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Abstract

A dominating set S of a graph G of order n is a subset of the vertices of G such that

every vertex is either in S or adjacent to a vertex of S. The domination number G,

denoted γ(G), is the cardinality of the smallest dominating set of G. The domination

polynomial is defined by D(G, x) =
∑n

γ(G) = d(G, i)xi where d(G, i) is the number

of dominating sets in G with cardinality i. Two graphs G and H are considered D-

equivalent if D(G, x) = D(H, x). The equivalence class of G, denoted [G], is the set of

all graphs D-equivalent to G. We provide some results on constructing D-equivalent

graphs as well as determine [Pn]. We also explore some bounds on the coefficients of

D(G, x) for a given graph, and for some families of graphs. We conclude with a few

open problems and possible research directions.
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Chapter 1

Introduction

1.1 Definitions

A graph G = (V,E) is a set of vertices V (G) together with an edge set E(G) of

unordered pairs of vertices. The cardinality of the vertex set V (G) is referred to as

the order of G. Two vertices u, v ∈ V (G) are said to be adjacent if there exists an

edge e ∈ E(G) with e = {u, v}. Furthermore, in such a case u and v are incident

with e (e is incident with u and v). It is common for edge {u, v} to be denoted uv.

The degree of vertex v ∈ V (G) is the number of edges incident with v, which is the

same as the number of vertices adjacent to v. We denote the degree of v as deg(v).

The maximum and minimum degree of any vertex in G are denoted Δ(G) and δ(G)

respectively. If Δ(G) = δ(G) = k we say the graph is k−regular.

The set of vertices NG(v) = {u|uv ∈ E(G)} is called the open neighbourhood

of v. Similarly NG[v] = N(v)
⋃{v} is called the closed neighbourhood of v. It is

common for the subscript G to be omitted from the notation when only referring to

one graph. For S ⊆ V (G), the closed neighbourhood N [S] of S is simply the union

of the closed neighbourhoods for each vertex in S. For vertices u, v ∈ V (G), if v has

degree 1 and N(v) = {u} then we refer to v as a leaf vertex and u as a stem vertex.

If deg(v) = 0 then v is called isolated. The complement of a graph G, denoted

Ḡ, has V (Ḡ) = V (G) and E(Ḡ) = {uv|u �= v and uv /∈ E(G)}.
A spanning subgraph H of G is a graph with V (H) = V (G) and E(H) ⊆ E(G).

An induced subgraph H of G is a copy of G with some vertices removed. That is,

V (H) ⊆ V (G) and E(H) = {uv|uv ∈ G and u, v ∈ V (H)}. When a vertex is removed

from a graph it is assumed each edge incident with said vertex is also removed. If an

induced subgraph is complete, then we call it a clique. A subgraph H of G is an

induced subgraph of a spanning subgraph of G. For a subset of vertices S ⊆ V (G)

we refer to V (H) ∩ S as the vertices of S restricted to H.

The join of two disjoint graphs G1 and G2 is denoted G1 ∨ G2, with vertex set

1
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V (G1) ∪ V (G2), and edge set E(G1 ∨ G2) = E(G1)
⋃

E(G2) ∪ {uv|u ∈ V (G1), v ∈
V (G2)}. The corona of two disjoint graphs G1 and G2, as defined by Frucht and

Harary in [16] and denoted G1 ◦ G2, is one copy of G1 and |V (G1)| copies of G2

where each vertex of G1 is joined to every vertex in a unique copy of G2. The

Cartesian product of two disjoint graphs G1 and G2 is denoted G1�G2, with vertex

set V (G1�G2) = {(u, v)|u ∈ V1, u ∈ V2} and (u, v) is adjacent to (u′, v′) if either

u = u′ and vv′ ∈ E(V2) or v = v′ and uu′ ∈ E(V2). The disjoint union of G and H,

denoted G ∪H, has vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

There are many families of graphs we will discuss in this thesis. The following are

common families of graphs on a given labelled vertex set of n vertices, V = {vi|1 ≤
i ≤ n}.

• A complete graph denoted Kn has edge set E(Kn) = {vivj|vi, vj ∈ V, vi �= vj}.
Examples of K5, K6, and K8 are in Figure 1.1.

(a) K5 (b) K6 (c) K8

Figure 1.1: Examples of complete graphs

• The empty graph on n vertices is the complement of Kn, denoted Kn. It has

edge set E(Kn) = ∅. Examples of K5, K6, and K8 are in Figure 1.2.

(a) K5 (b) K6 (c) K8

Figure 1.2: Examples of empty graphs

• A path graph, denoted Pn, has edges set E(Pn) = {vivi+1|1 ≤ i ≤ n− 1}. The
length of a path is the cardinality of its edge set. Examples of P3, P5, and P6

are in Figure 1.3.
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(a) P3 (b) P5 (c) P6

Figure 1.3: Examples of path graphs

• A cycle graph (or n-cycle), denoted Cn, has edges set E(Cn) = {vivi+1|1 ≤ i ≤
n− 1} ∪ {v1vn}. Examples of C3, C5, and C6 are in Figure 1.4. Note C3 is also

a complete graph on three vertices.

(a) C3 (b) C5 (c) C6

Figure 1.4: Examples of cycle graphs

• A wheel graph, denoted Wn, is the join of K1 and Cn−1. Examples of W4, W6,

and W7 are in Figure 1.5. Note W4 is also a complete graph on four vertices.

(a) W4 (b) W6 (c) W7

Figure 1.5: Examples of Wheel graphs

A complete multipartite graph, denoted Kn1,n2,...,nk
, has vertex set {vi,j|1 ≤

i ≤ k, 1 ≤ j ≤ nk} where vi,j and vk,l are adjacent if i �= k. Equivalently the vertices

of the k-partite graph Kn1,n2,...,nk
are partitioned into to k sets of size n1, n2, ..., nk

respectively and edges are added between each pair of vertices except pairs of vertices

in the same set. A complete multipartite graph with only two partitions is called

complete bipartite. A star graph, denoted K1,n, is a special case of a complete

bipartite graphs where one of the two partitions has exactly one vertex. An example

of each is shown in Figure 1.6
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(a) K1,2,2,4 (b) K4,4 (c) K1,7

Figure 1.6: Examples of complete multipartite graphs

1.2 Overview

Domination and graph polynomials are each areas of graph theory with extensive

research. A 1991 bibliography on domination in graphs [17] by Hedetniemi and Laskar

traced domination back to the graph theory texts of König (1950), Berge (1958) and

Ore (1962). Graph polynomials have also been of interest since 1912 when Birkhoff

first defined the chromatic polynomial [15] in an attempt to prove the Four Colour

Conjecture.

Although domination and graph polynomials have been areas of interest for quite

some time, the domination polynomial was only introduced by Arocha and Llano in

their 2000 paper [14]. In fact no other papers were published until 2008 when a seem-

ingly independent work [8] was published by Alikhani and Peng. Results that have

been of interest for the domination polynomial include computing the domination

polynomial for families and products of graphs, finding recurrence relations, locat-

ing the roots, and finding the domination equivalence classes of families of graphs.

The reader is directed to Alikhani’s 2009 Ph.D. thesis [4] which is the culmination of

six fundamental papers [2, 5, 8–10, 12] covering each area of domination polynomials

studied today.



Chapter 2

Domination and the Domination Polynomial

In this chapter we introduce the domination polynomial and give an overview of previ-

ous results we will be using in later sections. In Section 2.1 we define dominating sets

and the domination polynomial. In Section 2.2 we examine some general properties

about the domination polynomial. In Section 2.3 we state some known recurrence

relations and compute domination polynomials for particular families of graphs. In

Section 2.4 we introduce domination equivalence and domination uniqueness. We also

state some families of graphs which are known to have these properties.

2.1 Domination and the Domination Polynomial

For a graph G, S ⊆ V (G) is a dominating set of G if N [S] = V (G). That is to

say, if S is a dominating set, then for each v ∈ V (G), either v ∈ S or there exists

u ∈ S which is adjacent to v. The domination number of G, denoted γ(G) is

the cardinality of the smallest dominating set of G. A dominating with cardinality

γ(G) is called a minimum dominating set. For a subgraph H we say a set A of G

dominates H if V (H) ⊆ N [A].

For example, consider the graph G in Figure 2.1, and a subset of its vertices, S =

{v1, v2, v5, v7}. As v1, v2, v5, v7 ∈ S and v3, v4, v6 ∈ N [v7], S is a dominating set. Al-

ternatively, N [v1] = {v1, v2, v3}, N [v2] = {v1, v2, v4, v7}, N [v5] = {v4, v5, v6}, N [v7] =

{v2, v3, v4, v6}. So N [S] = N [v1] ∪N [v2] ∪N [v5] ∪N [v7] = {v1, v2, v3, v4, v5, v6, v7} =

V (G). S is not a minimum dominating set as {v2, v6} is also a dominating set. The

domination number of G is 2 as we have a dominating set of cardinality 2 and there

is no vertex in G which is adjacent to all other vertices, and hence no dominating set

of cardinality one.

As demonstrated in our previous example, a graph can have multiple dominating

sets. Another example of a graph with multiple dominating sets is Kn (n ≥ 2), as

5
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v1

v2

v3

v4

v5

v6

v7

Figure 2.1: An graph on seven vertices

every non-empty subset of vertices is a dominating set. This leads us to our definition

of the domination polynomial.

Definition 2.1.1 Let D(G, i) be the collection of dominating sets of a graph G, each

with cardinality i, and let d(G, i) = |D(G, i)|. Then the domination polynomial

D(G, x) of G is defined as

D(G, x) =

|V (G)|∑
i=γ(G)

d(G, i)xi

where γ(G) is the domination number of G.

Consider every subset of vertices for the path of length three shown in Figure

2.2. The empty set is not dominating so d(P3, 0) = 0. For subsets of size one: {v2}
is dominating but {v1} and {v3} are not, so d(P3, 1) = 1. For subsets of size two:

{v1, v2}, {v2, v3} and {v1, v3} are all dominating hence d(P3, 2) = 3. The only subset

of size three is the set of all vertices and hence dominating thus d(P3, 3) = 1. Now

we can conclude D(P3, x) = x3 + 3x2 + x.

v1

v2

v3

Figure 2.2: A path on three vertices
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The exhaustive approach of checking if each subset of vertices is dominating is

clearly not efficient. Unfortunately, in general, there seems to be no alternative that

is significantly better. However the domination polynomial is known for some families

of graphs. Furthermore we can deduce some coefficients based on particular properties

of the graphs.

Consider once more the graph G in Figure 2.1. The order of G is 7, so manually

checking each of its 27 = 128 subsets of vertices would be rather time consuming.

However δ(G) = 2, so for each vertex in G the size of its closed neighbourhood is

at least three. If a subset omits fewer than three vertices of V (G), it must intersect

the closed neighbourhood of each vertex in V (G) and hence dominate G. Thus

d(G, 7) =
(
7
0

)
= 1, d(G, 6) =

(
7
1

)
= 7, and d(G, 5) =

(
7
2

)
= 21. For a subset of size

four there are only two vertices 1 and 5 with closed neighbourhoods of size three. As

those two neighbourhoods do not contain the same vertices then the only subsets of

such size which do not dominate G are missing exactly the closed neighbourhoods

of those two vertices. Thus d(G, 4) =
(
7
3

) − 2 = 33. For a subset of size three,

consider each vertex with neighbourhoods of size three and four. As no two of these

neighbourhoods are equal then the only subsets which do not dominate G are exclude

either an entire closed neighbourhood of size four or a closed neighbourhood of size

3 and one of the remaining four vertices. Hence d(G, 3) =
(
7
4

) − 4 − 2 · 4 = 23.

As stated earlier γ(G) = 2, so d(G, 0) = d(G, 1) = 0. It is easy enough to see

that the only dominating sets of size 2 are {2, 6} and {3, 4} so d(G, 2) = 2 and

D(G, x) = x7 + 7x6 + 21x5 + 33x4 + 23x3 + 2x2.

2.2 Basic Results

The following theorem states some basic consequences of the definition of the domi-

nation polynomial.

Theorem 2.2.1 [12] Let G be a graph of order n. Then:

(i) d(G, n) = 1.

(ii) If G is a connected graph of order at least 2, then d(G, n− 1) = n.

(iii) d(G, i) = 0 if and only if i < γ(G) or i > n.
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(iv) D(G, x) has no constant term.

(v) D(G, x) is a strictly increasing function on [0,∞).

(vi) 0 is a root of D(G, x), with multiplicity γ(G).

�

Naturally when computing graph polynomials of product graphs we seek rela-

tionships with the graph polynomials of the smaller factor graphs. The domination

polynomial is no different. Relationships for the disjoint union, join, and corona of

graphs are detailed in the next three theorems.

Let G be disjoint union of connected graphs G1 ∪ G2 · · · ∪ Gk. We call each Gi

subgraph a component of G. Note that a connected graph only has one component.

If S is a dominating set of G, then for each Gi, the vertices of S restricted to Gi

must also dominate Gi. Moreover, to dominate G, simply choose a dominating set

for each of its components. The dominating set for one component does not affect

the dominating set for another component. From this it is clear that domination

polynomials have a very useful property under disjoint unions.

Theorem 2.2.2 [12] If a graph G consists of m components G1, G2, . . . , Gm the

D(G, x) = D(G1, x)D(G2, x) · · ·D(Gm, x).

�

Consider a subset of vertices S for the join of two graphs G1∨G2. Any non-empty

subset of V (G1) dominates G2. Similarly any non-empty subset of V (G1) dominates

G2. Therefore if S dominates G1 ∨ G2 and S ⊆ G1 (or S ⊆ G2) then S must also

dominate G1 (or G2). As the binomial expansion of (1+x)n is a generating polynomial

for the number of subsets of each size, the domination polynomial of G1 ∨G2 can be

written in terms of D(G1, x) and D(G2, x).
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Theorem 2.2.3 [12] Let G1 and G2 be graphs of order n1 and n2 respectively. Then

D(G1 ∨G2, x) = [(x+ 1)n1 − 1][(x+ 1)n2 − 1] +D(G1, x) +D(G2, x).

�

For the corona of two graphs G1◦G2 the domination polynomial is not as obvious.

However, Kotek, Preen, and Simon classified what we call irrelevant edges. In Section

2.4, Theorem 2.4.14 will state that irrelevant edges can be deleted from a graph

without changing the domination polynomial. Each edge in G1 becomes irrelevant in

G1 ◦G2 and can be deleted. The resultant graph is a disjoint union of |V (G1)| copies
of G2 ∨K1 which can easily be calculated with Theorems 2.2.3 and Theorems 2.2.2.

Theorem 2.2.4 [19] Let G1 and G2 be non-empty graphs of order n1 and n2 respec-

tively. Then

D(G1 ◦G2, x) = [D(K1 ∨G2, x)]
n1 = [x(x+ 1)n2 +D(G2, x)]

n1 .

�

Another area of interest with graph polynomials is finding which graph properties

are preserved in our polynomial. Can a graph be determined simply by its graph

polynomial? For domination polynomials, as we will find out in Section 2.4, the

answer is no. However some graph properties can be taken from its domination

polynomial.

Theorem 2.2.5 [12] Let G be a graph of order n with t vertices of degree one and

r isolated vertices. If D(G, x) =
∑n

i=1 d(G, i)xi is its domination polynomial then the

following hold:

(i) r = n− d(G, n− 1).

(ii) If G has s K2-components, then d(G, n− 2) =
(
n
2

)− t+ s− r(n− 1) +
(
r
2

)
.

(iii) If G has no isolated vertices (i.e. r = 0) and D(G,−2) �= 0 (i.e. s = 0), then

t =
(
n
2

)− d(G, n− 2).
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(iv) d(G, 1) = |{v ∈ V (G)|deg(v) = n− 1}|.

�

In Section 2.4 we will show δ(G) can also be determined by the domination poly-

nomial as it equals n− i for the largest i where d(G, i) is less than
(
n
i

)
.

Another area of interest with graph polynomials is finding recurrence relations.

These are handy for inductions or even just computing domination polynomials. For

the next theorem we introduce the vertex contraction G/v of a graph G, where all

vertices in N(v) are joined to each other and then v is deleted. An example of this is

shown in Figure 2.3. In G/v7, v7 is deleted and {v1, v3, v4, v6} is now a clique.

v1

v2

v3

v4

v5

v6

v7

(a) G

v1

v2

v3

v4

v5

v6

(b) G/v7

Figure 2.3: An example of a vertex contraction of G

We also introduce the polynomial pv(G) which enumerates the dominating sets of

G − N [v] which additionally dominate N(v) in G. For example, let G be the graph

in Figure 2.3 (a) and consider pv4(G). The only subsets of G − N [v4] which also

dominate N(v4) are {v2, v6} and {v2, v6, v1}. Therefore pv4(G) = x3+x2. Furthermore

pv3(G) = 0 as no subset of G−N [v3] also dominates v2 ∈ N(v3).

Theorem 2.2.6 [4] For any vertex v in a graph G we have

D(G, x) = xD(G/v, x) +D(G− v, x) + xD(G−N [v], x)− (x+ 1)pv(G).

�

The following corollaries are very useful when determining the domination poly-

nomial for trees.
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Corollary 2.2.7 [4] If u, v ∈ V (G), uv ∈ E(G) and N [v] ⊆ N [u] then

D(G, x) = xD(G/u, x) +D(G− u, x) + xD(G−N [u], x).

�

Corollary 2.2.8 [4] If u, v ∈ V (G), uv /∈ E(G) and N(v) = N(u) then

D(G, x) = xD(G/u, x) +D(G− u, x)−D(G−N [u], x).

�

In [19] Kotek, Preen, and Simon derived a recurrence relation for removing trian-

gles based around a new operation on edges incident to a vertex u: Let G� u be the

graph obtained from G by the removal of all edges between any pair of neighbours of

u. Note u is not removed from the graph.

Theorem 2.2.9 [19] Let G = (V,E) be a graph. For any u ∈ V we have

D(G, x) = D(G− u, x) +D(G� u, x)−D(G� u− u, x).

�

2.3 Domination Polynomials for Families of Graphs

Although it is difficult to find the domination polynomial for a general graph, it is

known for some families of graphs. The equations in the next theorem are either

straightforward or follow directly from results in Section 2.2.

Theorem 2.3.1 [12] Let G be a graph of order n. Then:

(i) D(Kn, x) = (x+ 1)n − 1.

(ii) D(Km,n, x) = [(x+ 1)m − 1][(x+ 1)n − 1] + xm + xn.

(iii) D(K1,n, x) = xn + x(x+ 1)n.
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(iv) If n ≥ 4, then D(Wn, x) = x(x+ 1)n−1 +D(Cn−1, x).

�

We will now examine the coefficients of domination polynomials for paths and

cycles. The results in Theorem 2.3.3 and Theorem 2.3.5 will be utilized in Section

4.2.

Consider the domination polynomial for paths of order three or greater. These

paths all contain a leaf l adjacent to a stem s. Moreover, N [l] = {s, l} ⊆ N [s].

That is, the closed neighbourhood of l is contained in the closed neighbourhood of

s. Therefore the recurrence relation in Corollary 2.2.7 applies. Each G/s, G − s,

and G − N [s] are either a path, or a path and an isolated vertex, giving us a useful

recurrence.

Theorem 2.3.2 [9] For every n ≥ 4

D(Pn, x) = x(D(Pn−1, x) +D(Pn−2, x) +D(Pn−3, x))

�

The recurrence in Theorem 2.3.2 allows us to generate the domination polyno-

mial for paths quickly. Table 2.1 shows the number of dominating sets of Pn with

cardinality j, for n = 3, 4, . . . 14.

With the recurrence relation for paths and the large sample of domination poly-

nomials of paths we are capable of generating, it makes it very easily to determine

properties of d(Pn, j). In most cases only an observation is needed as induction and

the recurrence relation will handle the proof. The next theorem shows what is known

about some coefficients of d(Pn, j).

Theorem 2.3.3 [9]

(i) For every n ≥ 2, d(Pn, n− 1) = n.

(ii) For every n ≥ 3, d(Pn, n− 2) =
(
n
2

)− 2.

(iii) For every n ≥ 4, d(Pn, n− 3) =
(
n
3

)− (3n− 8).
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n\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 1 3 1
4 4 4 1
5 3 8 5 1
6 1 10 13 6 1
7 8 22 19 7 1
8 4 26 40 26 8 1
9 1 22 61 65 34 9 1
10 13 70 120 98 43 10 1
11 5 61 171 211 140 53 11 1
12 1 40 192 356 343 192 64 12 1
13 19 171 483 665 526 255 76 13 1
14 6 120 534 1050 1148 771 330 89 14 1

Table 2.1: d(Pn, j), the number of dominating sets of Pn with cardinality j

(iv) For every n ≥ 5, d(Pn, n− 4) =
(
n
4

)− (2n2 − 13n+ 20).

(v) For every n ∈ N, d(P3n, n) = 1.

(vi) For every n ∈ N, d(P3n+1, n+ 1) =
(n+ 2)(n+ 3)

2
− 2.

(vii) For every n ∈ N, d(P3n+2, n+ 1) = n+ 2.

�

We now turn our attention to cycles. Unlike paths, the recurrences of the previous

section are not useful for cycles. However with about 15 pages of tedious work,

Alikhani showed paths and cycles have the same recurrence relation with differences

only in initial polynomials.

Theorem 2.3.4 [8] For every n ≥ 4

D(Cn, x) = x(D(Cn−1, x) +D(Cn−2, x) +D(Cn−3, x))

�

Similar to paths, the recurrence in Theorem 2.3.4 allows us to generate the domi-

nation polynomial for cycles quickly. Table 2.1 shows the number of dominating sets
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n\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 3 3 1
4 6 4 1
5 5 10 5 1
6 3 14 15 6 1
7 14 28 21 7 1
8 8 38 48 28 8 1
9 3 36 81 75 36 9 1
10 25 102 150 110 45 10 1
11 11 99 231 253 154 55 11 1
12 3 72 282 456 399 208 66 12 1
13 0 39 273 663 819 598 273 78 13 1
14 0 14 210 786 1372 1372 861 350 91 14 1

Table 2.2: d(Cn, j), the number of dominating sets of Cn with cardinality j

of Cn with cardinality j, for n = 3, 4, . . . 14. The next theorem shows what is known

about some coefficients of d(Cn, j).

Theorem 2.3.5 [8]

(i) For every n ≥ 3, d(Cn, n− 1) = n.

(ii) For every n ≥ 3, d(Cn, n− 2) =
(
n
2

)
.

(iii) For every n ≥ 4, d(Cn, n− 3) =
(
n
3

)− n.

(iv) For every n ∈ N, d(C3n, n) = 3.

(v) For every n ∈ N, d(C3n+1, n+ 1) =
n(3n+ 7) + 2

2
.

(vi) For every n ∈ N, d(C3n+2, n+ 1) = 3n+ 2.

�

2.4 Domination Equivalence

It is possible for two graphs to have the same domination polynomial. If the two

graphs are isomorphic then it is trivial. However, in some cases non-isomorphic graphs
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have the same domination polynomial. This leads us to the following definition first

defined by Akbari, Alikhani and Peng in [2].

Definition 2.4.1 Two graphs G and H are dominating equivalent or simply D-

equivalent (written G ∼ H) if D(G, x) = D(H, x).

Recall D(G, i) is the set of dominating sets in a given graph G with cardinality

i. Two graphs G and H are D-equivalent if and only if there exists a bijection

φi : D(G, i) �→ D(G, i) for every i. The union of every bijection, denoted φ, is simply

a bijection from the dominating sets of G to the dominating sets H which preserves

cardinality.

An example of two non-isomorphic graphs G and H which are D-equivalent is

shown in Figure 2.4. Each G and H have domination polynomial x5+5x4+10x3+7x2.

(a) G (b) H

Figure 2.4: Two D-equivalent graphs

As in [2], we let [G] denote the equivalence class determined by G, that is [G] =

{H|H ∼ G}. A graph G is said to be dominating unique or simply D-unique if

[G] = {H|H is ismorphic to G}.
Two problems arise from equivalence classes: Which graphs are D-unique? Can

we determine the D-equivalence classes for some families of graphs?

In [3] Akbari and Oboudi showed all cycles are D-unique. Anthony and Picollelli

classified all complete r-partite graphs which are D-unique in [13]. In [11] Alikhani

and Peng showed most cubic graphs of order 10 (including the Peterson graph) are

D-unique.

In [19] Kotek, Preen, and Simon defined and characterized irrelevant edges. These

are edges which can be removed without changing the domination polynomial of a
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graph. From this they could show various trees (in particular paths [2]) barbell

graphs [18], and other graphs are not D-unique.

In this section we will examine previous known results to give operations and

properties which can be used to determine if two graphs have the same domination

polynomial. For two D-equivalent first note some properties which easily follow from

previous theorems.

Theorem 2.4.2 If G ∼ H then the following must be true:

(i) |V (G)| = |V (H)| = n.

(ii) If G and H are both connected and of order at least 3 then they must have the

same number of vertices with degree 1.

(iii) G and H must have the same number of vertices with degree n− 1.

Proof. Item (i) follows as the degree of a domination polynomial is the order of

the underlying graph then G and H must have the same order. Statements (ii) and

(iii) both follow directly from Theorem 2.2.5. �

For any graph G of order n, consider S ⊂ V (G). If S = V (G), clearly S forms

a dominating set, but what happens when we start to remove vertices? Do the

remaining vertices still dominate G? Generally that is a hard question to answer. If

we remove more vertices from S, it becomes less likely S is a dominating set. But

what if we only remove a few? Moreover, what is the fewest number of vertices needed

to be removed from S so that S no longer dominates G? S is no longer a dominating

set if there exists a v ∈ V (G) where N [v] ∩ S = ∅. The cardinality of the smallest

closed neighbourhood is δ(G)+1. Therefore if we remove fewer than δ(G)+1 vertices

from S, then S still dominates G. This idea is quite trivial but it is fundamental in

proving that all cycles are D-unique.

Lemma 2.4.3 [2] Let G be a graph of order n. If d(G, j) =
(
n
j

)
for some j, then

δ(G) ≥ n− j. More precisely δ(G) = n− l where l = min{j|d(G, j) =
(
n
j

)}, and there

are at least
(

n
n−δ(G)−1

) − d(G, n − δ(G) − 1) vertices of degree δ(G). Furthermore, if

for every two vertices u and v of degree δ(G) we have N [u] �= N [v], then there are

exactly
(

n
n−δ(G)−1

)− d(G, n− δ(G)− 1) vertices of degree δ(G). �
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Corollary 2.4.4 [1] If G and H are two graphs and D(G, x) = D(H, x), then δ(G) =

δ(H). �

Theorem 2.4.5 [2] Let H be a k-regular graph with N [u] �= N [v], for all u, v ∈
V (H). If D(G, x) = D(H, x), then G is k-regular. �

As cycles are 2-regular then for a different graph G to have the same domination

polynomial it must be the disjoint union of smaller cycles. This fact combined with a

few other properties known about the domination of cycles lead Akbari, Alikani and

Peng in [2] and later Akbari and Oboudi in [3] to the following theorem.

Theorem 2.4.6 [3] For every positive integer n, cycle Cn is D-unique. �

The proof for the next lemma will follow directly from Theorem 2.4.15.

Lemma 2.4.7 [3] If a graph G is D-unique, then for every m ≥ 1, G ∨ Km is

D-unique. �

Corollary 2.4.8 For every two positive integers m and n, Km ∨Cn is D-unique. In

particular, Wn is D-unique. �

In [2] Akbari, Alikhani and Peng also determined [P3n] by restricting any graph

G ∼ P3n to some properties we know from the first few coefficients shown in Theorem

2.3.3. As d(P3n, n) = 1, they completed their proof by showing d(G, n) �= 1. However

as P3n+1 and P3n+2 do not have unique minimum dominating sets their respective

equivalence classes were left as an open problem which we will solve in section 4.

Theorem 2.4.9 [2] Let n be a natural number. Then [P3n] contains just two graphs:

P3n and the graph generated by taking P3n and adding an edge between its two stems.

�

In [13] Anthony and Picollelli proved most r-partite graphs are D-unique; however,

the equivalence class of Kn,n+1 is unknown.
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(a) P6 (b) P ′
6

Figure 2.5: The domination equivalence class of P6

Theorem 2.4.10 [1] For every natural number n, [Kn,n] = {Kn,n, Kn�K2}. �

Theorem 2.4.11 [13] Let r ∈ N and let n1, n2, . . . nr ∈ N. Then the complete

r-partite graph Kn1,n2,...,nr is D-unique if and only if for all 1 ≤ i < j ≤ r either

max{ni, nj} ≤ 2 or |ni − nj| ≥ 2. �

In Corollary 2.2.7, the domination polynomial is simplified when the closed neigh-

bourhood of one vertex contains the closed neighbourhood of another vertex. In [19]

Kotek, Preen and Simon gave a name to such vertices and stated some special prop-

erties they have that are useful when determining if two graphs are D-equivalent.

Definition 2.4.12 [19] For a graph G, a vertex v ∈ V (G) is domination-covered

if every dominating set of G− v includes at least one vertex adjacent to v in G.

Theorem 2.4.13 [19] For a graph G, a vertex v ∈ V (G) is domination-covered if

and only if there exists a u ∈ N(v) such that N [u] ⊆ N [v]. �

Thus we say a vertex v is domination-covered by another vertex u if N [u] ⊆ N [v].

Some examples of domination-covered vertices are shown in Figure 2.6. In (a) vertices

v2, v3, v4 and v5 are domination-covered and in (b) vertices v2, v3, v4 and v5 are

domination-covered.

In [19] Kotek, Preen, and Simon defined an edge e ∈ E(G) to be irrelevant if the

domination polynomial was unchanged by its removal, that is, D(G, x) = D(G−e, x).

The next theorem classifies all such edges.

Theorem 2.4.14 [19] Let G be a graph. An edge e = {u, v} ∈ E is an irrelevant

edge in G if and only if u and v are domination-covered in G− e �
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v1

v2

v3v4

v5

(a)

v1

v2

v3

v4v5

(b)

Figure 2.6: Examples of domination-covered vertices

(a) (b)

Figure 2.7: Each of these graphs have domination polynomial x5 + 5x4 + 8x3 + 3x2

Consider the two graphs in Figure 2.6. In Graph (a), vertices v2 and v3 are

domination-covered. Now if we remove the edge v2v3, they still remain domination-

covered therefore v2v3 is an irrelevant edge. In Graph (b) vertices v1 and v2 are

domination-covered. However when we remove the edge v1v2, both v1 and v2 are no

longer domination-covered, therefore the edge v1v2 is not irrelevant.

Theorem 2.4.14 can tell us much about domination equivalence. Consider adding

an edge e between two domination-covered vertices in a graph G. Any dominating

set of G is still a dominating set in G+ e. Consider a dominating set S in G+ e. Let

u and v be the vertices incident with e. If u, v ∈ S or u, v /∈ S then the clearly S is

still a dominating set in G. Without loss of generality, suppose u ∈ S and v /∈ S. As

v is domination-covered in G then there is a neighbour of v, other than u, which is in

S. This means S is still a dominating set of G. Furthermore, e is irrelevant in G+ e.

In particular, adding an edge between two stems in a graph yields a domination-

equivalent graph (the new edge is irrelevant). That is why the two graphs in Figure

2.7 are domination equivalent.

The following theorems are useful when determining the D-equivalence of two

graphs, depending on whether they contain vertices of degree n or n−1. We can also

use these theorems to construct families of graphs which are D-equivalent.
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Theorem 2.4.15 [2] Let G be a graph of order n with vertex v ∈ V (G). If deg(v) =

n− 1, then G is D-unique if and only if G− v is D-unique. �

The proof of Theorem 2.4.15 follows directly from the result in Theorem 2.2.3.

Furthermore, when trying to determine if two graphs are D-equivalent, by Theorem

2.4.2 they must have the same number of vertices of degree n − 1. So these vertices

can be removed from each graph as they will not change the D-equivalence. The next

theorem is equivalent to example 3.5 in [19].

Theorem 2.4.16 [19] Let G and H be D-equivalent graphs. Let G′ and H ′ be copies

of G and H with an additional vertex connected to all but one vertex vG ∈ V (G) and

vH ∈ V (H) respectively. If degH(vH) = degG(vG) then G′ ∼ H ′.

�



Chapter 3

Coefficients of Domination Polynomials

Unfortunately a closed form of the domination polynomial is not known for many

graphs. However, some coefficients are know for general graphs. In Theorem 2.2.5 we

stated formulas for d(G, n− 1) and d(G, n− 2) in terms of certain properties within

the graph. In Section 3.2 we will introduce a collection of graphs and give generalized

formulas for d(G, n− 3) and d(G, n− 4). This will help us determine the equivalence

class for paths in Section 4.2. First, though, in Section 3.1 we will give an efficient

method to determine a lower bound on the d(G, j) for connected G of given order.

3.1 Bounds on the Coefficients for Connected Graphs

We now introduce a novel area of interest for domination polynomials, namely deter-

mining bounds for its coefficients. For a graph G of order n, the coefficient ai of x
i in

D(G, x) is bounded. By definition, each coefficient counts the number of dominating

sets of size i. Therefore ai is bounded below by zero. This bound is tight for all but

an as D(Kn, x) = xn. As there are only
(
n
i

)
subsets of V (G) of cardinality i which

can be dominating, therefore ai is bounded above by
(
n
i

)
. This bound is tight because

any non-empty subset of a complete graph is dominating. In this section we will give

a method for tightening those bounds for a given graph. As well, we show some work

done to find a lower bound on all connected G.

In [19] Kotek et al. showed that some edges of G can be added or removed without

changing the domination polynomial. Generally though, adding edges increases the

coefficients of D(G, x) and removing edges decreases the coefficients of D(G, x). For

any edge e ∈ E(G), a dominating set of G− e is still a dominating set in G, therefore

the coefficients of D(G, x) are bounded below by the corresponding coefficients of

D(G− e, x). Let G+ be any copy of G with some edges added and G− be any copy of

G which has edges removed. In general, d(G−, i) ≤ d(G, i) ≤ d(G+, i) for all i ∈ N.

The following algorithm removes edges from a given graph G until there is a

21
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disjoint union of stars. The resultant graph is denoted G−. This will allow us to get

a lower bound on the coefficients of D(G, x) as there is a closed form formula for the

domination polynomial of stars.

Set r = the number of isolated vertices in G ;

Initialize G− to be r isolated vertices;

Set H = G− V (G−) ;

Initialize F to be a spanning forest of H;

while F is non-empty do

Choose stem s in F ;

Remove edges from s to neighbouring stems which are not also leaves;

Set G− = G− ∪NF [s];

Set F = F −NF [s];

end

Algorithm 1: Removes edges from G until G is a disjoint union of stars

In Algorithm 1 we remove the closed neighbourhood of the stems in F while F is

not empty. If F is not empty and has no stems, Algorithm 1 will not terminate. In

Lemma 3.1.1 we will show Algorithm 1 terminates if G is a finite graph. This will

help us show that the resultant graph of Algorithm 1 has the same number of isolated

vertices as G.

Lemma 3.1.1 If G is a finite graph, Algorithm 1 will always terminate.

Proof. To show a contradiction, suppose Algorithm 1 does not terminate and G

is a finite graph. As Algorithm 1 does not terminate then the loop while F is not

empty is endless. Now, choose any spanning forest F∞ of H (the graph obtained by

removing all isolated vertices from G) such that the loop is endless. Each iteration of

the loop assigns F to a subgraph of F by removing vertices from F only if F contains

a stem. As the loop is endless then F∞ is non-empty and does not contain a stem.

We claim F∞ is a collection of isolated vertices. We will now prove this claim

through contradiction by showing if F∞ is not a collection of isolated vertices, it has

a stem. Suppose F∞ is not a collection of isolated vertices. Then F∞ contains a

connected component, which we denote as C, of order two or greater. As F∞ is a
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subgraph of the forest F , C is a connected subgraph of a forest and hence a tree.

As C is a tree of order at least two, it has a leaf. Furthermore, C has order two or

more, therefore the leaf has a neighbour which by definition is a stem. As this is a

contradiction, F∞ is a collection of isolated vertices.

Finally we claim Algorithm 1 cannot reduce F to F∞ (a collection of isolated

vertices) and hence will always terminate. We will now prove this claim through

contradiction by showing each vertex of F will be removed before becoming isolated.

Suppose Algorithm 1 reduces F to F∞. Let v ∈ F∞. We now consider three cases:

v is a stem in F , v is a leaf in F , and v is not a stem nor leaf in F .

In F , if v is a stem, then v will remain a stem until it is chosen to be removed from

F . Similarly if v is a leaf in F , then v will remain a leaf until it and its corresponding

stem s are chosen to removed from F .

Finally if v is not a leaf or stem in F , then at most one edge incident to v is

removed per iteration. If two or more edges incident to v were removed then v would

share at least two neighbours with another vertex which would induce a cycle. This

is a contradiction as F is a forest. As v is isolated in F∞ then, at some point in the

iteration, v is only incident to one edge and is therefore a leaf. However v will remain

a leaf until it and its corresponding stem s are removed.

�

In Lemma 3.1.2 we will show that the resultant graph of Algorithm 1 does not

have more isolated vertices than the initial graph G. This is important because an

isolated vertex will shrink the coefficients of our lower bound more than might be

necessary. To achieve the best lower bound we would like to remove as few edges

as possible. Thus removing all edges incident to one vertex is not ideal. Note also

that we wish to form stars as the domination polynomial is known for stars. If G

contains subgraphs with more edges (a clique component, perhaps) than a star, the

algorithm could get a better lower bound by removing these subgraphs from G before

beginning. We also choose stars because we wish to find a lower a bound for all

connected graphs and Algorithm 1 shows every connected graph can be broken down

into a disjoint union of stars.

Lemma 3.1.2 Let G− denote the resultant graph of Algorithm 1. Then G− and G

have the same number of isolated vertices.
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Proof. If G has isolated vertices then as the algorithm only removes edges then,

the vertices will remain isolated. Therefore it is sufficient to show G− does not have

more isolated vertices than G.

Now suppose a vertex v is isolated in G− but not in G. Note that Algorithm 1

only adds a vertex to G− if it is in the closed neighbourhood of a stem. Therefore

when v is added to G− it is either a stem or adjacent to a stem (which may remove

more than leaves). If v is added to G− as a stem then by definition it is the neighbour

of a leaf and hence not isolated. If v is added to G− as a vertex adjacent to a stem

then it has a stem as a neighbour of a leaf and hence not isolated.

�

An example for Algorithm 1 on a graph G is shown in Figure 3.1 (a). G has

no isolated vertices so r = 0 and G− is initialized to be empty. Furthermore we

set H = G. We choose an arbitrary spanning forest F of G by removing the edges

{v3, v7}, {v4, v5}, {v4, v7}, and {v6, v7}. We choose an arbitrary stem v6. Remove any

edges from v6 to another stem, in this case there are none. Now we add N [v6] to G−

and remove N [v6] from F , removing the edge {v1, v3}. The reduced F has one stem,

v2. Remove any edges from v2 to another stem, in this case there are none. Now we

add N [v2] to G− and remove N [v2] from F . F is now empty therefore we exit our

while loop. The resultant graph, K1,2 ∪ K1,3, is shown in Figure 3.1 (c). A lower

bound on the coefficients of G in Figure 3.1 are the coefficients of D(K1,2∪K1,3, x) =

(x2 + x(x + 1)2)(x3 + x(x + 1)3) = x7 + 7x6 + 16x5 + 14x4 + 6x3 + x2. Note that

starting with a different spanning forest (or the same spanning forest, but different

sequence of stem selections) may result in a different set of disjoint stars. For instance

removing the edges {v3, v6}, {v3, v7}, {v4, v7}, and {v5, v6} would yield a resultant

graph K1,2∪K1,1∪K1,1 with domination polynomial x7+7x6+17x5+16x4+4x3. In

some instances, choosing different stems for the same spanning forest may also result

in a different set of disjoint stars.

In Lemma 3.1.3, we will give a condition where edges are irrelevant between two

cliques in a graph. We will then use this in Algorithm 2 to make the calculation of

our resultant graph easier.
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v1

v2

v3

v4

v5

v6
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(a) G

v1

v2

v3

v4

v5

v6

v7

(b) F

v1

v2

v3

v4

v5

v6

v7

(c) K1,2 ∪K1,3

Figure 3.1: Example for Algorithm 1

Lemma 3.1.3 Let G be a graph with C1, C2 ⊆ V such that each induce cliques in

G and C1 ∩ C2 = ∅. If there exists v1 ∈ C1 and v2 ∈ C2 such that N [v1] = C1 and

N [v2] = C2 then any edge incident to one vertex of C1 − v1 and one vertex of C2 − v2

is irrelevant.

Proof. Let e = {u1, u2} where u1 ∈ C1 − v1 and u2 ∈ C2 − v2. By Theorem 2.4.14

it is sufficient to show each u1 and u2 are each domination-covered in G− e. Without

loss of generality, we will only consider u1. As C1 is a clique then C1 ⊆ NG−e[u1].

Therefore NG−e[v1] = C1 ⊆ NG−e[u1] and u1 is domination-covered in G− e. �

The next algorithm adds edges to a given graph G until every vertex is in a clique.

Furthermore every clique C will contain a vertex v with N [v] = C. By Lemma 3.1.3,

all the edges between the cliques are irrelevant and can be removed. This leaves us

with a resultant graph which is a disjoint union of complete graphs. This will allow us

to get an upper bound on the coefficients of D(G, x) as there is a closed form formula

for the domination polynomial of complete graphs.

The goal of Algorithm 2 is to partition the vertices of G into subgraphs so we can

add edges to make each subgraph a clique and delete the edges between cliques to

obtain a disjoint union of complete graphs. To delete the edges between the cliques

we must ensure that, for each clique, there is a vertex which domination-covers every

other vertex in its respective clique. That is, for every subgraph N ∈ S there is a

vertex with NG[v] ⊆ N . We achieve this by adding NG[v] to S for some vertex v in

B and removing NB[NB[v]] from B. By removing NB[NB[v]] from B, the collection

of neighbourhoods S will not intersect and hence v will not be adjacent to vertices in
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Initialize B to G;

Initialize S to the empty list;

while B is non-empty do

Choose vertex v in B with the smallest degree in B;

Set B = B −NB[NB[v]];

Append NG[v] to S.

end

for each v remaining in G− ∪S do

Append v to the smallest set in S;

end

for each N in S do

add an edge between each pair of vertices in N ;

end

for each N and M in S do

remove any edge between vertices in N and vertices in M ;

end

Algorithm 2: Adds edges to G until G is a disjoint union of complete graphs

other chosen neighbourhoods. We choose the vertex of smallest degree to get a better

lower bound. As stated earlier, every graph of order n has its coefficients bounded

above by the coefficients of D(Kn, x). It is not clear which vertices will give the least

upper bound on our coefficients. That being said, choosing a vertex in B with the

highest degree puts us at risk of obtaining the trivial upper bound, D(Kn, x). It is

for that reason we choose the vertex with the smallest degree, though there may be

room for improvement if a different set of vertices are chosen.

An example for Algorithm 2 on the same graph G used in the previous example

is shown in Figure 3.2 (a). First we partition the vertices into cliques by choosing a

vertex with the smallest degree. As δ(G) = 2 and there are two degree two vertices,v1

and v5, then we arbitrarily choose v1. Now append NG[v1] = {v1, v2, v3} to S and

remove NB[NB[v1]] = {v1, v2, v3, v4, v6, v7} from B. As only the isolated vertex v5

remains, append NG[v5] = {v4, v5, v6} to S. Removing NB[NB[v5]] from B leaves B

empty so we exit our first loop. For each vertex in G − ∪S = {v7} we add it to the
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smallest neighbourhood in S. As both neighbourhoods have cardinality three and

there is only one vertex in G − ∪S, we arbitrarily add v7 to NG[v1]. Now that we

have partitioned the vertices of G, add every edge between each vertex in NG[v5],

also add every edge between each vertex in NG[v1] ∪ {v7}. This is shown in Figure

3.2 (b). Now each vertex in NG(v5) is domination-covered by v5. Similarly each

vertex in NG(v1) ∪ {v7} is domination-covered by v1. Therefore any edge between

a vertex in NG[v5] and a vertex in NG[v1] ∪ {v7} is irrelevant and can be removed

without changing the domination polynomial. The resultant graph K3 ∪K4 is shown

in Figure 3.2 (c). Therefore an upper bound on the coefficients of G in Figure 3.2 is

giving the coefficients of D(K3 ∪K4, x) = ((x + 1)3 − 1)((x + 1)4 − 1) = x7 + 7x6 +

21x5 + 34x4 + 30x3 + 12x2.

v1

v2

v3

v4

v5

v6

v7

(a) G

v1

v2

v3

v4

v5

v6

v7

(b) G′

v1

v2

v3

v4

v5

v6

v7

(c) K3 ∪K4

Figure 3.2: Example for Algorithm 2

The following lemma gives a summation formula for the coefficients of star graphs

and product of star graphs. We introduce some notation to simplify the proof of

the following two lemmas. Given a sequence n1, n2, . . . , nk of positive integers, for

S ⊆ {1, 2, . . . , k} we set
∑

S =
∑

i∈S ni.

Lemma 3.1.4 Let graph G = K1,n1 ∪K1,n2 ∪ . . .∪K1,nk
have domination polynomial

D(G, x) = anx
n + an−1xn−1 + . . . a1x and [k] = {1, 2, . . . k}. Then

an−j =
∑
S⊆[k]

( ∑
S

|S|+ j − k

)

Proof. By Theorem 2.2.2 the domination polynomial of G is the product of the

domination polynomial of each of its components. Furthermore, from Theorem 2.3.1

D(K1,ni
, x) = xni + x(1 + x)ni . Thus we have
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D(G, x) =
k∏

i=1

(xni + x(1 + x)ni)

=
k∏

i=1

(xni + xni−(ni−1)(1 + x)ni)

=
∑
S⊆[k]

xn−k−∑S+|S|(1 + x)
∑

S

=
∑
S⊆[k]

xn−k−∑S+|S|
∑

S∑
l=0

(∑
S

l

)
xl

=
∑
S⊆[k]

∑
S∑

l=0

(∑
S

l

)
xn−k−∑S+|S|+l.

Now n − k − ∑
S + |S| + l = n − j iff l =

∑
S − |S| − j + k, so we find that the

coefficient an−j of D(G, x) is equal to

∑
S⊆[k]

( ∑
S∑

S − |S| − j + k

)
=

∑
S⊆[k]

( ∑
S

|S|+ j − k

)
.

�

The following lemma gives a summation formula for the coefficients of complete

graphs and product of complete graphs.

Lemma 3.1.5 Let graph G = Kn1 ∪ Kn2 ∪ . . . ∪ Knk
have domination polynomial

D(G, x) = anx
n + an−1xn−1 + . . . a1x and [k] = {1, 2, . . . k}. Then

an−j =
∑
S⊆[k]

(−1)k−|S|
(∑

S

n− j

)

Proof. By Theorem 2.2.2 the domination polynomial of G is the product of the

domination polynomial of each of its components. Furthermore from Theorem 2.3.1

D(Kni
, x) = (1 + x)ni − 1. Thus we have
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D(G, x) =
k∏

i=1

((1 + x)ni − 1)

=
∑
S⊆[k]

(−1)k−|S|(1 + x)
∑

S

=
∑
S⊆[k]

(−1)k−|S|
∑

S∑
l=0

(∑
S

l

)
xl.

By considering the coefficient an−j in the last equality, we get our result.

�

For a given graph G, we can bound the coefficients of D(G, x). Naturally we

ask: can we bound the coefficients for all graphs? As mentioned previously, the tight

trivial bounds for all graphs of order n are the coefficients of D(Kn, x) and D(Kn, x).

But what about different families of graphs? Coefficients of connected graphs would

still be bounded above by the coefficients of D(Kn, x); however, their lower bounds

are not as obvious. Coefficients of tree graphs would have the same lower bounds

as connected graphs. However, their upper bounds are no longer trivial either. For

connected graphs, coefficients an, and an−1 are always 1 and n respectively. The next

lemma will help us find a lower bound for the coefficient an−j in D(G, x) for connected

G of order n and j ≥ 2.

Lemma 3.1.6 For a fixed sum n1 + n2 + . . .+ nk and j ≥ 2 the function

f(L, n) =
∑
S⊆L

( ∑
S

|S|+ j − k

)

where L = {n1, n2, . . . , nk} is minimized if |np − nq| ≤ 1 for all np, nq ∈ L.

Proof. Suppose not, that is, suppose for some np, nq ∈ L, we have |np − nq| > 1

and f(L, n) is minimized. Without loss of generality suppose nq > np. Let L′ be a

copy of L where nq is replaced by nq − 1 and np is replaced by np + 1. Note that L

remains unchanged. Consider fr(L, n), which is the summation
( ∑

S
|S|+j−k

)
, where we

restrict the cardinality of S to r. That is,
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fr(L, n) =
∑

S⊆L,|S|=r

( ∑
S

r + j − k

)
.

Note that f(L, n) can be written as the summation of fr(L, n) for r up to |L| = k.

We will now show for each r, fr(L, n) > fr(L
′, n) and thus arrive at a contradiction.

We partition the subsets S ⊆ L where |S| = r into four cases:

(i) nq, np ∈ S

(ii) nq ∈ S and np /∈ S

(iii) nq /∈ S and np ∈ S

(iv) nq, np /∈ S

Pair each subset S ⊆ L with S ′ ⊆ L which is a copy of S where nq is replaced

by nq − 1 (if nq ∈ S) and np is replaced by np + 1 (if np ∈ S). Now consider

fr(L, n) − fr(L
′, n) as the sum of

( ∑
S

r+j−k
) − ( ∑

S′
r+j−k

)
for each of these pairings with

|S| = |S ′| = r. The pair will cancel if S is in case (i) or (iv) as
∑

S =
∑

S ′.

We will now pair the remaining paired cases to create groups of four. Let Sq and

Sp denote subsets from cases (ii) and (iii) respectively. Group each Sq with an Sp

by replacing nq with np. Let S
′
q and S ′p denote their corresponding copies where nq is

replaced by nq−1 (if nq ∈ S) and np is replaced by np+1 (if np ∈ S). Let t = r+j−k

and
∑

Sq = C+nq. Then
∑

Sp = C+np,
∑

S ′q = C+nq−1 and
∑

S ′p = C+np+1.

In fr(L, n)− fr(L
′, n) we obtain

(
C + np

t

)
+

(
C + nq

t

)
−

(
C + np + 1

t

)
−

(
C + nq − 1

t

)

Now we factor out t! in the denominator. We also factor Tp = (C + np) · · · (C +

np + 2− t) out of
(
C+np

t

)− (
C+np+1

t

)
and Tq = (C + nq − 1) · · · (C + nq + 1− t) out of(

C+nq

t

)− (
C+nq−1

t

)
. Note as nq − np > 1 then Tq > Tp. Furthermore:

((C + np + 1− t)− (C + np + 1))Tp + (C + nq − (C + nq − t))Tq

= −(t)Tp + (t)Tq

= t(Tq − Tp) > 0 for t > 1
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If t ≤ 1 then our grouping is 0. Thus each grouping in fr(L, n)−fr(L
′, n) is greater

than or equal to zero and fr(L, n)− fr(L
′, n) ≥ 0. As 0 ≤ r ≤ k then r − k ≤ 0 and

max(t) = j ≥ 2. What this means is for every j and k, there exists an r > 0 such

that t > 1 and thus fr(L, n)− fr(L
′, n) > 0. Furthermore f(L, n)− f(L′, n) > 0 and

we get our contradiction.

�

For every connected graph G of order n ≥ 3, with domination polynomial

D(G, x) = anx
n + an−1xn−1 + . . . a1x, the coefficients an and an−1 are 1 and n respec-

tively. The remaining coefficients are not so easily determined. Using Lemma 2.4.3

we can deduce an−j =
(
n
j

)
for j up to δ(G). If the vertices with degree δ(G) have

distinct closed neighbourhoods then an−δ(G) =
(

n
δ(G)

)− tδ(G) where tδ(G) is the number

of vertices with degree δ(G).

We will now explore a method to find the global lower bound for coefficients of

domination polynomials for connected graphs of order n.

By Algorithm 1 we know that the coefficients of D(G, x) are bounded below by

the domination polynomial for a disjoint union of k star graphs. By Lemma 3.1.6,

the coefficients of the domination polynomial for a disjoint union of k star graphs can

be bounded below by making the number of leafs in each star graph roughly equal.

That is, for any two stars the number of leafs in each star can differ by at most one.

For k star graphs there is only one way to divide the number of leafs in such a way.

Let Sn,k = K1,n1 ∪K1,n2 ∪ . . . ∪K1,nk
where |ni − nj| ≤ 1 for each ni and nj. As G is

connected, it is has no isolated vertices, so any resultant graph from Algorithm 1 will

have no isolated vertices. Moreover, each star has at least two vertices and k ≤ �n
2
�.

Finally by computing Sn,k for k from one up to �n
2
� then taking the smallest coefficient

an−j for each j we find a lower bound for a connected graphs of order n.

As an example, we will determine the lower bound for coefficients of the Domina-

tion Polynomial of connected graphs of order 10. We begin with the five possibilities

for S10,k:
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S10,1 = K1,9

S10,2 = K1,4 ∪K1,4

S10,3 = K1,2 ∪K1,2 ∪K1,3

S10,4 = K1,1 ∪K1,1 ∪K1,2 ∪K1,2

S10,5 = K1,1 ∪K1,1 ∪K1,1 ∪K1,1 ∪K1,1

As we know the domination polynomial for the product of stars we can obtain

each domination polynomial for S10,k:

D(S10,1, x) = x10 + 10x9 + 36x8 + 84x7 + 126x6 + 126x5 + 84x4 + 36x3 + 9x2 + x

D(S10,2, x) = x10 + 10x9 + 37x8 + 68x7 + 78x6 + 58x5 + 28x4 + 8x3 + x2

D(S10,3, x) = x10 + 10x9 + 38x8 + 69x7 + 64x6 + 33x5 + 9x4 + x3

D(S10,4, x) = x10 + 10x9 + 39x8 + 74x7 + 69x6 + 28x5 + 4x4

D(S10,5, x) = x10 + 10x9 + 40x8 + 80x7 + 80x6 + 32x5

Then by taking the minimum coefficient for each power we obtain the lower bound

for the coefficients of all domination polynomials of degree 10. Although a disjoint

union of stars is not connected, the center of each star is domination-covered. Ir-

relevant edges can be added to connect each star without changing the domination

polynomial. Therefore the following bounds are tight for connected graphs:

a10 ≥ 1 a9 ≥ 10 a8 ≥ 36 a7 ≥ 68 a6 ≥ 64

a5 ≥ 28 a4 ≥ 0 a3 ≥ 0 a2 ≥ 0 a1 ≥ 0

For graphs of order ten the value of k which minimizes a8, a7, a6, and a5 seems

linear. We find that a8 is minimized when k = 1, a7 is minimized when k = 2, a6

is minimized when k = 3, and a5 is minimized when k = 4. This is true for other

small values of n but not all n. It remains open which values of k will minimize the

coefficients of the domination polynomial of connected graphs. Below we give a table

of the lower bound on coefficients of domination polynomials for connected graphs

up to order 11.
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n\j 1 2 3 4 5 6 7 8 9 10 11

1 1

2 2 1

3 1 3 1

4 0 3 4 1

5 0 2 6 5 1

6 0 0 6 10 6 1

7 0 0 4 14 15 7 1

8 0 0 0 13 26 21 8 1

9 0 0 0 8 30 44 28 9 1

10 0 0 0 0 28 64 68 36 10 1

11 0 0 0 0 16 69 117 100 45 11 1

Table 3.1: The lower bound on d(G, j) for connected graphs up to order 11

For comparison to Table 3.2 we also give a table of the uppers bound on coefficients

of domination polynomials for connected graphs up to order 11. Note these are just

the coefficients of the complete graphs as every non-empty subset is a dominating set.

n\j 1 2 3 4 5 6 7 8 9 10 11

1 1

2 2 1

3 3 3 1

4 4 6 4 1

5 5 10 10 5 1

6 6 15 20 15 6 1

7 7 21 35 35 21 7 1

8 8 28 56 70 56 28 8 1

9 9 36 84 126 126 84 36 9 1

10 10 45 120 210 252 210 120 45 10 1

11 11 55 165 330 462 462 330 165 55 11 1

Table 3.2: The upper bound on d(G, j) for connected graphs up to order 11
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3.2 Coefficients of domination polynomials using graph properties

In [2] Akbari, Alikhani and Peng used d(Pn, n− 1), d(Pn, n− 2), and d(Pn, n− 3) to

determine some properties of the graphs which are D-equivalent to Pn. For a general

graph G with order n, d(G, n − 1) and d(G, n − 2) are known. In this section we

will determine d(G, n − 3) for a general graph and d(G, n − 4) for graphs in a new

collection of graphs denoted, Gk(m).

When counting the number of dominating sets with cardinality close to n, it may

simplify things to count the number of subsets which are not dominating. A subset

S ⊆ V (G) is not dominating if there exists a vertex v in G such that none of its

neighbours, nor itself, is in S. That is, N [v] ∩ S = ∅. The next lemma will help

us identify which subsets are not dominating by looking at the subset’s complement

(with respect to V ). If there exists a vertex v and subset S ⊆ V such that N [v] ⊆ S

then we say S encompasses v or v is encompassed by S.

Lemma 3.2.1 For a graph G and S ⊆ V (G), S is not dominating if and only if

there exists a vertex v ∈ S which is encompassed by S.

Proof. If there exists a vertex v ∈ S which is encompassed by S then N [v] ⊆ S.

Thus N [v] ∩ S = ∅ and S is not a dominating set. On the other hand, if S is not

dominating then there exists a vertex v in G such that N [v] ∩ S = ∅. However

N [v] ⊆ V (G) and V (G) = S ∪ S therefore N [v] ∩ (S ∪ S) = N [v]. Moreover

N [v] ∩ (S ∪ S) = (N [v] ∩ S) ∪ (N [v] ∩ S) = N [v] ∩ S.

Hence N [v] ∩ S = N [v] and there exists a vertex v ∈ S such that N [v] ⊆ S.

�

Using Lemma 3.2.1 we can now determine the number of dominating sets by

counting the number of subsets of vertices with a given cardinality which contain the

closed neighbourhood of one of its vertices. In the next lemma we will use the same

methods to determine d(G, n− k) for all k, for a graph G of order n with no isolated

vertices and no K2 components. We first define some graph variables



35

• Tr: The set of degree r vertices in G which are not stems.

• W : The set of all stems in G.

• ω: The number of stems in G.

• S1, S2, . . . Sω: The sets of leaves corresponding to each stem in G.

• Hk: A subset of vertices in G with cardinality k (also referred to as a k-subset).

• fG(Hk, U): Returns the number of vertices of U , which are encompassed by Hk.

l1

l2

l3

s1 s2

l4 l5

v1

v2

v3

v4 s3

l6

v5

v6

v7

v8

v9

v10

v11

v12

s4

l7

Figure 3.3: An example of a graph

For an example of the aforementioned variables see the graph in Figure 3.3.

The set of stems W is {s1, s2, s3, s4} and ω = 4. There are no degree zero ver-

tices therefore T0 = ∅. There are six degree one vertices (leaves), none of which

are stems, therefore T1 = {l1, l2, l3, l4, l5, l6, l7}. There are 13 degree two vertices,

one of which (s4) is a stem, so T2 = {vi|1 ≤ i ≤ 12}. The sets of leaves are

S1 = {l1, l2, l3}, S2 = {l4, l5}, S3 = {l6}, and S4 = {l7}. An example of an 8-

subset is H8 = {s3, s4, l1, l6, l7, v2, v11, v12}. The vertices which are encompassed by

H8 are s4, l6, l7, v11, and v12. Therefore fG(H8, V ) = 5 and fG(H8, V − W ) = 4 as

s4 ∈ W .
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Lemma 3.2.2 For a graph G of order n with no K2 components and k ∈ N, where

2 ≤ k ≤ n− γ(G), then

d(G, n− k) =

(
n

k

)
−

( k−1∑
i=0

|Ti|
(
n− i− 1

k − i− 1

)
−

∑
Hk⊆V
|Hk|=k

max(fG(Hk, V −W )− 1, 0)

)
.

Proof. As there are
(
n
k

)
k-subsets of vertices in G,

(
n
k

)− d(G, n− k) is the number

of (n−k)-subsets of G which are not dominating. Thus by Lemma 3.2.1, the number

of (n− k)-subsets which are not dominating is equivalent to the number of k-subsets

which encompass at least one vertex. Therefore it is sufficient to show the number of

k-subsets which encompass at least one vertex is

k−1∑
i=1

|Ti|
(
n− i− 1

k − i− 1

)
−

∑
Hk⊆V
|Hk|=k

max(fG(Hk, V −W )− 1, 0).

For each vertex v ∈ Ti, its closed neighbourhood has order i + 1. If i ≤ k − 1 then

there are
(
n−i−1
k−i−1

)
k-subsets which encompass v. If i > k − 1 then |N [v]| > k and no

k-subset can encompass v. Therefore the first term’s count includes every k-subset

which encompasses a non-stem vertex. We omit the stems of G as any k-subset which

encompasses a stem s must also encompass one of its leaves l as N [l] ⊆ N [s]. Hence

each of these k-subsets are counted when we count every k-subset which contains l.

If a k-subset Hk encompasses at least one vertex, we wish only count it once.

However our first term counts each k-subset for each non-stem vertex it encompasses.

That is, each Hk is counted fG(Hk, V −W ) times and hence over counted fG(Hk, V −
W )−1 times. In the case where fG(Hk, V −W ) ≤ 1 then we have not over counted. As

this implies fG(Hk, V −W )−1 ≤ 0, it is sufficient subtract max(fG(Hk, V −W )−1, 0)

for each Hk of G. This gives us the second term.

�

Note in Lemma 3.2.2 we require G to have no K2 components as, in a K2, each

vertex is both a stem and a leaf and not in T0. Therefore we would not count every

k-subset which encompasses the vertices of the K2 component.

We can now use Lemma 3.2.2 to determine if graphs which are D-equivalent to G

have particular subgraphs of a given order k. In this regard we now define a particular
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subgraph in G. An r-loop is an induced r-cycle in G such that all but one vertex has

degree two in G. Of course, the one vertex which is not degree two must have degree

greater than two. Examples of L3 and L4 are shown in Figure 3.4. The vertex which

is not of degree two is shaded gray. Other examples of r-loops can be found in Figure

3.3; the vertices s3, v11, and v12 form a 3-loop, and the vertices s3, v5, v6, . . . , v10 form

a 7-loop. The vertices s4, v1, v2, and v3 also form a 4-loop.

(a) L3 (b) L4

Figure 3.4: Examples of Ln sub-graphs of G

In Lemma 3.2.2, the value of k limits fG(Hk, V −W ) and Hk. As Hk has order

k, it can encompass at most k vertices hence fG(Hk, V − W ) ≤ k. Furthermore if

fG(Hk, V −W ) > 1 then Hk encompasses a vertex v. Therefore N [v] ⊆ Hk and hence

|N [v]| ≤ k. Furthermore any vertex Hk encompasses must have degree less than k.

In the next lemma we will use Lemma 3.2.2 to determine d(G, n−3) for a graph G of

order n with no isolated vertices and no K2 components. Before we begin, we define

some graph variables which represent certain geometrical features for a given graph

G which will be used in Theorem 3.2.3 and Theorem 3.2.6.

• Lr: The set of r-loop subgraphs in G.

• Li
r: The set of r-loop subgraphs in G which contain stem i.

• Cr: The set of components which are cycles of order r in G.

Theorem 3.2.3 For a graph G of order n where G has no isolated vertices and no

K2 components,

d(G, n− 3) =

(
n

3

)
−

(
|T1| · (n− 2) + |T2| −

ω∑
i=1

(|Si|
2

)
− |L3| − 2|C3|

)
.
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Proof. By Lemma 3.2.2 we know

d(G, n− 3) =

(
n

3

)
−

( 2∑
i=0

|Ti|
(
n− i− 1

3− i− 1

)
−

∑
H3⊆V

max(fG(H3, V −W )− 1, 0)

)
.

As G has no isolated vertices, |T0| = 0 and
∑2

i=0 |Ti|
(
n−i−1
3−i−1

)
= |T1| · (n − 2) + |T2|.

Now it is sufficient to show

∑
H3⊆V

max(fG(H3, V −W )− 1, 0) =
ω∑

i=1

(|Si|
2

)
+ |L3|+ 2|C3|. (3.1)

max(fG(H3, V −W )− 1, 0) is only non-zero when fG(H3, V −W ) ≥ 2. Therefore we

wish to find 3-subsets of G which encompass two or more non-stem vertices. Let H

be an arbitrary 3-subset of G which encompass two or more non-stem vertices. As H

has order three then the non-stem vertices which it encompasses have degree at most

two. As G has no isolated vertices then the vertices which H encompass are either

all in T1 or all in T2 or both. Let S be the set of vertices which H encompasses. We

now count each H in the three aforementioned cases.

Case 1: S ∩ T1 �= ∅ and S ∩ T2 = ∅

Let the three vertices of H be u, v, and w. As H has order three then it either

encompasses two or three vertices in T1. Without loss of generality let u and v

be two of the vertices encompassed by H. Then u, v ∈ T1 and as G has no K2

components then u and v are not adjacent. Furthermore as deg(u) = deg(v) = 1 and

H encompasses both u and v then N(u) = {w} and N(v) = {w}. Therefore u and v

are each leaves on the same stem w.

Case 2: S ∩ T1 = ∅ and S ∩ T2 �= ∅

Let the three vertices of H be u, v, and w. As H has order three then it either

encompasses two or three vertices in T2. Without loss of generality let u and v be

two of the vertices encompassed by H. Then u, v ∈ T2 and N(u) = {v, w} and

N(v) = {u, w}. Therefore H induces a 3-cycle in G and {u, v} ⊆ N(w) . This leaves
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us with two possibilities for H, either deg(w) = 2 or deg(w) > 2. If deg(w) = 2 then

H is a 3-cycle component of G. If deg(w) > 2 then H is a 3-loop in G.

Case 3: S ∩ T1 �= ∅ and S ∩ T2 �= ∅

We claim this case is impossible. If S contains at least one vertex from both T1 and

T2 then let v ∈ T2 with N(v) = {u, w}. As H encompasses v then u and w are both

vertices in H. Moreover as H is order three and S contains at least one vertex in T1

then either u ∈ T1 or w ∈ T1. Without loss of generality let u ∈ T1. Then u is a

leaf and has only one neighbour, v. But then v is a stem and by definition not in T2

which is a contradiction.

Our three cases have produced three possible 3-subsets which encompass two or

more non-stem vertices: two leafs on the same stem, 3-cycle components, and 3-

loops. The three cases for H are shown in Figure 3.5. Note the vertices which are

encompassed by H are shaded.

(a) (b) (c)

Figure 3.5: Every 3-subset which encompasses two or more non-stems

Now we need only to sum fG(H, V −W )− 1 for each 3-subset. We will sum each

fG(H, V −W )− 1 by evaluating fG(H, V −W )− 1 each case then multiplying it by

the number of times it occurs in G.

If H is two leafs on the same stem then fG(H, V −W )− 1 = 1. This 3-subset will

occur
(|Si|

2

)
times for each stem. If H is a 3-loop then fG(H, V −W ) − 1 = 1. This

3-subset will occur |L3| times. If H is a 3-cycle component then fG(H, V −W )−1 = 2.

This 3-subset will occur |C3| times. Taking the sum of each of the cases gives use the
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right hand side of equation (3.1).

�

We now introduce the collection of graphs Gk(m). First we define the two gener-

alized graphs G(m) and G′(m). Let Pm be a path with vertices labelled y1, . . . , ym.

Let v be a specific vertex in a graph G. Denote by Gv(m) (or simply G(m)) a graph

obtained from G identifying the vertex v with y1. This is illustrated in Figure 3.6 (a).

Although Gv(m) can change depending on v, we will refer to a graph which takes the

form of a Gv(m) graph as a G(m) graph. It is common to refer to G(m) multiple

times with varying length paths (i.e. G(m− 1), G(m− 2), G(m− 3)). In this case we

assume the graph G and vertex are fixed. Similarly let a, b be two specific vertices in

G (it is possible for a = b). Denote G′a,b(m) (or simply G′(m)) a graph obtained from

G identifying the vertices a and b with end vertices y1 and ym. This is illustrated in

Figure 3.6 (b). Although G′a,b(m) can change depending on a and b, we will refer to

a graph which takes the form of a G′a,b(m) graph as a G′(m) graph. It is common to

refer to G′(m) multiple times with varying length paths (i.e. G′(m − 1), G′(m − 2),

G′(m− 3)). In this case we assume the graph G and vertices a and b are fixed

G

y1 = v y2 y3 ym

. . .

(a) G(m)

G
y1 = a y2

y3

y4

ym−3

ym−2
ym−1ym = b

...

(b) G′(m)

Figure 3.6: G(m) and G′(m)

Note a path is a G(m) graph where G is a single vertex. Moreover any graph

with a leaf is a G(m) graph as the leaf and its respective stem are a path of order

two. A cycle is a G′(m) graph where G = K2. In [4] Alikhani proved the recurrences

for graphs G(m) and G′(m) before showing the recursion also applied to paths and

cycles with the only difference in the initial conditions.
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Theorem 3.2.4 [4] For every m ≥ 5

D(Gv(m), x) = x(D(Gv(m− 1), x) +D(Gv(m− 2), x) +D(Gv(m− 3), x))

and

D(G′a,b(m), x) = x(D(G′a,b(m− 1), x) +D(G′a,b(m− 2), x) +D(G′a,b(m− 3), x))

�

We will use Theorem 3.2.4 to show D(G,−2) �= 0 if certain conditions hold.

The domination polynomial is multiplicative across components and D(K2,−2) = 0.

Therefore, if G has a K2 component then D(G,−2) = 0. That is, D(G,−2) �= 0

implies G has no K2 components. This is vital to proving the domination equivalence

classes of paths.

We now introduce a new collection of graphs.

Definition 3.2.5 Gk(m) denotes the set of all G(m) and G′(m) graphs restricted to

those with maximum non-stem degree k. In other words, a vertex is either a stem or

has degree at most k.

Our focus will be when k = 2. Two familiar families of graphs in G2(m) are paths

and cycles. Another example of a graph in G2(m) was shown in Figure 3.3. For a

graph H of order n, if ω + |T1| + |T2| = n, clearly the highest non-stem degree is

no more than two. However, we claim this also implies H takes the form of either a

G(m) or G′(m) and hence H ∈ G2(m). If |T1| > 0, H has a leaf and hence takes the

form of a G(m) graph. If |T1| = 0, ω = 0 and H is 2-regular. As the only 2-regular

graphs are cycles, H takes the form of a G′(m) graph. Note if G ∈ G2(m) and G has

a r-loop then the one vertex of the r-loop which is not degree two is a stem.

In the next lemma we will determine d(G, n− 4) for a graph G ∈ G2(m) of order

n with no isolated vertices and no K2 components. This will allow us to characterize

any graphs D-equivalent to graphs in G2(m). Before we begin, we will partition T2

into subsets based on the number of neighbouring stems.



42

• V0: The subset of T2 with no adjacent stems.

• V i
1 : The subset of T2 adjacent to exactly one stem, stem i.

• V ij
2 : The subset of T2 adjacent to exactly two stems, stems i and j (denoted V2

when G only has two stems ).

Theorem 3.2.6 Let G ∈ G2(m) be a graph of order n with no isolated vertices and

no K2 components. Then

d(G, n− 4) =

(
n

4

)
−

(
|T1|

(
n− 2

2

)
+ |T2|(n− 3)− α1 − α2 − α3

)
where

α1 =
ω∑

i=1

(|Si|
2

)
(n− |Si| − 1) +

ω∑
i=1

|Si|
2
(|T1| − |Si|) + 2

ω∑
i=1

(|Si|
3

)
,

α2 =
ω∑

i=1

|V i
1 ||Si|+

∑
i �=j

|V ij
2 |(|Si|+ |Sj|), and

α3 = |V0|+
ω∑

i=1

|V i
1 |
2

+
∑
i �=j

(|V ij
2 |
2

)− |C4|+ |C3|(2n− 9) +
ω∑

i=1

|Li
3|(n− 4− |Si|).

Proof. By Lemma 3.2.2 we know

d(G, n− 4) =

(
n

4

)
−

( 3∑
i=0

|Ti|
(
n− i− 1

4− i− 1

)
−

∑
H4⊆V

max(fG(H4, V −W )− 1, 0)

)
.

As G has no isolated vertices, |T0| = 0 and
∑3

i=0 |Ti|
(
n−i−1
4−i−1

)
= |T1|

(
n−2
2

)
+ |T2|(n− 3)

(since G ∈ G2(m) implies |T3| = 0). Now it is sufficient to show

∑
H4⊆V

max(fG(H4, V −W )− 1, 0) = α1 + α2 + α3. (3.2)

max(fG(H4, V −W ) − 1, 0) from the left hand side of equation 3.2 is only non-zero

when fG(H4, V −W ) ≥ 2. Therefore we wish to find 4-subsets of G which encompass

two or more non-stem vertices. Let H be an arbitrary 4-subset of G which encompass

two or more non-stem vertices. As G ∈ G2(m) then each non-stem vertex has degree

at most two. Furthermore as G has no isolated vertices then the vertices which H
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encompass are either all in T1 or all in T2 or both. Let S be the set of non-stem

vertices which H encompasses. We now count each H in the three aforementioned

cases.

Case 1: S ∩ T1 �= ∅ and S ∩ T2 = ∅

Let the four vertices of H be w, x, y, and z. As H encompasses at least two non-

stem vertices then, without loss of generality, let w and x be encompassed by H.

Then w, x ∈ T1 and and as G has no K2 components then w and x are not adjacent.

Therefore they are either leafs on the same stem, or leaves on different stems. If w and

x are leaves on different stems then y and z are each stems and the only non-stems H

encompasses are w and x. If w and x are leaves on the same stem then without loss

of generality let y be the stem adjacent to w and x. Then z is either a third leaf on y

or not. If z is a leaf on the stem y then H encompasses x, w and z. If z is not a leaf

on y then H encompasses only w and x. The subgraphs which H induce are shown

in Figure 3.7. Dark gray vertices are stems, light gray vertices are encompassed by

H and dashed edges are possible edges.

w x

yz

(a)

w x

yz

(b)

w x

yz

(c)

Figure 3.7: Every 4-subset which encompasses two or more vertices, all of which are
in T1

Now we need only to sum fG(H, V −W )− 1 for each 4-subset. We will sum each

fG(H, V −W )− 1 by evaluating fG(H, V −W )− 1 for each case then multiplying it

by the number of times it occurs in G.

If H encompasses two leaves on different stems (Figure 3.7 (a)) then fG(H, V −
W ) − 1 = 1. This 4-subset will occur

∑ω
i=1

|Si|
2
(|T1| − |Si|) times. If H encompasses

three leaves on the same stem (Figure 3.7 (b)) then fG(H, V −W ) − 1 = 2. This 4-

subset will occur
∑ω

i=1

(|Si|
3

)
times. If H encompasses two leaves on the same stem and

another vertex which is not on that stem (Figure 3.7 (c)) then fG(H, V −W )−1 = 1.

This 4-subset will occur
∑ω

i=1

(|Si|
2

)
(n−|Si|− 1) times. Taking the sum of each of the
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cases gives us α1.

Case 2: S ∩ T1 �= ∅ and S ∩ T2 �= ∅

Let the four vertices of H be w, x, y, and z. As H encompasses at least one vertex in

T2 and at least one vertex in T1 then without loss of generality let x be encompassed

by H and x ∈ T2 where N(x) = {w, y}. As x ∈ T2 then x is not a stem. Therefore w

and y are not leaves and hence not in T1. As H must encompass at least one vertex

in T1 then z ∈ T1. Without loss of generality let N(z) = {y}. Note that the vertices

of H are uniquely determined by the neighbourhoods of x and z. Furthermore y must

be a stem and w can either be a stem, in T2 and encompassed by H, or in T2 and not

encompassed by H. Each case induces a subgraph shown in Figure 3.8. Dark gray

vertices are stems, light gray vertices are encompassed by H and dashed edges are

possible edges.

w x

yz

(a)

w x

yz

(b)

w x

yz

(c)

Figure 3.8: Every 4-subset which encompasses at least one vertex from T1 and at
least one vertex from T2

If w is a stem (Figure 3.8 (a)) then fG(H, V −W )− 1 = 1 and x ∈ V ij
2 for some

stems i and j. This 4-subset will occur |Si|+ |Sj| times for every T2 vertex adjacent

to stems i and j. As the number of T2 vertices adjacent to stems i and j is V ij
2 then

this 4-subset will occur
∑
i �=j

|V ij
2 |(|Si|+ |Sj|) times.

If w is not a stem (Figure 3.8 (b) and (c)) then x ∈ V i
1 and z ∈ Si for some stem

i. As H is uniquely determined by the closed neighbourhoods of x and z then we can

count these by choosing one vertex from V i
1 and one vertex from Si for each stem i.

This gives us the term
ω∑

i=1

|V i
1 ||Si|. The subgraph in Figure 3.8 (b) will be counted

twice for each instance in G and subgraph in Figure 3.8 (c) will be counted once for

each instance in G. But that is exactly equal to fG(H, V −W )− 1 for each of these

cases. Hence
ω∑

i=1

|V i
1 ||Si| is equal to fG(H, V − W ) − 1 multiplied by the number of

times it occurs in G.
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Taking the sum of terms for when w is a stem and when w is not a stem gives us

α2.

Case 3: S ∩ T1 = ∅ and S ∩ T2 �= ∅

We will generate every possible such subgraph by first constructing the induced sub-

graphs of 4-subsets which encompass at least one degree two vertex. Clearly the

smallest (fewest edges) such subgraph is P3 ∪ K1 as shown in Figure 3.9 (a). We

can then construct the other such subgraphs by adding every combination of the

four omitted edges and removing any isomorphisms. This generates the seven other

subgraphs shown in Figure 3.9.

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 3.9: Every subgraph with four vertices containing at least one degree two
vertex

We now narrow the subgraphs in Figure 3.9 to subgraphs which encompass two

or more vertices in T2. Simply put, each subgraph must contain at least two degree

two vertices which are not stems. As subgraph (a) and (b) only contain one vertex

for degree greater than one, they do not fit our criteria. As these subgraphs are from

a graph in G2(m), any vertex with degree greater than two must be a stem and hence

not in T2. As each vertex in subgraph (h) is degree three then they are all stems

and not in T2. Therefore subgraph (h) does not fit our criteria and we need only to

consider subgraphs (c), (d), (e), (f), and (g).

Of the remaining subgraphs we must consider the possibility that some degree two

vertices are not in T2 or are not encompassed by H. As each subgraph must contain

at least two T2 vertices then the degree two vertices in subgraphs (c), (e), and (g)

cannot be stems. Each case is shown in Figure 3.10 where stems are the dark gray
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vertices and the vertices in T2 are in light gray.

v1

v2 v3

v4

(i)

v1

v2 v3

v4

(ii)

s1

v2 v3

v4

(iii)

s1

v2 v3

v4

(iv)

v1

v2 v3

v4

(v)

s1

v2 v3

v4

(vi)

s1

v2 v3

s4

(vii)

s1

v2 s3

v4

(viii)

s1

v2 s3

v4

(ix)

Figure 3.10: Every subgraph with four vertices containing two or more vertices in T2

Note that in Figure 3.10 the white vertices are not encompassed and can either

be stems, T1, or T2 vertices. However as we are examining the case where H only

encompasses T2 vertices then v1, v4 from (i) and v4 from (iv) are not T1 vertices.

Now we need only to sum fG(H, V −W )− 1 for each 4-subset. We will sum each

fG(H, V −W )−1 by evaluating fG(H, V −W )−1 for each case, then multiplying the

result by the number of times the subgraph occurs in G. We may also group some

cases for simplicity.

Cases (i) − (vii) from Figure 3.10 all encompass the adjacent T2 vertices v2 and

v3. Furthermore N [v2] �= N [v3] in the cases (i), (v), (vi), and (vii). Therefore

|N [v2] ∪N [v3]| = 4 and any subset would require four vertices to encompass both v2

and v3. Therefore there is exactly one 4-subset of G which encompasses v2 and v3.

As there is exactly one edge between v2 and v3 in G then we can relate the number

of edges between T2 vertices in G and the sum of fG(H, V −W )− 1 for cases (i), (v),

(vi), and (vii). We will count the total number edges between T2 vertices in G by sum

half the number of T2 vertices each T2 vertex is adjacent to. We will then subtract

the number of edges between T2 vertices which have the same closed neighbourhood

as there are multiple 4-subsets which encompass them. We will also adjust for cases

where the number of edges between T2 vertices does not equal fG(H, V −W )− 1.

In a G2(m) graph, the neighbours of a T2 vertex are either stems or other T2

vertices. Each vertex in V0 is adjacent to two other T2 vertices. Each vertex in V i
1 ,

for any stem i, is adjacent to one other T2 vertex. Each vertex in V ij
2 , for any stems
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i and j, is adjacent to no other T2 vertices. Therefore the number of edges between

T2 vertices in G is

1

2

(
2|V0|+

ω∑
i=1

|V i
1 |
)
.

If two adjacent T2 vertices have the same closed neighbourhood then they induce a

3-cycle. Furthermore, as at least two of the vertices of the 3-cycle are in T2, then

the induced 3-cycle is either a 3-loop or 3-cycle component in G. As each 3-loop

contains one edge between T2 vertices and each 3-cycle component contains three

edges between T2 vertices we subtract |L3| + 3|C3| from the total number of edges

between T2 vertices.

In cases (i), (vi), and (vii) the number of edges between T2 vertices equals

fG(H, V −W ) − 1. However in case (v), which is a C4 component of G, fG(H, V −
W )− 1 = 3 and there are 4 edges between T2 vertices. Hence we must also subtract

one for each C4 component of G. Therefore the sum of fG(H, V −W ) − 1 for cases

(i), (vi), (v), and (vii) is

1

2

(
2|V0|+

ω∑
i=1

|V i
1 |
)
− |L3| − 3|C3| − |C4|.

For case (ii), fG(H, V −W )− 1 = 2. Case (ii) is a C3 component with any other

vertex. Thus for each C3 component there is n − 3 such 4-subsets. Therefore the

number of instances of case (ii) is |C3|(n− 3).

For cases (iii) and (iv), fG(H, V −W ) − 1 = 1. Cases (iii) and (iv) are 3-loops

in G with any other vertex which is not a T1 adjacent to the stem. This is true

because H does not encompass any T1 vertices and hence cannot contain both a stem

and one of its leaves. The number of instances of the cases (iii) and (iv) in G is∑ω
i=1 |Li

3|(n− 3− |Si|).
For cases (viii) and (ix), fG(H, V − W ) − 1 = 1. Cases (viii) and (ix) are two

T2 vertices adjacent to the same two stems. Therefore for each pair of stems i and j,

there are
(|V ij

2 |
2

)
such 4-subsets. Therefore the number of instances of cases (viii) and

(ix) is
∑

i �=j

(|V ij
2 |
2

)
.

The sum of fG(H, V −W )− 1 = 1 for cases (i)− (ix) yields
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1

2

(
2|V0|+

ω∑
i=1

|V i
1 |
)
+
∑
i �=j

(|V ij
2 |
2

)
−|L3|−3|C3|−|C4|+2|C3|(n−3)+

ω∑
i=1

|Li
3|(n−3−|Si|).

Combining like terms and the fact |L3| =
∑ω

i=1 |Li
3| gives us α3,

|V0|+
ω∑

i=1

|V i
1 |
2

+
∑
i �=j

(|V ij
2 |
2

)
− |C4|+ |C3|(2n− 9) +

ω∑
i=1

|Li
3|(n− 4− |Si|).

�

Let Gm be a graph in Gk(m). In the next lemma we will show that, if the

magnitude of D(Gi,−2) is non-zero, increasing and of alternating sign for the four

consecutive integers i = N,N + 1, N + 2, N + 3, then D(Gm,−2) �= 0 for m ≥ N .

This allows us to show that any G ∼ Gm does not have any K2 components, since

D(K2,−2) = 0, if G had a K2 component then D(G,−2) = 0 as well.

Lemma 3.2.7 Fix k ≥ 1. Suppose we have a sequence of graphs (Gm)m≥1 so that

Gm ∈ Gk
v(m) for all m. If for some N ∈ N

0 < |D(GN ,−2)| < |D(GN+1,−2)| < |D(GN+2,−2)| < |D(GN+3,−2)|

and D(GN ,−2), D(GN+1,−2), D(GN+2,−2), D(GN+3,−2) have alternating sign,

then D(Gm,−2) �= 0 for m ≥ N .

Proof. Before we begin we will recall the recurrence from Theorem 3.2.4 valued

at x = −2:

D(Gm,−2) = −2(D(Gm−1,−2) +D(Gm−2,−2) +D(Gm−3,−2)).

Through induction we will show the magnitude of D(Gm,−2) is increasing in absolute

value and alternating in sign for all m ≥ N + 3. As |D(GN ,−2)| > 0 then this will

imply D(Gm,−2) �= 0 for m ≥ N .

Suppose for some k ≥ N + 3, D(GN+3,−2), . . . , D(Gk,−2) alternate in signs

and increase in absolute value. Then we will first show D(Gk+1,−2) has opposite
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sign to D(Gk,−2). First assume D(Gk,−2) > 0 (a similar argument holds when

D(Gk,−2) < 0). Then D(Gk−1,−2) < 0 and D(Gk−2,−2) > 0. By our induction

assumption, the magnitude D(Gm,−2) is strictly increasing for N + 3 ≤ m ≤ k.

Therefore

D(Gk,−2) +D(Gk−1,−2) +D(Gk−2,−2) > 0

.

When we multiply the left side of the above inequality by −2, from the recurrence

relation for D(Gk,−2) we will obtain D(Gk+1,−2). The signs continue to alternate.

We now show |D(Gk+1,−2)| > |D(Gk,−2)|. We consider the two cases:

D(Gk,−2) > 0 and D(Gk,−2) < 0.

If D(Gk,−2) > 0 then D(Gk−1,−2) < 0, D(Gk−2,−2) > 0, and D(Gk−3,−2) <

0. By our induction assumption, the magnitude D(Gm,−2) is strictly increasing.

Therefore

D(Gk−1,−2) +D(Gk−2,−2) +D(Gk−3,−2) < D(Gk−1,−2) +D(Gk−2,−2) < 0

.

By the recurrence relation for D(Gk,−2) we deduce

D(Gk,−2) = −2(D(Gk−1,−2) +D(Gk−2,−2) +D(Gk−3,−2))

> −2(D(Gk−1,−2) +D(Gk−2,−2))

As D(Gk+1,−2) < 0 then

|D(Gk+1,−2)| = −D(Gk+1,−2)

= −(−2(D(Gk,−2) +D(Gk−1,−2) +D(Gk−2,−2)))

= 2D(Gk,−2) + 2D(Gk−1,−2) + 2D(Gk−2,−2)

> D(Gk,−2)− 2(D(Gk−1,−2) +D(Gk−2,−2))

+2D(Gk−1,−2) + 2D(Gk−2,−2)

= D(Gk,−2)

= |D(Gk,−2)|
Therefore |D(Gk+1,−2)| > |D(Gk,−2)| and our claim is true. A similar argument

holds when D(Gk,−2) < 0.

�



Chapter 4

Equivalence Classes of Domination Polynomials

As stated in section 2.4, two non-isomorphic graphs can have the same domination

polynomial. In this chapter we will determine the equivalence class of paths, and give

some families of graphs which are D-equivalent.

4.1 Families of D-equivalent graphs

We now define what it is for a subset of vertices S to be domination-covered.

Definition 4.1.1 For a graph G, a subset of vertices S is domination-covered if

for each v ∈ S there exists an u ∈ V (G− S) such that NG[u] ⊆ NG[v].

Lemma 4.1.2 For a graph G and a domination-covered subset of vertices S every

dominating set on G− S is also a dominating set in G.

Proof. Consider a dominating set D of G − S. As S is domination-covered then

each vertex of v ∈ S has a neighbour u ∈ V (G− S) such that NG[u] ⊆ NG[v]. As D

dominates G − S and u ∈ V (G − S) there exists u′ ∈ D such that u′ ∈ NG−S[u] ⊆
NG[u] ⊆ NG[v]. Therefore each dominating set of G − S also dominates each v ∈ S

and thus is a dominating set in G. �

Domination-covered subsets form a simplicial complex. That is, if S is a domination-

covered subset then any S ′ ⊆ S is also a domination-covered subset. The next the-

orem simplifies the recurrence relation from Theorem 2.2.6 if G has a vertex whose

neighbourhood is a domination-covered subset. We will then obtain a corollary which

allows us to construct D-equivalent graphs from smaller D-equivalent graphs.

50
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Theorem 4.1.3 For a graph G, Let S ⊆ V (G) be a domination-covered subset. The

new graph G′ = G+v which is a copy of G with an added vertex v such that N(v) = S

has domination polynomial

D(G′, x) = (x+ 1)D(G, x)−D(G− S, x)

Proof. Consider the domination polynomial of G+ v. By Theorem 2.2.6, we have

D(G′, x) = xD(G′/v, x) +D(G, x) + xD(G− S, x)− (x+ 1)pv(G
′).

As S = NG′(v) is a dominating-covered subset, each vertex of w ∈ NG′(v) has a

neighbour u ∈ V (G − S) such that NG[u] ⊆ NG[w]. Thus each w ∈ NG′(v) is

domination-covered. The graph G′/v is just G with edges added which we claim are

irrelevant edges. As each w ∈ NG′(v) is domination-covered then by Theorem 2.4.14,

any edge added between two vertices of NG′(v) is irrelevant. Therefore D(G′/v, x) =

D(G, x). Furthermore pv(G
′) enumerate dominating sets ofG−S which also dominate

S. As S is a domination-covered subset, by Lemma 4.1.2 each dominating set of

G− S also dominates S and hence pv(G
′) = D(G− S, x). Thus we have D(G′, x) =

(x+ 1)D(G, x)−D(G− S). �

An example of Theorem 4.1.3 is shown in Figure 4.1. Every neighbour of v10 is a

stem and therefore domination-covered. G is just the disjoint union K1,1∪K1,2∪K1,3

and G + v10 − NG[v10] is six isolated vertices. Therefore D(G, x) = (x + 1)(x2 +

2x)(x(x+ 1)2 + x2)(x(x+ 1)3 + x3)− x6.

v10

v9 v8 v7

v6v5v4v3v2v1

(a) G+ v10

v9 v8 v7

v6v5v4v3v2v1

(b) G

Figure 4.1: An example of Theorem 4.1.3
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Corollary 4.1.4 For two D-equivalent graphs G and H, if SG ⊂ V (G) and SH ⊂
V (H) are each domination-covered subsets and G− SG ∼ H − SG, then the two new

graphs G+ v and H +u, where NG(v) = SG and NH(u) = SH , are also D-equivalent.

Examples of Corollary 4.1.4 are shown in Figure 4.2. The open neighbourhood of

v7 in both (a) and (b) form a domination-covered subset. Furthermore, as the graph

obtained by deleting v7 and N [v7] are isomorphic in both cases, (a) and (b) have the

same domination polynomial.

v1

v2

v3

v4 v5

v6

v7

(a)

v1

v2

v3

v4 v5

v6

v7

(b)

Figure 4.2: Examples of corollary 4.1.4

Recall for a graph G and vertex v ∈ V (G), pv(G) is the polynomial generated by

the dominating sets of G−N [v] which also dominate N(v). For a subset of vertices

S ⊆ V (G) let pS(G) be the polynomial generated by the dominating sets of G−N [S]

which also dominate N(S). The next theorem will state some general equivalence

conditions which make H1 ∼ H2 for the graphs in Figure 4.3.

Theorem 4.1.5 Consider a graph H with domination-covered subset T , and two

D-equivalent graphs G1 and G2 with A1 ⊆ V (G1) and A2 ⊆ V (G2). Suppose there

exists a bijection φ : A1 �→ A2 such that for every B ⊆ A1, pB(G1) = pφ(B)(G2). Let

H1 be a copy of H and G1 with any set of edges added from A1 to T and H2 be a copy

of H and G2 with the corresponding edges added from φ(A1) to T . Then H1 ∼ H2.

Proof. Let S be any dominating set of H1. Partition S in to SG1 = S ∩ V (G1)

and SH = S ∩ V (H). For simplicity we will say SG dominates the induced subgraph

G (G = G1, H) to mean the closed neighbourhood of SG in H1 contains every vertex

in G. Unless otherwise stated the neighbourhood of a vertex, or set of vertices, will
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H

T

A1

G1

(a) H1

H

T

A2

G2

(b) H2

Figure 4.3: A representation of Theorem 4.1.5

be its neighbourhood in H1. As G1 ∼ G2 then there is another bijection ψ from the

dominating sets of G1 to the dominating sets of G2 with equal cardinality.

We claim there is a map from every S to a unique dominating set S ′ in H2. We

consider S in the following four cases:

Case 1: SG1 dominates G1 and SH dominates H.

As G1 ∼ G2 then there is another bijection ψ from the dominating sets of G1 to the

dominating sets of G2 that preserves cardinality. Therefore ψ(SG1) is a corresponding

dominating set of G2 and S ′ = ψ(SG1)∪SH is a dominating set which dominates both

G2 and H and thus H2.

Case 2: SG1 dominates G1 but SH does not dominate H.

Let C ⊆ V (H) be the vertices of H not dominated by SH (i.e. C = H−N [SH ]). Note

SH dominates H − C but not H. We will show this case results in a contradiction

by showing SH dominates H. As S is a dominating set, then each vertex of C has a

neighbour in SG1 . Therefore each vertex in C is adjacent to a vertex in G1. The only

vertices of H adjacent to G1 are in T , therefore C ⊆ T . As T is a domination-covered
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subset in H then so to is C. By Lemma 4.1.2 any dominating set of H − C also

dominates H. Therefore SH dominates H, which is a contradiction, and this case is

not possible.

Case 3: SH dominates H but SG1 does not dominate G1.

Let C ⊆ V (G1) be the vertices of G1 not dominated by SG1 (i.e. C = G1 −N [SG1 ]).

Then SG1 dominates G1 − C but does not intersect the neighbourhood of C. We

observe that such sets SG1 contribute to pC(G1). As S is a dominating set, then each

vertex of C has a neighbour in SH . Therefore each vertex in C is adjacent to a vertex

in H. The only vertices of G1 adjacent to H are in A1. Therefore C ⊆ A1 and there is

a corresponding set φ(C) ⊆ A2 such that pC(G1) = pφ(C)(G2). Therefore there exists

another bijection ρ from the sets in G1 counted by the coefficients of pC(G1) to the

sets in G2 counted by the coefficients of pφ(C)(G2) preserving cardinality. Therefore in

H2, ρ(SG1) is a set of G2 which dominates G2 − φ(C). As C is not dominated by SG1

then each vertex in C is adjacent to a vertex of SH . Therefore in H2, each vertex in

φ(C) is adjacent to the corresponding vertex of SH . It follows that SH still dominates

H and also dominates φ(C). As ρ(SG1) is unique for each SG1 then S ′ = ρ(SG1)∪SH

is the corresponding dominating set of H2.

Case 4: SG1 does not dominate G1 and SH does not dominates H.

By the same arguments used in case 2, S cannot dominate H1 without SH dominating

H. Hence we get a contradiction and this case is not possible.

For each dominating set S of G1 there is a dominating set of equal cardinality

S ′ of G2. By symmetry the same is true for each dominating set S ′ of G2, and so

H1 ∼ H2. �

The polynomial pv(G) is not always intuitive to find. However once two D-

equivalent graphs are found with the properties stated in Theorem 4.1.5, you can

build infinitely many D-equivalent graphs. Consider a case where our subset A1 ⊆ G1

is only of size one. Then A2 ⊆ G2 is only of size one and our bijection is trivial.

For example, in Figure 4.4 let G1 and G2 be the respective subgraphs of H1
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and H2 induced by vertices v1, v2, . . . , v6. Furthermore, A1 = {v1} and A2 = {v1}
with bijection φ : A1 �→ A2 defined by φ(v1) = v1. G1 and G2 are the isomorphic

thus G1 ∼ G2. Moreover any dominating set of G1 − N [v1] which also dominates

N(v1) = v2 must include v6 and dominate a path of three so pv1(G1) = xD(P3, x).

Any dominating set of G2 −N [v1] which also dominates N(v1) = v2 must include v3

and also must dominate a path of three. Even though v4 is already dominated by

v3 it is easy to see pv1(G2) = xD(P3, x). Thus for every subset for every B ⊆ A1,

pB(G1) = pφ(B)(G2). So if T is a domination-covered subset of H then H1 ∼ H2.

H

T

v1

v2

v3

v4

v5

v6

. . .

(a) H1

H

T

v1

v2

v3

v4

v5

v6

. . .

(b) H2

Figure 4.4: An example of graphs for Theorem 4.1.5

For a more general case consider G1 = Kn,n and G2 = Kn�K2. In [1] it was shown

Kn,n ∼ Kn�K2. Both graphs have two copies of n vertices. Let A1 ⊆ V (Kn,n) be one

of the two partite sets of n vertices in Kn,n which are disjoint. Let A2 ∈ Kn�K2 be

one of the two sets of n vertices in Kn�K2 which are complete. Now fix a bijection φ :

A1 �→ A2. Let B be any non-empty subset of A1. If B = A1 then Kn,n−N [B] = ∅ and

pB(Kn,n) = 0. Furthermore, φ(B) = A2, so Kn�K2−N [φ(B)] = ∅ and pφ(B)(Kn,n) =

0. If B �= A1, then the closed neighbourhood of B in Kn,n will be every vertex not

in A1 ∪ B. Then the remaining n − |B| vertices are isolated and pB(Kn,n) = xn−|B|.

Furthermore, the closed neighbourhood of φ(B) in Kn�K2 includes each vertex in
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A2. As Kn�K2 − NKn�K2 [φ(B)] is complete on n − |φ(B)| vertices any non-empty

subset will dominate it. However only the subset of all n− |φ(B)| vertices dominates

N(φ(B)) = A2 − φ(B) thus pφ(B)(Kn�K2) = xn−|B|. So if the neighbourhood of A1

restricted to some other graph H is a domination-covered subset of H then H1 ∼ H2.

For example, in Figure 4.5 the vertices v1, v2, v3, v4, v5 and v6 form K3�K2 in (a)

and K3,3 in (b). If T is domination-covered in H and the same edges are added from

{v1, v2, v3} to H in both H1 and H2 then H1 ∼ H2.

H

T

v1

v2

v3

v4

v5

v6

(a) H1

H

T

v1 v2 v3

v4 v5 v6

(b) H2

Figure 4.5: Examples of graphs for Theorem 4.1.5 and Theorem 4.1.6

A more specific example of Theorem 4.1.5 is in Figure 4.6. Vertices v1, v2, v3, v4, v5

and v6 form K3�K2 in (a) and K3,3 in (b). Furthermore, the neighbourhood of v1, v2

and v3 in both graphs is {v7, v8} which is a domination-covered subset therefore

H1 ∼ H2.

v1

v2

v3

v4

v5

v6

v7 v8

v9 v10

(a) H1

v1 v2 v3

v4 v5 v6

v7 v8

v9 v10

(b) H2

Figure 4.6: Specific examples of Theorem 4.1.5 on K3,3 and K3�K2
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The previous theorem gave conditions to make H1 and H2 in Figure 4.3 D-

equivalent. In the next theorem we will fix G1 = Kn�K2 and G2 = Kn,n and

give more conditions such that H1 ∼ H2. Also fix A1 to be one of the two sets of n

disjoint vertices in Kn�K2. Fix A2 to be one of the two partite sets of n vertices in

Kn,n. We will refer to the vertices of A1 and A2 as the inside vertices, denoted I1 and

I2 respectively. We refer to the other vertices of G1 and G2 as the outside vertices,

denoted O1 and O2 respectively.

Theorem 4.1.6 For a graph H, let H1 be a copy of H and G1 = Kn�K2 with any

set of edges added from I1 to T ⊂ V (H) and H2 is a copy of H and G2 = Kn,n with

the corresponding edges added from I2 to T ⊂ V (H). If T is a clique then H1 ∼ H2.

Proof. It is sufficient to show that every dominating set S of H1 can be mapped

to a unique dominating set S ′ of H2 of equal cardinality, and conversely each S of

H2 can be mapped to a unique dominating set S ′ of H1 of equal cardinality. We will

now define a bijection φ : V (G1) �→ V (G2). Label the vertices of I1 and O1 to be

i1, i2, . . . in and o1, o2, . . . on, respectively. Label the vertices of I2 and O2 to match

the labels of I1 and O1. Then for each vertex v ∈ V (G1), φ(v) is the vertex in G2

with the same label as v. For simplicity we say a subset of vertices A dominates some

other subset of vertices B, when B ⊆ N [A]. Note if A dominates T ′ ⊆ T in H1 then

φ(A) dominates T ′ ⊆ T in H2.

For a dominating set S of H1, partition the vertices of S into SH = S ∩V (H) and

SG1 = S ∩G1. We consider the following three cases:

Case 1: I1 ∩ SG1 = I1.

Then SG1 dominates G1 and T , so SH dominates H − T . Also φ(SG1) contains every

vertex in I2. Therefore in H2, φ(SG1) = I2 and dominates G2 and T . As SH still

dominates H − T , then S ′ = φ(SG1) ∪ SH dominates G2 and |S ′| = |S|. Note that

S ′ ∩ I2 = I2.

Case 2: I1 ∩ SG1 ⊂ I1 and I1 ∩ SG1 �= ∅.

Let A = I1 ∩ SG1 . As A �= I1, A does not dominate all of O1. As O1 induces a



58

clique, and only has neighbours in G1, then some non-empty B ⊆ O1 is in SG1 . More

precisely SG1 = A∪B. Now let T ′ be the vertices in H dominated by SG1 . Then SH

dominates H − T ′. Therefore in H2, φ(SG1) dominates T ′ and SH dominates H − T ′.

Furthermore, φ(SG1) intersects O2 and also intersects I2. As G2 is complete bipartite,

φ(SG1) dominates G2 and S ′ = φ(SG1) ∪ SH dominates G2 with |S ′| = |S|. Note

S ′ ∩ I2 = φ(A) �= I2; therefore, it is distinct from each S ′ in case 1.

The following is to help show each S ′ in this case is distinct from each S ′ in

case 3: for subcase 3a note that S ′ ∩ I2 = φ(A) �= ∅ and for subcase 3b note that

S ′ ∩O2 = φ(B) �= ∅.

Case 3: I1 ∩ SG1 = ∅.

As the only neighbours of O1 are in G1, and O1 induces a clique, some non-empty

B ⊆ O1 is in SG1 . More precisely SG1 = B. We now consider two subcases for B.

Subcase a: B = O1.

As B = O1, B dominates every vertex in G1. As SG1 does not intersect I1 then SH

dominates H. Therefore in H2, SH still dominates H. Furthermore, φ(B) contains

all of O2. As G2 is complete bipartite in H2, φ(B) dominates G2 and S ′ = φ(B)∪SH

dominates G2. Since |B| = |SG1 |, |S ′| = |S|. Note that S ′ ∩ I2 = ∅, so it is distinct

from each S ′ in case 1 and case 2.

Subcase b: B �= O1.

Here B does not dominate every vertex in I1. Let A be the vertices of I1 dominated

by B and A′ be the vertices of I1 not dominated by B. Note A ∪ A′ = I1, |A| = |B|,
and A �= I1. Then SH dominates A′ along with all of H (as S does not intersect

I1). Therefore in H2, SH dominates φ(A′) along with all of H. Furthermore, φ(A)

dominates φ(A) and O2 are G2 is complete bipartite. As A ∪ A′ = I1, then φ(A) ∪
φ(A′) = I2. Therefore S ′ = φ(A) ∪ SH dominates G2. Since |A| = |B| = |SG1 |,
|S ′| = |S|. As A �= I1, φ(A) �= I2 and S ′ ∩ I2 = φ(A) �= I2, therefore S ′ in this case is

distinct from each S ′ in case 1. As S ′ ∩ O2 = ∅ it is distinct from each S ′ in case 1

and case 2.
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We now turn to consider a dominating set S of H2. Partition the vertices of S

into SH = S ∩ V (H) and SG2 = S ∩G2. We consider the following three cases:

Case 1: O2 ∩ SG2 = O2.

Then SG2 dominates G2. As SG2 may also intersect I2, let T ′ be the vertices in

H which are dominated by SG2 . Then SH dominates H − T ′ in H2. Therefore in

H1, φ
−1(SG2) dominates T ′ and SH still dominates H − T ′. Furthermore φ−1(SG2)

contains every vertex in O1, so φ−1(SG2) also dominates G1. Thus S
′ = φ−1(SG2)∪SH

dominates G1 and |S ′| = |S|. Note that S ′ ∩O1 = O1.

Case 2: O2 ∩ SG2 ⊂ O2 and O2 ∩ SG1 �= ∅.

Let A = O2 ∩ SG2 . As A �= O2, A does not dominate all of O2. As G2 is complete

bipartite and O2 only has neighbours in G2, some non-empty B ⊆ I2 is in SG2 . More

precisely, SG2 = A ∪ B. Now let T ′ be the vertices in H dominated by SG2 . Then

SH dominates H − T ′. Therefore in H1, φ
−1(SG2) dominates T ′ and SH dominates

H − T ′. Furthermore, φ−1(SG2) intersects O1 and O1 induces a clique in H1, so

φ(SG2) dominates I1. Similarly φ−1(SG2) intersects I1 and I1 induces a clique in H1,

so φ−1(SG2) dominates I1. As V (G2) = I1 ∪ O1, then φ−1(SG1) dominates G2 and

S ′ = φ−1(SG2) ∪ SH dominates G1 with |S ′| = |S|. Note S ′ ∩ O1 = φ−1(B) �= O1

therefore it is distinct from each S ′ in case 1.

The following is to help show each S ′ in this case is distinct from each S ′ in case

3: for subcase 3a note that S ′ ∩ O1 = φ−1(B) �= ∅ and for subcase 3b note that

S ′ ∩ I1 = φ−1(A) �= ∅

Case 3: O2 ∩ SG2 = ∅.

As the only neighbours of O2 are in G2, and G2 is complete bipartite, then some

non-empty B ⊆ I2 is in SG2 . More precisely SG2 = B. We now consider two subcases

for B.
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Subcase a: B = I2.

Then B dominates every vertex in G2 and T , so SH dominates H − T . Therefore

in H1, φ−1(SG2) = I1 and dominates G1 and T . As SH still dominates H − T ,

S ′ = φ−1(SG2) ∪ SH dominates H1 and |S ′| = |S|. Note that S ′ ∩ O1 = ∅. Therefore
it is distinct from each S ′ in case 1 and case 2.

Subcase b: B �= I2.

Then B does not dominate every vertex in I2. Let A be the non-empty set of vertices

in I2 not dominated by B. Note that A ∪ B = I2. Each vertex in A has a neighbour

in T which is also in SH . As T induces a clique and T intersects SH , SH dominates

all of T and hence all of H and A. Therefore in H1, SH dominates H and φ−1(A).

Because G1 = Kn�K2, the edges between I1 and O1 form a bijection from I1 to O1.

Let B′ ⊂ O1 be the image of φ−1(B) in said bijection. Note |B′| = |φ−1(B)| = |B| and
B′ dominates φ−1(B). As A ∪B = I2, φ

−1(A) ∪ φ−1(B) = I1 and B′ ∪ SH dominates

I1, As O1 induces a clique, B′ dominates O1. Therefore S ′ = B′ ∪ SH dominates H1.

Note that S ′ ∩O1 = φ−1(B) �= O1. Therefore it is distinct from each S ′ in case 1. As

S ′ ∩ I1 = ∅ then it is distinct from each S ′ in case 2.

�

The condition that T is a clique was only required to map dominating sets of H2

to H1. This means for any H, each coefficient of D(H1, x) is bounded above by the

corresponding of D(H2, x).

An example of Theorem 4.1.6 is in Figure 4.7. Vertices v1, v2, v3 and v4 form

K2�K2 in (a) and K2,2 in (b). H is the graph formed by v5, v6, v7, v8, v9 and v10. In

(a), I1 = {v1, v4}. Similarly in (b), I2 = {v1, v4}. The edges from I1 to H correspond

to the edges from I2 to H. The neighbourhood of I1 and I2 in each graph is one single

vertex v5 so T = {v5}. As T is a clique, H1 ∼ H2.

We will now consider the graph in Figure 4.8. It is a copy of C4 with the graph

substitution Kni
for each vi ∈ V (C4). That is, each vertex vi ∈ V (C4) is replaced

by Kni
and if vi is adjacent to vj in C4, then every vertex of Kni

is adjacent to

every vertex of Knj
. We denote this graph C(S4), where S4 is the ordered 4-tuple

(n1, n2, n3, n4). In the next theorem we will show that changing the order of the ni
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v2 v3

v1 v4

v5

v6v7

v8v9

v10

(a) H1

v2 v3

v1 v4

v5

v6v7

v8v9

v10

(b) H2

Figure 4.7: Specific examples of Theorem 4.1.6 on K2,2 and K2�K2

in S4 will not change D(C(S4), x).

Kn1

Kn2

Kn3

Kn4

. . .

...

. . .

...

Figure 4.8: An example of C(n1, n2, n3, n4)

Theorem 4.1.7 For any n1, n2, n3, n4 ∈ N let S4 = (n1, n2, n3, n4) and σ(S4) be any

permutation of S4. Then C(S4) ∼ C(σ(S4)).
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Proof. As C4 is isomorphic to K2,2 then we write can write

C(S4) = (Kn1 ∪Kn3) ∨ (Kn2 ∪Kn4)

.

By Theorem 2.2.3

D(C(S4), x) = ((x+ 1)n1+n3 − 1)((x+ 1)n2+n4 − 1) +D(Kn1 ∪Kn3 , x)

+D(Kn2 ∪Kn4 , x)

= ((x+ 1)n1+n3 − 1)((x+ 1)n2+n4 − 1)

+((x+ 1)n1 − 1)((x+ 1)n3 − 1)

+((x+ 1)n2 − 1)((x+ 1)n4 − 1)

= ((x+ 1)n1+n2+n3+n4 − 1−∑4
i=1((x+ 1)ni − 1)

As addition is commutative, for any permutation σ(S4), D(C(σ(S4)), x) can be sim-

plified to the same formula, so C(S4) ∼ C(σ(S4)). �

For many permutations σ(S4), C(σ(S4)) is isomorphic to C(S4). This would leave

us to believe Theorem 4.1.7 is not needed. However, for distinct values of n1, n2,

n3, and n4, C(n1, n2, n3, n4), C(n1, n2, n4, n3) and C(n1, n3, n4, n2) are not in general

isomorphic as each have a distinct number of edges. Furthermore, for every other

σ(S4), C(σ(S4)) is isomorphic to one of those three cases.

4.2 Equivalence Classes for Paths

For a path Pn let P ′n be a copy of Pn with an added edge between its two stems. In [2]

Akbari, Alikhani and Peng showed [P3n] = {P3n, P
′
3n}. In this section we will use the

results of Section 3.2 to determine [Pn] for n ≥ 9.

We call on some previous results which will be used to show any graph G ∼ Pn

does not have any 4-cycle components.

Lemma 4.2.1 [3] If n is a positive integer, then

D(Cn,−1) =

{
3 n ≡ 0 mod 4

−1 otherwise

�
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Lemma 4.2.2 [6] Let F be a forest. Then D(F,−1) ∈ {1,−1} and therefore

D(Pn,−1) ∈ {1,−1}. �

Corollary 4.2.3 If a G is D-equivalent to Pn with a component H, then |D(H,−1)| =
1. Moreover G does not have any 4-cycle components. �

Proof. Suppose not, that is suppose G has component H with |D(H,−1)| �= 1. As

D(H, x) has all integer coefficients then D(H,−1) is an integer and |D(H,−1)| > 1.

Let |D(H,−1)| = k. As G is D-equivalent to Pn then by Lemma 4.2.2 D(G,−1) ∈
{−1, 1}. Moreover |D(G,−1)| = 1. Let G = G′ ∪H then

|D(G,−1)| = |D(H,−1)D(G′,−1)| = k|D(G′,−1)|
.

Therefore |D(G′,−1)| = 1
k
and hence not an integer, which is a contradiction. There-

fore |D(H,−1)| = 1. By Lemma 4.2.1 D(C4,−1) = 3, therefore G has no 4-cycle

components. �

In the next Lemma we use the results from Lemma 3.2.7, Theorem 3.2.3, and

Theorem 3.2.6 to show, for large enough n, any graph G ∼ Pn must be the disjoint

union of one path and an arbitrary number of cycles.

Lemma 4.2.4 For n ≥ 9, if G ∼ Pn then G = H ∪ C where H ∈ {Pk, P
′
k} and C is

a disjoint union of cycles.

Proof. We will first show D(Pn,−2) �= 0 for n ≥ 9. This fact will be sufficient to

show any graph G ∼ Pn has no K2 components. This is because D(K2,−2) = 0, so

if G had a K2 component then D(G,−2) = 0 and hence D(G,−2) �= D(Pn,−2). So

we begin by computing D(Pn,−2).

D(P1,−2) = −2 D(P6,−2) = 4 D(P11,−2) = −16

D(P2,−2) = 0 D(P7,−2) = 0 D(P12,−2) = 16

D(P3,−2) = 2 D(P8,−2) = 0 D(P13,−2) = −32

D(P4,−2) = 0 D(P9,−2) = −8 D(P14,−2) = 64

D(P5,−2) = −4 D(P10,−2) = 16 D(P15,−2) = −96
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NoteD(Pn,−2) �= 0 and is alternating for 9 ≤ n ≤ 15. Furthermore, 0 < |D(P12,−2)| <
|D(P13,−2)| < |D(P14,−2)| < |D(P15,−2)|. As Pn is a G(m) graph and has maxi-

mum non-stem degree two, Pn ∈ G2(m). Then by Lemma 3.2.7, D(Pn,−2) �= 0 for

n ≥ 9. Thus G has no K2 components for n ≥ 9.

Let G be a graph with D(G, x) = D(Pn, x) where n ≥ 9. Then d(G, i) = d(Pn, i)

for all i. Furthermore by Theorem 2.3.3 we have

(i) d(G, n− 1) = n.

(ii) d(G, n− 2) =
(
n
2

)− 2.

(iii) d(G, n− 3) =
(
n
3

)− (3n− 8).

(iv) d(G, n− 4) =
(
n
4

)− (2n2 − 13n+ 20).

By Theorem 2.2.5 the number of isolated vertices in G is n − d(G, n − 1) = 0. By

Lemma 3.2.7 D(G,−2) �= 0 and again by Theorem 2.2.5 the number of leaves is

|T1| =
(
n
2

) − d(G, n − 2) = 2. By Theorem 3.2.3, as G has no K2 components nor

isolated vertices then

d(G, n− 3) =

(
n

3

)
−

(
|T1| · (n− 2) + |T2| −

ω∑
i=1

(|Si|
2

)
− |L3| − 2|C3|

)
.

Furthermore, from |T1| = 2 and item (iii) we know

n− 4 = |T2| −
ω∑

i=1

(|Si|
2

)
− |L3| − 2|C3|.

By rearranging for |T2| we get

|T2| = n− 4 +
ω∑

i=1

(|Si|
2

)
+ |L3|+ 2|C3|.

We claim for G, |L3| = 0, |C3| = 0 and G ∈ G2(m). Recall that G2(m) is the set

of all G(m) and G′(m) graphs restricted to those with maximum non-stem degree

two. Recall as well that ω is the number of stems in G. We will show our claim is

true using the fact that n = ω +
∑

i∈N |Ti| so n ≥ ω + |T1| + |T2|. As |T1| = 2 then

T2 ≤ n − (2 + ω). Also, if n = ω + |T1| + |T2| then G ∈ G2(m). This is because
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|T1| > 0, hence G has a leaf and thus takes the form of a G(m) graph. Furthermore

if n = ω + |T1|+ |T2| then |Ti| = 0 for i ≥ 3 and thus the maximum non-stem degree

is two. As G has leaves then it has stems, more specifically as G has two leaves then

it either has one or two stems. We now consider the two cases for G.

Case 1: G has one stem.

Then ω = 1, |S1| = 2, and |T2| ≤ n− 3. Thus

|T2| = n− 4 +

(
2

2

)
+ |L3|+ 2|C3|.

As |L3| + 2|C3| ≥ 0 then |T2| ≥ n − 3 and therefore |T2| = n − 3. Furthermore

|L3|+ 2|C3| = 0 so |L3| = 0 and |C3| = 0. As ω + |T1|+ |T2| = n, G ∈ G2(m).

Case 2: G has two stems.

Then ω = 2 ,|S1| = 1,|S2| = 1, and |T2| ≤ n− 4. Thus

|T2| = n− 4 + 0 + |L3|+ 2|C3|.

As |L3| + 2|C3| ≥ 0 then |T2| ≥ n − 4 and therefore |T2| = n − 4. Furthermore

|L3|+ 2|C3| = 0 so |L3| = 0 and |C3| = 0. As ω + |T1|+ |T2| = n, G ∈ G2(m).

For a graph in G2(m), a T2 vertex can only be adjacent to stems or other T2

vertices. Therefore the T2 vertices form paths between stems, r-loops, and disjoint

cycles in G2(m) graphs. As G ∈ G2(m), G will be the disjoint union of some number

of cycles and a subgraph H which has one of the two forms shown in Figure 4.9.

Recall from Section 3.2, we partitioned T2 into subsets based on the number of

neighbouring stems.

• V0: The subset of T2 with no adjacent stems.

• V i
1 : The subset of T2 adjacent to exactly one stem, stem i.

• V ij
2 : The subset of T2 adjacent to exactly two stems, stems i and j (denoted V2

when G only has two stems ).
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...

(a) One stem

. . . . . ....

(b) Two stems

Figure 4.9: The two possible structures of H

We wish to show that the subgraph H of G is either a path or a path with an

edge between its stems. This is equivalent of showing H has two stems with one path

between them and no r-loops. Note as we do not specify the degree of the stems, this

allows for the possibility of an edge between them. If G has exactly two stems, and no

r-loops, then the number of paths between the stems is exactly 1
2
(|V 1

1 |+ |V 2
1 |) + |V2|.

Furthermore, if |V 1
1 | ≤ 1 and |V 2

1 | ≤ 1 then H has no r-loops. Therefore it is sufficient

to show H has two stems and either |V 1
1 | = |V 2

1 | = 0 and |V2| = 1, or |V 1
1 | = |V 2

1 | = 1

and |V2| = 0. We will show this by examining d(G, n− 4).

By Theorem 3.2.6, as G has no K2 components, no isolated vertices, and G ∈
G2(m), we have that

d(G, n− 4) =

(
n

4

)
−

(
|T1|

(
n− 2

2

)
+ |T2|(n− 3)− α1 − α2 − α3

)
where

α1 =
ω∑

i=1

(|Si|
2

)
(n− |Si| − 1) +

ω∑
i=1

|Si|
2
(|T1| − |Si|) + 2

ω∑
i=1

(|Si|
3

)
α2 =

ω∑
i=1

|V i
1 ||Si|+

∑
i �=j

|V ij
2 |(|Si|+ |Sj|)

α3 = |V0|+
ω∑

i=1

|V i
1 |
2

+
∑
i �=j

(|V ij
2 |
2

)− |C4|+ |C3|(2n− 9) +
ω∑

i=1

|Li
3|(n− 4− |Si|)

As |L3| = 0 then |Li
3| = 0 for every i. Furthermore |C3| = 0 and by corollary 4.2.3

|C4| = 0. We again consider the two cases where G has one stem and G has two

stems. Note that |T2| = |V0|+
∑ω

i=1 |V i
1 |+

∑
i �=j |V ij

2 |.



67

Case 1: G has one stem.

We claim this case results in a contradiction. As G has one stem then ω = 1, |S1| = 2,

|T2| = n − 3. As G only has one stem, there are no degree two vertices adjacent to

two stems and |V ij
2 | = 0 for all i and j. Furthermore |V0|+ |V 1

1 | = |T2| = n−3. Using

this we can simplify α1, α2, and α3 to be

α1 =
(
2
2

)
(n− 2− 1) + 2

2
(2− 2) + 2 · 0 = n− 3.

α2 = 2|V 1
1 |.

α3 = |V0|+ |V 1
1 |
2
.

As |V0|+ |V 1
1 | = n− 3 then α1 + α2 + α3 = 2n− 6 +

3|V 1
1 |
2

and

d(G, n− 4) =

(
n

4

)
−

(
2n2 − 13n+ 21− 3|V 1

1 |
2

)

However by item (iv), d(G, n − 4) =
(
n
4

) − (2n2 − 13n + 20) and therefore |V 1
1 | = 2

3
.

But |V 1
1 | is a positive integer, which gives us a contradiction.

Case 2: G has two stems.

As G has two stems, we find that ω = 2 ,|S1| = 1, |S2| = 1, and |T2| = n−4. As there

are only two stems, let the set of T2 vertices which are adjacent to both be denoted

V2. Furthermore |V0| + |V 1
1 | + |V 2

1 | + |V2| = |T2| = n− 4. Using this we can simplify

α1, α2, and α3 to be

α1 = 0 +
2∑

i=1

1
2
(2− 1) = 1

α2 =
2∑

i=1

|V i
1 |+ 2|V2|

α3 = |V0|+
2∑

i=1

|V i
1 |
2

+
(|V2|

2

)

As |V0|+ |V 1
1 |+ |V 2

1 |+ |V2| = n− 4 then α1 + α2 + α3 = n− 3 +
2∑

i=1

|V i
1 |
2

+ |V2|+
(|V2|

2

)
and

d(G, n− 4) =

(
n

4

)
−

(
2n2 − 13n+ 21−

2∑
i=1

|V i
1 |
2

− |V2| −
(|V2|

2

))
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However by item (iv), d(G, n− 4) =
(
n
4

)− (2n2 − 13n+ 20) and therefore

2∑
i=1

|V i
1 |
2

+ |V2|+
(|V2|

2

)
= 1.

As each summand is non-negative and |V2|+
(|V2|

2

)
is a non-negative integer, the only

solutions to this are
∑2

i=1
|V i

1 |
2

= 1, |V2| = 0 or
∑2

i=1
|V i

1 |
2

= 0, |V2| = 1.

In the case
∑2

i=1
|V i

1 |
2

= 1, |V2| = 0, then as G has no K2 components and there are

no vertices adjacent to both stems (|V2| = 0) then |V i
1 | ≥ 1 for each i. Furthermore as∑2

i=1
|V i

1 |
2

= 1, then |V 1
1 | = |V 2

1 | = 1, and |V2| = 0. In the case
∑2

i=1
|V i

1 |
2

= 0, |V2| = 1

as |V i
1 | ≥ 0 for each i then |V 1

1 | = |V 2
1 | = 0, and |V2| = 1. Both cases result in H

having one path between its two stems and no r-loops. As we do not specify the

degree of the stems, this allows for the possibility of an edge to be between them, and

proves our result.

�

From Lemma 4.2.4 all that is needed to determine the equivalence class of paths

is to show is a path is not D-equivalent to the disjoint union of a smaller path

and cycles. Until this point we have used the highest coefficients of D(Pn, x) to

reduce the number of graphs which could be D-equivalent to a path. However, let

Gp,c1,c2,...ck = Pp ∪Cc1 ∪Cc2 ∪ . . .∪Cck and n = p+
∑k

i=1 ci. With the help of Maple,

it seems the highest m coefficients of D(Gp,c1,c2,...ck , x) are the same as the highest m

coefficients of D(Pn, x), where m = min{p, c1, c2, . . . ck}. We believe for any m, we

can find large a large enough n such that the highestm coefficients of D(Gp,c1,c2,...ck , x)

are the same as D(Pn, x). Clearly looking at the highest coefficients will not yield

much more.

Showing a path is not D-equivalent to the disjoint union of a smaller path and

cycles has proven to be a difficult problem. We will show this by creating a system

of equations which has no solutions. As we have two polynomials D(Gp,c1,c2,...ck , x) =

D(Pn, x), they must agree at every value of x. Furthermore, their first, second, and

third derivatives must also agree at every value of x. Domination polynomials of

paths and cycles have shown to have nice patterns when evaluated at −1. We will

first limit the number of cycles in Gp,c1,c2,...ck and then show a system of equations

created by the domination polynomial and its first three derivatives evaluated at −1
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has no solutions. This method is very cumbersome, and alternative approaches could

be pursued.

Let n ∈ Z and p be a prime number. If n is not zero, there is a nonnegative

integer a such that pa | n but pa+1 � n; we let ordp(n) = a. In other words, a is the

exponent of p in the prime decomposition of n. Furthermore let ordp(0) = 0. In a

similar method used by Akbari and Oboudi [3] we will determine ord3(D(Pn,−3))

and show if a graph G is D-equivalent to a path, then G is the disjoint union of a

path and at most two cycles.

Lemma 4.2.5 [3] For n ∈ N

ord3(D(Cn,−3)) =

⎧⎪⎪⎨
⎪⎪⎩

�n
3
�+ 1 n ≡ 0 mod 3

�n
3
� or �n

3
�+ 1 n ≡ 1 mod 3

�n
3
� n ≡ 2 mod 3

�

We will now extend there argument to paths.

Lemma 4.2.6 For n ∈ N

ord3(D(Pn,−3)) =

⎧⎪⎪⎨
⎪⎪⎩

�n
3
� n ≡ 0 mod 3

�n
3
� n ≡ 1 mod 3

�n
3
� or �n

3
�+ 1 n ≡ 2 mod 3

Proof. Let an = D(Pn,−3). We set an = (−1)n3�
n
3
	bn. We claim that bn is an

integer satisfying the recurrence relation

bn =

⎧⎪⎪⎨
⎪⎪⎩

3bn−1 − 3bn−2 + bn−3 when n ≡ 0 mod 3

bn−1 − bn−2 + bn−3 when n ≡ 1 mod 3

3bn−1 − bn−2 + bn−3 when n ≡ 2 mod 3.

(1)

We will first prove our claim that bn satisfies recurrence relation (1). We first check

the base cases by computing an for 1 ≤ n ≤ 6. Since D(P1, x) = x, D(P2, x) =
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x2 + 2x, and D(P3, x) = x3 + 3x2 + x then a1 = −3, a2 = 3, and a3 = −3. Then as

ak+1 = D(Pk+1,−3), by Theorem 2.3.2 we get the following recursion:

ak+1 = −3(ak + ak−1 + ak−2). (2)

We now compute a4, a5, and a6 using recurrence relation (2):

a4 = −3((−3) + (3) + (−3)) = 9

a5 = −3((9) + (−3) + (3)) = −27

a6 = −3((−27) + (9) + (−3)) = 63

Therefore b1 = 1, b2 = 1, b3 = 1, b4 = 1, b5 = 3, and b6 = 7. By recurrence relation

(1):

b4 = (1)− (1) + (1) = 1

b5 = 3(1)− (1) + (1) = 3

b6 = 3(3)− 3(1) + (1) = 7

Therefore recurrence relation (1) holds for our base cases. Now suppose our claim is

true for all n ≤ k. We now consider the three cases k + 1 ≡ 0, 1, 2 mod 3.

Case 1: k + 1 ≡ 0 mod 3.

Then k+1
3

and k−2
3

are integers. Thus �k
3
� = k+1

3
, �k−1

3
� = k+1

3
, and �k−2

3
� = k−2

3
.

Furthermore �k+1
3
� = k+1

3
. By our recursion we obtain

ak+1 = −3(ak + ak−1 + ak−2)

(−1)k+13�
k+1
3
	bk+1 = −3((−1)k3�

k
3
	bk + (−1)k−13�

k−1
3
	bk−1 + (−1)k−23�

k−2
3
	bk−2)

(−1)k+13�
k+1
3
	bk+1 = 3(−1)k+1(3

k+1
3 bk − 3

k+1
3 bk−1 + 3

k−2
3 bk−2)

(−1)k+13�
k+1
3
	bk+1 = (−1)k+13

k+1
3 (3bk − 3bk−1 + bk−2)

(−1)k+13�
k+1
3
	bk+1 = (−1)k+13�

k+1
3
	(3bk − 3bk−1 + bk−2)

bk+1 = 3bk − 3bk−1 + bk−2

Case 2: k + 1 ≡ 1 mod 3.

Then k
3
is an integer and �k

3
� = k

3
, �k−1

3
� = k

3
, and �k−2

3
� = k

3
. Furthermore �k+1

3
� =

k+3
3
.
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ak+1 = −3(ak + ak−1 + ak−2)

(−1)k+13�
k+1
3
	bk+1 = −3((−1)k3�

k
3
	bk + (−1)k−13�

k−1
3
	bk−1 + (−1)k−23�

k−2
3
	bk−2)

(−1)k+13�
k+1
3
	bk+1 = 3(−1)k+1(3

k
3 bk − 3

k
3 bk−1 + 3

k
3 bk−2)

(−1)k+13�
k+1
3
	bk+1 = (−1)k+13

k+3
3 (bk − bk−1 + bk−2)

(−1)k+13�
k+1
3
	bk+1 = (−1)k+13�

k+1
3
	(bk − bk−1 + bk−2)

bk+1 = bk − bk−1 + bk−2

Case 3: k + 1 ≡ 2 mod 3.

Then k+2
3

and k−1
3

are integers. Thus �k
3
� = k+2

3
, �k−1

3
� = k−1

3
, and �k−2

3
� = k−1

3
.

Furthermore, �k+1
3
� = k+2

3
.

ak+1 = −3(ak + ak−1 + ak−2)

(−1)k+13�
k+1
3
	bk+1 = −3((−1)k3�

k
3
	bk + (−1)k−13�

k−1
3
	bk−1 + (−1)k−23�

k−2
3
	bk−2)

(−1)k+13�
k+1
3
	bk+1 = 3(−1)k+1(3

k+2
3 bk − 3

k−1
3 bk−1 + 3

k−1
3 bk−2)

(−1)k+13�
k+1
3
	bk+1 = (−1)k+13

k+2
3 (3bk − bk−1 + bk−2)

(−1)k+13�
k+1
3
	bk+1 = (−1)k+13�

k+1
3
	(3bk − bk−1 + bk−2)

bk+1 = 3bk − bk−1 + bk−2

As recurrence relation (1) holds for k + 1 then by induction it holds for n ∈ N. A

trivial induction shows as b1, b2, and b3 are integers that bn is always an integer. We

can simplify the computation of ord3(an) to

ord3(an) = �n
3
�+ ord3(bn) (3)

Therefore we can determine ord3(an) by computing ord3(bn). We will now compute

the first 32 values of bn mod 9 to show bn ≡ bn+27 mod 9 for n ≥ 3.
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k b3k mod 9 b3k+1 mod 9 b3k+2 mod 9

0 - 1 1

1 1 1 3

2 7 5 2

3 7 1 7

4 7 1 3

5 4 2 5

6 4 1 4

7 4 1 3

8 1 8 8

9 1 1 1

10 1 1 3

As the three entries in row k = 1 correspond to the three entries in row k = 10 then

a trivial induction shows that bn ≡ bn+27 mod 9 for all n ≥ 3. Note that bn �≡ 0 mod

9 and therefore ord3(bn) < 2. We will now compute the first 14 values of bn mod 3 to

show bn ≡ bn+9 mod 3.

k b3k mod 3 b3k+1 mod 3 b3k+2 mod 3

0 - 1 1

1 1 1 0

2 1 2 2

3 1 1 1

4 1 1 0

As the three entries in row k = 1 correspond to the three entries in row k = 4 then a

trivial induction shows that bn ≡ bn+9 mod 3 for all n. Note that the only zeroes are

in the b3k+2 column. Therefore

ord3(bn) =

⎧⎪⎪⎨
⎪⎪⎩

0 n ≡ 0 mod 3

0 n ≡ 1 mod 3

0 or 1 n ≡ 2 mod 3
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Together with equation (3) this concludes our proof.

�

The next two lemmas will allow us to restrict the number of disjoint cycles in G

if G ∼ Pn.

Lemma 4.2.7 For every n ∈ N, γ(Pn) = �n
3
�. �

Lemma 4.2.8 For every n ∈ N, γ(Cn) = �n
3
�. �

From Lemma 4.2.4 we know if G is D-equivalent to Pn then G is the disjoint union

of H and some number of cycles where H ∈ {Pk, P
′
k} and k ≤ n. In the next lemma

we will show the number of cycles is at most two.

Lemma 4.2.9 For n ∈ N

For n ≥ 9, If G ∼ Pn then G = H ∪ C where H ∈ {Pk, P
′
k}, k ≤ n, and C is a

disjoint union of at most two cycles.

Proof. Let n = 3m + r and G be a graph with D(G, x) = D(P3m+r, x) where

r ∈ {0, 1, 2}. By Lemma 4.2.4,

G = P3m1+r1 ∪ C3m2+r2 ∪ . . . ∪ C3mk+rk ,

where 3m + r =
∑k

i=1(3mi + ri) and for each i, ri ∈ {0, 1, 2}. In this proof we will

begin by restricting the number of non-zero ri, and then restrict the number of ri

which are zero. By Lemma 4.2.7 and Lemma 4.2.8 we know

γ(G) =
k∑

i=1

�3mi + ri
3

� =
k∑

i=1

mi +
k∑

i=1

�ri
3
�.

As 3m+ r =
k∑

i=1

(3mi + ri) then
k∑

i=1

mi = m+ r
3
−

k∑
i=1

ri
3
and

γ(G) = m+
r

3
+

k∑
i=1

(
�ri
3
� − ri

3

)
.

As γ(G) = γ(P3m+r) and γ(P3m+r) = �3m+r
3

� = m+ � r
3
� then
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k∑
i=1

(
�ri
3
� − ri

3

)
= �r

3
� − r

3
.

Let f(ri) =
⌈
ri
3

⌉− ri
3
. As ri ∈ {0, 1, 2}, then f(0) = 0, f(1) = 2

3
, and f(2) = 1

3
. Now

consider the number of ri �= 0 for the cases r = 0, 1, and 2

• If r = 0 then
∑

f(ri) = 0 and no ri �= 0.

• If r = 1 then
∑

f(ri) =
2
3
and at most two ri �= 0.

• If r = 2 then
∑

f(ri) =
1
3
and at most one ri �= 0.

We now count the ri = 0. For a graph H, let g(H) = ord3(D(H,−3)) − γ(H).

Using Lemma 4.2.5, Lemma 4.2.6 and the fact that γ(C3m+r) = γ(P3m+r) = �3m+r
3

�
we can obtain g(P3m+r) and g(C3m+r):

g(P3m+r) =

⎧⎪⎪⎨
⎪⎪⎩

0 r = 0

0 r = 1

0 or 1 r = 2

, g(C3m+r) =

⎧⎪⎪⎨
⎪⎪⎩

1 r = 0

0 or 1 r = 1

0 r = 2

For simplicity we will denote g(P3m+r) and g(C3m+r) with gP (r) and gC(r). Because

G is the disjoint union of a path and cycles then γ(G) is just the sum of domination

numbers of each of the paths and cycles. Similarly ord3(D(G,−3)) is just the sum of

the orders of each of its components. From this we get the following equality:

gP (r) = gP (r1) +
k∑

i=2

gC(ri)

Now consider the number of ri = 0 for the cases r = 0, 1, and 2

• If r = 0 then gP (r1) +
k∑

i=2

gC(ri) = 0 and no ri = 0 for i ≥ 2.

• If r = 1 then gP (r1) +
k∑

i=2

gC(ri) = 0 and no ri = 0 for i ≥ 2.

• If r = 2 then gP (r1) +
k∑

i=2

gC(ri) = 0 or 1 and at most one ri = 0 for i ≥ 2
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Together with the three cases counting the number ri �= 0, we can easily see there are

at most two ri for i ≥ 2. Therefore there are at most two cycle components.

�

We have narrowed the number of cycle components to two in graphs which are

D-equivalent to paths. We will now evaluate the domination polynomial and each of

the first three derivatives of paths and cycles at −1.

Lemma 4.2.10 [3] For n ∈ N

D(Cn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3, n ≡ 0 mod 4

−1, n ≡ 1 mod 4

−1, n ≡ 2 mod 4

−1, n ≡ 3 mod 4

�

Lemma 4.2.11 [3] For n ∈ N

D′(Cn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−n, n ≡ 0 mod 4

n, n ≡ 1 mod 4

0, n ≡ 2 mod 4

0, n ≡ 3 mod 4

�

Lemma 4.2.12 [3] For n ∈ N

D′′(Cn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4
n (n− 4) , n ≡ 0 mod 4

−1
2
n (n− 1) , n ≡ 1 mod 4

1
4
n (n+ 2) , n ≡ 2 mod 4

0, n ≡ 3 mod 4

�

Lemma 4.2.13 For n ∈ N

D′′′(Cn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
16
n3 + 3

4
n2 − 2n, n ≡ 0 mod 4

3
16
n3 − 9

8
n2 + 15

16
n, n ≡ 1 mod 4

− 3
16
n3 + 3

4
n, n ≡ 2 mod 4

1
16
n3 + 3

8
n2 + 5

16
n, n ≡ 3 mod 4

(4)
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Proof. We will prove equation (4) by induction. We first compute D′′′(Cn,−1)

for n = 3, 4, 5, 6. In these cases equation (4) reduces to

D′′′(C3,−1) = 1
16
33 + 3

8
32 + 5

16
3 = 6

D′′′(C4,−1) = − 1
16
43 + 3

4
42 − 2 · 4 = 0

D′′′(C5,−1) = 3
16
53 − 9

8
52 + 15

16
5 = 0

D′′′(C6,−1) = − 3
16
63 + 3

4
6 = −36.

From Table 2.2 we have

D(C3, x) = x3 + 3x2 + 3x

D(C4, x) = x4 + 4x3 + 6x2

D(C5, x) = x5 + 5x4 + 10x3 + 5x2

D(C6, x) = x6 + 6x5 + 15x4 + 14x3 + 3x2.

Therefore

D′′′(C3, x) = 6

D′′′(C4, x) = 24x+ 24

D′′′(C5, x) = 60x2 + 120x+ 60

D′′′(C6, x) = 120x3 + 360x2 + 360x+ 84.

Then by evaluating each equation at x = −1 we obtain

D′′′(C3,−1) = 6 D′′′(C4,−1) = 0 D′′′(C5,−1) = 0 D′′′(C6,−1) = −36.

Therefore our claim is true for n = 3, 4, 5, 6.

Now suppose that our claim is true for all n up until 4k−1. It is sufficient to show

our claim is true for 4k, 4k + 1, 4k + 2 and 4k + 3. Recall the following recurrence

relation from Theorem 2.3.4:

D(Cn, x) = x

3∑
i=1

D(Cn−i, x).

Therefore by taking the derivative three times and evaluating it at x = −1, we obtain

D′′′(Cn,−1) = 3
3∑

i=1

D′′(Cn−i,−1)−
3∑

i=1

D′′′(Cn−i,−1).

Recall from Theorem 4.2.12
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D′′(Cn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4
n (n− 4) , n ≡ 0 mod 4

−1
2
n (n− 1) , n ≡ 1 mod 4

1
4
n (n+ 2) , n ≡ 2 mod 4

0, n ≡ 3 mod 4

Now consider the four cases 4k, 4k + 1, 4k + 2 and 4k + 3.

D′′′(C4k,−1) = 3
∑3

i=1 D
′′(C4k−i,−1)−∑3

i=1 D
′′′(C4k−i,−1)

= 3(0 + 1
4
(4k − 2) ((4k − 2) + 2)− 1

2
(4k − 3) ((4k − 3)− 1))−

( 1
16
(4k − 1)3 + 3

8
(4k − 1)2 + 5

16
(4k − 1)−

3
16
(4k − 2)3 + 3

4
(4k − 2)+

3
16
(4k − 3)3 − 9

8
(4k − 3)2 + 15

16
(4k − 3))

= − 1
16
(4k)3 + 3

4
(4k)2 − 2(4k)

D′′′(C4k+1,−1) = 3
∑3

i=1 D
′′(C4k+1−i,−1)−∑3

i=1 D
′′′(C4k+1−i,−1)

= 3(1
4
(4k) (4k − 4) + 0 + 1

4
(4k − 2) ((4k − 2) + 2))−

(− 1
16
(4k)3 + 3

4
(4k)2 − 2(4k)+

1
16
(4k − 1)3 + 3

8
(4k − 1)2 + 5

16
(4k − 1)−

3
16
(4k − 2)3 + 3

4
(4k − 2))

= 3
16
(4k + 1)3 − 9

8
(4k + 1)2 + 15

16
(4k + 1)

D′′′(C4k+2,−1) = 3
∑3

i=1 D
′′(C4k+2−i,−1)−∑3

i=1 D
′′′(C4k+2−i,−1)

= 3(−1
2
(4k + 1) ((4k + 1)− 1) + 1

4
(4k) (4k − 4) + 0)−

( 3
16
(4k + 1)3 − 9

8
(4k + 1)2 + 15

16
(4k + 1)−

1
16
(4k)3 + 3

4
(4k)2 − 2(4k)+

1
16
(4k − 1)3 + 3

8
(4k − 1)2 + 5

16
(4k − 1))

= − 3
16
(4k + 2)3 + 3

4
(4k + 2)
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D′′′(C4k+3,−1) = 3
∑3

i=1 D
′′(C4k+3−i,−1)−∑3

i=1 D
′′′(C4k+3−i,−1)

= 3(1
4
(4k + 2) ((4k + 2) + 2)−

1
2
(4k + 1) ((4k + 1)− 1) + 1

4
(4k) (4k − 4))−

(− 3
16
(4k + 2)3 + 3

4
(4k + 2)−

( 3
16
(4k + 1)3 − 9

8
(4k + 1)2 + 15

16
(4k + 1)−

1
16
(4k)3 + 3

4
(4k)2 − 2(4k))

= 1
16
(4k + 3)3 + 3

8
(4k + 3)2 + 5

16
(4k + 3)

�

Lemma 4.2.14 For n ∈ N

D(Pn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, n ≡ 0 mod 4

−1, n ≡ 1 mod 4

−1, n ≡ 2 mod 4

1, n ≡ 3 mod 4

(5)

Proof. We will prove equation (5) by induction. We first compute D(Pn,−1) for

n = 3, 4, 5, 6. From Table 2.1 we have

D(P3, x) = x3 + 3x2 + x

D(P4, x) = x4 + 4x3 + 4x2

D(P5, x) = x5 + 5x4 + 8x3 + 3x2

D(P6, x) = x6 + 6x5 + 13x4 + 10x3 + x2.

Then by evaluating each equation at x = −1 we obtain

D(P3,−1) = 1 D(P4,−1) = 1 D(P5,−1) = −1 D(P6,−1) = −1.

Therefore our claim is true for n = 3, 4, 5, 6. Now suppose that our claim is true for

all n up until 4k − 1. It is sufficient to show our claim is true for 4k, 4k + 1, 4k + 2

and 4k + 3. Recall the following recurrence relation from Theorem 2.3.2:

D(Pn, x) = x

3∑
i=1

D(Pn−i, x).

Now consider the four cases 4k, 4k + 1, 4k + 2 and 4k + 3.
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D(P4k,−1) = −(D(P4k−1,−1) +D(P4k−2,−1) +D(P4k−3,−1))

= −(1− 1− 1)

= 1

D(P4k+1,−1) = −(D(P4k,−1) +D(P4k−1,−1) +D(P4k−2,−1))

= −(1 + 1− 1)

= −1

D(P4k+2,−1) = −(D(P4k+1,−1) +D(P4k,−1) +D(P4k−1,−1))

= −(−1 + 1 + 1)

= −1

D(P4k+3,−1) = −(D(P4k+2,−1) +D(P4k+1,−1) +D(P4k,−1))

= −(−1− 1 + 1)

= 1

�

Lemma 4.2.15 For n ∈ N

D′(Pn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, n ≡ 0 mod 4

n+1
2
, n ≡ 1 mod 4

0, n ≡ 2 mod 4

−n+1
2
, n ≡ 3 mod 4

(6)

Proof. We will prove equation (6) by induction. We first compute D′(Pn,−1) for

n = 3, 4, 5, 6. For these values of n equation (6) reduces to

D′(P3,−1) = −3+1
2

= −2

D′(P4,−1) = 0

D′(P5,−1) = 5+1
2

= 3

D′(P6,−1) = 0.
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From Table 2.1 we have

D(P3, x) = x3 + 3x2 + x

D(P4, x) = x4 + 4x3 + 4x2

D(P5, x) = x5 + 5x4 + 8x3 + 3x2

D(P6, x) = x6 + 6x5 + 13x4 + 10x3 + x2.

Therefore

D′(P3, x) = 3x2 + 6x+ 1

D′(P4, x) = 4x3 + 12x2 + 8x

D′(P5, x) = 5x4 + 20x3 + 24x2 + 6x

D′(P6, x) = 6x5 + 30x4 + 52x3 + 30x2 + 2x.

Then by evaluating each equation at x = −1 we obtain

D′(P3,−1) = −2 D′(P4,−1) = 0 D′(P5,−1) = 3 D′(P6,−1) = 0.

Therefore our claim is true for n = 3, 4, 5, 6.

Now suppose that our claim is true for all n up until 4k−1. It is sufficient to show

our claim is true for 4k, 4k + 1, 4k + 2 and 4k + 3. Recall the following recurrence

relation from Theorem 2.3.2:

D(Pn, x) = x
3∑

i=1

D(Pn−i, x).

Therefore by taking the derivative and evaluating it at x = −1 we obtain

D′(Pn,−1) =
3∑

i=1

D(Pn−i,−1)−
3∑

i=1

D′(Pn−i,−1).

Recall from Theorem 4.2.14

D(Pn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, n ≡ 0 mod 4

−1, n ≡ 1 mod 4

−1, n ≡ 2 mod 4

1, n ≡ 3 mod 4

Now consider the four cases 4k, 4k + 1, 4k + 2 and 4k + 3.
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D′(P4k,−1) =
∑3

i=1 D
′(P4k−i,−1)−∑3

i=1 D
′(P4k−i,−1)

= (1− 1− 1)− (− (4k−1)+1
2

+ 0 + (4k−3)+1
2

)

= −1− −2
2

= 0

D′(P4k+1,−1) =
∑3

i=1 D
′(P4k+1−i,−1)−∑3

i=1 D
′(P4k+1−i,−1)

= (1 + 1− 1)− (0− (4k−1)+1
2

+ 0)

= 1 + 4k
2

= (4k+1)+1
2

D′(P4k+2,−1) =
∑3

i=1 D
′(P4k+2−i,−1)−∑3

i=1 D
′(P4k+2−i,−1)

= (−1 + 1 + 1)− ( (4k+1)+1
2

+ 0− (4k−1)+1
2

)

= 1− 2
2

= 0

D′(P4k+3,−1) =
∑3

i=1 D
′(P4k+3−i,−1)−∑3

i=1 D
′(P4k+3−i,−1)

= (−1− 1 + 1)− ( (4k+1)+1
2

+ 0)

= −1− 4k+2
2

= − (4k+3)+1
2

�

Lemma 4.2.16 For n ∈ N

D′′(Pn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
8
n(n+ 4), n ≡ 0 mod 4

−1
8
(n− 1)2, n ≡ 1 mod 4

1
8
(n+ 2)2, n ≡ 2 mod 4

1
8
(n− 3)(n+ 1), n ≡ 3 mod 4

(7)

Proof. We will prove our equation (7) by induction. We first compute D′′(Pn,−1)

for n = 3, 4, 5, 6. For these values of n, equation (7) reduces to
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D′′(P3,−1) = 1
8
(3− 3)(3 + 1) = 0

D′′(P4,−1) = −1
8
(4)(4 + 4) = −4

D′′(P5,−1) = −1
8
(5− 1)2 = −2

D′′(P6,−1) = 1
8
(6 + 2)2 = 8.

From Table 2.1 we have

D(P3, x) = x3 + 3x2 + x

D(P4, x) = x4 + 4x3 + 4x2

D(P5, x) = x5 + 5x4 + 8x3 + 3x2

D(P6, x) = x6 + 6x5 + 13x4 + 10x3 + x2.

Therefore

D′′(P3, x) = 6x+ 6

D′′(P4, x) = 12x2 + 24x+ 8

D′′(P5, x) = 20x3 + 60x2 + 48x+ 6

D′′(P6, x) = 30x4 + 120x3 + 156x2 + 60x+ 2.

Then by evaluating each equation at x = −1 we obtain

D′′(P3,−1) = 0 D′′(P4,−1) = −4 D′′(P5,−1) = −2 D′′(P6,−1) = 8.

Therefore our claim is true for n = 3, 4, 5, 6.

Now suppose that our claim is true for all n up until 4k−1. It is sufficient to show

our claim is true for 4k, 4k + 1, 4k + 2 and 4k + 3. Recall the following recurrence

relation from Theorem 2.3.2:

D(Pn, x) = x
3∑

i=1

D(Pn−i, x).

Therefore by taking the derivative two times and evaluating it at x = −1 we obtain

D′′(Pn,−1) = 2
3∑

i=1

D′(Pn−i,−1)−
3∑

i=1

D′′(Pn−i,−1).

Recall from Theorem 4.2.14
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D′(Pn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, n ≡ 0 mod 4

n+1
2
, n ≡ 1 mod 4

0, n ≡ 2 mod 4

−n+1
2
, n ≡ 3 mod 4

Now consider the four cases 4k, 4k + 1, 4k + 2 and 4k + 3.

D′′(P4k,−1) = 2
∑3

i=1 D
′(P4k−i,−1)−∑3

i=1 D
′′(P4k−i,−1)

= 2(− (4k−1)+1
2

+ 0 + (4k−3)+1
2

)−
(1
8
((4k − 1)− 3)((4k − 1) + 1)+

1
8
((4k − 2) + 2)2 − 1

8
((4k − 3)− 1)2)

= −1
8
(4k)((4k) + 4)

D′′(P4k+1,−1) = 2
∑3

i=1 D
′(P4k+1−i,−1)−∑3

i=1 D
′′(P4k+1−i,−1)

= 2(0− (4k−1)+1
2

+ 0)−
(−1

8
(4k)((4k) + 4) + 1

8
((4k − 1)− 3)((4k − 1) + 1)+

1
8
((4k − 2) + 2)2)

= −1
8
((4k + 1)− 1)2

D′′(P4k+2,−1) = 2
∑3

i=1 D
′(P4k+2−i,−1)−∑3

i=1 D
′′(P4k+2−i,−1)

= 2( (4k+1)+1
2

+ 0− (4k−1)+1
2

)−
(−1

8
((4k + 1)− 1)2 − 1

8
(4k)((4k) + 4)+

1
8
((4k − 1)− 3)((4k − 1) + 1))

= 1
8
((4k + 2) + 2)2

D′′(P4k+3,−1) = 2
∑3

i=1 D
′(P4k+3−i,−1)−∑3

i=1 D
′′(P4k+3−i,−1)

= 2(0 + (4k+1)+1
2

+ 0)−
(1
8
((4k + 2) + 2)2 − 1

8
((4k + 1)− 1)2−

1
8
(4k)((4k) + 4))

= 1
8
((4k + 3)− 3)((4k + 3) + 1)

�
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Lemma 4.2.17 For n ∈ N

D′′′(Pn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
16
n3 − n, n ≡ 0 mod 4

− 9
16
n2 + 3

8
n+ 3

16
, n ≡ 1 mod 4

− 1
16
n3 + 1

4
n, n ≡ 2 mod 4

9
16
n2 + 3

8
n− 3

16
, n ≡ 3 mod 4

(8)

Proof. We will prove equation (8) by induction. We first compute D′′′(Pn,−1) for

n = 3, 4, 5, 6. For these values of n, equation (8) reduces to

D′′′(P3,−1) = 9
16
(3)2 + 3

8
(3)− 3

16
= 6

D′′′(P4,−1) = 1
16
(4)3 − 4 = 0

D′′′(P5,−1) = − 9
16
(5)2 + 3

8
(5) + 3

16
= −12

D′′′(P6,−1) = − 1
16
(6)3 + 1

4
(6) = −12.

From Table 2.1 we have

D(P3, x) = x3 + 3x2 + x

D(P4, x) = x4 + 4x3 + 4x2

D(P5, x) = x5 + 5x4 + 8x3 + 3x2

D(P6, x) = x6 + 6x5 + 13x4 + 10x3 + x2.

Therefore

D′′′(P3, x) = 6

D′′′(P4, x) = 24x+ 24

D′′′(P5, x) = 60x2 + 120x+ 48

D′′′(P6, x) = 120x3 + 360x2 + 312x+ 60.

Then by evaluating each equation at x = −1 we obtain

D′′′(P3,−1) = 6 D′′′(P4,−1) = 0 D′′′(P5,−1) = −12 D′′′(P6,−1) = −12.

Therefore our claim is true for n = 3, 4, 5, 6. Now suppose that our claim is true for

all n up until 4k − 1. It is sufficient to show our claim is true for 4k, 4k + 1, 4k + 2

and 4k + 3. Recall the following recurrence relation from Theorem 2.3.2:
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D(Pn, x) = x
3∑

i=1

D(Pn−i, x).

Therefore by taking the derivative three times and evaluating it at x = −1 we obtain

D′′′(Pn,−1) = 3
3∑

i=1

D′′(Pn−i,−1)−
3∑

i=1

D′′′(Pn−i,−1).

Recall from Theorem 4.2.14

D′′(Pn,−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
8
n(n+ 4), n ≡ 0 mod 4

−1
8
(n− 1)2, n ≡ 1 mod 4

1
8
(n+ 2)2, n ≡ 2 mod 4

1
8
(n− 3)(n+ 1), n ≡ 3 mod 4

Now consider the four cases 4k, 4k + 1, 4k + 2 and 4k + 3.

D′′′(P4k,−1) = 3
∑3

i=1 D
′′(P4k−i,−1)−∑3

i=1 D
′′′(P4k−i,−1)

= 3(1
8
((4k − 1)− 3)((4k − 1) + 1)+

1
8
((4k − 2) + 2)2 − 1

8
((4k − 3)− 1)2)−

( 9
16
(4k − 1)2 + 3

8
(4k − 1)− 3

16
−

1
16
(4k − 2)3 + 1

4
(4k − 2)−

9
16
(4k − 3)2 + 3

8
(4k − 3) + 3

16
)

= 1
16
(4k)3 − (4k)

D′′′(P4k+1,−1) = 3
∑3

i=1 D
′′(P4k+1−i,−1)−∑3

i=1 D
′′′(P4k+1−i,−1)

= 3(−1
8
(4k)((4k) + 4) + 1

8
((4k − 1)− 3)((4k − 1) + 1)+

1
8
((4k − 2) + 2)2)−

( 1
16
(4k)3 − (4k)+

9
16
(4k − 1)2 + 3

8
(4k − 1)− 3

16
−

1
16
(4k − 2)3 + 1

4
(4k − 2))

= − 9
16
(4k + 1)2 + 3

8
(4k + 1) + 3

16
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D′′′(P4k+2,−1) = 3
∑3

i=1 D
′′(P4k+2−i,−1)−∑3

i=1 D
′′′(P4k+2−i,−1)

= 3(−1
8
((4k + 1)− 1)2 − 1

8
(4k)((4k) + 4)+

1
8
((4k − 1)− 3)((4k − 1) + 1))−

(− 9
16
(4k + 1)2 + 3

8
(4k + 1) + 3

16
+

1
16
(4k)3 − (4k)+

9
16
(4k − 1)2 + 3

8
(4k − 1)− 3

16
)

= − 1
16
(4k + 2)3 + 1

4
(4k + 2)

D′′′(P4k+3,−1) = 3
∑3

i=1 D
′′(P4k+3−i,−1)−∑3

i=1 D
′′′(P4k+3−i,−1)

= 3(1
8
((4k + 2) + 2)2 − 1

8
((4k + 1)− 1)2−

1
8
(4k)((4k) + 4))−

(− 1
16
(4k + 2)3 + 1

4
(4k + 2)−

9
16
(4k + 1)2 + 3

8
(4k + 1) + 3

16
+

1
16
(4k)3 − (4k))

= 9
16
(4k + 3)2 + 3

8
(4k + 3)− 3

16

�

We now present our main result, the equivalence class of paths. The next theorem

will show [Pn] = {Pn, P
′
n} for n ≥ 9. However, first we will discuss the [Pn] for n ≤ 8

as shown in Table 4.1. For n �= 4, 7, 8, [Pn] = {Pn, P
′
n} (P3 only has one stem, so P3

and P ′3 are isomorphic). Recall from the proof of Lemma 4.2.4, D(Pn,−2) = 0 when

n = 4, 7, 8. This is evident in Table 4.1 as P4, P7, and P8 are each D-equivalent to

graphs with K2 components. Note that [P7] and [P8] each have four graphs, however

they effectively only have two graphs as the other two graphs are just copies with an

irrelevant edge added (the edge between two stems).

Theorem 4.2.18 For n ≥ 9, [Pn] = {Pn, P
′
n}.

Proof. For n ≥ 9, let G be a graph which is D-equivalent to Pn. By Lemma 4.2.9

G = H ∪ C where H ∈ {Pn1 , P
′
n1
} with n1 ≤ n and C is the disjoint union of at

most two cycles. Therefore either G = H, G = H ∪ Cn2 , or G = H ∪ Cn2 ∪ Cn3 .

It is sufficient to show the latter two cases result in a contradiction. We will do so

by evaluating D(Pn,−1), . . . , D′′′(Pn,−1) and D(G,−1), . . . , D′′′(G,−1) for all cases

n1, n2, n3 ≡ 0, 1, 2, 3 mod 4 and showing each case results in a contradiction.
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n D(Pn, x) [Pn]

3 x3 + 3x2 + x

4 x4 + 4x3 + 4x2

5 x5 + 5x4 + 8x3 + 3x2

6 x6 + 6x5 + 13x4 + 10x3 + x2

7 x7 + 7x6 + 19x5 + 22x4 + 8x3

8 x8 + 8x7 + 26x6 + 40x5 + 26x4 + 4x3

Table 4.1: The domination equivalence classes for paths up to length eight
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By Lemma 4.2.10 – 4.2.13 we know that D(Cn,−1), D′(Cn,−1), D′′(Cn,−1) and

D′′′(Cn,−1). Similarly by Lemma 4.2.14 - 4.2.17 we know D(Pn,−1), D′(Pn,−1),

D′′(Pn,−1) and D′′′(Pn,−1). As G is a disjoint union of paths and cycles then its

domination polynomial is the product of the domination polynomials of paths and

cycles. Furthermore we can then use the product rule to equate D(Pn,−1) and

D(G,−1), D′(Pn,−1) and D′(G,−1), and so on. This gives us a system of equations.

If the system has no solutions then the case results in a contradiction.

We claim that each case results in a contradiction. We omit the cases were n2, n3 ≡
0 mod 4 because then D(Cn2 ,−1) = D(Cn3 ,−1) = 3 and by Corollary 4.2.3 any

component H of G must have D(H,−1) ∈ {1,−1}. Note the following facts which

will be used to show a contradiction:

• n2, n3 ≥ 3 as they are the order of cycles.

• n1 ≥ 0 as it is the order of a path.

• n1 �= n as n2, n3 ≥ 3.

• n ≥ 9.

Case A: One Cycle

Then let G = Pn1∪Cn2 . We will examine the twelve cases for n1 ≡ 0, 1, 2, 3 mod 4

and n2 ≡ 1, 2, 3 mod 4. By taking the first three derivatives of D(G, x) we obtain the

following system of equations:

D(Pn,−1) = D(Pn1 ,−1)D(Cn2 ,−1) (PC0)

D′(Pn,−1) = D′(Pn1 ,−1)D(Cn2 ,−1) +D(Pn1 ,−1)D′(Cn2 ,−1) (PC1)

D′′(Pn,−1) = D′′(Pn1 ,−1)D(Cn2 ,−1) + 2D′(Pn1 ,−1)D′(Cn2 ,−1)

+D(Pn1 ,−1)D′′(Cn2 ,−1) (PC2)

D′′′(Pn,−1) = D′′′(Pn1 ,−1)D(Cn2 ,−1) + 3D′′(Pn1 ,−1)D′(Cn2 ,−1)

+3D′(Pn1 ,−1)D′′(Cn2 ,−1) +D(Pn1 ,−1)D′′′(Cn2 ,−1) (PC3)
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In each case we will substitute the results from Lemma 4.2.10 - 4.2.17 into the

appropriate equation to show our contradiction.

Case 1: n1 ≡ 0, n2 ≡ 1 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 1 (mod 4) and therefore equation (PC1) reduces

to

n+ 1

2
= n2

and equation (PC2) reduces to

−(n− 1)2

8
=

n1(n1 + 4)

8
− n2(n2 − 1)

2
.

Therefore n = 2n2− 1. As n = n1+n2 then n1 = n2− 1. So by substituting this into

the reduced equation (PC2) and multiplying both sides by 8 we obtain

−(2n2 − 2)2 = (n2 − 1)(n2 + 3)− 4n2(n2 − 1).

By bringing everything to one side and simplifying we are left with

(n2 − 1)2 = 0.

Therefore n2 = 1. However as n2 ≥ 3, this is a contradiction.

Case 2: n1 ≡ 0, n2 ≡ 2 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 2 (mod 4) and therefore equation (PC2) reduces

to

(n+ 2)2

8
=

n1(n1 + 4)

8
+

n2(n2 + 2)

4
,

and equation (PC3) reduces to

−n3

16
+

n

4
= −n3

1

16
+ n1 − 3n3

2

16
+

3n2

4
.

We will now substitute n = n1 + n2 into the reduced equation (PC2):
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0 = 1
8
(n1 + n2 + 2)2 − (1

8
n1(n1 + 4) + 1

4
n2(n2 + 2))

0 = (n1 + n2 + 2)2 − n1(n1 + 4)− 2n2(n2 + 2)

0 = n2
1 + n2

2 + 4 + 2n1n2 + 4n1 + 4n2 − n2
1 − 4n1 − 2n2

2 − 4n2

0 = −n2
2 + 2n1n2 + 4

Therefore n1 =
n2
2−4
2n2

. By substituting this and n = n1+n2 into the reduced equation

(PC3) and multiplying by n2 we obtain

0 = −1

4
n4
2 − 2n2

2 + 12.

Using Maple, we obtain the solutions n2 = −2, 2,−2
√
3i or 2

√
3i. As n2 is order of

the cycle then n2 ≥ 3 and real. This is a contradiction for all four solutions.

Case 3: n1 ≡ 0, n2 ≡ 3 (mod 4)

As n ≡ n1+n2 (mod 4) then n ≡ 3 (mod 4) and D(Pn,−1) = 1. However D(G,−1) =

D(Pn1 ,−1)D(Cn2 ,−1) = (1)(−1) = −1 which is a contraction.

Case 4: n1 ≡ 1, n2 ≡ 1 (mod 4)

Then n ≡ 2 (mod 4) andD(Pn,−1) = −1. HoweverD(G,−1) = D(Pn1 ,−1)D(Cn2 ,−1) =

(−1)(−1) = 1 which is a contraction.

Case 5: n1 ≡ 1, n2 ≡ 2 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 3 (mod 4) and therefore equation (PC1) reduces

to

−1

2
(n+ 1) = −1

2
(n1 + 1).

This implies n = n1. However n = n1 + n2, so n2 = 0, which is a contradiction.

Case 6: n1 ≡ 1, n2 ≡ 3 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 0 (mod 4) and therefore equation (PC1) reduces

to
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0 = −1

2
(n1 + 1).

This implies n1 = −1 which is a contradiction.

Case 7: n1 ≡ 2, n2 ≡ 1 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 3 (mod 4) and therefore equation (PC1) reduces

to

−n+ 1

2
= −n2,

and equation (PC2) reduces to

1

8
(n− 3)(n+ 1) = −1

8
(n1 + 2)2 +

1

2
n2(n2 − 1).

Therefore n = 2n2− 1. As n = n1+n2 then n1 = n2− 1. So by substituting this into

the reduced equation (PC2) and multiplying both sides by 8 we obtain

(2n2 − 4)(2n2) = −(n2 + 1)2 + 4n2(n2 − 1).

By bringing everything to one side and simplifying we are left with

(n2 − 1)2 = 0.

Therefore n2 = 1. However as n2 ≥ 3, this is a contradiction.

Case 8: n1 ≡ 2, n2 ≡ 2 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 0 (mod 4) and therefore equation (PC2) reduces

to

−1

8
n(n+ 4) = −1

8
(n1 + 2)2 − 1

4
n2(n2 + 2),

and equation (PC3) reduces to

1

16
n3 − n =

1

16
n3
1 −

1

4
n1 +

3

16
n3
2 −

3

4
n2.
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We will now substitute n = n1 + n2 into the reduced equation (PC2).

0 = −1
8
(n1 + n2)(n1 + n2 + 4)− (−1

8
(n1 + 2)2 − 1

4
n2(n2 + 2))

0 = −(n1 + n2)(n1 + n2 + 4) + (n1 + 2)2 + 2n2(n2 + 2)

0 = −n2
1 − 2n1n2 − n2

2 − 4n1 − 4n2 + n2
1 + 4n1 + 4 + 2n2

2 + 4n2

0 = −2n1n2 + 4 + n2
2

Therefore n1 =
n2
2+4

2n2
. By substituting this and n = n1+n2 into the reduced equation

(PC3) and multiplying by n2 we obtain

0 =
1

4
n4
2 + 2n2

2 − 12.

Using Maple, we obtain the solutions n2 = −2, 2,−2
√
3i or 2

√
3i. As n2 is order of

the cycle then n2 ≥ 3 and real. This is a contradiction for all four solutions.

Case 9: n1 ≡ 2, n2 ≡ 3 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 1 (mod 4) and D(Pn,−1) = −1. However

D(G,−1) = D(Pn1 ,−1)D(Cn2 ,−1) = (−1)(−1) = 1 which is a contraction.

Case 10: n1 ≡ 3, n2 ≡ 1 (mod 4)

As n ≡ n1+n2 (mod 4) then n ≡ 0 (mod 4) and D(Pn,−1) = 1. However D(G,−1) =

D(Pn1 ,−1)D(Cn2 ,−1) = (1)(−1) = −1 which is a contraction.

Case 11: n1 ≡ 3, n2 ≡ 2 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 1 (mod 4) and equation (PC1) reduces to

1

2
(n+ 1) =

1

2
(n1 + 1).

This implies n = n1. However n = n1 + n2, so n2 = 0, which is a contradiction.

Case 12: n1 ≡ 3, n2 ≡ 3 (mod 4)

As n ≡ n1 + n2 (mod 4) then n ≡ 2 (mod 4) and equation (PC1) reduces to
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0 =
1

2
(n1 + 1).

This implies n1 = −1 which is a contradiction.

As each of the twelve cases result in a contradiction then G is not a disjoint union

of H and one cycle, where H ∈ {Pn1 , P
′
n1
}. We will now consider whether G can be

a disjoint union of H and two cycles.

Case B: Two Cycles

Then let G = Pn1∪Cn2∪Cn3 . We will examine all cases with n1 ≡ 0, 1, 2, 3 mod 4,

n2 ≡ 1, 2, 3 mod 4, and n3 ≡ 1, 2, 3 mod 4. Without loss of generality we will also

only consider the cases where n2 is less than or equal to n3 modulus 4. For example,

if n3 ≡ 2 mod 4 then we will only consider the cases where n2 ≡ 1, 2 mod 4.

By taking the first three derivatives of D(G, x) we obtain the following system of

equations:

D(Pn,−1) = D(Pn1 ,−1)D(Cn2 ,−1)D(Cn3 ,−1) (PCC0)

D′(Pn,−1) = D′(Pn1 ,−1)D(Cn2 ,−1)D(Cn3 ,−1) +D(Pn1 ,−1)D′(Cn2 ,−1)D(Cn3 ,−1)

+D(Pn1 ,−1)D(Cn2 ,−1)D′(Cn3 ,−1) (PCC1)

D′′(Pn,−1) = D′′(Pn1 ,−1)D(Cn2 ,−1)D(Cn3 ,−1) +D(Pn1 ,−1)D′′(Cn2 ,−1)D(Cn3 ,−1)

+D(Pn1 ,−1)D(Cn2 ,−1)D′′(Cn3 ,−1) + 2D′(Pn1 ,−1)D′(Cn2 ,−1)D(Cn3 ,−1)

+2D′(Pn1 ,−1)D(Cn2 ,−1)D′(Cn3 ,−1) + 2D(Pn1 ,−1)D′(Cn2 ,−1)D′(Cn3 ,−1) (PCC2)

D′′′(Pn,−1) = D′′′(Pn1 ,−1)D(Cn2 ,−1)D(Cn3 ,−1) +D(Pn1 ,−1)D′′′(Cn2 ,−1)D(Cn3 ,−1)

+D(Pn1 ,−1)D(Cn2 ,−1)D′′′(Cn3 ,−1) + 3D′′(Pn1 ,−1)D′(Cn2 ,−1)D(Cn3 ,−1)

+3D′(Pn1 ,−1)D′′(Cn2 ,−1)D(Cn3 ,−1) + 3D′′(Pn1 ,−1)D(Cn2 ,−1)D′(Cn3 ,−1)

+3D′(Pn1 ,−1)D(Cn2 ,−1)D′′(Cn3 ,−1) + 3D(Pn1 ,−1)D′′(Cn2 ,−1)D′(Cn3 ,−1)

+3D(Pn1 ,−1)D′(Cn2 ,−1)D′′(Cn3 ,−1) + 6D′(Pn1 ,−1)D′(Cn2 ,−1)D′(Cn3 ,−1) (PCC3)

In each case we will substitute the results from Lemma 4.2.10 - 4.2.17 into the

appropriate equation to show our contradiction.
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Case 1: n1 ≡ 0, n2 ≡ 1, n3 ≡ 1 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 2 (mod 4) and by Lemma 4.2.14, D(Pn,−1) =

−1. However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = 1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = 1, which is a contradiction.

Case 2: n1 ≡ 0, n2 ≡ 1, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 3 (mod 4) and therefore equation (PCC1)

reduces to

−n+ 1

2
= −n2

and equation (PCC2) reduces to

1

8
(n− 3)(n+ 1) = −1

8
n1(n1 + 4)− 1

4
n3(n3 + 2) +

1

2
n2(n2 − 1).

Therefore n = 2n2−1. As n = n1+n2+n3 then n2 = n1+n3+1 and n = 2n1+2n3+1.

So by substituting this into the reduced equation (PCC2) and multiplying both sides

by 8 we obtain

(2n1+2n3− 2)(2n1+2n3+2) = −n1(n1+4)− 2n3(n3+2)+4(n1+n3+1)(n1+n3),

which simplifies to

4(n1 + n3)
2 − 4 = −n1(n1 + 4)− 2n3(n3 + 2) + 4(n1 + n3)

2 + 4(n1 + n3)

−4 = −n2
1 − 4n1 − 2n2

3 − 4n3 + 4n1 + 4n3

0 = −n2
1 − 2n2

3 + 4.

As n3 ≥ 3, there are no solutions, which is a contradiction.

Case 3: n1 ≡ 0, n2 ≡ 2, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 0 (mod 4) and therefore equation (PCC2)

reduces to
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−1

8
n(n+ 4) = −1

8
n1(n1 + 4)− 1

4
n3(n3 + 2)− 1

4
n2(n2 + 2).

and equation (PCC3) reduces to

1

16
n3 − n =

1

16
n3
1 − n1 +

3

16
n3
3 −

3

4
n3 +

3

16
n3
2 −

3

4
n2.

We will now substitute n = n1 + n2 + n3 into the the reduced equation (PCC2)

n2
2 + n2

3 − 2n1n2 − 2n1n3 − 2n2n3 = 0.

Therefore if we isolate for n1 we obtain

n1 =
(n2 − n3)

2

2(n2 + n3)
.

By substituting this and n = n1 + n2 + n3 into the the reduced equation (PCC3),

multiplying by 64n2 + 64n3, and simplifying we obtain

n4
2 − 8n3

2n3 + 30n2
2n

2
3 − 8n2n

3
3 + n4

3 − 16n2
2 − 32n2n3 − 16n2

3 = 0 (9)

We have plotted the non-negative solutions to equation (9) along with the line n3 =

8−n2 in Figure 4.10. We will show that any line n3 = k−n2 which intersects the set

of non-negative solutions to equation (9) must have k ≤ 8. Therefore we will be able

to bound all solutions to equation (9) with the bounds n3 ≤ 8− n2and n3, n2 ≥ 3.

We will show the line n3 = k− n2 only intersects the set of non-negative solutions to

equation (9) if k ≤ 8. First substitute n3 = k − n2 into equation (9) to obtain

48n4
2 − 96kn3

2 + 60k2n2
2 − 12k3n2 + k4 − 12k2 = 0.

With the help of Maple we found the solution

n2 =
1

2
k ± 1

12

√
18k2 ± 6k

√
−3k2 + 192.
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Figure 4.10: Solutions to n4
2−8n3

2n3+30n2
2n

2
3−8n2n

3
3+n4

3−12n2
2−32n2n3−12n2

3 = 0

Therefore n2 is real only if −3k2 + 192 ≥ 0 and hence k ≤ 8. Therefore the only

remaining viable solutions are the 6 integer pairs bounded by n2, n3 ≥ 3 and n3 ≤
8− n2. As none are solutions, this is a contradiction.

Case 4: n1 ≡ 0, n2 ≡ 1, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 0 (mod 4) and by Lemma 4.2.15, D′(Pn,−1) = 0.

However by Lemma 4.2.11 and Lemma 4.2.15 D′(G,−1) = −n2, so n2 = 0, which is

a contradiction as n2 ≥ 3.

Case 5: n1 ≡ 0, n2 ≡ 2, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 1 (mod 4) and by Lemma 4.2.14, D(Pn,−1) =

−1. However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = 1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = 1, which is a contradiction.

Case 6: n1 ≡ 0, n2 ≡ 3, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 2 (mod 4) and by Lemma 4.2.14, D(Pn,−1) =

−1. However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = 1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = 1 which, is a contradiction.
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Case 7: n1 ≡ 1, n2 ≡ 1, n3 ≡ 1 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 3 (mod 4) and by Lemma 4.2.14, D(Pn,−1) = 1.

However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = −1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = −1, which is a contradiction.

Case 8: n1 ≡ 1, n2 ≡ 1, n3 ≡ 2 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 0 (mod 4) and by Lemma 4.2.14, D(Pn,−1) = 1.

However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = −1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = −1, which is a contradiction.

Case 9: n1 ≡ 1, n2 ≡ 2, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 1 (mod 4) and therefore equation (PCC1)

reduces to

n+ 1

2
=

n1 + 1

2
.

However this implies n = n1, which is a contradiction.

Case 10: n1 ≡ 1, n2 ≡ 1, n3 ≡ 3 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 1 (mod 4) and therefore equation (PCC1)

reduces to

n+ 1

2
=

n1 + 1

2
+ n2

Therefore n = n1 + 2n2. Furthermore equation (PCC2) reduces to

−1

8
(n− 1)2 = −1

8
(n1 − 1)2 − n2(n1 + 1)− 1

2
n2(n2 − 1).

By substituting n = n1 + 2n2 into the reduced equation (PCC2) and multiplying

both sides by 8 we obtain

−(n1 + 2n2 − 1)2 = −(n1 − 1)2 − 8n2(n1 + 1)− 4n2(n2 − 1).
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This simplifies to

0 = −(n1 + 2n2 − 1)2 − (−(n1 − 1)2 − 8n2(n1 + 1)− 4n2(n2 − 1))

0 = −(n1 + 2n2 − 1)2 + (n1 − 1)2 + 8n2n1 + 8n2 + 4n2
2 − 4n2

0 = −(n1 − 1)2 − 2(2n2)(n1 − 1)− 4n2
2 + (n1 − 1)2 + 8n2n1 + 4n2 + 4n2

2

0 = −2(2n2)(n1 − 1) + 8n2n1 + 4n2

0 = −4n2n1 + 4n2 + 8n2n1 + 4n2

0 = 4n2n1 + 8n2

As n2 ≥ 3, this equation has no solutions, which is a contradiction.

Case 11: n1 ≡ 1, n2 ≡ 2, n3 ≡ 3 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 2 (mod 4) and therefore equation (PCC1)

reduces to

0 =
n1 + 1

2
.

Therefore n1 = −1, which is a contradiction as n1 > 0.

Case 12: n1 ≡ 1, n2 ≡ 3, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 3 (mod 4) and by Lemma 4.2.14, D(Pn,−1) = 1.

However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = −1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = −1, which is a contradiction.

Case 13: n1 ≡ 2, n2 ≡ 1, n3 ≡ 1 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 0 (mod 4) and by Lemma 4.2.14, D(Pn,−1) = 1.

However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = −1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = −1, which is a contradiction.

Case 14: n1 ≡ 2, n2 ≡ 1, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 1 (mod 4) and therefore equation (PCC1)

reduces to
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n+ 1

2
= n2,

and equation (PCC2) reduces to

−1

8
(n− 1)2 =

1

8
(n1 + 2)2 +

1

4
n3(n3 + 2)− 1

2
n2(n2 − 1).

Therefore n = 2n2−1. As n = n1+n2+n3 then n2 = n1+n3+1 and n = 2n1+2n3+1.

So by substituting this into the reduced equation (PCC2) and multiplying both sides

by 8 we obtain

−(2n1 + 2n3)
2 = (n1 + 2)2 + 2n3(n3 + 2)− 4(n1 + n3 + 1)(n1 + n3),

which simplifies to

−4(n1 + n3)
2 = (n1 + 2)2 + 2n3(n3 + 2)− 4(n1 + n3)

2 − 4(n1 + n3)

0 = (n1 + 2)2 + 2n3(n3 + 2)− 4(n1 + n3)

0 = n2
1 + 4n1 + 4 + 2n2

3 + 4n3 − 4n1 − 4n3

0 = n2
1 + 4 + 2n2

3.

As n3 ≥ 3, this equation has no solutions, which is a contradiction.

Case 15: n1 ≡ 2, n2 ≡ 2, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 2 (mod 4) and therefore equation (PCC2)

reduces to

1

8
(n+ 2)2 =

1

8
(n1 + 2)2 +

1

4
n3(n3 + 2) +

1

4
n2(n2 + 2).

and equation (PCC3) reduces to

− 1

16
n3 +

1

4
n = − 1

16
n3
1 +

1

4
n1 − 3

16
n3
3 +

3

4
n3 − 3

16
n3
2 +

3

4
n2.

We will now substitute n = n1 + n2 + n3 into the reduced equation (PCC2)

−n2
2 − n2

3 + 2n1n2 + 2n1n3 + 2n2n3 = 0.

Therefore if we isolate for n1 we obtain
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n1 =
(n2 − n3)

2

2(n2 + n3)
.

By substituting this and n = n1 + n2 + n3 into the reduced equation (PCC3), multi-

plying by −64n2 − 64n3, and simplifying we obtain

n4
2 − 8n3

2n3 + 30n2
2n

2
3 − 8n2n

3
3 + n4

3 + 32n2
2 + 64n2n3 + 32n2

3 = 0

We now substitute n3 = k − n2 into the equation above to obtain

48n4
2 − 96kn3

2 + 60k2n2
2 − 12k3n2 + k4 + 32k2 = 0.

With the help of Maple we found the solution

n2 =
1

2
k ± 1

12

√
18k2 ± 6k

√
−3k2 − 384.

Therefore n2 is real only if −3k2 − 384 ≥ 0. However −3k2 − 384 < 0 and we have

no real solutions for n2, which is a contradiction.

Case 16: n1 ≡ 2, n2 ≡ 1, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 2 (mod 4) and by Lemma 4.2.15, D′(Pn,−1) = 0.

However by Lemma 4.2.11 and Lemma 4.2.15 D′(G,−1) = n2, so n2 = 0, which is a

contradiction as n2 ≥ 3.

Case 17: n1 ≡ 2, n2 ≡ 2, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 3 (mod 4) and by Lemma 4.2.14, D(Pn,−1) = 1.

However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = −1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = −1, which is a contradiction.

Case 18: n1 ≡ 2, n2 ≡ 3, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 0 (mod 4) and by Lemma 4.2.14, D(Pn,−1) = 1.

However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = −1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = −1, which is a contradiction.
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Case 19: n1 ≡ 3, n2 ≡ 1, n3 ≡ 1 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 1 (mod 4) and by Lemma 4.2.14, D(Pn,−1) =

−1. However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = 1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = 1, which is a contradiction.

Case 20: n1 ≡ 3, n2 ≡ 1, n3 ≡ 2 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 2 (mod 4) and by Lemma 4.2.14, D(Pn,−1) =

−1. However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = 1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = 1, which is a contradiction.

Case 21: n1 ≡ 3, n2 ≡ 2, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 3 (mod 4) and therefore equation (PCC1)

reduces to

−n+ 1

2
= −n1 + 1

2

However this implies n = n1, which is a contradiction.

Case 22: n1 ≡ 3, n2 ≡ 1, n3 ≡ 3 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 3 (mod 4) and therefore equation (PCC1)

reduces to

−n+ 1

2
= −n1 + 1

2
− n2.

Therefore n = n1 + 2n2. Furthermore equation (PCC2) reduces to

1

8
(n− 3)(n+ 1) =

1

8
(n1 − 3)(n1 + 1) + n2(n1 + 1) +

1

2
n2(n2 − 1).

By substituting n = n1 + 2n2 into the reduced equation (PCC2) and multiplying

both sides by 8 we obtain

(n1 + 2n2 − 3)(n1 + 2n2 + 1) = (n1 − 3)(n1 + 1) + 8n2(n1 + 1) + 4n2(n2 − 1),
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which simplifies to

4n2n1 + 8n2 = 0.

As n2 ≥ 0, this equation has no non-negative solutions, which is a contradiction.

Case 23: n1 ≡ 3, n2 ≡ 2, n3 ≡ 3 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4) then n ≡ 0 (mod 4) and therefore equation (PCC1)

reduces to

0 = −n1 + 1

2
.

Therefore n1 = −1, which is a contradiction as n1 > 0.

Case 24: n1 ≡ 3, n2 ≡ 3, n3 ≡ 3 (mod 4)

As n ≡ n1+n2+n3 (mod 4) then n ≡ 1 (mod 4) and by Lemma 4.2.14, D(Pn,−1) =

−1. However by Lemma 4.2.10 and Lemma 4.2.14, D(Pn1 ,−1) = 1 and D(Cn2 ,−1) =

D(Cn3 ,−1) = −1 so D(G,−1) = 1, which is a contradiction.

As each of the 24 cases result in a contradiction, G is not a disjoint union of H and

two cycles, where H ∈ {Pn1 , P
′
n1
}. Finally, we conclude G has no cycle components

and G ∈ {Pn, P
′
n}.

�



Chapter 5

Conclusion

The focus of our work has been on coefficients and equivalence classes for domination

polynomials. In Chapter 3 we gave methods to bound the coefficients of D(G, x) for

given G. This led to lower bounds on the coefficients of D(G, x) for all connected

G. We also found closed formulas for d(G, n − 3), where G is a general graph, and

d(G, n − 4), where G is in the new collection of graphs G2(m). This helped us

determine the domination equivalence class of Pn in Chapter 4. Also in Chapter 4

we constructed D-equivalent graphs by connecting smaller D-equivalent graphs to

another graph. There are many open questions and directions for future research.

We present a discussion of these here.

In Section 3.1 we showed for all connected G of order n and each i, there exists a ki

such that d(G, i) is bounded below by d(Sn,ki , i). Recall Sn,ki is the disjoint union of ki

star graphs, where the n vertices are roughly divided evenly amongst each star graph.

That is, the order of two of these differs by at most one. We showed the lower bound

of d(G, i) was achieved by the lower bound of d(Sn,ki , i) for �n
2
� ≤ ki ≤ n. This is an

polynomial time algorithm to find the lower bound of d(G, i) for each i. Rather than

going through each possible ki, can we determine which ki makes d(Sn,ki , i) the lower

bound? See Table 5.1 for the kn−j which gives a lower bound for d(G, n − j). The

boldfaced entries indicate there were multiple kn−j which will give a lower bound for

d(G, n− j). If there were multiple kn−j which will give a lower bound for d(G, n− j),

we only stated the lowest kn−j.

For j − 2, we can show d(G, n− 2) is bounded below when kn−2 = 1. Recall from

Theorem 2.2.5, for connected graphs d(G, n− 2) =
(
n
2

)− t+ s where t is the number

of leaves and s is the number of K2 components. Therefore the graph with no K2

components and the most leaves (i.e. a star) gives a lower bound for d(G, n− 2). For

n up to 11, there seems to be a simple pattern, kn−j = j − 1. However for larger n it

becomes less clear. This leads us to our first question.

103
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n\j 2 3 4 5 6 7 8 9

3 1

4 1 2

5 1 2

6 1 2 3

7 1 2 3

8 1 2 3 4

9 1 2 3 4

10 1 2 3 4 5

11 1 2 3 4 5

12 1 3 3 4 5 6

13 1 3 4 4 4 6

14 1 3 4 4 5 5 7

15 1 3 4 5 5 5 7

16 1 3 4 5 5 6 8 8

Table 5.1: The kn−j which minimizes d(Sn,kn−j
, n − j) and therefore bounds below

d(G, n− j).

Question 1: Given n and i, can we determine ki such that d(Sn,ki , i) ≤ d(G, i) for

all connected G of order n?

We are also interested in bounding other families of graphs. Trees would share the

same lower bounds as connected graphs; however, their upper bounds would be much

lower. It seems for each tree T of order n, d(T, i) is bounded above by d(Pn, i) for i

closer to n and d(K1,n−1, i) otherwise. Table 5.2 shows the upper bound on d(T, n−j)

trees up to order 11.

For comparison to Table 5.2 we also give a table of the upper bounds on coefficients

of domination polynomials for all graphs up to order 11. Note these are just the

coefficients of the complete graphs as every non-empty subset is a dominating set.

Question 2: Given n and i, how can we bound d(T, i) for all trees T of order n?
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n\j 1 2 3 4 5 6 7 8 9 10 11
3 1 3 1
4 1 4 4 1
5 1 5 8 4 1
6 1 6 13 10 5 1
7 1 7 19 22 15 6 1
8 1 8 26 40 35 21 7 1
9 1 9 34 65 70 56 28 8 1
10 1 10 43 98 126 126 84 36 9 1
11 1 11 53 140 211 252 210 120 45 10 1

Table 5.2: The upper bound of d(T, n− j) for a tree T of order n

n\j 1 2 3 4 5 6 7 8 9 10 11
3 3 3 1
4 4 6 4 1
5 5 10 10 5 1
6 6 15 20 15 6 1
7 7 21 35 35 21 7 1
8 8 28 56 70 56 28 8 1
9 9 36 84 126 126 84 36 9 1
10 10 45 120 210 252 210 120 45 10 1
11 11 55 165 330 462 462 330 165 55 11 1

Table 5.3: The upper bound of d(G, n− j) for any graph G of order n

In Section 3.1 we also gave two algorithms to bound the coefficients of D(G, x) of

a given G. Algorithm 1 removed edges from the neighbourhood of a vertex to leave a

disjoint union of stars. Algorithm 2 adds edges to the neighbourhood of some chosen

to obtain a disjoint union of complete graphs. However in both cases we arbitrarily

choose the vertices. Naturally this leads us to our next questions.

Question 3: Is there an optimal way to choose vertices in Algorithm 2 and Algorithm

1?

In Section 4.1 we gave conditions to make H1 ∼ H2 in Figure 5.1. In each case

G1 ∼ G2 and for each edge from A1 to T there was a corresponding edge from A2 to

T . However in Theorem 4.1.5, T was domination covered and there was a bijection

φ from the subsets of A1 to A2 such that pB(G1) = pφ(B)(G2) for every B ⊆ A1. In

Theorem 4.1.6, T was a clique and G1 and G2 were specified graphs. This brings us
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to our next question.

H

T

A1

G1

(a) H1

H

T

A2

G2

(b) H2

Figure 5.1: A representation of Theorem 4.1.5

Question 4: Can we determine all conditions to make H1 ∼ H2, as shown in Figure

5.1, given G1 ∼ G2?

In Section 4.2 we showed [Pn] = {Pn, P
′
n} for n ≥ 9 where P ′n is a copy of Pn with

an edge added between its stems. We did so by using the following steps

• Show D(Pn,−2) �= 0 for sufficiently large n.

• Show if G ∼ Pn then G = H ∪C, where H ∈ [Pk] for k ≤ n and C is a disjoint

union of cycles, by using the highest coefficients of D(Pn, x)

• Limiting the number of cycles in G by using ord3(D(Pn,−3)) and the domina-

tion number of paths and cycles.

• Creating a system of equations by evaluating D(Pn, x) and its first three deriva-

tives at x = −1 and finding a contradiction.

We believe this process can be used for other graphs in G2(m) and can be a source

for future research. However it has its limitations. Suppose we wish to determine [G]

for some graph G ∈ G2(m). If D(G,−2) = 0, we may not be able to determine [G].

If D(G,−2) �= 0, we can easily determine the number of leaves in G; however, we
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have no way of determining the number of stems other than it is bounded above by

the number of leaves. If G has many leafs, we must go through at least as many cases

for the number of stems. Furthermore the domination polynomial does not encode

the number of stems. In Figure 5.2 there are two graphs which are D-equivalent

but with a different number of stems. Although our process is still effective when

D(G,−2) �= 0 and G has few leaves, the final step of evaluating D(G, x) at x = −1 is

cumbersome. For paths, D(Pn,−1) is determined modulus 4, meaning we needed 36

individual cases to finally determine [Pn]. However the purpose of those cases were

to show if H ∼ Pn then H could not have any cycle components. This leads us to

our next question.

v1

v2

v3

v4 v5v6

(a)

v1

v2

v3

v4

v5

v6

(b)

Figure 5.2: Two graphs with domination polynomial x6 + 6x5 + 13x4 + 10x3 + 3x2

Question 5: Can we use the domination polynomial to determine if a graph has a

component that is a cycle?

Despite its limitations, we still believe we can find more equivalence classes using

the process outlined above. In particular for the graphs which take one of the three

forms shown in Figure 5.3. This leads us to our final question.

...

(a)

...

(b)

. . . . . ....

(c)

Figure 5.3: Forms of graphs for future research

Question 6: For which other graphs in G2(m) can we determine the domination

equivalence class?



Bibliography

[1] G. Aalipour-Hafshejani, S. Akbari, and Z. Ebrahimi, On D-equivalence class of
complete bipartite graphs., Ars Comb. 117 (2014), 275–288.

[2] S. Akbari, S. Alikhani, and Y. H. Peng, Characterization of graphs using domi-
nation polynomials, Eur. J. Comb. 31 (2010), 1714–1724.

[3] S. Akbari and M. R. Oboudi, Cycles are determined by their domination poly-
nomials, Ars Comb. 116 (2014), 353–358.

[4] S. Alikhani, Dominating sets and domination polynomials of graphs, first ed.,
Lambert Academic Publishing, 2012.

[5] S. Alikhani, On the D-equivalence Class of a Graph, Kragujev. J. Math. 36
(2012), 315–321.

[6] S. Alikhani, The Domination Polynomial of a Graph at -1, Graphs Comb. 29
(2013), 1175–1181.

[7] S. Alikhani and S. Jahari, On D-equivalence class of friendship graphs, Pre-print
(2014).

[8] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of
Cycles, Glob. J. Pure Appl. Math. 4 (2008), 151–162.

[9] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of
paths, Int. J. Math. Math. Sci. 10 (2009), 1–10.

[10] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of
certain graphs. II., Opusc. Math. 30 (2010), 37–51.

[11] S. Alikhani and Y. H. Peng, Domination polynomials of cubic graphs of order
10, Turkish J. Math. 35 (2011), 355–366.

[12] S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph,
Ars Comb. 114 (2014), 257–266.

[13] B. M. Anthony and M. E. Picollelli, Complete r-partite Graphs Determined by
their Domination Polynomial, Graphs Comb. 31 (2015), 1993–2002.

[14] J. L. Arocha and B. Llano, Mean Value for the Matching and Dominating Poly-
nomial, Discuss. Math. 20 (2000), 57–69.

[15] G. Birkhoff, A Determinant Formula for the Number of Ways of Coloring a Map,
Ann. Math. 14 (1912), 42–46.

108



109

[16] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math 4
(1970), 322–324.

[17] S. T. Hedetniemi and R. C. Laskar, Bibliography on Domination in Graphs
and Some Basic Definitions of Domination Parameters, Ann. Discret. Math.
48 (1991), 257–277.

[18] S. Jahari and S. Alikhani, On D-equivalence classes of some graphs, Bull. Georg.
Natl. Acad. Sci. 10 (2015), 2016.

[19] T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations
and splitting formulas for the domination polynomial, Electron. J. Comb. 19
(2012), 1–27.


