HP loop is used to connect the hot water loop and cooling tower to the 

WAHPs in both the zones and AHUs. It is important to keep a stable loop temperature to 

provide ideal operating conditions for the heat pumps and minimize electricity 

consumption. In order to maintain a stable temperature, direct injection from the hot water 

loop is used to provide heat to the loop, while a cooling tower is used to dissipate heat from 

the loop. The layout of the loop and what items run in parallel are in Figure 4.7. The hot 

water injection is modelled as a heat exchanger (working fluid of water on both sides) with 

a large surface area to mimic the effects of direct hot water injection. 
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Figure 4.7 Common heat pump (HP) Loop 

A temperature sensor is located at the common HP loop supply to monitor the temperature 

of the loop and determine if heating or cooling is required. Table 4.3 outlines the heating 

and cooling setpoints for the system. Table 4.4 outlines the actuators available to the loop 

and their effects. The loop is powered by a main circulating pumps that flows water at a 

variable speed up to 66.2 L/s. The cooling tower has a peak flow rate of 66.2 L/s, while the 

hot water injector has a maximum water flow rate of 1.58 L/s. These values are outlined in 

Table 4.5.  

Table 4.3 Common HP loop setpoints 

Sensor Heating setpoint Cooling setpoint 

Plant Supply Outlet 16 °C 26 °C 

 



79 

 

 

 

Table 4.4 Common HP loop actuators 

Actuator Effect 

Hot Water Flow Rate Adds heat to loop 

Cooling Tower Flow Rate Removes heat from the loop 

 

Table 4.5 Common HP loop pumps 

Location Flowrate (L/s) 

Main pumps 66.2 

Hot water injection 1.58 

Cooling tower 66.2 

 

For simplicity, the three AHUs are currently modelled as a 2 AHU loops, with AHU 1/2 

combined for classrooms and common areas, and AHU 3 for the office side of the building. 

Figure 4.8 is a sample system diagram, where AHU 3 does not have a mixing box (100% 

fresh air) and AHU 1/2 does not have heat pumps for reheat, but instead HW reheat coils 

in the VAV boxes. Table 4.6 outlines which zones are serviced by each AHU, where the 

penthouse and basement are conditioned solely by zone level heat pumps. 

Table 4.6 AHU serviced zones 

AHU Zones Serviced 

1/2 1A, 1S, 1SE, 1SW, 2A, 2S, 2SE, 2SW, 3A, 3S, 3SE, 3SW, 4A, 4S  

3 1C, 1E, 1N, 1W, 2C, 2E, 2N, 2W, 3C, 3E, 3N, 3W, 4C, 4E, 4N, 4W 
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Figure 4.8 HVAC air loop 

The main air loop consists of a set of variable frequency drive fans (VFD) that are actuated 

based on 3 variables: occupancy, temperature regulation, and indoor air quality. A 

minimum amount of air flow is specified when a space is deemed occupied (based on room 

located occupancy sensors), and the system then ramps up based on high levels of CO2 or 

a need to provide additional cooling as the AHUs are the air conditioning source for all 

areas except offices. The AHUs have different setpoints based on service area outlined in 

Table 4.7, with WAHPs in each AHU to meet the setpoint. AHUs 1 and 2 are equipped 

with a heat pipe to recover energy from exhaust air, while AHU 3 has a heat wheel to 

perform the same function. The energy recovery systems have an economizer mode to 

prevent overheating/overcooling. A solar wall is also used to preheat incoming air to the 

AHUs. The heat wheels are tuned by increasing sensible heat gain in attempt to account 

for the solar wall effects, as it is not modelled. 
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Table 4.7 HVAC air loop setpoints 

Sensor AHU 1 & 2 AHU 3 

MAIN DUCT AIR 16 °C 16/18 °C based on outdoor air 

temperature 

 

All of the components within these systems are modelled in E+. Most equipment is 

specified based on operating conditions (such as max heat transfer, flow rates, and COP) 

that are taken from manufacturer specifications for the equipment within the building. The 

only exception is the steam convertor, where a district heating element is used, and then 

converted to steam amounts based on the steam conditions on site. For reference, steam is 

provided by Dalhousie at 862 kPa gauge and it is assumed that the devices convert the 

steam to pure condensate. 
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4.4 Control Review 

4.4.1 Strategy 

The control strategy at the Mona Campbell Building has four operating scenarios as 

outlined in Table 4.8. There are two strategies based on building occupancy (based on zone 

sensor feedback) for the classrooms and common areas, and four strategies for the office 

section. Each strategy has a unique palate of setpoints as outlined, while the type of control 

is listed under “Note”. All of the setpoints are coded into E+ and used by the algorithms 

within the software. The classrooms and common areas work on schedules 3 and 4. The 

occupied period is defined in Table 4.9. The AHUs are always available and their output 

is determined by if the space is occupied or not. 

Table 4.8 Primary control strategies 

Operating scenarios 1 2 3 4 Note 

Season Heating Heating Cooling Cooling  

Occupancy Occupied Unoccupied Occupied Unoccupied  

AHU On On On On VFD 

present 

Supply air setpoint 18 °C 18 °C 16 °C 16 °C Modulated 

Room thermostat setpoints 22±1 °C 16-26 °C 22±1 °C 16-26 °C HP, Flow 

Rate, VAV 

Reheat 

Water loop return setpoint 16-26 °C 16-26 °C 16-26 °C 16-26 °C Modulated 
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Table 4.9 Occupied Period 

Period Days Start Time End Time 

Occupied Monday-Friday 06:00 22:00 

 

4.4.2 Software 

The Mona Campbell BAS is the Metasys software package produced by Johnson 

Controls19 and used for the majority of buildings at Dalhousie University. A Java based 

web application can be used to view the current building state, as well as information for 

the past 12 hours for most variables.  

                                                           

19 http://www.johnsoncontrols.com/ 
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4.5 Occupancy, Equipment, and Lighting 

The thermal comfort and space heating/cooling of a building energy simulation is affected 

by the presence and schedule of internal loads such as occupants (people), equipment, and 

lighting. “Equipment” includes technology, refrigeration, and vending, but also includes 

plug loads such as computers, and table lamps. Table 4.10 outlines the peak values of these 

loads for typical zone types of offices, classrooms, and cafeteria used in the simulation. 

These values were derived from the sub metered data and split evenly across all zones 

based on floor area. It should be noted that “occupant” loads are heat released by occupants 

which manifest itself as heat within the building (65% sensible, 35% latent). Loads of 

“equipment” and “lights” consume electricity and manifest as heat within the building 

(100% sensible convective loads). 

The Mona Campbell Building has been modelled to accommodate the various zone types. 

The specific zone classifications and corresponding zone numbers of the model are given 

in Table 4.11. 

Table 4.10 Peak occupant, equipment, and light loads as a function of space type 

Zone Type Occupants (W/m2) Equipment (W/m2) Lights (W/m2) 

Office 6 7 7.3 

Classroom 6 4.7 10 

Cafeteria 6 10 7.3 

Server Room 0 20 3 
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Table 4.11 Zone types 

Zone type Zone label 

Office 1C, 1N, 1S, 1E, 2A, 2C, 2E, 2N, 2S, 2W, 3A, 3C, 3E, 3N, 3S, 3W, 4A, 4C, 4E, 4N, 

4S, 4W, B, P 

Classroom 1SE, 1SW, 2SE, 2SW, 3SE, 3SW 

Cafeteria 1A 

Server 

Room 

1E 

Table 4.12 defines the typical schedules for the building. The values are based on sub 

metered data for lighting and equipment provided from the Mona Campbell Building. The 

server room has an additional 80 kW constant load, while the cafeteria as has an additional 

peak load of 9 kW that follow the occupancy schedule. 
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Table 4.12 Occupancy schedules (fraction of peak) 

 Workday 

 

Saturday 

 

Sunday/Holiday 

 

Hour Occupancy Equipment Lights Occupancy Equipment Lights Occupancy Equipment Lights 

0 0% 50% 20% 0% 50% 20% 0% 50% 20% 

1 0% 50% 20% 0% 50% 20% 0% 50% 20% 

2 0% 50% 20% 0% 50% 20% 0% 50% 20% 

3 0% 50% 20% 0% 50% 20% 0% 50% 20% 

4 0% 50% 20% 0% 50% 20% 0% 50% 20% 

5 0% 50% 30% 0% 50% 30% 0% 50% 20% 

6 10% 50% 30% 10% 50% 30% 0% 50% 20% 

7 20% 50% 52% 10% 50% 52% 0% 50% 20% 

8 85% 90% 75% 40% 50% 75% 0% 50% 20% 

9 85% 90% 75% 40% 50% 75% 0% 50% 20% 

10 85% 90% 75% 40% 50% 75% 0% 50% 20% 

11 85% 90% 75% 40% 50% 75% 0% 50% 20% 

12 50% 80% 75% 40% 50% 75% 0% 50% 20% 

13 85% 90% 75% 40% 50% 75% 0% 50% 20% 

14 85% 90% 75% 40% 50% 75% 0% 50% 20% 

15 85% 90% 75% 40% 50% 75% 0% 50% 20% 

16 85% 90% 75% 40% 50% 75% 0% 50% 20% 

17 70% 80% 55% 40% 50% 55% 0% 50% 20% 

18 40% 60% 50% 40% 50% 50% 0% 50% 20% 

19 40% 60% 50% 40% 50% 50% 0% 50% 20% 

20 10% 50% 47% 10% 50% 47% 0% 50% 20% 

21 10% 50% 47% 10% 50% 47% 0% 50% 20% 

22 0% 50% 40% 0% 50% 40% 0% 50% 20% 

23 0% 50% 30% 0% 50% 30% 0% 50% 20% 
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4.6 Calibration and Verification 

It is necessary to calibrate and verify that the detailed model is predicting correctly in 

comparison to actual building thermal performance (internal temperatures) and energy 

consumption (electricity and steam). To do this several metrics are compared for the 2013 

calendar year.  

ASHRAE Guideline 14-2014 [104] addresses accuracy requirements of building 

performance simulation for energy savings. It requires that the simulated results (𝑦̂𝑡) agree 

with measured energy data (or billing data) (𝑦𝑡) to the following extent: 

• Normalized mean bias error (NMBE) of ±5% on an annual basis for monthly 

measurements (Equation  4.1). 

 𝑁𝑀𝐵𝐸 =
∑ (𝑦̂𝑡−𝑦𝑡)𝑛

𝑡=1

∑ 𝑦𝑡
𝑛
𝑡=1

   4.1 

• Coefficient of variation of the root mean square error “CV(RMSE)” of 15% for 

monthly measured data (Equations  4.2 and , with 𝑦̅ mean consumption).  

 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑡−𝑦𝑡)2𝑛

𝑡=1

𝑛
  4.2 

 𝐶𝑉(𝑅𝑀𝑆𝐸) =
𝑅𝑀𝑆𝐸

𝑦̅
  4.3 

The parameters to be adjusted for calibration are the internal loads (occupants, equipment, 

and lighting), infiltration, insulation, DHW, pipe losses, and equipment efficiencies. Plug 

loads and lighting where set based on provided sub metered data, while occupancy was set 

from ASHRAE standard 189.1-2009 [105] values with the peak values listed in section 4.5 

while the schedules for each (based on fraction of peak) were sourced from the sub metered 

data, with occupancy assumed to track similar to lighting. 

The following subsections examine and compare the model estimates with the site specific 

measured data.  
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4.6.1 Weather 

To create a calibrated model, climatic data for the actual meteorological year (AMY) at the 

site is required. An AMY file was purchased from Weather Analytics20 corresponding to a 

lat/long of 44.488, -63.750, the nearest available Weather Analytics weather location 

according to their online tool was used. The lat/long correspond to a point southwest from 

the site by 21 km. To confirm the climate file, the environmental conditions for 2013 at 

Shearwater, NS (lat/long 44.617, -63.500) were downloaded from Environment and 

Climate Change Canada (ECCC). The data from ECCC is limited to temperature, dew 

point, relative humidity, wind speed, wind direction and station pressure. The key 

limitation is that no solar information is provided. For comparative purposes, Figure 4.9 

shows the monthly average temperature for both sources, and while they have similar 

trends, the AMY file tends to be warmer in the winter and cooler in the summer than the 

ECCC data. Figure 4.10 plots the monthly total horizontal solar radiation at the site, 

separated into direct and diffuse components, from the Weather Analytics AMY file. 

                                                           

20 http://www.weatheranalytics.com/wa/company/how-we-do-it/ 
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Figure 4.9 Monthly ambient temperature comparison 

 

Figure 4.10 Monthly solar radiation 
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4.6.2 Steam Consumption 

Monthly total steam consumption values of the steam converters that service the Mona 

Campbell Building were provided. These represent total steam use for the building and 

include both space heating and domestic hot water. It should be noted that changes were 

made between March-April and October-November to account for an early reading in 

March, and a late reading in October. For this modeling exercise, an assumed hot water 

profile was needed as to account for the steam usage. It was assumed that the hot water 

usage would follow the same schedule as the occupancy, with an assumed load of 0.0001 

m3/s during occupied periods. This equals to approximately 1,000 m3 annually, which is 

20% of the total potable water usage as outlined in the measurement and verification report 

by CBCL [106]. This is a reasonable assumption for the building as it is a large office space 

building with minimal hot water needs (washrooms and small cafeteria vendor). Losses 

from the hot water loop to environment have also been modelled, with an averaged pipe 

diameter of six inches, with one inch of insulation on the pipes. The large steam usage in 

summer is due to the loop being held at a higher temperature than necessary (85 °C vs 60 

°C), leading to system losses that are the cause of larger than expected summer steam 

usage. 

A direct comparison of simulation results to measured steam use for the Mona Campbell 

Building is show in Figure 4.11. It should be noted that monthly values are normalized by 

the number of days in a period, so that they can be directly compared, as well as compared 

to an “Ann” annual average value. The NMBE of 0% is realized for the year, with a winter 

(Nov-Apr) value of 6% and a summer (May-Oct) value of -9%. The CV(RMSE) of 11% 

for the year is realized, with a winter value of 9% and summer value of 13%, which meets 

ASHRAE Guideline 14 [104] for annual monthly measurements. A Pearson coefficient of 

0.97 confirms a positive correlation between the measured and simulated data. 
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Figure 4.11 Steam use comparison 
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4.6.3 Electricity Consumption 

For calibration of electricity consumption, internal sub metered electricity data from the 

building was provided by Schneider Electric21 ION meters. Figure 4.12 displays a 

comparison of total monthly electricity consumption. The data shows that while the initial 

winter months consume additional energy, the overall trending and annual consumption 

numbers match. The NMBE of -1% is achieved annually, with a winter NMBE of -1% and 

summer NMBE of -1%. The CV(RMSE) for annual data of 4% is realized, with winter 

having 2% and summer 5%, which meets ASHRAE Guideline 14 [104]. The data has a 

Pearson coefficient of 0.93 for the monthly measured totals, which confirms a strong 

correlation. 

 

Figure 4.12 Electricity use comparison 

                                                           

21 http://www.schneider-electric.ca/en/ 



93 

 

 

 

4.6.4 Electricity Demand 

An electricity demand analysis was conducted on the building to determine if the 

magnitudes of load are of the correct size, and the peaking occurs during the correct month. 

As peak electric demand occurs for a single 15 minute period, it is challenging to model 

exactly as special events outside of normal operation (such as an open house) can create 

the measured peak demand. The data is plotted in Figure 4.13, which shows a strong 

correlation in magnitude between measured and simulated data. The NMBE of -11% is 

seen, with a CV(RMSE) of 14% and a Pearson coefficient of 0.90, indicating a strong 

correlation between the data sets. It is not necessary for these values to meet ASHRAE 

Guideline 14 as they are peak values, not energy usage measurements. 

 

Figure 4.13 Electrical demand comparison 



94 

 

 

 

4.6.5 Temperature Performance 

It is important to analyze the building temperature performance to ensure that the building 

is performing the desired function of maintaining occupancy comfort, due to the initial lack 

of measured data for comparison. Figure 4.14 displays the frequency of each average 

building temperature encountered during the simulation, along with highlighting the values 

that occur during the primary occupancy period from 08:00 to 20:00. As shown, the 

building does not go below the lowest heating setpoint of 16 °C, above the highest cooling 

setpoint of 26 °C, and the occupied temperatures lie between 21 and 23 °C, the occupied 

setpoint temperatures. 

 

Figure 4.14 Temperature histogram 
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4.7 Energy Model Results 

4.7.1 Daily Profile Plots 

To better highlight how the system behaves, simulation time of day plots for energy 

consumption for steam thermal energy and electricity loads are given in Figure 4.15 for 

February 6th, and Figure 4.17 for August 6th. The plots highlight the increased HVAC 

electrical demand load during the summer cooling season, and the morning HVAC steam 

peak in the winter that does not exist in the summer. The winter season shows a morning 

HVAC spike in electricity and steam, with steam use occurring later in the day as some of 

the zones require heating as they are below the average temperature. This effect is shown 

in the top plot of Figure 4.16, where the red lines correspond to the setpoints and the other 

coloured lines to individual zone temperatures. The chosen day is one of the coldest of the 

year hence most temperatures at the heating setpoint. The same plots for the summer period 

can be found in Figure 4.18 for one of the warmest days of the year, hence some 

overheating in some zones during peak temperature and solar radiation points. Also of note 

is that the server room (Zone 1E) is not plotted and not part of the average temperature as 

it has an independent control strategy due to it not being an occupied space. 
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Figure 4.15 Energy consumption sources for February, hourly profile 
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Figure 4.16  Winter zonal temperatures 
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Figure 4.17 Energy consumption sources for August, hourly profile 
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Figure 4.18  Summer zonal temperatures  
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4.7.2 Electricity by End Use 

While the total monthly energy values meet ASHRAE Guideline 14 for energy calibration, 

it is important to verify that the energy is going to the correct sources. Figure 4.19 

highlights the end energy use of electricity as simulated and as measured by submetered 

circuit groups. The total figures are in relative agreement, where the discrepancies can be 

attributed to building activities that occur outside of normal conditions that are not feasible 

to be modelled. A monthly breakdown by end use can be found in Figure 4.20. 

 

 

Figure 4.19 Annual electricity by end use  
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Figure 4.20 Monthly electricity by end use - simulated 

The building currently only measures total steam provided, so detailed comparison to 

measured components is not possible. Engineering assumptions were made for hot water 

heating and system losses to account for the modelled control zones being at a higher level 

than the actual control implemented on the building. An example of this is that within one 

zone of E+, there are multiple HVAC control points that can be operating at different 

temperatures. 
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4.8 Conclusions of Building Energy Modelling 

This chapter demonstrates the work undertaken to build a detailed and calibrated E+ model 

of the Mona Campbell building based on the provided utility bills and operational schedule. 

The model is calibrated to ASHRAE Guideline 14 [104] with the best available data at the 

beginning phase of the dissertation. This level of information also reflects the typical 

amount available from a commercial client (utility bills and nominal operating schedule), 

thus provides a baseline on commercial feasibility of MPC technology with current 

building practice.  

The model is a necessary component for this research and it is used to generate data for the 

simplified prediction model for use in MPC (Chapter 6.1), and is also used as a virtual 

building for MPC simulation in Chapter 7 (treated as if it were a real building). Due to the 

importance of the tasks that rely on the detailed model, an accurate model was required 

and was developed from typical data from commercial clients.  



103 

 

 

 

Chapter 5 ZONE OPERATIVE TEMPERATURE 

New control strategies that look to exploit the thermal mass and dynamic storage behavior 

of a building run the risk of having significant radiant impacts. By using the thermal mass 

of the building, a larger influence of zone mean radiant temperature (ZRT) is experienced. 

Thus, a comfort based metric that includes ZRT, such as zone operative temperature 

(ZOT), is an important factor to consider for thermal comfort. Unfortunately, ZOT is often 

not a readily available measurement in a commercial building. Only zone air temperature 

(ZAT) is measured. ZOT is commonly calculated as the average between ZAT and ZRT 

assuming low air speeds (Equation 5.1) [48], thus a method to predict ZRT can lead to 

ZOT utilizing the ZAT feedback from the building. 

 𝑍𝑂𝑇 =
𝑍𝑅𝑇+𝑍𝐴𝑇

2
          5.1                                              

It was shown in Chapter 2.3 that changes in ZRT impact comfort on a similar level as 

changes in ZAT for Fanger’s comfort models [49], which is widely used in simulation 

based studies for comfort [17] [73]. Due to the relationship between ZRT and comfort, a 

detailed investigation was conducted to understand the factors that influence ZRT in 

various zones within a building, and how they can be used to estimate it so that it can be 

used to enhance occupant comfort. EnergyPlus building performance modeling/simulation 

software was used for this work as a detailed model was already created, and the software 

has been shown to capture the effects of ZRT [107]. It should be noted that E+ assumes 

fully-mixed air inside a thermal zone, which is reasonable for distributed furniture and air 

duct systems. 
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5.1 Zone Mean Radiant Temperature Analysis of Characteristic 

Zones 

It was first necessary to characterize the differences between ZRT and ZAT for typical 

zones in the Mona Campbell building for trends. For this study, three characteristic zones 

were chosen:  

• Interior zone (2C) 

• Exterior zone with large windows facing north (2N)  

• Exterior zone with small windows facing south (2SW) 

The zones are controlled with an unoccupied night setback of 16 and 26 °C for ZAT from 

23:00 to 05:45, which matches the baseline control of the Mona Campbell building 

(Chapter 4.4). 

5.1.1 Interior Zone 2C 

The first characteristic zone considered was an interior zone in the building. It was expected 

that the difference between the ZOT and ZAT would be minimal as the zone is not exposed 

to ambient conditions or solar radiation. A scatter plot of ZOT versus ZAT in Figure 5.1 

shows a linear trend along the line of equal values. This relationship verifies that ZOT can 

be approximated using ZAT for interior spaces. 
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Figure 5.1 Scatter plot of ZOT versus ZAT for an interior zone 

5.1.2 Exterior Zone with Large Windows 2N 

The second characteristic zone examined is an exterior zone with large north facing 

windows. It is expected that the ZRT be a function of the outdoor ambient air temperature 

(conduction through the glass) and solar radiation (transmitted through the transparent 

glass). For a winter day as shown in Figure 5.2, the ZRT and ZAT are closely matched 

overnight, with a disparity occurring during the day hours when the HVAC system is 

operating. During the day the ZRT is lower than the ZAT, which is expected due to the low 

temperature of the glass. The difference between the ZRT and ZAT reduces when the solar 

radiation is strongest, highlighting the impact of solar radiation. Also of note is that the 

building is a primary air source heating system, thus when in heating mode is expected that 

the ZAT be greater than the surrounding surfaces through which energy is being lost. 
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Figure 5.3 illustrates a summer day where the ZRT exceeds the ZAT throughout the day. 

The ZRT peaks at the same time as the solar radiation, and begins to slowly decay when 

the solar radiation dissipates. The positive difference when the solar radiation is zero 

highlights the impact of the outdoor ambient temperature, and that the zone is in cooling 

mode where the air provided to the space is cool, thus driving the ZAT lower than the 

surroundings. 

Figure 5.4 illustrates the results from a spring day, where the outdoor ambient air 

temperature appears to be at an equilibrium point for ZRT and the ZAT (i.e. minimal 

difference). The difference is driven primarily by the solar radiation, as there is little 

difference between ZRT and ZAT when there is no solar radiation. 

Figure 5.5 illustrates the distribution of the differences between ZRT and ZAT. The range 

extends from -6 to 8 °C, with the majority of the data lying between -3 and 3 °C. 

 

Figure 5.2 Exterior zone large windows winter day (January 8 2013) 
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Figure 5.3 Exterior zone large windows summer day (August 8 2013) 

 

Figure 5.4 Exterior zone large windows spring day (April 6 2013) 
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Figure 5.5 Distribution of variations between ZRT and ZAT for an exterior north-facing zone 

with large windows 

5.1.3 Exterior Zone Small Windows 2SW 

The final characteristic zone considered is that with small windows facing a southwest 

direction. It was expected that the zone would follow similar trends to zone 2N, but be 

more linked to solar radiation due to the increased outer wall thermal resistance, as well 

being south facing as opposed to north facing. 

As shown in Figure 5.6 to Figure 5.8, the zone does indeed behave in a similar manner to 

the exterior zone with large windows. The key differences are that in winter the ZRT 

exceeds the ZAT, and that the zone appears to be more influenced by solar radiation due 

to the steeper slope changes in ZRT when solar radiation exists. 

Figure 5.9 illustrates the distribution of differencess between ZRT and ZAT, with a range 

from -3 to 9 °C. It is clear that a positive shift in differential exists, with a majority lying 

below 5 °C. 
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Figure 5.6 Exterior zone small windows winter day (January 8 2013) 

 

Figure 5.7 Exterior zone small windows summer day (August 8 2013) 
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Figure 5.8 Exterior zone small windows spring day (April 6 2013) 

 

Figure 5.9 Distribution of variations between ZRT and ZAT for an exterior south-facing zone 

with small windows 
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5.1.4 Zone Radiant Temperature Difference from Zone Air Temperature 

Compared to Outdoor Ambient Air Temperature and Solar Radiation 

While the initial analysis of ZRT shows different trends for each zone, the exterior zones 

tend to show a positive trend between the difference between ZRT and ZAT with solar 

radiation and outdoor ambient air temperature. The relationship with outdoor ambient air 

temperature for exterior zones is demonstrated in Figure 5.10, where a higher difference 

occurs with higher outdoor ambient air temperatures, and negative differences occur with 

lower temperatures. The interior zone (2C) shows a relatively flat trend which is expected 

as it has no exterior facing walls. Zone 2N shows a higher linear trend with the outdoor air 

temperature than 2SW, which is expected due to the higher window percentage and north 

facing directionality. 

 

Figure 5.10 Difference of ZRT and ZAT vs outdoor ambient air temperature 
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A similar study was conducted to determine the relationship between the difference 

between ZRT and ZAT compared to solar radiation, which is shown in Figure 5.11. The 

interior zone (2C) shows a flat relationship between the difference in ZRT and ZAT and 

solar radiation. The outlying points above 1 °C occur during the first day of the year. In 

contrast to the outdoor ambient air temperature analysis, zone 2SW shows a stronger linear 

relationship than zone 2N, confirming that it is indeed influenced more heavily by solar 

radiation than zone 2N. A second key factor from the analysis is that the temperature 

difference for both zones appear to be positively correlated with both solar radiation and 

outdoor ambient air temperature for development of an approximation method. 

 

Figure 5.11 Difference between ZRT and ZAT vs solar radiation 
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5.1.5 Zone Radiant Temperature Difference from Zone Temperature 

Compared to Outdoor Ambient Air Temperature and Solar Radiation 

With 180 Degree Building Rotation 

In an effort to isolate construction effects (such as window to wall ratio) from orientation 

effects (north facing vs south facing) on ZRT, a second simulation of the Mona Campbell 

building was run with a 180-degree rotation, such that the north zone now faced south, and 

the southwest zone northeast.  

Figure 5.12 demonstrates the difference between ZRT and ZAT compared with outdoor 

ambient air temperature, while Figure 5.13 demonstrates the difference between ZRT and 

ZAT compared with solar radiation. When compared with Figure 5.10 and Figure 5.11, it 

is shown that orientation appears to have an influence on the temperature difference. As 

shown, zone 2N (now facing south) sees a larger swing in temperature difference than zone 

2SW, as well as now having the stronger linear relationship with solar radiation. The effects 

of construction can also be gathered from the plots, where zone 2N has higher extremes 

when facing south, than what was experienced by zone 2SW, caused by its enlarged 

window to wall area.  
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Figure 5.12 Difference between ZRT and ZAT vs outdoor temperature with the 180-degree 

rotation 
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Figure 5.13 Difference between ZRT and ZAT vs solar radiation with the 180-degree rotation 
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5.2 Mean Radiant Temperature Differential from Zone 

Temperature Approximation Method 

With an understanding that the difference between ZRT and ZAT has positive linear 

correlations with both solar radiation and outdoor ambient air temperature for external 

zones, an approximation method was developed using these values to predict the 

difference. Predicting the difference between ZRT and ZAT is fundamentally the same as 

predicting the ZRT, as the absolute error is the same in both scenarios, and by predicting 

the difference removes the ZAT as an input. This leads to the following approximation 

method (Equation 5.2): 

 𝑍𝑅𝑇 − 𝑍𝐴𝑇 = 𝑎(𝑆𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) + 𝑏(𝑂𝑢𝑡𝑑𝑜𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 𝑐   5.2 

Where the coefficients a, b, and c can be found from linear regression analysis (such as 

LINEST least squares in Microsoft Excel), and are dependent on zone orientation, wall 

construction, and HVAC delivery method (air point vs. radiant based systems). Solar 

radiation is provided as W/m2 and outdoor temperature as dry bulb °C. The offset constant 

c carries any offset that occurs. Data filtering based on measurable information was used 

to improve the overall accuracy of the approximation. This separates the solution into: 

• Filter 1: is the building in occupied or unoccupied mode, as indicated by the AHU 

system status (i.e. occupied daytime is when airflow is > 0). Thermal comfort is 

only of importance during occupancy, the unoccupied data is not analyzed. 

• Filter 2: is detecting during the occupied period if the zone is in heating mode or is 

in cooling mode. This is determined based on present ZAT and applied temperature 

setpoints.  

These filters lead to three distinct regression solutions: (i) occupied (heating or cooling); 

(ii) occupied heating; and (iii) occupied cooling.  
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The approximation method is applied to the exterior zones only, as the difference between 

ZRT and ZAT of the interior zones is insignificant and not directly impacted by outdoor 

conditions. 

5.2.1 Exterior Zone Large Windows 2N Occupied Only Mode Filter 

The first zone considered for analysis was zone 2N, in occupied mode with no concern for 

heating/cooling status. The resulting linear regression coefficients are found in Table 5.1, 

with an r2 of 0.8667 indicating that the linear relationship assumption was justified. The 

approximation error has been plotted as a function of time of day (Figure 5.14) and of the 

temperature difference (Figure 5.15) to determine trends within the data. As shown, the 

largest prediction error occurs at 06:00, which is expected as this is when transient effects 

are occurring, which are neglected in the approximation method. The second visible trend 

is a negative correlation between error and temperature difference. This is due to the high 

concentration of temperature differences between -2 and 2 °C for which the fit occurs better 

than at the extremes. A distribution of errors is provided in Figure 5.16, for which 87% of 

errors are within -1.5 to 1.5 °C. 

Table 5.1 Exterior zone large windows occupied only mode linear regression coefficients 

Coefficient a b c r2 

Value 0.001367 0.2338 -2.885 0.867 
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Figure 5.14 Exterior zone large windows occupied only mode approximation error vs time of 

day 

 

Figure 5.15 Exterior zone large windows occupied only mode approximation error vs 

temperature difference 



119 

 

 

 

 

Figure 5.16 Exterior zone large windows occupied only mode approximation error 

distribution 

5.2.2 Exterior Zone Large Windows 2N Occupied Cooling Mode Filter  

In an attempt to improve the approximation errors, a data filter was applied using the ZAT. 

A high temperature filter was applied so that all data when the ZAT was above 21.5 °C 

(assumed to be cooling mode) would be analyzed for curve fitting. This threshold was 

chosen as it would be when the building was above the heating setpoint of 21 °C and likely 

in cooling or about to enter cooling mode. As shown in Table 5.2, the regression 

coefficients are similar to when occupied only filter is applied, and the r2 value has 

decreased to 0.727. When considering the time of day analysis (Figure 5.17), 

approximation error is biased low in the morning, and reaches an equilibrium about zero 

around 09:00. Similar to the no filter case, the temperature differential comparison case 

(Figure 5.18) shows a distinct negative correlation. The distribution of approximation 

errors (Figure 5.19) also follows the same trend as the no filter case. 
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Table 5.2 Exterior zone large windows occupied cooling mode linear regression coefficients 

Coefficient a b c r2 

Value 0.001413 0.2408 -2.998 0.727 

 

 

Figure 5.17 Exterior zone large windows occupied cooling mode approximation error vs time 

of day 
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Figure 5.18 Exterior zone large windows occupied cooling mode approximation error vs 

temperature difference 

 

Figure 5.19 Exterior zone large windows occupied cooling mode approximation error 

distribution 
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5.2.3 Exterior Zone Large Windows 2N Occupied Heating Mode Filter  

Similar to the cooling mode filter, a heating mode filter for when ZAT was less than 22 °C 

was applied to look for improved approximation performance. The value of 22 °C was 

chosen as values below this are likely to be in heating mode, or just after heating mode 

when characteristics should be similar. Once again, a lower r2 correlation exists (Table 5.3) 

in comparison with the no data filter case. The time of day analysis (Figure 5.20) shows 

similar trends to the no filter case, as does the temperature difference analysis (Figure 5.21). 

The error distribution (Figure 5.22) is improved from the no filter case, with a higher 

percentage of errors between -1 and 1 °C. 

Table 5.3 Exterior zone large windows occupied heating mode linear regression coefficients 

Coefficient a b c r2 

Value 0.0007819 0.1744 -2.649 0.649 

 

 

Figure 5.20 Exterior zone large windows occupied heating mode approximation error vs time 

of day 
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Figure 5.21 Exterior zone large windows occupied heating mode approximation error vs 

temperature difference 

 

Figure 5.22 Exterior zone large windows occupied heating mode approximation error 

distribution 
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5.2.4 Exterior Zone Large Windows 2N Comparison of Filters 

In order to better contrast the filtering methods, the distribution of approximation error of 

all methods is plotted in Figure 5.23, which shows similar behavior between the three 

filters. A comparison of coefficients is given in Table 5.4, which shows that heating mode 

filter has the largest deviation in coefficients, and that the mode specific filtered methods 

have a worse correlation. Due to the similar level of behavior and added challenge of 

implementation, filtering based on HVAC mode is not required. 

 

Figure 5.23 Comparison of filter error distribution 
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Table 5.4 Comparison of zone 2N large exterior windows 

Mode a b c r2 

Occupied only 0.001367 0.2338 -2.885 0.867 

Occupied cooling 0.001413 0.2408 -2.998 0.727 

Occupied heating 0.0007819 0.1744 -2.649 0.649 

 

5.2.5 Exterior Zone Small Windows 2SW 

The same analysis as conducted for zone 2N was conducted for zone 2SW, and due to 

similar trends, only the tabular correlation results are presented in Table 5.5. As shown, the 

occupied only mode has similar correlation coefficients and high regression coefficients, 

similar to the occupied heating mode. This indicates that these two models accurately 

represent the difference between ZRT and ZAT. Cooling mode r2 of 0.342 is quite low and 

indicates that filtering for heating and cooling mode has little value, and can lead to worse 

results.  

Table 5.5 Exterior zone small windows linear regression coefficients 

Mode a b c r2 

Occupied only 0.003338 0.1200 -0.4234 0.741 

Occupied cooling 0.003105 -0.01934 3.672 0.342 

Occupied heating 0.002569 0.1229 -0.3893 0.715 

 

5.2.6 Summary of Zone and Mode Filters 

While approximations have been developed for individual zones, it is important to draw 

conclusions from the analysis and compare the differences between the north and south 

facing zones.  
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• The filtering between cooling and heating mode during the occupied period appears 

to provide negligible changes to prediction accuracy (often reducing performance) 

and are not worth the extra computational effort to implement. 

• Interior zones require no ZRT modifications because they have no solar impacts 

and no exterior facing walls. If the space was conditioned with a radiant heat source, 

additional factors would be required. 

• Shown in Table 5.6 are differences in correlation coefficients for the occupied mode 

of the building zones. As shown, the south facing zone is more correlated with solar 

radiation (a coefficient; slope is almost three times higher) while the north zone is 

more correlated with outdoor ambient air temperature (b coefficient; almost 

double). Also of note is that the offset coefficients are negative for both cases, with 

the north zone experiencing a larger initial offset.  

Table 5.6 Comparison of north and south facing correlation coefficients for occupied mode 

Mode a b c r2 

2SW 0.003338 0.1200 -0.4234 0.741 

2N 0.001367 0.2338 -2.885 0.867 

 

5.2.7 Surface Level Forecasting – Total Solar Radiation 

An expansion of the ZRT approximation method from using the global/site level forecasts 

to those of the GPL high resolution surface level forecasts (HRF) of total solar radiation 

was developed. The HRF forecasts consist of square meter surface level resolution of both 

direct and diffuse radiation, and can be aggregated to each surface. The goals were to 

improve prediction accuracy of ZRT-ZAT and improve the potential transferability from 

building to building (i.e. develop a universal model). The reference case in this evaluation 

using E+ is that which uses the site level global horizontal solar radiation. The surface 

level total solar radiation is then used in Equation 5.2 as opposed to the site level values 
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for comparison. The results are shown in Table 5.7, where the use of HRF forecasts 

improves the overall prediction accuracy (higher r2 and F statistic values), and shows more 

consistency in the solar radiation values (ranging from 0.0074 to 0.0139 compared to 

0.0006 to 0.0033).  

Table 5.7 HRF coefficients and r2 compared to global level forecasts 

 
Global Solar radiation Total HRF solar radiation 

Zone Solar Ambient Air Offset r2 F Solar Ambient Air Offset r2 F 

2SW 0.0033 0.1200 -0.4233 0.741 21231 0.0098 0.1108 -0.396 0.838 37864 

2N 0.0014 0.2338 -2.8851 0.867 50938 0.0118 0.2124 -2.997 0.912 80192 

 

The improvement in performance is shown visually in Figure 5.24 through Figure 5.27, 

with narrower bands of error compared to what was found using site level forecasts. There 

appears to be minor changes in the ambient air and offset values. As for directionality, 

north facing zones have a larger offset and larger ambient air affect, due to the lower 

contributions of solar gains on these surfaces. 
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Figure 5.24 2N HRF approximation error vs ZRT-ZAT 
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Figure 5.25 2N HRF ZRT-ZAT approximation error distribution 

 

Figure 5.26 2SW HRF approximation error of ZRT-ZAT vs ZRT-ZAT 
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Figure 5.27 2SW HRF ZRT-ZAT approximation error distribution 

5.2.8 Direct and Diffuse Solar Forecasting 

In an attempt to further improve upon the total HRF solar forecasting results, the direct and 

diffuse solar radiation components were separated. It was expected that a further 

improvement should be gained as direct radiation should cause a larger increase in ZRT 

compared to the diffuse components. The new approximation equation to represent the 

components of solar radiation is listed below (Equation 5.3). 

 𝑍𝑅𝑇 − 𝑍𝐴𝑇 = 𝑎(𝐷𝑖𝑓𝑓𝑢𝑠𝑒) + 𝑏(𝐷𝑖𝑟𝑒𝑐𝑡) + 𝑐(𝑂𝑢𝑡𝑑𝑜𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 𝑑    5.3 

Table 5.8 outlines the differences between Direct and Diffuse HRF and total HRF solar 

radiation, with the Direct and Diffuse form showing slight improvements in prediction 

accuracy. The performance is verified by Figure 5.28 through Figure 5.31, which visually 

show the minimal improvements from the total HRF solar radiation method discussed in 
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Chapter 5.2.7. Overall the components coefficients trend similarly to the general 

coefficient value, while the ambient air and offset coefficients remain unchanged.  

Table 5.8  Comparison of total HRF to component (direct, diffuse) HRF forecasts 

 
Total HRF solar radiation Direct and Diffuse HRF solar radiation 

Zone Solar Ambient 

Air 

Offset r2 F Diffuse Direct Ambient 

Air 

Offset r2 F 

2SW 0.0098 0.1108 -0.396 0.838 37864 0.0071 0.0114 0.116 -0.363 0.842 64576 

2N 0.0118 0.2124 -2.997 0.912 80192 0.0102 0.0154 0.214 -2.966 0.914 55011 

 

 

 

Figure 5.28 2N Direct and Diffuse ZRT-ZAT approximation error vs ZRT-ZAT 
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Figure 5.29 2N Direct and Diffuse ZRT-ZAT approximation error distribution 

 

Figure 5.30 2SW Direct and Diffuse ZRT-ZAT approximation error vs ZRT-ZAT 
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Figure 5.31 2SW Direct and Diffuse ZRT-ZAT approximation error distribution 

Due to the improved performance and ability to capture the resolution of GPL’s forecasting 

technology (both spatially and componentially), a full set of zone coefficients for the Mona 

Campbell building were generated and in Table 5.9. Several conclusions can be drawn 

from the numerical data outlined in the table:  

• The south zones can be approximated as interior zones. This is due to their low 

percentage of exposed surface area with no windows. An analysis for the ZRT-ZAT 

difference shows a peak of 2 °C which is also in line with interior zones. 

• The middle floor zones located on top of each other (2N and 3N, 2E and 3E, 2W 

and 3W) behave very similarly and likely can be satisfied with a single set of 

coefficients. This is due to having consistent boundary conditions and construction. 
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• Ground floor and roof zones have different characteristics due to their differing 

boundary layer conditions. The exposed boundary layers lower the offset values, 

while altering the other coefficients compared to middle floors with more constant 

boundary conditions. 
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Table 5.9  Mona Campbell coefficients 

Floor Direction Diffuse Direct Ambient Air Offset r2 

1 N 0.0149 0.0094 0.119 -3.569 0.932 

1 S -0.0013 -0.0003 0.014 -0.333 0.297 

1 SE -0.0013 -0.0002 0.043 -0.406 0.675 

1 SW -0.0041 0.0006 0.059 -0.287 0.568 

1 W 0.0047 0.0090 0.061 -2.499 0.821 

2 E 0.0065 0.0066 0.137 -1.226 0.889 

2 N 0.0102 0.0154 0.214 -2.966 0.914 

2 S -0.0015 -0.0003 0.019 -0.345 0.351 

2 SE -0.0010 -0.0004 0.053 -0.443 0.706 

2 SW 0.0071 0.0114 0.116 -0.363 0.842 

2 W 0.0027 0.0063 0.142 -1.386 0.865 

3 E 0.0096 0.0075 0.131 -0.961 0.906 

3 N 0.0112 0.0152 0.195 -2.394 0.917 

3 S -0.0012 -0.0004 0.026 -0.220 0.496 

3 SE -0.0010 -0.0010 0.095 -1.170 0.760 

3 SW 0.0012 0.0063 0.153 -0.184 0.732 

3 W 0.0048 0.0085 0.141 -0.776 0.893 

4 A 0.0109 0.0136 0.097 -0.435 0.931 

4 E 0.0109 0.0035 0.167 -0.649 0.803 

4 N 0.0062 0.0075 0.223 -2.885 0.870 

4 S -0.0017 -0.0008 0.047 -0.443 0.671 

4 W 0.0063 0.0066 0.175 -0.893 0.851 

Penthouse All 0.0014 0.0024 0.147 -0.999 0.807 

 

The coefficients of Table 5.9 are visually represented in Figure 5.32 and Figure 5.33. 

Initially these were sorted by floor level, but it was found to only weakly influence the 

coefficients. Instead they are organized by zone orientation in color series, which does 
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show correlation. It can be seen in Figure 5.32 that the majority of the zones have similar 

diffuse and direct coefficients; indicating minimal performance gains from this change, and 

that using surface level forecasts accounts for orientation. Figure 5.33 shows that north 

facing zones have a much stronger ambient air coefficient than south facing zones. 

 

Figure 5.32 Comparison of direct and diffuse coefficients on the basis of zone orientation 

 

Figure 5.33 Comparison of the ambient air and offset coefficients on the basis of zone 

orientation 
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5.3 Conclusions of Zone Operative Temperature Analysis 

The results of this chapter indicate that an approximation of ZRT utilizing ZAT, ambient 

air temperature, and surface level radiation is possible to be utilized for ZOT thermal 

comfort. The move to surface level forecasts helps reduce the impacts of orientation, 

however it does not account for construction characteristics (e.g. window to wall ratio, 

window type, insulation levels). Therefore, it is necessary to create unique coefficients for 

each zone to be controlled, as opposed to having a universal set of equations that govern 

prediction differences.  

The use of ZOT as opposed to ZAT for thermal comfort is necessary due to MPC’s ability 

to utilize the thermal mass and dynamics of a building to provide comfort, which are not 

adequately captured using strictly ZAT. The result of this change is improved thermal 

comfort, but at the potential expense of energy savings (e.g. if only ZAT is used, a later 

system initialization may occur that does not heat surrounding surfaces). However, due to 

the importance of occupant comfort the usage of ZOT is necessary for MPC. 

While not explored in this dissertation, ZRT effects tend to be time lagged dependent upon 

thermal mass of the surfaces and how much energy it takes to increase their temperature. 

The ZRT of opaque surfaces is affected in real time by solar penetration of transparent 

surfaces, and the time delay due to conduction and thermal capacitance characteristics. 

Further exploration of these effects would be beneficial to help predict their effect, but 

would require additional models than what has been explored. 
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Chapter 6 MODEL PREDICTIVE CONTROL 

METHODOLOGY 

This chapter details the methodology used to develop the MPC scheme used for both 

simulation and experimental testing. As outlined in section 2.1, MPC has several key 

components: a prediction model, objective function, optimization, forecasts of future 

conditions (such as weather), and a system to control via a control variable (and to provide 

state feedback) as shown in Figure 6.1. For the work in this dissertation, the control 

variables are zone level heating and cooling air temperature setpoints. These points can be 

used to control the ZAT portion of ZOT and minimize the impact of ZRT on comfort. 

These were chosen as they are the values that determine if space conditioning is needed, 

and how much conditioning is required. This scheme is a supervisory control 

implementation similar to [64], and can be applied to all buildings, regardless of HVAC 

system type which is in contrast to many whole building studies to date that optimize the 

HVAC components as opposed to the space temperature. 

 

Figure 6.1 MPC optimization loop 
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In addition to the traditional MPC components outlined above, several additional unique 

new research components were added/modified for the simulation and experimental 

implementations. The first of the modified components was to split the optimization into 

three different time periods: morning start (06:00 to 08:00 Monday to Friday), occupied 

(08:00 to 22:00 Monday to Friday), and unoccupied (all other periods). This was done as 

to allow for the use of optimization and objective functions specific to each period. While 

adjusting terms in the objective function based on time of day is not entirely new (such as 

only penalizing temperature during the day in [62]), the use of different solution spaces 

and models was not found in literature. The second modification was to first run the MPC 

for the whole building to find a globally optimal solution, and then provide zone level 

adjustments to ensure comfort for zones in which the global solution would cause 

discomfort. While the work in [17] discusses using whole building energy measurements 

and zone level temperatures for control, many details are omitted. The layered approach 

was done due to the computational burden and overall complexity of optimizing all zones 

of a building at once. The final addition was the incorporation of occupant feedback 

(experiment only), in which occupants could adjust the range of thermal comfort from the 

whole building comfort band that was based on ASHRAE Standard 55. Shown in Figure 

6.2 is the flow diagram used for the MPC (with no occupant feedback during simulation), 

where the whole building optimization incorporates the components of Figure 6.1.  
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Figure 6.2 Flow diagram of MPC implementation 
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6.1 Research Tool Use 

A method to implement MPC for both simulation and experimentally was needed. While 

E+ has the ExternalInterface feature, it was originally designed to simply access separately 

provided files, such as a comma-delimited data file. It was thus necessary to find a software 

package designed to communicate with it and link to a separate program to perform the 

predictive controls. The program chosen for this task was the Building Controls Virtual 

Test Bed (BCVTB)22 which is intended for conducting co-simulation. BCVTB has been 

developed at the Lawrence Berkeley National Laboratory, and the developers are also 

involved with the development and maintenance of E+. BCVTB is a Java based program 

that utilizes the Ptolemy II programming language for actor-oriented design. BCVTB has 

native support for many software packages including Matlab, Modelica, E+, and TRNSYS.  

For the development of the MPC prediction model and optimization, the statistical 

computing software R was chosen as it has many statistical models for developing a 

statistical building response model (BRM), and is also a free software package. While 

BCVTB does not natively support R, it does allow users to call custom programs and pass 

information to them as input arguments (similar to command line arguments), and reading 

the program outputs. By using this feature, R can be connected to BCVTB using Rscript to 

call the developed R MPC code. Figure 6.3 shows the flow of information between E+ and 

R in BCVTB, with the StringSubstring, ExpressionToToken, ElementsToArray, and 

ArrayToMatrix blocks used to convert the output from R to a readable form for E+, while 

similar functionality is performed in the R code for the E+ output. 

                                                           

22 https://simulationresearch.lbl.gov/bcvtb 
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Figure 6.3 BCVTB Interface between E+ and R 

To simulate the Mona Campbell Building in E+ for a full year simulation period takes 

approximately 30 minutes on a conventional computer core, based on the building 

complexity. When MPC is employed, several control strategies must be compared for each 

timestep. As a consequence, a weeklong simulation period of MPC requires about 36 hours 

to complete. In order to generate a full year of data for analysis it is necessary to divide the 

simulation into segments and run them in parallel and then assemble them into a single 

data file. This method is valid as all of the simulations begin and end during the overnight 

hours for which the setpoints are at the setback values, and all of the simulation methods 

experience the same conditions (i.e. simulate existing control strategies in the same 

piecewise manner). If differing setback values are used, or if MPC is not choosing the 

setback setpoints then error may be introduced by discontinuities at the transition period.  

For parallel computing, the Atlantic Computational Excellence Network (ACEnet) has 

been used, for which E+ and BCVTB had to be installed and tested. ACEnet is a Linux 

based high performance computing cluster that utilizes Red Hat Enterprise Linux 4, and 

contains over 7000 computing cores on 4 independent clusters. The simulations were 
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partitioned into 52 single week increments to allow for access to the most ACEnet 

resources and limit the runtime of approximately two days per simulation. This is due a 

single week of MPC simulation taking approximately 1.5 days of computing time. ACEnet 

has an increased runtime due to the age of its infrastructure. 

For the experimental phase of the work, a Java based adaptor was developed by GPL to 

connect with Metasys (the building BAS software). The Java program reads in the weather 

forecasts produced by GPL, as well as the building state from Metasys. The information is 

then processed by the final operational MPC model (section 6.10) to send setpoints to all 

zones through a mapping of control points within Metasys. 
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6.2 Whole Building Model Predictive Control Modeling Method 

While E+ cannot serve as the prediction model, it has a built-in feature called 

ExternalInterface which has been designed for linking E+ with other computing software 

for advanced control applications. When using the ExternalInterface feature, a co-

simulation is performed, with the information flow as outlined in Figure 6.4. As shown, 

information is passed for every timestep execution of E+, where the MPC logic is 

implemented in the co-simulator that performs predictive analysis. These results are then 

returned to E+ and it is allowed to step forward in time. This allows E+ to serve as the 

virtual building for simulation. 

 

Figure 6.4 Co-simulation process 

 

EnergyPlus initializes 

EnergyPlus executes 

simulation timestep 

EnergyPlus pauses and 

passes building condition 

information to co-

simulator 

Co-simulator performs model 

predictive analysis: 

1) Palette of setpoints created 

2) Iterative testing of setpoints 

3) Compare results to objective 

function for performance and 

select optimal control 

Co-simulator passes 

optimal control setpoints 

to EnergyPlus 
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6.3 Building Response Model 

As described in Chapter 2.1, a simplified building response model (BRM) that can be fed 

a palette of current and desired future conditions is required for the implementation of 

MPC. Recall that a simplified model is a statistical representation of a building with very 

fast model execution. Ideally, a building would have years of measurement information to 

use for the design of both a detailed E+ model as well as a BRM. However, most buildings 

have limited measured data available, and are often limited to monthly energy billing data. 

These allow an engineer/researcher to develop a detailed and calibrated energy model in 

software such as E+ to ASHRAE Guideline 14 [104]. Ideally the detailed model can be 

used as the BRM within MPC. However, MPC requires a BRM that can be executed in a 

short manner, iteratively, and for a variety of initial conditions. To create such a simplified 

model, a detailed energy model can be simulated for multiple years of climate data with 

various control strategies to generate training data for the BRM. This data can then 

augmented with any measured timestep data from the site for improved accuracy when 

such data exists, either with a similar weighting to the existing data, or at a higher level of 

importance (which could be achieved by duplicating the data so it is a higher percentage 

of the data pool). Site data alone cannot often be used as it lacks the variation of control 

that MPC looks to exploit, such as various morning start times or daytime setpoints. The 

statistical model can then be retrained periodically with measured data from the site for 

improved accuracy and to account for any operational changes (i.e. new equipment, change 

in occupancy schedule) 

To generate the data needed to create a BRM, a calibrated detailed energy model can be 

run with various control strategies for the same or varying climatic year. The various 

control strategies would alter the morning startup time between the current rule based start 

time and the nominal building occupancy, and consist of randomization on either the 

heating (nine sets) or cooling setpoint (nine sets) during unoccupied and morning start 

periods. For the Mona Campbell, there are nine start times between the initial rule based 

control (06:00) and expected occupancy (07:00), leading to a total of 18 training sets (nine 

with heating randomization, nine with cooling randomization). The randomization is 
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required for the model to understand the energy and thermal condition performance 

between heating and cooling as a simplified BRM has no physics incorporated. During the 

occupied period a deadband of 2 °C was applied, which varied up and down based on a 

probability weighted scheme (30% chance to increase by 0.5 °C, 30% chance to decrease 

by 0.5 °C, 40% constant) to create variations for the BRM, within a temperature band of 

20 °C and 24 °C. These variations are needed to allow the BRM to provide the optimization 

function accurate predictions for deviating from the existing rule-based-control of 21 and 

23 °C. An example of one of the training data profiles is given in Figure 6.5, where the 

cooling setpoint is randomized to allow the model to distinguish the differences between 

heating and cooling during the morning transition period. 

 

Figure 6.5 Sample training setpoint profile 

It is critical an accurate prediction model is used to ensure proper control decisions are 

made. To achieve an accurate prediction model, a statistical BRM was created using the 
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randomForest classification model package for the statistical computing software R 

developed by Breiman and Cutler [108] in collaboration with industry research partner 

GPL. The randomForest model works by creating a series of classification trees based on 

the training data. After a series of trees are created, the randomForest model works by 

sending input data through each tree in the forest to find the most likely output. An example 

of a classification tree for electricity prediction is given in Figure 6.6, with the order of the 

branches determined by the model sensitivity to each input. The algorithm also determines 

the number of branches at each level based on the variability in the training data. Part of 

the randomization is in how the data is split between the trees, as to ensure no overfitting 

occurs. 

 

Figure 6.6 Example classification tree for electricity prediction 

The randomForest model was chosen as it provided the best accuracy (lowest RMSE and 

percentile errors) when compared with linear regression and neural network models for the 

same input training data. The model takes as inputs the time of day, the type of day 

(workday vs non-workday) the current environment conditions (temperature, humidity, 

direct solar radiation, diffuse solar radiation), current average building ZAT, steam usage 

rate for the past timestep (15 minutes), electricity usage since the previous timestep, future 

environment conditions (one timestep ahead), and future zone setpoints (one timestep 

ahead). These values are chosen based on the ability to measure these values in the BAS. 
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From this set of information, the model produces estimates for steam usage rate for the 

next timestep, electricity usage during the next timestep, average building ZAT (as it is the 

feedback from the building) and average building ZOT (as it is the comfort constraint, see 

section 6.4) at the next timestep, with the specific details outlined in Table 6.1. The 

variables time of day and type of day are used to estimate the internal heat generation loads 

in the building as opposed to using a specific variable for this task. This was done as it can 

be difficult to measure sources of internal heat generation (such as number of occupants), 

but they tend to follow time of day patterns [109].  
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Table 6.1 Model inputs and outputs 

Model Inputs Output 

Electricity Current building average ZAT, ambient 

dry bulb temperature, direct solar 

radiation, diffuse solar radiation, 

ambient relative humidity, electricity 

consumption, time of day, type of day 

Future (1 timestep ahead) ambient 

temperature, direct solar radiation, 

diffuse solar radiation, ambient 

humidity control setpoints 

Future (1 timestep ahead) 

electricity consumption 

Steam Current building average ZAT, ambient 

dry bulb temperature, direct solar 

radiation, diffuse solar radiation, 

ambient relative humidity, steam 

consumption, time of day, type of day 

Future (1 timestep ahead) ambient 

temperature, direct solar radiation, 

diffuse solar radiation, ambient 

humidity, building average control 

setpoints 

Future (1 timestep ahead) steam 

consumption 

Building average ZAT Current building average ZAT, ambient 

temperature, direct solar radiation, 

diffuse solar radiation, ambient 

relative humidity, electricity 

consumption, steam consumption, 

time of day, type of day 

Future (1 timestep ahead) ambient 

temperature, direct solar radiation, 

diffuse solar radiation, ambient 

humidity, building average control 

setpoints 

Future (1 timestep ahead) 

building average ZAT 

Building average ZOT Current building average ZAT, ambient 

temperature, direct solar radiation, 

diffuse solar radiation, ambient 

relative humidity, electricity 

consumption, steam consumption, 

time of day, type of day 

Future (1 timestep ahead) ambient 

temperature, direct solar radiation, 

diffuse solar radiation, ambient 

humidity, building average control 

setpoints 

Future (1 timestep ahead) 

building average ZOT 
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After training a BRM from 18 data sets similar to Figure 6.5, the results for a winter week 

(4-8 February 2013) and a summer week (5-9 August 2013) of the existing control strategy 

at the Mona Campbell are shown in Figure 6.7 and Figure 6.8.The results indicate that the 

BRM does indeed give good representation of “real building” energy demand (given as E+ 

values). Minimal error exists between the predicted value and measured value, with 

electricity having a peak error of 12 kW (or 3%) and RMSE of 1.8 kW, a steam a peak 

error of 35 kW (10%) and RMSE of 1.9 KW, and a peak temperature error of 0.3 °C and 

RMSE of 0.06 °C. The fit of the model is also confirmed by the r2 values of 0.999 for 

electricity and temperature, and 0.997 for steam. The model statistics are tabulated in Table 

6.2. 

 

Figure 6.7  Winter BRM performance 
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Figure 6.8 Summer BRM Performance 

Table 6.2 Annualized BRM fit statistics to E+ input data 

Model NMBE (%) RMSE (kW/°C) CV(RMSE) (%) r2 

Electricity 0 1.8 2 0.999 

Steam 1 1.9 4 0.997 

Temperature 0 0.06 0 0.999 
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6.4 Objective Function 

The design of the objective function (J) and corresponding variable weightings for the 

function to achieve the desired outcome must be defined. A minimization based objective 

function was constructed, where variable O represents a weighting for an energy source, 

and r represents the varying energy sources, and is shown in Equation 6.1. The summation 

represents the total objective “cost” at the end of n timesteps (the total horizon of interest). 

The weights of energy sources can be used to modify the objective function for varying 

purposes. For example, a dollar value can be applied to each energy source to make a cost 

optimization, or a greenhouse gas intensity factor can be used to minimize emissions. For 

the morning start, a constraint on thermal comfort is applied at the initial time of occupancy 

08:00 (Equation 6.2), where if the constraint is not met, a penalty of 1050 was applied to 

artificially inflate the cost to indicate the constraint was not met. The comfort constraint is 

based on ASHRAE Standard 55 shown in Figure 6.9 using assumptions on clothing level 

(1 clo), metabolic rate (1-1.3 met), air speed (< 0.2 m/s), and relative humidity (20-60%) 

to build an operative temperature range from 20-26 °C. 

 𝐽 = 𝑚𝑖𝑛 ∑ 𝑂 × 𝑟𝑛
𝑖=1   6.1 

 20°𝐶 ≤ 𝑇(08: 00) ≤ 26°𝐶  6.2 
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Figure 6.9 ASHRAE Standard 55 graphical comfort chart23 

Additional terms can be added to the cost function on an as needed basis, such as the 

inclusion of a demand charge term when doing cost optimization. The case of demand 

charge mitigation can be found in 6.3, where ODemand represents the cost of increasing 

electric demand, max(relectricity) is the maximum value of electricity power predictions over 

the n timesteps, and Peakelectricity is the current recorded peak electricity demand for the 

billing period. Note that the summation does not include the demand penalty term, as the 

                                                           

23 ASHRAE standard by AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR 

Reproduced with permission of THE SOCIETY, in the format Republish in a thesis/dissertation via 

Copyright Clearance Center.  
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peak demand of the entire forecast horizon of n steps is considered. If the value of 

max(relectricity) is lower than Peakelectricity, Equation 6.1 is used. 

 𝐽 = ∑ (𝑂i × 𝑟𝑖) + 𝑂𝐷𝑒𝑚𝑎𝑛𝑑(max(𝑟𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦) − 𝑃𝑒𝑎𝑘𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦)n
𝑖=1   6.3 

Additionally, a desire to reduce equipment cycling exist and can be implemented by 

incorporating a cycling penalty term into the objective function. This is done by penalizing 

a change in setpoints from their current value, with the penalty to switch decaying over 

time. An example of this is given in Equation 6.4 for when no electricity demand is 

considered, where Q represents the penalty to change from existing setpoints, and nchange is 

the number of timesteps since a change has occurred. Similar to the electricity demand 

mitigation term, the switching penalty is not part of the summation as it is only concerned 

with the current timestep. Equation 6.5 includes both the electricity demand mitigation and 

setpoint switching penalty terms, which are not part of the summation. 

 𝐽 = ∑ (𝑂i × 𝑟𝑖)
𝑛
𝑖=1 +

𝑄
𝑛𝑐ℎ𝑎𝑛𝑔𝑒

⁄  6.4 

𝐽 = ∑ (𝑂i × 𝑟𝑖) + 𝑂demand(max(𝑟𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦) − 𝑃𝑒𝑎𝑘𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦)n
𝑖=1 +

𝑄
𝑛𝑐ℎ𝑎𝑛𝑔𝑒

⁄  6.5 
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6.5 Optimization 

With the BRM used to predict the building total electricity consumption, steam 

consumption, and an average zone temperature (either ZOT or ZAT depending on time of 

day), it was then necessary to develop an optimization strategy. The optimization is divided 

into three subsections: morning start, occupied, and unoccupied. 

6.5.1 Morning Start 

The first period for optimization was the morning start transition period. During the 

morning start, some limitations are applied to the optimization. The first is when the HVAC 

system is turned on, it must remain on to avoid unnecessary cycling of equipment. This 

limits the search space to nine options beginning at 06:00 (turn on any time between 06:00 

and 08:00 in 15 minute intervals) down to two options at 07:45 (turn on now or at 08:00). 

A sample of the morning start transition setpoints can be found in Table 6.3. A brute force 

optimization method is then applied using the BRM model starting at 06:00 (to decide if 

turning on at 06:00 is necessary). If the optimal solution is any time other than 06:00 

(option 9 in Table 6.3), then the setback is maintained. The optimization is then rerun at 

each timestep if the system is not enabled, to allow for the use of updated building feedback 

and forecasts, where the number of options to evaluate is reduced by one per timestep. 

During the morning transition period, a penalty of 1050 is applied if the predicted ZOT 

temperature of the building is outside of the comfort band at 08:00. If all the potential 

options have a cost greater than 1050 (i.e. none meet the comfort criterion) then the system 

is enabled in attempt to meet the comfort constraint.  
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Table 6.3  Morning start optimization heating setpoints (°C) at 06:00 

Option 6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45 8:00 

1 16 16 16 16 16 16 16 16 21 

2 16 16 16 16 16 16 16 21 21 

3 16 16 16 16 16 16 21 21 21 

4 16 16 16 16 16 21 21 21 21 

5 16 16 16 16 21 21 21 21 21 

6 16 16 16 21 21 21 21 21 21 

7 16 16 21 21 21 21 21 21 21 

8 16 21 21 21 21 21 21 21 21 

9 21 21 21 21 21 21 21 21 21 

 

6.5.2 Occupied 

A brute force optimization strategy was chosen for occupied optimization, as it allows for 

the storage of all possible solutions and to ensure the correct control option is chosen. The 

limitations of such an approach are computational time and the number of possible 

solutions evaluated. By storing all of the prediction information for each solution, it 

allowed for detailed system analysis, as any potential issues could be traced back to either 

the optimization algorithm or the BRM.  

For brute force optimization, a set of control options needs to be specified along with the 

number of timesteps to look ahead. These two parameters determine the number of 

calculations required according to Equation 6.6. The optimizer has been limited to three 

options (low, medium, and high temperatures, Table 6.4 based on existing control strategy) 

and eight step look ahead (two hours at 15 minute timesteps), which lead to 6561 (38) 

solution paths per timestep. The two hour look ahead was chosen to align with the expected 

time for the building to achieve temperature and minimize computational demand based 

on the existing control strategy (the building was designed for HVAC to start at 06:00 for 
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occupancy at 08:00). Due to the exponent relationship, an expansion on the number of 

options from three to four increases the solution paths to 65536, where an increase in look 

ahead from eight to nine expands the solution paths to 19683. For the optimization of every 

zone (32 total) with three unique options and eight step look ahead, the MPC would 

compute 7.2x1015 solution paths (at 1 millisecond per path, a time of two billion hours per 

timestep), thus justifying the simplifying assumption of utilizing building temperature for 

optimization. 

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = # 𝑂𝑝𝑡𝑖𝑜𝑛𝑠# 𝐿𝑜𝑜𝑘 𝐴ℎ𝑒𝑎𝑑                      6.6 

Table 6.4 Occupied period setpoint options (°C) 

Option Heating Setpoint Cooling Setpoint 

Low 20 22 

Medium 21 23 

High 22 24 

 

The optimizer was coded as a feed forward loop, where the results from one timestep fed 

the next, constructed as a series of nested for loops. Figure 6.10 highlights this 

methodology, where the results from Step 1 feed into Step 2, all the way down to Step 8. 

The search begins by trying option one (low) for the first seven steps. Once at Step 8 all 

three setpoint options are carried out, and then the code goes back and executes control 

option two (medium) for Step 7, followed by all three options for Step 8. This continues 

until all 6561 options have been calculated. On the way down the steps, the cost is 

calculated at each level, and then summed to provide a total cost for the eight options 

selected. To determine the optimal solution, a search algorithm was used the find the 

minimum cost of all 6561 combinations, and then the optimized whole building 

performance setpoints are determined (the setpoints of step one for the minimum cost of 

the 6561 options). These setpoints are then compared to the range of allowable 

temperatures (section 6.7), where comfort based adjustments are made at the zone level 

prior to implementation. The search function is limited in that if multiple minima exist, it 

will select the first one that it encounters and use those values.  
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Figure 6.10 Brute force iterative methodology 

6.5.3 Unoccupied 

During the unoccupied period, the setpoints were set to be the night setback option of 16 

and 26 °C. This was chosen as it provides the largest differential between setpoints that 

was designed for the building, and the morning start window is long enough to bring the 

building to temperature using the existing HVAC equipment for the setpoint pair.  
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6.6 Occupant Feedback 

While the comfort range developed is based on ASHRAE standards for comfort [48], 

during the experiment individual offices had the ability to adapt to user preferences through 

occupant feedback. This mapping is done at each discrete zone. The occupant feedback is 

used to adjust the occupants band of ZOT comfort. 

To gather feedback from occupants, a web based comfort portal was created by Green 

Power Labs for each occupant in an individual office, with the interface shown in Figure 

6.11. The users input their room, and then select from three options: comfortable, too cold, 

or too warm. The comfortable option maintains the current ZOT comfort band, while the 

too cold or too warm options increase or decrease the ZOT band by 0.5 °C. This user 

adjustment was reset after 2 hours as the MPC points which caused the discomfort likely 

changed (e.g. due to forecasting errors, communication issues), and a return to MPC 

settings enables further energy savings. Feedback could be given at any time, but would 

only be implemented during the next 15-minute timestep interval. If no feedback was 

given, it was assumed the occupant was comfortable with the current space conditions. 

This feedback collection mechanism is similar to methods used in [110] and [17]. If an 

occupant provides consistent feedback, adjustments to their comfort range are made (i.e. if 

a user is always too cold, then an increase in the ZOT comfort range is made for them 

permanently). 
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Figure 6.11 Client feedback portal 
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6.7 Zone Operative Temperature Comfort 

Due to computational load, a whole building optimization is conducted to find a building 

average optimal solution. However, zones on various sides of the building experience 

different ambient conditions (i.e. more sun on the south side than north in North America), 

which can impact the ZOT through the ZRT. These differences can cause zones to not meet 

the comfort criteria and require modification to their setpoints. This is done by estimating 

the difference between ZRT and ZAT (Δ) utilizing ambient temperature, direct radiation, 

and diffuse radiation. A linear estimation was developed to calculate this parameter 

according to Equation 6.7. The parameters 𝑎, 𝑏, and 𝑐 are scaling factors for the ambient 

conditions, while 𝑑 is the offset which can account for construction, thermal mass, and 

other zone parameters that would influence the ZRT and ZAT relationship. 

         𝑍𝑅𝑇 = 𝑎(𝐷𝑖𝑓𝑓𝑢𝑠𝑒) + 𝑏(𝐷𝑖𝑟𝑒𝑐𝑡) + 𝑐(𝑂𝑢𝑡𝑑𝑜𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 𝑑 + 𝑍𝐴𝑇    6.7 

After the optimization is run for the whole building, a ZOT comfort based nudging 

technique can be applied in the following manner: 

1. Only calculate nudges for the occupied period, as thermal comfort is only required 

during occupancy. 

2. Use whole building optimization to create a global, or zone averaged, zone air 

temperature setpoints prediction, 𝑍𝐴𝑇𝑀𝑃𝐶  (results of section 6.5). 

3. On a per zone basis, calculate ZRT using Equation 6.7. 

4. Apply ZRT to create a ZAT band of comfort using the following equation, where 

ZOTband is the ZOT comfort range for the zone (20-26 °C based on ASHRAE as 

outlined in section 6.4, plus occupant feedback adjustments as shown in Figure 6.2):  

 𝑍𝐴𝑇𝑏𝑎𝑛𝑑 = 𝑍𝑂𝑇𝑏𝑎𝑛𝑑 − (𝑍𝑅𝑇 − 𝑍𝑂𝑇𝑏𝑎𝑛𝑑)  
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5. Check to see if 𝑍𝐴𝑇𝑀𝑃𝐶  lies within the 𝑍𝐴𝑇𝑏𝑎𝑛𝑑. The focus should be placed on the 

setpoint closest to the current zone air temperature as this will be the driving force 

in changing thermal comfort.  

a. If True: then 𝑍𝐴𝑇𝑧𝑜𝑛𝑒 = 𝑍𝐴𝑇𝑀𝑃𝐶, where ZATzone is the zone level setpoints 

to be applied. 

b. If False: 𝑍𝐴𝑇𝑧𝑜𝑛𝑒 = nearest value within the 𝑍𝐴𝑇𝑏𝑎𝑛𝑑 for the setpoint of 

interest (i.e. heating if below comfort band) plus a differential for the other 

setpoint. 

6. Apply 𝑍𝐴𝑇𝑧𝑜𝑛𝑒 at the per zone level. 

An example of how the ZOT nudging shifts setpoints is given in Figure 6.12 for a 

cloudy, cold day. Due to the cold ZRT (due to windows close to ambient conditions), 

the space ZOT after applying the whole building MPC setpoints falls outside the 

comfort band by 0.5 °C. In order to maintain comfort, the setpoint for the zone is 

boosted by 1 °C such that the ZOT falls within the comfort range of 20 to 26 °C. 

 

Figure 6.12 Example of ZOT based nudging for thermal comfort 
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By applying the ZOT thermal comfort as a layer after the energy/cost optimization problem 

in sections 6.4 and 6.5, thermal comfort is prioritized. This is important as occupant 

comfort outweighs the value of energy savings, and having comfort as the last layer of the 

MPC problem ensures it is given the highest priority. This is a key differentiating feature 

of the research in comparison to other published literature. 
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6.8 Forecasts 

For the simulation based work, perfect weather forecasts were utilized by previously 

simulating the same weather year for the building, and storing the outputs in a file for later 

retrieval. The perfect weather forecasts include the site level conditions of dry bulb 

temperature, humidity, wind speed, wind direction, direct solar radiation, diffuse solar 

radiation. It also includes surface level forecasts of direct and diffuse radiation for each 

external face per zone, as calculated by E+ from the site level data and building geometry. 

This allows for a theoretical limit estimate of the MPC performance, as real forecasts do 

contain errors. No occupancy forecasts were used as they are built into the BRM through 

the use of time of day and type of day as variables. 

In the experimental work, weather forecasts were produced by GPL using their 

SolarSatData24 platform, which produces forecasts of both direct and diffuse on a square 

meter basis, as well as overall site forecasts for temperature, humidity, wind speed, and 

wind direction. These values can then be aggregated to match the building surface level 

discretization produced by E+. The forecasts are used as an input to both the BRM and the 

ZOT comfort nudging as outlined in section 6.7. Predictions are generated through 

numerical weather predictions, using multiple sources of input data such as ECCC25 and 

the National Oceanic and Atmospheric Administration26. 

                                                           

24 https://greenpowerlabs.com/smart-solar-plan-deploy-operate/ 

25 https://weather.gc.ca/model_forecast/global_e.html 

26 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs 
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6.9 Emulated Model Predictive Control Method 

Portions of this section have been submitted to Science and Technology for the Built 

Environment for publication with Ms. Ref. No.:  STBE-00075-2017, coauthored by Dr. 

Lukas Swan, 23 pgs. 

Trent Hilliard is the principal researcher and author of the article. He conducted the 

research as part of his PhD. Thus, while he received supervision and guidance from his 

supervisor Dr. Lukas Swan, he carried out the work, wrote the article, and communicated 

with the editor of the journal. Minor grammatical and content changes have been made to 

integrate the article within this dissertation. 

In addition to the traditional MPC, an optimal morning start-up “emulated MPC” was 

conducted using an E+ model as opposed to the BRM, as a benchmark for what the 

“perfect” traditional MPC using BRM would achieve. By using the detailed energy model, 

inaccuracies of BRM are eliminated, providing a perfect scenario for comparison. A 

limitation of the method is that a convergence period is required after the optimization, 

thus it is limited to once a day task such as morning start (when followed by constant 

daytime conditions). 

Emulated MPC was completed by conducting E+ simulations of each distinct morning 

start-up (setpoints and AHU flow) times for every day over the 06:00 to 08:00 period, while 

maintaining constant conditions otherwise. The time of morning start was shifted by 15 

minutes from the RBC values of 06:00 to the occupancy time of 08:00. This results in nine 

unique options and thus nine simulation runs to analyze, as shown in Figure 6.13. For the 

morning start-up, both the setpoint temperatures and AHU state were controlled 

simultaneously to optimize energy usage. 
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Figure 6.13 Nine unique sets for delayed morning start-up, with zone heating/cooling 

temperature setpoints (solid) and AHU state control (dashed) 

Each of the simulation runs were then analyzed for each weekday (Monday-Friday) to 

determine if the comfort criterion was met (ZOT of 20 °C to 26 °C at 08:00), how much 

energy was consumed that day, and peak power demand for the day. An example of this is 

shown in Figure 6.14, where a setpoint change at 07:15 causes the building to reach the 

comfort operative temperature (20 °C) by 08:00. Setpoint changes prior to 07:15 heat the 

building up too early, using additional energy, and setpoint changes after 07:15 do not 

achieve the necessary comfort temperature until after 08:00.  
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Figure 6.14 Example of nine start-up heating/cooling temperature setpoint scenarios (solid) 

and the resultant average zone operative temperature (dashed) 

After creating matrices of comfort criteria satisfaction, energy consumption for the day, 

and peak electrical power, analysis could be conducted based on the desired objective 

function (examples provided in section 6.4). This analysis was conducted for each day of 

the year to construct a so-called “emulated MPC” file for the year period by placing the 

selected setpoint transition time for each day into a single file. An example would be if the 

best start time simulation for January 4th was 06:00 (simulation run 1), and then 07:45 

(simulation run 8) for January 5th, the building simulation performance data (i.e. energy, 

runtime, operation) from the 06:00 simulation for January 4th and 07:45 simulation for 

January 5th would be pieced together to construct a yearlong period. An example of the 

start time variation for these days is given in Figure 6.15. This stitching together of control 

solution days is appropriate given that the simulation results converge during the constant 

setpoint daytime period, and identical overnight conditions. Finally, the energy 
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performance results (hourly, daily, monthly, annual) of the emulated MPC can be 

compared to that of the traditional MPC selections to identify the degradation in MPC 

performance due to the BRM, or due to other MPC parameters such as the forecast horizon 

or timestep. 

 

Figure 6.15 Sample of varying emulated MPC start times 



169 

 

 

 

6.10 Model Predictive Control Modifications for Experimental 

Implementation  

In order to efficiently implement the MPC on a building in a real-time setting, several 

modifications to the simulation based approach described were needed. The changes were 

focused on reducing the runtime of the system, such that a final operational MPC model 

using weather and current state as in input could be implemented. Figure 6.16 outlines the 

overall workflow for the experimental implementation. These runtime reductions were 

necessary due to hardware scan limitations on the BACnet system.  

 

Figure 6.16 Operational MPC workflow 

For the morning start, instead of using the BRM and brute force search algorithm, instead 

the results for emulated MPC were used, with weather forecasts over the time period to 

determine when to initialize the system. To achieve this, a clustering of results was done 

using ‘k-means’ clustering [111] to identify the relevant patterns between weather 

forecasts, current building state, and system initialization time. A total of nine clusters were 

used to match the potential start times. Clustering of the data works by separating the results 

into a number of groups, where a selected setpoint pattern can represent the behavior of the 

entire group. The desired input conditions for each group are then analyzed to find the 

relationships that then effectively create a look-up table between the inputs and outputs. 

Clustering was done as it more computationally efficient and utilizes information from the 

detailed E+ model as opposed to relying on the simplified BRM. 
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During the occupied period, the optimization method was changed from a brute force 

optimizer to a genetic algorithm. The genetic algorithm utilized 100 options per generation 

for 10 generations, with the 10 best options carried forward to the next generation. The 

change in optimizer was done in conjunction with GPL, and was chosen as the entire search 

space between 20 and 24 °C can be used in contrast to the discrete points utilized by brute 

force. The genetic algorithm works by first trying 100 random setpoint patterns and 

compares the results using the objective function. The best 10 results are then carried over 

to the next generation, with the remaining 90 patterns generated at random, but with a 

weighting towards the 10 previous results. The process repeats over the 10 generations, 

where the optimal solution for the last generation is chosen. The use of a genetic algorithm 

should improve the energy savings performance, as a larger search space is provided. For 

increased computational speed, a full year simulation using the genetic algorithm was run, 

and the results were once again clustered using ‘k-means’ methods based on weather 

forecasts, this time with five clusters for each two-hour forecast window. By utilizing the 

same clustering methodology, the results can be appended into a single operational MPC 

model that uses weather forecasts to determine the control setpoints via the clustered results 

of both morning start and occupied periods. The use of the clustered solutions reduces the 

simulation time from two days for one week of results, to 24 hours for one year of results. 

Similar to the simulation based setpoint switching penalty in Equations 6.4 and 6.5, a 

method to limit equipment cycling was needed. To reduce or eliminate HVAC cycling, a 

threshold change in setpoints of at least 0.5 °C was required before actual setpoints were 

updated. This is due to the minimal impact on thermal comfort of these small changes, 

while creating a deadband which minimizes equipment cycling. An additional benefit of 

the limit was a reduction in network traffic, as only new setpoints needed to be sent to the 

BAS system.  
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Chapter 7 MODEL PREDICTIVE CONTROL SIMULATION 

RESULTS 

This chapter details the simulation based results of the developed MPC. First the traditional 

MPC approach is analyzed, followed by further investigations of total cost reduction 

inclusive of demand charge utilizing the emulated MPC approach. 

7.1 Fixed Energy Prices 

The first pricing structure examined was that of fixed energy prices. The pricing 

information used for electricity was the NSP General Tariff for commercial consumers 

with a cost of 11.671 ¢/kWh, and a demand charge of 10.497 $/kW (15-minute average). 

The pricing for steam was set to 7.4 ¢/kWh27, based on the annual average rate for a class 

1 commercial customer with Heritage Gas. 

7.1.1 Rule Based Control 

To provide a baseline for cost savings, the existing rule-based control strategy for the Mona 

Campbell building was simulated. For reference, the building runs in occupied mode 

Monday to Friday from 06:00 to 22:00 with setpoints of 21 and 23 °C. during the 

unoccupied period, the setpoints are set back to 16 and 26 °C. The sample monthly costs 

are shown in Figure 7.1 (also in Table 7.1), with electricity energy costs being dominant, 

followed by the electricity demand charge, and finally the cost for steam. A sample winter 

week is provided in Figure 7.2, which shows RBC keeps the building in a comfortable 

range above the lower limit of 20 °C. The electricity demand peaks in the morning when 

the HVAC system is turned on. The bottom of Figure 7.2 shows the costs associated with 

the timestep energy consumption (blue, left hand axis), as well the electricity demand 

charge associated with the week (grey, right hand axis). This visualization demonstrates 

                                                           

27 Actual price varies from 8.5 ¢/kWh in winter to 5.8 ¢/kWh in the summer. The selected 7.4 ¢/kWh is 

biased towards winter pricing when usage increases. 



172 

 

 

 

that the electricity demand charge is set on the first day of the week, as no other day reaches 

as high of a peak. A similar plot is given for summer in Figure 7.3, where the key 

differences are that the electricity peak occurs in the afternoon due to space cooling, and 

steam usage is minimized (only for domestic hot water). 

 

Figure 7.1 RBC monthly costs by source with constant energy prices 
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Figure 7.2 RBC winter temperature (top), energy consumption (middle), and costs (bottom) 

with constant energy prices  
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Figure 7.3 RBC summer temperatures (top), energy consumption (middle), and costs 

(bottom) with constant energy prices 
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Table 7.1 Monthly RBC energy consumption and costs with fixed energy prices 

Month 

Total Electricity 

(kWh) 

Total Steam 

(kWh) 

Peak Electricity 

Demand (kW) 

Electricity Energy Cost 

($) Steam Energy Cost ($) 

Total Energy 

Cost ($) 

Electricity 

Demand Cost ($) Total Cost ($) 

Jan 125,544 39,472 424 13,810 2,763 16,573 4,435 21,008 

Feb 110,176 31,320 412 12,119 2,192 14,312 4,308 18,620 

Mar 123,602 32,202 377 13,596 2,254 15,850 3,943 19,794 

Apr 132,770 28,394 378 14,605 1,988 16,592 3,962 20,555 

May 150,433 25,669 448 16,548 1,797 18,344 4,685 23,030 

Jun 156,796 20,901 531 17,248 1,463 18,711 5,560 24,271 

Jul 205,126 18,545 590 22,564 1,298 23,862 6,178 30,040 

Aug 202,513 19,452 567 22,276 1,362 23,638 5,933 29,571 

Sep 178,602 21,477 546 19,646 1,503 21,150 5,720 26,869 

Oct 159,384 25,109 475 17,532 1,758 19,290 4,977 24,266 

Nov 127,136 29,721 356 13,985 2,080 16,065 3,877 19,942 

Dec 119,041 33,224 413 13,095 2,326 15,420 4,324 19,744 

Annual 1,791,122 325,486 590 197,023 22,784 219,808 57,902 277,710 
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7.1.2 Model Predictive Control with Energy Optimization 

The first MPC scenario tested was that of pure energy minimization, with no concerns on 

various energy costs or electric demand charges. The cost value of both electricity and 

steam was set to 1 to allow for energy minimization, with the cost function outlined in 

Equation  7.1. 

 𝐽 = ∑ (𝑂𝑒lectricity𝑖
 ×  𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑖 + 𝑂steami

 ×  𝑠𝑡𝑒𝑎𝑚𝑖)
8
𝑖=1    7.1 

The results for the MPC are tabulated in Table 7.2. A comparison between MPC for energy 

minimization and RBC was conducted. Figure 7.4 illustrates the monthly costs, which 

show that for most months, the MPC has a lower cost. The data is tabulated in Table 7.3 

which demonstrates that for all months the energy minimization has a lower energy cost, 

but at the expense of a higher demand cost. In April, May June, and November the increase 

in demand cost is larger than the reduction in energy costs, leading to an increase in overall 

operating costs. Overall a cost savings of $1,273 is achieved, or 0.5%, however a total 

building energy reduction of 2% is achieved. When analyzing the HVAC components a 

5% reduction in consumption exists. Example winter performance in demonstrated in 

Figure 7.5, which clearly shows the delay in HVAC system initialization, as well as the 

lower daytime temperatures used to achieve savings. Figure 7.6 shows a sample summer 

week, where the delay in start drives savings. An evening dip in setpoints occurs in an 

effort to save steam energy while maintaining electricity levels, however increases in 

electricity negate the effects. 
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Figure 7.4  Cost comparison of MPC energy minimization vs RBC by source 
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Figure 7.5  Comparison of MPC energy minimization vs RBC winter temperature (top), energy 

consumption (middle), and costs (bottom) 
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Figure 7.6  Comparison of MPC energy minimization vs RBC summer temperature (top), 

energy consumption (middle), and costs (bottom)
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Table 7.2  Energy minimization MPC energy consumption and costs with fixed energy prices 

Month 
Total Electricity 

(kWh) 
Total Steam 

(kWh) 
Peak Electricity 
Demand (kW) 

Electricity Energy 
Cost ($) 

Steam 
Energy Cost 

($) 
Total Energy 

Cost ($) 
Electricity 

Demand Cost ($) Total Cost ($) 

Jan 123,342 37,390  433   13,568   2,617   16,185   4,535   20,720  

Feb 109,094 29,197  425   12,000   2,044   14,044   4,448   18,492  

Mar 123,256 29,417  352   13,558   2,059   15,617   3,690   19,307  

Apr 134,432 25,641  414   14,788   1,795   16,582   4,339   20,921  

May 151,191 23,276  467   16,631   1,629   18,260   4,890   23,150  

Jun 155,750 19,576  556   17,132   1,370   18,503   5,824   24,327  

Jul 199,364 17,542  634   21,930   1,228   23,158   6,637   29,795  

Aug 198,302 18,325  598   21,813   1,283   23,096   6,264   29,360  

Sep 175,401 20,048  566   19,294   1,403   20,697   5,929   26,626  

Oct 158,445 23,056  495   17,429   1,614   19,043   5,185   24,228  

Nov 126,810 27,148  361   13,949   1,900   15,849   4,228   20,077  

Dec 115,038 32,841  428   12,654   2,299   14,953   4,482   19,435  

Annual 1,770,426 303,457  634   194,747   21,242   215,989   60,448   276,437  
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Table 7.3 Energy minimization MPC vs RBC monthly cost comparison with fixed energy prices 

Month 

MPC 
Electricity 

Energy Cost 
MPC Steam 
Energy Cost 

MPC 
Electricity 

Demand Cost 
RBC Electricity 

Energy Cost 
RBC Steam 
Energy Cost 

RBC Electricity 
Demand Cost 

Total MPC 
Cost 

Total RBC 
Cost Total Savings 

Jan  13,568   2,617   4,535   13,810   2,763   4,435   20,720   21,008   289  

Feb  12,000   2,044   4,448   12,119   2,192   4,308   18,492   18,620   128  

Mar  13,558   2,059   3,690   13,596   2,254   3,943   19,307   19,794   486  

Apr  14,788   1,795   4,339   14,605   1,988   3,962   20,921   20,555  -367  

May  16,631   1,629   4,890   16,548   1,797   4,685   23,150   23,030  -120  

Jun  17,132   1,370   5,824   17,248   1,463   5,560   24,327   24,271  -56  

Jul  21,930   1,228   6,637   22,564   1,298   6,178   29,795   30,040   245  

Aug  21,813   1,283   6,264   22,276   1,362   5,933   29,360   29,571   211  

Sep  19,294   1,403   5,929   19,646   1,503   5,720   26,626   26,869   243  

Oct  17,429   1,614   5,185   17,532   1,758   4,977   24,228   24,266   39  

Nov  13,949   1,900   4,228   13,985   2,080   3,877   20,077   19,942  -135  

Dec  12,654   2,299   4,482   13,095   2,326   4,324   19,435   19,744   309  

Annual  194,747   21,242   60,448   197,023   22,784   57,902   276,437   277,710   1,273  
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7.1.3 Model Predictive Control with Total Cost Minimization 

The development of the MPC for cost optimization with electricity demand mitigation 

involved two key changes from the previously developed energy minimization. The first is 

converting the energy consumed into a cost based on the energy pricing provided in section 

7.1. The second key change was to store and monitor the peak measured electricity demand, 

which is then compared with the predicted electricity demand values. If the difference in 

values is greater than 0 (i.e. predicting an increase in electricity demand), this value is 

multiplied by the electricity demand cost factor and added to the total cost accumulated 

over the look ahead period (8 timesteps). This method is outlined in Equation 7.2 when 

the predicted electricity peak exceeds the measured peak electricity: 

 𝐽 = ∑ (𝑂electricity𝑖
× 𝑟𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑖

+ 𝑂steam𝑖
× 𝑟𝑠𝑡𝑒𝑎𝑚𝑖

) + 𝑂𝐷𝑒𝑚𝑎𝑛𝑑(max(𝑟𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦) −8
𝑖=1

𝑃𝑒𝑎𝑘𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦)  7.2 

Or when the measured electricity peak is smaller than the recorded peak in Equation 7.3: 

 𝐽 = ∑ (𝑂electricity𝑖
× 𝑟𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑖

+ 𝑂steam𝑖
× 𝑟𝑠𝑡𝑒𝑎𝑚𝑖

)8
𝑖=1            7.3 

An analysis of the MPC performance is in Table 7.5. A direct comparison is conducted 

between RBC and MPC for total cost to identify where the MPC worked well, and potential 

areas for improvement. The first comparison was done on monthly costs, shown in Figure 

7.7 and Table 7.5. The MPC performs best in the summer months, where savings of 

approximately $1000 per month are realized. This is due to the building being in cooling 

mode, where the only energy source to optimize is the electrical energy used for cooling 

the space.  

During the winter months, smaller cost savings are realized due to the competing nature of 

the cost optimization (i.e. electricity wants higher setpoints, steam lower setpoints) causing 

the optimization to oscillate between options in an effort to save money. This competing 

nature can be seen in Figure 7.8, where the MPC cycles between heating and cooling mode, 

with an actual savings in steam compared to RBC when going from higher to lower 

setpoints. Overall the MPC has a slightly higher electricity peak demand due to shifting 
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the HVAC loads closer to the building non-HVAC electricity loads, but offsets the 

increased electricity demand cost through energy cost savings. The majority of the savings 

during these months is generated through the optimal start time, and not through daytime 

efforts.  

The summer comparison is provided in Figure 7.9, which clearly shows energy savings 

related to both morning start optimization, and daytime setpoint optimization. A 

disappointing finding is that the peak electricity demand is higher for MPC case, which is 

likely due to an under prediction by the BRM of the peak power. This prediction issue has 

not been a problem when only optimizing energy consumption, as relative gains manifest 

themselves as savings. However, because maximum demand only ratchets upwards, actual 

magnitude accuracy is required. Even with the noted shortcomings, an annual cost savings 

of $6,527 is achieved, representing 2.4% of total costs, or 5.9% of the HVAC costs. 

 

Figure 7.7 Cost comparison of MPC total cost minimization vs RBC by source 
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Figure 7.8 Comparison of MPC total cost minimization vs RBC winter temperature (top), 

energy consumption (middle), and costs (bottom) 
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Figure 7.9 Comparison of MPC total cost minimization vs RBC summer temperatures (top), 

energy consumption (middle), and costs (bottom) 
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Table 7.4 Total cost minimization MPC energy consumption and costs with fixed energy prices 

Month 

Total Electricity 

(kWh) 

Total Steam 

(kWh) 

Peak Electricity 

Demand (kW) 

Electricity Energy 

Cost ($) 

Steam Energy 

Cost ($) 

Total Energy Cost 

($) 

Electricity 

Demand Cost ($) Total Cost ($) 

Jan 123,240 37,627 434 13,556 2,634 16,190 4,548 20,739 

Feb 107,264 30,318 425 11,799 2,122 13,921 4,448 18,369 

Mar 120,167 31,405 373 13,218 2,198 15,417 3,905 19,322 

Apr 127,288 28,362 405 14,002 1,985 15,987 4,239 20,226 

May 144,116 26,181 433 15,853 1,833 17,685 4,538 22,223 

Jun 150,817 21,429 532 16,590 1,500 18,090 5,568 23,658 

Jul 194,060 19,176 590 21,347 1,342 22,689 6,176 28,865 

Aug 193,256 20,106 556 21,258 1,407 22,666 5,824 28,490 

Sep 170,906 22,150 547 18,800 1,551 20,350 5,732 26,082 

Oct 151,765 25,714 508 16,694 1,800 18,494 5,321 23,815 

Nov 122,742 29,303 393 13,502 2,051 15,553 4,205 19,758 

Dec 116,824 32,893 428 12,851 2,303 15,153 4,482 19,635 

Annual 1,722,447 324,665 590 189,469 22,727 212,196 58,987 271,182 
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Table 7.5 Total cost minimization MPC vs RBC monthly cost comparison with fixed energy prices 

Month 

MPC Electricity 

Energy Cost 

MPC Steam 

Energy Cost 

MPC Electricity 

Demand Cost 

RBC Electricity 

Energy Cost 

RBC Steam 

Energy Cost 

RBC Electricity 

Demand Cost Total MPC Cost Total RBC Cost Total Savings 

Jan 13,556 2,634 4,548 13,810 2,763 4,435 20,739 21,008 270 

Feb 11,799 2,122 4,448 12,119 2,192 4,308 18,369 18,620 251 

Mar 13,218 2,198 3,905 13,596 2,254 3,943 19,322 19,794 472 

Apr 14,002 1,985 4,239 14,605 1,988 3,962 20,226 20,555 328 

May 15,853 1,833 4,538 16,548 1,797 4,685 22,223 23,030 806 

Jun 16,590 1,500 5,568 17,248 1,463 5,560 23,658 24,271 612 

Jul 21,347 1,342 6,176 22,564 1,298 6,178 28,865 30,040 1,175 

Aug 21,258 1,407 5,824 22,276 1,362 5,933 28,490 29,571 1,081 

Sep 18,800 1,551 5,732 19,646 1,503 5,720 26,082 26,869 787 

Oct 16,694 1,800 5,321 17,532 1,758 4,977 23,815 24,266 451 

Nov 13,502 2,051 4,205 13,985 2,080 3,877 19,758 19,942 184 

Dec 12,851 2,303 4,482 13,095 2,326 4,324 19,635 19,744 109 

Annual 189,469 22,727 58,987 197,023 22,784 57,902 271,182 277,710 6,527 
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7.1.4 Addition of a Switching Penalty to Total Cost Minimization 

Due to the excessive equipment cycling found in section 7.1.2, a method to minimize 

equipment cycling was introduced. This was done by adding a penalty term (Q in dollars) 

associated with a change in setpoints, that decreases the longer the setpoints remain 

constant (nchange represents the number of timesteps since the last setpoint change). This 

penalty term is only invoked when the first setpoints of a MPC sequence differs from the 

currently implemented setpoints. This makes a new objective function in Equation  7.4 

(same as Equation 6.5 as discussed in Section 6.5). 

𝐽 = ∑ (𝑂electricity𝑖
× 𝑟𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑖

+ 𝑂steam𝑖
× 𝑟𝑠𝑡𝑒𝑎𝑚𝑖

) + 𝑂𝐷𝑒𝑚𝑎𝑛𝑑(max(𝑟𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦) −8
𝑖=1

𝑃𝑒𝑎𝑘𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦) +
𝑄

𝑛𝑐ℎ𝑎𝑛𝑔𝑒
⁄    7.4 

When there is no change in setpoints from the currently implemented values, the cost 

function of Equation 7.2 or Equation 7.3 was used. The various combinations of the cost 

functions were invoked via if-else statements that filter based on a comparison to see if the 

initial sequence setpoint differs from the last recorded value, and if the peak electricity 

demand for a sequence exceeds the recorded peak. 

To help determine an optimal value for the fluctuation penalty term, a quick analysis of the 

difference between the highest and lowest cost options for a single timestep was 

undertaken. This found a typical spread of $20 when no demand charge changes were 

present between the highest cost option (approximately $80 for the two hours ahead) and 

lowest cost option for a timestep ($60 for the two hours ahead). This led to the choice of 3 

trial penalty values of 1, 2, and 5 as the goal was to prevent unnecessary cycling of 

equipment, while still allowing for the MPC to choose an optimal cost path. Thus, it was 

expected that there exists an optimal penalty value that eliminates the minimal differences 

between options that causes equipment cycling (under a dollar over the two-hour forecast 

horizon) while still allowing the MPC to switch options to save costs. 

The first penalty magnitude considered was 1 (Table 7.6) which showed a reduced 

oscillation frequency in winter (Figure 7.10) as a direct result of the penalty term. This led 
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to increased cost savings compared to the total cost minimization MPC (section 7.2.3) due 

to the reduced equipment cycling. The impact during summer appears minimal (Figure 

7.11). The second penalty term explored was a magnitude of 2 (Table 7.7) where the winter 

performance showed an even further reduction in oscillations, indicating that the penalty 

term was working as intended. A final penalty term of 5 (Table 7.8) was implemented to 

help determine the optimal penalty term magnitude, as it was expected that too large of a 

term would negatively impact cost savings. The winter performance showed further 

reductions in oscillations, and appeared to possibly be reaching the point of negative impact 

(i.e. taking too long to correct an incorrect choice). The summer performance also 

experienced a delay in switching to the upper setpoint level, leading to a loss in potential 

savings as shown in Figure 7.11.  
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Figure 7.10 Comparison of decay penalty values in winter temperature (top), energy 

consumption (middle), and cost (bottom) 
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Figure 7.11 Comparison of decay penalty values in summer temperature (top), energy 

consumption (middle), and cost (bottom)
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Table 7.6 Decay penalty = 1 monthly costs and energy consumption with fixed energy prices 

Month 

Total Electricity 

(kWh) 

Total Steam 

(kWh) 

Peak Electricity 

Demand (kW) 

Electricity Energy 

Cost ($) 

Steam Energy 

Cost ($) 

Total Energy Cost 

($) 

Electricity 

Demand Cost ($) Total Cost ($) 

Jan 122,764 37,663 434 13,504 2,636 16,140 4,548 20,689 

Feb 106,829 30,609 425 11,751 2,143 13,894 4,448 18,341 

Mar 119,897 31,419 373 13,189 2,199 15,388 3,905 19,293 

Apr 127,157 28,330 363 13,987 1,983 15,970 3,804 19,775 

May 144,359 25,994 476 15,879 1,820 17,699 4,980 22,679 

Jun 150,687 21,384 532 16,576 1,497 18,073 5,568 23,641 

Jul 194,174 19,052 590 21,359 1,334 22,693 6,176 28,869 

Aug 193,421 19,995 551 21,276 1,400 22,676 5,773 28,449 

Sep 170,821 22,031 568 18,790 1,542 20,333 5,948 26,281 

Oct 152,302 25,523 483 16,753 1,787 18,540 5,060 23,600 

Nov 122,471 29,383 353 13,472 2,057 15,529 3,712 19,241 

Dec 116,653 32,294 428 12,832 2,261 15,092 4,482 19,574 

Annual 1,721,537 323,677 590 189,369 22,657 212,026 58,403 270,429 
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Table 7.7 Decay penalty = 2 monthly costs and energy consumption with fixed energy prices 

Month 

Total Electricity 

(kWh) 

Total Steam 

(kWh) 

Peak Electricity 

Demand (kW) 

Electricity Energy 

Cost ($) 

Steam Energy 

Cost ($) 

Total Energy Cost 

($) 

Electricity 

Demand Cost ($) Total Cost ($) 

Jan 122,566 37,874 434 13,482 2,651 16,133 4,548 20,682 

Feb 106,771 30,668 425 11,745 2,147 13,892 4,448 18,339 

Mar 119,885 31,440 373 13,187 2,201 15,388 3,905 19,293 

Apr 127,137 28,313 399 13,985 1,982 15,967 4,177 20,144 

May 144,382 26,005 475 15,882 1,820 17,702 4,975 22,677 

Jun 151,415 21,317 532 16,656 1,492 18,148 5,568 23,716 

Jul 194,664 19,020 590 21,413 1,331 22,744 6,176 28,920 

Aug 193,771 19,813 557 21,315 1,387 22,702 5,833 28,535 

Sep 171,053 21,936 568 18,816 1,536 20,351 5,948 26,300 

Oct 152,220 25,455 470 16,744 1,782 18,526 4,916 23,442 

Nov 122,446 29,363 355 13,469 2,055 15,525 3,721 19,246 

Dec 116,192 32,350 428 12,781 2,265 15,046 4,482 19,527 

Annual 1,722,502 323,555 590 189,475 22,649 212,124 58,697 270,821 
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Table 7.8 Decay penalty = 5 monthly costs and energy consumption with fixed energy prices 

Month 

Total Electricity 

(kWh) 

Total Steam 

(kWh) 

Peak Electricity 

Demand (kW) 

Electricity Energy 

Cost ($) 

Steam Energy 

Cost ($) 

Total Energy Cost 

($) 

Electricity 

Demand Cost ($) Total Cost ($) 

Jan 122,392 37,844 434 13,463 2,649 16,112 4,548 20,661 

Feb 107,166 30,455 425 11,788 2,132 13,920 4,448 18,368 

Mar 120,212 31,306 373 13,223 2,191 15,415 3,905 19,320 

Apr 127,448 28,314 363 14,019 1,982 16,001 3,804 19,805 

May 144,909 25,855 460 15,940 1,810 17,750 4,812 22,562 

Jun 151,616 21,373 532 16,678 1,496 18,174 5,568 23,742 

Jul 194,555 19,097 594 21,401 1,337 22,738 6,222 28,960 

Aug 193,853 19,986 528 21,324 1,399 22,723 5,531 28,254 

Sep 171,615 21,885 563 18,878 1,532 20,410 5,895 26,304 

Oct 152,460 25,459 470 16,771 1,782 18,553 4,916 23,468 

Nov 122,940 29,339 381 13,523 2,054 15,577 3,985 19,562 

Dec 115,902 32,505 428 12,749 2,275 15,025 4,482 19,506 

Annual 1,725,070 323,418 594 189,758 22,639 212,397 58,115 270,512 
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7.1.5 Results Comparison for Fixed Energy Pricing 

After analyzing the decay penalty results, a comparison between the decay penalty results, 

RBC, and total cost minimization MPC was done to determine what an optimal penalty for 

the Mona Campbell would be. A monthly cost comparison is provided in Figure 7.12, 

which shows that all MPC methods save money, and that the penalty terms save more in 

winter months. For the summer months, as the penalty increases there tends to be a decrease 

in the savings. These findings are confirmed in Table 7.9, which also highlights that the 

ideal penalty term annually is a value of 1 due to it having the most savings. Overall the 

penalty terms generate more savings on an annual basis than the no penalty scenario. The 

savings peak at $7,280, or 2.6% of the total annual energy cost of the building, or 6.1% of 

the HVAC costs of the building. 
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Figure 7.12 Decay penalty monthly cost comparison by source 
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Table 7.9 Decay penalty cost comparison with fixed energy prices 

Month 
RBC Total 

Cost 

No Penalty 

Total Cost 

Penalty = 1 Total 

Cost 

Penalty = 2 Total 

Cost 

Penalty = 5 Total 

Cost 

No Penalty 

Savings 

Penalty = 1 

Savings 

Penalty = 2 

Savings 

Penalty = 5 

Savings 

Jan 21,008 20,739 20,689 20,682 20,661 270 319 326 348 

Feb 18,620 18,369 18,341 18,339 18,368 251 279 281 253 

Mar 19,794 19,322 19,293 19,293 19,320 472 501 501 474 

Apr 20,555 20,226 19,775 20,144 19,805 328 780 410 749 

May 23,030 22,223 22,679 22,677 22,562 806 351 353 468 

Jun 24,271 23,658 23,641 23,716 23,742 612 630 554 528 

Jul 30,040 28,865 28,869 28,920 28,960 1,175 1,171 1,120 1,080 

Aug 29,571 28,490 28,449 28,535 28,254 1,081 1,122 1,036 1,317 

Sep 26,869 26,082 26,281 26,300 26,304 787 589 570 565 

Oct 24,266 23,815 23,600 23,442 23,468 451 667 825 798 

Nov 19,942 19,758 19,241 19,246 19,562 184 702 697 381 

Dec 19,744 19,635 19,574 19,527 19,506 109 170 217 238 

Annual 277,710 271,182 270,429 270,821 270,512 6,527 7,280 6,889 7,198 
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7.2 Electricity Demand Mitigation Only 

Due to the lack of apparent electricity demand charge savings in the total cost minimization 

MPCs of section 7.1, a separate MPC with only the demand mitigation term was run to see 

if the issue was related to BRM predictions or with the variable energy source pricing 

(steam vs electricity) and MPC causing an increase in electricity demand. The cost function 

was as outlined below in Equation 7.5, and if the maximum predicted electricity value was 

below the recorded peak, then no limitations were implemented. 

 𝐽 = 𝑂demand(𝑀𝑎𝑥(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦) − 𝑃𝑒𝑎𝑘𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦)         7.5 

As shown in Table 7.13, the demand mitigation only strategy does not work for most 

months, with March and May the only month to see electricity demand cost savings (which 

are minimal). The poor performance is linked to an under-prediction of peak electricity 

demands compared to the actual peak demands from E+. This is demonstrated in Table 

7.10 (BRM predictions) and Figure 7.13 (actual values) where the BRM predicts an 

electricity value of 518 kW compared to the building actual consumption of 540 kW at 

14:00. This under-prediction leads to missing the correct decision to increase the 

temperature to avoid an increase in demand charges. Table 7.11 and Table 7.12 

demonstrate BRM predictions for the 8 start options available at 06:00, and show clearly 

that the BRM recognizes that a change in setpoints causes a jump in electricity. However, 

if this jump peak is inaccurate than incorrect paths may be chosen. This is due to demand 

mitigation relying on high accuracy of magnitude prediction as opposed to relative 

accuracy.  
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Table 7.10 August 5th at 14:00 predictions (kW for power, °C for temperature) 

Heating 

Setpoint 

Cooling 

Setpoint 

Electricity 

Prediction 

Steam 

Prediction 

Temp 

Prediction 

Electricity 

Actual 

Steam 

Actual 

Temp 

Actual 

Electricity 

Delta 

Steam 

Delta 

Temp 

Delta 

16 26 422 35 24.1 N/A N/A N/A N/A N/A N/A 

20 22 518 34 23.5 540 27 23.2 -22 7 0.3 

21 23 482 36 23.8 N/A N/A N/A N/A N/A N/A 

22 24 452 40 24.1 N/A N/A N/A N/A N/A N/A 

 

 

 

Figure 7.13 August 5th temperature profile (top) and energy consumption (bottom) 
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Table 7.11 Summer start electricity demand predictions (kW) 

Option 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 

1 138 159 171 184 177 179 184 403 

2 138 159 171 184 177 179 401 409 

3 138 159 171 184 177 399 408 410 

4 138 159 171 184 387 401 407 409 

5 138 159 171 383 393 403 407 409 

6 138 159 383 380 393 402 407 409 

7 138 370 365 380 392 402 407 409 

8 138 362 362 379 391 401 406 403 

 

Table 7.12 Winter start electricity demand predictions (kW) 

Option 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 

1 115 134 133 138 145 145 146 269 

2 115 134 133 138 145 145 284 261 

3 115 134 133 138 145 289 275 260 

4 115 134 133 138 277 271 275 260 

5 115 134 133 291 263 271 275 259 

6 115 134 292 271 263 271 275 259 

7 115 290 264 270 262 270 275 259 

8 333 260 261 271 262 270 275 259 
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Table 7.13 Comparison of electricity demand mitigation only costs (all units in $) 

Month MPC Electricity 

Energy Cost 

MPC Steam 

Energy Cost 

MPC Electricity 

Demand Cost 

RBC Electricity 

Energy Cost 

RBC Steam 

Energy Cost 

RBC Electricity 

Demand Cost 

Total MPC 

Cost 

Total RBC 

Cost 

Total 

Savings 

Jan 13,554 2,624 4,548 13,810 2,763 4,435 20,726 21,008 282 

Feb 11,976 2,047 4,448 12,119 2,192 4,308 18,470 18,620 150 

Mar 13,560 2,066 3,905 13,596 2,254 3,943 19,531 19,794 263 

Apr 14,787 1,799 4,262 14,605 1,988 3,962 20,849 20,555 - 294 

May 16,743 1,625 4,664 16,548 1,797 4,685 23,032 23,030 -  2 

Jun 17,459 1,352 6,226 17,248 1,463 5,560 25,037 24,271 -  767 

Jul 22,249 1,226 6,541 22,564 1,298 6,178 30,015 30,040 25 

Aug 22,162 1,258 6,583 22,276 1,362 5,933 30,003 29,571 - 432 

Sep 19,646 1,360 6,055 19,646 1,503 5,720 27,061 26,869 -  192 

Oct 17,664 1,582 5,190 17,532 1,758 4,977 24,436 24,266 - 170 

Nov 13,928 1,896 4,253 13,985 2,080 3,877 20,077 19,942 - 134 

Dec 12,617 2,299 4,482 13,095 2,326 4,324 19,397 19,744 347 

Ann 196,344 21,134 6,583 197,023 22,784 6,178 278,634 277,710 -  924 
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7.3 Time of Use Electricity Pricing 

For the variable energy pricing structure, a time of use electricity tariff based on Ontario 

Energy Board28 residential prices, shown in Figure 7.14 was implemented. Residential 

Data was used because it is easily accessed/implemented, and it acts as a proxy of the 

wholesale Independent Electricity System Operator29 rates. The summer period runs from 

May 1 (week 17) to October 1 (week 39), with winter representing the remaining months.  

 

Figure 7.14 Time of use electricity profiles 

While time of use pricing is not currently in use for commercial customers in many 

jurisdictions, it represents a trend towards the future of energy supply and demand through 

                                                           

28 http://www.ontarioenergyboard.ca/OEB/Consumers/Electricity/Electricity+Prices#tou 

29 http://www.ieso.ca/ 
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features such as smart grid. The first step in this evolution is the demand charge, which is 

meant to minimize peak draws to provide electricity suppliers stability and improve the life 

of current infrastructure. Time of use energy pricing is the next step in the process with 

fixed tariffs such as used in the residential sector. This is then followed by real-time pricing 

and smart grid operational strategy, where only a fixed supply of electricity is available. 

This approximation is the first step towards these expected changes in the electricity market 

place, and while time of use for commercial customers may be skipped for more advanced 

technologies, it is a good test bed for their applicability. 

7.3.1 Rule Based Control 

The rule based control strategy as in Chapter 7.1.1 was applied, but updated with the new 

time of use electricity pricing structure as described in Chapter 7.3. The monthly costs are 

shown in Figure 7.15 contrasted against constant price RBC (and detailed in Table 7.14). 

As shown, the fluctuations in price cause an increase in costs throughout the year, with a 

larger increase in the summer. This is due to an increased usage of electricity in the summer 

months, and the peak periods of use coinciding with the higher price structure. Overall the 

change to time of use electricity rates appears to skew the cost ratio higher towards 

electricity energy in comparison to steam and electricity demand. 

 

Figure 7.15 RBC monthly costs comparison by source 
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Table 7.14 RBC monthly energy consumption and costs 

Month 

Total Electricity 

(kWh) 

Total Steam 

(kWh) 

Peak Electricity 

Demand (kW) 

Electricity Energy 

Cost ($) 

Steam Energy 

Cost ($) 

Total Energy Cost 

($) 

Electricity 

Demand Cost ($) Total Cost ($) 

Jan 125,544 39,472 424 15,229 2,763 17,992 4,435 22,428 

Feb 110,176 31,320 412 13,377 2,192 15,570 4,308 19,878 

Mar 123,602 32,202 377 15,030 2,254 17,284 3,943 21,227 

Apr 132,770 28,394 378 16,345 1,988 18,333 3,962 22,295 

May 150,433 25,669 448 18,814 1,797 20,610 4,685 25,296 

Jun 156,796 20,901 531 19,655 1,463 21,118 5,560 26,678 

Jul 205,126 18,545 590 25,981 1,298 27,279 6,178 33,457 

Aug 202,513 19,452 567 25,661 1,362 27,022 5,933 32,955 

Sep 178,602 21,477 546 22,559 1,503 24,062 5,720 29,782 

Oct 159,384 25,109 475 20,138 1,758 21,896 4,977 26,873 

Nov 127,136 29,721 356 15,528 2,080 17,609 3,877 21,486 

Dec 119,041 33,224 413 14,479 2,326 16,805 4,324 21,128 

Annual 1,791,122 325,486 590 222,796 22,784 245,580 57,902 303,482 
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7.3.2 Total Cost Minimization with a Switching Penalty of 1 

Based on the results of fixed energy prices, only a comparison to the best performing 

scenario (fluctuation penalty = 1) is given in detail. The results for penalty = 1 are tabulated 

in Table 7.15, and direct comparison to RBC with monthly data in Figure 7.16. Similar to 

the constant price scenario, more cost savings are achieved during the summer than the 

winter. Figure 7.17 clearly illustrates the impact of time of use pricing on cost, where the 

middle portion of the day has a reduced cost compared to the morning and evening. During 

the summer (Figure 7.18), the impact of the MPC is more noticeable, with the building 

being chilled prior to or at the very start of the high price period. Due to the lack of thermal 

mass on the Mona Campbell, the time of minimal energy consumption (i.e. no active 

cooling during transition) is minimal, and the savings are generated by setpoints that 

require less cooling. 

 

Figure 7.16  Decay penalty = 1 monthly costs by source 
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Figure 7.17  Decay penalty = 1 vs RBC sample winter temperatures (top), energy consumption 

(middle), and costs (bottom) 
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Figure 7.18 Decay penalty = 1 vs RBC sample summer temperatures (top), energy 

consumption (middle), and costs (bottom) 
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Table 7.15 Decay penalty = 1 energy consumption and costs 

Month 

Total Electricity 

(kWh) 

Total Steam 

(kWh) 

Peak Electricity 

Demand (kW) 

Electricity Energy 

Cost ($) 

Steam Energy 

Cost ($) 

Total Energy Cost 

($) 

Electricity 

Demand Cost ($) Total Cost ($) 

Jan 122,830 37,871 434 15,002 2,651 17,653 4,548 22,201 

Feb 106,859 30,491 425 13,040 2,134 15,175 4,448 19,622 

Mar 119,764 31,562 373 14,595 2,209 16,804 3,905 20,709 

Apr 127,067 28,379 363 15,645 1,987 17,631 3,804 21,436 

May 144,162 26,018 434 18,049 1,821 19,871 4,540 24,411 

Jun 150,658 21,373 532 18,915 1,496 20,411 5,568 25,980 

Jul 194,319 18,983 590 24,712 1,329 26,041 6,176 32,216 

Aug 193,296 19,958 551 24,562 1,397 25,960 5,773 31,732 

Sep 170,794 21,999 568 21,595 1,540 23,135 5,948 29,084 

Oct 152,007 25,581 487 19,228 1,791 21,019 5,099 26,119 

Nov 122,517 29,442 357 14,980 2,061 17,041 3,737 20,778 

Dec 116,291 32,392 424 14,241 2,267 16,509 4,444 20,953 

Annual 1,720,563 324,050 590 214,566 22,684 237,249 57,992 295,241 
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7.3.3 Results Comparison for Time of Use Electricity Pricing 

The MPC with greatest savings for time of use electricity pricing is that of the MPC with 

a penalty term of 1. This is verified in Figure 7.19 and Table 7.16, where all the MPC 

scenarios provide energy savings. The results highlight the addition of a penalty term on 

switching setpoints is valid for both constant electricity pricing and time of use electricity 

pricing. In terms of magnitude, a maximum savings of $8,248 is achieved, representing 

2.7% of the operating costs of the building, or 6.1% of the HVAC costs. 
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Figure 7.19 Time of use electricity pricing monthly cost comparisons 
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Table 7.16 Time of use electricity price cost comparison 

Month 

RBC Total 

Cost 

No Penalty Total 

Cost 

Penalty = 1 Total 

Cost 

Penalty = 2 Total 

Cost 

Penalty = 5 Total 

Cost 

No Penalty 

Savings 

Penalty = 1 

Savings 

Penalty = 2 

Savings 

Penalty = 5 

Savings 

Jan 22,428 22,247 22,201 22,213 22,148 181 226 215 279 

Feb 19,878 19,671 19,622 19,647 19,637 207 256 232 241 

Mar 21,227 20,787 20,709 20,723 20,746 440 518 504 481 

Apr 22,295 21,436 21,436 21,810 21,460 859 859 485 834 

May 25,296 24,729 24,411 24,412 24,470 567 885 884 826 

Jun 26,678 26,017 25,980 26,076 26,081 661 698 602 597 

Jul 33,457 32,186 32,216 32,310 32,313 1,271 1,241 1,147 1,144 

Aug 32,955 31,743 31,732 31,769 31,559 1,212 1,223 1,186 1,396 

Sep 29,782 29,120 29,084 29,114 29,147 662 698 668 635 

Oct 26,873 26,333 26,119 25,950 26,346 540 754 922 526 

Nov 21,486 21,274 20,778 21,026 21,101 211 708 459 385 

Dec 21,128 21,045 20,953 20,936 20,940 83 175 193 189 

Ann 303,482 296,589 295,241 295,986 295,949 6,893 8,242 7,496 7,533 
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7.4 Comparison of Time of Use Electricity Pricing to Constant 

Pricing 

In order to better understand the impact of time of use electricity pricing on MPC decision 

making, a comparison between the MPC with constant pricing and time of use pricing was 

conducted. The comparison is done between the MPCs with a decay penalty of 1 as they 

were the best performing MPC for both pricing structures. Shown in Figure 7.20 are the 

monthly pricing comparisons, where similar to the RBC case a larger cost differential is 

located in the summer months. Figure 7.21 shows the annual costs by fuel source, where 

the primary difference in cost is that of electricity energy. A sample winter week of 

comparison is shown in Figure 7.22, where minimal differences in setpoints exist and 

appear to be unaffected by the time of use electricity rates. A similar conclusion can be 

drawn for the summer week in Figure 7.23, where there are minimal differences in 

setpoints between the MPCs. This is not surprising due to the low thermal mass of the 

Mona Campbell building allowing for a minimal amount of energy storage for latter 

periods with higher prices. 
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Figure 7.20 Monthly cost comparison of time of use and constant price electricity for MPC 

with penalty = 1 
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Figure 7.21 Annual cost comparison between constant and time of use electricity pricing MPC 

with penalty = 1 
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Figure 7.22 Penalty = 1 MPC comparison between time of use and constant electricity pricing 

winter temperature (top), energy consumption (middle) and cost (bottom) 
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Figure 7.23 Penalty = 1 MPC comparison between time of use and constant electricity pricing 

summer temperature (top), energy consumption (middle) and cost (bottom) 
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While there appears to be minimal change in setpoint choices due to the pricing structure 

in electricity, an analysis of the cost savings shows differences. Table 7.17 outlines the 

costs and savings for the penalty of 1 MPC in both price structures. As shown, the time of 

use price structure saves an additional $968, but only increases the percentage savings from 

2.6% to 2.7% of operating costs of the building. This is due to the increased cost of 

operating the building under a time of use electricity pricing structure. 

Table 7.17 Cost and savings comparison between constant and time of use electricity pricing 

($) 

Month 

Constant Price 

RBC Total Cost 

Constant Price 

MPC Total Cost 

Constant Price 

Savings 

ToU RBC 

Total Cost 

ToU MPC 

Total Cost ToU Savings 

Jan 21,008 20,689 319 22,428 22,201 226 

Feb 18,620 18,341 279 19,878 19,622 256 

Mar 19,794 19,293 501 21,227 20,709 518 

Apr 20,555 19,775 780 22,295 21,436 859 

May 23,030 22,679 351 25,296 24,411 885 

Jun 24,271 23,641 630 26,678 25,980 698 

Jul 30,040 28,869 1,171 33,457 32,216 1,241 

Aug 29,571 28,449 1,122 32,955 31,732 1,223 

Sep 26,869 26,281 589 29,782 29,084 698 

Oct 24,266 23,600 667 26,873 26,119 754 

Nov 19,942 19,241 702 21,486 20,778 708 

Dec 19,744 19,574 170 21,128 20,953 175 

Annual 277,710 270,429 7,280 303,482 295,241 8,242 
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7.5 Conclusions of Model Predictive Control Simulations 

The results of this chapter can be summarized as follows: 

• A pure total cost minimization strategy produces energy savings, but has an 

unrealistic amount of setpoint changes during the winter months. This is due to a 

competing balance between the steam cost (increases as setpoints increase) and 

electricity cost (predicted to increase as setpoints decrease due to core space 

cooling). Any prediction inaccuracies that cause a change in setpoints where the 

expected savings are not realized will cause a corresponding switch in setpoints 

again leading to an unstable feedback loop. 

• A switching penalty was introduced to prevent the oscillations as found in Chapter 

7.1.3. Values of 1, 2, and 5 were tested, with a penalty of 1 providing the best 

balance between oscillation minimization and allowing for corrections when 

necessary. 

• Demand mitigation requires high magnitude accuracy of electricity demand as 

opposed to relative accuracy, which the BRM (and most simplified models) appears 

incapable of producing. The BRM has a tendency to under predict the peak demand. 

Due to these BRM inaccuracies a pure electricity demand mitigation strategy does 

not work.  

• A minimal difference between time of use and constant electricity prices was found 

in terms of setpoint choices and percentage savings (2.6% vs 2.7%). A higher dollar 

savings was achieved with the time of use rates, due to the higher base cost of 

operating the building. This is due to the Mona Campbell building being rather light 

from its bubble deck construction which provides good thermal resistance but has 

less mass with a limited ability to store energy for shifting.  

• A challenge for the Mona Campbell is that HVAC electricity is only 41% of the 

measured total loads and 33% of the simulated loads. The building also has minimal 

thermal mass due to the use of a bubble deck construction (bubbles of air are placed 
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within the concrete to reduce mass). These properties make it a less than ideal test 

facility as there is little thermal mass to manipulate, and an efficient HVAC system 

has smaller room for improvements. In contrast, typical building construction 

contains more mass (no air bubbles within the concrete), and has less efficient 

HVAC systems (upwards of 50% energy consumption for the site as opposed to 

41%). When HVAC is a larger component of the building costs, a larger net savings 

can be achieved as MPC only has a direct influence on the HVAC loads. 

• It is expected for heavier buildings (i.e. more thermal mass) that a larger impact 

from the implementation of time of use electricity rates would be realized, but 

should be further investigated.  
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Chapter 8 EMULATED MODEL PREDICTIVE CONTROL 

SIMULATIONS 

In an effort to isolate the effects of BRM prediction error on MPC decision making, a 

version of emulated MPC was conducted. The driving factor was the struggle that BRM 

had to predict peak electricity consumption as outlined in section 7.2. By using emulated 

MPC, these errors in prediction can be overcome as an exact system model is used. The 

downside is that only morning start optimization can be implemented, which does not 

directly influence the peak demand period (afternoon). A second area that is explored using 

emulated MPC is the impact of the forecast horizon on MPC results. It is expected that 

longer forecast horizons with perfect information perform better than shorter horizons. 

These effects are expected to be most noticeable on electricity demand mitigation, which 

is billed on a monthly basis. 

To achieve the one month shrinking window look ahead horizon, the initial one day horizon 

MPC was run for an entire month, with the peak electrical demand stored. The one day 

horizon MPC was then rerun with monthly electric demand peak value (as opposed to the 

peak to date value) to allow for the MPC to make decisions based on the largest electric 

demand limit. Using the new limit prevents the wasted energy usage when attempting to 

maintain the current peak electricity demand prior to an unavoidable electricity demand 

peak. 

The emulated MPC was run using the optimization algorithms from Chapter 7.1.2 for 

energy minimization and Chapter 7.1.3 for cost minimization, utilizing time-of-use 

electricity pricing. It is expected that the results for the cost optimization should mirror 

those of the energy minimization, with slight changes due to the time latency of changes 

in start time (i.e. it takes several hours to reach a similar level of energy consumption, with 

delayed starts using more energy until convergence happens). Any demand savings that 

occur compared to the energy minimization scenario are due to shifting the peak in winter, 

or the transient convergence process in summer.  
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A further exploration into an emulated MPC method is required in order to truly capture 

demand savings due to demand peaks occurring during the daytime as opposed to during 

the morning start. While the results from emulated MPC will not be optimal for pure 

demand mitigation, a better understanding of how demand mitigation influences MPC 

choices can be gained by comparing to pure energy minimization. 

8.1 Results of Emulated Model Predictive Control 

A comparison between 4 different operating scenarios is given for emulated MPC: RBC, 

energy minimization, total cost minimization with a one day forecast, and total cost 

minimization with a one month forecast. Monthly costs are plotted in Figure 8.1 with totals 

tabulated in Table 8.1, electricity demand costs in Table 8.2, electricity energy costs in 

Table 8.3, and steam energy costs in Table 8.4. The results indicate that the one month 

forecast has the best performance by saving $6,685 (2.1% total costs, 5.7% HVAC costs). 

This is due to the forecast horizon matching the billing period for demand, such that those 

savings can be accurately captured along with energy savings.  

The next best scenario was the energy minimization scenario, with savings of $6,208 (2.1% 

total cost, 5.6% HVAC cost). The result is driven by pure energy reduction, where total 

energy savings outweigh the increase in demand costs. Due to the use of steam for heating 

and low percentage of electricity used for HVAC, pure energy minimization appears to be 

a feasible strategy to employ. Buildings with higher HVAC electricity percentages (such 

as electrically heated buildings) may not have similar findings. The pricing structure of 

energy may also play a factor, where jurisdictions with higher demand charges a lower 

energy costs (such as Quebec) may require attention paid to the demand portion of costs. 

The one day horizon cost MPC performs worse than a pure energy minimization MPC due 

to having an insufficient forecast horizon, with savings of $6,171 (2.1% total cost, 5.6% 

HVAC). By only considering one day ahead, the MPC strives to maintain peak demand 

over a smaller window (from when the billing cycle began to the day ahead compared to 

the whole month). Due to this smaller window, the actual peak demand of a billing period 

is not seen until a day before it occurs. This leads to extra energy usage to maintain the 
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incorrect lower electricity demand peak value. Examples of this can be seen in Figure 8.2 

and Figure 8.3 where the one day forecast MPC initializes the HVAC system sooner than 

the energy minimization and one month forecast MPC to maintain the incorrect lower 

electric demand peak.  
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Figure 8.1 Emulated MPC monthly cost comparison 
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Figure 8.2 Emulated MPC winter comparison 
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Figure 8.3 Emulated MPC summer comparison 
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Table 8.1 Monthly comparison of total costs for emulated MPC scenarios ($) 

Month RBC Total Cost 

Energy MPC 

Total Cost 

1-Day MPC Total 

Cost 

1-Month MPC 

Total Cost 

Energy MPC 

Savings 

1-Day MPC 

Savings 

1-Month MPC 

Savings 

Jan 21,791 21,382 21,368 21,368 409 423 423 

Feb 19,519 19,184 19,100 19,094 335 419 425 

Mar 21,138 20,209 20,209 20,209 929 929 929 

Apr 21,761 21,287 21,309 21,280 474 452 481 

May 24,737 24,418 24,386 24,355 319 351 382 

Jun 25,908 25,584 25,660 25,557 324 248 351 

Jul 32,504 31,766 31,828 31,693 738 676 811 

Aug 32,409 31,637 31,683 31,597 772 726 812 

Sep 29,289 28,725 28,787 28,692 564 502 597 

Oct 26,600 26,203 26,199 26,173 397 401 427 

Nov 21,013 20,483 20,483 20,483 530 530 530 

Dec 20,400 19,983 19,887 19,881 417 513 519 

Ann 297,070 290,862 290,899 290,382 6,208 6,171 6,688 
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Table 8.2 Monthly comparison of electricity demand costs for emulated MPC scenarios ($) 

Month 

RBC Electricity 

Demand Cost 

Energy MPC 

Electricity 

Demand Cost 

1-Day MPC 

Electricity 

Demand Cost 

1-Month MPC 

Electricity 

Demand Cost 

Energy MPC 

Savings 

1-Day MPC 

Savings 

1-Month MPC 

Savings 

Jan 4,380 4,380 4,380 4,380 0 0 0 

Feb 4,261 4,353 4,254 4,254 -92 7 7 

Mar 4,112 3,664 3,664 3,664 448 448 448 

Apr 3,923 3,942 3,918 3,918 -19 5 5 

May 4,566 4,650 4,566 4,566 -84 0 0 

Jun 5,259 5,315 5,259 5,259 -56 0 0 

Jul 5,657 5,773 5,657 5,657 -116 0 0 

Aug 5,639 5,633 5,557 5,571 6 82 68 

Sep 5,601 5,667 5,601 5,601 -66 0 0 

Oct 5,023 5,070 5,023 5,023 -47 0 0 

Nov 3,677 3,661 3,661 3,661 16 16 16 

Dec 4,351 4,379 4,282 4,282 -28 69 69 

Ann 56,449 56,486 55,820 55,834 -37 629 615 
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Table 8.3  Monthly comparison of electricity energy costs for emulated MPC scenarios ($) 

Month 

RBC Electricity 

Energy Cost 

Energy MPC 

Electricity 

Energy Cost 

1-Day MPC 

Electricity Energy 

Cost 

1-Month MPC 

Electricity Energy 

Cost 

Energy MPC 

Savings 

1-Day MPC 

Savings 

1-Month MPC 

Savings 

Jan 14,743 14,381 14,366 14,370 362 377 373 

Feb 13,050 12,667 12,682 12,677 383 368 373 

Mar 14,724 14,324 14,324 14,324 400 400 400 

Apr 15,736 15,343 15,380 15,358 393 356 378 

May 18,236 17,925 17,965 17,941 311 271 295 

Jun 19,049 18,743 18,857 18,769 306 192 280 

Jul 25,403 24,626 24,789 24,668 777 614 735 

Aug 25,253 24,562 24,672 24,583 691 581 670 

Sep 22,068 21,520 21,636 21,549 548 432 519 

Oct 19,693 19,344 19,378 19,356 349 315 337 

Nov 15,180 14,764 14,764 14,764 416 416 416 

Dec 13,818 13,425 13,425 13,421 393 393 397 

Ann 216,954 211,592 212,238 211,779 5,362 4,716 5,175 
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Table 8.4 Monthly comparison of steam energy costs for emulated MPC scenarios ($) 

Month 

RBC Steam 

Energy Cost 

Energy MPC 

Steam Energy 

Cost 

1-Day MPC Steam 

Energy Cost 

1-Month MPC 

Steam Energy Cost 

Energy MPC 

Savings 

1-Day MPC 

Savings 

1-Month MPC 

Savings 

Jan 2,669 2,621 2,623 2,619 48 46 50 

Feb 2,207 2,163 2,165 2,163 44 42 44 

Mar 2,301 2,221 2,222 2,222 80 79 79 

Apr 2,101 2,003 2,011 2,005 98 90 96 

May 1,936 1,844 1,855 1,848 92 81 88 

Jun 1,600 1,527 1,544 1,529 73 56 71 

Jul 1,444 1,367 1,383 1,369 77 61 75 

Aug 1,517 1,442 1,454 1,444 75 63 73 

Sep 1,619 1,538 1,550 1,542 81 69 77 

Oct 1,884 1,790 1,797 1,793 94 87 91 

Nov 2,156 2,058 2,058 2,058 98 98 98 

Dec 2,232 2,179 2,180 2,180 53 52 52 

Ann 23,667 22,747 22,841 22,771 920 826 896 
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8.2 Conclusions from Emulated Model Predictive Control 

Simulations 

Several conclusions can be drawn from the results of running emulated MPC and isolating 

the effects of the BRM on system performance. The first is that high magnitude accuracy 

of the E+ model used within emulated MPC does lead to improved electricity demand 

mitigation. All months either maintain the RBC electricity demand or lower the value 

through optimal morning start choice. This is in contrast with the results of Chapter 7, 

where only 6 months either reduced or maintained the peak electricity demand. The error 

introduced by simplified models in predicting magnitude values makes optimizing for 

electricity demand a challenge, as most simplified models have excellent trend following 

and low overall error, but can still miss the peak demand. 

A second finding is that the forecast horizon has an impact on system performance. Using 

a forecast of one month had an improved performance over the forecast horizon of one day. 

The improvement is due to estimating the proper electricity demand value for the entire 

billing period, which allows for more energy savings. This is difficult to implement in 

practice due to uncertainties in weather forecasts over such a time period. Using a shorter 

window still achieves the demand reduction, but at the expense of using more energy prior 

to the monthly peak entering the horizon window. This is due to the efforts to minimize 

demand early in a billing period uses more energy at that time. When a later peak occurs, 

all this extra energy used to mitigate the previous demand peaks is wasted as demand is 

billed on the highest peak. 

A final finding is that when morning start alone is being optimized for the Mona Campbell 

Building, a pure energy minimization provides similar performance to cost reduction 

strategies utilizing electricity demand charges. The energy minimization performs 

similarly due to the morning start having a larger impact on morning heating in the Halifax 

climate, which is serviced primarily by steam. A second factor is that the electricity peak 

typically occurs in the afternoon for cooling, meaning the choices made for morning start 

have minimal impact on the electricity peak demand. The efficient HVAC system of the 

Mona Campbell also minimizes the amount of potential savings due an already low amount 
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of energy consumption. A final contributing factor is the energy pricing structure, where 

the energy cost represents the largest portion of costs. In jurisdictions/buildings where 

demand charges are a larger component of total cost, a larger emphasis is likely to be placed 

on electricity demand mitigation. 
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Chapter 9 EXPERIMENTAL RESULTS 

Portions of this chapter have been submitted to Building and Environment for publication 

with Ms. Ref. No.:  BAE-D-17-00886, coauthored by Dr. Lukas Swan and Dr. Zheng Qin, 

27 pgs. 

Trent Hilliard is the principal researcher and author of the article. He conducted the 

research as part of his PhD. Thus, while he received supervision and guidance from his 

coauthors Dr. Lukas Swan and Dr. Zheng Qin, he carried out the work, wrote the article, 

and communicated with the editor of the journal. Minor grammatical and content changes 

have been made to integrate the article within this dissertation. 

9.1 Introduction 

An experimental test was conducted on the Mona Campbell building to verify MPC 

performance in a real-world setting. Based on the results of Chapter 8 which indicate 

simplified models struggle with demand charges, an energy minimization scheme was 

employed. Data was collected from the existing building BAS on 15 minute timesteps, with 

ZAT setpoints applied to the BAS for implementation. Data was collected starting May 2, 

2016. The MPC was implemented on the building from August 8, 2016 to November 28, 

2016, providing 4 months of data for comparison. MPC was implemented as described in 

section 6.10, where the emulated MPC results were used for morning start, and the BRM 

based MPC results for the occupied period. The objective function was the same as in 

section 7.1.3. The system was run first offline, with the results then clustered using ‘k 

means’ clustering to create a real-time operational system. The clustered results act as a 

look-up table where weather and building state are the inputs, with the optimal building 

setpoints as the output. The ZOT comfort layer is then applied across the building utilizing 

the forecasts produced by GPL. Building system performance was monitored for energy 

savings performance, while the client feedback portal was used to monitor thermal comfort 

of the occupants. Limits were provided to the output setpoints from the MPC to be in the 

range of 19 to 26 °C during the daytime period. A heartbeat function was included that if 

no information was gathered or written for three consecutive timesteps in a row the 

building would revert back to the existing rule based control. 
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9.2 Building Response Model 

For the whole building optimization, a simplified BRM was required for the occupied 

period of the MPC due to computational time constraints of E+. The randomForest 

modeling technique as employed in Chapter 6.1 was used with the following data sources: 

• Simulated data from a calibrated E+ model. 

• Measured data from the building. 

The data consisted of 90% E+ simulation data, and 10% measure data from the building. 

No additional weighting was placed on the measured data, and the randomForest model 

was allowed to split the data between trees as it saw fit. 

A validation was conducted on the BRM predictions (temperature and power) to the 

measured site data. Figure 9.1 is a comparison of BRM predictions to measured data for a 

summer day (August 22) for the occupied period of 08:00 to 22:00 when the BRM was 

used for MPC. As shown, the electricity model predicts well with minimal deviations. The 

steam appears to have a consistent offset, with the model predicting constant usage while 

the site measurements are sporadic. A comparison of zone temperature shows a consistent 

daytime offset of approximately 1 °C, with the BRM underpredicting. Figure 9.2 is a 

comparison for fall (October 5) and represents some of the colder ambient conditions 

during data collection. As shown, the electricity model shows a similar level of 

performance as in the summer months, with steam showing an improvement in 

performance, but still trends on the overprediction side. The temperature performance has 

a similar 1 °C offset. The data gap at 11:30 is due to a communication error and shows that 

there is minor impact on the simplified model prediction performance (drop of 1 °C in 

temperature prediction, increase in steam prediction), indicating that the model can 

withstand a sensor issue and still provide usable predictions. A statistical fit between the 

BRM and measured data is provided in Table 9.1, which shows worse performance than 

the E+ comparison. This is due to the fact that the majority of training data was from E+, 

and due to operational changes the occurred at the building between the period of used for 
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model calibration and when the MPC system was tested. These changes include the moving 

of several servers to a different building (November 2015), isolating steam heating to 

domestic hot water during the summer (June 2106), and changes to the cooling equipment 

within the server room (November 2014). The overprediction errors (as outlined in the 

NMBE) are in line with the changes, as electrical load was removed from the building, and 

the steam was disabled. 

Based on the model fit with the E+ data (90% of the training data for the model), a future 

iteration of the model trained with a majority of data from the actual building should result 

in improved model predictions when compared to the measured building data. 

 

Figure 9.1 Comparison of measured data to BRM predictions in summer 
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Figure 9.2 Comparison of measured data to BRM predictions in winter 

Table 9.1 BRM model fit to measured site data 

Model NMBE (%) RMSE (kW/°C) CV(RMSE) (%) 

Electricity 28 69.4 37 

Steam 191 27.0 188 

Temperature -3 0.755 3 
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9.3 Energy Savings 

The first quantifiable measure in the success of the MPC scheme is that energy savings 

exist and are generated by both the optimized start and daytime optimization of the MPC. 

There were several non-HVAC operational changes made in previous years that make 

comparison to historical data difficult. These changes include the moving of several servers 

to a different building (November 2015), isolating steam heating to domestic hot water 

during the summer (June 2106), and changes to the cooling equipment within the server 

room (November 2014). Due to these changes a comparison to historical whole building 

data would not provide an accurate representation of MPC savings. Instead, dedicated sub-

meters on the HVAC system were used to determine the impact of the MPC. This is an 

appropriate comparison meter as it only considers the portion of electrical load affected by 

MPC (the server room cooling equipment was measured separately from the remainder of 

the HVAC load). 

A comparison to historical HVAC electricity is given in Figure 9.3, while steam is given 

in Figure 9.4, with a weather comparison of heating degree days and cooling degree days 

given in Figure 9.5. Note that the plotted data is the supplied monthly data. The test period 

of August to November 2016 is shaded a darker green. As shown in Figure 9.3, the 

historical HVAC energy appears to have an upward trend in usage from 2014 through 2015 

and into the beginning of 2016. The first decline begins in August 2016 after the MPC 

technology was employed with the decrease being maintained until December when the 

MPC trial period ended. In comparison to 2015, a total HVAC electricity reduction of 29% 

was achieved for the trial period of MPC (August through November 2016). Figure 9.4 

clearly shows that the steam was isolated in June of 2016, and was re-enabled in late 

September for the beginning of the heating season. The marked decreases in October and 

November can be attributed to the implementation of the MPC to the site, where the usage 

in December re-approaches historical levels when the MPC technology was not used. A 

decrease in steam for October and November of 63% compared to 2015 was achieved and 

can be directly related to the MPC implementation. The weather trends in Figure 9.5 show 
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that the climate is a heating dominated climate, and that there was minor variability year 

to year.  

  

Figure 9.3 Historical HVAC electricity usage 
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Figure 9.4 Historical steam consumption 

  

Figure 9.5 Historical ambient condition trends as defined by HDD and CDD 
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To better understand how the MPC saved energy, a comparison between the last full week 

prior to the MPC and first full week after MPC implementation was undertaken, with the 

results in Figure 9.6 and weather in Figure 9.7, which demonstrated similar ambient 

conditions. The temperature profile shows the change from the constant setpoints being 

used by the building (week 31) to when the MPC scheme is activated (week 33) where 

night setbacks become employed, and several daytime changes can be seen.  

Larger savings were generated during constant external conditions (such as Tuesday and 

Wednesday), while fluctuating ambient conditions cause more changes in control setpoints, 

thus more equipment cycling occurred and led to energy usage. The fluctuations are driven 

by the competing nature of ZOT comfort requirements and energy minimization. Morning 

start optimization savings can be seen by the delay in reaching the daytime nominal 

operating value, where week 31 has a peak that drops down, while week 33 exhibits 

smoother behavior. An example of this occurs on Wednesday, when the week 31 has a first 

peak of 237 kW at 07:30, while week 33 has a first peak at 09:30 of 227 kW. The daytime 

savings are noticeable by the offset between the peak values for week 31 and week 33, with 

a reduction of 30 kW on Wednesday (279 kW for week 31 and 249 kW for week 33). 

Savings were achieved overnight and on weekends due to the implementation of setback 

temperature setpoints. The AHU schedules had previously had night shutdown 

implemented. The reduction in weekend electricity usage was due to the fresh air system 

being engaged over the weekend, but with using the setback temperatures less energy was 

required as a tight temperature band was no longer being maintained. Overnight savings 

were also achieved due to smaller loads required to maintain the setback conditions.  
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Figure 9.6 Comparison prior to (week 31 – solid) and after (week 33 – dashed) MPC 

integration electricity, steam, and temperature 

 

Figure 9.7 Weather comparison prior to (week 31 – solid) and after (week 33 - dashed) MPC 

integration 
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In addition to the comparison to measured data, a regression based models for steam and 

HVAC electricity were developed. The 2014 and 2015 data was used to create the 

regression models. For steam, the sole regressor used was HDD (steam is only used for 

heating), while for electricity both HDD and CDD were used (the heat pumps provide both 

heating and cooling). The model statistics are outlined in Table 9.2, which show that the 

steam model appears to have a better fit than electricity due to the higher r2 and higher F 

statistic.  

Table 9.2 Regression model statistics 

Model HDD Coefficient CDD Coefficient Intercept r2 F 

Electricity -6.1 262 50164 0.51 10.3 

Steam 39.9 N/A 28973 0.76 62.6 

 

A comparison between the regression model and measured electricity data for 2016 is given 

in Figure 9.8, which shows that savings during the MPC period exist throughout the 95% 

confidence range. The percent savings range from 10% to 29%, with the nominal model 

predictions showing 19% savings. A p-value of 0.049 statistically validates the savings. 

The results for steam are shown in Figure 9.9, where the range of savings within the 95% 

confidence interval are 69% to 86%, with the nominal model prediction showing a 78% 

reduction for the months of October and November (August and September were omitted 

due to operational changes that were reverted in late September). A p-value of 0.024 

demonstrates the statistical significance of the results. The test period from August to 

November is shaded to highlight when MPC was run on the building. The results for 

electricity are tabulated in Table 9.3, and steam in Table 9.4.  
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Figure 9.8 Comparison between measured data and regression model for electricity 

 

Figure 9.9 Comparison between measured and regression model for steam 
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Table 9.3 Monthly electricity consumption (kWh), MPC savings in bold 

Month 2014 2015 2016 2016 

Regression 

Savings vs 

2015 

Savings vs 

Regression 

January 40429 50657 59825 46538 9168 13287 

February 37372 49828 54007 46934 4179 7073 

March 43941 54049 60661 47116 6612 13545 

April 41038 51434 51614 47259 180 4355 

May 41874 N/A 50028 48948 N/A 1080 

June 48601 43318 44490 50402 1172 -5912 

July 57339 61911 60289 62568 -1622 -2279 

August 59705 67150 52813 56214 -14337 -3401 

September 49836 66297 47864 56969 -18433 -9105 

October 46219 60416 40181 49205 -20235 -9024 

November 43715 55217 35554 47967 -19663 -12413 

December 41708 54301 46104 47237 -8197 -1133 

 

Table 9.4 Monthly steam consumption (kWh), MPC savings in bold 

Month 2014 2015 2016 2016 

Regression 

Savings vs 

2015 

Savings vs 

Regression 

January 60643 67895 39559 52776 -28336 -13217 

February 48729 57111 26757 50178 -30354 -23421 

March 49566 47816 43706 48985 -4110 -5279 

April 44260 52105 33352 48044 -18753 -14692 

May 50138 37540 37911 38332 371 -421 

June 25561 N/A 11372 33776 N/A -22404 

July 25561 34157 6399 29766 -27758 -23367 

August 31898 30297 4333 29507 -25964 -25174 

September N/A 35818 4197 31949 -31621 -27752 

October 35981 35123 7545 35264 -27578 -27719 

November 36400 33501 17926 43392 -15575 -25466 

December 44774 50526 38865 48187 -11661 -9322 
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9.4 Zone Operative Temperature Adjustment 

In addition to the whole building setpoint changes, a verification of the ZOT comfort 

adjustments was also undertaken. An example of the ZOT based adjustments for a western 

facing zone can be shown in Figure 9.10 for Thursday of week 33. The setpoints are 

reduced during the afternoon period when direct sunlight would be entering the zone, and 

the intermittent nature of adjustments occurs due to the fluctuating solar load. While these 

adjustments typically expend more energy, the improvement in thermal comfort is 

considered more important than the additional energy cost. As shown, the changes in 

setpoint are used to lower the ZAT, which in turns lowers the ZOT of the zone to maintain 

comfort.  

 

Figure 9.10 ZOT based thermal comfort adjustments – first floor west 
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9.5 User Feedback 

The client feedback portal became operation on September 16, 2016 for the remainder of 

the trial period. The portal recorded 636 instances of feedback from occupants. The 

feedback consisted of 23 comfortable (3.6%), 197 too cold (31.0%), and 416 too warm 

(65.4%). The high percentage of uncomfortable complaints (as a percent of total feedback) 

is not unexpected as the use of the portal was voluntary. It was assumed that a comfortable 

occupant would not log in to provide feedback. Feedback was registered by 22 of the 63 

full-time occupants of the building, with 79% of the feedback coming from just 5 rooms 

(all single offices) in the building. The highest feedback room accounted for 44% of all 

feedback from a user whose desired comfort lied outside the ASHRAE comfort range 

(preferred a much cooler temperature). One of the high complaint rooms was found to have 

a thermostat mapping issue within the original BAS. This information was passed to the 

building operator, with the point being corrected and an immediate reduction in the rate of 

comfort complaints occurred. When compared to a total number of MPC control timesteps 

during the occupancy period (08:00-22:00 Monday-Friday) the 636 feedback points 

represent 0.4% of the 173,600 (63 people for 2800 timesteps) which lies far below the 

Fanger stated discomfort level of 10% of people dissatisfied [48]. 
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9.6 Conclusions of Experimental Implementation 

A hybrid, multilayered MPC approach for optimal building control while maintaining 

occupant comfort through the use of zone level ZOT adjustments and a client feedback 

portal was experimentally implemented on an academic building. During the period of 

operation, a HVAC energy reduction of 29% for electricity and 63% for steam was 

achieved on-site compared to 2105 usage utilizing the existing rule based control with 

individual occupant control. A linear regression based model built on HDD and CDD was 

built to confirm the savings, which the savings are 19% for HVAC electricity and 78% for 

steam, with p-values of 0.049 for HVAC electricity and 0.024 for steam statistically 

validating the savings. The client feedback portal registered only 0.4% complaints of 

discomfort over the nominal occupied period. These results justify that treating the whole 

building average for optimization (to minimize computational complexity) and then 

applying local thermal comfort adjustments is indeed a viable approach to the optimization 

problem. The low level of complaints also verifies the decision to use ZOT as the comfort 

metric as opposed to ZAT, due to the incorporation of radiation based effects. The MPC 

(including the energy modeling portion) only uses information readily available in the BAS 

and/or provided by the building manager (such as occupancy hours and design drawings) 

to provide a low-cost solution that requires no on-site installation beyond a data connection 

to the BAS.  

While the BRM energy predictions did differ from the actual energy use of the building, 

the fit with the simulated training data (which compromised 90% of training data) indicate 

that a retraining of the model should provide better performance. Even with the prediction 

errors, the relative gains seen by the model are enough for optimal decisions to be made 

when using an energy minimization scheme. The savings exceed those found in the 

simulation study, and can be attributed to several of the assumptions built into the model. 

The first area is the implementation of setbacks, which had been in use but manually 

overridden between the model calibration period (2013 data) and the MPC testing in 2016. 

A second factor is the uniformity of the zone setpoints in E+ compared to on site, where 

variability in thermostats existed. To overcome these issues, a finer resolution model in E+ 
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would be required. This extra work for such a model is not trivial. Secondly, the current 

zoning groups rooms based on their expected ZOT comfort range, as they should 

experience similar ambient conditions, thus it should be sufficient for development of the 

MPC. 
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Chapter 10 CONCLUSIONS AND FUTURE WORK 

The results of this dissertation demonstrate a model predictive control (MPC) approach for 

whole building control utilizing surface level forecasts can be implemented, and can 

provide energy reduction through the experimental study conducted, with simulations 

showing smaller savings potential.  

10.1 Conclusions 

The results are made possible through the steps outlined in this thesis, starting with an 

accurate source of data to train the building response model (BRM) for MPC. The data was 

generated using a calibrated EnergyPlus (E+) model of the building to ASHRAE Guideline 

14, and supplemented with measured data from the building automation system (BAS). 

The importance of the advanced energy model cannot be understated, as it was used to 

generate the BRM, and the primary source of data for development zone operative 

temperature (ZOT) prediction methodology.  

Building energy model 

While a calibrated model was developed for use within the MPC, the quality of the 

calibration can be questioned. The model was calibrated using the best data available for 

the time period of historical energy data, which included setbacks in the control strategy. 

Data monitoring prior to the implementation of MPC indicated that setpoint setbacks were 

not being used, but the main air handling equipment was being turned off overnight. While 

this leads to differences in the energy model absolute results, the daytime trends remain 

similar as was shown in Section 9.2, which allows MPC to make the right decision. These 

differences highlight the challenges of energy modelling, as there are many uncertainties 

in the model (e.g. construction quality, control strategy) that can be tuned to achieve a 

calibrated model. 
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Building response model 

The use of the randomForest model as the BRM was a success, as it was capable of 

providing energy savings for all MPC scenarios tested. Best performance occurred with 

energy minimization tasks. The energy minimization scheme is a relative based decision – 

find the path that uses the least energy, regardless of the quantity. In contrast, demand 

mitigation requires high prediction accuracy, as the predictions are compared to a measured 

peak for savings. Instead of determining which option has the smallest peak, the magnitude 

of the peaks is what drives cost savings. The BRM based MPC struggled with demand 

savings due to the need for high precision in peak prediction values. Many simplified 

models struggle to predict the correct peak magnitude (even detailed models can struggle, 

hence it is not included in ASHRAE Guideline 14). The struggle with electricity demand 

events indicate that design of the objective function should account for the capabilities of 

the simplified model. 

Thermal comfort metric 

In this dissertation, a more advanced thermal comfort metric than zone air temperature 

(ZAT) was explored. ZOT was chosen due to its prescribed use in industry standards, and 

potential ease of measurement. While other researchers have attempted to use PMV/PPD, 

the number of variables to be measured to produce such calculations is large, and many 

variables are not readily measured in buildings currently. By contrast, ZOT only requires 

ZAT (already measured) and zone radiant temperature (ZRT) (which can be measured, or 

approximated), where standard approximations can be made for variables such as clothing, 

metabolic rate, air speed, and humidity to account for their impact on comfort.  

Due to a typical building not having ZRT measurements, a linear estimation was developed 

based on simulation data to approximate the ZRT based on the surface level weather 

forecasts (ambient temperature, direct radiation, and diffuse radiation) for each building 

zone. The method allows for the use of detailed weather forecasting to improve the comfort 

across the building, as individual zone radiant effects are incorporated.  
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The ZOT based comfort was implemented as a modifying layer after a whole building 

energy optimization. This is a key advancement, as optimizing for all zones simultaneously 

is a large problem that is computationally challenging, and not feasible for real time 

application due to computing time. The implementation is done by first solving a whole 

building energy minimization, followed by a zone level adjustment to maintain comfort. 

By solving a much simpler whole building energy optimization, the computational burden 

is vastly reduced compared to optimizing all the zones simultaneously. With the comfort 

metric as the last layer, it ensures thermal comfort is not compromised for energy savings. 

The importance of comfort cannot be understated, as it is the primary function of buildings. 

Optimization objectives 

Several advanced simulation scenarios were explored to determine their effectiveness and 

suitability with the MPC system as designed. A pure energy minimization (no preference 

between energy source) was first explored, which showed cost savings of 0.5% over rule-

based control with fixed energy pricing. While the energy consumption was minimized 

(2% total reduction and 5% HVAC reduction), a lack of total cost savings was due to the 

resulting increase in demand costs. The total savings are in line with the lower end of the 

surveyed literature, and is due to the low thermal mass and highly efficient HVAC system 

installed on the building. The next scenario explored was implementing a total cost 

minimization problem that included energy prices (constant but different for each source) 

and an electric demand mitigation term. The initial simulation showed an oscillatory 

behavior between control options as the system tried to balance the savings of the various 

energy sources, leading to undesirable performance. A second trend noticed was the lack 

of demand savings. The addition of a switching penalty was introduced to minimize 

equipment cycling and act as a rate of change limit. This improved performance (2.6% total 

cost savings, 6.1% HVAC cost savings) while limiting the oscillations in the system. The 

use of time-of-day electricity pricing was then conducted to assess their impact on 

performance and the same trends occurred where a fluctuation penalty was needed, and a 

total cost savings of 2.7% was achieved, or 6.1% of HVAC costs. The majority of the 
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savings were generated through the morning start optimization (80%), while the daytime 

period accounted for the remaining savings. 

Forecasting and horizon 

To explore the impact of forecast horizon and remove and BRM related errors, an emulated 

MPC scenario was conducted to include a larger horizon window (one day and one month 

as opposed to two hours) with both energy minimization and total cost minimization. 

Simulations were conducted with time of use electricity pricing (one day and one month 

forecasts). The one day forecast emulated MPC performed worse than energy 

minimization, in that it saved less money than the energy minimization strategy ($104 

difference). However, the one month forecast with time of use forecasting did save more 

money than the energy minimization method ($480), indicating that the issue was with the 

forecast horizon, and not the objective function or optimization technique. The reason for 

energy minimization outperforming cost minimization with a short horizon window is that 

the cost minimization was trying to maintain the electricity demand peak currently 

experienced, not the expected peak for the billing period. By using a lower peak early in a 

month, extra energy is consumed to maintain the current electricity demand level. 

However, when an unavoidable peak occurs later in the billing cycle, all the energy 

consumed to maintain the lower peak is now waste, and led to the lower savings when 

compared with energy minimization. The results of the forecast horizon study indicate the 

need to carefully design the objective function around the forecast horizon, as attempting 

to optimize for effects that last longer than the forecast horizon can result in worse 

performance.  

Experimental testing 

An experimental test was conducted on-site to quantify the performance of the MPC 

scheme on a real building. Slight changes were made from the simulation testing in that a 

multi-model approach was used to optimization. This was done by using the calibrate E+ 

model to do morning start optimization utilizing emulated MPC, while the BRM was used 

for daytime optimization. This was done due to the higher confidence in the E+ model. A 
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second change was the usage of a genetic algorithm to solve the optimization problem as 

opposed to the brute force methodology used in simulation. The change was made to 

improve operational runtime and to increase the range of possible solutions after 

simulations with a limited number of options showed savings. These results were translated 

into a look-up table based on forecasted weather and current building temperature using 

‘k-means’ clustering for even less computational burden during real-time operation. The 

clustered results act as a look-up table where the weather forecast and current building state 

are used to determine the optimal control setpoints. Overall, the implemented MPC was 

run from August 2, 2016 to November 28, 2016 and showed a 29% reduction in HVAC 

electricity and 63% in steam usage, equating to a 30% total HVAC energy reduction. This 

is in contrast to the energy minimization simulation which showed a 5% HVAC energy 

reduction. These numbers exceed the simulation results due to the simulation having a 

more optimal baseline (the simulations assumed uniform setpoints and setbacks as 

provided by the building operator, while this was not true on site). The savings in both the 

experimental and simulation systems validate the MPC was successful for energy reduction 

in buildings. 

10.2 Recommendations 

While the results of this dissertation have proven successful, there are still some further 

areas that could be explored. The first area is a study on the impact of the simulation 

timestep on MPC performance. It was shown that forecast horizon should dictate the type 

of optimization conducted (or vice versa), and it is expected that the simulation timestep 

has a similar property. An example of this is that if demand is billed on a 15-minute peak, 

a simulation timestep of 1-hour likely will miss the peak demand period due to the larger 

averaging period. A second key area for future work is the application of the MPC 

developed to various buildings, particularly those with more thermal mass and slower 

HVAC systems. By evaluating performance on different buildings, a better understanding 

of what factors are best for applying MPC can be realized, and help aid in 

commercialization of the technology. An expansion of the MPC objectives from morning 
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start and daytime optimization to include optimal shutdown and free cooling should also 

be added for higher energy savings potential.  

A second area for further exploration is the method used to predict ZRT for ZOT control. 

The current method requires sensors typically not installed in buildings, or the development 

of a detailed energy model to generate the relationships. It is expected that the linear 

regression coefficients are related to the construction parameters of the space (window to 

wall ratio, construction materials, zone aspect ratio), where the use of surface level 

forecasting eliminates the effects of orientation. More work is needed to try and develop a 

method of producing suitable coefficients without developing a detailed energy model for 

cases where buildings have a large amount of stored data accessible within the BAS. 

Additionally, exploration of the time lag effect of ZRT would provide better information 

to the MPC, however additional models would be needed for this scope of work, in addition 

to adding to the computational burden of the MPC. 

In order to become a commercially viable solution, MPC must be transferable from 

building to building, and require minimal preparation. Currently a detailed energy model 

is required, which requires weeks of work from an expert in energy modeling. Methods to 

create models more efficiently, or translate the results to not require a detailed energy 

model are needed. One key aspect of the work that does allow it to be transferable is that 

it attempts to optimize the amount of energy needed by a space, as opposed to the efficiency 

of the delivery system. For improved savings, a layer of system optimization can be 

employed, but would be a custom solution on a per building basis, as opposed to a general 

methodology that can be applied regardless of the HVAC system. 

The scope of MPC for buildings and its applications could be further explored. An example 

would be using MPC to better utilize on-site renewable resources that must be used on-site 

or else curtailed. A prediction of renewable generation can be included with the forecast 

information, and an additional objective function term added to ensure the building load 

matches the renewable generation. The result may lead to increased energy usage during 

peak renewable generation to match load, while reducing the amount of imported energy 
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to the site. A second potential expansion of MPC with buildings is to help balance the 

electrical grid. A forecast of grid power production can be used as a MPC input, where the 

building may shift its usage profile to smooth out the grid demand profile. Changes to the 

MPC timestep and forecast horizon may be needed for grid applications as the response 

time of the electrical grid is much faster than a building (order of seconds compared to 

minutes), depending on the service provided. If doing peak load shedding, the frequency 

of response aligns well with buildings, while services such as frequency regulation require 

a faster response. A key component for allowing the expansion of MPC to other 

applications is the inclusion of energy storage, either thermally or electrically. The more 

storage capability a building has, the more impactful it can be in providing the ancillary 

services discussed. 

  



255 

 

 

 

REFERENCES 

 

[1]  Y. Huang, "Drivers of rising global energy demand: The importance of spatial lag and error 

dependence," Energy, vol. 76, pp. 254-263, 2014.  

[2]  X. Liu, A. Vedlitz, J. W. Stoutenborough and S. Robinson, "Scientists' views and positions on 

global warming and climate cahnge: A content analysis of congressional testimonies," Climatic 

Change, vol. 131, no. 4, pp. 487-503, 2015.  

[3]  United Nations, "Paris Agreement," United Nations, Paris, 2015. 

[4]  Natural Resources Canada, "Energy Use Data Handbook: 1990 - 2010," Natural Resources Canada, 

2013. 

[5]  Natural Resources Canada, " Survey of commercial and institutional energy use – buildings 2009," 

Natural Resources Canada, Ottawa, Ontario, 2012. 

[6]  L. Perez-Lombard, J. Ortiz and C. Pout, "A review on buildings energy consumption information," 

Energy and Buildings, pp. 394-398, 2008.  

[7]  M. Gwerder, D. Gyalistras, C. Sagerschnig, R. S. Smith and D. Sturzenegger, "Final Report: Use of 

Weather And Occupancy Forecasts For Optimal Building Climate Control – Part II: Demonstration 

(OptiControl-II)," Automatic Control Laboratory, Zurich, 2013. 

[8]  S. Wang, "Energy modeling of ground source heat pump vs. variable refrigerant flow systems in 

representative US climate zones," Energy and Buildings, vol. 72, pp. 222-228, 2014.  

[9]  Y. Ma, F. Borrelli, B. Hency, B. Coffey, S. Bengea and P. Haves, "Model predictive control for the 

operation of building cooling systems," IEEE Transactions on Control Systems Technology, vol. 20, 

no. 3, pp. 796-803, 2012.  

[10]  D. F. Dicaire and H. Tezel, "Regeneration and efficiency characterization of hybrid adsorbent for 

thermal energy storage of excess and solar heat," Renewable Energy, vol. 36, no. 3, pp. 986-992, 

2011.  

[11]  S. Kahwaji, M. B. Johnson, A. C. Kheirabadi, D. Groulx and M. A. White, "Stable, low-cost phase 

change material for building applications: The eutectic mixture of decanoic and tetradecanoic acid," 

Applied Energy, vol. 168, pp. 457-464, 2016.  



256 

 

 

 

[12]  S. D. Zwanzig, Y. Lian and E. G. Brehob, "Numerical simulation of phase change material 

composite wallboard in a multi-layered building envelope," Energy Conversion and Management, 

vol. 69, pp. 27-40, 2013.  

[13]  A. Zidan, H. A. Gabbar and A. Eldessouky, "Optimal planning of combined heat and power systems 

within microgrids," Energy, vol. 93, no. 1, pp. 235-244, 2015.  

[14]  A. H. Abdel-Salam and C. J. Simonson, "State-of-the-art in liquid desiccant air conditioning 

equipment and systems," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1152-1183, 

2016.  

[15]  M. R. Abdel-Salam, R. W. Besant and C. J. Simonson, "Design and testing of a novel 3-fluid liquid-

to-air membrane energy exchanger (3-fluid LAMEE)," International Journal of Heat and Mass 

Transfer, vol. 92, pp. 312-329, 2016.  

[16]  T. Hilliard, L. Swan, M. Kavgic, Z. Qin and P. Lingras, "Development of a whole building model 

predictive control strategy for a LEED silver community college," Energy and Buildings, pp. 224-

232, 2016.  

[17]  S. R. West, J. K. Ward and J. Wall, "Trial results from a model predictive control and optimisation 

system for commerical building HVAC," Energy and Buildings, vol. 72, pp. 271-279, 2014.  

[18]  J. Siroky, F. Oldewurtel, J. Cigler and S. Privara, "Experimental analysis of model predictive 

control for an energy efficient building heating system," Applied Energy, vol. 88, no. 9, pp. 3079-

3087, 2011.  

[19]  S. C. Bengea, A. D. Kelman, F. Borrelli, R. Taylor and S. Narayanan, "Implementation of model 

predictive control for an HVAC system in a mid-size commercial building," HVAC and R Research, 

vol. 20, no. 1, pp. 121-135, 2014.  

[20]  W. O'Brien and G. H. Burak, "The contextual factors contributing to occupants' adaptive comfort 

behaviors in offices – A review and proposed modeling framework," Building and Environment, 

vol. 77, pp. 77-87, 2014.  

[21]  G. R. Newsham, H. Xue, C. Arsenault, J. J. Valdes, E. Scarlett, S. G. Kruithof and W. Shen, 

"Testing the accuracy of low-cost data streams for determining single-person office occupancy and 

their use for energy reduction of building services," Energy and Buildings, vol. 135, pp. 137-147, 

2017.  



257 

 

 

 

[22]  T. Labeodan, W. Zeiler, G. Boxem and Y. Zhao, "Occupancy measurement in commercial office 

buildings for demand-driven control applications - A survey and detection system evaluation," 

Energy and Buildings, vol. 93, pp. 303-314, 2015.  

[23]  M. De Felice, A. Alessandri and P. M. Ruti, "Electricity demand forecasting over Italy: Potential 

benefits using numerical weather prediction models," Electric Power Systems Research, vol. 104, 

no. 11, pp. 71-79, 2013.  

[24]  J. Grosso, C. Ocampo-Martinex and V. Puig, "Learning-based tuning of supervisory model 

predictive control for drinking water network," Engineering Applications of Artificial Intelligence, 

vol. 26, no. 7, pp. 1741-1750, 2013.  

[25]  J. F. Kreider, X. A. Wang, D. Anderson and J. Dow, "Expert systems, neural networks and artificial 

intelligence applications in commercial building HVAC operations," Automation in Construction, 

vol. 1, no. 3, pp. 225-238, 1992.  

[26]  H. B. Gunay, J. Bursill, B. Huchuk, W. O'Brien and I. Beausoleil-Morrison, "Shortest-prediction-

horizon model-based predictive control for individual offices," Building and Environment, vol. 82, 

pp. 408-419, 2014.  

[27]  M. Sourbron, C. Verhelst and L. Helsen, "Building models for model predictive control of office 

buildings with concrete core activation," Journal of Building Performance Simulation, pp. 175-198, 

2013.  

[28]  J. (. Feng, F. Chuang, F. Borrelli and F. Bauman, "Model predictive control of radiant slab systems 

with evaporative cooling sources," Energy and Buildings, vol. 87, pp. 199-2010, 2015.  

[29]  L. He, B. Lei, H. Bi and T. Yu, "Simplified Building Thermal Model Used for Optimal Control of 

Radiant Cooling System," Mathematical Problems in Engineering, pp. 1-15, 2016.  

[30]  D. Zhang, X. Xia and N. Cai, "A dynamic simplified model of radiant ceiling cooling integrated 

with underfloor ventilation system," Applied Thermal Energy, vol. 106, pp. 415-422, 2016.  

[31]  M. Soleimani-Mohseni, B. Thomas and P. Fahlen, "Estimation of operative temperature in buildings 

using artificial neural networks," Energy and Buildings, vol. 38, no. 6, pp. 635-640, 2006.  

[32]  F. Frontini and T. E. Kuhn, "The influence of various internal blinds on thermal comfort: A new 

method for calculating the mean radiant temperature in office spaces," Energy and Buildings, vol. 

54, pp. 527-533, 2012.  



258 

 

 

 

[33]  K. Ka-Lun Lau, C. Ren, J. Ho and E. Ng, "Numerical modelling of mean radiant temperature in 

high-density sub-tropical urban environment," Energy and Buildings, vol. 114, pp. 80-86, 2016.  

[34]  S. Thorsson, F. Lindberg, I. Eliasson and B. Holmer, "Different methods for estimating the mean 

radiant temperature in an outdoor urban setting," INTERNATIONAL JOURNAL OF 

CLIMATOLOGY, vol. 27, pp. 1983-1993, 2007.  

[35]  A. H. Neto, "Comparison between detailed model simulation and artificial neural network for 

forecasting building energy consumption," Energy and Buildings, vol. 40, no. 12, pp. 2169-2176, 

2008.  

[36]  T. Lu, "A hybrid numerical-neural-network model for building simulation: A case study for the 

simulation of unheated and uncooled indoor temperature," Energy and Buildings, vol. 86, pp. 723-

734, 2015.  

[37]  P. Ferreira, A. Ruano, S. Silva and E. Conceicao, "Neural network based predictive control for 

thermal comfort and energy savings in public buildings," Energy and Buildings, pp. 238-251, 2012.  

[38]  K. A. Antonopolous and T. C., "Finite-difference prediction of transient indoor temperature and 

related correlation based on the building time constant," International journal of energy research, 

vol. 20, no. 6, pp. 507-520, 1996.  

[39]  A. Afram and F. Janabi-Sharifi, "Theory and applications of HVAC control systems - A review of 

model predictive control (MPC)," Building and Environment, pp. 343-355, 2014.  

[40]  R. Z. Homod, K. S. M. Sahari, H. A. Almurib and F. H. Nagi, "Double cooling coil model for non-

linear HVAC system using RLF method," Energy and Buildings, vol. 43, no. 9, pp. 2043-2054, 

2011.  

[41]  S. Wang and Z. Ma, "Supervisory and Optimal Control of Building HVAC Systems: A Review," 

HVAC&R Research, pp. 3-32, 2008.  

[42]  R. Findeisen and F. Allgoewer, "An introduction to nonlinear model predictive control," in 21st 

Benelux Meeting on Systems and Control, 2002.  

[43]  J. A. Clarke, Energy simulation in building design, Routledge, 2001.  

[44]  L. Swan, "Residential Sector Energy and GHG Emissions Model for the Assessment of New 

Technologies," Dalhousie University, Halifax, 2010. 



259 

 

 

 

[45]  X. Jin, X. Zhang, Y. Cao and G. Wang, " Thermal performance evaluation of the wall using heat 

flux time lag and decrement factor," Energy and Buildings, vol. 47, pp. 369-374, 2012.  

[46]  T. T. Steve, "Cost effective HVAC managing energy and performance," in World Energy 

Engineering Congress 2007, 2007.  

[47]  A. Saari, T. Tissari, E. Valkama and O. Seppanen, "The effect of a redesigned floor plan, occupant 

density and the quality of indoor climate on the cost of space, productivity and sick leave in an 

office building–A case study," Building and Environment, pp. 1961-1972, 2006.  

[48]  ASHRAE, "ASHRAE Standard 55- 2013: Thermal Environmental Conditions for Human 

Occupancy," ASHRAE, 2013. 

[49]  P. O. Fanger, Thermal Comfort, Danish Technical Press, 1970.  

[50]  J. Sykes, "Sick Building Syndrome," Building services engineering research and technology, vol. 

10, no. 1, pp. 1-11, 1989.  

[51]  ASHRAE, "ASHRAE Standard 62.1-2016 Ventilation for Acceptable Indoor Air Quality," 

ASHRAE, 2016. 

[52]  R. Dales, L. Liu, A. J. Wheeler and N. L. Gilbert, "Quality of indoor residential air and health," 

Canadian Medical Association Journal, vol. 179, no. 2, pp. 147-152, 2008.  

[53]  ISO, "ISO 7730 - Ergonomics of the thermal environment - Analytical determination and 

interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal 

comfort criteria," ISO, Geneva, 2005. 

[54]  British Standards/CEN, "BS EN 15251:2007 - Indoor environmental input parameters for design 

and assessment of energy performance of buildings addressing indoor air quality, thermal 

environment, lighting and acoustics," British Standards, Brussels, 2007. 

[55]  T. Hilliard, M. Kavgic and L. Swan, "Model predictive control for buildings: trends and 

opportunities," Advances in Building Energy Research, 2015.  

[56]  B. Lehmann, G. D, M. Gwerder, K. Wirth and S. Carl, "Intermediate complexity model for model 

predictive control of integrsted room automation," Energy and Buildings, vol. 58, pp. 250-262, 

2013.  



260 

 

 

 

[57]  H. A. Neto, "Comparison between detailed model simulation andartificial neural network for 

forecasting building energy consumption," Energy and Buildings, vol. 40, no. 12, pp. 2169-2176, 

2008.  

[58]  S. Privara, J. Siroky, L. Ferkl and J. Cigler, " Model predictive control of a building heating system: 

The first experience," Energy and Buildings, vol. 43, no. 2-3, pp. 564-572, 2011.  

[59]  S. Privara, Z. Vana, E. Zacekova and J. Cigler, "Building modeling: Selection of the most 

appropriate model for predictive control," Energy and Buildings, pp. 341-350, 2012.  

[60]  H. B. Gunay, W. O'Brien and I. Beausoleil-Morrison, "Control-oriented inverse modeling of the 

thermal characteristics in an office," Science and Technology for the Built Environment, pp. 586-

605, 2016.  

[61]  M. Killian and M. Kozek, "Ten questions concerning model predictive control for energy efficient 

buildings," Building and Environment, vol. 105, pp. 403-412, 2016.  

[62]  P.-D. Morosan, R. Bourdais, D. Dumur and J. Buisson, "Building temperature regulation using a 

distributed model predictive control," Energy and Buildings, vol. 42, no. 9, pp. 1445-1452, 2010.  

[63]  A. Aswani, N. Master, J. Taneja, D. Culler and C. Tomlin, "Reducing transient and steady state 

electricity consumption in HVAC usig learning-based model predictive control," Proceedings of the 

IEEE, vol. 100, no. 1, pp. 240-253, 2012.  

[64]  Z. Ma and S. Wang, "Fault-tolerant supervisory control of building condenser cooling water 

systems for energy efficiency," HVAC&R Research, vol. 18, pp. 126-146, 2012.  

[65]  M. Avci, M. Erkoc, A. Rahmani and S. Asfour, "Model predictive HVAC load control in buildings 

using real-time electricity pricing," Energy and Buildings, vol. 60, pp. 199-209, 2013.  

[66]  B. Coffey, "Approximating model predictive control with existing building simulation tools and 

offline optimization," Journal of Building Performance Simulation, pp. 220-235, 2013.  

[67]  V. Putta, G. Zhu, D. Kim, J. Hu and J. Braun, "Comparative evaluation of model predictive control 

strategies for a building HVAC system," in 2013 American Control Conference, Washington, DC, 

2013.  

[68]  F. Oldewurtel, A. Parisio, C. N. Jones, M. Morari, D. Gyalistras, G. M, V. Stauch, B. Lehamnn and 

K. Wirth, "Energy efficient building climate control using stochastic model predictive control and 

weather," in 2010 American Control Conference, Baltimore, 2010.  



261 

 

 

 

[69]  W. J. Cole, E. T. Hale and T. F. Edgar, "Building energy model reduction for model predictive 

control using OpenStudio," in 2013 American Control Conference, Washington DC, 2013.  

[70]  G. Huang, S. Wang and X. Xu, "Robust Model Predictive Control of VAV Air-Handling Units 

Concerning Uncertainties and Constraints," HVAC&R Research, vol. 16, pp. 15-33, 2010.  

[71]  J. Ma, J. Qin, T. Salsbury and P. Xu, "Demand reduction in building energy systems based on 

economic model predictive control," Chemical Engineering Science, vol. 67, no. 1, pp. 92-100, 

2012.  

[72]  P. May-Ostendorp, G. P. Henze, C. D. Corbin, B. Rajagopalan and C. Felsman, "Model-predictive 

control of mixed-mode building with rule extraction," Building and Environment, pp. 428-437, 

2011.  

[73]  I. Hazyuk, C. Ghiaus and D. Penhouet, "Optimal temperature control of intermittently heated 

buildings using Model Predictive Control: Part II – Control algorithm," Building and Environment, 

vol. 51, pp. 388-394, 2012.  

[74]  C. D. Corbin and G. P. M.-O. P. Henze, "A model predictive control optimization environment for 

real-time commerical building application," Journal of Building Performance Simulation, vol. 6, no. 

3, pp. 159-174, 2013.  

[75]  J. Zhao, K. P. Lam and B. E. Ydstie, "EnergyPlus model based predictive control (EPMPC) by 

using matlab/simulink and MLE," in 13th Conference of the International Building Performance 

Simulation Association, Le Bourget Du Lac, 2013.  

[76]  H. Huang, L. Chen and E. Hu, "A new model predictive control scheme for energy and cost savings 

in commercial buildings: An airport terminal building case study," Building and Environment, vol. 

89, pp. 203-216, 2015.  

[77]  M. Schmelas, T. Feldmann and E. Bollin, "Adaptive predictive control of thermo-active building 

systems (TABS) based on a multiple regression algorithm," Energy and Buildings, vol. 103, pp. 14-

28, 2015.  

[78]  D. Sturzenegger, D. Gyalistras, M. Morari and R. S. Smith, "Model predictive climate control of a 

swiss office building: implementation, results, and cost-benefit analysis," IEEE TRANSACTIONS 

ON CONTROL SYSTEMS TECHNOLOGY, vol. 24, no. 1, pp. 1-12, 2016.  



262 

 

 

 

[79]  A. Schirrer, M. Brandstetter, I. Leobner, S. Hauer and M. Kozek, "Nonlinear model predictive 

control for a heating and cooling system of a low energy office building," Energy and Buildings, 

vol. 125, pp. 86-98, 2016.  

[80]  D. Schwingschackl, J. Rehrl and M. Horn, "LoLiMoT based MPC for air handling units in HVAC 

systems," Building and Environment, vol. 96, pp. 250-259, 2016.  

[81]  S. Salakij, N. Yu, S. Paolucci and P. Antsaklis, "Model-Based Predictive Control for building 

energy management. I:," Energy and Buildings, vol. 133, pp. 345-358, 2016.  

[82]  N. Yu, S. Salakij, R. Chavez, S. Paolucci, M. Sen and P. Antsaklis, "Model-based predictive control 

for building energy management: Part II – Experimental validations," Energy and Buildings, vol. 

146, pp. 19-26, 2017.  

[83]  D. Kim and J. E. Braun, "Reduced-orded building modeling for application to model-based 

predictive control," in SimBuild 2012, Madison, Wisconsin, 2012.  

[84]  Z. O'Neill, S. Narayanan and R. Brahme, "Model-based thermal load estimation in buildings," in 

SimBuild 2010, New York City, New York, 2010.  

[85]  H. Huang, L. Chen, M. Mohammadzaheri, E. Hu and M. Chen, "Multi-zone temperature prediction 

in a commercial building using artificial nueral network model," in 10th IEEE International 

Conference on Control and Automation (ICCA), Hangzhou, China, 2013.  

[86]  M. Kavgic, T. Hilliard, L. Swan and Z. Qin, "Method for validation of statistical energy models," in 

eSim 2016 Building Performance Simulation Conference, Hamilton, Ontario, 2016.  

[87]  S. Privara, J. Cigler, Z. Vana, F. Oldewurtel, C. Sagerschnig and E. Zacekova, "Building modeling 

as a crucial part for building predictive control," Energy and Buildings, pp. 8-22, 2013.  

[88]  S. Wang and X. Xu, "Simplified building model for transient thermal performance estimation using 

GA-based parameter identification," International Journal of Thermal Science, pp. 419-432, 2006.  

[89]  A. P. Melo, D. Costola, R. Lamberts and J. L. M. Hensen, "Assessing the accuracy of a simplified 

building energy simulation model using BESTEST: The case study of Brazilian regulation," Energy 

and Buildings, pp. 219-228, 2012.  

[90]  D. Hsu, "Identifying key variables and interactions in statistical models of building energy 

consumption using regularization," Energy, pp. 144-155, 2015.  



263 

 

 

 

[91]  A. Florita and G. Henze, "Comparison of Short-Term Weather Forecasting Models for Model 

Predictive Control," HVAC&R Research, vol. 15, no. 5, pp. 835-853, 2009.  

[92]  G. Rutledge, J. Aplert and W. Ebuisaki, "NOMADS: A Climate and Weather Model Archive at the 

National Oceanic and Atmospheric Administration," Bulletin of the American Meteorological 

Society, vol. 87, no. 3, pp. 327-341, 2006.  

[93]  Y. Sun, S. Wang, F. Xiao and D. Gao, "Peak load shifting control using different cold thermal 

energy storage facilities in commercial buildings: A review," Energy Conversion and Management, 

vol. 71, pp. 101-114, 2013.  

[94]  M. Humphreys, J. Nicol and I. Raja, "Field studies of indoor thermal comfort and the progress of 

the adaptive approach," Advances in Building Energy Research, vol. 1, no. 1, pp. 55-88, 2007.  

[95]  L. Mavromatidis, M. El Mankibi, P. Michel, A. Bykalyuk and M. Santamouris, "Guidelines to study 

numerically and experimentally reflective insulation systems as applied to buildings," Advances in 

Building Energy Research, vol. 6, no. 1, pp. 2-35, 2012.  

[96]  S. Emmerich and A. K. Persily, "Analysis of U.S. commercial building envelope air leakage 

database to support sustainable building design," International Journal of Ventilation, vol. 12, no. 4, 

pp. 331-344, 2014.  

[97]  H. Fennel and J. Haehnel, "Setting airtightness standards," ASHRAE Journal, vol. 47, no. 9, pp. 26-

31, 2005.  

[98]  A. K. Persily, "Myths about building envelopes," ASHRAE Journal, vol. 41, no. 2-3, pp. 39-47, 

1999.  

[99]  M. Sherman and R. Chan, "Building airtightness: Research and practice," Lawrence Berkeley 

National Laboratory, Berkeley, 2004. 

[100]  M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. 

Winiarski, M. Rosenberg, M. Yazdanian, J. Huang and D. Crawley, "U.S. Department of Energy 

Commercial Reference Building Models of the National Building Stoc," National Renewable 

Energy Laboratory, Golden, Colorado, 2011. 

[101]  D. Wei and X. Liu, " Research on multi-zone VAV air conditioning system modeling," in 10th 

World Congress on Intelligent Control and Automation, Beijing, 2012.  

[102]  J. Li, Y. Chen and R. Qu, " PID control of VAV system based on elman neural network," Journal of 

Convergence Information Technology, vol. 8, no. 10, pp. 407-414, 2013.  



264 

 

 

 

[103]  U.S. Department of Energy, Input - Output Referece EnergyPlus 8.5.0, 2016.  

[104]  ASHRAE, "Guideline 14-2014 -- Measurement of Energy, Demand, and Water Savings," 

ASHRAE, 2014. 

[105]  ASHRAE, "ASHRAE Standard 189.1-2009 Standard for the Deisgn of High-Performance, Green 

Buildings," ASHRAE, 2009. 

[106]  CBCL Limited, "Mona Campbell Building Measurement and Verification of Energy and Water 

Systems," CBCL Limited, Halifax, 2013. 

[107]  C. Chantrasrisalai, V. Ghatti, D. E. Fisher and D. G. Scheatzle, "Experimental Validation of the 

EnergyPlus Low-Temperature Radiant Simulation," ASHRAE Transactions, vol. 109, no. 2, pp. 

614-623, 2003.  

[108]  A. Liaw and M. Wiener, "Classification and Regression by randomForest," R News, vol. 2/3, pp. 18-

22, 2002.  

[109]  T. McKinley and A. G. Alleyne, "Identification of building model parameters and loads using on-

site data logs," in Third National Conference of IBPSA-USA, Berkeley, California, 2008.  

[110]  S. K. Gupta, S. Atkinson, I. O'Boyle, J. Drogo, K. Kar, S. Mishra and J. T. Wen, "BEES: Real-time 

occupant feedback and environmental learningframework for collaborative thermal management in 

multi-zone,multi-occupant buildings," Energy and Buildings, vol. 125, pp. 142-152, 2016.  

[111]  J. MacQueen, "Some methods for classification and analysis of multivariate observations," in 5th 

Berkeley Symposim on Mathematics, Statistics and Probability, Berkeley, 1967.  

 

 

  



265 

 

 

 

Appendix A – Taylor and Francis Publishing Agreement 

What follows are the rights retained by an author of an article in the Advances in Building 

Energy Research. A complete list of rights and further copyright details can be found on 

the Publisher’s website at: http://www.tandf.co.uk/journals/authorrights.pdf  

“The rights that you retain as Author In assigning Taylor & Francis or the journal proprietor 

copyright, or granting an exclusive licence to publish, you retain:  

1) the right to be identified as the Author of an article whenever and wherever the Article 

is published;  

2) patent rights, trademark rights, or rights to any process, product or procedure described 

in an article;  

3) the right to share with colleagues print or electronic ‘preprints’ (i.e., versions of the 

article created prior to peer review) of an unpublished Article, perhaps in the form and 

content as submitted for publication;  

… 9) the right to facilitate the distribution of the Article if the Article has been produced 

within the scope of an Author's employment, so that the Author’s employer may use all or 

part of the Article internally within the institution or company provided that 

acknowledgement to prior publication in the relevant Taylor & Francis journal is made 

explicit;  

10) the right to include an article in a thesis or dissertation that is not to be published 

commercially, provided that acknowledgement to prior publication in the relevant 

Taylor & Francis journal is made explicit;  

11) the right to present an article at a meeting or conference and to distribute printed copies 

of the Article to the delegates attending the meeting provided that this is not for commercial 

purposes and provided that acknowledgement to prior publication in the relevant Taylor & 

Francis journal is made explicit;  

12) the right to use the Article in its published form in whole or in part without revision or 

modification in personal compilations [in print or electronic form] or other publications of 

an Author’s own articles, provided that acknowledgement to prior publication in the 

relevant Taylor & Francis journal is made explicit;  

13) The right to expand an article into book-length form for publication provided that 

acknowledgement to prior publication in the relevant Taylor & Francis journal is made 

explicit.” 



266 

 

 

 

Appendix B – Reprint of Figures/Tables Licences  

Wang and Ma (2008) 

 

  



267 

 

 

 

B. Lehmann, D. Gyalistras, M. Gwerder, K. Wirth, S. Carl (2013) 

 

ELSEVIER LICENSE 

TERMS AND CONDITIONS 

Jun 15, 2017 

 

 

 

This Agreement between Mr. Trent Hilliard ("You") and Elsevier ("Elsevier") consists of your license 

details and the terms and conditions provided by Elsevier and Copyright Clearance Center. 

License Number 

4130231268660 

License date 

Jun 15, 2017 

Licensed Content Publisher 

Elsevier 

Licensed Content Publication 

Energy and Buildings 

Licensed Content Title 

Intermediate complexity model for Model Predictive Control of Integrated Room Automation 

Licensed Content Author 

B. Lehmann,D. Gyalistras,M. Gwerder,K. Wirth,S. Carl 

Licensed Content Date 

Mar 1, 2013 

Licensed Content Volume 

58 

Licensed Content Issue 

n/a 

Licensed Content Pages 

13 

Start Page 

250 

End Page 

262 

Type of Use 

reuse in a thesis/dissertation 



268 

 

 

 

Portion 

figures/tables/illustrations 

Number of figures/tables/illustrations 

2 

Format 

both print and electronic 

Are you the author of this Elsevier article? 

No 

Will you be translating? 

No 

Order reference number 

Thesis_1 

Original figure numbers 

Table 1, 2 

Title of your thesis/dissertation 

Whole building model predictive control with optimization for HVAC systems utilizing surface 

level weather forecasts 

Expected completion date 

Aug 2017 

Estimated size (number of pages) 

266 

Elsevier VAT number 

GB 494 6272 12 

Requestor Location 

Mr. Trent Hilliard 

804-2393 Robie Street 

 

 

Halifax, NS B3K 6S2 

Canada 

Attn: Mr. Trent Hilliard 

Total 

0.00 CAD 

Terms and Conditions 

INTRODUCTION 

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in 

connection with completing this licensing transaction, you agree that the following terms 



269 

 

 

 

and conditions apply to this transaction (along with the Billing and Payment terms and 

conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you 

opened your Rightslink account and that are available at any time 

at http://myaccount.copyright.com). 

GENERAL TERMS 

2. Elsevier hereby grants you permission to reproduce the aforementioned material 

subject to the terms and conditions indicated. 

3. Acknowledgement: If any part of the material to be used (for example, figures) has 

appeared in our publication with credit or acknowledgement to another source, 

permission must also be sought from that source.  If such permission is not obtained then 

that material may not be included in your publication/copies. Suitable acknowledgement 

to the source must be made, either as a footnote or in a reference list at the end of your 

publication, as follows: 

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of 

chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE 

SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The 

Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with 

permission from Elsevier." 

4. Reproduction of this material is confined to the purpose and/or media for which 

permission is hereby given. 

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be 

altered/adapted minimally to serve your work. Any other abbreviations, additions, 

deletions and/or any other alterations shall be made only with prior written authorization 

of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications 

can be made to any Lancet figures/tables and they must be reproduced in full. 

6. If the permission fee for the requested use of our material is waived in this instance, 

please be advised that your future requests for Elsevier materials may attract a fee. 

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the 

combination of (i) the license details provided by you and accepted in the course of this 

http://myaccount.copyright.com/
mailto:permissions@elsevier.com


270 

 

 

 

licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment 

terms and conditions. 

8. License Contingent Upon Payment: While you may exercise the rights licensed 

immediately upon issuance of the license at the end of the licensing process for the 

transaction, provided that you have disclosed complete and accurate details of your 

proposed use, no license is finally effective unless and until full payment is received from 

you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and 

conditions.  If full payment is not received on a timely basis, then any license 

preliminarily granted shall be deemed automatically revoked and shall be void as if never 

granted.  Further, in the event that you breach any of these terms and conditions or any of 

CCC's Billing and Payment terms and conditions, the license is automatically revoked 

and shall be void as if never granted.  Use of materials as described in a revoked license, 

as well as any use of the materials beyond the scope of an unrevoked license, may 

constitute copyright infringement and publisher reserves the right to take any and all 

action to protect its copyright in the materials. 

9. Warranties: Publisher makes no representations or warranties with respect to the 

licensed material. 

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, 

and their respective officers, directors, employees and agents, from and against any and 

all claims arising out of your use of the licensed material other than as specifically 

authorized pursuant to this license. 

11. No Transfer of License: This license is personal to you and may not be sublicensed, 

assigned, or transferred by you to any other person without publisher's written 

permission. 

12. No Amendment Except in Writing: This license may not be amended except in a 

writing signed by both parties (or, in the case of publisher, by CCC on publisher's 

behalf). 

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any 

purchase order, acknowledgment, check endorsement or other writing prepared by you, 

which terms are inconsistent with these terms and conditions or CCC's Billing and 



271 

 

 

 

Payment terms and conditions.  These terms and conditions, together with CCC's Billing 

and Payment terms and conditions (which are incorporated herein), comprise the entire 

agreement between you and publisher (and CCC) concerning this licensing 

transaction.  In the event of any conflict between your obligations established by these 

terms and conditions and those established by CCC's Billing and Payment terms and 

conditions, these terms and conditions shall control. 

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions 

described in this License at their sole discretion, for any reason or no reason, with a full 

refund payable to you.  Notice of such denial will be made using the contact information 

provided by you.  Failure to receive such notice will not alter or invalidate the denial.  In 

no event will Elsevier or Copyright Clearance Center be responsible or liable for any 

costs, expenses or damage incurred by you as a result of a denial of your permission 

request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright 

Clearance Center for denied permissions. 

LIMITED LICENSE 

The following terms and conditions apply only to specific license types: 

15. Translation: This permission is granted for non-exclusive world English rights only 

unless your license was granted for translation rights. If you licensed translation rights 

you may only translate this content into the languages you requested. A professional 

translator must perform all translations and reproduce the content word for word 

preserving the integrity of the article. 

16. Posting licensed content on any Website: The following terms and conditions apply 

as follows: Licensing material from an Elsevier journal: All content posted to the web site 

must maintain the copyright information line on the bottom of each image; A hyper-text 

must be included to the Homepage of the journal from which you are licensing 

at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for 

books at http://www.elsevier.com; Central Storage: This license does not include 

permission for a scanned version of the material to be stored in a central repository such 

as that provided by Heron/XanEdu. 

http://www.sciencedirect.com/science/journal/xxxxx
http://www.elsevier.com/


272 

 

 

 

Licensing material from an Elsevier book: A hyper-text link must be included to the 

Elsevier homepage at http://www.elsevier.com . All content posted to the web site must 

maintain the copyright information line on the bottom of each image. 

 

Posting licensed content on Electronic reserve: In addition to the above the following 

clauses are applicable: The web site must be password-protected and made available only 

to bona fide students registered on a relevant course. This permission is granted for 1 year 

only. You may obtain a new license for future website posting. 

17. For journal authors: the following clauses are applicable in addition to the above: 

Preprints: 

A preprint is an author's own write-up of research results and analysis, it has not been 

peer-reviewed, nor has it had any other value added to it by a publisher (such as 

formatting, copyright, technical enhancement etc.). 

Authors can share their preprints anywhere at any time. Preprints should not be added to 

or enhanced in any way in order to appear more like, or to substitute for, the final 

versions of articles however authors can update their preprints on arXiv or RePEc with 

their Accepted Author Manuscript (see below). 

If accepted for publication, we encourage authors to link from the preprint to their formal 

publication via its DOI. Millions of researchers have access to the formal publications on 

ScienceDirect, and so links will help users to find, access, cite and use the best available 

version. Please note that Cell Press, The Lancet and some society-owned have different 

preprint policies. Information on these policies is available on the journal homepage. 

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an 

article that has been accepted for publication and which typically includes author-

incorporated changes suggested during submission, peer review and editor-author 

communications. 

Authors can share their accepted author manuscript: 

• immediately 

o via their non-commercial person homepage or blog 

http://www.elsevier.com/


273 

 

 

 

o by updating a preprint in arXiv or RePEc with the accepted manuscript 

o via their research institute or institutional repository for internal institutional uses or as 

part of an invitation-only research collaboration work-group 

o directly by providing copies to their students or to research collaborators for their 

personal use 

o for private scholarly sharing as part of an invitation-only work group on commercial sites 

with which Elsevier has an agreement 

• After the embargo period 

o via non-commercial hosting platforms such as their institutional repository 

o via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

• link to the formal publication via its DOI 

• bear a CC-BY-NC-ND license - this is easy to do 

• if aggregated with other manuscripts, for example in a repository or other site, be shared in 

alignment with our hosting policy not be added to or enhanced in any way to appear more like, or 

to substitute for, the published journal article. 

Published journal article (JPA): A published journal article (PJA) is the definitive final 

record of published research that appears or will appear in the journal and embodies all 

value-adding publishing activities including peer review co-ordination, copy-editing, 

formatting, (if relevant) pagination and online enrichment. 

Policies for sharing publishing journal articles differ for subscription and gold open 

access articles: 

Subscription Articles: If you are an author, please share a link to your article rather than 

the full-text. Millions of researchers have access to the formal publications on 

ScienceDirect, and so links will help your users to find, access, cite, and use the best 

available version. 



274 

 

 

 

Theses and dissertations which contain embedded PJAs as part of the formal submission 

can be posted publicly by the awarding institution with DOI links back to the formal 

publications on ScienceDirect. 

If you are affiliated with a library that subscribes to ScienceDirect you have additional 

private sharing rights for others' research accessed under that agreement. This includes 

use for classroom teaching and internal training at the institution (including use in course 

packs and courseware programs), and inclusion of the article for grant funding purposes. 

Gold Open Access Articles: May be shared according to the author-selected end-user 

license and should contain a CrossMark logo, the end user license, and a DOI link to the 

formal publication on ScienceDirect. 

Please refer to Elsevier's posting policy for further information. 

18. For book authors the following clauses are applicable in addition to the 

above:   Authors are permitted to place a brief summary of their work online only. You 

are not allowed to download and post the published electronic version of your chapter, 

nor may you scan the printed edition to create an electronic version. Posting to a 

repository: Authors are permitted to post a summary of their chapter only in their 

institution's repository. 

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may 

be submitted to your institution in either print or electronic form. Should your thesis be 

published commercially, please reapply for permission. These requirements include 

permission for the Library and Archives of Canada to supply single copies, on demand, 

of the complete thesis and include permission for Proquest/UMI to supply single copies, 

on demand, of the complete thesis. Should your thesis be published commercially, please 

reapply for permission. Theses and dissertations which contain embedded PJAs as part of 

the formal submission can be posted publicly by the awarding institution with DOI links 

back to the formal publications on ScienceDirect. 

  

Elsevier Open Access Terms and Conditions 

You can publish open access with Elsevier in hundreds of open access journals or in 

nearly 2000 established subscription journals that support open access publishing. 

http://www.crossref.org/crossmark/index.html
http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy


275 

 

 

 

Permitted third party re-use of these open access articles is defined by the author's choice 

of Creative Commons user license. See our open access license policy for more 

information. 

Terms & Conditions applicable to all Open Access articles published with Elsevier: 

Any reuse of the article must not represent the author as endorsing the adaptation of the 

article nor should the article be modified in such a way as to damage the author's honour 

or reputation. If any changes have been made, such changes must be clearly indicated. 

The author(s) must be appropriately credited and we ask that you include the end user 

license and a DOI link to the formal publication on ScienceDirect. 

If any part of the material to be used (for example, figures) has appeared in our 

publication with credit or acknowledgement to another source it is the responsibility of 

the user to ensure their reuse complies with the terms and conditions determined by the 

rights holder. 

Additional Terms & Conditions applicable to each Creative Commons user license: 

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new 

works from the Article, to alter and revise the Article and to make commercial use of the 

Article (including reuse and/or resale of the Article by commercial entities), provided the 

user gives appropriate credit (with a link to the formal publication through the relevant 

DOI), provides a link to the license, indicates if changes were made and the licensor is 

not represented as endorsing the use made of the work. The full details of the license are 

available at http://creativecommons.org/licenses/by/4.0. 

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, 

abstracts and new works from the Article, to alter and revise the Article, provided this is 

not done for commercial purposes, and that the user gives appropriate credit (with a link 

to the formal publication through the relevant DOI), provides a link to the license, 

indicates if changes were made and the licensor is not represented as endorsing the use 

made of the work. Further, any new works must be made available on the same 

conditions. The full details of the license are available 

at http://creativecommons.org/licenses/by-nc-sa/4.0. 

http://www.elsevier.com/about/open-access/open-access-policies/oa-license-policy
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0


276 

 

 

 

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the 

Article, provided this is not done for commercial purposes and further does not permit 

distribution of the Article if it is changed or edited in any way, and provided the user 

gives appropriate credit (with a link to the formal publication through the relevant DOI), 

provides a link to the license, and that the licensor is not represented as endorsing the use 

made of the work. The full details of the license are available 

at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open 

Access articles published with a CC BY NC SA or CC BY NC ND license requires 

permission from Elsevier and will be subject to a fee. 

Commercial reuse includes: 

• Associating advertising with the full text of the Article 

• Charging fees for document delivery or access 

• Article aggregation 

• Systematic distribution via e-mail lists or share buttons 

Posting or linking by commercial companies for use by customers of those companies. 

  

20. Other Conditions: 

  

v1.9 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) 

or +1-978-646-2777. 

 

 

  

http://creativecommons.org/licenses/by-nc-nd/4.0
mailto:customercare@copyright.com


277 

 

 

 

Xing Jin, Xiaosong Zhang, Yiran Cao, Geng Wang (2012) 

 

ELSEVIER LICENSE 

TERMS AND CONDITIONS 

Jun 15, 2017 

 

 

 

This Agreement between Mr. Trent Hilliard ("You") and Elsevier ("Elsevier") consists of your license 

details and the terms and conditions provided by Elsevier and Copyright Clearance Center. 

License Number 

4130231268660 

License date 

Jun 15, 2017 

Licensed Content Publisher 

Elsevier 

Licensed Content Publication 

Energy and Buildings 

Licensed Content Title 

Thermal performance evaluation of the wall using heat flux time lag and decrement factor 

Licensed Content Author 

Xing Jin,Xiaosong Zhang,Yiran Cao,Geng Wang 

Licensed Content Date 

Apr 1, 2012 

Licensed Content Volume 

47 

Licensed Content Issue 

n/a 

Licensed Content Pages 

6 

Start Page 

369 

End Page 

374 

Type of Use 

reuse in a thesis/dissertation 



278 

 

 

 

Portion 

figures/tables/illustrations 

Number of figures/tables/illustrations 

1 

Format 

both print and electronic 

Are you the author of this Elsevier article? 

No 

Will you be translating? 

No 

Order reference number 

Thesis_2 

Original figure numbers 

Figure 1 

Title of your thesis/dissertation 

Whole building model predictive control with optimization for HVAC systems utilizing surface 

level weather forecasts 

Expected completion date 

Aug 2017 

Estimated size (number of pages) 

266 

Elsevier VAT number 

GB 494 6272 12 

Requestor Location 

Mr. Trent Hilliard 

804-2393 Robie Street 

 

 

Halifax, NS B3K 6S2 

Canada 

Attn: Mr. Trent Hilliard 

Total 

0.00 CAD 

Terms and Conditions 

INTRODUCTION 

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in 

connection with completing this licensing transaction, you agree that the following terms 



279 

 

 

 

and conditions apply to this transaction (along with the Billing and Payment terms and 

conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you 

opened your Rightslink account and that are available at any time 

at http://myaccount.copyright.com). 

GENERAL TERMS 

2. Elsevier hereby grants you permission to reproduce the aforementioned material 

subject to the terms and conditions indicated. 

3. Acknowledgement: If any part of the material to be used (for example, figures) has 

appeared in our publication with credit or acknowledgement to another source, 

permission must also be sought from that source.  If such permission is not obtained then 

that material may not be included in your publication/copies. Suitable acknowledgement 

to the source must be made, either as a footnote or in a reference list at the end of your 

publication, as follows: 

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of 

chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE 

SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The 

Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with 

permission from Elsevier." 

4. Reproduction of this material is confined to the purpose and/or media for which 

permission is hereby given. 

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be 

altered/adapted minimally to serve your work. Any other abbreviations, additions, 

deletions and/or any other alterations shall be made only with prior written authorization 

of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications 

can be made to any Lancet figures/tables and they must be reproduced in full. 

6. If the permission fee for the requested use of our material is waived in this instance, 

please be advised that your future requests for Elsevier materials may attract a fee. 

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the 

combination of (i) the license details provided by you and accepted in the course of this 

http://myaccount.copyright.com/
mailto:permissions@elsevier.com


280 

 

 

 

licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment 

terms and conditions. 

8. License Contingent Upon Payment: While you may exercise the rights licensed 

immediately upon issuance of the license at the end of the licensing process for the 

transaction, provided that you have disclosed complete and accurate details of your 

proposed use, no license is finally effective unless and until full payment is received from 

you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and 

conditions.  If full payment is not received on a timely basis, then any license 

preliminarily granted shall be deemed automatically revoked and shall be void as if never 

granted.  Further, in the event that you breach any of these terms and conditions or any of 

CCC's Billing and Payment terms and conditions, the license is automatically revoked 

and shall be void as if never granted.  Use of materials as described in a revoked license, 

as well as any use of the materials beyond the scope of an unrevoked license, may 

constitute copyright infringement and publisher reserves the right to take any and all 

action to protect its copyright in the materials. 

9. Warranties: Publisher makes no representations or warranties with respect to the 

licensed material. 

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, 

and their respective officers, directors, employees and agents, from and against any and 

all claims arising out of your use of the licensed material other than as specifically 

authorized pursuant to this license. 

11. No Transfer of License: This license is personal to you and may not be sublicensed, 

assigned, or transferred by you to any other person without publisher's written 

permission. 

12. No Amendment Except in Writing: This license may not be amended except in a 

writing signed by both parties (or, in the case of publisher, by CCC on publisher's 

behalf). 

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any 

purchase order, acknowledgment, check endorsement or other writing prepared by you, 

which terms are inconsistent with these terms and conditions or CCC's Billing and 



281 

 

 

 

Payment terms and conditions.  These terms and conditions, together with CCC's Billing 

and Payment terms and conditions (which are incorporated herein), comprise the entire 

agreement between you and publisher (and CCC) concerning this licensing 

transaction.  In the event of any conflict between your obligations established by these 

terms and conditions and those established by CCC's Billing and Payment terms and 

conditions, these terms and conditions shall control. 

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions 

described in this License at their sole discretion, for any reason or no reason, with a full 

refund payable to you.  Notice of such denial will be made using the contact information 

provided by you.  Failure to receive such notice will not alter or invalidate the denial.  In 

no event will Elsevier or Copyright Clearance Center be responsible or liable for any 

costs, expenses or damage incurred by you as a result of a denial of your permission 

request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright 

Clearance Center for denied permissions. 

LIMITED LICENSE 

The following terms and conditions apply only to specific license types: 

15. Translation: This permission is granted for non-exclusive world English rights only 

unless your license was granted for translation rights. If you licensed translation rights 

you may only translate this content into the languages you requested. A professional 

translator must perform all translations and reproduce the content word for word 

preserving the integrity of the article. 

16. Posting licensed content on any Website: The following terms and conditions apply 

as follows: Licensing material from an Elsevier journal: All content posted to the web site 

must maintain the copyright information line on the bottom of each image; A hyper-text 

must be included to the Homepage of the journal from which you are licensing 

at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for 

books at http://www.elsevier.com; Central Storage: This license does not include 

permission for a scanned version of the material to be stored in a central repository such 

as that provided by Heron/XanEdu. 

http://www.sciencedirect.com/science/journal/xxxxx
http://www.elsevier.com/


282 

 

 

 

Licensing material from an Elsevier book: A hyper-text link must be included to the 

Elsevier homepage at http://www.elsevier.com . All content posted to the web site must 

maintain the copyright information line on the bottom of each image. 

 

Posting licensed content on Electronic reserve: In addition to the above the following 

clauses are applicable: The web site must be password-protected and made available only 

to bona fide students registered on a relevant course. This permission is granted for 1 year 

only. You may obtain a new license for future website posting. 

17. For journal authors: the following clauses are applicable in addition to the above: 

Preprints: 

A preprint is an author's own write-up of research results and analysis, it has not been 

peer-reviewed, nor has it had any other value added to it by a publisher (such as 

formatting, copyright, technical enhancement etc.). 

Authors can share their preprints anywhere at any time. Preprints should not be added to 

or enhanced in any way in order to appear more like, or to substitute for, the final 

versions of articles however authors can update their preprints on arXiv or RePEc with 

their Accepted Author Manuscript (see below). 

If accepted for publication, we encourage authors to link from the preprint to their formal 

publication via its DOI. Millions of researchers have access to the formal publications on 

ScienceDirect, and so links will help users to find, access, cite and use the best available 

version. Please note that Cell Press, The Lancet and some society-owned have different 

preprint policies. Information on these policies is available on the journal homepage. 

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an 

article that has been accepted for publication and which typically includes author-

incorporated changes suggested during submission, peer review and editor-author 

communications. 

Authors can share their accepted author manuscript: 

• immediately 

o via their non-commercial person homepage or blog 

http://www.elsevier.com/


283 

 

 

 

o by updating a preprint in arXiv or RePEc with the accepted manuscript 

o via their research institute or institutional repository for internal institutional uses or as 

part of an invitation-only research collaboration work-group 

o directly by providing copies to their students or to research collaborators for their 

personal use 

o for private scholarly sharing as part of an invitation-only work group on commercial sites 

with which Elsevier has an agreement 

• After the embargo period 

o via non-commercial hosting platforms such as their institutional repository 

o via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

• link to the formal publication via its DOI 

• bear a CC-BY-NC-ND license - this is easy to do 

• if aggregated with other manuscripts, for example in a repository or other site, be shared in 

alignment with our hosting policy not be added to or enhanced in any way to appear more like, or 

to substitute for, the published journal article. 

Published journal article (JPA): A published journal article (PJA) is the definitive final 

record of published research that appears or will appear in the journal and embodies all 

value-adding publishing activities including peer review co-ordination, copy-editing, 

formatting, (if relevant) pagination and online enrichment. 

Policies for sharing publishing journal articles differ for subscription and gold open 

access articles: 

Subscription Articles: If you are an author, please share a link to your article rather than 

the full-text. Millions of researchers have access to the formal publications on 

ScienceDirect, and so links will help your users to find, access, cite, and use the best 

available version. 



284 

 

 

 

Theses and dissertations which contain embedded PJAs as part of the formal submission 

can be posted publicly by the awarding institution with DOI links back to the formal 

publications on ScienceDirect. 

If you are affiliated with a library that subscribes to ScienceDirect you have additional 

private sharing rights for others' research accessed under that agreement. This includes 

use for classroom teaching and internal training at the institution (including use in course 

packs and courseware programs), and inclusion of the article for grant funding purposes. 

Gold Open Access Articles: May be shared according to the author-selected end-user 

license and should contain a CrossMark logo, the end user license, and a DOI link to the 

formal publication on ScienceDirect. 

Please refer to Elsevier's posting policy for further information. 

18. For book authors the following clauses are applicable in addition to the 

above:   Authors are permitted to place a brief summary of their work online only. You 

are not allowed to download and post the published electronic version of your chapter, 

nor may you scan the printed edition to create an electronic version. Posting to a 

repository: Authors are permitted to post a summary of their chapter only in their 

institution's repository. 

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may 

be submitted to your institution in either print or electronic form. Should your thesis be 

published commercially, please reapply for permission. These requirements include 

permission for the Library and Archives of Canada to supply single copies, on demand, 

of the complete thesis and include permission for Proquest/UMI to supply single copies, 

on demand, of the complete thesis. Should your thesis be published commercially, please 

reapply for permission. Theses and dissertations which contain embedded PJAs as part of 

the formal submission can be posted publicly by the awarding institution with DOI links 

back to the formal publications on ScienceDirect. 

  

Elsevier Open Access Terms and Conditions 

You can publish open access with Elsevier in hundreds of open access journals or in 

nearly 2000 established subscription journals that support open access publishing. 

http://www.crossref.org/crossmark/index.html
http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy


285 

 

 

 

Permitted third party re-use of these open access articles is defined by the author's choice 

of Creative Commons user license. See our open access license policy for more 

information. 

Terms & Conditions applicable to all Open Access articles published with Elsevier: 

Any reuse of the article must not represent the author as endorsing the adaptation of the 

article nor should the article be modified in such a way as to damage the author's honour 

or reputation. If any changes have been made, such changes must be clearly indicated. 

The author(s) must be appropriately credited and we ask that you include the end user 

license and a DOI link to the formal publication on ScienceDirect. 

If any part of the material to be used (for example, figures) has appeared in our 

publication with credit or acknowledgement to another source it is the responsibility of 

the user to ensure their reuse complies with the terms and conditions determined by the 

rights holder. 

Additional Terms & Conditions applicable to each Creative Commons user license: 

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new 

works from the Article, to alter and revise the Article and to make commercial use of the 

Article (including reuse and/or resale of the Article by commercial entities), provided the 

user gives appropriate credit (with a link to the formal publication through the relevant 

DOI), provides a link to the license, indicates if changes were made and the licensor is 

not represented as endorsing the use made of the work. The full details of the license are 

available at http://creativecommons.org/licenses/by/4.0. 

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, 

abstracts and new works from the Article, to alter and revise the Article, provided this is 

not done for commercial purposes, and that the user gives appropriate credit (with a link 

to the formal publication through the relevant DOI), provides a link to the license, 

indicates if changes were made and the licensor is not represented as endorsing the use 

made of the work. Further, any new works must be made available on the same 

conditions. The full details of the license are available 

at http://creativecommons.org/licenses/by-nc-sa/4.0. 

http://www.elsevier.com/about/open-access/open-access-policies/oa-license-policy
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0


286 

 

 

 

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the 

Article, provided this is not done for commercial purposes and further does not permit 

distribution of the Article if it is changed or edited in any way, and provided the user 

gives appropriate credit (with a link to the formal publication through the relevant DOI), 

provides a link to the license, and that the licensor is not represented as endorsing the use 

made of the work. The full details of the license are available 

at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open 

Access articles published with a CC BY NC SA or CC BY NC ND license requires 

permission from Elsevier and will be subject to a fee. 

Commercial reuse includes: 

• Associating advertising with the full text of the Article 

• Charging fees for document delivery or access 

• Article aggregation 

• Systematic distribution via e-mail lists or share buttons 

Posting or linking by commercial companies for use by customers of those companies. 

  

20. Other Conditions: 

  

v1.9 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) 

or +1-978-646-2777. 

 

 

 

 

 

 

 

http://creativecommons.org/licenses/by-nc-nd/4.0
mailto:customercare@copyright.com


287 

 

 

 

 

ASHRAE Figure Reprints 

ASHRAE standard Permission type: Republish or display content Type of use: Republish 

in a thesis/dissertation TERMS AND CONDITIONS The following terms are individual 

to this publisher: None Other Terms and Conditions: STANDARD TERMS AND 

CONDITIONS 1. Description of Service; Defined Terms. This Republication License 

enables the User to obtain licenses for republication of one or more copyrighted works as 

described in detail on the relevant Order Confirmation (the “Work(s)”). Copyright 

Clearance Center, Inc. (“CCC”) grants licenses through the Service on behalf of the 

rightsholder identified on the Order Confirmation (the “Rightsholder”). “Republication”, 

as used herein, generally means the inclusion of a Work, in whole or in part, in a new work 

or works, also as described on the Order Confirmation. “User”, as used herein, means the 

person or entity making such republication. 2. The terms set forth in the relevant Order 

Confirmation, and any terms set by the Rightsholder with respect to a particular Work, 

govern the terms of use of Works in connection with the Service. By using the Service, the 

person transacting for a republication license on behalf of the User represents and warrants 

that he/she/it (a) has been duly authorized by the User to accept, and hereby does accept, 

all such terms and conditions on behalf of User, and (b) shall inform User of all such terms 

and conditions. In the event such person is a “freelancer” or other third party independent 

of User and CCC, such party shall be deemed jointly a “User” for purposes of these terms 

and conditions. In any event, User shall be deemed to have accepted and agreed to all such 

terms and conditions if User republishes the Work in any fashion. 3. Scope of License; 

Limitations and Obligations. 3.1 All Works and all rights therein, including copyright 

rights, remain the sole and exclusive property of the Rightsholder. The license created by 

the exchange of an Order Confirmation (and/or any invoice) and payment by User of the 

full amount set forth on that document includes only those rights expressly set forth in the 

Order Confirmation and in these terms and conditions, and conveys no other rights in the 

Work(s) to User. All rights not expressly granted are hereby reserved. 3.2 General Payment 

Terms: You may pay by credit card or through an account with us payable at the end of the 

month. If you and we agree that you may establish a standing account with CCC, then the 

following terms apply: Remit Payment to: Copyright Clearance Center, 29118 Network 

Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable upon their delivery 

to you (or upon our notice to you that they are available to you for downloading). After 30 

days, outstanding amounts will be subject to a service charge of 1-1/2% per month or, if 

less, the maximum rate allowed by applicable law. Unless otherwise specifically set forth 

in the Order Confirmation or in a separate written agreement signed by CCC, invoices are 

due and payable on “net 30” terms. While User may exercise the rights licensed 

immediately upon issuance of the Order Confirmation, the license is automatically revoked 

and is null and void, as if it had never been issued, if complete payment for the license is 



288 

 

 

 

not received on a timely basis either from User directly or through a payment agent, such 

as a credit card company. 3.3 Unless otherwise provided in the Order Confirmation, any 

grant of rights to User (i) is “one-time” (including the editions and product family specified 

in the license), (ii) is non-exclusive and non-transferable and (iii) is subject to any and all 

limitations and restrictions (such as, but not limited to, limitations on duration of use or 

circulation) included in the Order Confirmation or invoice and/or in these terms and 

conditions. Upon completion of the licensed use, User shall either secure a new permission 

for further use of the Work(s) or immediately cease any new use of the Work(s) and shall 

render inaccessible (such as by deleting or by removing or severing links or other locators) 

any further copies of the Work (except for copies printed on paper in accordance with this 

license and still in User's stock at the end of such period). 3.4 In the event that the material 

for which a republication license is sought includes third party materials (such as 

photographs, illustrations, graphs, inserts and similar materials) which are identified in 

such material as having been used by permission, User is responsible for identifying, and 

seeking separate licenses (under this Service or otherwise) for, any of such third party 

materials; without a separate license, such third party materials may not be used. 3.5 Use 

of proper copyright notice for a Work is required as a condition of any license granted 

under the Service. Unless otherwise provided in the Order Confirmation, a proper 

copyright notice will read substantially as follows: “Republished with permission of 

[Rightsholder’s name], from [Work's title, author, volume, edition number and year of 

copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice 

must be provided in a reasonably legible font size and must be placed either immediately 

adjacent to the Work as used (for example, as part of a by-line or footnote but not as a 

separate electronic link) or in the place where substantially all other credits or notices for 

the new work 7/8/2017 Copyright Clearance Center 

https://www.copyright.com/printCoiConfirmPurchase.do?operation=defaultOperation&c

onfirmNum=11654890&showTCCitation=TRUE 5/7 but not as a separate electronic link) 

or in the place where substantially all other credits or notices for the new work containing 

the republished Work are located. Failure to include the required notice results in loss to 

the Rightsholder and CCC, and the User shall be liable to pay liquidated damages for each 

such failure equal to twice the use fee specified in the Order Confirmation, in addition to 

the use fee itself and any other fees and charges specified. 3.6 User may only make 

alterations to the Work if and as expressly set forth in the Order Confirmation. No Work 

may be used in any way that is defamatory, violates the rights of third parties (including 

such third parties' rights of copyright, privacy, publicity, or other tangible or intangible 

property), or is otherwise illegal, sexually explicit or obscene. In addition, User may not 

conjoin a Work with any other material that may result in damage to the reputation of the 

Rightsholder. User agrees to inform CCC if it becomes aware of any infringement of any 

rights in a Work and to cooperate with any reasonable request of CCC or the Rightsholder 

in connection therewith. 4. Indemnity. User hereby indemnifies and agrees to defend the 

Rightsholder and CCC, and their respective employees and directors, against all claims, 



289 

 

 

 

liability, damages, costs and expenses, including legal fees and expenses, arising out of any 

use of a Work beyond the scope of the rights granted herein, or any use of a Work which 

has been altered in any unauthorized way by User, including claims of defamation or 

infringement of rights of copyright, publicity, privacy or other tangible or intangible 

property. 5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR 

THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, 

CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT 

LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS OR INFORMATION, 

OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY 

TO USE A WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. In any event, the total liability of the Rightsholder 

and CCC (including their respective employees and directors) shall not exceed the total 

amount actually paid by User for this license. User assumes full liability for the actions and 

omissions of its principals, employees, agents, affiliates, successors and assigns. 6. Limited 

Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC HAS THE 

RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER 

CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL 

OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER 

EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED 

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 

PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, 

GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF 

THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER 

CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT 

NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL 

RIGHTS TO GRANT. 7. Effect of Breach. Any failure by User to pay any amount when 

due, or any use by User of a Work beyond the scope of the license set forth in the Order 

Confirmation and/or these terms and conditions, shall be a material breach of the license 

created by the Order Confirmation and these terms and conditions. Any breach not cured 

within 30 days of written notice thereof shall result in immediate termination of such 

license without further notice. Any unauthorized (but licensable) use of a Work that is 

terminated immediately upon notice thereof may be liquidated by payment of the 

Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that 

is not terminated immediately for any reason (including, for example, because materials 

containing the Work cannot reasonably be recalled) will be subject to all remedies available 

at law or in equity, but in no event to a payment of less than three times the Rightsholder's 

ordinary license price for the most closely analogous licensable use plus Rightsholder's 

and/or CCC's costs and expenses incurred in collecting such payment. 8. Miscellaneous. 

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the 

Service or to these terms and conditions, and CCC reserves the right to send notice to the 

User by electronic mail or otherwise for the purposes of notifying User of such changes or 



290 

 

 

 

additions; provided that any such changes or additions shall not apply to permissions 

already secured and paid for. 8.2 Use of User-related information collected through the 

Service is governed by CCC’s privacy policy, available online here: 

http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 8.3 The 

licensing transaction described in the Order Confirmation is personal to User. Therefore, 

User may not assign or transfer to any other person (whether a natural person or an 

organization of any kind) the license created by the Order Confirmation and these terms 

and conditions or any rights granted hereunder; provided, however, that User may assign 

such license in its entirety on written notice to CCC in the event of a transfer of all or 

substantially all of User’s rights in the new material which includes the Work(s) licensed 

under this Service. 8.4 No amendment or waiver of any terms is binding unless set forth in 

writing and signed by the parties. The Rightsholder and CCC hereby object to any terms 

contained in any writing prepared by the User or its principals, employees, agents or 

affiliates and purporting to govern or otherwise relate to the licensing transaction described 

in the Order Confirmation, which terms are in any way inconsistent with any terms set 

forth in the Order Confirmation and/or in these terms and conditions or CCC's standard 

operating procedures, whether such writing is prepared prior to, simultaneously with or 

subsequent to the Order Confirmation, and whether such writing appears on a copy of the 

Order Confirmation or in a separate instrument. 8.5 The licensing transaction described in 

the Order Confirmation document shall be governed by and construed under the law of the 

State of New York, USA, without regard to the principles thereof of conflicts of law. Any 

case, controversy, suit, action, or proceeding arising out of, in connection with, or related 

to such licensing transaction shall be brought, at CCC's sole discretion, in any federal or 

state court located in the County of New York, State of New York, USA, or in any federal 

or state court whose geographical jurisdiction covers the location of the Rightsholder set 

forth in the Order Confirmation. The parties expressly submit to the personal jurisdiction 

and venue of each such federal or state court.If you have any comments or questions about 

the Service or Copyright Clearance Center, please contact us at 978-750- 8400 or send an 

e-mail to info@copyright.com 

Order Detail ID: 70572449 ASHRAE standard by AMERICAN SOCIETY OF HEATING, 

REFRIGERATING AND AIR Reproduced with permission of THE SOCIETY, in the 

format Republish in a thesis/dissertation via Copyright Clearance Center. 

Order Detail ID: 70595954 ASHRAE standard by AMERICAN SOCIETY OF HEATING, 

REFRIGERATING AND AIR Reproduced with permission of THE SOCIETY, in the 

format Republish in a thesis/dissertation via Copyright Clearance Center. 

 

 

mailto:info@copyright.com

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgments
	Chapter 1 Introduction
	1.1  Research Contributions

	Chapter 2 Background Information
	2.1  Model Predictive Control Overview
	2.2  Building Physics
	2.3  Occupant Comfort

	Chapter 3 Literature Review
	3.1  Component/Subsystem Level Studies
	3.2  Single Zone Studies
	3.3  Whole Building Studies
	3.4  Analysis and Discussion
	3.5  Building Parameters for Model Predictive Control
	3.6  Conclusions from the Literature

	Chapter 4 Building Energy Model
	4.1  Introduction
	4.2  Thermal Envelope and Zones
	4.3  HVAC System
	4.4  Control Review
	4.4.1  Strategy
	4.4.2  Software

	4.5  Occupancy, Equipment, and Lighting
	4.6  Calibration and Verification
	4.6.1  Weather
	4.6.2  Steam Consumption
	4.6.3  Electricity Consumption
	4.6.4  Electricity Demand
	4.6.5  Temperature Performance

	4.7  Energy Model Results
	4.7.1  Daily Profile Plots
	4.7.2  Electricity by End Use

	4.8  Conclusions of Building Energy Modelling

	Chapter 5 Zone Operative Temperature
	5.1  Zone Mean Radiant Temperature Analysis of Characteristic Zones
	5.1.1  Interior Zone 2C
	5.1.2  Exterior Zone with Large Windows 2N
	5.1.3  Exterior Zone Small Windows 2SW
	5.1.4  Zone Radiant Temperature Difference from Zone Air Temperature Compared to Outdoor Ambient Air Temperature and Solar Radiation
	5.1.5  Zone Radiant Temperature Difference from Zone Temperature Compared to Outdoor Ambient Air Temperature and Solar Radiation With 180 Degree Building Rotation

	5.2  Mean Radiant Temperature Differential from Zone Temperature Approximation Method
	5.2.1  Exterior Zone Large Windows 2N Occupied Only Mode Filter
	5.2.2  Exterior Zone Large Windows 2N Occupied Cooling Mode Filter
	5.2.3  Exterior Zone Large Windows 2N Occupied Heating Mode Filter
	5.2.4  Exterior Zone Large Windows 2N Comparison of Filters
	5.2.5  Exterior Zone Small Windows 2SW
	5.2.6  Summary of Zone and Mode Filters
	5.2.7  Surface Level Forecasting – Total Solar Radiation
	5.2.8  Direct and Diffuse Solar Forecasting

	5.3  Conclusions of Zone Operative Temperature Analysis

	Chapter 6 Model Predictive Control Methodology
	6.1  Research Tool Use
	6.2  Whole Building Model Predictive Control Modeling Method
	6.3  Building Response Model
	6.4  Objective Function
	6.5  Optimization
	6.5.1  Morning Start
	6.5.2  Occupied
	6.5.3  Unoccupied

	6.6  Occupant Feedback
	6.7  Zone Operative Temperature Comfort
	6.8  Forecasts
	6.9  Emulated Model Predictive Control Method
	6.10  Model Predictive Control Modifications for Experimental Implementation

	Chapter 7 Model Predictive Control Simulation Results
	7.1  Fixed Energy Prices
	7.1.1  Rule Based Control
	7.1.2  Model Predictive Control with Energy Optimization
	7.1.3  Model Predictive Control with Total Cost Minimization
	7.1.4  Addition of a Switching Penalty to Total Cost Minimization
	7.1.5  Results Comparison for Fixed Energy Pricing

	7.2  Electricity Demand Mitigation Only
	7.3  Time of Use Electricity Pricing
	7.3.1  Rule Based Control
	7.3.2  Total Cost Minimization with a Switching Penalty of 1
	7.3.3  Results Comparison for Time of Use Electricity Pricing

	7.4  Comparison of Time of Use Electricity Pricing to Constant Pricing
	7.5  Conclusions of Model Predictive Control Simulations

	Chapter 8 Emulated Model Predictive Control Simulations
	8.1  Results of Emulated Model Predictive Control
	8.2  Conclusions from Emulated Model Predictive Control Simulations

	Chapter 9 Experimental Results
	9.1  Introduction
	9.2  Building Response Model
	9.3  Energy Savings
	9.4  Zone Operative Temperature Adjustment
	9.5  User Feedback
	9.6  Conclusions of Experimental Implementation

	Chapter 10 Conclusions and Future Work
	10.1  Conclusions
	10.2  Recommendations

	References
	Appendix A – Taylor and Francis Publishing Agreement
	Appendix B – Reprint of Figures/Tables Licences

