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ABSTRACT 

In the surface mining industry, trucks and shovels are the essential components in the whole 

operation system. Optimal allocation of trucks/shovels resources is critically necessary in 

the surface mining operations not only for satisfying the mining production profit goal, but 

also for minimizing the mining operation cost. Also, many factors in the operation process 

make the truck allocation decision making plagued with uncertainties, vagueness and 

complication. In the past, Interval-parameter Linear Programming (ILP) has been widely 

used to deal with uncertainties and to assist optimal decision making in a variety of system 

planning and management problems. However, the existing ILP solution algorithms, i.e., 

best-worst case algorithm and 2-step algorithm, are found to be ineffective through a 

validity checking process. Moreover, the results from ILP cannot reflect the linkage 

between decision risks and the system return. 

 

In this study, a Risk Explicit Interval-Parameter Linear Programming (REILP) model and 

a fuzzy-REILP model are developed to generate the least cost strategies while minimizing 

the decision risks. The developed methods are then applied to the optimal planning of the 

truck allocation system in an open-pit mine case, and this is the first attempt of using ILP-

based optimization techniques to the surface mining industry. This method is specifically 

designed to deal with extensive uncertainties existed in the truck allocation system and to 

provide decision supports to the surface mining operators and planners. In the developed 

methods, the ILP is used to reflect uncertainties existed in both objective function and 

constraints. Based on the basic ILP, a risk function is defined to assist in finding solutions 

with minimum system cost while minimizing the decision risk, under certain aspiration 

levels. The aspiration level could be conservative, medium or aggressive, and can thus be 

presented as a fuzzy set to reflect the preference of decision makers. Three sets of solutions 

are obtained accordingly. Besides, the model was also solved under the aspiration level 

from 0 to 1, with a step of 0.1, for providing a comprehensive decision support. 

  

This approach can effectively reflect dynamic, interactive, uncertain characteristics, as well 

as the interactions between overall cost and risk level of the mining truck allocation system. 

The results can effectively reflect the tradeoff between decision risks and the system return, 

and thus provide valuable information to support the decision-making process related to 

the planning of the truck allocation, and timing and routing of the mine-hauling activities.
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CHAPTER 1     INTRODUCTION 

 

1.1 STATEMENT OF THE PROBLEM 

1.1.1 Truck Allocation in the Mining Operation System  

In the surface mining industry, trucks and shovels are the essential components in the 

whole operation system. Subsequently, the associated costs from truck and shovel 

technologies play a dominant role in the total mining operating cost.  

 

Generally, the open-pit mining operation system consists of four major components: 

exploration process, ore mining, waste removal, and operation office. The exploration 

process involves ore mine explorations, ore seams, and trial pits. As the operation moves 

towards ore mining, ores mined from the pits will be hauled to the ore crushing area from 

where the ores will be conveyed by conveyer belts to the ore surge pile awaiting being 

washed. The waste generated from the mining process will be hauled by trucks to the 

crushing area and then be transported via belt systems to the waste-dumping site. 

 

This study will focus on the cost reduction and cost control associated with the ore 

mining operations through optimal analysis of the ore and waste truck allocations in the 

mining industry. 

 

1.1.2 Optimization Modeling of Truck Allocation Problems 

The application of optimization techniques to the open-pit mining operation system was 

first proposed by Richard in 1980 (Richard, 1980), and a variety of optimization models 

have been developed since then (Usama, 1996; Beaumont, 1998; Samanta, 2002; 

Walster, 2003; Pan, 2012; Mitra and Saydam, 2012). Since many factors in the mining 

operation process are plagued with uncertainties, the deterministic optimization 

programming techniques have been recognized insufficient to model a complex system, 

and several uncertainty-based optimization techniques have been developed to reflect 
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system uncertainties, vagueness, and complication. They include fuzzy mathematical 

programming approaches (FMP) (Huang et al., 1995; Hammah and Curran, 1998; 

Emmanuel, 2001; Kannan et al., 2003), stochastic mathematical programming 

approaches (SMP) (Inuiguchi and Ramık, 2000; Hansen and Walster, 2003; Goel and 

Grossmann, 2004; Zhou et al., 2009), interval-parameter mathematical programming 

(IPMP) (Huang et al., 2001; Maqsood and Huang, 2003; Zhou et al., 2009), and some 

hybrid or integrated programming methods  (Samanta et al., 2002; Chung, 2002; Goel 

and Grossmann, 2004; Krause and Musingwini, 2007;  Barr, 2012; Burt and Caccetta, 

2014). Mixed solutions and results have been generated when different approaches were 

used to reflect the system uncertainties in different applications. Comparing to fuzzy or 

stochastic programming approaches, in terms of data quality and requirements, IPMP 

does not require the information of membership functions or the distribution of 

parameters, which could be very challenging to collect in the practical cases. Moreover, 

fuzzy and stochastic approaches often lead to more complicated sub-models, which 

makes the real-world applications unrealistic or impractical. Interval-parameter Linear 

Programming (ILP) is one kind of IPMP, and it can effectively deal with uncertainties 

without leading to more complicated sub-models. The ILP approach has been widely 

used in many different areas in the past, such as civil/environmental engineering and 

economics (Huang et al., 1993; Inuiguchi and Sakawa, 1994; Goel and Grossmann, 

2004; Chinneck and Ramadan, 2000; Huang and Cao, 2011; Sahoo, 2012; Chung et al., 

2013; Torkamani and Askari-Nasab, 2015). However, the ILP approach has never been 

applied in the optimization of the truck allocation system in the surface mining industry. 

As an extension of previous efforts, in this study, the ILP technique is attempted to be 

applied to the mining industry for the first time to enhance the decision making process 

in the truck allocation system. 

 

For solving the ILP models, three solution algorithms have been developed to facilitate 

the use of ILP, including Monte-Carlo simulation, Best-Worst Case analysis (BWC) and 

2-step interactive algorithm. Monte Carlo simulation algorithm (or Monte Carlo 

experiment) is a computerized mathematical technique that relies on repeated random 

sampling to obtain numerical results (Rubinstein and Marcus, 1985) while accounting 
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for risks in quantitative analysis framework. It randomly generates values for each 

parameter within their interval ranges in order to form a classic LP model. Monte-Carlo 

simulation needs to be run by sufficient times (i.e., millions of times) in order to make 

the results reliable, which makes it impractical and unrealistic for many real-world 

problems with a large number of decision variables and constraints. BWC and two-step 

algorithms have been developed to overcome the gaps (Huang et al., 1993; Chinneck and 

Ramadan, 2000). Both algorithms reformulate the original model into two sub-models 

using extreme constraints to represent the most conservative and the most aggressive 

situations, respectively. The main difference between the two algorithms is that the 2-

step algorithm differentiates the selection of extreme parameter values with different 

signs after reformulating the objective functions of two sub-models, while the BWC 

treats all the parameters equally without discrimination. Both algorithms provide an 

interval solution space, and each point in the interval solution space can be used to form 

a decision alternative for implementation. However, theoretically, the development of 

both algorithms is associated with flaws, and infeasible and/or non-optimal solutions can 

be generated from their interval spaces. This would lead to significant risks associated 

with the decision alternatives in practical decision making process. In this study, validity 

checking is performed to prove the infeasibility and non-optimality issues of the ILP 

algorithms, indicating that the ILP modeling results could bring the decision risks to its 

practical implementation and improving its applicability is desired.  

 

Moreover, the results obtained from the ILP lack of a linkage and tradeoff analysis 

between decision risks and system return. The decision makers would much prefer to 

know the system returns along with the associated decision risks rather than the system 

returns only. Hence, it is desirable to formulate a model which can effectively reflect the 

linkage between the system return and decision risks. Rui et al. (2010) preliminarily 

explored this modeling issue by developing a risk explicit interval-parameter linear 

programming (REILP) model. However, the REILP method still has some deficiencies, 

such as infeasibility problem, the risk function formulation problem and the difficulty of 

selecting the pre-set aspiration levels. This study will address these deficiencies and 

extend/evolve the REILP method to a new application in the mining industry.  
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1.1.3 Open-Pit Mining Operation System of Anshun Yalong Project 

Guizhou Province is located in the southwestern part of China and has over a thousand 

coal mines in operations in 2015 (China Mining Association, 2015). The city of Anshun 

produces the largest amount of coal every year, contributing to over 60% of the total coal 

production in the province (China Mining Association, 2015). As the study case in this 

thesis, Yalong project is an open-pit coal mining project in the city of Anshun, which 

has started operation since 2010.  

 

Considering the distributions of operating costs for the activities in an open-pit mining 

production cycle, loading and hauling costs could take up to 70% of the total (Javad, 

2009). Yalong Group Corporation has strived to establish an efficient truck allocation 

system since 2013 through various available programs using heuristic rules or the 

methods based on the dispatchers’ experiences. The heuristic rules may work well for 

small mining operations, but may not work for large and complicated mining operations 

in most cases (China Mining Association, 2014). During the implementation of these 

programs and continuous increase of the coal production rate, one major concern from 

the decision makers and stakeholders is the cost reduction and control. In Guizhou, the 

total annual capital cost for the truck allocation system is around 60.9 million Canadian 

dollars under the current coal production level, i.e., the yearly coal production is around 

173.65 million tonnes in Guizhou (National Energy Administration, 2015). Furthermore, 

if a higher production rate is desired, or if the equipment or trucks need to be replaced 

or repaired, additional cost would be occurred. 

 

There is always a tradeoff between the system cost and associated coal production rate. 

The total cost will be unaffordable if the cost for truck allocation system is not well 

controlled and managed. In the past, very few studies have reported a comprehensive 

truck allocation system study and addressed the associated system uncertainties (Jordan, 

2015), and none of them have focused on using the ILP method to reflect the 

uncertainties. For Yalong project, no mathematical programming methods have been 
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applied to investigate its truck-shovel dispatching and waste hauling problems. This 

study will be the first attempt through conducting a comprehensive truck allocation study 

to provide better and more reliable decision support information for local coal mining 

managers. 

 

1.2 RESEARCH OBJECTIVE 

As an extension of previous efforts on truck allocation system of the open-pit mine, this 

study attempts to address the optimal truck allocation problem under various ore 

production and waste hauling constraints. A number of optimization modeling 

approaches including ILP, Risk Explicit Interval-parameter Linear Programming 

(REILP) and Fuzzy Risk Explicit Interval-parameter Linear Programming (FREILP) 

will be developed and applied to the Yalong project as a case study for generating 

optimal truck allocation solutions and more importantly, analyzing the risks associated 

with the generated decision alternatives. This study entails the following objectives: 

 

(1) Validity checking of two ILP solution algorithms, i.e., BWC algorithm and the Two-

Step interactive algorithm 

A numerical example will be formulated and solved by the Monte-Carlo simulation, 

BWC and Two-Step algorithms, respectively, for investigating the validities of BWC 

and Two-Step algorithms, and the focus will be on the feasibility and optimality of the 

interval solutions of the ILP model.  

 

(2) Development of REILP and Fuzzy REILP models 

The formulation of REILP model will be based on the ILP model solutions and could 

better reflect complex connections between system return and decision risks. The 

proposed FREILP model is designed to minimize the decision risks of the truck 

allocation system while the total system cost is maintained at a minimum level with the 

aspiration level being preferably selected by the decision makers. In addition, problems 

of model infeasibility and risk function formulation will also be discussed.  
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(3) Application of the developed FREILP model to the truck allocation planning for 

surface mine industry 

The modeling results could provide mining operators scientific bases for generating 

practical truck allocation schemes, and thus both mine/waste hauling and operating cost 

goals could be achieved. In this application, three options based on different aspiration 

levels of decision makers will be provided, including aggressive schemes, medium 

schemes, and conservative schemes. 

 

1.3 STRUCTURE OF THE THESIS 

The structure of this thesis is organized as follows: 

 

Chapter 1 introduces the surface mine truck allocation problem and the application of 

mathematical programming to the mining truck allocation system. Problems associated 

with the current modeling studies are discussed, leading to the need of a new approach 

that could provide decision support for cost-effective truck allocation planning. 

 

Chapter 2 presents a comprehensive literature review with respect to the previous efforts 

in using optimization techniques to solve the truck allocation problem. The focuses have 

been placed on discussing uncertainty-involving optimization techniques and their 

applications to the truck allocation system management. A summary has been provided 

in order to identify the knowledge gaps based on these previous studies.  

 

Chapter 3 introduces a numerical example to conduct the validity checking of the 

existing ILP algorithms with focuses on checking the feasibility and optimality of the 

ILP model solutions. 

 

Chapter 4 presents the development of the REILP model along with the selection of the 

aspiration levels and the construction of the constraint-wise risk function. A numerical 

example is provided in this chapter to illustrate the REILP model solution process. 
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Chapter 5 discusses the details of the FREILP model formulation and development. The 

solution process for solving the FREILP model is also provided.  

 

Chapter 6 presents the application of the developed ILP, REILP and FREILP models to 

the case study of the Yalong Project. The model input data and the model development 

are provided in details in this chapter. 

 

Chapter 7 presents the modeling results obtained from Chapter 6. The implications of 

the FREILP modeling results are also discussed. 

 

Chapter 8 is a summary of this study along with the conclusion. Recommendation for 

further work is also provided in this chapter. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 CONVENTIONAL HAUL TRUCK ALLOCATION SYSTEM AND 

PLANNING METHODS 

Since the 1980’s, much effort has been devoted to the development of the mathematical 

programming models to support the decision-making process of truck allocation system 

and to evaluate the relevant operational and investment policies. Turpin (1980) firstly 

proposed an economic optimization technique for open-pit mining operation system. 

After that, a number of open-pit mining operation related deterministic optimization 

models have been developed. Rommelfanger et al. (1989) applied the Linear 

Programming (LP) technique to investigate the related costs of truck and shovel fleets 

for surface mining operations. Sturgul and Li (1997) also used the LP approach to 

optimize the truck and shovel operation system. His research is based on performance 

estimation models developed by a project in Utah. Usama (1996) developed the Mix-

Integer Linear Programming (MILP) approach and applied it to the planning of the truck 

allocation system. Beaumont (1998) applied the MILP in the open-pit mining operation 

system in America. Huang et al. (2001) applied the stochastic programming approach to 

determine the optimal truck hauling amount and the truckload for the open-pit mining 

project in Shandong, China; Chung (2002) applied the integrated linear programming 

approach to the surface mining operation system. The cost and truck-shovel resources 

were considered while formulating and selecting the optimal system management 

alternatives. Krause and Musingwini (2007) developed an integrated truck-shovel 

operation system model by using the LP approach to assist in identifying the optimal 

truck resources management strategy which could meet the balance of the cost control 

and the operation system management objectives.    

 

Since the open-pit mining operation system has become more advanced and integrated, 

it has been realized that the above deterministic optimization approaches are insufficient 

to formulate proper models for the complex operation system problems. In surface 

mining operation systems, many truck hauling related processes need to be considered 
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by the decision maker and stakeholder, including ore hauling, waste hauling, truckload 

selection and truck resources (Caccetta and Hill, 2003). There are many factors in these 

processes that interact with each other with multi-period, multi-layer and multi-objective 

features (Cetin, 2004). Meanwhile, the temporal and spatial variations of different 

system components may further multiply the uncertainties in the whole operation system 

(Pan, 2012).  Hence, these factors are not only closely connected with uncertainties but 

also hard to be evaluated in the precise term.  

 

Since the deterministic data and crisp model constraints are required in the deterministic 

optimization approach, it is desired to develop the optimization approach with the 

reflection of the uncertainties. In the past, a variety of uncertainty-handling techniques, 

have been developed and applied to different cases, such as fuzzy and stochastic 

mathematical programming approaches. However, their applications to solving the 

surface mining operation problems are limited and reviewed in next section.    

 

2.2 OPTIMIZATION APPROACHES THAT DEAL WITH 

UNCERTAINTIES 

 

2.2.1 Fuzzy Mathematical Programming Approach 

Fuzzy mathematical programming approach is based on the fuzzy set theory and 

formalized by Zadeh in 1965. The fuzzy set is different from the classical set, which the 

membership can only take values of 0 or 1. The fuzzy set can be presented by the 

membership function which takes values in the range of [0, 1].  

 

Fuzzy mathematical programming approach has been developed and applied to many 

different optimization applications, including surface mining operation system. Bascetin 

and Kesimal (1999) applied the fuzzy mathematical programming to the optimization of 

inventory stockpiles and mine production. Caccetta and Hill (2003) extended an efficient 

optimization model for the long-term production planning at LKAB’s Kiruna mine by 
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using the fuzzy mathematical programming approach. Chung et al. (2005) applied the 

fuzzy programming approach to the optimal equipment selection of the surface mining 

hauling system in Istanbul, Turkey. In this study, the fuzzy objectives for the decision 

makers were quantified under multiple types of truck-shovel operation management 

alternatives. More recently, Liu et al. (2010) developed a fuzzy linear programming 

model for a review of operation research in mine planning. It can deal with the 

uncertainties which are denoted as fuzzy sets in the left-hand side and right hand side of 

the constraints and the objective function.  

 

Fuzzy mathematical programming technique can be sorted into two major categories due 

to its characteristics. They are fuzzy possibility programming approach and fuzzy 

flexibility programming approach (Inuiguchi and Sakawa, 1994).  For the fuzzy 

flexibility programming approach, the flexibility in the constraints and the fuzziness in 

the objectives are denoted by the fuzzy sets and presented as the fuzzy constraints and 

the fuzzy objective, which can be expressed as the membership grades. However, the 

fuzzy flexibility programming approach cannot express the uncertainties as ambiguous 

coefficients in both of the constraints and objective functions (Inuiguchi and Ramık, 

2000; Schultz, 2003). In the fuzzy possibility programming approach, the fuzzy 

parameters are addressed in the programming model and denoted as fuzzy sets along 

with their possibility distributions. However, there is certain limitation for the 

application of the fuzzy possibility programming approach. Huang et al. (1993) 

mentioned that when many uncertain parameters are expressed as fuzzy sets in a model, 

the interactions among these uncertainties may lead to serious complexities, especially 

for the large scale practical cases (Zhou et al., 2009).  Meanwhile, the membership 

function of the fuzzy set, as the critical role of the fuzzy mathematical programming 

approach, numerically expresses the degree of each element in its belonging fuzzy set. 

In addition, the membership function of the parameter is hard to define and the inaccurate 

membership function will lead to undesirable results. 
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2.2.2 Stochastic Mathematical Programming Approach 

Stochastic mathematical programming approach is developed based on the probability 

theory. The random elements are addressed in order to account for the probability 

uncertainty in the coefficients in the stochastic programming model. Chung et al. (2005) 

developed a stochastic programming model for the mine truck allocation which allows 

for analyzing stochastic information in the truck allocation management. The inherent 

uncertainty in a model can be denoted as stochastic elements in the constraints matrix, 

the right hand side stipulations or the objective function (Chung et al. 2005). However, 

the programming model will be extremely hard to solve if all of the parameters in this 

model are denoted as random variables. In addition, it also may lead to some infeasibility 

problems.  

 

Chance-constrained programming approach is one of the stochastic mathematical 

programming techniques which contains the random distributions of the right hand side 

parameters (bi). All of the constraints are not required to be satisfied in the chance-

constrained approach. Instead of this, a certain level of violation of the constraint with 

the random distribution under certain circumstances can be allowed in this approach 

(Steuer et al., 1981), as presented in the following equation: 

 

P[𝑔𝑖(𝑥̅) ≥  𝑏𝑖] ≥ 𝑝                                                                                                     (2.1)                      

 

The probability which the ith constraint satisfied is p, where 0 ≤ p ≤ 1. And the bi can be 

determined by its distribution and possibility p. 

 

Generally, chance-constrained programming approach always combines with other 

uncertainty handling approaches, due to many uncertain factors other than the right hand 

side stipulations existed in the practical cases. Guo et al. (2010) combined the chance-

constrained approach and mixed-integer linear programming approach into a general 

optimization modeling framework for the long term production planning of an open-pit 

mine. Zhou et al. (2009) developed a fuzzy chance-constrained programming model for 
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the shovel-truck-crusher system in the open-pit mine. Guo et al. (2010) developed an 

inexact fuzzy stochastic mixed-integer programming model to the surface mining 

operation management design.  

 

The stochastic mathematical approach could provide a complete view of the effects of 

the uncertainties along with the relationships between the uncertain inputs and resulting 

solutions for the decision makers and stakeholders (Chinneck and Ramadan, 2000). 

However, the availability of sufficient data to obtain the Probability Distribution 

Functions (PDF) for the random parameters is always problematic in the real-world 

cases. Moreover, even if the random distribution functions are available, the large scale 

stochastic programming models are still hard to solve with all uncertainties being 

denoted as PDFs (Krause and Musingwini, 2007).  

 

2.2.3 Interval-parameter Mathematical Programming Approach  

Both fuzzy and stochastic mathematical programming approaches can effectively reflect 

the uncertainties in the model. However, they require a significant amount of data to 

obtain the membership functions and PDFs, which in many real-world cases it is 

impractical or impossible. In addition, even data are sufficient but its distribution is hard 

to specify; as a result, the modeler or decision maker would rather select the fluctuation 

interval of the uncertain parameters than specifying its distribution (Huang et al., 2001). 

In the surface mining industry, the hourly ore production rate often fluctuates within a 

certain interval, but it is difficult to obtain sufficient data to present it as a reliable 

distribution function (Caccetta and Hill, 2003). Hence, the interval-parameter 

mathematical programming approach becomes a popular and alternative method for 

dealing with the uncertainties in the constraints and objectives of the model (Huang et 

al., 2001). Comparing to the fuzzy and stochastic mathematical programming models, 

the interval-parameter mathematical programming approach does not require the 

membership function or the distribution of the uncertain parameters. This programming 

approach is based on the interval analysis. And it only requires extreme bounds (upper 

and lower bounds) of the uncertain parameters. The interval-parameter analysis was 
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firstly proposed by Moore in 1979, and was then developed into interval-parameter 

mathematical programming approach (Moore, 1979). This programming approach 

indicates the intrinsic vagueness of the informational characteristics during the 

parametric estimation (Hansen and Walster, 2003). 

 

In the past decades, the interval-parameter programming approaches have been widely 

introduced in many fields due to its simplicity (Richard, 1980; Huang et al., 1992; 

Emmanuel, 2001; Hansen and Walster, 2003; Zhou et al., 2009; Liu et al., 2010; Huang 

and Cao, 2011). Among them, the Interval-parameter Linear Programming (ILP) 

approach becomes a critical member of the interval-parameter mathematical 

programming approach. ILP approach does not require any distributions when dealing 

with uncertain parameters expressed as intervals, and it does not lead to more 

complicated sub-models either. The ILP approach can deal with the uncertain parameters 

in the objective function (Iishibuchi and Tanaka, 1990), right- and left- hand side of the 

constraints, and any combinations of above all (Huang et al., 1992 & 1995). The 

application of the ILP to the surface mining area include hypothetical case examples in 

equipment selecting problem in the open-pit mining operation system (Hammah and 

Curran, 1998; Chinneck and Ramadan, 2000; Chung et al., 2005), truck-shovel allocation 

problem (Beaumont, 1998; Cetin, 2004; Javad, 2009), and the long term planning for the 

open-pit mining operation system (Liu et al., 2010). It has also been applied to practical 

cases, such as the long term production scheduling optimization for the surface mining 

operation (Huang et al., 2001), the mine truck allocation scheduling in South America 

(Chung et al., 2005), and the optimization of the shovel-truck system for surface mining 

(Ercelebi and Bascetin, 2009). 

 

There are three algorithms which have been used to solve the ILP programming models, 

including Monte Carlo simulation algorithm, Two-Step algorithm and BWC algorithm. 

Monte Carlo algorithm requires the repeated random samplings in order to compute the 

results (Rubinstein and Marcus, 1985), which means high computational requirements. 

Hence, it is not realistic to solve real-world large scale models which involve numerous 

uncertain parameters and variables. Huang et al. (1992) developed the Two-step 
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algorithm and Tong (1994) developed the BWC algorithm. Comparing to the Monte 

Carlo algorithm, Two-step and BWC methods are easier to use when solving the ILP 

models since they generate two deterministic sub-models corresponding to the upper and 

lower bounds of the objective function. In 2009, Rosenberg conducted a research on a 

few ILP models and concluded that the Two-step algorithm could not provide a good 

performance in some cases (Zhou et al., 2009). Therefore, the validity checking is desired 

to be conducted for these two algorithms in order to examine the feasibility and 

optimality of the obtained results. 

 

2.2.4 Hybrid and Mixed Mathematical Programming Approach 

Previously, many hybrid optimization approaches have been developed to account for 

the model uncertainties, and the ILP approach has been widely used to combine with 

other optimization techniques due to the flexibility and the simplicity. Chung et al. 

(2005) proposed an interval based possibilistic programming model for the optimal 

surface mining operation planning while minimizing the system cost. Javad (2009) 

proposed a fuzzy flexible programming model and applied to the queuing network model 

for shovel-truck-crusher systems in open-pit mining. Guo et al. (2010) proposed a fuzzy 

interval-parameter mixed integer programming model to analyze the hybrid system for 

surface coal mine production. This research presented how uncertainties could be 

quantified by specific membership functions and the intervals in the multi-objective 

programming model. Liu et al. (2010) developed a mixed optimization approach to 

improve the ILP method and the mixed-integer programming approach for a better 

performance prediction of gob gas ventholes for sealed and active longwall mines.  In 

these applications, almost all of the ILP-based programming models are solved 

eventually by the ILP solution algorithm. Consequently, once there are any fundamental 

flaws in the ILP solution process, the results of these ILP based studies may become 

problematic, and its validity checking is necessary. In addition, the corresponding risks 

associated with the decisions generated from the ILP models need to be examined for 

better supporting the decision-making process.  
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2.3 SUMMARY OF PREVIOUS STUDIES ON OPEN-PIT MINING 

OPERATION SYSTEM  

In summary, although the uncertainty-handling approaches have been applied to the 

fields of surface mining operation, the validity of the ILP modeling results need to be 

thoroughly checked, and furthermore, the risks of implementing the decisions generated 

from the ILP modeling results have never been studied in the past. For the first time in 

the surface mining industry, the Risk Explicit Interval-parameter Linear Programming 

(REILP) approach will be developed and applied to the truck allocation process to 

improve the operation efficiency and effectiveness in the open-pit mining operation 

system. 

 

Moreover, when calculating the ore/waste truck cycle time, the hauling speed cannot be 

exactly same every time in the real world situation. This variable can be affected by the 

drivers or weather conditions or different road conditions. Therefore, an interval range 

can be figured out for the truck cycle time in order to generate better optimal solutions. 

Meanwhile, some other variables also need to be considered as interval parameters, such 

as the waste hauling amount and the cost coefficients of different truck types.  

 

In this study, the ILP and the REILP approaches will be applied in the truck allocation 

problem for the Anshun Yalong coal mine project. In addition, considering different 

decision makers may have different preferences on decision making process, this study 

will develop a Fuzzy Risk Explicit Interval Linear Programming (FREILP) model to 

improve the applicability for this case study. 
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CHAPTER 3 ILP VALIDITY CHECKING 

 

3.1 EXISTING ILP SOLUTION ALGORITHMS 

In the past decades, the uncertainty-based linear programming (LP) models have been 

widely used in assisting optimal decision making in various fields (Huang et al., 1992; 

Huang et al., 1995; Sturgul and Li, 1997; Krause and Musingwini, 2007). The intrinsic 

uncertainties in LP can be expressed as probability, possibility, and interval formats, and 

thus several types of LP were developed and applied in previous studies, such as Interval 

LP (ILP) and some hybrid models (Huang et al., 1995; Sturgul and Li, 1997; Javad, 

2009). In the ILP models, interval numbers (±) were introduced to model parameters for 

describing the potential uncertainties (max 𝐶±𝑋±, s.t. 𝐴±𝑋± ≤ 𝐵± and 𝑋 ≥ 0 ) (Moore, 

1979) and the information regarding the probabilistic distribution of the parameters is 

unknown to the modelers. It is expected that the solution of ILP provides the range of 

values for each decision variable and objective function. 

 

Definition 3.1.1: An ILP model is defined as follows (Huang et al., 1992): 

a) For maximizing problems: 

Max  

𝑓± = 𝐶±𝑋± 

Subject to  

𝐴±𝑋± ≤ 𝐵± 

𝑋± ≥ 0 

 

For minimizing problems: 

Min  

𝑓± = 𝐶±𝑋± 

Subject to  
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𝐴±𝑋± ≥ 𝐵± 

𝑋± ≥ 0 

 

Where, 

𝐴± = {𝑎𝑖𝑗
±}, 𝑖 = 1, … , 𝑚 ; 𝑗 = 1, 2, … , 𝑛 

𝐵± = [𝑏1
±,  𝑏2

±, … ,  𝑏𝑚
± ] 

𝐶± = [𝑐1
±,  𝑐2

±, … ,  𝑐𝑛
±] 

𝑋± = [𝑋1
±,  𝑋2

±, … ,  𝑋𝑛
±] 

 

“-” indicates the lower bound of the interval parameter or variable, 

“+” indicates the upper bound of the interval parameter or variable. 

 

Since interval parameters exist in the objective function and constraints, the ILP models 

need to be transformed into its deterministic equivalent forms for being solved by 

mathematical programming software, such as LINGO. The optimal solutions of the 

interval-parameter linear programming model are: 

𝑓𝑜𝑝𝑡
± = [𝑓𝑜𝑝𝑡

− , 𝑓𝑜𝑝𝑡
+ ] 

𝑋𝑜𝑝𝑡
± = [𝑥1𝑜𝑝𝑡

± , 𝑥2𝑜𝑝𝑡
± , . . . , 𝑥𝑛𝑜𝑝𝑡

± ] 

𝑥𝑗𝑜𝑝𝑡
± = [𝑥𝑗𝑜𝑝𝑡

− , 𝑥𝑗𝑜𝑝𝑡
+ ], 𝑗 = 1, 2, . . , 𝑛 

 

In the past, three solution algorithms have been developed for transforming the original 

ILP models into the deterministic models, i.e., Monte Carlo simulation, two-step method 

and best-worst case (BWC) algorithm. A detailed explanation for each algorithm is 

provided below, and a numerical example is then created for checking the validity of the 

ILP algorithms. 
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3.1.1 Monte Carlo Simulation Algorithm 

Monte Carlo simulation algorithm (or Monte Carlo experiments) is a computerized 

mathematical technique that relies on repeated random sampling to obtain numerical 

results (Rubinstein and Marcus, 1985) while letting people to account for risks in 

quantitative analysis and decision making process. This method has been widely used in 

various fields, such as civil or environmental engineering, industrial engineering, 

research and development, project management, finance, and etc. 

 

Monte Carlo simulation can offer the decision-maker with a range of possible outcomes 

and the probabilities for any choice of action. And it also shows the extreme possibilities 

— the outcomes of going broken or the most conservative decision — along with all 

possible consequences for middle-of-the-road decisions (Steuer, 1981). 

 

By using the Monte Carlo method to solve the ILP model, it sets values for parameters 

at random within their ranges to form the classic linear programming model (Hartman, 

1992). The operations of solving the ILP model by the Monte Carlo simulation algorithm 

are described as follows (Cetin, 2004): 

 

[Step 1]: First, select random feature to every single interval parameter (𝑎𝑖𝑗, 𝑏𝑖 and 𝑐𝑗) 

with probability distribution functions (PDF) in the interval linear programming (ILP) 

model. Then, convert each probability distribution function into its cumulative 

distribution function (CDF). 

 

Figure 3.1 is an example of a parameter with a normal distribution, and Figure 3.2 shows 

the corresponding CDF converted from the normal distribution as shown in Figure 3.1. 
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Figure 3.1 The PDF curve of a random parameter 

 

 

Figure 3.2 The CDF curve of a random parameter converted from its PDF 
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In terms of PDF forms, the normal (or Gaussian) distribution has been frequently used 

in the ILP model in the past, while some other distributions such as discrete probability 

distributions or uniform distribution were also used to show the various distribution 

characteristic of different parameters. 

  

[Step 2]: Generate a random number between 0 and 1 by using the random number 

generator in the programming software and then denote it as r. 

 

[Step 3]: Make the generated random number r be connected with the CDF curve for 

every parameter to get a set of deterministic values for all parameters in 𝑎𝑖𝑗, 𝑏𝑖 and 𝑐𝑗. 

 

Figure 3.3 shows how to locate a parameter value using the generated r.  

 

 

Figure 3.3 Setting an exact value for the random parameter using r. 
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[Step 4]: Replace the interval parameters 𝑎𝑖𝑗, 𝑏𝑖 and 𝑐𝑗 by using the set of deterministic 

values which we get from Step 3, and create a classic deterministic linear programming 

model. 

 

[Step 5]: Solve the classic deterministic linear programming model by software and 

generate a set of corresponding deterministic solutions. 

 

[Step 6]: Run the process above sufficient times by repeating Steps 2, 3, 4 and 5 in order 

to obtain the distribution of the solution for each specific decision variable. 

 

Since the Monte Carlo simulation algorithm could offer us the solid results via simulating 

the practical situations in the real world, this method can be a really successful algorithm 

for solving the ILP model (Krause and Musingwini, 2007), although it requires large 

numbers of computational runs of random or pseudo random numbers. Usually, 

thousands or even millions of times of simulations have to be conducted in order to 

obtain the meaningful distribution of the solutions. Therefore, it would become 

unrealistic for solving the intricate practical problems along with a large number of 

uncertain parameters and variables in the real world. In addition, for most of practical 

problems, it is nearly impossible to acquire plenty of data to formulate the distributions 

for the interval parameters (Emmanuel, 2001), which makes the algorithm less feasible 

and applicable.  

 

3.1.2 Two-Step Algorithm 

Two step algorithm was first introduced by Huang et al. in 1992. It is an interactive 

method. For a maximization problem, the first sub-model is formulated to solve for the 

upper bound of the objective function, and then the sub-model corresponding to the 

lower bound of the objection function is formulated and solved (Huang et al., 1992). 

 

The first sub-model is formulated as: 
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For the n interval coefficients 𝑐𝑗 (j=1,2,3,...,n) in the original objective function 𝑓± =

𝐶±𝑋±  in an ILP model, assume 𝑘1  of these coefficients be non-negative, and 𝑘2  be 

negative, let the n coefficients be reordered such that 𝑐𝑗
± ≥ 0 (𝑗 = 1, 2, … , 𝑘1), and 𝑐𝑗

± <

0 (𝑗 = 𝑘1 + 1, 𝑘1 + 2, ..., n ). The sub-model corresponding to the upper bound of the 

objective function (when the objective is to be maximized) is formulated as: 

 

Max  

𝑓+ = ∑ 𝑐𝑗
+𝑘1

𝑗=1 𝑥𝑗
+ + ∑ 𝑐𝑗

+𝑛
𝑗=𝑘1+1 𝑥𝑗

−                                                                                       (3.10) 

Subject to  

∑ ∣
𝑘1
𝑗=1 𝑎𝑖𝑗 ∣

−

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
− )𝑥𝑗

+ + ∑ ∣𝑛
𝑗=𝑘1+1 𝑎𝑖𝑗 ∣

+

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
+ )𝑥𝑗

− ≤ 𝑏𝑖
+, ∀𝑖                         (3.11) 

𝑥𝑖𝑗
± ≥ 0, ∀𝑗                                                                                                                              (3.12) 

 

The above sub-model 3.10 to 3.12 is a classic linear programming model which can be 

solved by simplex algorithm or any other existing algorithms. The sub-model 

corresponding to the lower bound of the objective function can then be formulated: 

 

Max  

𝑓− = ∑ 𝑐𝑗
−𝑘1

𝑗=1 𝑥𝑗
− + ∑ 𝑐𝑗

−𝑛
𝑗=𝑘1+1 𝑥𝑗

+                                                                                             (3.13) 

Subject to  

∑ ∣
𝑘1
𝑗=1 𝑎𝑖𝑗 ∣

+

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
+ )𝑥𝑗

− + ∑ ∣𝑛
𝑗=𝑘1+1 𝑎𝑖𝑗 ∣

−

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
− )𝑥𝑗

+ ≤ 𝑏𝑖
−, ∀𝑖                         (3.14) 

𝑥𝑖𝑗
± ≥ 0, ∀𝑗                                                                                                                               (3.15) 

𝑥𝑗
− ≤ 𝑥𝑗𝑜𝑝𝑡

+ , 𝑗 = 1,2,3, . . . , 𝑘1                                                                                                     (3.16) 

𝑥𝑗
+ ≥ 𝑥𝑗𝑜𝑝𝑡

− , 𝑗 = 𝑘1 + 1, 𝑘1 + 2, . . . , 𝑛                                                                                           (3.17) 
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The sub-model (3.13 to 3.17) is also a classic linear programming model which can be 

solved by simplex algorithm or any other existing algorithms. Where, 𝑥𝑗𝑜𝑝𝑡
+  (𝑗 =

1,2,3, . . . , 𝑘1) and 𝑥𝑗𝑜𝑝𝑡
−  (𝑗 = 𝑘1 + 1, 𝑘1 + 2, . . . , 𝑛) are the optimal solutions generated 

from the sub-models 3.10 to 3.12;  𝑥𝑗𝑜𝑝𝑡
+  (𝑗 = 1,2,3, . . . , 𝑘1) and 𝑥𝑗𝑜𝑝𝑡

−  (𝑗 = 𝑘1 + 1, 𝑘1 +

2, . . . , 𝑛) are the optimal solutions generated from the sub-models 3.13 to 3.17. 

 

Therefore, after solving the two sub-models respectively, we can get the optimal 

solutions for the original ILP model, which are: 

 𝑥𝑗𝑜𝑝𝑡
±  = [𝑥𝑗𝑜𝑝𝑡

− , 𝑥𝑗𝑜𝑝𝑡
+ ] and 𝑓𝑜𝑝𝑡

±  = [𝑓𝑜𝑝𝑡
− , 𝑓𝑜𝑝𝑡

+ ]. 

 

For a minimization problem, the sub-model for solving the lower bound of the objective 

function should be formulated and solved first.  

Min  

𝑓− = ∑ 𝑐𝑗
−𝑘1

𝑗=1 𝑥𝑗
− + ∑ 𝑐𝑗

−𝑛
𝑗=𝑘1+1 𝑥𝑗

+                                                                                        (3.18) 

Subject to  

∑ ∣
𝑘1
𝑗=1 𝑎𝑖𝑗 ∣

+

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
+ )𝑥𝑗

− + ∑ ∣𝑛
𝑗=𝑘1+1 𝑎𝑖𝑗 ∣

−

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
− )𝑥𝑗

+ ≤ 𝑏𝑖
+, ∀𝑖                         (3.19) 

𝑥𝑖𝑗
± ≥ 0, ∀𝑗                                                                                                                               (3.20) 

 

The sub-model for solving the upper bound of the objective function can then be 

formulated as: 

Min  

𝑓+ = ∑ 𝑐𝑗
+𝑘1

𝑗=1 𝑥𝑗
+ + ∑ 𝑐𝑗

+𝑛
𝑗=𝑘1+1 𝑥𝑗

−                                                                                        (3.21) 

Subject to  

∑ ∣
𝑘1
𝑗=1 𝑎𝑖𝑗 ∣

−

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
− )𝑥𝑗

+ + ∑ ∣𝑛
𝑗=𝑘1+1 𝑎𝑖𝑗 ∣

+

𝑆𝑖𝑔𝑛(𝑎𝑖𝑗
+ )𝑥𝑗

− ≤ 𝑏𝑖
−, ∀𝑖                        (3.22) 

𝑥𝑗
+ ≥ 𝑥𝑗𝑜𝑝𝑡

− , 𝑗 = 1,2,3, . . . , 𝑘1                                                                                                    (3.23) 
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𝑥𝑗
− ≤ 𝑥𝑗𝑜𝑝𝑡

+ , 𝑗 = 𝑘1 + 1, 𝑘1 + 2, . . . , 𝑛                                                                                      (3.24) 

𝑥𝑖𝑗
± ≥ 0, ∀𝑗                                                                                                                                (3.25) 

 

Similar to the former maximization model, the sub-model (3.18 to 3.25) is also a classic 

linear programming model which can be solved by simplex algorithm. Where, 𝑥𝑗𝑜𝑝𝑡
+  (𝑗 =

1,2,3, . . . , 𝑘1) and 𝑥𝑗𝑜𝑝𝑡
−  (𝑗 = 𝑘1 + 1, 𝑘1 + 2, . . . , 𝑛) are the optimal solutions generated 

from the sub-models 3.18 to 3.20;  𝑥𝑗𝑜𝑝𝑡
+  (𝑗 = 1,2,3, . . . , 𝑘1) and 𝑥𝑗𝑜𝑝𝑡

−  (𝑗 = 𝑘1 + 1, 𝑘1 +

2, . . . , 𝑛) are the optimal solutions generated from the sub-models 3.21 to 3.25. 

 

Therefore, after solving these two sub-models respectively, the optimal solutions for the 

minimized ILP model can be obtained, which are: 

 𝑥𝑗𝑜𝑝𝑡
±  = [𝑥𝑗𝑜𝑝𝑡

− , 𝑥𝑗𝑜𝑝𝑡
+ ] and 𝑓𝑜𝑝𝑡

±  = [𝑓𝑜𝑝𝑡
− , 𝑓𝑜𝑝𝑡

+ ]. 

 

Below is a numerical example to illustrate the 2-step solution algorithm: 

 

Max      

[50, 60]𝑥1
± - [70, 90]𝑥2

± 

Subject to  

[4, 6]𝑥1
± + 𝑥2

± ≤ [150, 200] 

16𝑥1
± + [5, 7]𝑥2

± ≤ [280, 360] 

𝑥1
± + [3, 4]𝑥2

± ≤ [90, 110] 

𝑥1
± - 10𝑥2

± ≤ -0.5 

𝑥1
±, 𝑥2

± ≥ 0 

 

According to the two-step algorithm, the first sub-model is formulated to maximize the 

upper bound of the objective function: 
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Max    

 𝑓+ = 60𝑥1
+ - 70𝑥2

− 

Subject to  

4𝑥1
+ + 𝑥2

− ≤ 200 

16𝑥1
+ + 7𝑥2

− ≤ 360 

𝑥1
+ + 4𝑥2

− ≤ 110 

𝑥1
+ - 10𝑥2

− ≤ -0.5 

𝑥1
±, 𝑥2

± ≥ 0 

 

The optimal solution of the first sub-model is:  

𝑥1
+ = 21.54 

𝑥2
− = 2.20 

𝑓+ = 1159.44 

 

Then, the second sub-model can be formulated for the lower bound of the objective 

function: 

 

Max   

 𝑓− = 50𝑥1
− - 90𝑥2

+ 

Subject to  

6𝑥1
− + 𝑥2

+ ≤ 150 

16𝑥1
− + 5𝑥2

+ ≤ 280 

𝑥1
− + 3𝑥2

+ ≤ 90 

2𝑥1
− - 10𝑥2

+ ≤ -0.5 

𝑥1
+ ≥ 𝑥1

− 
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𝑥2
− ≤ 𝑥2

+ 

𝑥1
±, 𝑥2

± ≥ 0 

 

The optimal solution of the second sub-model is:  

𝑥1
− = 16.46 

𝑥2
+ = 3.34 

𝑓− = 522.09 

 

Combining the solutions from both sub-models, the optimal solution for the original 

numerical example is as follows:  

 

𝑥1
± = [16.46, 21.54] 

𝑥2
± = [2.20, 3.34] 

𝑓± = [522.09, 1159.44] 

 

3.1.3 Best-Worst Case Algorithm (BWC) 

The best-worst case (BWC) algorithm also includes a two-step procedure to solve two 

corresponding sub-models for the ILP model (Tong, 1994; Chinneck and Ramadan, 

2000). However, the obvious difference between the two-step algorithm and BWC is that 

the two-step algorithm needs to distinguish the selection of extreme parameter values 

(such as their lower and upper bounds) for decision variables with different signs (which 

is negative or positive) in the objective function, while the BWC method treats all 

parameters without any distinctions. It is worth to mention that the original BWC 

algorithm was designed for the minimization problem. However, since the ILP model 

could be easily transformed into its corresponding canonical format, this method has 

been widely used and developed in various areas in the past. 
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For the BWC algorithm, we usually need to formulate and solve the best-case sub-model 

and then the worst-case sub-model for the objective function, respectively. 

 

For a maximization problem, the first step in the BWC is to formulate its best-case sub-

model for its corresponding upper bound of the objective function, which is expressed 

as follows (from 3.26 to 3.28): 

 

Max  

𝑓+ = 𝑐𝑗
+𝑥𝑗                                                                                                                              (3.26) 

Subject to  

𝑎𝑖𝑗
− 𝑥𝑗 ≤ 𝑏𝑖

+, ∀𝑖                                                                                                                        (3.27) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                               (3.28) 

 

Then, we could formulate its corresponding worst-case sub-model as follows (from 3.29 

to 3.31): 

 

Max  

𝑓− = 𝑐𝑗
−𝑥𝑗                                                                                                                              (3.29) 

Subject to  

𝑎𝑖𝑗
+ 𝑥𝑗 ≤ 𝑏𝑖

−, ∀𝑖                                                                                                                        (3.30) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                               (3.31) 

 

For a minimization problem, the best-case sub-model should be firstly formulated as 

(from 3.32 to 3.34): 
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Min  

𝑓− = 𝑐𝑗
−𝑥𝑗                                                                                                                               (3.32) 

Subject to  

𝑎𝑖𝑗
+ 𝑥𝑗 ≥ 𝑏𝑖

−, ∀𝑖                                                                                                                         (3.33) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                (3.34) 

 

Then, its corresponding worst-case sub-model is formulated as follows (from 3.35 to 

3.37): 

 

Min  

𝑓+ = 𝑐𝑗
+𝑥𝑗                                                                                                                              (3.35) 

Subject to  

𝑎𝑖𝑗
− 𝑥𝑗 ≥ 𝑏𝑖

+, ∀𝑖                                                                                                                        (3.36) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                               (3.37) 

 

In general, the best-case and worst-case sub-models in the BWC algorithm represent two 

different extreme situations for both the objective function and all the constraints of the 

original ILP model, respectively, i.e., for the maximization problem, the best case sub-

model (from 3.26 to 3.28) represents the most ideal situation (the largest) for the 

objective function of the original ILP model while its constraints delimit the largest 

decision space for the optimal solution; the worst case sub-model (from 3.29 to 3.31) 

represents the least value for the objective function of the original ILP model, and its 

constraints define the smallest, which is also the narrowest, decision space.  

 

On the contrary, for the minimization problem, the best-case sub-model (3.32 to 3.34) 

represents the lowest value for the objective function of the original ILP model, and its 

constraints delimit the narrowest decision space for the optimal solution. The worst-case 
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sub-model (3.35 to 3.37) gives the most ideal condition (the largest value) for the 

objective function, and its constraints delimit the largest decision space for the optimal 

solution. 

 

Below is a numerical example to illustrate the BWC algorithm: 

 

Max  

𝑓 = [50,60]𝑋1 − [70,90]𝑋2                                                                                                   (3.38) 

Subject to  

[4,6]𝑋1 + 𝑋2 ≤ 150                                                                                                               (3.39) 

6𝑋1 + [5,7]𝑋2 ≤ 280                                                                                                             (3.40) 

𝑋1 + [3,4]𝑋2 ≤ 90                                                                                                                 (3.41) 

[1,2]𝑋1 − 10𝑋2 ≤ −1                                                                                                            (3.42) 

 

(1) Best case sub-model: 

Max  

𝑓+ = 60𝑋1 − 70𝑋2                                                                                                                (3.43) 

Subject to  

4𝑋1 + 𝑋2 ≤ 150                                                                                                                       (3.44) 

6𝑋1 + 5𝑋2 ≤ 280                                                                                                                   (3.45) 

𝑋1 + 3𝑋2 ≤ 90                                                                                                                        (3.46) 

1𝑋1 − 10𝑋2 ≤ −1                                                                                                                  (3.47) 

 

(2) Worst case sub-model: 

Max  
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𝑓− = 50𝑋1 − 90𝑋2                                                                                                                    (3.48) 

Subject to  

6𝑋1 + 𝑋2 ≤ 150                                                                                                                       (3.49) 

6𝑋1 + 7𝑋2 ≤ 280                                                                                                                   (3.50) 

𝑋1 + 4𝑋2 ≤ 90                                                                                                                          (3.51) 

2𝑋1 − 10𝑋2 ≤ −1                                                                                                                      (3.52) 

 

After solving the two sub-models in Lingo, we could obtain the optimal solutions as 

follows: 

 𝑓± = [764.6774, 1930.732] 

𝑋1
± = [24.1774, 36.5609] 

𝑋2
± = [3.7561, 4.9355] 

 

3.2 VALIDITY CHECKING FOR TWO-STEP AND BWC 

ALGORITHMS 

Through examining how the two sub-models are formulated in both two-step and BWC 

algorithms, it is apparent that both algorithms ignore some of the system uncertainties 

when reformulating the sub-model constraints and this treatment could be a potential 

flaw of both algorithms and could very possibly lead to feasibility and optimality 

concerns towards the generated interval optimal solutions. This concern has triggered off 

a desire to check the validity of both algorithms for specifying the nature of the problem.  

In this study, a numerical example is designed to illustrate the validity checking process 

for both algorithms, and the focus of the validity checking is on the investigation of any 

infeasible solutions existed in the generated interval optimal solution and any optimal 

solutions missing from it. 

 

3.2.1 A Numerical Example for Validity Checking 
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In this study, a minimization problem with 2 decision variables and 2 constraints was 

designed to illustrate the validity checking for both BWC and two-step algorithms. 

 

Min   

f = [3, 4]𝑋1 + 𝑋2                                                                                                                 (3.53) 

Subject to  

2𝑋1 − [2.4, 2.8]𝑋2 ≥ [6, 8]                                                                                                   (3.54)  

2𝑋1 − [3, 4]𝑋2 ≥ [10, 12]                                                                                                      (3.55) 

𝑋1, 𝑋2 ≥ 0                                                                                                                               (3.56) 

 

Before solving this ILP model by two-step and BWC algorithms, the first step is to 

generate a large number of event models by using the Monte-Carlo Simulation method 

as described in Section 3.1.1. Each event model is a classic deterministic LP model which 

can be easily solved. By solving these event models, a large number of solution sets for 

decision variables can be produced and the solution ranges of the objective function and 

decision variables can then be obtained. The larger the numbers of the event models are 

solved, the better the solution resolution and accuracy could be obtained. The solution 

obtained from the Monte Carlo Simulation is then used as the near-real solution of the 

original ILP model to be compared with the solutions from 2-step and BWC algorithms 

for performing the validity checking. In this study, one million event models were 

generated and solved by the Monte-Carlo simulation method, and the obtained interval 

solutions are:  

f = [11.97, 20.4] 

𝑋1 = [3.78, 4.94] 

𝑋2 = [0.35, 1.08] 

 

(1) Two-step Algorithm Solution 
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According to the two-step algorithm, two sub-models corresponding to 𝑓− and f + could 

be formulated as follows: 

 

Sub-model 1: 

Min 

𝑓− = 3𝑋1
− + 𝑋2

−                                                                                                                  (3.57) 

Subject to  

2𝑋1
− − 2.8𝑋2

− ≥ 6                                                                                                                  (3.58) 

2𝑋1
− + 4𝑋2

− ≥ 10                                                                                                                    (3.59) 

𝑋1
−, 𝑋2

− ≥ 0                                                                                                                             (3.60) 

 

Sub-model 2: 

Min 

𝑓+ = 4𝑋1
+ + 𝑋2

+                                                                                                                   (3.61) 

Subject to 

2𝑋1
+ − 2.4𝑋2

+ ≥ 8                                                                                                                  (3.62) 

2𝑋1
+ + 3𝑋2

+ ≥ 8                                                                                                                     (3.63) 

𝑋1
+ ≥ 𝑋1𝑜𝑝𝑡

−                                                                                                                               (3.64) 

𝑋2
+ ≥ 𝑋2𝑜𝑝𝑡

−                                                                                                                               (3.65) 

 

Where, 

𝑋1𝑜𝑝𝑡
−  and 𝑋2𝑜𝑝𝑡

−  are the optimal solutions of 𝑋1 and 𝑋2 from sub-model 1. Both sub-

models are classic linear programming models and can be solved by Lingo.  

 

The optimal solutions obtained by the two step algorithm are: 

𝑓 = [12.06, 20.3] 
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𝑋1 = [3.82, 4.89] 

𝑋2 = [0.59, 0.74] 

 

(2) BWC Algorithm Solution 

Based on the BWC algorithm, two sub-models corresponding to the best-case and 

worst-case situations can be formulated as follows: 

 

Sub-model 1: 

Min 

𝑓− = 3𝑋1
− + 𝑋2

−                                                                                                                  (3.66) 

Subject to   

2𝑋1
− − 2.4𝑋2

− ≥ 6                                                                                                                  (3.67) 

2𝑋1
− + 4𝑋2

− ≥ 10                                                                                                                    (3.68) 

𝑋1
−, 𝑋2

− ≥ 0                                                                                                                             (3.69) 

 

Sub-model 2: 

Min 

𝑓+ = 4𝑋1
+ + 𝑋2

+                                                                                                                  (3.70) 

Subject to 

2𝑋1
+ − 2.8𝑋2

+ ≥ 8                                                                                                                  (3.71) 

2𝑋1
+ + 3𝑋2

+ ≥ 12                                                                                                                    (3.72) 

𝑋1
+, 𝑋2

+ ≥ 0                                                                                                                             (3.73) 

 

These two sub-models are also deterministic linear programming models which can be 

solved by Lingo. The optimal interval solutions obtained by the BWC algorithm are: 
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𝑓 = [11.88, 20.55] 

𝑋1 = [3.75, 4.97] 

𝑋2 = [0.63, 0.69] 

 

3.2.2 Result Interpretation and Validity Checking 

(1) Optimality Checking 

Theoretically, although a large number of event model runs were implemented, the 

optimal solution space provided by the Monte-Carlo simulation should be narrower than 

the real solution space of the original example model, at most get very close to it.  

 

Before checking the validity of the optimal interval solutions obtained by two-step and 

BWC algorithms, two facts should be noted: (1) every optimal solution generated by 

solving Monte-Carlo simulation even model represents a subset of true optimal solution 

sets of the original model, and solution infeasibility is not an issue; (2) the optimal 

solution spaces provided by both 2-step and BWC algorithm should completely include 

the optimal solution space from the Mont-Carlo simulation method (Pei, 2011). 

Mathematically, it yields: 

𝑋1𝑜𝑝𝑡
− ≤ 3.78 ≤ 4.94 ≤ 𝑋1𝑜𝑝𝑡

+  

𝑋2𝑜𝑝𝑡
− ≤ 0.35 ≤ 1.08 ≤ 𝑋2𝑜𝑝𝑡

+  

𝑓𝑜𝑝𝑡
− ≤ 11.97 ≤ 20.41 ≤ 𝑓𝑜𝑝𝑡

+  

 

Based on these two facts, if the optimal solution space provided by two-step or BWC 

algorithm does not cover the interval ranges of Monte-Carlo simulation results, i.e., the 

above relationship cannot be satisfied, this could lead to two significant consequences: 

(1) some optimal solution pairs are missing from the two-step algorithm or BWC 

algorithm; (2) the optimal solutions produced by both algorithms might include some 

pair points which are infeasible. 
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Table 3.1 shows the optimal solutions obtained from these three algorithms for 

comparison.   

 

Table 3.1 Optimal solutions from three algorithms 

 

 

The optimal solutions generated from three algorithms are summarized in the table above 

(Table 3.1) for comparison. In this table, the optimal intervals of the results from the 

two-step algorithm are all narrower than the ones from Monte Carlo algorithm. It can be 

seen that some pairs of optimal solutions may be missing from the two-step algorithm. 

As a result, two-step algorithm fails the validity checking in terms of solution optimality 

(optimal solutions are missing and incomplete).  

 

For the optimal solution from BWC algorithm in this table, it shows that the decision 

variable 𝑋1 has a full range coverage to X1 from Monte Carlo simulation. Whereas the 

range of decision variable  𝑋2 is narrower than X2 from two-step algorithm, which means 

some of the optimal solutions are still missing from BWC algorithm. This indicates that 

BWC algorithm fails in the optimality checking as well. According to the fundamental 

theory of BWC algorithm, the two reformulated sub-models should be able to represent 

the two extreme conditions for the original LP model, and the optimal solution should 

be able to cover the full optimal solutions. However, the optimality checking results 

shows a disproof of the theory and more insightful research is needed and out of the 

scope of this study. Moreover, Table 3.1 shows that the BWC algorithm can provide a 

more complete optimal range of the objective function than the other two algorithms.  
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(2) Feasibility Checking 

Figure 3.5 shows the optimal solution space and the feasible decision space generated 

by the two-step method. The line ADHK represents the boundary of the decision space 

given by the constraint (3.58), while the line BEIL represents the boundary of the 

decision space given by the constraint (3.62) from two-step sub-models. The two red 

dotted lines next to them stand for the two constraints of the BWC sub-models which are 

reformulated by the same original constraints. On the other hand, the line CDEF and the 

line GHIJ represent the boundaries of the feasible decision region generated by constraint 

(3.59) and constraint (3.63), respectively. Since the constraints (3.68) and (3.72) from 

BWC sub-models are same as constraint (3.59) and (3.63) from two-step sub-models, 

they are shown by the same lines in this figure. Figure 3.4 also shows the feasible 

decision space delimited by the two-step algorithm, which is under the line ADHK and 

BEIL, and above the line CDEF and GHIJ. Thus, the feasible decision space can be 

divided into several different sub-regions, including: (1) the space of BEF is the absolute 

feasible space which satisfies all the constraints in the model; (2) the space above the 

line ADHK and the space under the line GHIJ are the infeasible space since they violate 

at least one of the constraints; (3) the space which is bounded within the lines of ADHIJ 

and BEF are the softly feasible space, which means the solutions within this area cannot 

be guaranteed to satisfy all of the constraints; (4) the middle region which is bounded by 

the points DHIE represents the feasible optimal solution space generated from the two-

step method.  
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Figure 3.4 Classification of feasible and optimal solution space for the two-step 

algorithm 

 

The blue rectangular in the middle of Figure 3.4 represents the optimal solution space 

from the two-step method. It can be used to explain the result of infeasibility checking. 

From Figure 3.4, it can be seen that the optimal solutions generated from the two-step 

algorithm are mostly located in the softly feasible space. The blue triangle MON is 

located in the infeasible space, which means the two-step algorithm does generate 

infeasible solutions for the original model. System failure can be caused if the decision 

alternatives are produced from this infeasible solution space and implemented in 

practice. Meanwhile, another blue triangle PQR in this figure demonstrates the non-

optimal solution region, which means the solutions interpreted from this region are valid 

solutions but not optimal. 
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Figure 3.5 Classification of feasible and optimal solution regions for the BWC 

algorithm 

 

Figure 3.5 above shows the optimal solution region and the feasible solution region 

generated by the BWC approach. The lines AD’H’K and BE’I’L stand for the constraint 

(3.67) and constraint (3.71), respectively. The line CD’E’F represents the constraint 

(3.68) while the line GH’I’J stands for the constraint (3.72). Two red dotted lines in this 

figure stand for the two constraints of the sub-models from two-step method which are 

reformulated by the same original constraints. Figure 3.5 shows that: (1) the space of 

BE’F is the absolute feasible space which can satisfy all the constraints in the model; (2) 

the space above the line AD’H’K and the space under the line GH’I’J are the infeasible 

space since they violate at least one of the constraints; (3) the region which is bounded 

within AD’H’I’J and BE’F are the softly feasible space, which means the solutions from 

this area cannot be guaranteed to satisfy every constraint; (4) the middle region which is 

bounded by the points D’H’I’E’ represents the feasible optimal solution space generated 

from the BWC method.  
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The purple rectangular in the middle of Figure 3.5 demonstrates the optimal solution 

space from the BWC method. It can be used to show the result of infeasibility checking. 

Similar to Figure 3.4, in Figure 3.5, it can be seen that the optimal solutions generated 

from the BWC method are mostly located in the softly feasible space. The purple triangle 

M’O’H’ represents the infeasible space, which means the BWC method does generate 

infeasible solutions for the original model just as two-step algorithm. Similar system 

failure can be caused if the decision alternatives are produced from this infeasible 

solution space and implemented in practice. In the meantime, another purple triangle E’ 

P’Q’ in this figure represents the non-optimal solution area, which means the solutions 

interpreted from this region are valid but not optimal. 

 

Figures 3.4 and 3.5 shows that both the two-step method and BWC method fail the 

feasibility checking for their ‘optimal’ solutions, and that infeasible solutions are 

generated and included in their optimal solution ranges and also some optimal solutions 

are missing. Therefore, decisions formulated from the generated solutions of both 

methods are always associated with risks in the decision-making and implementing 

process, which might be able to cause the failure of the entire plan and system. In a brief 

summary, the validity checking results could help the planners and decision-makers 

better understand the strength and weakness of the modeling results, and this has 

triggered off a desire to keep an eye on the problem and explore the measures to improve 

the process, for example, introducing the decision risk to the optimization process is an 

option. 
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CHAPTER 4 RISK EXPLICIT INTERVAL LINEAR 

PROGRAMMING MODEL (REILP) 

 

4.1 INTRODUCTION  

According to the validity checking results presented in Chapter 3, the ILP solutions 

generated from both two-step algorithm and BWC algorithm have various deficiencies. 

It is proved that the optimal solutions of ILP model are usually located in the softly 

feasible decision region, however, the optimal solutions are not always valid and some 

solutions may have risks of violating some of the constraints. In the meantime, the ILP 

model is not able to reflect the relationship between decision risks and system return if 

the infeasible or invalid solutions are used to generate decision alternatives. Therefore, 

if the optimal solutions from the ILP model need to be used into practical cases, the 

potential risks associated with the decisions should be minimized rather than being 

remained unknown to the decision makers. 

 

In order to overcome these shortcomings and limitations of the solutions from the ILP 

model while maintaining its strengths, a Risk Explicit Interval Linear Programming 

(REILP) approach was developed to explore the tradeoff between system return and 

decision risk for improving the feasibility and applicability of the ILP approach (Rui et 

al., 2010). The fundamentals of the REILP method is presented below. 

 

An event model of a general ILP model can be formulated as follows: 

 

Max  

𝑓 = ∑ [𝑛
𝑗=1 𝑐𝑗

− + 𝜆0(𝑐𝑗
+ − 𝑐𝑗

−)]𝑥𝑗                                                                                              (4.1) 

Subject to 

∑ [𝑛
𝑗=1 𝑎𝑖𝑗

+ − 𝜆𝑖𝑗(𝑎𝑖𝑗
+ − 𝑎𝑖𝑗

− )]𝑥𝑗 − [𝑏𝑖
− + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)] ≤ 0, ∀𝑖                                           (4.2) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                  (4.3) 
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0 ≤ 𝜆0 ≤ 1                                                                                                                               (4.4) 

0 ≤ 𝜆𝑖𝑗 ≤ 1, ∀𝑖, 𝑗                                                                                                                     (4.5) 

0 ≤ 𝜂𝑖 ≤ 1, ∀𝑖                                                                                                                         (4.6) 

 

The above model represented by equations (4.1) to (4.6) is a classic LP model, which 

corresponds to a specific set of crisp value of each coefficient given 0 , ij  and i . By 

re-arranging terms in equations (4.1) to (4.6), the model becomes: 

 

Max  

𝑓 = ∑ [𝑛
𝑗=1 𝑐𝑗

−𝑥𝑗 + 𝜆0(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗]                                                                                          (4.7) 

Subject to 

∑ 𝑎𝑖𝑗
+𝑛

𝑗=1 − 𝑏𝑖
− ≤ ∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−), ∀𝑖                                            (4.8) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                  (4.9) 

0 ≤ 𝜆0 ≤ 1                                                                                                                             (4.10) 

0 ≤ 𝜆𝑖𝑗 ≤ 1, ∀𝑖, 𝑗                                                                                                                   (4.11) 

0 ≤ 𝜂𝑖 ≤ 1, ∀𝑖                                                                                                                       (4.12) 

 

Let 𝑑 = 𝜆0(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗 , and 𝑒 = ∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−), where i=1, 2, 

..., m, the model can be reformulated as: 

 

Max  

𝑓 = ∑ [𝑛
𝑗=1 𝑐𝑗

−𝑥𝑗 + 𝑑]                                                                                                              (4.13) 

Subject to  

∑ 𝑎𝑖𝑗
+𝑛

𝑗=1 − 𝑏𝑖
− ≤ 𝑒, ∀𝑖                                                                                                             (4.14) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                (4.15) 
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In the model above (4.13 to 4.15), when d and e equal to 0, it becomes the worst case 

sub-model of the BWC algorithm. It represents the most pessimistic situation of the 

original objective function, indicating that the optimal solutions generated under this 

condition would have zero risk of violating any of the constraints, due to its formulation 

satisfying the tightest constraints (i.e., risk = 0 when d and e equal to zero). 

 

On the other hand, when 𝑒 is greater than zero, the constraints are relaxed by a level of 

e to search for its corresponding optimal solutions to achieve higher system return. 

However, in the meantime, the optimal solutions come along with a certain level of risk 

of violating the constraints as well. Accordingly, higher 𝑒  means that the optimal 

solutions associated with higher risk. When both of 1( , )ij i j    and 1 ( )i i   , 𝑒 

reaches its maximum value, and the model represents the most optimistic situation and 

the decision risks might be highest. Hence, 𝑒 (∀𝑖) can be used to evaluate the risk level 

of a decision to represent its possibility of violating the corresponding constraints. 

 

Definition 4.1: Function 𝑒 = ∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)  is defined as the 

Risk Function for the constraint i in the ILP method. 

 

The original ILP model is to maximize the system return. Since the system return and 

decision risk represent two conflicting factors in practical decision making process, a 

sound and satisfactory decision can be obtained only through minimizing the risk 

function while maximizing the system return. This leads to a multi-objective optimization 

problem: 

 

Max  

𝑓 = ∑ 𝑐𝑗
−𝑥𝑗 + 𝑑𝑛

𝑗=1                                                                                                                  (4.16) 

Min   

𝜉 = ⨁𝑖[∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]                                                                     (4.17) 
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Subject to 

∑ 𝑎𝑖𝑗
+𝑛

𝑗=1 𝑥𝑗 − 𝑏𝑖
− ≤ 𝜉𝑖 , ∀𝑖                                                                                                        (4.18) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                (4.19) 

 

In the model above, ⨁ indicates a general arithmetic operator (i.e., simple addition or 

weighted addition or simple arithmetic mean or weighted arithmetic mean). The 

subscript for i , i, suggests that the operator be applied across constraints to obtain a 

unified risk function for the entire optimization problem. 𝜆𝑖𝑗 and 𝜂𝑖 are model variables, 

while 0 ≤ 𝜆𝑖𝑗, 𝜂𝑖 ≤ 1. For each individual constraint, the constraint-wise risk function 

∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−) can differ from that of another constraint by order 

of magnitude due to different categories of 𝑏𝑖 as well as the incorporation of interactions 

among 𝜆𝑖𝑗, 𝑎𝑖𝑗
+ , 𝑎𝑖𝑗

− , 𝑥𝑗, 𝜂𝑖, 𝑏𝑖
+ and 𝑏𝑖

− in the function. Hence, it requires to convert the 

constraint-wise risk function into comparable magnitude (Yong et al. 2010). And a 

simple method through scaling each constraint-wise risk function by 1/𝑏𝑖
−  can be a 

feasible choice, which actually indicates a fractional risk factor from the most pessimistic 

case (Hua et al., 2010). For practical cases, more refined approaches can be developed 

in order to better reflect different decision environments. 

 

The above multi-objective optimization model (4.16 to 4.19) can then be reformulated 

into a general optimization model through minimizing the single objective risk function: 

 

Min  

𝜉 = ⨁𝑖[∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]                                                                   (4.20) 

Subject to  

∑ (𝑐𝑗
−𝑛

𝑗=1 𝑥𝑗 + 𝑑) ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− ), ∀𝑖                                                                      (4.21) 

∑ 𝑎𝑖𝑗
+𝑛

𝑗=1 𝑥𝑗 − 𝑏𝑖
− ≤ 𝜉𝑖 , ∀𝑖                                                                                                       (4.22)                                                     

𝜆0 = 𝜆𝑝𝑟𝑒                                                                                                                               (4.23) 
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0 ≤ 𝜆𝑖𝑗 ≤ 1                                                                                                                            (4.24) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                               (4.25) 

0 ≤ 𝜂𝑖 ≤ 1, ∀𝑖                                                                                                                        (4.26) 

 

Definition 4.2: The developed risk-minimization optimization model (4.20 to 4.26) is 

derived from the original ILP model and defined as the Risk Explicit Interval-parameter 

Linear Programming (REILP) model. 

 

In the REILP model, 𝜆0 is defined as the aspiration level preset by the decision maker, 

indicating the degree of aggressiveness, or in other words, the aspiration level of decision 

makers given the uncertainties in the optimization model. It takes the value between 0 to 

1. Normally, when 𝜆0 = 0, the model represents the least aggressive case and the most 

conservative and safest solutions will be obtained without facing any risks of violating 

the constraints. However, when 𝜆0 = 1, it represents the most aggressive situation, and 

the most optimistic but risky solutions will be obtained, and the solutions have the 

highest risks of violating some or all of the constraints. In practical cases, the decision 

makers usually prefer to choose the value of 𝜆0 between 0 and 1, to find the optimal 

solutions with least risk level but with a desired degree of aggressiveness. 

 

The risk-minimization REILP model (4.20 to 4.26) is a non-linear programming model. 

Its non-linearity is produced by introducing the risk level variables (i.e., 𝜆0 or 𝜆𝑖𝑗) to 

reflect the intricate non-linear interactions of uncertainties between different variables 

and terms in a constraint (Pei, 2011). If a large ij  is associated with a small jx , the large 

ij would have small contribution to the risk in the decision. On the other hand, if the ij  

is associated with a large jx it would result in significant contribution to the overall risk 

of the decisions. 
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4.2 THE ASPIRATION LEVEL 

As described above, the REILP model could provide the decision makers more reliable 

and practical implementation schemes through minimizing the decision risks while 

maximizing the system return. The improvement over the two-step algorithm or BWC 

algorithm is that the risks associated with the possible optimal solutions and decisions 

derived from them would be explicitly incorporated into the decision making process 

(Pei, 2011). In the REILP, the preset of aspiration level 0 needs to be further discussed. 

 

In the REILP model, the objective function of the original ILP model was converted into 

a constraint (Rui et al. 2010): 

 

∑ (𝑛
𝑗=1 𝑐𝑗

−𝑥𝑗 + 𝑑) ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                                            (4.27) 

 

Where,  

𝑑 = 𝜆0(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗                                                                                                               (4.28) 

  

Then we can get:  

∑ [𝑛
𝑗=1 (𝑐𝑗

− + 𝜆0(𝑐𝑗
+ − 𝑐𝑗

−))𝑥𝑗] ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                 (4.29) 

 

In equation (4.29), the aspiration level 𝜆0  appears in both sides of this inequality 

constraint and represents the preference of the decision maker and needs to be preset. In 

this constraint, it is assumed that the system return coefficient cj has the same changing 

rate (i.e., 0 ) from its lower bound as fopt (i.e., (𝑐𝑗
+ − 𝑐𝑗

−) and (𝑓𝑜𝑝𝑡
+ − 𝑓𝑜𝑝𝑡

− )). However, 

this is not always true in a real-world decision making problem, and cj and fopt might take 

different rates changing with their own intervals. A better formulation for the inequality 

(4.29) should be: 

 

∑ [𝑛
𝑗=1 (𝑐𝑗

− + 𝜆𝑗(𝑐𝑗
+ − 𝑐𝑗

−))𝑥𝑗] ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                       (4.30) 
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Where, 𝜆𝑗 is the new specific changing rate for 𝑐𝑗, while j = 1, 2, 3, ..., n. Meanwhile, 𝜆𝑗 

and 𝜆𝑜 take different values in most cases. 

 

In general, the aspiration level (𝜆𝑜) is capable of reflecting the relationship between the 

system return and the corresponding decision risks. In real-world problems, the decision 

makers usually choose different values of the aspiration level based on their own needs 

or the available resources. 

 

4.3 THE RISK FUNCTION 

In the REILP model, the risk function was formulated as: 

 

𝑒 = ∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)                                                                           (4.31) 

 

This risk objective function is able to reflect the risks of violating the constraints of 𝑎𝑖𝑗 

and 𝑏𝑖. However, it is not able to reflect the risk of violating the constraint of 𝑐𝑗, and it 

cannot directly reflect the relation between the risk function and the aspiration levels as 

well (Pei, 2011). 

 

Furthermore, when the original objective function of the ILP model was converted into 

a constraint in the REILP model, the risk of violating this constraint should also be 

considered. Usually, if the decision maker chooses a higher aspiration level, it means 

that the decision maker prefers an aggressive decision and a higher system return, and 

the risk level of the entire system will be elevated. In general, the risk function without 

considering the risk level of parameters 𝑐𝑗 and aspiration level 𝜆0 is not sufficient. 

 

4.4 SOLUTION PROCESS OF THE REILP MODEL 

A complete solution process for solving the REILP model is presented below (Rui et al. 

2008): 
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Step 1: Use the BWC algorithm to reformulate the original ILP model into two sub-

models and solve two sub-models to get the upper and lower bounds of the objective 

function. 

 

Step 2: Generate a risk minimization model based on the REILP modeling approach by 

using the solutions of objective function obtained in Step 1. 

 

Step 3: Following Step 2, solve the model for a series of prescribed, discrete aspiration 

levels to obtain the corresponding optimal solutions for the optimal risk levels and 

decision variables, and the optimal solutions allow the prescribed discrete aspiration 

levels to be achieved with respectively minimized risk levels. 

 

Step 4: Normalize the obtained risk levels such that the Normalized Risk Level (NRL) 

equals to 0 for the most pessimistic condition and 1 for the most optimistic condition. 

 

Step 5: Plotting the optimal NRL against the corresponding aspiration level would 

facilitate the understanding of the relationship between decision risk and system return. 

The decision makers are then in a desirable position to make decent and sound decisions 

based on their interpretation of risks and aspiration preferences. 
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Figure 4.1 Algorithmic process of REILP model 

(Source: Zhang et al., 2014) 

 

The REILP approach improves the traditional ILP method through obtaining crisp 

solutions at each desired aspiration level (or risk tolerance level) for directly formulating 

implementation schemes. Hence, the solutions can be adopted by the decision makers 

directly for making decisions with explicit risk-reward trade-off information.  
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4.5 THE NUMERICAL EXAMPLE AND DISCUSSION 

A numerical example is given below to illustrate the developed REILP approach through 

demonstrating the optimal decision making on land-use management for nutrient loading 

control and maximum profits gain. 

 

In this hypothetical case, a factory manufactures two different products, denoted as 𝑋1 

and 𝑋2 , by using Machine A and Machine B. The producing time of each unit of 𝑋1is 

38 min to 42 min for Machine A; 28 min to 33 min for Machine B. Meanwhile, it takes 

22 min to 26 min by using Machine A and 30 min to 35 min by using Machine B to 

produce each unit of 𝑋2. Usually, Machine A can be used 135 hours to 140 hours per 

week. Machine B can work 140 hours to 161 hours per week. For the coming week, there 

is a stock of 90 units of 𝑋1 and 108 units of 𝑋2 now. The weekly demand is at least 75 

units of 𝑋1 and 95 units of 𝑋2. In addition, the net benefits of each unit of 𝑋1 and 𝑋2 are 

[$72, $78] and [$80, $88], respectively. The manufacturer desires a planning scheme on 

the production of both products in order to maximize the weekly stock and net profit at 

the same time.  

 

This manufactural planning and management problem could be formulated as the 

following ILP model: 

 

Max  

𝑓 = [72, 78] ∗ (𝑋1 + 90 − 75) + [80, 88] ∗ (𝑋2 + 108 − 95)                                    (4.32)               

 

After re-arranging the terms in equation (4.32), the objective function becomes: 

 

Max  

𝑓 = [1080, 1170] ∗ 𝑋1 + [1040, 1144] ∗ 𝑋2                                                                           (4.33) 

Subject to  

[30, 32] ∗ 𝑋1 + [22, 26] ∗ 𝑋2 ≤ [135, 140] ∗ 60                                                       (4.34)                                                                                                    
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[28, 33] ∗ 𝑋1 + [30, 35] ∗ 𝑋2 ≤ [140, 161] ∗ 60                                                                    (4.35) 

𝑋1 ≥ 0                                                                                                                                     (4.36) 

𝑋2 ≥ 0                                                                                                                                       (4.37) 

 

By implementing the BWC algorithm, we can get its two sub-models as follows: 

 

(1) Best-case sub-model: 

Max  

𝑓+ = 1170 ∗ 𝑋1 + 1144 ∗ 𝑋2                                                                                                   (4.38) 

Subject to  

30 ∗ 𝑋1 + 22 ∗ 𝑋2 ≤ 140 ∗ 60                                                                                                        (4.39) 

28 ∗ 𝑋1 + 30 ∗ 𝑋2 ≤ 161 ∗ 60                                                                                                  (4.40) 

𝑋1 ≥ 0                                                                                                                                    (4.41) 

𝑋2 ≥ 0                                                                                                                                      (4.42) 

 

(2) Worst-case sub-model: 

Max  

𝑓− = 1080 ∗ 𝑋1 + 1040 ∗ 𝑋2                                                                                                  (4.43) 

Subject to 

32 ∗ 𝑋1 + 26 ∗ 𝑋2 ≤ 135 ∗ 60                                                                                             (4.44)                                                                                                      

33 ∗ 𝑋1 + 35 ∗ 𝑋2 ≤ 140 ∗ 60                                                                                 (4.45) 

𝑋1 ≥ 0                                                                                                                       (4.46) 

𝑋2 ≥ 0                                                                                                                       (4.47) 

 

Solving these two sub-models in Lingo, we could get the optimal solutions as follows:  
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𝑓± = [274120, 382278] 

𝑋1
± = [139, 249]  

𝑋2
± = [5, 192] 

 

According to the REILP approach, this ILP model can be converted into a risk explicit 

ILP model: 

 

Max   

1080 ∗ 𝑋1 + 1040 ∗ 𝑋2 + 𝑟0(1170 − 1080) ∗ 𝑋1 + 𝑟0(1144 − 1040) ∗ 𝑋2           (4.48) 

 

Min  

𝜉 = 𝑟1(32 − 30)𝑋1/8100 + 𝑟2(26 − 22)𝑋2/8100 + 𝑟3(8400 − 8100)/8100

+𝑟4(33 − 28)𝑋1/8400 + 𝑟5(35 − 30)𝑋2/8400 + 𝑟6(9660 − 8400)/8400
 

(4.49) 

Subject to  

[1080 + 𝑟0(1170 − 1080)]𝑋1 + [1040 + 𝑟0(1144 − 1040)]𝑋2 ≥ 274120 +

𝑟0(382278 − 274120)                                                                                             (4.50)                                                                                                 

32𝑋1 + 26𝑋2 − 8100 ≤ 𝑟1(32 − 30)𝑋1 + 𝑟2(26 − 22)𝑋2 + 𝑟3(8400 − 8100)   (4.51) 

33𝑋1 + 35𝑋2 − 8400 ≤ 𝑟4(33 − 28)𝑋1 + 𝑟5(35 − 30)𝑋2 + 𝑟6(9660 − 8400)   (4.52) 

𝑋1, 𝑋2 ≥ 0                                                                                                                                          (4.53) 

0 ≤ 𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6 ≤ 1                                                                                                  (4.54) 

 

Where, 𝑟0 is the aspiration level preset by the decision maker.  

 

The solutions of the above model are presented in Table 4.1.  
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Table 4.1 Optimal solutions under different aspiration levels 

 

Aspiration Level 

(𝑟0) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Profit ($) 274120 285257 295811 306660 317807 328290 339037 349842 360662 371472 382278 

𝑋1 (unit) 249 206 167 128 89 54 19 14 4 70 139 

𝑋2 (unit) 5 58 106 154 202 245 288 300 317 256 192 

Risk Function 0.00 0.05 0.10 0.14 0.19 0.23 0.27 0.32 0.37 0.44 0.51 

 

5
2
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According to Section 4.2, 𝑐𝑗 and 𝑓𝑜𝑝𝑡 may have different changing rates rather than the same 𝜆0. 

Hence, in order to improve this current risk function, we introduce the specific 𝜆𝑗 into the REILP 

model, and a better formulation for the constraint (4.50) should be: 

 

∑ [𝑛
𝑗=1 (𝑐𝑗

− + 𝜆𝑗(𝑐𝑗
+ − 𝑐𝑗

−))𝑥𝑗] ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                         (4.55) 

 

By introducing the specific 𝜆𝑗  into the current example model, we will use 𝑟7 for 𝑋1, 𝑟8 for 𝑋2. 

The new risk function will be re-formulated as follows: 

 

Min  

𝜉 = 𝑟1(32 − 30)𝑋1/8100 + 𝑟2(26 − 22)𝑋2/8100 + 𝑟3(8400 − 8100)/8100

+𝑟4(33 − 28)𝑋1/8400 + 𝑟5(35 − 30)𝑋2/8400 + 𝑟6(9660 − 8400)/8400
           (4.56) 

Subject to  

[1080 + 𝑟7(1170 − 1080)]𝑋1 + [1040 + 𝑟8(1144 − 1040)]𝑋2 ≥ 274120 + 𝑟0(382278 −

274120)                                                                                                                                (4.57) 

32𝑋1 + 26𝑋2 − 8100 ≤ 𝑟1(32 − 30)𝑋1 + 𝑟2(26 − 22)𝑋2 + 𝑟3(8400 − 8100)               (4.58) 

33𝑋1 + 35𝑋2 − 8400 ≤ 𝑟4(33 − 28)𝑋1 + 𝑟5(35 − 30)𝑋2 + 𝑟6(9660 − 8400)                   (4.59) 

𝑋1, 𝑋2 ≥ 0                                                                                                                              (4.60) 

0 ≤ 𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8 ≤ 1                                                                                                  (4.61) 

 

Where, 𝑟0 is the preset aspiration level defined by the decision maker. 

 

The above model was solved by LINGO, and the solutions were presented in Table 4.2. 
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Table 4.2 New optimal solutions under different aspiration levels 

 

  

Aspiration Level 

(𝑟0) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝑟1 0.90 0 0 0.08 0 0 0 0.04 0.13 0.49 0.98 

𝑟2 0 0 0.41 0.14 0 0.08 0 0.04 0.13 0.23 1 

𝑟3 0 0 0 0 0 0 0 0 0 0.70 1 

𝑟4 0.50 0 0 0.24 0.39 0.49 0.49 0.50 0.50 0.10 1 

𝑟5 0 0 0.12 0.46 0.42 0 0.48 0.73 0.95 0.10 1 

𝑟6 0 0 0 0 0.25 0.77 0.85 0.90 0.90 0.10 1 

𝑟7 0.50 0.84 1 1 0.99 0.10 0.96 0.99 0.98 1 1 

𝑟8 0.98 0.83 0.33 0.99 0.98 1 0.10 1 1 1 1 

𝑋1 (unit) 0 193 253 220 162 128 71 36 12 31 139 

𝑋2 (unit) 240 55 0 43 112 156 224 269 303 293 192 

Profit ($) 274120 284936 296010 306567 317383 328199 339015 349831 360646 371462 382278 

Risk Function 0 0 0 0.05 0.10 0.16 0.21 0.27 0.33 0.41 0.51 

 

5
4
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The results show that the values of aspiration level 𝜆0 and 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8 are all in 

the reasonable range from 0 to 1. Besides, the values of profit and the risk function have rational 

relationship. If the profit increases, the corresponding risk level will increase simultaneously. 

 

4.6 IMPROVEMENT OF THE NUMERICAL EXAMPLE 

In Section 4.3, the risk objective function of the REILP model was formulated as: 

 

𝜉 = ∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)                                                                           (4.62) 

 

This risk objective function can reflect the risks of violating the constraints of 𝑎𝑖𝑗  and 𝑏𝑗 . 

However, it cannot reflect the risk of violating the constraint of 𝑐𝑗, and it cannot reflect the 

relationship between the risk function and the aspiration level 𝜆0 as well (Pei, 2011). 

 

When the objective function of the original ILP model was converted into a constraint of the 

REILP model, the risk of violating this constraint should also be considered.  In order to take 

this into account, an improved risk objective function could be formulated as follows: 

 

The original risk function is formulated as: 

𝜉𝑖 = ∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)                                                                           (4.63) 

𝜉 = ⨁𝑖[∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]                                                                     (4.64) 

 

This risk function was converted into a constraint as: 

∑ [𝑛
𝑗=1 𝑐𝑗

− + 𝜆𝑗(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗] ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                           (4.65) 

 

An improved risk function with considering the risk of violating the above constraint can then 

be formulated as: 
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𝜉 = ⨁𝑖[∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)] + ⨁𝑘[∑ 𝜆𝑗

𝑛
𝑗=1 (𝑐𝑗

+ − 𝑐𝑗
−)𝑥𝑗 + 𝜆0(𝑓𝑜𝑝𝑡

+ −

𝑓𝑜𝑝𝑡
− )]                                                                                                                                         (4.66) 

 

If we scale the risk function by： 

⨁𝑖 = 2/(𝑏𝑖
+ + 𝑏𝑖

−)  

⨁𝑘 = 2/(𝑓𝑜𝑝𝑡
+ + 𝑓𝑜𝑝𝑡

− )        

 

Then we can get: 

𝜉 = ∑
2

𝑏𝑖
++𝑏𝑖

−
𝑚
𝑖=1  [∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)] +  

2

𝑓𝑜𝑝𝑡
+ +𝑓𝑜𝑝𝑡

− [∑ 𝜆𝑗
𝑛
𝑗=1 (𝑐𝑗

+ − 𝑐𝑗
−)𝑥𝑗 + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )]                                 (4.67) 

 

By using the new risk objective function (4.67) to solve the model by LINGO, the new optimal 

solutions can be obtained (as presented in Table 4.3).
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Table 4.3 Improved optimal solutions under different aspiration levels 

 

 

 

 

 

 

 

Aspiration Level 

(𝑟0) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝑟1 0 0 0 0 0 0 0 0 0.52 0.58 0.98 

𝑟2 0 0 0 0 0 0 0 0 0.09 0.15 1 

𝑟3 0 0 0 0 0 0 0 0 0 1 1 

𝑟4 0 0 0 0.32 0.40 0.40 0.49 0.50 0.50 1 1 

𝑟5 0 0 0 0.34 0.43 0.36 0.48 0.76 1 1 1 

𝑟6 0 0 0 0 0.24 0.64 0.84 0.90 0.86 1 1 

𝑟7 0 0.48 0.95 0.98 0.99 0.95 0.98 0.60 0.48 1 1 

𝑟8 0 0.09 0.50 0.94 0.98 0.98 0.99 1 0.97 1 1 

𝑋1 (unit) 249 249 249 206 163 115 72 24 0 31 139 

𝑋2 (unit) 5 5 5 58 111 170 223 282 316 293 192 

Profit ($) 274120 284936 295752 306567 317383 328199 339015 349831 360646 371462 382278 

Risk Function 0 0.06 0.13 0.22 0.30 0.39 0.48 0.57 0.66 0.77 0.90 

 

5
7
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CHAPTER 5 FUZZY REILP APPROACH (FREILP) 

 

5.1 INTRODUCTION 

In the REILP model, 𝜆0 is the aspiration level preset by the decision makers, representing the 

degree of aggressiveness and the preference of the decision makers. Therefore, the aspiration 

level 𝜆0 is uncertain. Normally, when 𝜆0 = 0, the model represents the least aggressive case and 

the most conservative also safest solutions will be obtained without facing any risks of violating 

the constraints; when 𝜆0 = 1, the model represents the most aggressive situation, and the most 

optimistic solutions will be obtained, which comes along with the highest risk of violating some 

or all of the constraints. Usually, in the practical cases, the decision makers would prefer to 

choose the value of 𝜆0 between 0 and 1, comparing to these two extreme 𝜆0 values (0 or 1), to 

make the decision risk and the system return in a preset degree of balance. 

 

However, in real-world cases, it is hard for the decision makers or the stakeholders to preset the 

aspiration level at a specific value, or they may have different respective preferences. Therefore, 

in order to preset the aspiration levels more practical for real world applications, Fuzzy Risk 

Explicit Interval Linear Programming (FREILP) was developed in response to this need. 

 

5.2 INTRODUCTION TO FUZZY SET THEORY 

The fuzzy set theory was first proposed as an extension of the classical notion of set (Zadeh and 

Klaua, 1965). Comparing to the classical set, which has only binary forms to reflect the object 

either belonging to or not belonging to the set, the fuzzy set becomes more realistic and 

humanized for practical problems by allowing the gradual assessment of the membership of the 

object in the set. In Zadeh’s research, the fuzzy set actually includes the classical set because the 

situations of the classical set can be seen as the special situations in the membership function of 

the fuzzy set as it only takes the value of 0 or 1. Since then, the fuzzy set has been introduced in 

various areas from mathematics to engineering. 
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Definition 5.1: In general, if we let 𝑋, a collection of objects, denoted by 𝑥, the fuzzy set 𝐴̃ in 

𝑋 is a set of ordered pairs as: 

 

𝐴̃ = {(𝑥, 𝜇𝐴̃(𝑥)) ∣ 𝑥 ∈ 𝑋}                                                                                                         (5.1) 

 

In function 5.1, 𝜇𝐴̃(𝑥) is defined as the membership function of 𝑥 in  𝐴̃, while it maps 𝑋 to the 

membership space 𝑀. Normally, the range of this membership function is a subset of the non-

negative real numbers whose supreme is finite. Meanwhile, the elements will not be listed if 

they have zero degree of the membership function (Pei, 2011). 

 

Zadeh (1975) and Zimmermann (1985) developed the 𝛼-level set theorem, which becomes a 

critical part of the fuzzy set theory and its application. This method generates the crisp sets which 

associate with their corresponding different 𝛼 level. It also represents the distinct grades of 

membership function. 

 

Definition 5.2: The 𝛼-level set (all called α-cut) is defined as follows (Zadeh, 1973): 

 

𝐴𝛼 = {(𝑥 ∈ 𝑋), ∣ 𝜇𝐴̃(𝑥) ≥ 𝛼}                                                                                                   (5.2) 

 

The 𝛼-cut set is obtained by drawing a horizontal line of the 𝛼-level value on the membership 

function curve. The curve above the line includes all the elements in the 𝛼-level set (also called 

𝛼-cut). Figure 5.1 presents the membership function curve for an example fuzzy set (i.e., real 

numbers close to 10). When 𝛼-cut = 0.5, the horizontal line cuts the membership function curve 

into two parts at two intersection points of x = 9 and x = 11, respectively. The membership 

grades for all the real numbers in between 9 and 11 are greater than 0.5.  
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Figure 5.1 An 𝛼-cut example for the fuzzy set of real numbers close to 10 

 

5.3 MEMBERSHIP FUNCTIONS OF THE FUZZY ASPIRATION LEVEL IN 

THE REILP MODELING 

In order to account for the fuzzy nature associated with the aspiration level, in this study, three 

levels of the aspiration value (𝜆0 ) were considered, including aggressive aspiration level, 

medium aspiration level and conservative aspiration level. The development of their 

membership functions are based on the “young people” membership function given in Equation 

5.3. Equations 5.4, 5.5 and 5.6 are the membership functions for the conservative, medium, and 

aggressive aspiration levels, respectively. Their plots are presented in Figures 5.2, 5.3, and 5.4, 

respectively. 

 

Ã(x) = {
1，                                         0 ≤ 𝑥 ≤ 25

[1 + (
𝑥−50

5
)

−2

]
−1

,             25 ≤ 𝑥 ≤ 100
                                                                  (5.3) 
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(a) The membership function of the conservative aspiration level (𝜆0): 

Ã(𝜆0) = {
1，                                          0 ≤ 𝜆0 ≤ 0.25

[1 + (4𝜆0 − 1)2]−1,          0.25 ≤ 𝜆0 ≤ 1
                                                                     (5.4) 

 

 

 

Figure 5.2 The plot of the membership function of the conservative aspiration level 

 

(b) The membership function and plot of the medium aspiration level (𝜆0): 

𝐵̃(𝜆0) = {

[1 + (15 − 40𝜆0)2]−1,            0 ≤ 𝜆0 ≤ 0.375
1,                                           0.375 ≤ 𝜆0 ≤ 0.625

[1 + (40𝜆0 − 25)2]−1,             0.625 ≤ 𝜆0 ≤ 1

                                                      (5.5) 
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Figure 5.3 The plot of the membership function of the medium aspiration level 

 

(c) The membership function and plot of the aggressive aspiration level (𝜆0):  

𝐶 ̃(𝜆0) = {
[1 + (15 − 20𝜆0)2]−1,           0 ≤ 𝜆0 ≤ 0.75
1,                                                 0.75 ≤ 𝜆0 ≤ 1

                                                          (5.6) 
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Figure 5.4 The plot of the membership function of the aggressive aspiration level 

 

5.4 FREILP MODEL FORMULATION 

With the defined fuzzy aspiration levels above, the FREILP model can be formulated as follows: 

 

(1) For a maximization problem: 

Max  

𝑓± = ∑ 𝑐𝑗
±𝑛

𝑗=1 𝑥𝑗
±                                                                                                                      (5.7) 

Subject to 

∑ 𝑎𝑖𝑗
±𝑛

𝑗=1 𝑥𝑗
± ≤ 𝑏𝑖

±, ∀𝑖                                                                                                                  (5.8) 

𝑥𝑗
± ≥ 0, ∀𝑗                                                                                                                                  (5.9) 

 

In the FREILP model, the objective is to minimize the risk of violating any of the constraints. 

So the model can be re-formulated as: 
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Min  

𝜉 = ∑
2

𝑏𝑖
++𝑏𝑖

−
𝑚
𝑖=1 [∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]

+
2

𝑓𝑜𝑝𝑡
+ +𝑓𝑜𝑝𝑡

− [∑ 𝜆𝑗
𝑛
𝑗=1 (𝑐𝑗

+ − 𝑐𝑗
−)𝑥𝑗 + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )]

                                                    (5.10) 

Subject to 

∑ [𝑛
𝑗=1 𝑐𝑗

− + 𝜆𝑗(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗] ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                                 (5.11) 

∑ 𝑎𝑖𝑗
+𝑛

𝑗=1 𝑥𝑗 − 𝑏𝑖
− ≤ ∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−), ∀𝑖                                               (5.12) 

0 ≤ 𝜆𝑖𝑗, 𝜆𝑗 , 𝜂𝑖 ≤ 1                                                                                                                   (5.13) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                (5.14) 

 

(2) For a minimization problem: 

Min  

𝑓± = ∑ 𝑐𝑗
±𝑛

𝑗=1 𝑥𝑗
±                                                                                                                                 (5.15) 

Subject to 

∑ 𝑎𝑖𝑗
±𝑛

𝑗=1 𝑥𝑗
± ≥ 𝑏𝑖

±, ∀𝑖                                                                                                                           (5.16) 

𝑥𝑗
± ≥ 0, ∀𝑗                                                                                                                                              (5.17) 

 

The FREILP model for the minimization problem can be re-formulated as follows: 

 

Min  

𝜉 = ∑
2

𝑏𝑖
++𝑏𝑖

−
𝑚
𝑖=1 [∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]

+
2

𝑓𝑜𝑝𝑡
+ +𝑓𝑜𝑝𝑡

− [∑ 𝜆𝑗
𝑛
𝑗=1 (𝑐𝑗

+ − 𝑐𝑗
−)𝑥𝑗 + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )]

                                                   (5.18) 

Subject to 
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∑ [𝑛
𝑗=1 𝑐𝑗

+ − 𝜆𝑗(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗] ≥ 𝑓𝑜𝑝𝑡
+ − 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                                (5.19) 

𝑏𝑖
+ − ∑ 𝑎𝑖𝑗

−𝑛
𝑗=1 𝑥𝑗 ≥ ∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−), ∀𝑖                                             (5.20) 

0 ≤ 𝜆𝑖𝑗, 𝜆𝑗 , 𝜂𝑖 ≤ 1                                                                                                                                (5.21) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                               (5.22) 

 

In both of the FREILP models above, the aspiration levels 𝜆0 are treated as the fuzzy sets. 
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CHAPTER 6 PLANNING AND MANAGEMENT OF TRUCK 

ALLOCATION SYSTEM FOR AN OPEN-PIT MINE CASE 

STUDY 

 

In the surface mining industry, truck and shovel are the critical components in the entire 

operation system. Subsequently, the associated costs from truck and shovel technology plays a 

dominant role in the total mining operating cost. In terms of the distributions of operating costs 

among the relevant activities in open-pit mining production cycle, loading and hauling costs 

could take up to 70% of the total system cost (Ercelebi and Bascetin, 2009). In the past, the 

mining companies usually implement the truck dispatching system through heuristic rules or the 

dispatchers’ experiences to allocate the truck resources based on their needs or production 

requirements. The heuristic rule may work well for small mining operations, however, it is 

usually not good enough for large and complicated mining operations in most real-world cases. 

Therefore, more effective methods through combining the mathematical programming models 

and the heuristic rules into a general modeling framework under uncertain decision-making 

environment is desired for mining operators to develop a sound and optimal truck allocation 

scheme for achieving minimized operating costs and thus potentially maximizing the mining 

profits. 

 

In this study, both REILP and FREILP modeling approaches are applied to the planning and 

management of the truck allocation system for the Anshun Yalong surface mining project in 

Guizhou, China. This application will be used not only for testing the applicability of both 

modeling approaches on the practical case, but also providing the decision makers and the 

stakeholders with the applicable implementation schemes.  

 

6.1. STUDY CASE BACKGROUND 

The study case is the Yalong Coal Surface Mining project, located in Anshun, Guizhou Province, 

China. Surface mining, as its name implies, is a big group of mining categories in which soil 

and rock overlying the mineral deposit (the overburden) are removed. It is also known as open-
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pit mining, strip mining and mountaintop removal mining. Surface mining is opposite to 

underground mining in which drillings are needed to reach the ore layer and the ores are 

conveyed out via the built tunnels and belts.  

 

Figure 6.1 shows a schematic diagram of a surface coal mining operation. 

 

Figure 6.1 Schematic diagram of an area surface coal mine operations 

(Source: Royal Utilities, 2012) 

 

A surface coal mining operation system consists of four phases, i.e., exploration, waste mining, 

coal mining, and mining camp. The exploration phase is to locate coal seams through trial pits. 

After the coal seams are located, the overburden materials will be excavated and removed as the 

wastes from the ground surface by shovel, and then be transported to waste dumping areas by 

truck, and eventually be conveyed by waste belts to the waste dumping ground. Coal seams and 

layers now become exposed and are shoveled and transported to the coal crushing areas by 

trucks. The crushed coal will then be conveyed via coal belts to the “Run of Mine” (ROM) coal 

surge pile. The coal will be washed and sent to the coal camp afterwards. The entire process is 

controlled and managed by the operation administration office.  
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Figure 6.2 shows a schematic diagram of the truck allocation system for the case study. The 

main components considered in a truck allocation system include coal shovel sites, coal 

dumping/crushing areas and waste dumping places. For this study case, there are three surface 

coal shovel sites, two coal dumping/crushing areas, and one waste dumping place. In this project, 

the coals from two dumping/crushing areas will be conveyed to the next surge pile by using the 

same belt for cost-saving purpose. As indicated, the distance from three shovels sites to two 

dumping areas is all same at 4.1 miles. The distance from the shovel sites to the waste crushing 

place is 5.5 miles.   

 

 

Figure 6.2 Truck-shovel operation system of Yalong project 

 

The coal mining and hauling process starts from coal shoveling at coal pit, then load and 

transport the coal to the ore dumping/crushing areas by trucks, and then convey the crushed coal 

by the conveyor belt to the coal surge pile. As shown in Figure 6.3, the surge pile is a transitional 

storage place for the coal materials and acts as a buffer between the later extraction plant (if 

needed) and the mine production line. Usually, the surge pile is huge enough to feed the 

extraction plant in order to make the mine production line and the extraction plant to be relatively 

independent with each other. 
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Figure 6.3 Ore mining flow chart 

(Source: George, 2002) 

 

In this study, the truck allocation problem will be formulated as a mixed-integer linear 

programming model. The model uncertainties will be reflected by the ILP approach. Then, a 

REILP model will be developed to provide more effective decision support for the decision 

maker and the stakeholder through considering the balance of decision risk and system benefit. 

Furthermore, the FREILP model will be formulated to address the preference and aspiration 

levels of the decision makers for providing more realistic and practical decision support. 

 

6.2. MODEL INPUT DATA  

Figure 6.4 to Figure 6.7 present a few 3D simulated coal mining picture, including parallel coal 

shoveling sites, coal dumping process, parallel coal dumping areas, and a coal surge pile. 
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Figure 6.4 Parallel coal shoveling sites 

(Source:  Mycosm - 3D simulation) 

 

 

Figure 6.5 Coal dumping from trucks 

(Source:  Mycosm - 3D simulation) 

 

https://www.youtube.com/user/Mycosm3D
https://www.youtube.com/user/Mycosm3D
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Figure 6.6 Parallel coal dumping places  

(Source: JoyGlobal, 2014) 

 

 

Figure 6.7 A coal surge pile 

(Source:  Mycosm - 3D simulation) 

 

In this study, three types of trucks will be used for coal and waste hauling, with a capacity of 

240 Tonnes, 320 Tonnes and 360 Tonnes, respectively. They are denoted by subscript ‘𝑗’ (𝑗 = 1 

for 240 Tonnes trucks, 𝑗 = 2  for 320 Tonnes trucks, and 𝑗 = 3  for 360 Tonnes trucks). 

https://www.youtube.com/user/Mycosm3D
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Truckload is denoted as ‘𝐿’, where 𝐿(𝑠, 𝑑, 𝑗) indicates the coal truckload and 𝐿(𝑠, 𝑗) indicates 

the waste truckload while ‘s’ indicating the shovel locations 1, 2 & 3. In the term 𝐿(𝑠, 𝑑, 𝑗), ‘d’ 

indicates the coal dumping place 1 & 2. 

 

Three shovel locations used in this case all have a shoveling capacity of 6,000 Tonnes per hour 

(Tph), which is denoted by 𝐶𝑠ℎ𝑜𝑣𝑒𝑙. Three shovels are all denoted as ‘𝑠’ (where, 𝑠 = 1, 𝑠 = 2 

and 𝑠 = 3, representing three shovels accordingly). Two coal dumping places are denoted by 

‘𝑑’ (where, 𝑑 = 1 and 𝑑 = 2). The coal truck cycle time and the waste truck cycle are denoted 

by 𝑡(𝑠, 𝑑, 𝑗) and 𝑡(𝑠, 𝑗), respectively, and they are all expressed at minutes. 

 

In addition, the cost coefficient (𝐾𝑗) is used to indicate the cost of each type of truck. In this 

study, the truck with larger capacity would cost more. 𝑉𝑜𝑟𝑒 represents the hourly ore hauling rate 

from the shovel sites to the ore dumping places, while 𝑉𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 representing the hourly ore 

extraction rate from the surge pile at the extraction plant. 

 

The following Table 6.1 shows the important thesis conventions used in this study. 

 

Table 6.1 Important thesis conventions 

Symbols and 

Abbreviations Description 

240T, 320T, 360T      Short form reflecting the capacity-based category of  

 trucks, i.e., 240T trucks, 320T trucks or 360T trucks 

Tph Tonnes per hour 

j Truck category index based on truck capacity, j = 1 for 

240T trucks,  j = 2 for 320T trucks, j = 3 for 360T trucks 

t(s,d,j) Cycle time of the ore trucks of type j (minutes)  

t(s,j) Cycle time of the waste trucks if type j (minutes) 

L(s,d,j) Ore truckload of truck of type j (Tonnes) 
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L(s,j) Waste truckload of truck of type j (Tonnes) 

Wm Minimum amount of waste required to be moved over the 

time period in order to keep the operation system 

balanced 

Rj Truck resource limitation of type j 

X(s,d,j) Decision variables: number of ore trucks per hour for 

truck of type j (sending from Shovel ‘s’ to Ore Dumping 

‘d’) 

Y(s,j) Decision variables: number of waste trucks per hour for 

truck of type j (sending from Shovel ‘s’ to Waste 

Dumping) 

Kj Cost coefficient of different truck types 

Vore Hourly rate of ore hauled from Shovel to Dump (Tonnes) 

Vextraction Hourly rate of ore extracted from Surge Pile (Tonnes) 

Cshovel Hourly shovel capacity (three shovel capacities are the 

same in this case) (Tonnes) 

 

 

In a truck allocation system, the truck cycle time plays a critical role for the formulation of ore 

and waste removal constraints. The truck cycle time is a sum of the loading time from shovel to 

truck, travelling time of trucks from shovel sites to dumping/crushing areas after being loaded,  

waiting time of trucks at dumping/crushing areas, dumping time, travelling-back-to-shovel-site 

time, plus waiting time at the shovel. Figure 6.8 shows all elements included in the truck cycle 

time, and this cycle time model is applicable to both ore trucks and waste trucks. 
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Figure 6.8 Elements in a truck cycle time model 

(Source: George, 2002) 

 

In this study, the truck cycle time equals to a total of loading time, haul time, dump time and 

return time in a unit minutes. Table 6.2 represents the calculated cycle times for different ore- 

and waste-hauling time, and they will be used as the fundamental parameters in the model 

formulation.  

 

Table 6.2 Parameters for calculating the truck cycle time 

 

Load 

Time 

(min) 

Dump 

Time 

(min) 

Haul 

Speed 

(mph) 

Distance  

 

(miles) 

Haul 

Time 

(min) 

Return 

Time 

(min) 

Return 

Speed 

(mph) 

Cycle 

Time 

(min) 

Ore  

240T 3.5 2.5 31 4.1 8 6 41 20 

320T 5 3 27 4.1 9 7 35 24 

360T 6 4 23 4.1 11 7 31 28 

Waste  

240T 4 2 31 5.5 10 8 41 24 

320T 4 7 27 5.5 12 9 35 32 

360T 7.5 4.5 23 5.5 14 10 31 36 
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6.2.1 Input Data for LP and ILP Model 

The mean value of each parameter is used in the basic (classical) LP model. The following Table 

6.3 shows the input data which are used in the classical LP model in this study. 

 

Table 6.3 Input data for LP Model 

Ore truck cycle time  (min) t(s,d,j) = 20, 24, 28 min 

Waste truck cycle time (min) t(s,j) = 24, 28, 32 min 

Deterministic truckload (in order of 240T, 320T, 

360T trucks) 

L(s,d,j) = {220, 290, 327} Tonnes 

L(s,j) = {220, 290, 327} Tonnes 

Hourly ore constraint (Tph) 10,000 for each shovel 

Minimum waste constraint (Tph) Wmin = 2,500 from each shovel  

Truck fleet size (240T, 320T, 360T) Rj = 35, 15, 15 

Hourly rate of ore extracted from surge pile Vextraction = 12,000 Tph 

Minimum volume requirement for surge pile in 

order to keep system balanced 
Vmin = 14,000 Tonnes 

Cost coefficients (in order of 240T, 320T, 360T 

trucks) 
Kj = 1, 1.33, 1.5 

 

For the ILP model of this study, the interval parameters include ore and waste truck cycle time 

(min), cost coefficients (𝐾) for three types of trucks, the minimum volume requirement for the 

ore surge pile in order to constantly feed the extraction plant at required balance and the 

minimum waste removal amount in each hour. Table 6.4 presents the interval parameters used 

in the ILP model. 
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Table 6.4 Interval parameters used in ILP model 

  Truck Cycle Time (min)  Cost Coefficient (K) Vmin (Tonnes) Wmin  (Tonnes) 

Ore      

   240 T [ 16 , 24 ] [ 0.8 , 1.2 ] 

320 T [ 20 , 28 ] [ 1.1 , 1.5 ] 

360 T [ 24 , 32 ] [ 1.3 , 1.7 ] 
[ 6500 , 7500 ] [ 2000 , 3000 ] 

Waste     

240 T [ 20 , 28 ] [ 0.8 , 1.2 ] 

   320 T [ 24 , 32 ] [ 1.1 , 1.5 ] 

360 T [ 28 , 36 ] [ 1.3 , 1.7 ] 

 

6.3. MODEL DEVELOPMENT 

6.3.1. Objective Function of Basic LP Model 

The objective of this study is to minimize the total system cost of truck allocation system. The 

total system cost is determined by the ore hauling cost and the waste hauling cost under the 

limited truck resources. Hence, the objective function is given as follows. 

 

Minimize Total Cost = (I) + (II)                                                                                             

 

Where, 

(𝐼) = ∑ ∑ ∑ 𝐾3
𝑗=1

2
𝑑=1

3
𝑠=1 (𝑗)𝑋(𝑠, 𝑑, 𝑗)                                                                                                    (6.1) 

(𝐼𝐼) = ∑ ∑ 𝐾3
𝑗=1

3
𝑠=1 (𝑗)𝑌(𝑠, 𝑗)                                                                                                           (6.2) 

 

(6.1) represents the total ore hauling cost in the entire surface mining operation system. (6.2) is 

the total waste hauling cost in the surface mining operation system.  

 

𝑋(𝑠, 𝑑, 𝑗) denotes the allocated ore hauling trucks running from shovel places ‘s’ to ore dumping 

places ‘d’. s = 1, 2, 3 represent three shovel places, respectively, while d = 1, 2 indicating two 



77 
 

ore dumping places in this case. ‘j’ represents three types of trucks: j = 1 for 240T trucks, j = 2 

for 320T trucks, j = 3 for 360T trucks. 𝑌(𝑠, 𝑗) is the allocated waste hauling trucks running from 

shovel places ‘s’ to waste dumping place (there is only one waste dumping place in this case). 

Kj  denotes the cost coefficients (in order of 240T, 320T, 360T trucks) in this model. 

    

6.3.2. Model constraints 

(1) 𝑉𝑜𝑟𝑒 − 𝑉𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≥ 𝑉𝑚𝑖𝑛                                                                                                                    (6.3) 

This constraint is the minimum volume requirement for the coal surge pile in order to keep the 

operation system balanced, which means the hauled ore to the surge pile deducting the extracted 

ore from the surge pile must satisfy the minimum volume requirement.  

 

(2) 𝑉𝑜𝑟𝑒 = ∑ ∑ ∑
60

𝑡(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1

3
𝑠=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗)                                                                     (6.4) 

 

This constraint gives the total hauled ore amount, which equals to the total hauled by three types 

of trucks ‘j’, from three shovel places‘s’ to the two ore dumping places ‘d’ . As mentioned 

previously, t(s,d,j) is the ore truck cycle time of type of  j; L(s,d,j) is the ore truckload of truck 

type of  j. 

 

(3) ∑ ∑
60

𝑡(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗) ≤ 𝐶𝑠ℎ𝑜𝑣𝑒𝑙                                                                          (6.5) 

 

This constraint indicates that the hourly hauled ore amount at each shovel place must be less 

than or equal to the hourly shovel capacity (three shovel capacities are the same in this case). 

 

(4) ∑ ∑
60

𝑡(𝑠,𝑗)
3
𝑗=1

3
𝑠=1 𝐿(𝑠, 𝑗)𝑋(𝑠, 𝑗) ≥ 𝑊𝑚𝑖𝑛                                                                                      (6.6) 

 

This constraint gives the hourly hauled waste requirement amount at each shovel place, which 

means the hourly hauled waste must satisfy the minimum requirement in order to avoid over 

accumulation of the waste at each shovel place and to keep the entire operation system being 
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balanced. As mention previously, L(s,j) is the waste truckload of truck type j; Wmin  is the 

minimum amount of waste required to be hauled in each hour. 

 

(5) 𝑋(𝑠, 𝑑, 𝑗) + 𝑌(𝑠, 𝑗) ≤ 𝑅𝑗                                                                                                             (6.7) 

      𝑋(𝑠, 𝑑, 𝑗)  ≥ 0                                                                                                                    (6.8)      

      𝑌(𝑠, 𝑗) ≥ 0                                                                                                                          (6.9) 

 

Constraint (6.7) represents the availability of the truck resources in this case. Integer 𝑋(𝑠, 𝑑, 𝑗) 

is the number of trucks allocated to ore hauling, and integer 𝑌(𝑠, 𝑗) is the number of trucks 

allocated to waste hauling.  Rj  is the total available truck resource for each truck type j. 

 

This mixed-integer LP model is a deterministic model and the mean values of each parameter 

are introduced in the model in order to get the optimal solution under the basic circumstance, 

which means any uncertainties are not considered in this LP model. 

 

6.3.3. ILP Model Development 

Based on the classical LP model formulated (Model 6.1 to 6.9), the corresponding ILP model 

for this case can be developed with some uncertain parameters being reflected by interval 

numbers. In this study, there are four parameters being considered as intervals, and they are the 

ore truck cycle time, 𝑡±(𝑠, 𝑑, 𝑗); the waste truck cycle time (min), 𝑡±(𝑠, 𝑗); the cost coefficients 

𝐾±(j) for three types of trucks; the minimum volume requirement, 𝑊𝑚𝑖𝑛
± , for the ore surge pile; 

and the minimum waste removal requirement. Where, “+” indicates the upper bound of this 

parameter, while “-” indicating the lower bound of this parameter.  

 

The formulated ILP model for the study case is presented below:  

 

Min  

𝑓± = ∑ ∑ ∑ 𝐾±3
𝑗=1

2
𝑑=1

3
𝑠=1 (𝑗)𝑋(𝑠, 𝑑, 𝑗) + ∑ ∑ 𝐾±3

𝑗=1
3
𝑠=1 (𝑗)𝑌(𝑠, 𝑗)                                          (6.10) 
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Subject to 

𝑉𝑜𝑟𝑒
± − 𝑉𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≥ 𝑉𝑚𝑖𝑛

±                                                                                                            (6.11) 

𝑉𝑜𝑟𝑒
± = ∑ ∑ ∑

60

𝑡±(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1

3
𝑠=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗)                                                                  (6.12) 

∑ ∑
60

𝑡±(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗) ≤ 𝐶𝑠ℎ𝑜𝑣𝑒𝑙                                                                     (6.13) 

∑ ∑
60

𝑡±(𝑠,𝑗)
3
𝑗=1

3
𝑠=1 𝐿(𝑠, 𝑗)𝑋(𝑠, 𝑗) ≥ 𝑊𝑚𝑖𝑛

±                                                                                            (6.14) 

𝑋(𝑠, 𝑑, 𝑗) + 𝑌(𝑠, 𝑗) ≤ 𝑅𝑗                                                                                                                               (6.15) 

𝑋(𝑠, 𝑑, 𝑗)  ≥ 0                                                                                                                                         (6.16)      

𝑌(𝑠, 𝑗) ≥ 0                                                                                                                                               (6.17) 

 

By using the BWC algorithm to solve this ILP model, this ILP model can be reformulated into 

two sub-models under best-case situation and worst-case situation. These two sub-models can 

be run by Lingo in order to get the optimal solutions under the interval-parameter condition. 

 

(a) Best case sub-model: 

Min  

𝑓− = ∑ ∑ ∑ 𝐾−3
𝑗=1

2
𝑑=1

3
𝑠=1 (𝑗)𝑋(𝑠, 𝑑, 𝑗) + ∑ ∑ 𝐾−3

𝑗=1
3
𝑠=1 (𝑗)𝑌(𝑠, 𝑗)                                         (6.18) 

Subject to 

𝑉𝑜𝑟𝑒
+ − 𝑉𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≥ 𝑉𝑚𝑖𝑛 

−                                                                                                         (6.19) 

𝑉𝑜𝑟𝑒
+ = ∑ ∑ ∑

60

𝑡−(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1

3
𝑠=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗)                                                                      (6.20) 

∑ ∑
60

𝑡−(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗) ≤ 𝐶𝑠ℎ𝑜𝑣𝑒𝑙                                                                      (6.21) 

∑ ∑
60

𝑡−(𝑠,𝑗)
3
𝑗=1

3
𝑠=1 𝐿(𝑠, 𝑗)𝑋(𝑠, 𝑗) ≥ 𝑊𝑚𝑖𝑛

−                                                                                    (6.22) 

𝑋(𝑠, 𝑑, 𝑗) + 𝑌(𝑠, 𝑗) ≤ 𝑅𝑗                                                                                                           (6.23) 

𝑋(𝑠, 𝑑, 𝑗)  ≥ 0                                                                                                                                         (6.24)      
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𝑌(𝑠, 𝑗) ≥ 0                                                                                                                                               (6.25) 

 

(b) Worst case sub-model: 

Min  

𝑓+ = ∑ ∑ ∑ 𝐾+3
𝑗=1

2
𝑑=1

3
𝑠=1 (𝑗)𝑋(𝑠, 𝑑, 𝑗) + ∑ ∑ 𝐾+3

𝑗=1
3
𝑠=1 (𝑗)𝑌(𝑠, 𝑗)                                          (6.26) 

Subject to 

𝑉𝑜𝑟𝑒
− − 𝑉𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≥ 𝑉𝑚𝑖𝑛

+                                                                                                          (6.27) 

𝑉𝑜𝑟𝑒
− = ∑ ∑ ∑

60

𝑡+(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1

3
𝑠=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗)                                                                    (6.28) 

∑ ∑
60

𝑡+(𝑠,𝑑,𝑗)
3
𝑗=1

2
𝑑=1 𝐿(𝑠, 𝑑, 𝑗)𝑋(𝑠, 𝑑, 𝑗) ≤ 𝐶𝑠ℎ𝑜𝑣𝑒𝑙                                                                        (6.29) 

∑ ∑
60

𝑡+(𝑠,𝑗)
3
𝑗=1

3
𝑠=1 𝐿(𝑠, 𝑗)𝑋(𝑠, 𝑗) ≥ 𝑊𝑚𝑖𝑛

+                                                                                              (6.30) 

𝑋(𝑠, 𝑑, 𝑗) + 𝑌(𝑠, 𝑗) ≤ 𝑅𝑗                                                                                                                             (6.31) 

𝑋(𝑠, 𝑑, 𝑗)  ≥ 0                                                                                                                                          (6.32)      

𝑌(𝑠, 𝑗) ≥ 0                                                                                                                                              (6.33) 

 

6.3.4. REILP Model Development 

Based on the REILP methodology developed in Chapter 4, a multi-objective REILP formulation 

of the study case can be formulated as follows: 

 

Min  

∑ ∑ ∑ 𝐾3
𝑗=1

2
𝑑=1

3
𝑠=1 (𝑗)𝑋(𝑠, 𝑑, 𝑗) + ∑ ∑ 𝐾3

𝑗=1
3
𝑠=1 (𝑗)𝑌(𝑠, 𝑗)                                                            (6.34) 

Min 

𝜉 = ⨁ [𝑖 ∑ 𝜆𝑖𝑗
𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]                                                                      (6.35)                                                         

Subject to 
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∑ (𝑐𝑗
−𝑛

𝑗=1 𝑥𝑗 + 𝑑) ≥ 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− ), ∀𝑖                                                                      (6.36) 

∑ 𝑎𝑖𝑗
+𝑛

𝑗=1 𝑥𝑗 − 𝑏𝑖
− ≤ 𝜉𝑖, ∀𝑖                                                                                                       (6.37)                                                     

𝜆0 = 𝜆𝑝𝑟𝑒                                                                                                                               (6.38) 

0 ≤ 𝜆𝑖𝑗 ≤ 1                                                                                                                            (6.39) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                               (6.40) 

 

Where, 

 𝑑 = 𝜆0(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗                                                                                                                 (6.41) 

 

𝜆0 is defined as the range of [0, 0.1, 0.2, 0.3, ..., 1] to obtain the risks under different aspiration 

levels. In this multi-objective programming model (6.34 to 6.41), the first objective function 

(6.34) is to minimize the total operating cost while minimizing the risk as in its second objective 

function (6.35). 𝑋(𝑠, 𝑑, 𝑗) and 𝑌(𝑠, 𝑗) denote the allocated number of trucks for ore hauling and 

waste hauling. Kj  represents the cost coefficients (in order of 240T, 320T, 360T trucks) in this 

model. 

 

6.3.5. FREILP Model Development 

As described in Chapter 5, in the practical situation, the decision makers or stakeholders may 

not be able to define the aspiration level at a specific value, or they may have different respective 

preferences. Therefore, in order to make the aspiration level more applicable for the real world 

cases, the REILP model is reformulated into a FREILP model (as shown below) through 

incorporating three different aspiration categories.  

 

Min  

𝜉 = ∑
2

𝑏𝑖
++𝑏𝑖

−
𝑚
𝑖=1 [∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]

+
2

𝑓𝑜𝑝𝑡
+ +𝑓𝑜𝑝𝑡

− [∑ 𝜆𝑗
𝑛
𝑗=1 (𝑐𝑗

+ − 𝑐𝑗
−)𝑥𝑗 + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )]

                                                   (6.42) 
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Subject to 

∑ [𝑛
𝑗=1 𝑐𝑗

+ − 𝜆𝑗(𝑐𝑗
+ − 𝑐𝑗

−)𝑥𝑗] ≥ 𝑓𝑜𝑝𝑡
+ − 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                                 (6.43) 

𝑏𝑖
+ − ∑ 𝑎𝑖𝑗

−𝑛
𝑗=1 𝑥𝑗 ≥ ∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−), ∀𝑖                                              (6.44) 

0 ≤ 𝜆𝑖𝑗 , 𝜆𝑗 , 𝜂𝑖 ≤ 1                                                                                                                                (6.45) 

𝑥𝑗 ≥ 0, ∀𝑗                                                                                                                                               (6.46) 

 

In this FREILP model, the aspiration level 𝜆0 is treated as the fuzzy set. In order to represent the 

aspiration levels under conservative, medium and aggressive situations, the 𝛼-cut levels will be 

selected before running the FREILP in Lingo. In this study, three different 𝛼-cuts are selected 

as 𝛼-cut = 0.5, 𝛼-cut = 0.6 and 𝛼-cut = 0.7. 

 

The detailed process for solving this REILP model is presented below: 

 

(1) Define the aspiration level as conservative, medium or aggressive according to the 

preference of the decision maker, and choose an 𝛼-cut level to obtain two crisp values from 

the membership function curve. 

 

(2) Two 𝛼-cut crisp values are then used as the aspiration level inputs for solving the formulated 

FREILP model. 

 

(3) Run the FREILP model in Lingo and generate the optimal solutions.  

 

Determination of the interval aspiration levels under 𝛼-cut levels of 0.5, 0.6 and 0.7 for three 

different scenarios are presented in Figures 6.9 to Figure 6.11, respectively. 
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Figure 6.9 Scenario 1 – conservative situation 

 

 

 

Figure 6.10 Scenario 2 – medium situation 
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Figure 6.11 Scenario 3 – aggressive situation 
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CHAPTER 7 RESULTS AND DISCUSSIONS 

 

According to the modelling approach described in Chapter 6, the truck allocation case problem 

was firstly formulated and solved as a deterministic LP model. The case problem was then 

reformulated as an ILP model with some of the model parameters being represented as interval 

number. The ILP model results were then used to formulate the case problem as a REILP model, 

and 11 preset aspiration levels ranging from 0 to 1 with a step increment of 0.1 were chosen to 

solve the REILP model. The REILP model was then transformed into the FREILP model 

through incorporating the fuzzy set theory as described in Chapter 6. The FREILP model was 

solved under three α-cut levels representing the conservative, medium and aggressive decision 

preferences, respectively. The solutions from these models could provide valuable insights for 

the decision-makers and stakeholders to support their decision-making process.  

 

7.1 LP AND ILP RESULTS 

The deterministic LP model formulated for the case problem is given in the model from (6.1) to 

(6.9) in Chapter 6. Solving the model by LINGO software, the optimal solutions can be obtained, 

as shown in Table 7.1. The results consist of the allocation pattern of different trucks to different 

dumping sites as well as the total truck allocating cost in a unit of 59.45  

 

As indicated in Table 7.1, there are a total of 35 240T trucks, 15 320T trucks, and 15 360T trucks 

available for ore and waste hauling for this project. Among the 35 240T trucks, 10 of them are 

used for ore hauling from Shovel 1 to Ore Dumping Site 1, and another 10 of them are used for 

ore hauling from Shovel 3 to Ore Dumping Site 2, and 5 of them are chosen for each Shovel 

place for waste hauling; while for 15 320T trucks, none of them have been used for hauling 

waste, and the number of them chosen for ore hauling are 4 for Shovel 1 to Ore Dumping Site 

2, 2 for Shovel 2 to Ore Dumping Site 2, and 1 for Shovel 3 to Ore Dumping Site 1; among all 

the 360T trucks, only 3 of them are used for hauling ore from Shove 2 to Ore Dumping Site 2.  

 

 



86 
 

Table 7.1 Deterministic LP model solutions 

 

Truck Allocation # To 

Dump 1 

To 

Dump 2 

Waste 

Dumping From Shovel 1 

240T Truck 10 0 5 

320T Truck 0 4 0 

360T Truck 0 0 0 

From Shovel 2   

240T Truck 0 0 5 

320T Truck 8 2 0 

360T Truck 0 3 0 

From Shovel 3   

240T Truck 0 10 5 

320T Truck 1 0 0 

360T Truck 0 0 0 

Total System Cost 

(unit) 
59.45 

 

 

The ILP model formulated for the case problem is given in the model from (6.10) to (6.17) in 

Chapter 6. By using the BWC algorithm, the ILP optimal solutions can be obtained, as shown 

in Table 7.2. It is indicated that the unit of total truck hauling cost changed from 𝑓𝑜𝑝𝑡 = 59.45 

(unit) in the LP model to 𝑓𝑜𝑝𝑡 = [30.8, 90] (unit) in the ILP model, and a different truck allocation 

pattern was obtained.  

 

As shown in Table 7.2, for ore hauling from Shovels 1, 2 and 3 to two dumping sites, any truck 

number combinations of [28, 29] for 240T, [3, 14] for 320T and [0, 4] for 360T trucks can be 

used for generating a truck resource allocation scheme for achieving the least-cost strategy. In 

the meantime, [6, 6] of 240T, [3, 1] of 320T and [0, 11] 360T trucks have been allocated for 

waste hauling from three shovel places. Comparing to the optimal solutions of LP model (as 

shown in Table 7.1), the significant change of the ILP result is the allocation and usage of 360T 

trucks, which has increased from only 3 to as many as 11 out of 15, and increased cost-hauling 

efficiency could be achieve. 
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Table 7.2 ILP solutions solving by BWC algorithm 

Truck 

Allocation # 
Best-case results  Worst-case results  

From Shovel 1 
To 

Dump 1 

To 

Dump 2 

Waste 

Dumping 

To 

Dump 1 

To 

Dump 2 

Waste 

Dumping 

240T Truck 4 7 2 1 12 2 

320T Truck 0 1 1 2 1 0 

360T Truck 0 0 0 0 0 4 

From Shovel 2     

240T Truck 10 0 2 1 4 2 

320T Truck 0 2 1 8 1 1 

360T Truck 0 0 0 0 0 3 

From Shovel 3     

240T Truck 2 5 2 8 3 2 

320T Truck 0 0 1 1 1 0 

360T Truck 0 0 0 2 2 4 

Total System 

Cost 
33.8 90 

 

7.2 REILP RESULTS 

In the REILP model from (6.34) to (6.41), the aspiration level 𝜆0  represents the degree of 

aggressiveness and is a value preset by the decision maker. In this study, 𝜆0 is defined in the 

range of [0, 1] with a step increment of 0.1, and thus the decision risks under a series of aspiration 

levels can be obtained. 

 

The REILP model was solved by the LINGO software. Figure 7.1 is an example of the LINGO 

solver info page when 𝜆0 = 0. 
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Figure 7.1 A LINGO solver info page when 𝜆0 = 0 

 

Figure 7.1 shows that there are a total of 85 variables (including 27 integer decision variables) 

and 18 constraints for the REILP model. It also shows that, when 𝜆0 = 0, the value of this 

objective function is 0 as well. 

 

Table 7.3 shows the optimal solution of the REILP model under the aspiration levels ranging 

from 0 to 1 with the step increment of 0.1.   

 

As described in Chapter 6, X(s,d,j) represents the number of different types of trucks allocated 

from 3 shovel places to 2 ore dumping sites; Y(s,j) represents the number of 3 trucks allocated 

from 3 shovel places to the waste dumping site.  For example, X111 = 12 under the aspiration 

level of 0.1, indicating that a total of 12 240T trucks are allocated for ore hauling from Shovel 1 

to the Ore Dumping Site 1. Similarly, Y13 = 3 under the aspiration level of 0.1, indicating that a 

total of 3 360T trucks will be used for waste hauling from Shovel 1 to the Waste Dumping Site. 

 

Table 7.3 presents a detailed truck allocation scheme as well as the values of risk function and 

total hauling cost under different preset aspiration levels. When the aspiration level = 0, the total 
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hauling cost reaches its highest value of 90 with a risk function value of 0. On the other end, 

when the aspiration level = 1, the total hauling cost would decrease to 33.8, however, with a 

highest risk function value of 0.326. The modeling results echo that, if the decision maker wants 

to spend less money to achieve a higher system return, the risks of violating the system 

constraints will be elevated.  

 

Table 7.3 REILP solutions under different aspiration levels 

Aspiration 

Level 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X111 16 12 12 7 14 18 3 16 0 12 0 

X211 0 0 0 0 0 0 0 0 12 0 16 

X311 3 0 0 0 0 0 7 0 0 0 0 

X112 0 3 0 7 1 0 0 0 3 1 0 

X212 0 1 0 4 4 0 1 0 0 2 0 

X312 0 3 8 0 1 0 6 0 0 0 0 

X113 0 2 0 0 0 0 0 0 0 0 0 

X213 4 2 0 0 0 0 0 0 0 0 0 

X313 1 0 3 0 0 0 0 0 0 0 0 

X121 0 0 0 0 0 0 14 2 5 3 16 

X221 8 14 14 1 13 3 1 10 0 13 0 

X321 3 0 0 18 0 0 1 0 7 0 0 

X122 1 0 1 1 0 0 1 0 0 0 0 

X222 5 0 1 1 0 0 0 0 3 0 0 

X322 6 8 3 0 6 15 0 4 0 0 0 

X123 0 0 0 1 0 0 0 0 0 0 0 

X223 0 0 1 1 0 0 0 0 0 0 0 

X323 0 0 0 0 0 0 0 0 0 0 0 

Y11 0 3 3 2 2 4 3 1 5 0 1 

Y12 0 0 0 0 0 0 0 5 1 3 2 

Y13 6 3 3 4 4 2 3 0 0 0 0 

Y21 2 3 3 4 3 4 2 3 6 2 2 

Y22 0 0 1 0 1 0 4 3 0 2 1 

Y23 4 3 2 2 2 2 0 0 0 0 0 

Y31 3 3 3 3 3 4 3 3 0 2 0 
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Aspiration 

Level 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y32 3 0 0 1 2 0 3 3 5 3 3 

Y33 0 3 3 2 1 2 0 0 0 0 0 

Risk 

Function 
0 0.008 0.019 0.032 0.042 0.059 0.069 0.082 0.121 0.242 0.326 

System 

Cost 
90 84.08 78.52 72.92 67.28 61.5 55.92 50.5 44.96 39.42 33.80 

 

Based on the solutions provided in Table 7.3, with the aspiration level increasing, the value of 

risk function is increased from 0 to 0.326 while the total system cost is decreased from its highest 

90 to its lowest 33.80. The relationship between the aspiration level, risk function and total 

system cost is plotted in Figure 7.2. A negative correlation between system cost and decision 

risk can be observed.  

 

 

Figure 7.2 Relationship between aspiration level, risk function and system cost 
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Figure 7.2 also indicates that a negative correlation exists between the system cost and the 

aspiration level. In the REILP formulation, the cost constraint is transformed from the original 

objective function (minimizing the total system cost), and is proportionally subject to the 

aspiration level in the REILP model, as given by:  

 

𝑓𝑜𝑝𝑡 = 𝑓𝑜𝑝𝑡
− + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )                                                                                                    (7.1) 

 

Also, their relationship is a nonlinear one, as indicated by: 

 

Min  

𝜉 = ∑
2

𝑏𝑖
++𝑏𝑖

−
𝑚
𝑖=1 [∑ 𝜆𝑖𝑗

𝑛
𝑗=1 (𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
− )𝑥𝑗 + 𝜂𝑖(𝑏𝑖

+ − 𝑏𝑖
−)]

+
2

𝑓𝑜𝑝𝑡
+ +𝑓𝑜𝑝𝑡

− [∑ 𝜆𝑗
𝑛
𝑗=1 (𝑐𝑗

+ − 𝑐𝑗
−)𝑥𝑗 + 𝜆0(𝑓𝑜𝑝𝑡

+ − 𝑓𝑜𝑝𝑡
− )]

                                                      (7.2) 

 

By using this new objective function (7.2) to replace the one in the REILP model (give the 

Model number here), while maintaining all the same constraints, the new REILP model can be 

formulated. Solving the model with the same set of aspiration levels, the new optimal solutions 

can be obtained. 

 

Figure 7.3 shows the LINGO solver info page for the new REILP model when the aspiration 

level is 1. In this new REILP model, there are a total of 112 decision variables while the number 

of constraints keeps unchanged.  
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Figure 7.3 A new LINGO solver status at 𝜆0= 1 

 

Table 7.4 presents the optimal solutions of the new REILP model under the aspiration levels 

ranging from 0 to 1 with the step increment of 0.1 

 

Table 7.4 New REILP optimal solutions under the same aspiration levels 

Aspiration 

Level 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X111 5 0 8 0 1 3 1 7 0 13 0 

X211 5 0 12 4 2 1 4 3 9 1 15 

X311 0 13 0 3 8 3 8 2 3 1 0 

X112 1 0 2 8 1 0 4 0 0 0 0 

X212 6 7 1 1 0 1 1 0 3 1 0 

X312 1 1 0 4 6 7 0 4 0 0 0 

X113 5 0 0 0 0 0 0 0 0 0 0 

X213 0 0 0 0 1 0 0 0 0 0 0 

X313 0 1 0 0 0 0 0 0 0 0 1 

X121 3 15 6 9 0 14 0 11 11 4 9 

X221 0 0 0 9 15 6 13 0 5 10 0 

X321 17 0 0 1 0 0 0 0 0 0 3 

X122 0 2 0 0 0 1 0 0 0 0 2 
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Aspiration 

Level 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X222 4 5 0 1 0 0 0 4 0 0 0 

X322 0 0 6 0 3 0 2 0 0 2 1 

X123 0 0 0 0 1 0 0 0 0 0 0 

X223 0 0 4 1 0 0 0 0 0 0 0 

X323 0 1 4 0 0 0 1 0 0 0 0 

Y11 3 2 3 3 4 0 3 3 0 3 3 

Y12 2 0 0 0 2 4 3 3 5 2 1 

Y13 1 4 3 3 1 2 0 0 0 0 0 

Y21 0 2 3 3 3 3 2 6 3 2 0 

Y22 1 0 3 1 3 2 4 1 3 1 3 

Y23 5 4 0 2 0 1 0 0 0 1 0 

Y31 2 3 3 3 2 3 3 3 2 0 2 

Y32 0 0 2 0 0 0 1 3 2 2 1 

Y33 4 3 1 3 4 3 2 0 1 1 0 

Risk 

Function 
0 0.091 0.182 0.272 0.363 0.454 0.545 0.636 0.727 0.818 0.909 

System 

Cost 
90 84.08 78.52 72.72 67.28 61.50 55.92 50.50 44.96 40.36 33.80 

 

As indicated in Table 7.4, the new REILP model has a risk function value range of [0, 0.909] 

while the former REILP model has a range of [0, 0.326]. It is apparent that, under the same 

aspiration level, the risk value of the new REILP model is higher than the former model. 

However, the total system cost is maintained in a similar range of [90, 33.8]. In addition, the 

allocation pattern of the truck resources has changed as well.  

 

The relationship between the aspiration level, the value of risk function and the total system cost 

for the new REILP model is plotted in Figure 7.4. In Figure 7.4, the total system cost and the 

value of risk function still have the obvious negative correlation. The correlations among the 

aspiration level, decision risk and system cost are found to be same between two REILP models.  
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Figure 7.4 Correlation among the aspiration level, risk function and system cost for the new 

REILP model 

 

Table 7.5 Distribution of allocation cost from the new REILP model 

  Truck Hauling Cost (unit) 

From Shovel 1 To Dump 1 To Dump 2 Waste Dumping 

240T Truck [0, 13] [0, 15] [0, 4] 

320T Truck [0, 10.67] [0, 2.67] [0, 6.67] 

360T Truck [0, 7.50] [0, 1.50] [0, 6] 

Total Cost (unit) [0, 31.17] [0, 19.17] [0, 16.67] 

From Shovel 2   

240T Truck [0, 15] [0, 15] [0, 6] 

320T Truck [0, 9.33] [0, 6.67] [0, 5.33] 

360T Truck [0, 1.50] [0, 6] [0, 7.50] 

Total Cost (unit) [0, 25.83] [0, 27.67] [0, 18.83] 

From Shovel 3   
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  Truck Hauling Cost (unit) 

 To Dump 1 To Dump 2 Waste Dumping 

From Shovel 3   

240T Truck [0, 13] [0, 17] [0, 3] 

320T Truck [0, 9.33] [0, 8] [0, 4] 

360T Truck [0, 1.50] [0, 6] [0, 6] 

Total Cost (unit) [0, 23.83] [0, 31] [0, 13] 

 

Table 7.5 presents the distribution of truck allocation costs for 240T, 320T and 360T trucks from 

each shovel site to each ore dumping site and waste dumping site. The cost values (unit) are 

formed based on the highest and the lowest values of each allocation pattern obtained from all 

of the event models under 11 degrees of aspiration levels from Table 7.4. Among all the costs, 

Shovel 2 contributes the most to the total waste hauling cost at the range of [0, 18.83]. 

Meanwhile, the value of ore hauling cost (unit) from Shovel Site 1 to Ore Dumping Site 1 

contributes more than hauling from other 2 shovel sites to the same ore dumping site. In addition, 

the value of ore hauling cost at Shovel Site 3 takes the dominant place among the total ore 

hauling costs from 3 shovel sites to Ore Dumping Site 2.  

 

 

Figure 7.5 Contribution of hauling cost based on new REILP model results 
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Figure 7.5 illustrates the contribution of ore/waste hauling cost (unit) from three shovel sites. It 

is obvious that the total waste hauling cost (unit) is always lower than the ore hauling costs (unit) 

among three shovel sites. 

 

 

Figure 7.6 Distribution of 240T, 320T and 360T truck hauling cost based on new REILP 

model results 

 

Distributions of 240T, 320T and 360T truck hauling cost based on new REILP optimal solutions 

from Table 7.4 are illustrated in Figure 7.6. In this figure, the blue bar represents the unit value 

of 240T hauling cost and the orange bar stands for the unit value of 320T truck hauling cost 

while the grey bar represents the unit value of 360T truck hauling cost. It can be observed that 

240T truck contributes the most at two ore dumping sites and waste dumping site. In the 

meantime, the total unit value of 360T truck hauling cost takes the lowest place among all of the 

hauling costs. 
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7.3 FREILP RESULTS UNDER DIFFERENT 𝜶-CUTS 

In this study, in order to represent the aspiration levels under conservative, medium and 

aggressive scenarios, three different 𝛼-cuts are selected, i.e., 𝛼-cut = 0.5, 𝛼-cut = 0.6 and 𝛼-cut 

= 0.7, respectively. Figure 7.7 provides an example on how to determine the interval aspiration 

levels for medium scenario under three selected α-cuts. For example, when 𝛼-cut = 0.5, the 

interval aspiration level is [0.35, 0.65]. Determination of the interval aspiration levels under 𝛼-

cut levels of 0.5, 0.6 and 0.7 for medium scenario is illustrated in Figure 7.7.  

 

Figure 7.7 Determination of the interval aspiration levels for medium scenario under α-cut 

levels of 0.5, 0.6 and 0.7 

 

7.3.1 Scenario 1: 𝜶-cut = 0.5 

Table 7.6 presents the optimal solutions of the FREILP model for α-cut = 0.5 in terms of risk 

function and total system cost (unit), ore hauling cost (unit) and waste hauling cost (unit) under 

conservative, medium and aggressive conditions. As shown in Table 7.6, when α-cut = 0.5, the 

corresponding conservative, medium and aggressive interval aspiration level values are [0.00, 

0.30], [0.35, 0.65] and [0.70, 1.00], respectively.  
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Under the conservative condition, the risk function is in the range of [0.000, 0.272], and its 

corresponding total system cost (unit) is in the range of [90.00, 72.72]. As the condition changes 

from ‘conservative’ to ‘medium’, the risk increase from [0.000, 0.272] to [0.318, 0.590], while 

the total system cost (unit) decreases from [90.00, 70.72] to [70.18, 53.44]. Furthermore, when 

the condition changes from ‘medium’ to ‘aggressive’, the value of risk continue to increase to a 

range of [0.636, 0.909], and the total system cost (unit) continues to decrease to [50.50, 33.80].  

 

Table 7.6 FREILP solution when 𝛼-cut = 0.5 

0.5-cut Conservative Medium Aggressive 

Aspiration Level [ 0.00, 0.30 ] [ 0.35, 0.65 ] [ 0.70. 1.00 ] 

Risk Function [0.000,0.272] [0.318, 0.590] [0.645, 0.909] 

Total System Cost (unit) [90.00, 72.72] [70.18, 53.44] [50.50, 33.80] 

Ore Hauling Cost (unit)   

240T Truck [30.00, 26.00] [27.00, 28.00] [28.00, 29.00] 

320T Truck [18.57, 21.10] [19.74, 4.91] [8.09, 0.00 ] 

360T Truck [ 7.50, 3.00 ] [ 0.00, 0.00 ] [ 0.00, 0.00 ] 

Waste Hauling Cost (unit)   

240T Truck [ 5.00, 9.00 ] [ 8.00, 7.00 ] [ 7.00, 3.00 ] 

320T Truck [13.93, 1.62] [ 4.94, 13.53] [7.41, 1.80 ] 

360T Truck [15.00, 12.00]  [10.50, 0.00]  [ 0.00, 0.00 ] 

 

7.3.2 Scenario 2: 𝜶-cut = 0.6 

Table 7.7 illustrates the optimal solutions when 𝛼-cut = 0.6 in terms of risk function, ore hauling 

cost (unit), waste hauling cost (unit) and total allocation system cost (unit) under conservative, 

medium and aggressive situations, respectively. In this table, when 𝛼 -cut = 0.6, the 

corresponding conservative, medium and aggressive interval aspiration levels are [0.00, 0.29], 

[0.36, 0.65] and [0.71, 1.00], respectively. 

 

Comparing to the results in Table 7.6 (when 𝛼-cut = 0.5), the current value of risk function 

changes to the range of [0.000, 0.263] while its total system cost changes to the range of [90.00, 
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73.46]. Meanwhile, for the medium condition, the value of risk function increases from [0.000, 

0.263] under conservative condition to [0.327, 0.590], while its total system cost (unit) decreases 

from [90.00, 73.46] to [69.75, 53.44]. In addition, when the condition changes from ‘medium’ 

to ‘aggressive’, the value of risk function increases to the range of [0.645, 0.909], which achieves 

the highest value range of risk function among conservative, medium and aggressive conditions. 

In the meantime, the total system cost (unit) decreases to its lowest range of [50.08, 33.80] 

comparing to the conservative and medium conditions. 

 

Table 7.7 FREILP solution when 𝛼-cut = 0.6 

0.6-cut Conservative Medium Aggressive 

Aspiration Level [ 0.00, 0.29 ] [ 0.36, 0.65 ] [ 0.71, 1.00 ] 

Risk Function [0.000, 0.263] [0.327, 0.590] [0.645, 0.909] 

Total System Cost (unit) [90.00, 73.46] [69.75, 53.44] [50.08, 33.80] 

Ore Hauling Cost (unit)   

240T Truck [30.00, 26.00] [27.00, 28.00] [28.00, 29.00] 

320T Truck [18.57, 21.78] [19.40, 4.92] [ 7.87, 0.00 ] 

360T Truck [ 7.50, 3.00 ] [ 0.00, 0.00 ] [ 0.00, 0.00 ] 

Waste Hauling Cost (unit)   

240T Truck [ 5.00, 9.00 ] [ 8.00, 7.00 ] [ 7.00, 3.00 ] 

320T Truck [ 13.93, 1.68 ] [ 4.85, 13.52] [ 7.21, 1.80 ] 

360T Truck [15.00, 12.00 ]  [ 10.50, 0.00 ]  [ 0.00, 0.00 ] 

 

7.3.3 Scenario 3: 𝜶-cut = 0.7 

When 𝛼-cut is selected as 0.7, the corresponding optimal solutions will be changed. Table 7.8 

presents the optimal solutions at the stage of 𝛼-cut = 0.7 in terms of the value of risk function, 

ore hauling cost (unit), waste hauling cost (unit) and total system cost (unit) under conservative, 

medium and aggressive conditions. As shown in Table 7.8, when 𝛼-cut = 0.7, the aspiration are 

[0.00, 0.28], [0.35, 0.64] and [0.72, 1.00] under conservative, medium and aggressive 

conditions.  
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Under current conservative condition, the value of the risk function is in the range of [0.000, 

0.254], while its corresponding total system cost (unit) is in the range of [90.00, 73.96]. 

However, when the condition changes from ‘conservative’ to ‘medium’, the inverter value of 

risk function changes from [0.00, 0.254] to [0.315, 0.581], while the unit value of total system 

cost decreases from [90.00, 73.96] to [70.18, 53.64]. Moreover, when the condition changes 

from ‘medium’ to ‘aggressive’, the value of risk function continues to increase to the range of 

[0.654, 0.909], while the unit value of total system cost continues to decrease to a lower range 

of [49.39, 33.80].  

 

Table 7.8 FREILP solution when 𝛼-cut = 0.7 

0.7-cut Conservative Medium Aggressive 

Aspiration Level [ 0.00, 0.28 ] [ 0.35, 0.64 ] [ 0.72. 1.00 ] 

Risk Function [ 0.00,0.254] [0.318, 0.581] [0.654, 0.909] 

Total System Cost (unit) [90.00, 73.96] [70.18, 53.64] [49.39, 33.80] 

Ore Hauling Cost (unit)   

240T Truck [30.00, 26.00] [27.00, 28.00] [28.00, 29.00] 

320T Truck [18.57, 26.89] [22.54, 4.97] [ 7.51, 0.00 ] 

360T Truck [ 5.00, 2.00 ] [ 0.00, 0.00 ] [ 0.00, 0.00 ] 

Waste Hauling Cost (unit)   

240T Truck [ 5.00, 9.00 ] [ 8.00, 7.00 ] [ 7.00, 3.00 ] 

320T Truck [ 13.93, 2.07 ] [ 5.64, 13.67] [ 6.88, 1.80 ] 

360T Truck [10.00, 8.00 ]  [ 7.00, 0.00 ]  [ 0.00, 0.00 ] 

 

7.4 DISCUSSION 

Based on Table 7.7, the optimal solutions at 𝛼-cut = 0.6 will be used for further result discussion 

and analysis in this section.  

 

Table 7.9 provides the detailed truck allocation scheme for conservative, medium and aggressive 

conditions under 0.6-cut. As the condition changes from ‘conservative’ to ‘aggressive’, the unit 

value of total system cost decreases gradually from the range of [90.00, 73.46] to [50.08, 33.80], 
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while the value of risk function increases from the interval value of [0.000, 0.263] to [0.645, 

0.909]. Meanwhile, it is indicated that the unit value of total system cost is in the range of [69.75, 

53.44] while the corresponding value of risk function is in the range of [0.327, 0590]. 

 

Table 7.9 Truck allocation solutions under 0.6-cut 

0.6-cut Conservative Medium Aggressive 

Aspiration Level 0 0.29 0.36 0.65 0.71 1 

X111 5 1 9 13 3 0 

X211 5 1 0 1 0 15 

X311 0 1 0 1 13 0 

X112 1 6 2 1 0 0 

X212 6 0 2 0 0 0 

X312 1 3 3 0 0 0 

X113 5 0 1 0 0 0 

X213 0 0 0 0 0 0 

X313 0 6 1 0 0 1 

X121 3 10 4 0 10 9 

X221 0 14 9 0 0 0 

X321 17 0 5 9 0 3 

X122 0 0 1 0 4 2 

X222 4 0 3 7 3 0 

X322 0 0 0 0 0 1 

X123 0 0 0 2 0 0 

X223 0 0 0 0 0 0 

X323 0 0 1 0 0 0 

Y11 3 1 3 3 3 3 

Y12 2 0 2 1 3 1 

Y13 1 5 1 2 0 0 

Y21 0 2 2 3 3 0 

Y22 1 4 1 3 3 3 

Y23 5 0 3 0 0 0 

Y31 2 3 3 3 3 2 

Y32 0 2 1 3 2 1 

Y33 4 1 2 0 1 0 

Risk Function 0.000 0.263 0.327 0.590 0.645 0.909 
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0.6-cut Conservative Medium Aggressive 

Aspiration Level 0 0.29 0.36 0.65 0.71 1 

Total System 

Cost  

(unit value) 

90.00 73.46 69.75 53.44 50.08 33.80 

 

Table 7.10 presents different truck hauling costs in terms of their lower and upper levels under 

conservative, medium and aggressive conditions. As indicated in this table, for ore hauling, the 

unit value of total system cost of 240T truck takes the dominant place among the other total 

hauling costs, while the unit value of total system cost of 320T truck takes the second place. 

However, for waste hauling, the unit value of total system cost of 320T truck contributes the 

most than the other two types of trucks, while the unit value of total system cost of 240T truck 

contributes the least. 

 

Table 7.10 Truck hauling costs under 0.6-cut 

0.6-cut Conservative Medium Aggressive 

  
Lower 

Level 

Upper 

Level 

Lower 

Level 

Upper 

Level 

Lower 

Level 

Upper 

Level 

Ore Hauling Cost (unit value) 

240T Truck 30.00 26.00 27.00 28.00 28.00 29.00 

320T Truck 18.57 21.78 19.40 4.92 7.87 0.00 

360T Truck 7.50 3.00 0.00 0.00 0.00 0.00 

Waste Hauling Cost (unit value) 

240T Truck 5.00 9.00 8.00 7.00 7.00 3.00 

320T Truck 13.93 1.68 4.85 13.52 7.21 1.80 

360T Truck 15.00 12.00 10.50 0.00 0.00 0.00 

Total System 

Cost  

(unit value) 

90.00 73.46 69.75 53.44 50.08 33.80 

Risk 

Function 
0.00 0.26 0.33 0.59 0.65 0.91 
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7.4.1 Conservative Risk Decision Support 

If the decision maker chooses the conservative decision, the ore/waste truck allocation schemes 

based on the lower and upper level values from Table 7.9 are shown in Table 7.11 and Figure 

7.8. Generally, all of the trucks are allocated more to ore hauling than waste hauling. In Figure 

7.8, it is illustrated that 240T trucks are relatively used more than 320T and 360T trucks for both 

of ore hauling and waste hauling purposes. In addition, only 5 360T trucks are used for ore 

hauling under this conservative decision making condition.  

 

In Table 7.11, the unit value of total system cost achieves its highest value at 90 under the lower 

level of aspiration value (aspiration level = 0), while the corresponding value of risk function 

reaches its lowest at 0. Therefore, it is the most conservative solution with no risk for the decision 

maker for this project. Meanwhile, when aspiration = 0.29, the unit value of total system cost is 

73.46 and its corresponding value of risk function is 0.263. 

 

Table 7.11 Ore/waste truck allocation scheme under conservative condition 

Conservative 

Condition  
Aspiration Level = 0 Aspiration Level = 0.29 

X111 5 1 

X211 5 1 

X311 0 1 

X112 1 6 

X212 6 0 

X312 1 3 

X113 5 0 

X213 0 0 

X313 0 6 

X121 3 10 

X221 0 14 

X321 17 0 

X122 0 0 

X222 4 0 

X322 0 0 

X123 0 0 

X223 0 0 
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Conservative 

Condition  
Aspiration Level = 0 Aspiration Level = 0.29 

X323 0 0 

Y11 3 1 

Y12 2 0 

Y13 1 5 

Y21 0 2 

Y22 1 4 

Y23 5 0 

Y31 2 3 

Y32 0 2 

Y33 4 1 

Risk Function 0.000 0.263 

System Cost 90.00 73.46 

 

 

 

Figure 7.8 Ore/waste truck allocation scheme under conservative condition 
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Table 7.12 provides the detailed ore/waste truck hauling costs in terms of 240T, 320T and 360T 

truck categories. It is shown that the unit value of total system cost is in the range of [90.00, 

73.46], while its corresponding interval value of risk function is in the range of [0.000, 0.263]. 

However, for ore hauling, the unit value of total hauling cost of 240T truck is in the range of 

[30.00, 26.00], while the unit value of total hauling cost of 320T is in the range of [18.57, 21.78] 

and the total hauling cost of 360T truck is in the interval value of [7.50, 3.00]. On the other hand, 

for waste hauling, the unit value of total hauling cost of 240T truck is in the range of [5.00, 9.00] 

and the one of 320T truck is in the range of [13.93, 1.68]. Meanwhile, the unit value of total 

hauling cost of 360T truck is in the range of [15.00, 12.00].  

 

Table 7.12 Ore/waste truck hauling costs under conservative condition 

0.6-cut Conservative Condition 

  Aspiration Level = 0 Aspiration Level = 0.29 

Ore Hauling Cost (unit value) 

240T Truck 30.00 26.00 

320T Truck 18.57 21.78 

360T Truck 7.50 3.00 

Waste Hauling Cost (unit value) 

240T Truck 5.00 9.00 

320T Truck 13.93 1.68 

360T Truck 15.00 12.00 

Total System Cost  

(unit value) 
90.00 73.46 

Risk Function 0.000 0.263 

 

The ore/waste hauling costs are presented in Figure 7.9 in terms of 240T, 320T and 360T truck 

categories under conservative decision making condition. In this figure, the blue bar represents 

the conservative condition when aspiration level = 0, while the orange bar represents the 

conservative condition when aspiration level = 0.29. As illustrated in Figure 7.9, the total unit 

value of ore hauling cost is higher than waste hauling cost. Moreover, it is shown obviously that 

the unit value of total system cost under aspiration level = 0 is higher than the total system cost 
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under aspiration level = 0.29. Therefore, it will cost more if the decision maker chooses the zero 

risk condition (which aspiration level = 0).  

 

 

Figure 7.9 Total ore/waste hauling costs under conservative condition 
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Table 7.13 Ore/waste truck allocation scheme under medium condition 

  Aspiration Level = 0.36 Aspiration Level = 0.65 

X111 9 13 

X211 0 1 

X311 0 1 

X112 2 1 

X212 2 0 

X312 3 0 

X113 1 0 

X213 0 0 

X313 1 0 

X121 4 0 

X221 9 0 

X321 5 9 

X122 1 0 

X222 3 7 

X322 0 0 

X123 0 2 

X223 0 0 

X323 1 0 

Y11 3 3 

Y12 2 1 

Y13 1 2 

Y21 2 3 

Y22 1 3 

Y23 3 0 

Y31 3 3 

Y32 1 3 

Y33 2 0 

Risk Function 0.327 0.590 

System Cost 69.75 53.44 
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Figure 7.10 Ore/waste truck allocation scheme under medium condition 
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Table 7.14 Ore/waste truck hauling costs under medium condition 

0.6-cut Medium Condition 

  Aspiration Level = 0.36 Aspiration Level = 0.65 

Ore Hauling Cost (unit value) 

240T Truck 27.00 28.00 

320T Truck 19.40 4.92 

360T Truck 0.00 0.00 

Waste Hauling Cost (unit value) 

240T Truck 8.00 7.00 

320T Truck 4.85 13.52 

360T Truck 10.50 0.00 

Total System Cost  

(unit value) 
69.75 53.44 

Risk Function 0.327 0.590 

 

Figure 7.11 provides the ore/waste hauling costs in terms of 240T, 320T and 360T truck 

categories under medium decision making condition. In this figure, the blue bar represents the 

medium condition when aspiration level = 0.36, while the orange bar represents the medium 

condition when aspiration level = 0.65. As shown in Figure 7.11, the total unit value of ore 

hauling cost is still higher than waste hauling cost. Moreover, the unit value of total ore hauling 

cost of 240T truck contributes the most comparing to 320T and 360T trucks. Meanwhile, when 

aspiration level = 0.36, the unit value of total system cost is higher than the one at the aspiration 

level of 0.65 under medium decision making condition. 
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Figure 7.11 Total ore/waste hauling costs under medium condition 
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Table 7.15 Ore/waste truck allocation scheme under aggressive condition  

  Aspiration Level = 0.71 Aspiration Level = 1 

X111 3 0 

X211 0 15 

X311 13 0 

X112 0 0 

X212 0 0 

X312 0 0 

X113 0 0 

X213 0 0 

X313 0 1 

X121 10 9 

X221 0 0 

X321 0 3 

X122 4 2 

X222 3 0 

X322 0 1 

X123 0 0 

X223 0 0 

X323 0 0 

Y11 3 3 

Y12 3 1 

Y13 0 0 

Y21 3 0 

Y22 3 3 

Y23 0 0 

Y31 3 2 

Y32 2 1 

Y33 1 0 

Risk Function 0.645 0.909 

System Cost 50.08 33.80 
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Figure 7.12 Ore/waste truck allocation scheme under aggressive condition 
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Furthermore, for waste hauling, the unit value of total hauling cost of 240T truck is in the range 

of [7.00, 3.00] and the one of 320T truck is in the range of [7.21, 1.80]. However, there is also 

no 360T truck used for waste hauling under aggressive decision making condition. 

 

Table 7.16 Ore/waste truck hauling costs under aggressive condition 

0.6-cut Aggressive Condition 

  Aspiration Level = 0.71 Aspiration Level = 1.00 

Ore Hauling Cost (unit value) 

240T Truck 28.00 29.00 

320T Truck 7.87 0.00 

360T Truck 0.00 0.00 

Waste Hauling Cost (unit value) 

240T Truck 7.00 3.00 

320T Truck 7.21 1.80 

360T Truck 0.00 0.00 

Total System Cost  

(unit value) 
50.08 33.80 

Risk Function 0.645 0.909 

 

Figure 7.13 illustrates the ore/waste hauling costs in terms of 240T, 320T and 360T truck 

categories under aggressive decision making condition. In this figure, the blue bar represents the 

aggressive condition when aspiration level = 0.71, while the orange bar represents the aggressive 

condition when aspiration level = 1.00. As illustrated in Figure 7.13, the total unit value of ore 

hauling cost continues being higher than the waste hauling cost. It is apparent that the unit value 

of total hauling cost of 240T truck contributes the most on both of ore hauling and waste hauling 

purposes among three types of trucks. Moreover, when aspiration level = 1.00, the unit value of 

total system cost achieves its lowest at 33.80. Hence, the decision maker can choose the least 

cost when the aspiration level = 1.00 under aggressive decision making condition. However, its 

corresponding value of risk function achieves the highest at 0.909. 
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Figure 7.13 Total ore/waste hauling costs under aggressive condition 
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medium and aggressive conditions, respectively. In the meantime, the unit values of total system 

cost are 61.388 for medium condition and 43.868 for aggressive condition.  

 

Table 7.17 Comparison of three allocation schemes 

0.6-cut Conservative Medium Aggressive 

Aspiration Level 0.145 0.505 0.855 

X111 0 0 6 

X211 18 5 7 

X311 1 2 0 

X112 0 1 0 

X212 0 5 0 

X312 1 0 0 

X113 3 0 0 

X213 0 0 0 

X313 2 0 1 

X121 13 17 6 

X221 0 3 3 

X321 0 0 3 

X122 0 0 3 

X222 0 1 0 

X322 9 1 0 

X123 0 0 0 

X223 0 0 0 

X323 0 1 0 

Y11 0 3 5 

Y12 0 3 0 

Y13 6 0 0 

Y21 1 2 0 

Y22 5 1 4 

Y23 0 3 0 

Y31 2 3 0 

Y32 0 1 2 

Y33 4 2 0 

Risk Function 0.132 0.459 0.777 

Total System Cost 

(unit value) 
83.146 61.388 43.868 
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Figure 7.14 illustrates the ore/waste allocation scheme comparison. In this figure, blue bar 

represents the conservative condition, while orange bar represents the medium condition and the 

grey bar represents the aggressive condition. It is shown that the allocated number of trucks 

under conservative condition are more than medium and aggressive conditions. In the meantime, 

the allocated number of trucks under aggressive condition is the lowest among three decision 

making conditions. Furthermore, the comparisons of ore/waste truck allocation features and 

patterns are illustrated in Table 7.18 and Figure 7.15. 

 

In Figure 7.15, it is apparent that the 240T truck takes the dominant place on ore/waste allocation 

patterns, especially on ore hauling. Meanwhile, 360T trucks are used the least for ore hauling 

purpose.  

 

 

Figure 7.14 Ore/waste truck allocation scheme comparison 
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Table 7.18 Ore/waste truck allocation feature comparison 

0.6-cut Conservative Medium Aggressive 

Ore Hauling Number of allocated trucks 

240T Truck 32 27 25 

320T Truck 10 8 3 

360T Truck 5 1 1 

Waste Hauling Number of allocated trucks 

240T Truck 3 8 5 

320T Truck 5 5 6 

360T Truck 10 5 0 

Total System Cost  

(unit value) 
83.146 61.388 43.868 

Risk Function 0.132 0.459 0.777 

 

 

Figure 7.15 Ore/waste truck allocation pattern comparison 
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Table 7.19 presents the comparison of ore/waste hauling costs in terms of 240T, 320T and 

360T truck categories.  

 

Table 7.19 Ore/waste hauling costs comparison 

  Conservative Medium Aggressive 

Ore Hauling Cost (unit value) 

240T Truck 32 27 25 

320T Truck 13.33 10.64 4 

360T Truck 7.5 1.5 1.5 

Waste Hauling Cost (unit value) 

240T Truck 3 8 5 

320T Truck 6.67 6.67 7.98 

360T Truck 15 7.5 0 

Total System Cost  

(unit value) 
83.146 61.31 43.48 

Risk Function 0.132 0.459 0.777 

 

Figure 7.16 illustrates the comparison of ore/waste hauling costs. As shown in this figure, it is 

obviously observed that the unit value of total system cost under aggressive condition is the 

lowest at 43.48 comparing to the unit value of 83.146 under conservative condition and the unit 

value of 61.31 under medium condition. It is because the aggressive condition assumes the total 

ore and waste required amount to be at a relative lower level, so that the lower hauling cost can 

be achieved. The aggressive solution is attractive for the decision maker or the stakeholder from 

the economical opinion. However, this decision condition comes along with the relatively higher 

risk of violating the constraints, which means it cannot guarantee the required hauling amount 

is always under the lower level. Once the required hauling amount happens to be higher than the 

assumption, then the solution under this aggressive condition will fail to satisfy the real need. 

Hence, the value of risk function is relatively higher under the aggressive condition than the 

conservative and medium conditions. On the other hand, the value of risk function under the 

conservative condition is the lowest at 43.48 among three conditions. However, as presented in 

Figure 7.16, the conservative condition requires the highest total system cost. 
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Figure 7.16 Ore/waste hauling costs comparison 

 

Figure 7.17 presents the tradeoff between the values of risk function and the unit values of total 

system cost. In general, the conservative decision support requires the higher unit value of total 

system cost and assumes the higher required ore/waste hauling amount at a lower risk of 

violating the constraints. In the meantime, the aggressive decision support results in the lower 

unit value of total system cost with the assumption of the relatively lower required ore/waste 

hauling amount, while its corresponding risk level of violating the constraints is higher than the 

other two conditions. However, the medium decision support is always in between. Each of these 

conditions is not superior to the others. Therefore, the decision maker or the stakeholder should 

select the decision making condition based on their preferences or needs for Yalong surface 

mining project. 
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Figure 7.17 Trade-off between risk functions and total allocation costs  
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CHAPTER 8 CONCLUSIONS 

 

8.1 SUMMARY 

In this study, a fuzzy risk explicit interval linear programming method is proposed and applied 

to the optimal management and allocation of hauling truck resources for Yalong mining project 

in China. The approach can provide a practical decision support through reflecting the tradeoff 

between system benefits and decision risks. From this study, some conclusions could be 

summarized as follows:  

 

(1) Monte Carlo simulation algorithm, two-step algorithm and BWC algorithm have been 

widely used to solve the ILP problems in the past. Among them, Monte Carlo simulation 

algorithm has the extensive computing requirement and it is not applicable for most practical 

cases. The other two algorithms have its fundamental flaws in its solution process. In this 

study, the validity checking for both of BWC and two-step algorithms was conducted by 

using a numerical example, and the results indicate that both algorithms could produce either 

infeasible or non-optimal solutions. It is thus recommended that decision risks associated 

with the model results have to be examined if the algorithms have to be used before their 

theoretical flaws are fixed.  

 

(2) Problem and examples of REILP approach are examined in this study. Generally, the 

tradeoff between the total system cost and the decision risk is provided by REILP approach 

to assist the decision maker to select a crisp decision solution. For this approach, the risk 

function is defined to find the optimal solutions under the minimum decision risk condition. 

The minimization or maximization objective function of the original ILP model was 

converted to a constraint in order to keep the system balanced at its desire. Furthermore, 

considering the potential hardness of crisp decision making, a FREILP model was developed 

in this study. 
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(3) As further development of REILP approach, the FREILP model was developed by 

restructuring the model formulation and introducing the fuzzy theory to the selected 

aspiration levels in this study. Comparing to the REILP model, FREILP model is able to 

offer more practical and reliable decision suggestions. The advantage of this approach is that 

the optimal solutions associated with their corresponding decision risks can be incorporated 

in the decision making process. In addition, for those decision makers who cannot define the 

crisp aspiration value, the FREILP model can provide the decision assistance under 

conservative, medium and aggressive decision making conditions. 

 

(4)  The FREILP model was implemented to the truck allocation planning system of Yalong 

surface mining project in Guizhou, China. The classic ILP model was firstly applied to 

minimize the total system cost, including the ore hauling cost and waste hauling cost. It was 

achieved by setting the allocated ore/waste hauling trucks as variables with the related 

constraints of ore/waste production amount, required ore/waste hauling amount, truck cycle 

time and truck resources limitations. Then the original ILP model was transformed to the 

REILP model. Meanwhile, the original minimization objective function was transformed to 

risk minimization function, while the aspiration levels playing the dominant roles in the 

REILP model. 11 solutions are generated from the event model under 11 pre-set aspiration 

levels in the range of [0, 1] with the step increase of 0.1. The REILP solutions provide 

specific decision making support for the people who already have a desired aspiration level 

preference. In the meantime, FREILP provides the decision making support under 

conservative, medium and aggressive situations, which is benefit for the people who fail to 

select a crisp aspiration level. 

 

(5) In this study, the FREILP model provides the decision supports under conservative, medium 

and aggressive conditions. Under the conservative condition, the unit value of total system 

cost of Yalong truck allocation system is in the range of [90.00, 73.46] with the 

corresponding risk value range of [0.00, 0.26]. Under the medium condition, the unit value 

of total system cost is in the range of [69.75, 53.44], while the interval value of risk function 

is [0.33, 0.59]. In the meantime, for the aggressive condition, the unit value of total system 
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cost is evaluated as in the range of [50.08, 33.80] and its value of risk function is in the range 

of [0.65, 0.91].  

 

(6) This study represents that the FREILP model can provide optimal solutions, which can 

perfectly reflect the tradeoff between the total system cost and the decision risk. Moreover, 

the decision makers are able to make more reliable decisions based on the tradeoff 

relationship analysis generated by the FREILP approach. 

 

8.2 RESEARCH ACHIEVEMENTS 

This study is the first attempt at implementing the REILP and FREILP approach into a practical 

truck allocation system of a surface mining project. In the meantime, the research experience 

and knowledge gained from this study become the valuable support for the other research studies 

or the other practical applications. Moreover, the solutions obtained from this study can also be 

used by the decision makers or the shareholders for truck allocation system of Yalong surface 

mining project in Guizhou, China. 

 

8.3 RECOMMENDATION FOR FUTURE RESEARCH 

In this study, the original objective function of its ILP model is to minimize the total truck 

hauling costs while satisfying the ore/waste desire. In order to improve the critical parameter 

accuracy, many other factors can be considered for the model constraints (i.e. local weather 

characters, different road conditions or even using the truck haul load data accessed from local 

ore/waste truck hauling database). However, due to failed to proceed with local ore/waste truck 

hauling road conditions, the yearly ore/waste truck hauling records collected from Yalong sub-

project are used in this study. If more updated and comprehensive data can be used, more 

accurate the model will achieve.  

 

By implementing the REILP and FREILP models for minimizing the allocated truck hauling 

cost in this study, the generated solutions from either REILP or FREILP are more effective and 

practical. However, these solutions failed to contain the entire solution space for its original ILP 
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model. It indicates some of the optimal solutions might be missed during this improvement. 

Hence, a further and more comprehensive method is recommended for researching the ILP and 

REILP models. 

 

In the meantime, the REILP and FREILP methods could be widely introduced to any other areas 

regarding the decision making needs. For example, property investing management or stock 

trading management. 
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