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Abstract 
 
 

Functional MRI (fMRI) has become a critical tool for clinical evaluation 

and neuroimaging research in recent years. This work investigates a unique 

application of spectral entropy (Shannon’s entropy in the frequency domain) 

combined with a regularization scheme for an ill-fitted problem to identify the 

presence of useful task-related information content in fMRI scans. Regularized 

spectral entropy was compared to traditional methods of identifying useful 

information such as the General Linear Model (GLM), as well as known percent 

signal change in simulated data sets created with noise parameters informed by 

real data sets, and signal-to-noise ratio (SNR) in idealized signals. Combined 

with regularization, spectral entropy was found to have comparable sensitivity 

and specificity to the GLM, as well as a correlated response to percent signal 

change and SNR. Additionally, spectral entropy was fast to compute and 

required minimal a priori information compared to other methods used to 

identify useful task-related information.  
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Chapter 1: Introduction 

 This work is a novel application of information theory to functional MRI 

(fMRI), motivated by the goal of detecting useful task information in raw signals. 

The reasoning behind use of raw or minimally processed signals is to rapidly 

detect task-relevant information immediately after the scan, or ideally during the 

scan itself. Detecting the presence of useful information quickly is critical in an 

fMRI scan because of the considerably greater time involved in post-processing 

and analysis; it may take hours or even days to fully process the data, and if the 

patient has left, it may not be possible to re-scan the patient should the data 

quality be low. In this work, spectral entropy is used for the first time in fMRI 

analysis and works in concert with a data-driven regularization scheme to 

quickly elucidate if data will contain useful task-related information.  

1.1 Introduction to fMRI   

 fMRI was originally introduced in 1992 by Peter Bandettini (Bandettini, 

Wong, Hinks, Tikofsky, and Hyde, 1992), after the discovery of the Blood 

Oxygen Level Dependent signal contrast by Seiji Ogawa et al. just a few years 

earlier (Ogawa, Lee, Nayak, and Glynn, 1990; Ogawa, Lee, Kay, and Tank, 1990). 

The basis of fMRI is neurovascular coupling (NVC). When neurons are 

stimulated and respond by firing action potentials, they consume energy and 

oxygen while producing metabolic byproducts. In response, blood vessels 

surrounding brain tissue that is being used increases in cerebral blood volume 

(CBV) by approximately 10% (Buxton, 2013). This is an overcompensation 

compared to the actual metabolic demand and results in a higher concentration 
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of oxygenated blood in active brain regions. This change can then be detected 

using Blood Oxygen Level Dependent (BOLD) contrast imaging.    

1.2 Clinical Applications of fMRI 

Originally used primarily for research, the range of applications of fMRI 

has grown exponentially and it is now a clinically used tool for presurgical 

planning and determining language laterality (Jansen et al., 2006; Stippich, 2010). 

This has created a demand for development of better processing and analysis 

methods, as well as related procedures ensuring that the scan quality is suitably 

high for clinical application. These are often related to inherent challenges in 

fMRI, such as guaranteeing patient compliance or minimizing noise sources.  

Patient compliance is critical as the individual must be accurately performing the 

task and contrast to activate the desired brain regions. If patients  misunderstand 

task instructions, lose focus, or do not complete the tasks for various other 

reasons, the scan quality will be compromised.  

 The benefits of fMRI strongly outweigh the challenges, however. Greatest 

among these is the better spatial resolution relative to cheaper methods such as 

electroencephalography (EEG). Another key benefits of fMRI in the clinic is that 

it is non-invasive and relatively fast for the patient. Many tests, such as for 

determining language laterality, take multiple days or at least half-days. 

Additionally in the case of determining language laterality, fMRI has good 

agreement with other methodologies as well as some notable unique benefits. 

One study found up to 90% agreement between fMRI and the Wada test 

(currently the gold standard for determining language laterality) in a cohort of 

229 patients with epilepsy (Janecek et al., 2013). The Wada test is a two-day 
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blood volume fluctuates with regards to activation. Through convolution of the 

haemodynamic response to the task on/off diagram, the “perfect” fMRI signal is 

found (the signal that would come from a voxel perfectly responding to the task). 

Statistical comparison of this signal to actual signals produces a map of 

activation that can be roughly described as a map of the statistical likelihood that 

any given voxel is responding to the task. In the interest of saving detail for later 

chapters, if a low t-statistic value is calculated for a voxel using a t-test, it’s 

considered unlikely that the signal from that voxel is due to the task. Conversely, 

a high t-statistic value suggests that it is highly likely the signal in a voxel is due 

to a task. An example of such an fMRI map is given in figure 1.1.  

 To accurately compute statistics like the t-statistic with the GLM, effective 

pre-processing is necessary.  Pre-processing is also important to briefly address 

with regards to fMRI analysis, not only because it has always been a contentious 

topic, but because of its role in influencing fMRI results, and relationship to 

sources of noise. Pre-processing is a broad term in fMRI analysis that refers to 

steps taken prior to statistical analysis to counteract sources of noise or other 

confounding factors in the data, or to improve statistical power in the 

calculations. These include but are not limited to: realigning frames to counteract 

the effect of motion, slice-timing correction to adjust for intensity differences due 

to the order in which slices were collected within the MRI, spatial smoothing 

with a Gaussian kernel to increase signal-to-noise ratio (SNR) and make the error 

distributions more normal for statistical testing, and either rigid-body or affine 

transformation to fit the functional data to the anatomical anatomy (or to 

standard data, such as the MNI brain) (Smith, 2004). Affine transformations are 

used to counteract distortion of anatomy that is common in echo-planar imaging 
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(EPI) used for fMRI, but may be replaced by a simple rigid-body transformation 

depending on scan parameters. Additionally, skull-stripping and removal of 

other non-brain voxels is performed to avoid calculation on voxels that are 

known to definitely not be responding to the task. These processing steps are 

relatively time consuming and cannot be performed “online”, and must therefore 

be done after the data is transferred off the MRI and make interpreting a 

statistical map not an effective means of fast scan quality determination.   

1.4 Challenges of fMRI and Data Quality Correction Methods 

 As mentioned previously with regards to language laterality, fMRI does 

not enjoy complete agreement with gold standard methods. The reasons for this 

may be due to lack of standardized fMRI paradigms and resulting inconsistent 

results (Desmond and Chen, 2002), or to technical or acquisition issues. The fMRI 

paradigm is obviously critical to fMRI quality, but is not the focus of the 

discussion here and it is assumed that the paradigm is well-designed and the key 

factors influencing data quality are technical, or acquisition-related such as if the 

patient is actually completing the task as intended. Some of the main challenges 

in ensuring high quality fMRI data are discussed below.  

1.4.1 Motion 

 Motion is probably the most discussed source of noise and poor data 

quality in fMRI, and numerous correction methods have been devised. The most 

basic is rigid-body realignment, where each 3D image from every acquisition or 

repetition time (TR) is realigned to the first frame or the anatomical image. More 

sophisticated methods are primarily used for resting state analysis, which is 

more sensitive to motion (Satterthwaite et al., 2013). These include regression of 
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motion parameters from the signal, wavelet filtering, and scrubbing or 

interpolating. Regression may be used for task-based scans in extreme cases of 

motion, and simply involves calculation of motor parameters and their 

subsequent removal from signal (Power, Schlagger, and Peterson, 2015). 

Scrubbing simply removes time points that coincide with motion parameters 

exceeding a set threshold (and often removal of the previous and following time 

points as well), and interpolation is when these data points are replaced by an 

interpolated value (typically taken from a mean of the two data points 

surrounding those removed) (Power, Schlagger, and Peterson, 2015). Scrubbing 

is a very common method of removing motion affected data in task-based fMRI, 

provided that not too substantial a number of data points are removed. It is 

typically performed after rigid body alignment to remove signal spikes created 

by motion.  

 The challenge with motion is that no correction is perfect, and as one 

author recently highlighted, motion correction is a goal, not a method (Yakupov, Lei, 

Hoffman, and Speck, 2017). The amount of motion interference with the desired 

information is what is important, not the motion itself. Motion may result in 

minimal distortion of the desired signal and therefore only marginally affect its 

quality, or it may add significant noise to the signal but still result in the same 

clinical decision. Determining and quantifying the quality of data with regards to 

motion must take into account not only how much motion has occurred, but how 

the data is impacted. Moreover, motion correction methods may introduce new 

artifacts and these must be carefully considered as well.  
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1.4.2 Task Adherence and Response 

 Assuming that the fMRI task is well-designed and correctly administered, 

there are few ways to ensure that the subject or patient is actually compliant and 

completing the task. Video monitoring is one option, but many fMRI tasks are 

covert and not observable via video or microphone. Language scans, for instance, 

are typically degraded by the motion associated with overt responses, and motor 

activation due to speech is undesired. Post-scan interviews can help ensure some 

adherence by soliciting participant feedback, but cannot prove that the patient 

fully understood the instructions within the scanner.  

 Some modern MRI scanners have real-time maps that can be viewed 

during the scan. These, however, require a full parametric model of the task and 

require some degree of interpretation by an expert viewer who must be present 

during the scan to determine if they are realistic.   

 Beyond determining if a subject is actually performing a task, there are a 

number of other factors that can interfere with the task response. Cognitive 

effects are chief among them; an IQ of 70 or higher is recommended for a person 

to reliably perform  most task-based fMRI (Morrison, 2010). Various medications 

may interfere with activation, particularly in certain populations (Neele et al., 

2001). Many patients with epilepsy undergo fMRI scans as part of pre-surgical 

planning, and even brief seizures in the scanner will influence ability to respond 

to the task.  

1.4.3 Signal Drift and Other Sources of Noise 

Sources of noise in fMRI are varied and include scanner drift, electronic 

noise, minor motion artifact, and physiological noise such as breathing and heart 
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rate (Greve, Brown, Mueller, Glover, and Liu, 2013). Some signal may even come 

from known networks (Tanaka and Stufflebeam, 2016) but for the sake of task-

based fMRI analysis, is still not informative and is therefore effectively noise.  

 The MRI signal is inherently weak and any loss of signal or added noise 

therefore has a great effect, especially in fMRI where task-based percent signal 

change is typically on the order of 3% (DeCharms et al., 2004).  Such signal losses 

and noise may be due to digitization error, electronic noise accumulated in signal 

transmission from the coil, and magnetic drift or shimming artifacts. Magnetic 

drift is a gradual change and shift in the magnetic field of the MRI during the 

scan. Shimming artifacts may be due to slight inconsistencies in the magnetic 

field that cannot be fully counteracted by the MRI scanner’s ability to adjust its 

main magnetic field, resulting in small regions of different field strength. Or, if 

the patient moves between the calibration scan and functional scan, the 

shimming will be ineffective.  

1.4.4 Methods of Managing Artifacts and Noise 

 Various methods have been devised to compensate for the many sources 

of noise in fMRI, ranging from the simple to the complex. The fMRIB (functional 

MRI of the Brain) Software Library (FSL) recommends the following pre-

processing steps, mostly to remove unwanted signal variance (FSL Course, 2016): 

• Motion correction (realignment of each frame to a common frame) 

• Slice timing correction 

• Spatial filtering 

• Temporal filtering 

• Global intensity normalization 
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These pre-processing steps to clean the signal are representative of 

common steps taken across many pipelines. The spatial filtering is done via 

convolution with a 3D Gaussian smoothing kernel and increases the statistical 

power of the GLM, provided the size of the smoothing kernel is less than that of 

the activated area, by smoothing and effectively averaging out noise. Temporal 

filtering is straightforward and removes high or low frequencies that are 

respectively higher and lower than the task frequency. This is founded on the 

premise that low-frequency drift will be a lower frequency than the task 

frequency, and that noise is primarily composed of high frequencies. Global 

intensity normalization is intended to equalize comparison of different scanning 

sessions or scans from different subjects; different scans will have higher or 

lower mean signal depending on factors that don’t affect the final result, and so 

this source of variability is removed.  

The Human Connectome Project (HCP) (Van Essen et al., 2013) is a large 

database containing both task and resting-state fMRI data and has developed an 

advanced processing pipeline to ensure quality results that are free of confounds 

like motion. A total of 24 motion parameters are regressed from the data before it 

is processed with the ICA-FIX algorithm. The basis of ICA-FIX is a trained 

classification algorithm that sorts signal components found with Independent 

Components Analysis (ICA) as either desired or undesired (Pruim, Mennes, 

Buitelaar, and Beckmann, 2015). After ICA-FIX, the HCP pipeline includes 

removal of mean signal and de-trending. In a later pipeline recommended and 

tested by Siegel in 2016 (Siegel et al. 2016), multiple regressors from white matter, 

ventricles, and a global brain mask are removed prior to censoring and 

interpolation between frames affected by sudden motion spikes.  
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Increased interest in resting state analysis has driven increasingly complex 

artifact detection and removal methods to be developed, and was likely a large 

part of the motivation behind the pre-processing pipeline used in the HCP. 

Wavelet noise de-spiking has been proposed as one method that is motivated by 

the various types of motion artifacts and how motion affects signals (Patel et al., 

2014). Given the range of frequencies described by the authors, wavelet de-

spiking would likely clean signals of other kinds of artifacts as well. This method 

works by transforming time series into the wavelet domain and using the 

maximum and minimum wavelet coefficients to remove unwanted signal. It is 

intended to be added on to the end of existing processing pipelines to remove 

any remaining motion artifact.  

1.5 Information Theory in fMRI 

 The basis of information theory is the quantification and qualification of 

information content. In this context, information theory is used to distinguish 

desired task-information from noise and is therefore relevant after discussion of 

noise sources. Entropy, introduced by Claude Shannon in 1948, is the average 

amount of information contained in a signal. Entropy as a mathematical 

formulation existed well before Shannon’s work, A Mathematical Theory of 

Communication, but this publication was really the first to introduce it as a 

concept for signal analysis. This was also the beginning of information theory as 

a field of study.  
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1.5.1 Applications of Information Theory in fMRI 

Information theory has many applications in identifying and quantizing 

the information in fMRI signals and noise. There are too many examples to 

explore all in detail, but some of the most relevant work is discussed here. 

Some authors have studied aspects of cognition, such as the latency in 

time in which information relating to a stimulus reaches different parts of the 

brain (Alpert, Sun, Handwerker, D’Esposito, and Knight, 2007). Work by Alpert 

et al. (2008) identified regions of functional specialization in an audio-visual task 

and the time from the start of the stimulus until different regions became 

informative of the task. This was found using mutual information, calculated 

using entropy, and led to creation of a temporal gradient from the primary 

auditory cortex to higher-order processing regions. It should be mentioned that 

there are some issues with using fMRI to infer causality and directionality in 

cognitive functions, largely because of the slow timescale of scanning (on the 

order of seconds) compared to actual neural signals, but this is nonetheless a 

fascinating example of applying entropy to neuroimaging.  

Using EEG simultaneously with fMRI may help counteract some of the 

issues surrounding inference in fMRI because of the much faster sampling rate of 

EEG. Whether there is actually added information from the additional modality, 

however, is important to know in determining if it’s worthwhile to regularly 

combine both modalities. Information theory, again using mutual information, 

has been useful in exploring this.  One example of this is work by Ostwald et al. 

using simultaneous EEG and fMRI with a stimulus of high and low contrast 

checkerboards (Ostwald, Porcaro, and Bagshaw, 2011). Information synergy was 

calculated using mutual information and entropy to determine the information 



 12 

content of the joint response distribution and determine if the combined 

modalities provided more information than either modality alone.  

Entropy in different forms has also been used to identify artifacts and 

even create activation maps in some cases. Most notably, De Araujo used 

Shannon’s entropy to detect activation in event-related fMRI (De Araujo, 2003). 

Event-related fMRI is where the tasks do not follow a regular block on/off 

pattern with the task presented for a continuous and pre-set period, but rather 

are delivered as brief stimuli followed by a relatively extended rest period as 

compared to block designs. The benefit of applying Shannon’s entropy to detect 

activation in this case is that there are fewer assumptions than a parametric 

model about the type of response. However, there is one main assumption in De 

Araujo’s work which is that Shannon’s entropy is divided into two epochs 

during and following an event-related stimulus. Use of Shannon’s entropy to 

detect activation was found to be more resistant to low SNR, but it is unclear 

how well this method would work in block design fMRI tasks.  This is due to the 

assumptions of the epochs of the BOLD response to an event-related stimulus, 

which differs significantly from block-design.  

Some work has intersected study of cognition and functional mapping. 

Wang et al. used a type of entropy called sample entropy to create expected 

entropy distributions in the brain (Wang, Childress, and Detre, 2014). Sample 

entropy is a type of entropy that is often desired for analyzing biological signals 

because of its sensitivity to self-repetition within signals (for example, cardiac 

signals). Wang et al. theorized that given the importance of entropy throughout 

nature, it may have a significant role within the human brain as well. It was 

shown that there is a sharp change in brain entropy between the neocortex and 
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the rest of the brain, and that the brain can be organized into different regions of 

interest (ROI’s) corresponding to known functional regions based on mean 

entropy values. This is important because it suggests that entropy has a highly 

meaningful role in neural organization and processing. Additionally, Wang et al. 

hypothesized that task activation would lower regional sample entropy in the 

brain in areas activated by the task and they were able to show this in a cohort of 

16 subjects scanned twice. This demonstrates that entropy can be used to localize 

task activation in the brain.   

1.5.2 Spectral Entropy in fMRI 

 Spectral entropy is mathematically the same as Shannon’s entropy, but 

instead of being calculated based on probability distributions, it is computed in 

the frequency domain using the power spectra values of component frequencies. 

In this sense, spectral entropy is a form of quantifying the amount of frequency 

information contained in a signal. Signals with few component frequencies or 

only a single frequency are described as sparse and result in low spectral 

entropy. On the other hand, signals with many component frequencies (for 

example, a very noisy signal) will not be sparse and will have very high spectral 

entropy.  

 There are many frequencies present in fMRI and there are many ongoing 

discussions on the roles of different frequencies and how to filter them. For this 

reason, an application of entropy in the frequency domain is a logical choice. 

Spectral entropy has been previously used in analyzing neurological signals, 

such as for monitoring the effect of general anesthesia through EEG recordings 
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(Vakkur et al., 2004), giving evidence to the relevance of spectral entropy in 

analyzing neurological signals.    

1.6 Regularization 

  Regularization is the process where some amount of a priori knowledge 

is used to counteract measurement deficiencies in data. For example, if it is 

known that the temperature of the body is typically around 37C but that the 

thermometer being used is very inaccurate, an average of measurements may be 

made where values further from 37C are given less weight. There is an obvious 

challenge in data regularization: if the data is regularized too aggressively, it will 

always return the same result (37C in this example) and will no longer reflect the 

true measurement. However, there is no benefit to using a regularization scheme 

if the regularization is too mild.  

 Regularization has been employed in other cases of functional 

neuroimaging. One group has used a combined spatio-temporal regularization 

method to detect functional activation in fMRI (Karahanoğlu, Caballero-Gaudes, 

Lazeyras, and Van De Ville, 2013). Spatio-temporal regularization refers to a dual 

regularization scheme with a temporal component that anticipates a block-

design in the temporal response of active voxels, and a spatial component that 

looks for coherent patterns of activation in known predefined regions. The 

benefit of this method is similar to methods of activation detection using 

information theory in that it is largely non-parametric and breaks away from 

assumptions such as timing of task response. It also does not require prior 

knowledge on the task design. In this particularly example, the combined 

regularization is suggested as an effective way of studying non-stationary brain 

dynamics.   



 15 

 In this work, the measurement deficiency is the ability of spectral entropy 

to detect a sparse signal originating from the fMRI task in the presence of 

unavoidable fMRI noise. Even when the frequency from the task is clearly 

dominant in the power spectra, the contributions of noise will increase the 

spectral entropy – even if each of those contributions are by themselves minor.  

1.7 Hypotheses and Objective Measures 

 The majority of fMRI analysis is currently based on statistical testing of 

data that has been pre-processed and prepared for optimal analysis. Pre-

processing removes some artifacts – or at least, attempts to minimize them – and 

in cases such as spatial smoothing, is intended to improve statistical power. The 

statistical analyses used to test the null hypothesis rely on inferences and 

assumptions about the data, for example the expected haemodynamic response. 

This analysis leads to the typical activation maps associated with fMRI. The 

assumptions associated with these maps, such as the expected haemodynamic 

response (which in fact varies with individuals and brain regions), have led to 

some work attempting to overcome some of the issues with model-based 

analysis (Steffener, Tabert, Reuben, and Stern, 2010), but there is still a large need 

for model-free approaches.  

 Despite the issues around model assumptions, parametric maps (t-

statistic, for example) are still a measure of data quality, albeit one that is far 

removed from raw signals.  Fortunately, there are also known features of fMRI 

data that can be used to anticipate the quality of the data before statistical 

analysis and without models. The relative proportions of noise and task in the 

signal should be in favor of the task, for example, and have good SNR. Some of 



 16 

these features are relatively easy to mathematically quantify. Slow signal drift 

can be easily calculated and removed, frequencies over a certain limit are almost 

certainly noise and can be measured in a Fourier transform. In simulated data 

sets, the amount of added signal is indicative of the expected final data quality.   

Similarly, the number and range of frequencies present is informative of 

some aspects of the data. Specifically, power spectra that favor the task frequency 

are likely representative of signals that are rich in useful task information and 

will lead to increased sparsity of frequencies. This power spectra sparsity can be 

quantified using information theory in the frequency domain with spectral 

entropy.  

 Based on the potential of spectral entropy to quantify information in the 

frequency domain based on sparsity, and also the large amounts of non-task 

information contained in all fMRI signals, the following hypotheses are made: 

Hypothesis #1: Data-driven regularization will improve the ability of 

spectral entropy to detect useful task-related information. 

Hypothesis #2: Spectral entropy will correlate to known factors that relate 

to the amount of useful information in fMRI signals, particularly when 

combined with regularization.  

Objective measures to test and study the first hypothesis, that data-driven 

regularization will improve the ability of spectral entropy to detect task-related 

information, included the change in spectral entropy on idealized signals before 

and after regularization, and the change of spectral entropy’s relationship to t-

statistic (founding using parametric models) and percent signal change before 

and after regularization. 
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Objective measures for the second hypothesis regarding the relationship 

of spectral entropy to information content were the spectral entropy would 

correlate to SNR in idealized signals, t-statistic in both simulated and real 

datasets, and to the amount of added signal in simulations.    

A secondary but closely related hypothesis is that, given the above 

hypotheses and objective measures, regularized spectral entropy will produce 

meaningful maps that reflect known activation in fMRI scans. Additionally, 

based on the evidence for replicable consistent distributions of other forms of 

entropy (Wang, Childress, and Detre, 2014), it is hypothesized that spectral 

entropy (regularized or not) will show consistent and repeatable distributions 

across subjects.  

These hypotheses and related objective measures are intended to help 

approach fMRI data from a more fundamental standpoint than current statistical 

testing and parametric models. Being able to measure data quality before taking 

it offline and performing extensive pre-processing and statistical analysis is 

currently not feasible on most modern MRI scanners, and this method works 

without an assumed haemodynamic response model. While this work does not 

yet claim to be an optimal method for real-time analysis of fMRI data quality, it is 

intended to be part of a broader body of work moving in the direction of 

improved fMRI data quality metrics. 
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Chapter 2: Theory of Functional MRI and Entropy 

 There are many types of MRI scans with different purposes and types of 

contrast. fMRI, however, is particularly special because it can reveal how the 

brain works and where functional regions exist in the central nervous system. 

The basis of fMRI is the BOLD contrast. When repeated in time, this contrast 

(usually in response to a stimuli) can be used to identify functional regions by 

the change in CBV.  

2.1 Magnetic Resonance 

 Medical magnetic resonance almost entirely relies on the proton: a spin ½ 

atom that is fortunately plentiful in the body. A large magnetic field (often called 

the B-field) is always present along the axis of the bore of the magnet. The spins 

of protons align either parallel or anti-parallel to this magnetic field; parallel 

results in a slightly lower energy state. The difference of these energy state is 

given by 

 Δ� = −� ∙ � ∙ ℏ ⋅ � 2.1 

Where B is the magnetic field strength of the B-field and is a function of position, 

� is the gyromagnetic ratio, m is the spin (1/2 in the case of a proton), and ℏ is the 

reduced Planck’s constant (Planck’s constant divided by 2�). 

Field gradients, much smaller than the B-field, are used to adjust the local 

magnetic field and give rise to the specific frequency of each proton’s spin. This 

is called the Larmor frequency and is given by the following: 

 � = −� ⋅ � 2.2 

Where � is, again, the gyromagnetic ratio of the particle. The Larmor frequency is 

necessary for magnetic resonance: energy can only be transmitted to the spins if 
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the frequency is that of the Larmor frequency. This allows specific slices of tissue 

to respond to the radiofrequency (RF) pulses.  

2.2 Blood Oxygen Level Dependent Signal 

 As mentioned above, the BOLD signal is at the heart of fMRI. It is a 

physiological response caused by the metabolic requirements of firing neurons, 

and is therefore closely related to neural activity and cognitive processes.  

2.2.1 Biophysiological Origin 

 NVC (sometimes called cerebro-vascular) is the process in which blood 

volume fluctuates in response the metabolic activity of neurons. The process is 

not entirely understood, but results from synaptic activity and neuronal 

activation leading to increased energy use by neurons and astrocytes. Increased 

local glucose and oxygen consumption leads to dilation of nearby blood vessels 

through complicated action of vasoactive chemicals (Iadecola and Nedergaard, 

2007; Attwell et al., 2010). Neurons stimulated by a task therefore have increased 

metabolic activity and give rise to increased local CBV.  

 The obvious drawback to the biophysiological origin of the fMRI signal is 

that is an indirect measure of neural activity. Any factor influencing the NVC or 

even blood oxygenation will influence the results of an fMRI scan. Important 

factors to consider are pathologies like tumors or long-established epilepsy, or 

medications and neuropsychological effects such as the patient’s ability to do the 

task. Pre-existing familiarity with the task or task-blocks that are too long will 

also result in “conditioning” of the haemodynamic response where the effect will 

be decreased (Henson and Rugg, 2003; Soon, Venkatraman, and Chee, 2003; 

Sagaert, Weber, Petersson, and Hagoort, 2013).  
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simple: the task blocks activate the desired regions of the brain, and the contrast 

blocks activate all other regions activated in the task blocks except those desired 

in the task. For example, a language task may involve filling in the blanks in 

incomplete sentences. (Barnett, Marty-Dugas, & McAndrews, 2014) The contrast 

could be identification of patterns by reading left to right. This contrast will 

activate regions involved in visual processing in a way similar to reading but will 

not involve language regions.  

2.3.1 Motor Tasks 

 Motor tasks are used to identify the motor and pre-motor cortex in the 

brain and are among the most robust types of fMRI scans (Yousry et al., 1995). 

This is likely mostly due to the simplicity of the task: no complex cognitive 

demands that would recruit many brain regions are required for basic motor 

control. In fact, finger tapping was the first true fMRI experiment performed in 

1992 by Peter Bandettini. Motor mapping usually relies on finger tapping, either 

sequential fingers in repetition or in a predefined order, but may also involve the 

tongue, foot, or other body parts.  

 Closely related to motor mapping is sensory mapping. Instead of 

performing a physical motion, the patient will be physically stimulated by an 

external source, such as the motion of toothbrush against the skin. This activates 

regions in the sensory cortex that can then be used to trace where sensations 

from different places are initially processed in the brain.  

2.3.2 Language Tasks 

 Language tasks are more complex than motor because of the greater 

cognitive resources needed and increased location variability of canonical 
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language areas. Because language tasks may inadvertently recruit multiple 

aspects of cognition - working memory, visual processing, even motor cortices 

due to thinking about how to sound out words – contrasting out non-language 

regions requires more sophistication. For example, reading of text should be 

contrasted with pattern identification, or listening to spoken words should be 

contrasted to unintelligible words. Similarly, authors recommend a combination 

of different task types to best focus activation on canonical regions (Gaillard et 

al., 2004). 

 These so-called canonical regions are Broca’s area in the inferior frontal 

cortex and Wernicke’s area in superior-posterior temporal lobe adjacent to the 

angular gyrus and inferior to the supramarginal gyrus (Binder et al., 1997). 

Broca’s area is primarily responsible for expressive language (i.e., creation of 

speech), and Wernicke’s is primarily responsible for receptive language (i.e., 

understanding speech) (Müller et al., 1997). In 95% of right-handed individuals 

and at least 60% of left handed individuals, language is entirely in the left-brain 

hemisphere (Isaaks, Barr, Nelson, and Devinsky, 2006). In the remainder, it is 

either in the right-hemisphere or divided bilaterally. This is especially common 

in populations with long standing pathology, such as those who have had 

epilepsy since a young age, or a slow growing brain tumor. Such pathology may 

interfere with normal brain language lateralization that occurs in childhood 

resulting in atypical distribution and increased need to correctly identify 

laterality for potentially curative surgery that does not result in large functional 

losses (Hamberger and Cole, 2011).    
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2.4 fMRI Analysis  

 There are two broad categories of fMRI analysis: parametric and non-

parametric. Both have benefits and deficits, and the choice of processing is 

circumstance dependent.  

2.4.1 Parametric fMRI Analysis 

 The most common method of parametric fMRI analysis is the GLM, the 

basis of which is an “ideal” function: the convolution of the task timing with the 

haemodynamic response function. The haemodynamic response is the supposed 

response of CBV in response to neuronal activity and its exact function may vary 

depending on software choice, but the gamma function is a common example. 

An example of a haemodynamic response, the task-timing diagram, and the ideal 

function is given in figure 2.2.  
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Figure 2.2 The canonical double-gamma haemodynamic response function, the assumed 
response of CBV to a task (top). Bottom left: task timing diagram. Bottom right: the 
“ideal” response to the task, which is a convolution of the haemodynamic response 
function and the task timing function. 

The actual signal from each voxel is modelled as a weighted sum of the 

ideal response, the average signal intensity, signal drift, and noise. Weights are 

produced by a least squares fit.  
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 The final activation map is, therefore, a map of how well the idealized 

response fits the real signal. This can be given by a t-test (the author’s preferred 

method) or an F-test. A t-value is calculated by dividing the regression parameter 

for a voxel and its sample standard deviation estimate: 

 
� =

�/

�(�/)
 

 

2.3 

 
Where �/are the weights of the least squares fit to the model, and �(�/) is the 

sample standard deviation of the estimates of the fits.  

2.4.2 Non-parametric Analysis 

 One potential downside of parametric analysis is that the model 

assumptions are most sensitive to information that fits the model in spite of the 

fact that other information may still be valuable. This other information might 

include areas de-activated by the task due to haemodynamic suppression, 

regions activated that have different haemodynamic responses than the 

classically assumed response, or regions with different latencies. Another is that 

they require large amounts of a priori information, such as the shape of the 

haemodynamic response. Some clinical centers will actually shift the ideal 

function temporally to best match the latency of the haemodynamic response of 

individual patients: this is an example of additional a priori information being 

used to maximize the output of a model that is designed to respond only to one 

particular aspect of the data. It is also an example of latency in task response that 

varies between individuals.  

 Alternative analysis methods for task-based fMRI have emerged but are 

not widely used. They benefit from less a priori information, but also do not 

focus in on the task information as rapidly. Independent components analysis 
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(ICA) is used in fMRI but may reveal a plethora of signal sources that range from 

real brain networks to noise; activation in desired areas due to the task will be 

contained in one or more of these.  

2.5 Entropy and Information Theory	

 Since Shannon’s publication, Information Theory has expanded greatly 

and so have the definitions and types of entropy and related quantities. It is 

important to note that the basic definition of entropy remains the same, but the 

“flavour” changes with different formulations. Briefly, different kinds of entropy 

measure different aspects or kinds of average information content. Some of the 

most relevant types of entropy are discussed in the following subsections, as well 

as some other key concepts in Information Theory that are found in the 

neuroimaging literature.  

 It is important to always remember the common definition of entropy, the 

expected amount of information content. When the outcome of a measurement, 

such as at a particular time point in a signal, is known and certain, the entropy 

will be zero. Conversely, if each measurement has a different or less predictable 

outcome, there will be non-zero entropy. Therefore, a signal that is flat (uniform 

value) would have zero entropy, while one that is random or varied at different 

points in time would necessarily have non-zero entropy.  

2.5.1 Different Forms of Entropy in Neuroimaging 

  Shannon’s entropy is likely the most “generic” form of entropy and is 

calculated using probability distributions of different states. These may be 

various types of states; in neuroimaging signals they might be signal intensity 

values, for example. The dependence of entropy on probability is how the 
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expected amount of information content is derived. With each new measurement 

of a signal value, the probability of finding the signal in that state is measured. If 

every measurement gave the same result, the probability of that result would be 

100% and the expected information content low and corresponding entropy low. 

Conversely, if the signal had equal probability of being in many different states, 

the average information content would be high and so would the entropy. The 

reliance on probability densities has some inherent challenges in neuroimaging 

because the accuracy of the probability estimate is limited by the number of 

sample points (Ostwald and Bagshaw, 2011). This is an issue that while often 

ignored in neuroimaging work using Shannon’s entropy, is now becoming more 

frequently discussed.  

In addition to the standard form of Shannon’s entropy, sample entropy 

and approximate entropy are found in the context of neuroimaging. 

Approximate entropy measures the degree of regularity or predictability in a 

time series or signal, and was originally created for use in analyzing medical 

signals (Pincus, Gladstone, and Ehrenkranz, 1991). It is a measure of how likely a 

pattern or patterns will be proceeded by a similar pattern or patterns. A signal 

with many repeating patterns will have low approximate entropy, a signal with 

few repeating patterns (and therefore low predictability and regularity) will have 

high approximate entropy.  

 Sample entropy is a modified form of approximate entropy. The benefit of 

sample entropy over its predecessor is data length independence, as well as no 

internal self-comparison. Both forms of entropy use templates, smaller samples 

of the entire time series, of length m and m+1. The distance between templates of 
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the same length is compared and those distances that are less than a pre-

determined distance r are counted and used in the following formula: 

 ������	������� = 	− log
�

�
 2.4 

where A is the number of template vector pairs of length m+1 with distance less 

than r, and B are those of length m with distance less than r.  

 Spectral entropy is a variation on Shannon’s entropy and is the main 

method used in this work. Probability densities are replaced with power spectra 

values, and the information content measured is actually the richness of 

frequency content in the signal. A sine wave would therefore have zero entropy: 

there is only one frequency present. A noisy signal, however, would contain a 

great deal of frequency information and have relatively high spectral entropy.   

 It would be possible to use other measures of entropy in the frequency 

domain to achieve a similar purpose as regularized spectral entropy in this work. 

For example, Gini entropy could be employed to identify sparsity of frequency 

distribution. In this work, Spectral Entropy was chosen because of existing 

demonstrations of its utility in analyzing neurological signals, as well as its 

efficient calculation method.  

2.5.2 Other Key Concepts in Information Theory 

 Entropy is the most commonly referenced aspect of Information Theory in 

neuroimaging, but several other concepts are also used frequently. Conditional 

entropy is the entropy of a signal after the variability due to another signal is 

accounted for (i.e., the conditional entropy H(X|Y) is the entropy of X after the 

variability attributed to Y is removed).  
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Mutual information is probably the most important concept in 

Information theory after entropy. Mutual information is a measure of statistical 

non-independence between signals. It is given by the difference of the entropy of 

a signal and its conditional entropy with another signal. Mutual information has 

found uses in studying the transfer of information between different parts of the 

brain (Alpert, Hein, Tsai, Naumer, and Knight, 2008), or between fMRI signals 

and stimuli as a way of determining which voxels are responding to a task 

(Tedeschi et al., 2005).  
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Chapter 3: Experimental Details 

Development of spectral entropy and regularization used both real and 

simulated data; noise parameters in the simulated data were informed by real 

data sets such that the power spectra were matched. Given the importance of the 

simulated data sets, these are discussed in more detail in the following section.  

3.1 Simulated fMRI Data 

Simulated data was created using the NeuRosim software package written 

in R (Welvaert, Durnez, Moerkerke, Verdoolaege, and Rosseel, 2011). Datasets 

were based on the MNI152 brain with 2x2x2mm resolution (Mazziotta, Toga, 

Evans, Fox, and Lancaster, 1995), and 100 frames (TR’s) of TR = 2s. Activation 

was added in a block pattern with block size of 20 seconds.  

3.1.1 Derivation of Parameters Based on Real Data Spectra 

Spectral entropy relies on detection of frequencies and thus, accurate 

representation of frequency distributions is critical. The following noise 

parameters were adjusted as follows: 

• Autocorrelation 

• White noise 

• Physiological noise (heart rate, breathing) 

Power spectra in groups of random voxels were sampled and compared to real 

data sets’ power spectra. Additionally, averages of the whole brain power 

spectra in simulations were ensured to be highly similar to those of real data. 

Example power signals and power spectra are shown in figure 3.1. Details on the 

real data collected are discussed later.  
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activation. As mentioned earlier, however, when adding activation to a 

simulation, percent signal change is an obvious way of quantifying the amount 

of added activation.  

 In the NeuRosim coding environment, the amount of added activation 

was actually given by effect size. Percent signal change as a function of effect size 

is given as follows: 

 ��� = 	
100 ∗ ������	����

����	�������	������
 3.1 

In this case, the mean resting signal was taken from a resting state simulation 

with the same noise parameters and was found to be 5936.64.  

3.2 Real fMRI Data 

Real data used to inform noise parameters in the simulations was 

collected on a General Electric 3-Tesla MR750 Discovery MRI using an echo-

planar imaging sequence with the following parameters: in-plane resolution 

1.72x1.72mm, slice thickness 3mm, TR = 2s, TE = 25ms, flip angle of 77 degrees, 

and 48 axial slices.  An anatomical scan was included for registration of the 

functional scan and localization of the activated regions. This was a T1 weighted 

spoiled gradient echo sequence with isotropic resolution of 1x1x1mm3, TR = 

5.7ms, TE =2.1ms, field of view = 22.4cm, flip angle of 12 degrees, and 168 axial 

slices. Acquisition time for the anatomical scans were approximately 5 minutes. 

Subject data was collected with informed consent and Nova Scotia Heath 

Authority Research Ethics Board approval, using an integrated fMRI language 

paradigm.   

The language scan included three tasks: word generation to a presented 

letter, generating the missing word at the end of incomplete sentences, and 
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naming items or concepts described by a sentence. Contrast included scanning 

two patterns on either side of a fixation cross to determine if the patterns were 

the same, and alternating finger tapping. The latter contrast is intended to mimic 

the visual effect of reading a sentence, while the former counteracts any 

unintended motion induced by thinking of speech or motion-related words.  

There were a total of 9 task blocks of length 24 seconds and 8 contrast 

blocks with length of 24 seconds. Before each block, a 1-second warning was 

displayed for both contrast and task to “prime” the subject of the incoming 

stimulus. The total paradigm length, including a warmup time of 6 TR’s, was 7 

minutes and 12 seconds.  

3.3 Spectral Entropy Pre-processing 

 In this work, spectral entropy and the combined regularization are 

intended to be applied to essentially raw data – signals that have been at most 

only minimally modified. However, to speed up calculation some pre-processing 

steps were included. These include removal of non-brain tissue, such as the skull. 

Spectral entropy distributions of non-brain tissue are not informative of the scan 

quality and may even be misleading should they provide non-relevant 

information. Furthermore, reducing the number of signals to process makes the 

spectral entropy and regularization calculations faster.  

 Basic motion realignment was also used, where each image volume was 

spatially translated and/or rotated to match the original. This is standard pre-

processing for all fMRI, and ensures that the time course from each voxel is 

actually representative of its true signal (i.e. instead of being a combination of 

neighboring voxels). Motion is unavoidable in fMRI, and happens in varying 
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degrees. A low-motion scan will have very slight and gradual motion, perhaps 

on order of a few millimeters or degrees between the first volume and the last 

volume. A high-motion scan will have more abrupt and likely larger motion. 

Motion realignment will counteract the effect of normal gradual motion but will 

not correct artifacts due to larger motion which typically manifest as signal 

spikes. For larger motion, correction methods typically motion regress 12 or 

more motion parameters, such as the 24 parameters used to ensure data quality 

in the HCP (Siegel et al., 2016). Motion realignment is considered a reasonable 

pre-processing step in this case as it does not remove artifacts from larger motion 

parameters (and therefore accurately reflects all aspects influencing fMRI data) 

but does not allow the data to be unnecessarily interpreted as low quality due to 

normal gradual motion.  

3.4 Spectral Entropy Calculation  

Shannon’s entropy is given by the following: 

 �OPQRRSR = − 	�/ log �/ /log	(�)
/

 3.2 

where �/ are probability densities for particular states and N is the total number 

of states. These probability densities are calculated from real data distributions 

and are therefore subject to some estimation error that has until recently, been 

only minimally addressed in applications of entropy to neuroimaging. In 

frequency space, this problem is circumvented because the probability densities 

become power spectra values. Spectral entropy is therefore given by the 

following: 

 �OVWXYZQ[ = − 	�/ log �/ /log	(�)
/

 3.3 
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Here, �/ refers to the power of a given frequency i. To produce the power spectra, 

a fast Fourier transform (FFT) is used and the resulting complex values are 

multiplied by their conjugate and normalized. The frequencies of the power 

spectra are set between 0 and 0.2Hz in increments of 0.005Hz. This range was 

chosen to reflect a reasonable range of frequencies that might be expected in an 

fMRI signal (DeCharms et al., 2004) and also to accommodate the range of 

frequencies that could be detected in a typical fMRI scan of approximate length 

5-10 minutes (for example, a very low drift frequency may not be detected in a 

scan of only 5 minutes). Additionally, the frequencies are always resampled at 

this same range to ensure equal comparison of any scans of different length. The 

division by log(N) in the calculation of spectral entropy ensures that the value 

varies between 0 and 1, where 0 indicates absolute sparsity of the signal and the 

limiting case of a sine wave where only one frequency is present, and 1 is high 

entropy where many frequencies cohabit the signal.  

3.5 Regularization 

Because of the variety of frequencies always present in fMRI, even a signal 

that is full of task-related information content may have a high spectral entropy 

value. This is because spectral entropy will respond to the overall amount of 

information in the frequency domain and many sources of noise (or noise 

frequencies) will contribute a significant amount of information even if each 

component is by itself small. Much of this noise is not only expected but is also 

impossible to eliminate, such as physiological noise.  

 To counteract this (i.e., have spectral entropy produce a value that 

meaningfully represents when frequency content is sparse and in favor of the 
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task), a data-driven regularization scheme for an ill-fitted problem is used. 

Filtering methods were initially tested but not used because of the inability to be 

data-driven and because if used too aggressively, can produce sparse frequency 

spectra inappropriately. The regularization method used was based upon the 

differences of power spectra values and tuned using simulations with known 

parameters to optimize the ability of spectral entropy to respond to the amount 

of task-based information content in the signal.   

To achieve this, Tikhonov regularization was used (Tikhonov, 1963) and is 

given by the following formulae: 

 �� − � ^ + �� ^ 3.4 

with the solution of: 

 � = 	(�a� + �a�) 
bc
�a� 3.5 

where b is a vector of absolute difference values of each frequency’s power from 

that of the task in the case of perfectly sparse power spectra representing the task 

paradigm (i.e., if the 3rd frequency was that of the task, b = [ 1 1 0 1 …1]). The 

matrix A is the identity matrix I multiplied by the actual differences of task 

frequency power to all other frequencies (i.e. A11  is the absolute difference of 

power of the first frequency and the task frequency). Lastly, � is the identity 

matrix multiplied by a constant	�, where smaller values result in stronger 

regularization.  

 The final power spectrum is the regularization solution x multiplied by 

the original power spectrum. This power spectrum is then renormalized.  
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3.6 Calculation of Sample Entropy 

 This work is about the application of spectral entropy and data 

regularization to determine the presence of task related information in an fMRI 

scan. However, another method of detecting activate regions was proposed by 

Wang et al. using sample entropy (Wang, Childress, and Detre, 2014).  

 In the work by Wang et al., 16 subjects completed task scans twice to 

create 32 task data sets. The same subjects also completed 2 resting state scans. 

Wang et al. demonstrated that there is a decrease in sample entropy in a region 

activated by the task by subtracting each subject’s task scan sample entropy map 

from a corresponding resting state scan sample entropy map and computing a 

two-sample Student’s t-test on the differences. The t-statistic values were seen to 

correspond with a GLM group map of the area activated.  

 To replicate this in a way that sensitivity and specificity could be 

compared to spectral entropy methods, 32 simulations were created with 8 

percent signal change values again varying between 2% and 5% (4 sets of each 

percent signal change were made). To avoid redundant data, a single resting 

state simulation was created. Sample entropy maps of all task scans and the 

resting state scan were creating using Wang et al.’s method, and differences were 

calculated between voxels in the task scan sample entropy maps compared to 

randomly chosen voxels in the single resting state sample entropy map. A key 

assumption is that in simulated resting state data sets, there should be no 

average difference of any kind of entropy between different groups of voxels (or 

a different simulated resting state scan with the same parameters).  
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 Specificity and sensitivity, found taking the best possible combination of 

both, were compared for the sample entropy map as well as the spectral entropy 

maps and traditional GLM maps for each of the 32 simulated data sets.  
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Chapter 4: Data-driven Regularization to Improve Spectral Entropy 

Characterization of fMRI Data 

 The first hypothesis in this work was that data regularization would 

improve the power of spectral entropy in detecting useful task-related 

information. In this context, “task-related” may refer to an active task (such as a 

language or motor task), or sensory stimulation, or other stimuli that is provided 

in block-design format in lieu of a task that is performed by the subject. The 

reasoning for the hypothesis about data regularization is due to the large number 

of noise sources in the signal; even a very good scan still has sources of noise or 

information interfering with the desired data. Regularization is useful for 

extracting information when there is some other known a priori information 

present.  

In block-designed fMRI, one core piece of known information is the 

frequency of the task signal. A goal in this work was to remain as non-parametric 

as possible in the interest of only handling raw, unprocessed or minimally 

processed signals, so only the frequency of the task being completed is taken as 

input for the regularization scheme. In this work, Tikhonov regularization was 

chosen because of its prior applications in MRI, such as for image reconstruction 

(Ling, Xu, & Liang, 2004).  

4.1 Effect of Inherent fMRI Noise on Spectral Entropy 

 It cannot be over-emphasized that there are many sources of noise in 

fMRI. These contribute to non-sparse frequency spectra. In an ideal signal, found 

via the convolution of the haemodynamic response and the task function, there is 

one very dominant frequency – that of the task. In a strong signal, as shown in 
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figure 4.1, this frequency will still be dominant but other frequencies still 

contribute. Subjectively, this is a sparse signal – or at least, may be argued to be a 

sparse signal - favoring the task frequency. However, because of the many 

component frequencies and the normalization involved in the spectral entropy 

calculation, this results in a high value of spectral entropy. When there are many 

frequencies present in a power spectrum, even if they are all relatively small, 

their joint contribution will result in a high value of entropy. Even if a power 

spectrum is dominated by one single frequency, the entropy may still be high 

because there are other frequencies with low power but in great quantity. This is 

illustrated in figure 4.1: 
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It is always expected that many frequencies will be present, and so in 

many cases these are removed with standard preprocessing. Some authors 

completely remove all low frequencies because this information will only relate 

to magnetic field drift and other artifacts (Smith et al., 1999). In resting state 

fMRI, frequency filtering is a necessary standard step to remove noise and 

unwanted signal, and a typical bandpass range is 0.01-0.08Hz (Chao-Gan and 

Yu-Feng, 2010).   

 Extensive filtering would not be a good solution to regularize spectral 

entropy and reduce the effects of many noise frequencies, however. If all 

frequencies outside the task frequency were removed and the power spectrum 

was renormalized as is necessary for spectral entropy calculations, the task 

frequency would always dominate. The goal of spectral entropy is to determine 

when the power spectrum is sparse in favor of the task frequency: if the noise is 

greater than the task frequency, this should be reflected by the entropy. Even 

careful filtering carries the risk of obscuring the true relationship of noise and 

useful signal. This situation presents a unique opportunity for data-driven 

regularization.  

4.2 Data-Driven Regularization for an Ill-posed Problem 

The regularization scheme should be data-driven in the sense that it must 

discriminate when the signal is clearly sparse and in favor of the task frequency, 

and only then increase the power spectrum sparsity and in turn, decrease the 

spectral entropy. In other words, if the task frequency is dominating the noise 

frequencies, the regularization should be stronger. Thus, the regularization 
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should be based upon the difference of the task-frequency to other frequencies. 

In this sense, it is an ill-fitting problem as there is no one perfect solution.  

 This regularization is ensured to be data-driven in the sense that it is 

based upon the actual differences of task frequency to other frequencies. This is 

an inherent and necessary part of the regularization method; the change made to 

the data will vary with the data itself in a way that is useful for spectral entropy. 

Figure 4.2 illustrates this effect, wherein the relative height of the task frequency 

alters the effect of the regularization.  

The regularization is designed to make subjectively sparse power spectra 

objectively sparse according to spectral entropy. If it is clear to an observer that 

the task frequency is dominating the signal, the regularization will accentuate 

this in such a way that entropy will then decrease and reflect the fact that the 

signal is sparse in overall frequency information but rich in task-related 

information.  
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4.3 Role of Synthetic fMRI Data 

 Determination of the constant �, introduced in chapter 3, is critical in 

balancing the efficacy of the algorithm while staying true to the data. The goal of 

this work was to detect when task frequencies were present and make significant 

contributions to the power spectrum, assuming these frequencies would most 

likely be due to the performance of the fMRI task by the patient. Simulated data 

proved invaluable for this, as the implicit goal was to detect voxels activated by 

the fMRI stimulus. Unlike in real data, activated areas are known in simulated 

data. This allows calculation of sensitivity and specificity for any method of 

detecting active voxels. 

4.3.1 Sensitivity and Specificity 

 Sensitivity and specificity are extremely useful measures in medicine and 

science. They are calculated using true positive, true negative, false positive and 

false negative rates. In this case, true positive values are those with low spectral 

entropy that fall within the ROI of added activation. True negative values are 

those with high spectral entropy and outside the ROI of added activation, false 

positive values are those with low spectral entropy outside the ROI of added 

activation, and false negative values are those with high spectral entropy within 

the ROI of added activation.  

 Sensitivity is also referred to as the true positive rate, and gives the 

fraction of truly active voxels that were identified as such. Specificity is 

analogous to sensitivity for true negatives in that it is the fraction of truly 

negative voxels identified as such. Specificity is also called the true negative rate. 

These are given in the following formulae: 
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 ��� =
��

�� + ��
 4.1 

 ��� =
��

�� + ��
 4.2 

Where TP and TN refer to true positive and true negative, and FP and FN refer to 

false positive and false negative.  

4.3.2 Degree of Added Activation 

 The choice of activation strength (given as either effect size or 

equivalently, percent signal change) can be completely controlled in simulated 

data. In keeping with the choice of realistic noise parameters for the simulated 

data, it is logical to use realistic amounts of added signal change for development 

of the regularization scheme. The choice of percent signal change was chosen to 

be between 2%-5% (DeCharms et al., 2004).  

 It’s important to address the fact that the precise values of percent signal 

change are less important than choosing a reasonable range of values. The 

amount of added activation in real fMRI data sets will vary considerably and 

depends on many technological to bio physiological factors. Even within a single 

dataset there will be a range of signal change within different parts of the brain. 

The main concern in choosing the range of added activation in the simulated 

datasets was therefore to represent realistic values while acknowledging that 

exact values will vary greatly in reality.  

4.4 Determination of Regularization Parameters Using Simulated Data   

 The regularization parameter to be determined, �, becomes excessively 

strong as it approaches a value of 0 and increasingly ineffective as it becomes 

larger. For perspective, a value of 0.00001 will result in severe over-
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regularization where the power spectrum will be distorted from reality, while a 

value of 0.3 will barely effect the power spectrum.  

Here, the value of � was varied between 0.005 (aggressive regularization) 

and 0.15 (light regularization) in steps of 0.01. Once maps of regularized spectral 

entropy were created for each activation size and value of �, the threshold cutoff 

that optimized sensitivity and specificity was calculated. In the absence of an 

obvious way to threshold the spectral entropy, the best possible threshold was 

taken as an available data-driven method. To minimize the number of variables 

from four (percent signal change, �, sensitivity, and specificity), sensitivity and 

specificity were combined to be the distance to the top left corner in the Receiver-

Operator Characteristic (ROC) curve: 

 �������� = 	 (1 − �����������)^ + (1 − �����������)^ 4.3 

This relies on an assumption that this distance is equivalent to optimizing both 

values simultaneously as much as possible. To counteract the fact that lower 

percent signal changes will have greater distances overall because smaller 

amounts of added signal will make detection of task information inherently 

difficult, the mean distance from each percent signal change was subtracted.  

 Reduction of the number of variables from four to three (sensitivity and 

specificity were combined into “distance to the top left corner of the ROC”) 

allowed optimization of � across different amounts of percent signal change.  

Two factors were considered: minimization of the mean distance, and variation 

in distance values across different percent signal changes. The latter was 

considered important as the regularization should perform similarly for different 
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levels of realistic activation. These values were weighted equally in the selection 

of � and the cost function used is given here: 

 ����	�������� = 0.5 ∗ ���� � + 0.5 ∗ ��� �  4.4 

Where Dist is the distance to the top left corner of the ROC plot (the vertical axis 

in figure 4.3 below), and STD is the standard deviation of these distances for each 

value of �.	 In total, 48 datasets were used to optimize the regularization 

parameter (6 replications with varying noise of datasets with 8 levels of percent 

change). Regularized spectral entropy maps with regularization parameters of 

0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, 0.075, 0.085, 0.095, 0.105, 0.115, 0.125, 

0.135, and 0.145 were produced, giving a total of 720 maps.   

A plot of the distance to the top left corner of the ROC curve (sensitivity 

and specificity) as a function of percent signal change and �	can be seen in figure 

4.3, with accompanying error.  In this plot, effect sizes were resampled to 30 

values between 2-5%, and alpha values resampled to a resolution of 0.001 (141 

values between 0.005 and 0.145).  
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Figure 4.3 (Top) The vertical axis of this plot shows the distance to the top left corner of 
an ROC curve of spectral entropy in simulations. Low spectral entropy values were taken 
to be “active”, and the optimal cutoff was chosen based on sensitivity and specificity. The 
results are plotted here as a function of regularization strength and percent signal 
change, and have been resampled to higher resolution using spline interpolation.  
(Bottom) Error for the top plot, calculated using 5 sets of simulations with the same 
levels of activation and the same ROI. Low error compared to actual values gives 
confidence.  
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 Variation of value of optimal sensitivity and specificity was expressed by 

standard deviation. This was arguably an optional parameter to consider since in 

general, it is the sensitivity and specificity that is most important in making 

regularized spectral entropy responsive to the amount of task-activation. The 

reason it was included, however, was to acknowledge that the response of 

spectral entropy with accompanying regularization should be consistent across 

datasets and even within a single scan where the amount of activation or signal 

strength will vary.  

4.5 Effect of Regularization on Spectral Entropy 

 The goal of regularization was to improve the ability of spectral entropy to 

respond to signals that are rich in task information. This was done by increasing 

the sparsity of such power spectra in favor of the task frequency when 

appropriate, in a data-driven way. In turn, this sparsity reduced the entropy as 

seen in figure 4.4. This figure demonstrates the decrease in spectral entropy with 

increasingly powerful regularization on a single example time course.  

  The improved correspondence of spectral entropy with regularization to t-

statistic is demonstrated in figure 4.5. Mentioned as part of the second 

hypothesis, these are used as proxy measures for the amount of task-related 

information contained in the fMRI signal.  
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Figure 4.5 The change in spectral entropy relationship to t-statistic with (top) and 
without (bottom) regularization. Values were taken from the active ROI only of 
simulations with percent signal change between 2-5%. Addition of regularization 
dramatically reduces the spectral entropy values within the active ROI.  
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4.6 Justification for Regularization 

The use of regularization was motivated primarily by the inevitable 

plethora of noise frequencies in fMRI data. Even an extremely clean scan with 

obvious functional activation will have a great number of frequencies present, 

and these frequencies will increase the spectral entropy. In the case of a signal 

that is dominated by the task frequency and is subjectively sparse to a viewer, 

these noise frequencies will make the signal appear objectively non-sparse to an 

algorithm such as spectral entropy. Increasing this sparsity, when appropriate, is 

the goal of regularization. 

4.6.1 Challenges of Regularization 

 Regularization depends on some a priori knowledge of the data (in this 

case, the task frequency), and the challenge in regularization is determining how 

heavily to draw upon this a priori knowledge. If the regularization is too strong, 

the data is “over-regularized” and existing information overwhelms new 

information. In other words, the data becomes distorted such that it will only 

represent the a priori information and not the desired new information of the 

signal. In this work, this would be the equivalent of detecting a strong task-

frequency in every single signal.  

 The need to balance regularization strength is an obvious disadvantage 

and challenge. It is a challenge because there is not a single obvious or correct 

way of determining regularization parameters. Having realistic simulations was 

fortuitous because it allowed calculation of sensitivity and specificity to optimize 

regularization. This was an elegant solution to balancing the issue of potential 

over-regularization, but is still not perfect. Because this method relies on the 
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simulations, it is only as good as the simulations themselves, and some sources 

of noise are hard to model or incorporate in simulated data. For example, motion 

artifacts were not included in the simulations.  

 Additionally, the choice of cost function to determine the regularization 

parameter will always be partly arbitrary. As discussed above in this work, the 

cost function included standard deviation and absolute distance to the top left 

corner of the ROC plot. This is justified by the need to optimize sensitivity and 

specificity (minimization of distance to top left corner of an ROC plot) and to 

give consistent results across difference effect sizes (minimization of standard 

deviation), but it is entirely possible that a better cost function exists.  

 Methodological issues are important to address, as well. Functional 

datasets use a lot of space in memory and are computationally intensive when in 

large numbers. To mitigate computational challenges, a limited number of 

percent signal change values were used to optimize the regularization parameter. 

Similarly, a limited number of � values were used. To compensate for this, spline 

interpolation increased the effective resolution of the 3D plot seen in figure 4.3. 

These 3D plots were visually compared with and without spline interpolation to 

ensure that the shapes were similar (i.e., that the interpolation did not over-

interpolate surfaces that did not exist), but it is possible that more samples or 

finer interpolation could yield a more optimal � value.  

 Lastly, the determination of � using the method described here was 

repeated five times and error was calculated as also shown in figure 4.3. This 

gave confidence that the spline interpolation was not unrealistic and that the 

results were replicable.  
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4.6.2 Benefits of Regularization 

 The benefit of regularization was improved sensitivity and specificity of 

spectral entropy in identifying voxels rich in task-information. The core process 

behind this was increased distinction between low- and high-spectral entropy in 

active and inactive voxels. As seen in figure 4.6, a signal that is purely noise is 

not affected by the regularization in the same way that a signal dominated by the 

task is affected. This is due entirely to the data-driven nature of this 

regularization method and the fact that it’s sensitive to the differences of 

frequencies in the power spectra, rather than the frequencies’ actual power 

spectra values. Being data-driven is a built-in way to avoid some degree of over-

regularization, and is a benefit of the method. Additionally, the use of sensitivity 

and specificity in simulations effectively avoided over-regularization by taking 

into account false positive findings.  
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Figure 4.6 (top) Spectral entropy changes much more dramatically with regularization 
strength for a signal containing task information than a signal that is purely noise. The 
noisy signal’s spectral entropy is relatively invariant, which is desired, but the task 
signal changes considerably. This demonstrates the data-driven nature of the 
regularization method. (bottom) The task signal is shown on the left, and the noisy signal 
on the right.  
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4.7 Conclusions on the Effect of Data Regularization on Spectral Entropy 

 Use of regularization in this work was motivated by the hypothesis that 

data-driven regularization would improve the ability of spectral entropy to 

detect useful task-related information. This was evaluated using the change in 

spectral entropy with regularization strength on a signal that was known to 

contain task-information, as well as by comparing the change in relationship of 

spectral entropy to t-statistic in the region of added activation of simulated data 

sets.  

Spectral entropy was shown to decrease with increased regularization 

strength for signals that contained task information, but was shown to be 

relatively insensitive to those that were purely noise. This increased spectral 

entropy differentiation of these two signal types indicates that the hypothesis 

was satisfied and that the data-driven regularization does improve the ability to 

detect useful task-related information. Additionally, the relationship of spectral 

entropy to t-statistic in a known region of activation changed when data-driven 

regularization was added. Values of spectral entropy decreased, particularly 

those with higher t-statistic, in the regularized data compared to the non-

regularized. This also confirms the hypothesis of the effect of data-driven 

regularization on spectral entropy.  
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Chapter 5: Comparison of Regularized Spectral Entropy to Other 

Methods of Quantitatively Measuring fMRI Data 

 The second, and most important, hypothesis of this work is that spectral 

entropy, especially when regularized, can measure information content related to 

task activation in fMRI signals. It was necessary to satisfy the first hypothesis, 

about data-driven regularization, before addressing the second hypothesis. This 

is because regularization is employed in the objective measures of the second 

hypothesis. In other words, to appreciate how the hypothesis of spectral entropy 

identifying useful information in task-based fMRI is fulfilled, it was important to 

discuss the role of regularization in working in concert with spectral entropy.  

 Spectral entropy was chosen for this work because of its ability to quantify 

information content in the frequency domain. The objective measures to test the 

ability of spectral entropy with regularization to detect useful information in 

fMRI signals were chosen because of their well-understood relationships to fMRI 

data.  A scan that is too noisy will not be rich in task-based information and will 

also likely not produce a clean map with t-statistics high enough to be useful, for 

instance. Similarly, this additional noise will reduce the SNR of the signal. For 

these reasons, it was expected that regularized spectral entropy will correlate to 

factors such as SNR, T-statistic, and the amount of added signal in simulations.  
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5.1 Results 

The following sections discuss objective measures that were used to 

evaluate the second hypothesis of this work surrounding regularized spectral 

entropy’s correlation to other known measures of fMRI information content. 

These include t-statistic, percent signal change in simulations, and signal to noise 

ratio.  

5.1.1 Correspondence to T-statistic 

A higher t-statistic indicates better fit to an ideal voxel response to the 

task, and therefore higher likelihood that the voxel in question contains neurons 

that are active in response to the task/stimulus. This would also indicate that a 

voxel that is task-information rich should therefore have a high t-statistic and a 

low spectral entropy value (especially when regularized), as hypothesized 

earlier.   

5.1.1.1 Simulations 

 Comparison to t-statistic is fairly straightforward because as every voxel 

has an associated entropy value, every voxel will have a t-statistic. The challenge 

is in data representation because of the more than 100,000 voxels in the 3D MRI 

image of the brain, only a small subset are really useful. To simplify and reduce 

the large number of potential data points, simulations were used; since the area 

of added activation is known, it’s useful to only use data from this region. The 

range of activation strengths (percent signal changes) resulted in a range of 

different t-statistic values, all within the same ROI. These were extracted and 

compared to regularized spectral entropy values in figure 5.1.  
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Figure 5.1 Regularized Spectral entropy decreases with increasing t-statistic in the active 
ROI of simulations of varying percent signal change. 

 Additionally, the relative sensitivity and specificity of t-statistic and 

regularized spectral entropy are compared later in figure 5.9. Unlike in real fMRI 

data where it is essentially impossible to know absolute ground truth (i.e., where 

there is truly activation that is task/stimulus related), simulations very 

conveniently offer the ability to construct true ROC curves. In the interest of best 

representing the sensitivity and specificity of each circumstance, the cut-off 

values for regularized spectral entropy and t-statistic that were chosen were 

simply those that maximized sensitivity and specificity.  

 Spectral entropy, even with regularization, is not quite as powerful as t-

statistic in determining the region of activation, particularly for lower percent 

signal change around 2% (this is discussed later in more detail). However, 

regularized spectral entropy also requires less a priori knowledge and simpler 
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modelling. For example, there is no assumption regarding the shape of the 

haemodynamic response in regularized spectral entropy.  

5.1.1.2 Real Data 

 Comparison to t-statistic in real data is more difficult because of the 

question, what voxels should be compared? The most straightforward answer is 

to include all voxels after applying as good a mask as possible to remove 

unnecessary signals from ventricles and outside the brain itself.  

 However, regularized spectral entropy maps of real data show activation 

in areas that did not overlap with t-statistic, such as the occipital lobe. There is 

clearly less than perfect agreement between the two modalities that is increased 

in real data compared to simulations. This is partially compensated for by using 

an absolute value of t-statistic, or as in figure 5.2 below, including voxels with 

negative t-statistic for comparison (these are ordinarily ignored in fMRI 

interpretation). Because of the large number of voxels, most of which do not have 

low entropy or high t-stat, histograms of low and high regularized spectral 

entropy vs. t-stat were made instead. By dividing the data into low and high 

regularized spectral entropy, it is more presentable and easier to interpret.  
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Figure 5.2 Voxels are grouped into two t-statistic histograms based on regularized 
spectral entropy values. High spectral entropy is shown on the left, and low spectral 
entropy is shown on the right. Low spectral entropy favors more extreme values of t-
statistic, indicating a relationship to the amount of task-related information content.  
 
5.1.2 Correspondence to Percent Signal Change in Simulations	

 The benefit for simulations is precise knowledge of the ROI of activation 

as well as how much activation is present. This is ideal to study the effect of 

added activation. Increased percent signal change means that there must be 

increased task information in the signal relative to noise, and increased sparsity 

in the frequency domain. It’s a very reasonable assumption that greater relative 

activation in the form of percent signal change would ultimately mean lower 

spectral entropy. In figure 5.3, regularized spectral entropy is plotted as a 

function of percent signal change. The average regularized spectral entropy in 

the ROI has been taken from each scan (values outside this ROI have no percent 

signal change in all scans).  
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Figure 5.3 Regularized spectral entropy is seen to decrease with increasing percent signal 
change. 

 
5.1.3 Correspondence to SNR in Ideal Functions 

 One of the first experiments in this work was the evaluation of how SNR 

effects spectral entropy. The reasoning is that additional noise (i.e. for an active 

voxel with low SNR) will result in difficulty of interpretation and may obscure 

the signal components resulting from the task. This noise will also increase the 

number of non-task frequencies in the signals’ power spectra and decrease 

frequency sparsity while increasing spectral entropy. To test this, an ideal 

function had noise added to it and the SNR and spectral entropy were calculated. 

This is shown for regularized spectral entropy in figure 5.4.  
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Figure 5.4 Added noise, measured through SNR, is shown to have a strong effect on 
spectral entropy. In this case, regularized spectral entropy is shown, but the phenomenon 
is similar, although weaker, for spectral entropy without regularization. Inset are 
examples of a high SNR signal (top) and low SNR signal (bottom) 
 

5.1.4 Characterizing the Distributions of Entropy 

 A secondary hypothesis of this work was that regularized spectral entropy 

would produce meaningful spatial distributions. “Meaningful spatial 

distribution” indicates that regions of low entropy would correspond to known 

areas of activation in real data. In real data, there is no way to truly know where 

activation occurs, although knowing the task performed in the MRI does give 

some indication of what regions would be expected to activate.  Since parametric 

models are the most common means of task-based fMRI processing and therefore 

have been more rigorously used than any other method, they are treated as a 
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“gold standard” here. The following figure is an example of language map 

processed using the GLM, and regularized spectral entropy.   

 

Figure 5.5 An example of an fMRI language scan. Regions in yellow have low 
regularized spectral entropy (below 0.2), regions in blue have high t-statistic (above 7) 
found using the GLM, and regions in green are overlap of low regularized spectral 
entropy and high t-statistic. Some low spectral entropy regions are seen around the 
occipital lobe that do not coincide with high t-statistic. It is possible that these regions are 
responding to the language task but are effectively removed through the contrast of the 
parametric model in the GLM.  

  Additionally, it was stated that distributions would have a consistent 

pattern that is replicable between subjects, especially if the subjects were 

performing the same scan. An average of 4 histograms of regularized spectral 

entropy distributions is shown in figure 5.6.  
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Figure 5.6 The average regularized spectral entropy distributions of four language scans. 
Regularization changes the shape of distribution slightly, but not the similarity between 
difference subjects’ scans. Error between values is shown in yellow, and the average value 
in the dark line. This demonstrations consistency of spectral entropy distributions, and 
replicability between subjects.  

 

5.1.5 Comparison of Regularized Spectral Entropy to Sample Entropy 

Another method of validation of regularized spectral entropy was 

comparison of results to other published entropy measures in functional 

neuroimaging, especially those that map or identify areas of activation. The work 

of Wang et al., using sample entropy, is arguably the most similar to this 

application of spectral entropy in that maps of functional activation were also 

produced. In the case of sample entropy, the maps were made to demonstrate the 

effect of a task on the entropy of the brain. These maps were actually t-statistic 
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maps based on group-differences of voxel entropy values, and in this sense are 

quite different than spectral entropy maps.  

 That said, both forms of entropy are measures of information content in 

fMRI signals and information content that relates specifically to a task is 

particularly valuable. Regularized spectral entropy was shown to be particularly 

effective at finding information content specific to a task, and can make an 

interpretable non-parametric activation map on a single subject in less time that a 

typical parametric map.  

 The resulting activation maps are shown in figure 5.8. One major 

advantage of regularized spectral entropy is that reasonable maps can be 

produced from just a single scan, or that useful information relating to the 

presence of task-data can be identified in only a single subject. Since a range of 

datasets with varying percent signal change were used to calculate sample 

entropy maps but only single datasets are needed for both traditional GLM 

parametric maps and regularized spectral entropy maps, three representative 

maps from simulated data sets with 2%, 3.7%, and 5% were chosen to compare to 

sample entropy.  
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Figure 5.7 (top row) Axial, sagittal, and coronal views of a t-statistic map of the 
reduction in sample entropy from task to rest in 32 simulated data sets. (middle row) 
Regularized entropy maps for three example simulations of percent signal change 2%, 
3.7% and 5%. (bottom row) Parametric maps of the same datasets as spectral entropy 
showing the “gold standard” in identification of task-active regions.  
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5.3 Discussion 

 A significant challenge in this work was identifying ways to relate 

regularized spectral entropy to known amounts of information content. In fMRI, 

the true areas of activation are not known, and the BOLD signal is itself a 

secondary measure of activation. Similarly, even when there is confidence that a 

particular region is active, it’s not necessarily clear how much of the signal is 

noise. To accommodate this, a number of different proxy measures were used to 

develop, test, and validate regularized spectral entropy.  

5.3.1 Comparison to T-statistic 

 The first quantity compared was t-statistic and the reasoning for its use 

was two-fold. First, it is an extremely common activation measure in research 

and clinical use. As such, most people familiar with fMRI have an appreciation 

and understanding of the role of t-statistic, what it represents, and its strengths 

and limitations. In general, t-statistic is accepted as a measure of identification of 

areas of activation.  

Secondly, t-statistic can be thought of as an indirect measure of the 

amount of useful information content that relates to a task in a voxel. The higher 

the t-statistic, the greater the likelihood that components of that signal are due to 

task activation. For example, voxels with low t-statistic would be ignored in fMRI 

analysis and assumed to have little relation to the task. Similarly, someone 

interpreting a parametric map would have much more confidence that a voxel 

with a high t-statistic contained desired information.  

 There are some issues with comparing t-statistic to regularized spectral 

entropy, however. Spectral entropy is invariant to phase, while t-statistic is very 
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dependent on phase. It is not an uncommon process for some clinical centres to 

shift their parametric model temporally to best match up to the haemodynamic 

latency of patients, for example, thereby increasing statistical power and ability 

of the parametric model to identify activated regions.  

Spectral entropy (regardless of regularization) also does not depend on 

the latency of the response: some regions of the brain or individual subjects may 

have a faster or slower change in CBV and this will influence the t-statistic 

computed in the GLM. If the latency of response is large, the phase of the ideal 

task will be significantly different than that of the actual response and the 

correspondence will not be great in the parametric model. Spectral entropy, 

however, is resistant to phase changes in that it does not respond to them. 

Potentially, the non-response of spectral entropy to phase may have (as of now, 

currently unevaluated) applications in analyzing latency of response due to task 

conditions, individual latency differences, and spatial changes in latency.  

Both haemodynamic inhibition and suppression effects are huge and 

important topics that cannot be given the attention they warrant in this work. 

They are briefly discussed here, however, because of their interaction with 

spectral entropy. Known inhibitory haemodynamic processes in the brain, as 

well as the often-complex role of contrast in fMRI studies, voxels with 

frequencies that match the task-frequency but not the phase are likely still in 

some way reflecting execution of the task (Henson et al., 2003; Liddle, Kiehl, and 

Smith, 2001). For example, some regions may be unintentionally activated by the 

contrast but not the task. This might result in a negative t-statistic value, which is 

generally disregarded in fMRI interpretation, and is not ideal (in a perfect 

situation, the contrast activates undesired regions as much as the actual task). 
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However, this response to a contrast still indicates that the subject is responding 

to the fMRI stimulus and that, most likely, useful information is being acquired.  

 Similarly, it is well reported that certain parts of the brain experience 

haemodynamic suppression in response to other regions’ activation (Friston, 

Mechelli, Turner, and Price, 2000).  This would, again, either be detected as a 

negative t-statistic or very low t-statistic, but is still indicative that the task is 

being processed in the brain and from the perspective of this work is therefore 

considered useful task-related information.  

For real data, some of the disagreement between values, such as low 

regularized spectral entropy and low t-statistic, can be attributed to low 

frequencies ineffectively removed by the regularization. Part of the 

preprocessing for the calculations in this work involved removal of all 

frequencies below the task-frequency. Voxels are the edge of the brain are often 

most affected by motion, however, and task-related motion will have the same 

frequency of the task. The effects of this temporal change to the signal are 

impossible to completely remove, even rigid body motion correction, without 

complex correction methods. This may explain some of the low entropy values 

seen near the periphery of the brain in real data. It’s important to note that task-

related motion is still task-related information, and so if this is the case, 

regularized spectral entropy is still identifying signals concerning the task. In 

other words, if motion is due to the task, there is reason to believe that the 

subject in the MRI is in some way responding to the task stimulus.  However, the 

effects of task-related motion may still degrade data, and so effective means of 

detection and correction for this motion would will always still be necessary.  



 74 

5.3.2 Comparison to Percent Signal Change 

 These reasons for disagreement or challenges in the use of t-statistic as a 

means of measuring the ability of regularized spectral entropy to detect useful 

task-based information were one reason for employing other measures, such as 

percent signal change in simulations. In fact, simulations were critical to this 

work for the ability to control a known area of activation and degree of 

activation. Presumably other ways of measuring the degree of activation could 

be used, but percent signal change was chosen for ease of comparison to known 

values in the literature.  

 A critical assumption is that greater percent signal change due to a task is 

directly related to the amount of task-related information contained in the signal. 

In a simulation, all voxels will have a comparable amount of noise added 

(physiological, white noise, autocorrelation, etc.). In the absence of added 

activation, a given voxel is effectively composed of 100% noise and 0% 

activation. As the percent signal change increases, these proportions change in 

favor of activation. Thus, the percent signal change should be directly related to 

the amount of desired task-based information in the signal.  

 There are still some problems with using fMRI simulations, despite the 

extreme convenience of being able to change the amount of added activation. We 

were careful to modulate noise parameters such that they were realistic, but the 

“cleanliness” of maps made based on simulations is still unrealistic, and this 

suggests that simulations cannot truly account for all of the variability in real 

data sets. Some factors that simulations are not effective at incorporating are 

motion, partial volume effects, and signal loss due to regional depth within the 

brain. Another minor problem that could be mitigated is the “drop-off” of signal 
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at the edge of activated ROI’s: in reality, signal does not sharply end but fades 

off. It would be possible to simulate motion in fMRI, but it is unclear if simulated 

effects can be as pervasive as the dramatic signal spikes from motion that 

typically are so damaging to fMRI signals.  

 In general, the knowledge of ground truth was sufficient to warrant using 

simulated data in this work. Varying percent signal change within normal 

parameters replaced the need for signal drop-off at the edge of active ROI’s as 

variations in signal strength were therefore accounted for through multiple data 

sets. More importantly, the need to rely on secondary measures of information 

content such as t-stat was reduced by being able to more directly adjust the 

amount of task-based signal present.  

5.3.3 Comparison to SNR 

 Comparison of SNR with regularized spectral entropy was similar to the 

comparison with percent signal change in that signal to noise ratio can be 

assumed to represent the amount of useful task-related information compared to 

noise in the signal. In this particular case, this assumption was directly built into 

the analysis method. Two signals were created: one was random noise, the other 

an ideal voxel’s response to the task. The SNR was varied by adding the noise to 

the ideal response in varied amount, and then calculated using MATLAB’s snr 

function (“snr Documentation”, 2017). Clearly, when the signal is 100% noise, the 

SNR is very poor. When it was 100% signal, the SNR is extremely high.  

 This also relates directly to information content relating to the task. When 

there is no added noise, the information content can be completely attributed to 

the task. This represents a case where the spectral entropy should be very low, 
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reflecting the sparsity in the frequency domain. In the case of significant added 

noise and low SNR, spectral entropy will be very high and will reflect a lack of 

sparsity in the frequency domain. In other words, the many sources of noise 

contribute many different frequencies that appear in the power spectra.  

5.3.4 Characterizing Distributions of Regularized Spectral Entropy 

Similar to distributions of sample entropy (from the Brain Entropy 

Toolbox), there is a replicable distribution of spectral entropy. The implications 

of this are that there might be a typical entropy value for certain non-neocortical 

regions. The exact value of entropy will change depending on if it is regularized 

and what regularization parameters are used, but will remain similar across 

subjects provided the choice of regularization and other parameters remain 

constant. Perhaps white matter or grey matter not activated by the task have 

consistent and replicable levels of spectral entropy that are reflective of normal 

biological function. The consistency of the spectral entropy distributions is 

promising, however, because it indicates replicability. This is further confirmed 

in the example spatial map shown, as well. From this map it was seen that areas 

of anticipated activation had low regularized spectral entropy, confirming that 

voxels responding to a task are in fact, sparse in the frequency domain and favor 

the task frequency.  

5.3.5 Comparison to Sample entropy 

 It’s important to discuss how the intention of the Brain Entropy toolbox 

(BENtbx) made by Wang et al. is different from that of this application of spectral 

entropy. The main focus of BENtbx is to map natural distributions of entropy in 

the brain, which were found to have unique associations with the neocortex. 
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Identifying functional activation in group studies was a secondary hypothesis 

and performed to show a special quality of regularized sample entropy, but not 

the primary aim or purpose.  

 To compare sample entropy and regularized spectral entropy, a 

replication of Wang et al.’s work was performed using simulated data. Wang et 

al. showed a decrease in sample entropy in areas of functional task activation in a 

group of 16 subjects who were scanned four times each: two scans were task-

scans and two scans were resting state for each subject. BENtbx maps were 

produced for each scan, and the difference of resting state and task sample 

entropy maps were calculated. From these difference values, a t-statistic was 

calculated to produce the final map.  

 To replicate this fairly with simulated data, reasonable levels of activation 

ranging between 2-5% percent signal change were used to make 32 maps. Eight 

values of percent signal change were used, so that there were four examples of 

each percent signal change value in the dataset. Instead of producing 32 resting 

state scans, which take not only require a lot of data storage space and also 

computation time to produce, a single resting state simulation was made with 

identical noise parameters to the task-based simulations. Knowing that the signal 

strength and noise parameters would be identical throughout the brain in a 

resting state simulation, with the exception of ventricular and extra-brain areas 

that are masked out, voxels were randomly sampled to compare to the task-

scans. For each task-scan voxel with a given sample entropy value, the difference 

was calculated from the sample entropy value of a randomly chosen voxel in the 

resting state scan. Therefore for every voxel, 32 difference values existed in 

which to calculate a t-statistic.  
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 Something to note is that the GLM performs better in terms of sensitivity 

and specificity, but that it also requires more assumptions and a priori 

knowledge, computation time, and pre-processing. Computation time is not 

directly addressed in this work because of differences in coding language and 

software packages. Regularized spectral entropy was coded in MATLAB in this 

work, and requires approximately 1 minute and 30 seconds to process an fMRI 

scan with 213 image volumes. An efficient parametric model pipeline can process 

the same data in 2-3 minutes.   

5.3.6 Strengths and Weakness of Spectral Entropy 

One of the weaknesses of spectral entropy – regularized or not - is that it 

responds specifically to frequencies, and it is not guaranteed that a signal with a 

strong task-frequency is actually due to the task. It is unlikely it’s due to another 

source, especially given the range of most task frequencies compared to other 

frequencies. A task frequency will typically be approximately 0.02-0.03Hz. Low 

frequency drift, which is easily removed in pre-processing, will be lower than 

this. Noise frequencies will be higher, as well as physiological noise. Signal due 

to heart rate is typically around 1-2Hz (Biswal, Deyoe, and Hyde, 1996). One 

confounding source of task frequency may be task-related motion, however, 

which is very common (Kochiyama, 2005). Patients may lean their head to better 

see the screen performing the task, or move their heads in some response to the 

task. It’s arguable if this constitutes useful task-based information: task-related 

motion indicates that the patient is responding to the task, but it also reduces the 

quality of the data.  
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The lack of sensitivity to phase is also a potential weakness of spectral 

entropy. Again, however, response to stimuli that is out of phase is still 

indicative of a desired task-response.  

 There are a number of strengths to application of spectral entropy to fMRI 

as well, especially when combined with a regularization method as in this work. 

Spectral entropy is non-parametric, so effects such as an assumed HRF are not 

relevant (regularization is minimally parametric here). Other assumptions 

associated with a parametric model, such as the latency of response to the 

stimuli, are similarly not a problem. An assumed HRF is a particular challenge in 

parametric modeling, and one that has been questioned in recent years. There is 

evidence that not only do different individuals have variable HRF’s and 

neurovascular coupling, but different parts of the brain may also have different 

effects (Handwerker, Ollinger, and D’Esposito, 2004). This reduces the ability of 

a parametric model that assumes a constant HRF to detect activation.  

 Parametric models also inherently involve statistical thresholding, and the 

results depend on the choice of threshold. Determining if a scan is of useable 

quality or contains useful information based on such a threshold is problematic 

and someone intimately familiar with expected activation is required to make 

this judgement. For example, too low a threshold will produce far too much 

activation which will mostly be spurious. Conversely, a high threshold may 

result in areas of true activation being eliminated. Both cases could give the 

incorrect impression of poor data quality. Spectral entropy resolves this by being 

non-parametric, and with the addition of regularization, the entropy difference 

between active and inactive voxels is more exaggerated. The property of being 

non-parametric also allows generalizability: regularized spectral entropy only 
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requires knowledge of the task frequency, and knowing this frequency, can be 

applied to any block design fMRI scan.  

 The difference of regularized spectral entropy between active and inactive 

voxels can be seen in histogram distributions. The results of a subject who was 

not responsive to the task in one scan but was responsive in a subsequent scan is 

shown in 5.7: 

 

Figure 5.9 Difference in regularized spectral entropy distributions on the same subject 
when performing the task (blue) and resting (red). The inset shows the greater fraction of 
low spectral entropy voxels when the subject is actually performing the task.  

In the low entropy end of this figure, the number of voxels is much higher for the 

case where this patient actually completed the task.  

 The replicability of regularized spectral entropy distributions is another 

strength of the method, and is in agreement with other measures of entropy in 

the brain (Wang et al., 2014). The similarity of distributions, shown in figure 5.6 

earlier, indicates this method can be applied to different scans and the meaning 
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of the entropy distributions will be similar. The spectral entropy results are 

definitely not random or without meaning. It’s important to note that these 

distributions are sensitive to the type and strength of regularization, and it’s 

therefore important to always use the same regularization when combining the 

spectral entropy from different datasets. In the example shown in this work, 

regularization was included to be consistent with other figures and examples.   

5.4 Conclusions on the Relationship of Regularized Spectral Entropy to Known 

Measures of fMRI Information Content 

 The second and main hypothesis of this work was based on the ability of 

regularized spectral entropy to detect useful task-related information content. 

This was addressed using objective measures of its relationship to SNR, t-

statistic, and the percent signal change in simulated data sets. Relationships 

between regularized spectral entropy and these quantities were demonstrated, 

satisfying the hypothesis that spectral entropy would correlate to known factors 

of useful information content in fMRI signals.  

 The secondary hypothesis that meaningful maps of activation could be 

produced using spectral entropy was also satisfied, as well as that consistent 

distributions of regularized spectral entropy between subjects would be 

observed.  
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Chapter 6: Conclusion 

 While various examples of applications of information theoretical 

methods to fMRI exist, this work is the first known example of an application of 

regularized spectral entropy. It is also the first known example of an application 

of information theory to develop a potentially holistic and continuous measure of 

fMRI data quality. The use of regularization to increase the sensitivity and 

specificity of spectral entropy is particularly unique.  

6.1 Future Directions 

 A potential use of regularized spectral entropy is as a holistic quality-

assurance metric that works in real-time on scanners for fMRI protocols. To this 

end, many of the potential future directions of this work are motivated by this 

application.  

6.1.1 Increases in Algorithm Efficiency 

 It was briefly discussed earlier, the scripts for this project were written 

almost entirely in MATLAB, while parametric mapping typically takes place in 

an optimized environment using a software package such as AFNI or FSL (Cox, 

1996; Jenkinson et al., 2012). Even though regularized spectral entropy still 

produces results faster than the GLM, optimization could improve this further. 

Code optimization would likely most benefit from a more efficient coding 

language, such as C, rather than MATLAB.  Methods of more quickly loading 

functional datasets (currently loaded as NIFTI files), possibly as DICOM files, 

would also speed up processing. These may be heavily dependent on the coding 

environment. Since fMRI processing packages are already designed to efficiently 
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load fMRI datasets, integration with the code of such a package may be an 

obvious first step.  

 Related to speed optimization of code is adapting regularized spectral 

entropy to process partial datasets, i.e. incomplete data sets that are growing 

during a scan. This would allow regularized spectral entropy to be used as a real-

time source of information content in a scan, and therefore a potential quality 

control measure. The best way of doing this would likely involve an intelligent 

means of appending time series data on existing data to avoid reloading entire 

datasets repeatedly.  

6.1.2 Improvements in Algorithm Performance 

 Improvement of the regularization methods and parameters may also be a 

worthwhile future investigation. Tikhonov regularization was found to be very 

effective at increasing the difference of spectral entropy between active and 

inactive voxels here, but some disagreement still existed. For example, the GLM 

still had better sensitivity and specificity in simulations. And in real maps, 

perfect overlap of GLM activation and low spectral entropy voxels was not 

observed.  

 It is possible that other forms of regularization could be more effective 

than the Tikhonov method employed here. This method was chosen because of 

its relative simplicity and ability to be data-driven, but other version of L1 or L2 

regularization may be even more effective and could be explored.  

 Other adjustments to the regularized spectral entropy algorithm may also 

improve its performance. Currently, regularized spectral entropy does not take 

into account phase information, despite the fact that phase may contribute value 
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to the ability of spectral entropy to detect information-rich voxels. An early 

investigation of the role of phase had promising results in a small number of 

subjects. In this phase experiment, phase information was extracted from the 

Fourier transform data prior to calculation of power spectra. Regions of low 

regularized spectral entropy were isolated and used to create a mask. The phase 

values were then used to colour the voxels in this mask, and the results showed 

clusters of regions with similar phase that corresponded to known functional 

regions. For example, the data used was from a language scan and canonical 

language areas with low regularized spectral entropy in the left hemisphere had 

a distinctive phase from non-canonical language regions with low regularized 

spectral entropy, such as those in the occipital lobe.  

 Using cluster analysis (removing voxels of low spectral entropy that are 

not part of a cluster of a given size) may also be an effective way of improving 

the performance of this algorithm. This is based off a method of producing 

parametric maps sometimes used in fMRI (Forman et al., 1995). Early 

experiments with this method were not successful because of the scattered 

nature of some of the low spectral entropy voxels in real scans. When combined 

with improved regularization and other optimizations, however, clustering may 

be very effective and increasing sensitivity and specificity to activated voxels.  

 Continuing to think in terms of a real-time quality assurance metric that 

holistically evaluates the useful information content relative to other sources of 

information or noise, characterization of entropy distributions is likely the final 

major region of future work in regularized spectral entropy. It was found in a 

single subject that there is a difference in the number of low- and high-entropy 

voxels between task and rest data, and a very early experiment in this work prior 
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to the implementation of regularization found a difference of spectral entropy 

distributions in a small sample of task and rest data from the Human 

Connectome Project (HCP) (Van Essen et al., 2013). These differences were 

visually obvious but difficult to numerically quantify. Attempts to quantify the 

entropy distributions of scans included calculations of Kurtosis and Skew, but 

neither was found to be effective. The reason for this is suspected to be the very 

stretched shape of spectral entropy distributions: they do not really form a 

Gaussian curve.  

 Other attempts to quantify spectral entropy distributions included 

applying a mixture model. When observing a spectral entropy distribution, with 

or without regularization, two peaks clearly dominate in the high-entropy 

region. This suggests that a mixture model may fit the data well. If a model could 

be created based on a large number of scans, differences of an individual scan to 

this model may quantify the amount of task-rich information content present. 

Fitting a mixture model to these distributions never proved even remotely 

successful, however, perhaps an average of a great number of scans could be 

used to form a “template”, like a regularized spectral entropy version of the 

MNI152 brain. This could be potentially used for information an AI classifier or 

other metric to identify data sets that have an acceptable degree of useful 

information content.  

 One last investigation that may be useful to continue is creation of a 

“bootstrap” spectral entropy distribution. A “bootstrap” fMRI dataset was 

created from a single time course extracted from a scan of the author’s own brain 

performing a language task. The time course was taken from a voxel known to be 

responding to the task. This time course was resampled repeatedly and 
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randomly to create a new time course for each voxel in a template brain. In the 

first case, repetition of sample points was allowed (i.e., a given time course may 

have repeats of the same time point from the original signal). In the second case, 

no repeats were allowed so that every time point in the original signal was used, 

in a different order each time. The goal of this is to create a “standard entropy 

distribution” with particular regularization parameters, one that would be 

expected from purely random signals that may or may not contain any trace of 

task and could therefore be compared to real distributions to qualify the amount 

of task information present.   

6.1.3 Potential Algorithm Outputs 

 If this work proves to be useful as a component of a quality-assurance tool 

for real-time fMRI scanning, it is worthwhile to hypothesize some potential 

outputs that would be interpreted by the individuals performing the scan. 

Currently, a “red-yellow-green” colour warning is used on some scanners to 

describe motion parameters. If a similar system is applied based on regularized 

spectral entropy, it would first be necessary to quantify distributions of 

regularized spectral entropy and relate these distributions to a “standard” 

distribution.” 

 Such a standard distribution may come from any of the potential 

characterizations described above, such as comparison to a “boot-strap” brain. A 

normalized numerical value quantifying the relative proportion of low-entropy 

voxels compared to a that of a “boot-strap” brain may be used, for example. 

Similarly, while Kurtosis and Skew were unsuccessful experiments, a different 

measure may be employed and converted to a useful measure.  
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6.2 Summary Conclusions 

 This work was motivated by the broad goal of developing a metric that 

holistically represents fMRI data quality in real-time. It was not intended to solve 

this problem on its own, but is part of a larger body of work that will continue to 

move towards this goal.  

 Spectral entropy was chosen as a method of quantifying information 

content because it is calculated in the frequency domain, and frequencies are a 

critical part of the fMRI signal as they relate directly to task response, noise, and 

artifacts such as magnetic field drift. Much of this work was based around testing 

and tuning the ability of both the regularization and spectral entropy calculation 

to respond to task-based information. Regularization was introduced as a way to 

counteract unavoidable noise in fMRI signals and increase the sensitivity of 

spectral entropy to signals dominated by the task frequency. Regularization 

parameters were adjusted using simulations where the degree of activation 

(percent signal change) and location of activation was precisely known.  

Regularization was found to effectively increase the sensitivity and 

specificity of spectral entropy to identify voxels that were rich in information 

content. Having demonstrated the usefulness of regularization as well as the 

consistency of distributions, comparisons to other measures relating to task-

information content were performed. Regularized spectral entropy was found to 

correspond to t-statistic in the GLM, SNR in an idealized signal, and also to 

percent signal change. Because none of these measures are a direct quantification 

of the amount of task-based information content present in a signal (although 

percent signal change and SNR come close), all three measures were used to 

validate spectral entropy as exhibiting a correlation to data quality.  
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 Regularized spectral entropy was also found to perform as well or better 

than sample entropy (found using the BENtbx). Perfect comparison wasn’t 

possible because of the nature of calculation methods, but with single datasets 

that had percent signal change of between 2-3%, regularized spectral entropy 

was found to have sensitivity and specificity comparable to sample entropy 

calculated from a collection of 32 datasets with percent signal change varying 

between 2-5%. The sensitivity and specificity of spectral entropy was less than 

that of a traditional GLM parametric map, but also required significantly less a 

priori information and calculation time.  

 The ability of regularized spectral entropy to respond to useful task-

related information content in fMRI signals, as well as its consistency between 

scans, suggests that it is a promising step in developing a holistic quality metric 

for fMRI data. Ultimately, it is hoped that this may function as part of a real-time 

system on MRI scanners to aid in data collection.  
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