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Abstract

Quantitative mapping in dynamic magnetic resonance imaging (MRI) aims to recover

quantitative parameters describing properties of patient tissues. However, quantita-

tive mapping in dynamic MRI is difficult due to limitations imposed on temporal

resolution to preserve image quality. Compressed sensing (CS) is a technique allow-

ing increased temporal resolution while maintaining higher image quality than was

traditionally possible. However, the compromise between quantitative mapping per-

formance and image quality in dynamic CS-MRI remains to be explored. In this

thesis we present three studies, building up towards the application of objective im-

age quality metrics (IQMs) to characterize the performance of quantitative mapping

in dynamic CS-MRI. We chose five IQMs for study: the root mean squared error

(RMSE), the gradient magnitude similarity deviation (GMSD), the structural simi-

larity index (SSIM), the multi-scale SSIM, and the information-weighted SSIM.

We first explored the design of a k-space acquisition scheme designed specifically

for dynamic CS-MRI, utilizing the IQMs to assess the performance of each design. It

was observed that designs did not differ significantly in performance within a fixed

k-space undersampling factor.

Incorporating knowledge from the k-space acquisition scheme design study, we

next investigated the properties of each IQM in static CS-MRI of the pelvis. Using

simulated k-space acquisitions, the properties of the IQMs in static CS-MRI of 15

pelvic image data sets were investigated. It was found that the GMSD had the

largest inter-image variation, followed by the RMSE and then the SSIM family of

IQMs. Furthermore, the ability of each IQM to select favourable CS reconstruction

parameters under different reconstruction conditions as undersampling of k-space

increased was observed and characterized.

With knowledge of the behaviour of the IQMs in static CS-MRI, a first-generation

simulation framework for quantitative mapping in dynamic CS-MRI was developed.

We present preliminary results to validate the performance of the simulation frame-

work. The ability to investigate changing CS reconstruction parameter needs for both

xvii



an emphasis on image quality and an emphasis on quantitative mapping performance

in dynamic CS-MRI was demonstrated. Finally, evidence of correlations between

IQM scores and quantitative mapping performance in dynamic MRI applications was

demonstrated.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a powerful imaging technique, capable of pro-

ducing high quality diagnostic images of patient anatomy non-invasively and with no

exposure to ionizing radiation. Since its introduction to the clinical scene in the early

1980’s [1], MRI has experienced a boom in innovation and application. As part of

this continued growth, objective image quality metrics (IQMs) developed in the field

of image processing as an alternative to the root mean squared error (RMSE) have

begun to be of interest to MRI researchers. These IQMs show better correlation with

observer subjective scoring than traditional error-based IQMs, such as the RMSE,

and may have utility not only in assessing the quality of static image reconstructions

but also for assessing the accuracy of quantitative dynamic compressed sensing (CS)

MRI applications.

In this thesis we investigate the proper implementation conditions of a k-space

sampling scheme designed for CS-MRI. We then study five objective IQMs in static

CS-MRI reconstructions, four of which are alternatives to the RMSE, utilizing the

aforementioned k-space sampling scheme and incorporating the results of our imple-

mentation study. Finally, we design and validate the initial version of a simulation

framework for the assessment of quantitative dynamic CS-MRI, which incorporates

the previously investigated k-space sampling scheme and objective IQMs. Although

we refer to quantitative dynamic contrast enhanced MRI as an exemplar in this the-

sis, the results presented in this thesis will motivate future work in many dynamic

CS-MRI applications.

1.1 Quantitative Dynamic Magnetic Resonance Imaging (MRI)

MRI is a medical imaging modality with a wide number of uses. MRI can be used

to obtain images of static anatomy, or it can be used to acquire a series of images

to represent a dynamic process. A dynamic process is one where some aspect of the

1
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images change over time. Examples of dynamic MRI applications include cardiac

cine MRI and dynamic contrast enhanced (DCE) MRI. We utilize DCE-MRI as a

motivating example of a dynamic MRI application. This was motivated by the ex-

istence of a many clinical applications for quantitative mapping utilizing DCE-MRI.

We stress that the work presented in this thesis may be extended to other dynamic

MRI applications.

DCE-MRI involves administering a bolus injection of paramagnetic contrast agent

to the patient and characterizing its flow through the tissues. This is done by acquir-

ing images prior to, during, and after injection of the contrast agent. The contrast

enhancement profiles of tissues can inform radiologists as to the underlying properties

of the tissue (e.g. perfusion, permeability) which in turn can inform them in making

a diagnosis. While DCE-MRI has often been analysed in a non-quantitative method,

whereby radiologists simply observe relative enhancement of a region of interest to

a control region, or a semi-quantitative method, whereby non-physiological measures

such as slope of enhancement profile or time to peak enhancement are taken, recent

advancement in the field of MRI have been trending towards a quantitative analysis

of DCE-MRI data.

Quantitative analyses of DCE-MRI involve modelling the tissues in a patient as

a set of compartments through which the contrast agent flows, a process also known

as pharmacokinetic mapping. These compartments represent the blood plasma and

the extracellular extravascular space (EES). Model parameters describe factors such

as the volume fraction of each compartment per unit volume of tissue, the influx of

contrast agent into the blood plasma compartment, leakage of contrast agent from

the blood plasma compartment to the EES compartment, and back leakage from the

EES compartment into the blood plasma compartment. An example of a widely used

pharmacokinetic model is the extended Tofts model [2;3]. The end result of pharma-

cokinetic mapping is a set of quantitative parameter maps for each parameter in the

model.

Quantitative mapping with DCE-MRI has traditionally been challenging in MRI.

High temporal resolution is needed to characterize the rapid uptake of contrast agent

through tissues. To get high temporal resolution, the data must be undersampled.

This will quickly degrade image quality. Compressed sensing, introduced in section
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1.2, permits maintenance of image quality at higher undersampling factors. Com-

bined with golden ratio sampling, which permits flexible retrospective decision in

the compromise between temporal resolution and image quality (and is introduced

in section 1.3), quantitative mapping with DCE-MRI has gained traction in clinical

studies. However, a method for characterizing the compromise between image qual-

ity and temporal resolution is required. Quantitative DCE-MRI involves voxel-wise

extraction of enhancement profiles to which the chosen signal evolution model is fit;

poor image quality will degrade the enhancement profiles, decreasing the accuracy of

recovered quantitative parameters. We propose to use objective IQMs, introduced in

section 1.4, to characterize quantitative dynamic MRI.

An exemplar anatomy for the application of quantitative dynamic MRI is the

prostate. Prostate cancer exhibits rapid enhancement in DCE-MRI, necessitating

high temporal resolution [4;5]. Image quality is also paramount for prostate imaging

since the prostate is a relatively small organ with a nested structure [6;7], such that de-

teriorating image quality may drastically affect the accuracy of quantitative mapping

of the prostate. For this reason, we utilized clinical pelvic MRI images as part of our

study; it is emphasized that the scope of the work presented in this thesis extends to

other anatomical applications however.

1.2 Compressed Sensing (CS) and MRI

While MRI provides excellent soft tissue contrast and does not subject patients to

ionizing radiation, the acquisition of high quality images often takes a long time

compared to the rate of dynamic processes in the body (e.g. contrast agent flow).

Data acquisition in MRI involves sampling the spatial frequency content of an image,

also known as the k-space of the image. Sampling k-space necessitates repeated

perturbation of the protons in a tissue sample to generate an MRI signal, which

in turn causes the inherent “slowness” of MRI. Producing quality diagnostic MR

images through sufficient sampling of k-space can take on the order of minutes. The

resulting limitations in temporal resolution pose difficulties for quantitative dynamic

techniques like quantitative DCE-MRI. To increase temporal resolution k-space may

be undersampled. Undersampling has traditionally been performed by uniformly

skipping portions of the k-space, but this rapidly leads to severe losses in image
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quality.

Compressed sensing (CS) is a strategy that allows significant undersampling of a

signal while still achieving high fidelity reconstructions of that signal, thereby speeding

up the acquisition process. There are three conditions that must be satisfied for CS

to provide reasonable results [8–10]:

1. The signal must be sampled (pseudo-)randomly, so that any aliasing artifacts in-

troduced by undersampling the signal are incoherent (i.e. “noise-like”). By the

Shannon-Nyquist sampling theorem, uniform undersampling of a signal causes

coherent aliasing artifacts. It’s impossible to recover the original signal from

beneath a series of coherent aliases, since the original signal cannot be distin-

guished. However, incoherent aliasing allows the original signal to be distin-

guished from beneath the aliasing “noise”. In a sense CS-MRI then becomes

a denoising problem, suppressing the incoherent aliasing “noise” to recover the

image. Figure 1.1 compares a uniformly undersampled reconstruction of a pelvic

MRI image to a pseudo-randomly sampled reconstruction of a pelvic MRI im-

age; the advantage of pseudo-random undersampling is immediately clear.

2. The data must be sparse, or at least compressible, in an appropriate transform

domain. Sparsity means that the majority of a signal is composed of zeros,

whereas compressibility means that the majority of a signal is nearly zero.

For example, many natural images and medical images are compressible in the

wavelet or discrete cosine transform domains [9]. One may get an intuitive feeling

for sparsity/compressibility from Figure 1.2. By retaining only the largest 50%

of the wavelet coefficients of a pelvic image, a decent reconstruction is still

possible.

3. A suitable non-linear reconstruction must be used. At its core, CS is simply a

minimization problem where data consistency is exchanged for a sparse repre-

sentation in a chosen transform basis using a sparse regularization. The simplest

implementation of CS is as follows:

argmin
ρ

(‖F [ρ]− k‖22 + λ‖Ψρ‖1
)

(1.1)

Where F is the Fourier transform operator, ρ is the image reconstruction based

on the k-space measurements k, and λ is the regularization weight given to
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enforcing sparsity in a transform domain Ψ. The minimization problem becomes

a balancing act, requiring proper choice of a value of Ψ and of λ that ensures

sufficient data consistency while still removing the incoherent aliasing artifacts

introduced through undersampling k-space. Equation 1.1 may in practise have

several regularizations added onto the data consistency term, enforcing sparsity

in several different transform domains.

Figure 1.1: Uniform and pseudo-random undersampling of a pelvic MRI
image, both retaining 50% of the original k-space data. While uniform
undersampling results in coherent aliasing, pseudo-random undersampling
creates noise-like incoherent aliasing artifacts below which the original
image is easily visible. Pseudo-random sampling can be tailored, as in
this example, to concentrate k-space sampling in regions that carry more
image contrast (i.e. low spatial frequencies).
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Figure 1.2: Medical images are often compressible in the wavelet domain.
By retaining 50% of the wavelet coefficients in a pelvic MRI image, a
decent reconstruction is still possible.

CS was in part motivated by lossy compression schemes for data storage (e.g.

JPEG compression of images), where it was known that the majority of acquired

data could be discarded once it was represented in an appropriate transform domain

while still allowing very good recovery of the original data. The philosophy of CS is

to acquire the data directly in such a compressed form. CS was originally proposed in

a purely mathematical framework [11;12], and in short time its utility for reducing MRI

acquisition time by undersampling k-space was realized [8]. Because of the freedom

allowed in MRI to the user in acquiring k-space data, pseudo-random sampling of

k-space is easily achieved (as demonstrated in Figure 1.1). Additionally, MR images

are very often sparse in some appropriate transform domain (as demonstrated in

Figure 1.2), and a non-linear reconstruction scheme is easily implemented in MRI to

reconstruct the image. Thus, MRI acquisitions satisfy all of the criteria for CS listed

above.
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CS is beneficial to MRI because acquiring fewer points in k-space results in faster

acquisition times (i.e. better temporal resolution). This is of particular importance

to quantitative DCE-MRI, where high temporal resolution is needed without a detri-

mental loss of image quality.

1.3 Golden Ratio Sampling of K-Space

There exist several ways that k-space may be sampled, examples of which are shown

in Figure 1.3. Cartesian trajectories acquire one line of k-space at a time through

“frequency encoding”, restarting at the beginning of the next line via “phase en-

coding” before the next acquisition begins. Zig-zag trajectories will run a continu-

ous path through k-space, running across one frequency encoding line before being

incremented to another line of k-space by a phase encoding gradient and running

parallel-and-opposite to the original frequency encoding line, and so on until the end

of the acquisition. Spiral trajectories either spiral towards or away from the center of

k-space. Radial trajectories trace diameters through the centre of k-space, with equal

angles between each successive diameter. With any of these sampling techniques, the

temporal resolution of the scan is largely limited by the number of k-space points

acquired.

To achieve the flexibility of retrospectively compromising between temporal reso-

lution and image quality, small amounts of k-space data can be considered as “base-

units” that are interleaved after acquisition in appropriate amounts to mediate the

trade-off. For example during radial k-space acquisitions one diameter in k-space

may be considered as a base-unit of k-space data, and diameters may be interleaved

after k-space acquisition to create k-space volumes for image reconstruction. Inter-

leaving many diameters would allow a high image quality at the expense of lower

temporal resolution, whereas interleaving fewer diameters would allow high temporal

resolution at the expense of reduced image quality. The number of base-units that

are interleaved may easily be chosen retrospectively for the desired application (e.g.

high quality images for viewing by a radiologist or high temporal resolution images

for quantitative dynamic MRI applications).

Winkelmann et. at. [13] devised a k-space acquisition scheme that allows for flexi-

ble choice between reconstructed image quality and temporal resolution utilizing an
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Figure 1.3: Some trajectories sample on a uniform grid. Examples include
(A) Cartesian and (B) zig-zag patterns. Other trajectories trace paths in
k-space that do not conform to a uniform grid. Examples include (C)
radial and (D) spiral patterns/

extension of the simple example presented above. To achieve uniform k-space cov-

erage for an arbitrary number of interleaved diameters, they proposed incrementing

the angle between diameters in radial sampling using the golden ratio (ϕ ≈ 1.618) to

modulate the incrementation angle rather than using an incrementation angle calcu-

lated for a fixed number of diameters that were a priori chosen for interleaving. That

is, rather than incrementing the angle by 180◦/Nd for a pattern with Nd intended

diameters, they proposed incrementing the angle between two successive diameters

by 180◦/ϕ ≈ 111.248◦ to achieve a relatively uniform sampling of k-space for an ar-

bitrary number of combined diameters. This is demonstrated in Figure 1.4, where

standard radial sampling with five diameters is compared to the flexibility given by

golden ratio sampling. Additionally, because the golden ratio is an irrational num-

ber, the k-space diameters will never overlap one another except at the centre of

k-space. This ensures that for any number of combined diameters there will always

be distinct points of k-space represented with a uniform coverage, allowing complete

retrospective selection of the k-space interleaving.
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Figure 1.4: Interleaving three diameters with standard radial sampling
designed with Nd = 5 results in an asymmetric coverage of k-space (top
row), whereas interleaving more than five will result in k-space overlaps
and no new k-space data. However, golden ratio sampling allows for in-
terleaving of an arbitrary number of diameters while still maintaining
relatively uniform coverage of k-space (bottom row).

An extension of the golden ratio sampling scheme has recently been proposed to

take advantage of the flexible resolution capabilities offered by a golden ratio radial

sampling of k-space and improve its suitability for CS, while adapting the theory for

3D Cartesian sampling. CIRcular Cartesian UnderSampling (CIRCUS) [14] combines

aspects of both golden ratio radial sampling and spiral sampling k-space techniques,

producing pseudo-random sampling patterns that can be interleaved arbitrarily with

few overlapping points. The pseudo-random sampling patterns produced by CIRCUS

are more amenable to CS-MRI than are traditional diameters in radial sampling,

due to the incoherent aliasing they produce (see section 1.2 for the requirements of

CS). By adjusting two parameters b and c, roughly corresponding to the “shear” and

“twist” of the CIRCUS quanta, the operator can change the properties of the CIRCUS
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trajectory. In this thesis we explore the b and c parameter space, with the intention

of determining if favourable choices of b and c exist with regards to the ability of the

CIRCUS patterns to inherently promote good CS-MRI performance.

1.4 Objective Image Quality Metrics (IQMs)

The golden standard of image quality assessment in any MRI application is the opin-

ion of radiologists. However the surge of innovations in MRI hardware, k-space sam-

pling, and image reconstruction techniques make it impractical to have radiologists

extensively assess the quality of all of the resulting images. This is particularly true

in applications where tuning of parameters is necessary for optimal image reconstruc-

tion quality, such as CS-MRI. To expedite the validation of new image reconstruction

techniques, objective image quality metrics (IQMs) can be used. In MRI it is common

to measure the root mean squared error (RMSE) between a reference image and an

image reconstructed using a new experimental technique, where it is assumed that

small RMSE implies high subjective quality in the reconstructed image. Studies in

the field of image processing have long since established that the RMSE is not indica-

tive of subjective image quality as perceived by human observers [15]. This is a result

of the fact that the RMSE relies on pixel-wise error, and incorporates no knowledge of

the properties of the human visual system (HVS). The need for rigorous investigation

of the use of alternative objective IQMs incorporating properties of the HVS in the

field of MRI is evident.

There are three broad categories of advanced IQMs. Full-reference IQMs compare

a degraded image to a reference image, where the reference image is assumed to be

ideal. No-reference IQMs make no comparison to a reference image, and assume that

certain statistical properties should exist in high quality images; if the statistics of

the input image differ, a no-reference IQM would thus indicate that the image is

degraded from ideal in some way. A reduced-reference IQM sits between the previous

two extremes, assuming the use of partial information from a reference image (e.g.

a set of salient features). While reduced-reference IQMs haven’t been given much

attention in MRI, there has been a slowly growing body of interest in the field for

both no-reference and full-reference IQMs. In this thesis we focus on the application

of full-reference objective IQMs.
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Full-reference IQMs model properties of the HVS in some way in order to assess

how the degraded image will perceptually compare to the reference image (a detailed

discussion of how this is done can be found in section 2.4.1). The structural similarity

index (SSIM) developed by Wang et. al. [16] has achieved enormous success as a full-

reference IQM in the field of image processing, and has increasingly been studied

in the field of MRI. Kumar et. al. [17] used the SSIM to measure the quality of

brain phantom images at increasing levels of JPEG compression, though made no

reference to radiologist subjective scoring. A separate study by another group found

that the SSIM was responsive to JPEG compression, additive white Gaussian noise,

blurring, and contrast stretching in an MRI image of the brain [18]. More advanced

studies have used the SSIM to quantify the performance of denoising techniques in

MRI [19], or to quantify the performance of MR tractography [20]. Studies beginning

to correlate the SSIM with radiologist subjective scoring in static image observation

have also been undertaken. Miao et. al. [21] presented brain, cardiac, and abdominal

MRI images that had Gaussian noise, Gaussian blur, or undersampling artifacts to

two radiologists and found that the SSIM was reflective of their subjective scoring

of image quality. Recent work by Akasaka et. al. [22] investigated the use of the

SSIM in optimizing CS parameters for image quality in time-of-flight MR angiography

of the brain, in which they found that the SSIM correlated well with subjective

scoring of two radiologists and allowed for optimization of regularization weights

in CS reconstructions. However, no investigations of IQMs in the assessment of

quantitative mapping accuracy had been undertaken at the time of writing of this

thesis. We believe that image quality may be a valuable predictor of the performance

of quantitative dynamic MRI techniques.

A recent review of the assessment of medical image quality by Chow et. al. [23]

asserted that the use of full-reference IQMs in medical imaging was inappropriate,

due to the lack of a “perfect” reference image in practisei. While we agree that this is

true for some imaging modalities in practise, such as in computed tomography where

the production of a reference image would necessitate unnecessary dose to the patient,

we disagree in the context of MRI. One method by which a reference image can safely

be obtained in practical MRI is via a high resolution baseline scan, at the expense

iWe wish to emphasize that Chow et. al. made this statement with broad reference to all medical
imaging modalities. Their review was not limited solely to MRI.



12

of a few extra minutes spent scanning the patient. Image reconstruction quality in

dynamic MRI applications can then be measured against the baseline image.

Given the prior discussions of this section, we recognize the need for a comprehen-

sive study of full-reference IQMs in many MRI applications, particularly quantitative

dynamic MRI. We believe that full-reference IQMs can serve as a valuable tool in the

optimization of CS-MRI reconstruction parameters for high quality image reconstruc-

tion, and further that full-reference IQMs could be a valuable tool in predicting the

accuracy of quantitative dynamic MRI applications (e.g. quantitative DCE-MRI).

Towards this end we study the behaviour of four alternative IQMs in static CS-MRI

images before developing a dynamic simulation framework to assess their utility in

predicting the accuracy of quantitative mapping, and include the RMSE for compar-

ison. The four alternative IQMs investigated are:

1. The SSIM, due to its recognition in the field of image processing and its in-

creasing interest in MRI applications.

2. The multi-scale SSIM (MS-SSIM), an improvement on the SSIM intended to

include the sensitivity of the HVS to distortions at different scales.

3. The information-weighted SSIM (IW-SSIM), which takes the MS-SSIM and

includes statistical information weighting techniques in an attempt to highlight

distortions that may be salient to the HVS.

4. The gradient magnitude similarity deviation (GMSD), which uses image gradi-

ents to detect and quantify the distortions and is designed to be computationally

cheaper compared to IQMs like the SSIM.

1.5 Contributions of this Thesis

This thesis presents preliminary investigations of the use of objective IQMs in quan-

titative dynamic CS-MRI applications. To study the use of objective IQMs in dy-

namic CS-MRI applications, it is first necessary to find suitable methods of k-space

acquisition and to characterize the behaviour of the IQMs in static CS-MRI image re-

constructions. Towards this end we present three studies, the first two of which build
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towards the development of a simulation framework for the assessment of quantitative

dynamic CS-MRI.

We first explored the parameter range of the CIRCUS k-space sampling scheme

discussed in section 1.3. Our goal was to determine if there were preferential CIRCUS

trajectory designs that inherently allowed for better objective CS-MRI performance.

This will assist in the compromise between image quality and temporal resolution

that must occur in dynamic MRI. Utilizing a pelvic MRI image as an exemplar for an

anatomy in which quantitative dynamic MRI applications exist and for which high

image quality would be desired (see section 1.1), we simulated k-space acquisitions

with many CIRCUS patterns by varying the design parameters b and c and utilized the

five IQMs discussed in section 1.4 to characterize image reconstruction performance.

We next investigated quantitative behaviours of the five aforementioned IQMs in

static CS-MRI reconstructions of 15 clinical pelvic MRI images, using results from

our study of CIRCUS k-space acquisitions to obtain simulated k-space data. Un-

derstanding the properties of each IQM in static CS-MRI is essential before they

be applied to quantitative dynamic MRI. Our goal was to obtain the quantitative

background necessary to move forward with confidence in the development of a sim-

ulation framework for quantitative dynamic MRI, and furthermore to inform future

studies utilizing IQMs to assess quantitative dynamic MRI applications in real world

experiments.

Finally we developed a simulation framework for quantitative dynamic MRI using

DCE-MRI as a motivating example, and present preliminary results validating its

performance in a simple temporally evolving synthetic phantom. Our goal was to

develop a simulation framework such that correlations between image quality and the

accuracy of quantitative mapping in CS-MRI may be studied, and to present proof of

concept results that objective IQMs may characterize quantitative dynamic CS-MRI.



Chapter 2

Background

2.1 Basic MRI Physics

Magnetic resonance imaging (MRI) uses strong magnetic fields, combined with brief

applications of perturbing magnetic fields, to manipulate protons in the anatomy

of the patient and produce an image. In this section, we summarize the physics

of MRI and the methods by which data is acquired and images are formed. The

description of MRI begins with reviewing the behaviour of a magnetization vector

in a magnetic field. Following this, topics specific to encoding the MRI signal and

recovering an image will be described. The section is concluded with a description of

parallel imaging in MRI.

2.1.1 Classical Description of MRI

When placed in an external magnetic field �B0, quantum mechanics predicts that

protons in a sample may exist in discrete energy levels ε. Because protons possess a

spin of one half, there exist two possible energy states:

ε+1/2 = −1

2
γ�B0 (2.1)

ε−1/2 =
1

2
γ�B0 (2.2)

Where γ is known as the gyromagnetic ratio and is equal to 267.513 rad s−1 T−1 for

protons and � is Planck’s constant. Within a collection of protons at temperature

T , the probability of finding a proton in an energy state ε is given by the Boltzmann

distribution:

P (ε) =
e−ε/kT∑
ε e

−ε/kT
(2.3)

At typical human body temperatures of 37 ◦C = 310.15 K and at magnetic field

strength of 3 T, the balance between thermal energy due to proton motions compared

to the quantum energy levels gives rise to a relative excess of roughly 1 proton in

14



15

100,000 in the lower energy state. Approximating tissue as water, this means that

each kilogram of tissue contains 6.69 × 1020 excess protons in the low energy state

state. The enormous quantity of excess protons in the low energy state gives rise to a

net magnetization vector that we may treat with classical mechanics. The resultant

net magnetization per unit volume, �M , is given by the vector sum of all magnetic

moments �μ of the protons in the sample of volume �V :

�M =
1

V

∑
protons
in V

�μ (2.4)

Consider an external magnetic field which is aligned along the z-axis, �B0 = B0ẑ.

When left at equilibrium, �M forms parallel to �B0 with equilibrium magnitude M0.

Because M0 � Bz, detection of components of �M parallel to �B0 is impossible. How-

ever, perturbing �M through the momentary application of a perpendicular magnetic

field delivered via a radiofrequency pulse generates transverse magnetization compo-

nents that can be detected. When perturbed from equilibrium in this fashion, �M will

precess about �B0 as it returns to the equilibrium condition of �M = M0ẑ. This motion

is demonstrated in Figure 2.1 and described by the Bloch equation [24]:

d �M

dt
= γ �M × �B0 +

(M0 −Mz)ẑ

T1

−
�Mxy

T2

(2.5)

Where �M can be described in terms of parallel magnetization �Mz and transverse

magnetization �Mxy via:

�M = �Mz + �Mxy

�Mz = Mz ẑ

�Mxy = Mxx̂+Myŷ

(2.6)

The values T1 and T2 are empirically determined constants that describe the rate of

exponential regrowth of �Mz towards �Mz = M0ẑ and the rate of exponential decay of

�Mxy towards �Mxy = 0 respectively.

Equation 2.5 implies that the frequency of precession of �M about �B0 is linearly

related to the magnitude of �B0. This frequency is called the Larmor frequency, ω0,

and is given in general vector form by:

�ω0 = γ �B0 (2.7)
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Figure 2.1: After the magnetization vector (shown in red) is perturbed
away from equilibrium along the external magnetic field (shown in blue),
it follows a helical path back towards equilibrium as the parallel magne-
tization regrows exponentially and the transverse magnetization decays
exponentially. Figure adapted from Haacke et. al. [24]

2.1.2 Signal Detection and the K-Space Formalism

The source of the signal in MRI is the transverse component of magnetization, as

discussed in section 2.1.1. As the transverse magnetization precesses at the Larmor

frequency, the varying magnetic field lines induce an electromotive force (EMF) in

nearby receive coils according to Faraday’s law of induction:

EMF =
dΦ

dt
(2.8)

Where Φ is the magnetic flux (i.e. the component of the magnetic field �B passing

perpendicular to the surface of the coil at each spatial location):

Φ =

∫
coil
area

�B · d �A (2.9)

The vector d �A is normal to the surface area of the coil and represents a differential

area component. For the discussion of this section, we will assume a single receive

coil with uniform sensitivity across the samplei. In section 2.1.5 we introduce the

concept of individual coils with their own sensitivity profiles.

iIn reality there may be an array of coils whose signals are combined prior to processing, such
that no distinguishing information remains from the individual coils. In this case, approximation by
a single uniform coil suffices for our purposes
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Taken together, equation 2.8 and equation 2.9 can be used to show that the

measured signal s(t) is an exponentially decaying, rapidly oscillating function that

depends on the Larmor frequency and on the initial magnitude of the transverse

magnetization �Mxy(�r, t = 0) following the application of a perturbing magnetic field.

This is known as the free induction decay [24].

s(t) ∝ ω0e
−t/T2(�r)

∫
Mxy(�r, 0)e

i(ω0t+φ(�r,t))d3r (2.10)

Where φ(�r, t) is term describing the relative phase of the precessing magnetization

vectors in the sample. This term is paramount to the k-space formulation of MRI,

and we will return to it in greater detail later in this section.

If we make the assumption that signal acquisition takes place over a period that

is much shorter than T2(�r) at all locations in the sample, e−t/T2(�r) ≈ 1 and we may

ignore the effects of transverse magnetization decay in our subsequent analysis. To

make the proportionality an equivalence, we introduce a constant η that accounts

for the gain factors in the detector coils and in the electronics processing the signal.

We then obtain a simplified equation describing the signal evolution which we may

analyze:

s(t) = ηω0

∫
Mxy(�r, 0)e

i(ω0t+φ(�r,t))d3r (2.11)

If we now translate to a reference frame rotating at angular frequency ω0
ii and combine

η, ω0, and Mxy(�r, 0) into an effective proton density ρ(�r), the signal in equation 2.11

is conveniently expressed as [24]:

s(t) =

∫
ρ(�r)eφ(�r,t)d3r (2.12)

The importance of the phase term φ(�r, t) alluded to at the beginning of this section

now becomes more apparent. The phase of the magnetization vectors in the sample

can be used to spatially distinguish them. To see this, recall that phase is given by

the amount of rotation incurred by the precessing magnetization over time:

φ(�r, t) =

∫ t

0

ω(�r, τ)dτ (2.13)

In the rotating frame of reference that we have assumed, the transverse magnetization

vectors across the sample appear stationary (since they too rotate at ω0), and equation

iiThe change of perspective is known as demodulation, and is performed by components of the
signal detection system in practice.
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2.13 implies that there is net-zero phase across the entire sampleiii. By superimposing

linear gradient magnetic fields �G(t) on top of the static magnetic field across the

sample, a spatially dependent change in precessional frequency occurs as a result of

the dependence of the Larmor frequency on the magnetic field (equation 2.7):

ω(�r, t) = ω0 + γ�r · �G(t) (2.14)

Thus, in the rotating reference frame, the phase accrued by the magnetization vectors

across the sample is determined by the difference in their precession frequency under

the presence of external gradients from the Larmor frequency in the original static

magnetic field. The resulting phase is:

φG(�r, t) = −γ

∫ t

0

�r · �G(τ)dτ (2.15)

Where the negative factor is introduced to account for the clockwise precession of

the magnetization having positive gyromagnetic ratio. The application of spatially

dependent magnetic gradient fields is thus seen to spatially encode the relative phases

of the protons. If we make the following substitution:

�k =
γ

2π

∫ t

0

�G(τ)dτ (2.16)

Then the combination of equations 2.12, 2.15, and 2.16 gives:

s(�k) =

∫
ρ(�r)e−i2π�k·�rd3r (2.17)

Equation 2.17 is immediately recognizable as the Fourier transform of the effective

proton density. Recovery of the effective proton density, and thus the MRI image, is

achieved by taking the inverse Fourier transform:

ρ(�r) =

∫
s(�k)ei2π

�k·�rd3k (2.18)

Equations 2.17 and 2.18 represent the k-space formalism of MRI. The application

of magnetic field gradients on top of the static magnetic field in an MRI scanner

allows for the reconstruction of spatially encoded proton densities from the measured

free induction decay signal. Because the magnetic field gradient �G has units of Tesla

iiiWe have assumed that our rotating frame of reference was chosen to align the axis of phase
measurement with the initial transverse magnetization.
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per meter, the units of �k are in spatial frequency. MRI may thus be thought of as

a tool that measures spatial frequencies in an image, and reconstructs the image by

taking the inverse Fourier transform of the acquired frequencies.

While �k is continuous and spans an infinite domain in theory, sampling of k-space

necessitates a discrete sampling process. Equation 2.17 and equation 2.18 are then

discretized by the use of the discrete Fourier transform. For an Nx ×Ny ×Nz image,

the discrete Fourier relationship between the image and the k-space is:

s(kx, ky, kz) =
Nx−1∑
x=0

Ny−1∑
y=0

Nz−1∑
x=0

ρ(x, y, z)e
−i2π

(
(Δk)xx

Nx
+

(Δk)yy

Ny
+

(Δk)zz
Nz

)
(2.19)

ρ(x, y, z) =
1

NxNyNz

Nx−1∑
x=0

Ny−1∑
y=0

Nz−1∑
x=0

s(kx, ky, kz)e
i2π

(
(Δk)xx

Nx
+

(Δk)yy

Ny
+

(Δk)zz
Nz

)
(2.20)

Where kr in each dimension is now discretized with a stepsize (Δk)r. The choice

of (Δk)r is important in MRI, and will determine whether or not aliasing artifacts

occur.

2.1.3 Sampling the K-Space

A k-space trajectory refers to the path traced in the spatial frequency domain as

magnetic field gradients are applied to a sample during imaging, as per equation

2.16. While there are virtually infinite k-space trajectories in theory, in practise

patient comfort/safety concerns and hardware limitations mean that the development

of k-space trajectories requires careful planning and implementation.

There are two classes of k-space sampling trajectories: those that sample on a

uniform grid and those that do not. A variety of k-space trajectories are illustrated

in Figure 1.3. For the purposes of this thesis, we are concerned only with Cartesian

sampling of k-space. As such, we restrict our focus to the introduction of terminology

and concepts relevant to Cartesian sampling trajectories.

Equation 2.16 indicates that movement through k-space is achieved through a

balance of gradient magnitude and gradient duration; it is gradient area that mat-

ters. We utilize this fact during phase encoding and frequency encoding in standard

Cartesian imaging. For simplicity, we illustrate these concepts for 2D imaging with
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perfect boxcar gradients of magnitude Giv. Under this assumption, equation 2.16

may be simplified:

k =
γ

2π
GΔt (2.21)

The relationship between gradient area and position in k-space is now made exceed-

ingly obvious. For example, equivalent distances are covered in k-space through the

application of a gradient with a magnitude of 9 mT/m for 3 msec or for the application

of a gradient with a magnitude of 3 mT/m for 9 msec.

We now briefly detail movement through a 2D plane in k-space. Let a sample

of protons reside in a static magnetic field �B0 = Bz ẑ, to which constant gradient

magnetic fields �Gy = Gyŷ and �Gx = Gxx̂ are intermittently applied after the appli-

cation of a perturbing magnetic field �B1 delivered by a radiofrequency (RF) pulse.

Without loss of generality, assume that phase encoding takes place along the y-axis

and that frequency encoding takes place along the x-axis. Phase encoding involves

the relatively brief application of a gradient to achieve a step through k-space in one

dimension using the gradient magnitude to obtain gradient area. Frequency encoding,

which is performed after phase encoding and in the perpendicular dimension, entails

the application of a constant gradient as time evolves to build up gradient area and

will achieve many steps in k-space along the line specified by the phase encoding step.

The differences are illustrated in Figure 2.2. To move through k-space in Cartesian

imaging, phase encodes using gradients of varying magnitude are performed follow-

ing the application of a perturbing RF pulse to generate transverse magnetization.

The time between RF pulses is called the repetition time (TR). The need to regen-

erate transverse magnetization through the application of an RF pulse between each

phase encode makes phase encoding the limiting factor in fast acquisition times using

Cartesian imaging.

K-space traversal in 3D imaging is identical in concept, simply involving an extra

phase encoding step for movement in the third dimension.

ivIn reality, the gradient fields require a finite period of time to reach their intended magnitude,
and must have their profiles adjusted for to account for the production of eddy currents. This is
accounted for during an MRI scan, and further discussion is not relevant to the content of this thesis.
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Figure 2.2: Phase encoding in the y-direction results in the selection of
a particular row of k-space, after which frequency encoding will traverse
the selected row to acquire data along the x-direction. Each new phase
encoding step requires the application of an RF pulse to generate trans-
verse magnetization, with TR seconds elapsing between the application of
the RF pulses.

2.1.4 Relationship Between K-Space and the Image

In this section, we review the relationships between k-space and the image. We assume

Cartesian sampling of k-space, whereby k-space samples are taken on a uniform grid

via the frequency encoding and phase encoding processes summarized in section 2.1.3.

A discussion of non-Cartesian k-space sampling techniques is beyond the scope of this

thesis, but it is worth noting that non-Cartesian k-space techniques often employ a

technique known as gridding that resamples the data onto a uniform Cartesian grid in

order to facilitate image reconstruction [25]. Thus, while not entirely representative, a

discussion of Cartesian k-space sampling properties will loosely inform the properties

of non-Cartesian k-space sampling as well.
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It is instructive to understand the pieces of k-space. The center of k-space con-

tains low spatial frequencies, which carry the contrast information in the image. The

periphery of k-space contains high spatial frequencies, which define the spatial res-

olution of the image. This is demonstrated in Figure 2.3. While there are no hard

boundaries defining “low” from “high” spatial frequencies, in general there will be

more detail and less contrast contributed to the final image as k-space coefficients are

taken further from the center of the k-space.

Figure 2.3: The center of k-space contains low spatial frequency data
defining the contrast of the final image. The periphery of k-space contains
high spatial frequency data defining the resolution and detail of the final
image..

From equation 2.16, it is understood that traversal of k-space is accomplished

through the application of magnetic field gradients for a specified duration of time.

For k-space sampling with spacing (Δk)r between samples, where r represents any of
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the three Cartesian axes, the field of view (FOV) is given by:

(FOV )r =
1

(Δk)r
(2.22)

When the highest spatial frequency sampled in k-spacev along Cartesian axis r is

(kmax)r, the maximum image spatial resolution in that direction is given by:

Δr =
1

(kmax)r
(2.23)

The sampling density of k-space therefore determines the FOV of the image, while the

extent to which high spatial frequencies are sampled determines the image resolution.

Conventional MRI acquisitions must consider the relationships in equation 2.22

and equation 2.23 when acquiring k-space data. In an effort to speed the data ac-

quisition process, a common technique in Cartesian imaging is to maintain the kmax

required for acceptable maximum image resolution while uniformly skipping phase

encodings and replacing the missing data with zeros. Undersampling k-space in this

way will lead to aliasing artifacts as the FOV decreases and repetitions of the image

begin to come into framevi. To mitigate the introduction of these aliases, k-space

sampling must follow the Nyquist criteria [24]

Δkr <
1

Dr

(2.24)

Where Dr is the spatial dimension of the object to be imaged along direction r. That

is, to maintain a FOV free of aliasing artifacts when uniformly undersampling the k-

space data, the k-space acquisition matrix must have steps no larger than the inverse

of the spatial extent of the object being imaged.

The concept of aliasing is important to CS-MRI, which is discussed in detail

section 2.2. The Nyquist criteria applies only to uniformly undersampled data and

describes conditions for which aliasing artifacts will be coherent. If undersampling is

performed in a non-uniform fashion, incoherent aliasing artifacts are introduced. The

notion of coherence and incoherence is quantified by the point spread function (PSF).

The PSF characterizes the blurring that will be experienced by a hypothetical point

vHere we assume that the k-space is sampled symmetrically for negative and positive frequencies
in the direction of r.

viThis is sometimes called a “wrap-around” artifact, though in truth there is no wrapping occur-
ring at all. Instead, indentical copies of the image are brought closer as the FOV decreases until
their superposition makes it appear as if a wrap-around phenomena has occurred.
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source when imaged by the MRI scanner. For a k-space trajectory design H(k), the

PSF h(x) is given by the inverse Fourier transform [24]:

h(x) = F−1[H(k)] (2.25)

Previous authors have proposed quantifying the coherence PC or incoherence PI of

the PSF via the sidelobe-to-peak ratio [9] and the peak-to-noise ratio [26] respectively:

PC =
Lside

Lmain

(2.26)

PI =
Lmain

σside

(2.27)

Where Lmain and Lside are the magnitude of the main lobe and maximum side lobe

in the PSF and σside is the standard deviation of the side-lobe peaks. Coherent and

incoherent aliases have very different properties, which are demonstrated in Figure

2.4 for a k-space in which 50% of the coefficients are sampled. Figure 2.4 makes clear

that it is not just how much of the k-space that is sampled, but also how it is sampled

that will affect image quality.

Finally, there is a relationship between the energy of the image and the energy

contained in k-space. By Parseval’s theorem, the energy in the image should be

exactly equal to the energy in the sampled k-space.

Nx−1∑
x=0

Ny−1∑
y=0

Nz−1∑
z=0

|ρ(x, y, z)|2 = 1

NxNyNz

Nx−1∑
x=0

Ny−1∑
y=0

Nz−1∑
z=0

|s(kx, ky, kz)|2 (2.28)

Where ρ(x, y, z) and s(kx, ky, kz) are the image and k-space values, respectively (see

equations 2.20 and 2.19).
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Figure 2.4: Uniform undersampling of k-space (left column) demonstrates
coherent aliasing. The PSF of the k-space trajectory is highly coherent,
consisting of repeated spikes spaced by half the field of view. Non-uniform
undersampling of k-space (right column) demonstrates incoherent aliasing.
The PSF is now incoherent, with small side lobes relative to the main lobe.
The logarithm of the PSFs has been taken for visibility.

2.1.5 Parallel Imaging

In the derivation of equation 2.17, we assumed that there was a single receive coil

with uniform sensitivity across the sample. In parallel imaging (PI) multiple receive

coils are used in parallel, each with their own spatial sensitivity profile and with
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their own channel in the data processing system. With knowledge of the sensitivity

profiles of each coil, the spatial information encoded with each coil may be leveraged

to allow the acquisition of fewer phase encoding lines while retaining image quality.

The resulting decrease in acquisition time has made PI a standard in clinical MRI.

For a collection of coils, let the coil sensitivity profile of coil l be Cl(�r). Equation

2.17 is then modified in the following way:

sl(�k) =

∫
Cl(�r)ρ(�r)e

−i2π�k·�rd3r (2.29)

For a single uniform coil with sensitivity C(�r) = 1, equation 2.29 is observed to reduce

to equation 2.17. Comparison of equation 2.17 to equation 2.29 reveals that with one

uniform coil encoding of the signal is accomplished entirely through the application

of gradients via the term e−i2π�k·�r, whereas the use of multiple coils in parallel allows

encoding of the signal through the use of gradients and spatial coil sensitivities via

Cl(�r)e
−i2π�k·�r. It is the additional encoding information contained in the coil sensi-

tivities that permits reduced data acquisition time through the acquisition of fewer

phase encoding steps, while still maintaining high image quality.

There are two main classes of PI reconstruction techniques, differing in the way

that they reconstruct the images and not in the way that coils are employed in

parallel. SENSitivity Encoding (SENSE) [27] first reconstructs aliased images obtained

by each of the individual coils, and then uses knowledge of individual coil sensitivities

to remove the aliases in the combination of the individual coil images. GeneRalized

Autocalibrating Partial Parallel Acquisition (GRAPPA) [28] utilizes fully sampled lines

in the center of k-space to calibrate weighting factors for each coil, which are used

to make local kernels in k-space that interpolate missing phase encode lines before

reconstruction of the final unaliased image. The reader is referred to the literature for

a detailed discussion of the methodology of SENSE or GRAPPA. We illustrate the

concept of spatial encoding within PI and the possibility for increased undersampling,

and thus faster acquisition time, that follows as a result.

As mentioned in section 2.1.2, sampling k-space is a discrete procedure in practise.

Let us define a discrete encoding function for an Nx ×Ny ×Nz image:

El(x, y, z, kx, ky, kz) = Cl(x, y, z)e
−i2π

(
(Δk)xx

Nx
+

(Δk)yy

Ny
+

(Δk)zz
Nz

)
(2.30)

In light of equations 2.19, 2.29, and 2.30, the discretized sampling of k-space in PI
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may be viewed as [29]:

sl(kx, ky, kz) =
Nx−1∑
x=0

Ny−1∑
y=0

Nz−1∑
z=0

ρ(x, y, z)El(x, y, z, kx, ky, kz) (2.31)

The user may choose, through the process of phase encoding and frequency encoding,

the number Nk of total k-space samples taken. The signal encoding process is con-

veniently expressed in matrix notation by concatenating the Nk k-space samples for

Nc coils into a column vector and concatenating the 3D image into a column vector:

�s = E�ρ (2.32)

Where �s measures NcNk×1, E measures NcNk×NxNyNz, and �ρ measures NxNyNz×
1. For the solution to equation 2.32 to be uniquely determined (i.e. for E to be

invertible), we must have NcNk = NxNyNz. Thus the greater that Nc becomes, the

smaller Nk may be and thus that k-space can be undersampled in theory. We define

the undersampling factor R to be the ratio of the number of acquired k-space points to

the number of k-space points (Nk)max required to fully sample the discretized k-space:

R =
Nk

(Nk)max

(2.33)

Noting that (Nk)max = NxNyNz as a result of the discrete Fourier transform relating

k-space to the image, Nk is then given in terms of the undersampling factor via:

Nk =
NxNyNz

R
(2.34)

In light of equation 2.34, the maximum undersampling factor R that is theoretically

achievable with PI is equal to the number of coils Nc that are usedvii (this will keep

E invertible).

As previously mentioned, undersampling in Cartesian sampling is most practically

achieved by the omission of phase encoding lines. PI in modern MRI often uses 32

or more coils, theoretically allowing significant undersampling of k-space and a corre-

spondingly significant reduction in data acquisition time. When combined with CS,

which discussed in detail in section 2.2, even more significant reduction in acquisition

time is possible.

viiIn practise, the maximum undersampling factor will be less than Nc due to noise contamination
and coil arrangement factors. Relatively significant undersampling is still achievable in practical PI
however.
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2.2 Compressed Sensing (CS)

CS techniques aim to acquire data directly in a compressed state. This differs from

conventional sampling techniques which acquire a complete representation of the data

in accordance with the Nyquist sampling theorem, following which compression tech-

niques may be applied. The first mathematical methods to loosely venture in this

direction were developed as far back as 1795, when Gaspard de Prony proposed an

algorithm for estimating parameters of complex exponentials from a set of noisey sam-

ples [30]. The theory did not emerge as an established framework until the early 21st

century however, when Candès, Romberg, Tao, and Donoho established conditions

by which a finite-dimensional signal with a sparse or compressible representation in

an appropriate basis could be recovered from a small (i.e. sub-Nyquist) set of non-

adaptive measurements, provided the measurement scheme obeyed certain conditions.

In this section, we review the basics of CS theory and demonstrate the compati-

bility of CS with MRI. We conclude this section with a brief review of the Berkeley

Advanced Reconstruction Toolbox (BART) for CS-MRI.

2.2.1 The CS Formalism

We shall examine the sensing formalism for discrete signals, since realistic sampling

is necessarily a discrete process. In the most general sense, signals are represented as

vectors in an N -dimensional signal space, where the coefficients in the signal vector

represent the value of the signal at that location (e.g. measured voltage in time

or image pixel luminance). Sampling a signal �v in RN can be formalized as taking

projections of �v onto the members of a sampling basis [10;29;30]. Suppose that we

choose as a sampling basis the collection of M orthonormal vectors [φi ∈ RN : i =

1, 2, . . . ,M ], and from this collection we form an M ×N sensing matrix Φ formed by

taking φi as its rows. Then a sampling �s ∈ RM of the signal �v ∈ RN is given by:

�s = Φ�v (2.35)

In CS, an undersampled set of measurements is taken and M < N . This results in

equation 2.35 being underdetermined, and no unique solution for �v can be found from

knowledge of �s without making assumptions about the nature of the signal �v.
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According to CS theory, the appropriate assumption to make when trying to

recover �v from an undersampled set of measurements �s is that �v is sparse in some

transform basis [10]. Let Ψ be the N×N transform basis formed by taking orthonormal

basis elements [ψi ∈ RN : i = 1, 2, . . . , N ] as its columns. Then there is some collection

of coefficients �c ∈ RN such that �v can be expanded in Ψ:

�v = Ψ�c (2.36)

The assumption is then that �c is sparse, a notion which is discussed in section 2.2.3. As

will discussed in section 2.2.3, real signals are very unlikely to be sparse, though they

are often compressible. We will move forward in our discussion with the understanding

that, when we refer to �c as sparse, we often mean that �c is sufficiently compressible

to be accurately approximated as a sparse.

Equations 2.35 and 2.36 can be combined to reveal the full machinery of the

sensing process in CS:

�s = ΦΨ�c (2.37)

In words the meaning of equation 2.37 is, “through the basis Ψ our signal �v exists as

a sparse signal �c, and we obtain samples �s of �c through the sampling basis Φ”. The

challenge of CS is to recover �c ∈ RN from a lower dimensional set of samples �s ∈ RM ,

where M < N .

To provide some intuition for equation 2.37, consider the simple analogy in Figure

2.5. A 3D shape is defined by a collection of verticesviii in R3. However, if an

observer briefly views the shape edge-on from different orientations, they obtain 2D

cross-sectional samples of the shape in R2. With appropriate assumptions about the

nature of the full 3D object (e.g. the assumption that there are no divots in the

surface), the observer could reconstruct the full 3D shape from a small collection of

simplified 2D observations. That is, they can move from a lower dimensional vector

space to a higher dimensional vector space.

viiiIn more complicated examples, we may have chosen a shape with divets and bumps on its surface
as well, in which case we would also have to make note of the location and extent of those surface
features.
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Figure 2.5: A simple analogy to demonstrate the sensing process of CS.
An observer samples the cross-section profile of a 3D object from two
positions, (A) and (B). From the small set of 2D cross-sectional samples,
with appropriate assumptions regarding the nature of the full 3D object
(e.g. smooth surfaces), the observer may reconstruct the full 3D object.
CS allows recovery of information in RN from information in RM when
M < N .

2.2.2 Conditions for Successful CS Reconstruction

There are three requirements for the successful application of CS [9]:

1. The signal must be sparse in some transform basis.

2. The signal must be sampled incoherently.

3. The signal must be reconstructed in a nonlinear manner.

We detail each of these requirements in the following sections.
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2.2.3 Sparsity and Compressibility of Signals and Images

A signal �v is said to be p−sparse if at most p of its coefficients are nonzero. For

example, the following three signals in R5 are all 3-sparse:

[1, 1, 1, 0, 0]

[1, 1, 0, 0, 0]

[1, 0, 0, 0, 0]

Compressible signals are signals which are not truly sparse, but can be approximated

as sparse due to the presence of many small but nonzero coefficients. If we sort

the magnitude of the coefficients vn of a compressible signal �v ∈ RN , such that

|v1| ≥ |v2| ≥ . . . ≥ |vn|, then the magnitudes would decay according to a power law [30].

For example, the following signal in R5 is compressible and might be approximated

as a 2-sparse signal:

[1, 1, 0.0005, 0.0002, 0.0001] ≈ [1, 1, 0, 0, 0]

The majority of signals are not sparse or compressible in their representative

basis (e.g. an image directly in image space). Rather, an appropriate transform basis

can often be found in which the signal has a compressible or even a sparse set of

coefficients. This is known as transform sparsity, and is central to CS theory. The

idea is conveniently illustrated by the Fourier transform of a sinusoid. Figure 2.6

shows a 1 Hz sinusoidal signal in time, and the corresponding Fourier transform of

the signal. The sinusoid is clearly not sparse in the temporal domain, but requires

only one coefficient to be represented with 100% accuracy in the Fourier domain; it

is 1-sparse in the Fourier basis.

However, no data sampling in the real world comes without noise. Figure 2.7 shows

a 1 Hz sinusoidal signal sampled in the presence of noise. While no longer sparse in

the Fourier domain, the signal is compressible in the Fourier domain. Indeed, the

sinusoidal behaviour of the signal can easily be captured by setting a threshold on

the Fourier coefficients and reconstructing using only the coefficients with magnitude

larger than the threshold. For example, setting a threshold at 10% of the magnitude

of the largest Fourier coefficient is found to perfectly recover a denoised sinusoidal

signal. Thus, the signal is compressible in the Fourier domain because it can be
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Figure 2.6: A 1 Hz sinusoid is not sparse in the time domain (left). The
sinusoidal signal is sparse in an appropriate transform domain, in this
case through the Fourier transform (right).

approximated very accurately by a sparse collection of the largest coefficients. This

example suggests an alternative viewpoint for CS as a denoising problem. We shall

return to this point of view in the context of applying CS to MRI.

Extending our discussion to the compressibility of images, it has been observed

that the majority of images are not sparse or compressible directly in the image

domain but can be made sparse under appropriate transform [9]. As an example,

Figure 1.2 shows the effect of taking a wavelet transform of a pelvic MRI image.

While not sparse or compressible in the image domain, the image is revealed to be

compressible in the wavelet domain. The transform sparsity of MRI images satisfies

the sparsity condition required for successful CS.
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Figure 2.7: A noisey 1 Hz sinusoid (top left) and its Fourier transform
(top right). The signal is not strictly sparse due to the presence of high
frequencies from noise, though the power of the higher frequencies is rela-
tively weak. Sorting the Fourier coefficients by their magnitude (bottom
left) reveals the compressible nature of the noisey sinusoid in the Fourier
basis. Setting a threshold on the Fourier coefficients to retain only the
coefficients larger than 10% of the magnitude of the largest coefficient
reveals the sinusoidal nature of the signal (bottom right). Threshold is
displayed via red horizontal line.

2.2.4 Incoherent Sampling

CS requires that the relationship between Φ and Ψ be incoherentix, that is, minimally

coherent. Coherence plays a role in determining the number of measurements, �s ∈
RM , required to recover a p-sparse signal �c ∈ RN . Lower coherence means fewer

measurements are required (i.e. M may be smaller) [10].

ixWhen discussing incoherence, we must make reference to both a sampling and a transform basis.
The notion cannot be defined without knowledge of both.
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Defining A = ΦΨ, equation 2.37 reduces to:

�s = A�c (2.38)

The coherence is then quantified by the mutual coherence μ of A [29]:

μ(A) = max
i �=j

|〈Ai, Aj〉|
‖Ai‖2‖Aj‖2

(2.39)

When the mutual coherence of A is low, the incoherence of A is high and the members

of Φ and Ψ are largely uncorrelated. A convenient method for estimating μ(A) is to

calculate the Gramian matrix GA of A.

GA = A∗A (2.40)

Where the notation A∗ is the complex transpose of A. When the off-diagonal entries

of GA are small, μ(A) is small, and the sampling basis Φ is incoherent with respect

to the sparsifying transform Ψ [29].

In MRI, samples are taken in the Fourier basis. Figure 2.8 shows examples of GA

for Ψ taken as the Haar wavelet transform and Φ taken as complete Fourier sampling,

uniform Fourier undersampling, and random Fourier undersampling. The coherence

is lower when undersampling of the Fourier domain is random as opposed to uniform.

Figure 2.8 makes clear the compatibility between MRI the incoherence requirements of

CS. In MRI, there is a large amount of freedom in designing k-space trajectories, and

random sampling of the k-space can be relatively easily achieved. However, pseudo-

random k-space trajectories that have higher sampling probability at the center are

commonplace in CS-MRI because of the role that low spatial frequencies have in

determining image contrast [9].

Calculating the incoherence between the sampling basis and the transform basis

can be difficult at times, such as when defining a matrix Ψ is not obvious. Calcu-

lating the coherence or the incoherence of the PSF of a k-space sampling trajectory,

via equations 2.26 and 2.27 respectively, is often used as a convenient surrogate in

CS-MRI [8;9;29], where it is assumed that incoherent PSFs correspond to incoherent CS

pairs. An incoherent PSF (or conversely a PSF with low coherence) will induce inco-

herent aliasing artifactsx in the final image that appear similar to noise, from which

xThe dual use of the terms coherence and incoherence with reference to the relationship between
Φ and Ψ and with reference to the aliasing properties of the PSF is unfortunate, but represents
standard terminology across the mathematical field of CS and the applied field of CS-MRI. The
reader is reminded to keep the distinction clear in their mind.
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Figure 2.8: Full Fourier sampling (left) produces the lowest coherence.
When the Fourier basis is uniformly undersampled (center) the coherence
is higher than when it is randomly undersampled (right). This suggests
random undersampling techniques should be used in CS-MRI.

CS can uncover the true image. The motivation for using PSF coherence/incoherence

as a predictor of CS-MRI quality is made clear by Figure 2.4, where uniform un-

dersampling has a very coherent PSF whereas pseudo-random undersampling has a

very incoherent PSF. When the PSF gives rise to incoherent aliasing, the resulting

noise-like aliases may be suppressed as CS recovers the underlying image.

2.2.5 CS Reconstruction

Recovery of a signal �v ∈ RN from the samples �s ∈ RM is generally not possible when

M < N , since equation 2.35 is underdetermined. However, making the assumption

that �v is sparse in a transform domain (equation 2.36) provides us with extra infor-

mation to make accurate recovery of �v plausible. We seek an approximation �cs to �c

such that the acquired data is equivalent to the sparse estimation to within a noise

tolerance ε [30]:

min ‖�cs‖0 s.t. ‖�s− A�cs‖22 < ε (2.41)

Where ‖�cs‖0 =
∑N

i |ci|0 counts the number of nonzero entries and is known as the

�0-“norm”xi. CS theory would predict that �cs and �c are identical, with arbitrarily

xiThe quotation marks are essential, because the �0-“norm” is not a true mathematical norm. For
example it is not absolutely scalable, since ‖α�c‖0 �= |α|‖�c‖0 for α ∈ C.
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high probability, under noiseless sampling for appropriate choice of A. With noise

contamination equivalence is guaranteed, with arbitrarily high probability, to within

the specified tolerance for appropriate choice of A.

Unfortunately, minimiziation of the �0-“norm” is an NP-hard problem and is not

practical in application. Fortunately, a convex relaxation of the minimization problem

using the �1-norm (defined by ‖�c∗‖1 =
∑N

i |ci|) has been shown to provide equivalent

results to the use of the �0 norm, provided that previously established incoherence

conditions are met [29]. With this relaxation, the constrained minimization problem

in 2.41 becomes:

min ‖�cs‖1 s.t. ‖�s− A�cs‖22 < ε (2.42)

To recast the recovery algorithm in 2.42 in a fashion compatible with standard miniza-

tion algorithms, Lagrange multipliers are used to transform the recovery into an un-

constrained problem:

argmin
�cs

‖�s− A�cs‖22 + λ‖�cs‖1 (2.43)

Where the parameter λ is known as the sparse regularization weight, and balances

the trade-off between the data consistency term and the sparsity enforcement term.

2.2.6 BART and CS-MRI

The recovery algorithm of equation 2.43 is readily formulated for image recovery in

MRI. The Berkely Advanced Reconstruction Toolbox (BART) employs CS for MRI

via the following equation:

argmin
ρ

(‖F [Cρ]− k‖22 + λ‖Ψρ‖1
)

(2.44)

Where F is the Fourier transform, ρ represents the image, C represents the spatial

sensitivity profiles of any coils used in PI, k are the measured k-space data, and Ψ is

a sparsifying transform. CS-MRI is often viewed as a denoising problem [9], where the

coefficients of the reconstructed image are regularized using the �1-norm in a sparse

transform domain in an effort to suppress incoherent aliasing “noise”. The regulariza-

tion weight λ determines the extent to which coefficients in the reconstructed image

are enforced to comply with sparsity in the transform domain specified by Ψ at the

expense of data consistency.
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In the sections below, we briefly cover the three sparse transforms included with

BART.

Total Variation Transform

The total variation (TV) transform of an Nx×Ny ×Nz image ρ is defined as the sum

of the gradients of the image along each dimension [31]:

TV =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

(|Dx(ρi)|+ |Dy(ρj)|+ |Dz(ρk)|) (2.45)

Where D are the numerical derivative operators, applied along each dimension, and

can be defined by:

Dx(i, j, k) = x(i, j, k)− x(i− 1, j, k)

Dy(i, j, k) = x(i, j, k)− x(i, j − 1, k)

Dz(i, j, k) = x(i, j, k)− x(i, j, k − 1)

(2.46)

The assumption made by enforcing sparsity with the TV is that the image is

piecewise constant, which is a good approximation of some anatomical imaging ap-

plications in MRI. Under the assumption of a piecewise constant image, the best

CS reconstruction will be the one with the lowest derivative values across the entire

image; this is what is quantified by the TV.

Wavelet Transform

The wavelet transform of an image decomposes an image in the wavelet basis, the

results of which contain information about both the position and spatial frequency

content of an image. For the purposes of instruction, we consider the one dimensional

wavelet transform of a signal ρ(x). The principles presented below extend to higher

dimensional applications.

Similar to the Fourier transform, which correlates the signal of interest with sinu-

soids, the continuous wavelet transform correlates the signal with a set of wavelets [32]:

W (a, b) =

∫ ∞

−∞
ρ(x)ψ∗

a,bdx (2.47)

Where ψa,b are child wavelets generated by translating and scaling the mother wavelet

ψ:

ψa,b =
1√
a
ψ

(
x− b

a

)
(2.48)
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Where a ∈ R > 0 and b ∈ R. The choice of ψ is restricted to functions which have

net-zero area [32]: ∫ ∞

−∞
ψ(x)dx = 0 (2.49)

For example, the Haar wavelet is composed of two rectangular lobes of equal height

but opposite magnitude.

Equation 2.47 demonstrates that a wavelet transform involves scaling the mother

wavelet to a desired scale by fixing a, and then translating the child wavelet across

the signal by varying b. At each stage of the translation projections of ρ(x) onto ψa,b

are taken, quantifying the “amount” of ψa,b in the signal at scale a and location b.

The wavelet transform is thus a multi-parametric transformation, with coefficients W

indexed by the scale and location at which they were obtained.

In practical numerical applications of the wavelet transform, discretization of a

and b is required. In general, selection of a = am0 for m ∈ Z and b = nb0a
m
0 for n ∈ Z,

with a0 > 1 and b0 > 0, discretizes the production of children wavelets in a way

that provides equivalent coverage across scales [32]. This yields the discrete wavelet

transform for a signal of size N :

W (m,n) =
N∑
i=1

ρ(xi)ψ
∗
m,n (2.50)

Where the production of children wavelets is now obtained by the discretized param-

eters m and n:

ψm,n(x) =
1√
am0

ψ

(
x− nb0a

m
0

am0

)

=
1√
am0

ψ

(
x

am0
− nb0

) (2.51)

In virtually all applications, the choices a0 = 2 and b0 = 1 are made.

The assumption made by enforcing sparsity in a wavelet transform is that the

majority of the coefficients in W at each scale are zero. This is a very common

property of natural imagesxii, and is often true for medical images as well.

xiiThe JPEG 2000 lossy compression scheme takes advantage of this fact to compress fully sampled
image data.
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Locally Low Rank Sparsity

Suppose that we have an Nx × Ny × Nz image ρ, and that we partition it into L

smaller blocks of size nx × ny × nz. These 3D blocks can then be reshaped into 2D

matrices by concatenating one dimension along either the rows or the columns. The

locally low rank (LLR) sparse enforcement attempts to minimize the rank of the local

block matrices bl (i.e. the dimension of the vector space spanned by the columns of

bl). Direct minimization of the rank of a matrix is an NP-hard problem however. It

has been shown that minimizing the sum of the singular values of a matrix provides a

convex relaxation to the rank minimization problem [33]. We define the nuclear norm

‖bl‖∗ of a block bl as the norm returning the sum of the singular values of bl. An LLR

sparsity enforcement then amounts to minimizing the sum of the nuclear norms of

each block bl, and equation 2.44 takes the form of equation 2.52.

argmin
ρ

(
‖F [Cρ]− k‖22 + λ

L∑
l=1

‖bl‖∗
)

(2.52)

The �1-norm of equation 2.44 has been replaced by the nuclear norm because sparsity

is enforced in the singular value decomposition of ρ, not in an explicit transform basis.

The assumption made when enforcing sparsity with the LLRmethod is that nearby

patches of an image tend to be more similar to one another than to the global image.

This is certainly the case in many imaging applications, including medical images.

2.3 CIRcular Cartesian Undersampling (CIRCUS)

In dynamic MRI applications, temporal resolution and image quality are determined

by the k-space content chosen for each reconstructed image. Golden ratio sampling,

first proposed by Winkelmann et. al. [13] in the context of radial sampling, allows

for retrospective selection of the temporal resolution and image quality while main-

taining relatively uniform coverage of k-space. In this section we introduce golden

ratio sampling in its original radial k-space sampling context, and then describe a

recent k-space sampling scheme that incorporates golden ratio sampling properties

for Cartesian sampling with CS-MRI.
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2.3.1 Golden Ratio Sampling of K-Space

Traditional radial sampling involves the selection of a fixed number Nd of diameters

that are used to sample k-space per image reconstruction, such that two temporally

adjacent diameters are at an angle of θ = 180◦/Nd relative to each other. By speci-

fying that each reconstructed image contain Nd diameters, the temporal and spatial

resolutions of the results are fixed a priori to maintain uniform k-space coverage and

cannot be changed following the scan should the results be found to be suboptimal.

To permit the retrospective selection of temporal resolution and image quality

while obtaining very uniform coverage of k-space, it has been proposed that the

succesive diameters should be incremented by the following angle [13]:

θGR =
180◦

ϕ
≈ 111.25◦ (2.53)

Where ϕ is the golden ratioxiii defined by:

φ =
(
√
5 + 1)

2
(2.54)

It has been shown that incrementation by θGR provides a very uniform coverage of

k-space for an arbitrary number of combined diameters compared to standard radial

sampling [13]. This is demonstrated in Figure 1.4. A further advantage is that θGR is

an irrational number, so in theory the sampled diameters will never overlap as more of

them are interleaved. This permits interleaving of very few diameters if high temporal

resolution is desired, and of many diameters if high image resolution is desired.

2.3.2 CIRCUS Base Pattern

Liu et. al. recently proposed a 3D Cartesian sampling scheme that incorporates

properties of golden ratio sampling, while incorporating influences from radial and

spiral sampling to increase the incoherence of the aliasing artifacts in an effort to boost

CS-MRI performance [14]. They named their sampling scheme CIRcular Cartesian

UnderSampling (CIRCUS). We outline the construction of CIRCUS patterns below.

We begin with the assumption that phase encoding dimensions are equal; rect-

angular phase encoding planes will be discussed in section 2.3.4. The CIRCUS base

xiiiThe golden ratio is known by a variety of other names, such as the golden section and the divine
proportion. The golden angle is commonly confused for the golden ratio, but in fact the golden angle
is constructed from the golden ratio and the two are not the same thing.
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pattern is generated by combining a number of quanta. Quanta are generated by the

selection of sampling indices on the periphery of a series of nested squares extending

outwards from the center of k-space in the direction of the two phase encoding dimen-

sions. The side length of each nested square is J ∈ 2Z , such that for a square of side

length J there are K = 4(J − 1) possible sampling indices i(q, J) for the generation

of quanta q . The indices i(q, J) are given by equation 2.55.

i(q, J) =

⌊
mod

(
q

ϕ
, 1

)
·K

⌋
(2.55)

Where ϕ is the golden ratio defined in equation 2.54, and mod is the modulo function,

defined by:

mod (a, n) = a− n ·
⌊a
n

⌋
(2.56)

The index i(q, J) can take a value from 0 to K − 1, where the first index i = 0 is

chosen as the bottom left corner of each nested square for consistency.

2.3.3 CIRCUS Radial and Spiral

One technique the authors implement to increase the incoherence of CIRCUS pattern

PSFs is to add a linear shift to the sampling indices generated for each quanta in

the CIRCUS base pattern. This shift is controlled by a parameter b ∈ Z, and is

implemented by altering equation 2.55 in the following manner:

i′(b, q, J) =
⌊
mod

(
q + bJ

φ
, 1

)
·K

⌋
(2.57)

The authors name the patterns resulting from the production of sampling indices

via equation 2.57 “CIRCUS radial” patterns. The effect of the shift introduced in

equation 2.57 is to “shear” the straight quanta produced by equation 2.55.

A second technique implemented by the authors in an effort to increase the inco-

herence of CIRCUS pattern PSFs is to add a nonlinear shift to the sampling indices

produced by the CIRCUS base. This nonlinear shift, resulting in the “CIRCUS spi-

ral” patterns, is controlled by a parameter c ∈ 0 ∪ (1, 2) and obtained by adding a

shift to equation 2.55 in the following way:

i′′(c, q, J) = mod (i(q, J) + �J c� − 1, K) (2.58)

The effect of the spiral shift is to “twist” the base quanta.
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For maximally incoherent sampling patterns, the radial and spiral shifts may be

combined. The combination of equations 2.55, 2.57, and 2.58 lead to the general form

of the equation for CIRCUS sampling indices on each nested square:

i(b, c, q, J) = mod

(⌊
mod

(
q + bJ

φ
, 1

)
·K

⌋
+ �J c� − 1, K

)
(2.59)

Representative CIRCUS patterns for various b and c parameters generated with an

undersampling factor R of 10 are shown in Figure 2.9.

Figure 2.9: Examples of CIRCUS trajectories obtained with various b and
c combinations with an undersampling factor of R = 10. The CIRCUS
base pattern is shown at the top left.

2.3.4 CIRCUS with Rectangular Phase Encoding Plane

In practise, the number of phase encode locations along one dimension is often sig-

nificantly smaller than in the other dimension. For example, in 3D pelvic MRI, there
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may be on the order of 256 phase encode locations in the y-direction and on the

order of 32 in the z-direction. Generation of rectangular CIRCUS patterns is thus

necessary.

Let Ny and Nz represent the number of phase encode points along the y- and

z-direction respectively, where Nz < Ny. Generation of an Ny ×Nz CIRCUS pattern

begins with the construction of an Ny×Ny CIRCUS pattern, as described in sections

2.3.2 and 2.3.3. Nz lines are then selected along the short phase encode dimension

according to the golden ratio profile described by equation 2.55. The selected lines

are assembled, maintaining their relative positions, to obtain a rectangular CIRCUS

pattern measuring Ny ×Nz.

2.4 Image Quality Assessment

The gold standard of image quality assessment is the subjective qualification of image

quality via the perception of a human observer. However, this process is time consum-

ing and expensive. This is especially true of diagnostic radiology, where radiologists

are faced with tight schedules and cannot afford to regularly assess large quantities

of MRI images to determine optimum reconstruction quality. The field of image pro-

cessing has seen extensive work in the development of image quality metrics (IQMs)

which aim to objectively quantify image quality by considering properties of the hu-

man visual system (HVS) to return scores that are indicative of observer subjective

scoring. In this section we summarize five objective IQMs: the root mean squared er-

ror (RMSE), the gradient magnitude similarity deviation (GMSD) [34], the structural

similarity index (SSIM) [35], the multi-scale structural similarity index (MS-SSIM) [36],

and the information weighted structural similarity index (IW-SSIM) [37]. The reader is

referred to the original publication for each IQM for specific calculation details. The

latter four IQMs have been verified to correlate better with subjective human scoring,

compared to the RMSE, when viewing natural images with a variety of distortions.

In the following descriptions we assume that an Nx ×Ny reference image R is being

compared to a distorted representation D of equivalent size.
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2.4.1 Objective IQM Design

There are three broad classes of IQMs [38]. Full-reference IQMs compare a distorted

image to a readily available reference image. Reduced-IQMs make use of partial infor-

mation obtained from the reference image. No-reference IQMs make no comparison

a reference image, instead assuming statistical properties that would be contained in

a theoretical reference image or properties of a specific family of distortions that may

be present in the image. In this thesis we investigate full-reference IQMs. The acqui-

sition of a high quality baseline image prior to clinical imaging protocols is feasible

in MRI, permitting the use of full-reference IQMs in practise.

The design of an IQM may be classified as either bottom-up or top-down [38].

The bottom-up approach uses the results of psychophysical studies in an attempt

to simulate the functionality of component stages of the HVS. These might include

estimates of an optical point spread function (PSF), estimates of a contrast-sensitivity

function (CSF), estimates of the relative importance of spatial scales and orientations

(subband decompositions), and so on. These stages are then strung together as a

series of building blocks in an attempt to create an IQM that is directly reflective of

many component stages of the HVS. The top-down approach makes general, higher

level hypotheses regarding the functionality of the HVS, and devises an IQM based

on the hypothesized HVS behaviour. The HVS is treated is a black box in such an

approach, with the guiding hypothesis often taken that the HVS is especially sensitive

to structural changes in an observed scenexiv. The difference between bottom-up and

top-down IQMs are illustrated in Figure 2.10. While one method of IQM design is not

“the right way”, the introduction of the SSIM by Wang et. al. spurred the top-down

movement that many IQM designs use today. In addition to being computationally

simpler to implement, the design of top-down metrics is not heavily reliant on the

results of psychovisual studies, many of which are performed under limited artificial

conditions that don’t accurately capture the full complexity of the HVS [35].

The black box treatment of the HVS in the top-down framework typically results in

a quality map (the HVS step in the top-down IQM flowchart in Figure 2.10 generates

such a map), which is pooled in some fashion to give a final score that is reflective of

xivThis hypothesis originates from the observation that natural scenes comprise a small and very
structured subset of all possible images. Since the HVS has evolved over millions of years in the
presence of these structured scenes, it should be sensitive to changes in their structure [38].



45

Figure 2.10: Bottom-up approaches attempt to simulate the functionality
of stages of the HVS, building a computational model of the HVS. Top-
down approaches assume a high level functionality of the HVS in terms
of structural perception, and treat the details of the HVS as a black box.

the quality of the distorted image. A common approach is to take the mean of the

image quality map, though top-down metrics utilizing different pooling techniques

have been proposed.

2.4.2 Root Mean Squared Error (RMSE)

The RMSE quantifies the pixel-wise errors between R and D:

RMSE =

√√√√ 1

NxNy

Nx∑
x=1

Ny∑
y=1

[R(x, y)−D(x, y)]2 (2.60)

The RMSE is independent of the signs of the error in each pixel due to the squared

error term in equation 2.60. Furthermore, the RMSE makes no consideration of the

local image properties during calculation of the local error map.

Under the framework of a top-down image quality metric, pictured in Figure 2.10,

the RMSE can be thought of as assuming that the HVS is sensitive to absolute errors

at each pixel of the image, such that the black box treatment of the HVS results

in an error map. Pooling of the error map then involves squaring the errors, taking
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their mean, and reporting the square root of this mean to arrive at the final RMSE

score. The HVS is not highly sensitive to errors on a pixel-wise basis, and it has been

found that the RMSE does not correlate particularly well with human perception of

distorted images [15].

For an image measuring 256×256, the RMSE takes on the order of 0.0005 seconds

to calculate.

2.4.3 Structural Similarity Index (SSIM)

The overall hypothesis of the SSIM is that the HVS is primarily sensitive to relative

changes in luminance, contrast, and structure in an image. The SSIM compares R

and D using a sliding window technique to compare local image properties (i.e. win-

dows are passed over both R and D, with calculations made at equivalent pixels in

each image). The authors chose to use an 11×11 circularly symmetric Gaussian win-

dow (with standard deviation of 1.5) to avoid “blocking” artifacts introduced at the

boundary of sliding windows with equivalently weighted elements [35]. The weights of

the window are normalized to unit sum. Within each local window, calculations of the

luminance (quantified by the mean), contrast (quantified by the standard deviation),

and structure (quantified by the correlation) of each image are made. The calcula-

tions of each of these three qualities between the individual images are then combined

to make three terms that reflect the perceivable change in luminance, contrast, and

structure between R and D in each of the local regions of the images. A weighted

product of these three terms at each pixel in the images gives an SSIM quality map,

where the weighting is typically taken as equivalent for each term. The final SSIM

score is obtained by taking the mean of the SSIM quality map. The range of the

SSIM is from -1 to 1, where negative scores are hardly ever achieved in practise and

a score of 1 is optimal.

The SSIM is a single scale IQM (the concept of image scale is introduced in

section 2.4.4), meaning that it is intended to quantify the effects of distortions to

image features at a specific scale. Images must be brought to that scale in order for

the SSIM to optimally correlate with subjective scoring. The authors propose that the

images be downsampled, if necessary, such that the smallest dimension measure 256
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pixels acrossxv. Downsampling by a factor of ds involves convolving the images with a

ds×ds averaging kernel and selecting every dths pixel in each dimension. For example,

images measuring 512 × 768 would be downsampled by a factor of 2 using a 2 × 2

averaging kernel and retaining every second pixel in the images to form downsampled

copies measuring 256× 384.

For an image measuring 256× 256, the SSIM takes on the order of 0.003 seconds

to calculate.

2.4.4 Multi-Scale Structural Similiarity Index (MS-SSIM)

The scale for which the SSIM should be applied is dependent on image size and image

resolution, and in practise the optimal scale will not accurately be reached. The

use of multiple image scales makes the assessment of image quality robust to such

factors, and further improves the objective image quality assessment by considering

the sensitivity of the HVS to distortions at different scales [36].

The concept of scale in image processing may be confused with the use of the word

scale in the colloquial sense. To be clear, the image scale in image processing refers

not to the size of the image, but to the relative size of features made available for ob-

servation in the image by sampling the image at different resolutions. To understand

this, consider the fine scale image shown in the left of Figure 2.11. We recognize that

there are features of several different scales in the image; the cameraman is a very

large scale feature in the image, whereas the handle of his camera and the blades of

grass are small scale features. The HVS easily recognizes and distinguishes between

these features, assessing each scale with a different sensitivity. To include the concept

of feature scale into an image processing application, the processing algorithm must

be made sensitive to features at each scale. One method of achieving this is to adjust

the resolution of the image. By resampling an image at decreasing resolutions, the

large scale features of an image will be emphasized. This is demonstrated in the right

of Figure 2.11, where a 10 times downsampling of the cameraman image emphasizes

coarse scaled features.

xvIn the original paper, the authors recommended downsampling by a fixed factor of 2 [35]. This
recommendation was later updated on the website of the author (https://ece.uwaterloo.ca/

~z70wang/research/ssim/), and in the code written and distributed by the author, to the recom-
mendation presented here.
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Figure 2.11: Fine scale features are easily resolved at the highest resolution
expression of the image (left), for example the handle of the camera stand.
Decimating the resolution of the image gives a coarse scale representation
(right). In the coarse scale image, large features remain evident while
small features are lost; we can discern the cameraman, but few details of
his equipment.

To calculate changes in luminance, contrast, and structure at progressively coarser

scales for a maximum of five scales, the authors implement a 2x downsampling pro-

cedure. At each of the scales, a contrast comparison and a structural comparison are

calculated via the same approach as for the SSIM to generate a “constrast-structure”

map; luminance comparison is done only for the coarsest scale [36]. At each scale the

quality maps are pooled by taking the mean of to obtain an intermediate quality score

for that scale. Each intermediate score is weighted according to the sensitivity of the

HVS to distortions at that scale, and the final MS-SSIM score is obtained by taking

the product of all weighted intermediate scale scores.

For an image measuring 256 × 256, the MS-SSIM takes on the order of 0.008

seconds to calculate.
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2.4.5 Information-Weighted Structural Similarity Index (IW-SSIM)

Sophisticated methods of pooling that attempt to weight the contributions of salient

image regions have been found to improve the correlation between subjective ob-

server scores and objective IQM scores [37]. The IW-SSIM builds upon the MS-SSIM

by weighting the local image quality maps at each scale according to the perceived

statistical information in each of R and D; the calculation of the IW-SSIM is other-

wise the same as that of the MS-SSIM. The hypothesis underlying the use of weighting

local quality maps with statistical information is that the HVS is an optimal extractor

of information content; this hypothesis is widely held across the field of computational

vision [37].

To develop a statistical information weighting technique, a statistical model de-

scribing images must be developed. Extensive studies of natural scene statistics

(NSS)xvi have shown that natural scenes are well modelled in the wavelet domain

by Gaussian scale mixture (GSM) models of wavelet coefficients [39]. A GSM may

intuitively be thought of as a mixture of many zero-mean Gaussians with differing

variance; the wavelet coefficients of natural scenes display a sharp peak near zero and

rapid decay for coefficients of increasing magnitude.

To simplify the calculation process, the authors proposed to use a GSM to model

the coefficients of a Laplacian pyramid [40] decompositionxvii. A Laplacian pyramid is

formed by subtracting blurred copies of an image from itself at each scale and retaining

the difference image; the exception is at the coarsest scale of the pyramid, where the

blurred image is retained. The formation of a Laplacian pyramid is demonstrated in

Figure 2.12. Because the coarsest scale in a Laplacian pyramid is simply a blurred

image, information weighting is not performed at that scale [37].

In the process of statistically modelling the coefficients at each level of the Lapla-

cian pyramid, it is assumed that a coefficient is only related to coefficients in a nearby

3×3 neighbourhood. This neighbourhood may additionally include a single coefficient

xviA natural scene is one which can be observed by the naked human eye and that can be encoun-
tered in nature. Medical images are not a subset of the natural scenes.
xviiWhile wavelets are an oriented transform, the Laplacian pyramid is non-oriented. We contacted
Zhou Wang via email in May of 2017 for justification. He states that he believed the GSM model
holds equally well for non-oriented transforms, given the highly empirical nature of the study of
NSS.
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Figure 2.12: Each scale of the Laplacian pyramid is formed by subtracting
a blurred image from the base image, with the exception of the coarsest
scale. The scale of the image increases for higher levels of the pyramid,
incorporating a multi-scale element into the IW-SSIM.

from the next coarsest scale in the pyramidxviii. The end result is either a K = 3× 3

or a K = 3×3+1 neighbourhood, with the later choice being the default used by the

authors. Borrowing from the results of NSS, the coefficients of the Laplacian pyramid

in the neighbourhood for the reference image are then modelled as a GSM, yielding a

collection of transform coefficients RK . The authors then model the coefficients of the

Laplacian pyramid in the neighbourhood for the distorted image by assuming that

a distortion channel generated DK from RK through scaling of the GSM coefficients

via a gain factor and with the addition of additive noise. Finally the perception of

each set of coefficients by the HVS is modelled via a perception channel which adds

independent white noise that is reflective of overall internal neural noise [41], yielding

xviiiWang et. al. refer to this as a “parent” coefficient, though the terminology may be confusing
given that the “parent” scale in the pyramid is in fact generated from the “child” scale under their
terminology... nevertheless, the reader should be aware of this when consulting the literature.
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perceived models PRK
of the coefficients of the reference image and PDK

of the coeffi-

cients of the distorted image. The information wK extracted by the HVS from each of

the reference and distorted image coefficients in the neighbourhood is then quantified

via the sum of mutual informations I between each set of image coefficients and their

output from the perception channels, less the mutual information between the per-

ception channel outputs of each set of coefficients. The final information weighting

of the coefficient at which the neighbourhood was centered is given by:

wK = I(RK ;PRK
) + I(DK ;PDK

)− I(PRK
;PDK

) (2.61)

Figure 2.13 schematically relates all the contributions towards the calculation of wK .

Figure 2.13: The final weight allocated for the Laplacian pyramid coeffi-
cients during the pooling stage is given by the sum of mutual informations
between the original and perceived coefficients for both reference and dis-
torted images, less the mutual information between the perception model
outputs.

For an image measuring 256×256, the IW-SSIM takes on the order of 0.08 seconds

to calculate.
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2.4.6 Gradient Magnitude Similarity Deviation (GMSD)

The GMSD compares the gradients of R and D, since it has been found that com-

mon distortions affecting image structure (e.g. noise, compression artifacts) are very

prominent in the gradient domain [34]. The primary goal of the GMSD was compu-

tational expediency, and this is achieved by pixel-wise comparison of the gradient

magnitudes of R and D as opposed to several local window calculations as in the

SSIM family of IQMs. For an image measuring 256 × 256, the GMSD takes on the

order of 0.001 seconds to calculate, marginally slower than the RMSE and faster than

any of the SSIM family of IQMs.

The GMSD is a single scale IQM, and the authors downsample the images by a

factor of 2 regardless of the initial image sizes [34]xix. Gradients of R and D are then

calculated using 3 × 3 Prewitt filters (though the authors acknowledge that specific

choice of gradient filter will not significantly affect the performance of the GMSD). A

gradient magnitude similarity (GMS) map is made through a pixel-wise comparison

of the gradient maps of R and D; the assumption is that sufficient local structural

information in the images has been considered during the generation of each gradient

map. The different structures in an image will suffer different degradation to their

gradient magnitude as the image is distorted, and the GMSD capitalizes on changes

in the gradient magnitude from R to D to quantify the presence of visible distortions.

Pooling the GMS into a GMSD score involves taking the standard deviation of the

entire GMS map, such that low GMSD score means better objective image quality.

The justification for this pooling strategy is the assumption that global variation in

the local quality map is reflective of overall image quality [34].

xixThe authors of the GMSD proposed this downsampling based on a similar recommendation
made in the original SSIM paper. The authors of the SSIM later changed their downsampling
recommendation, but the authors of the GMSD appeared to have missed the update.



Chapter 3

Common Methodology

3.1 Acquisition of Pelvic MRI Data

This study was research ethics board approved. Informed consent was obtained from

15 clinical prostate cancer patients for use of their image data. Imaging was per-

formed on a 3T GE MR750 MRI system (GE Healthcare, Waukesha, WI) using

a free breathing DIfferential subsampling with cartesian ordering (DISCO) [42] 3D

spoiled gradient-echo acquisition to acquire axial images of the pelvis. Acquisition

parameters were:

• TR/TE: 3.7 ms/1.1 ms

• Flip angle: 12◦

• Field of view: 34× 34 cm2

• Axial spacing: 3 mm

• K-space matrix size: 224× 192

• PI acceleration: 2× 1

Fat-water seperation was performed via a Dixon method [43], and image reconstruc-

tions performed using the GE Orchestra SDK image reconstruction suite.

3.2 Berkeley Advanced Reconstruction Toolbox (BART)

The Berkeley Advanced Reconstruction Toolbox (BART) [44] is a current CS recon-

struction toolbox that has become ubiquitous in the field of CS-MRI. BART possesses

a wide variety of image reconstruction algorithms, including CS with wavelet, total

variation, and locally low rank sparse regularizations (or any combination thereof).

BART offers support for combining parallel imaging with CS, further increasing the

53
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ability to accelerate data acquisition. It is an open source toolboxi built in the C

language for UNIX operating systems, with MATLAB interfacing capabilities for

convenience. We utilized version 3.00 of BART to reconstruct the simulated CS-MRI

images.

3.3 Software Implementation

All computational aspects of this thesis were implemented in MATLAB 2016b (Math-

Works, Natick MA). CS-MRI reconstructions with optional PI utilized BART (see

section 3.2), called via a supported MATLAB interface.

3.4 Simulated Coil Sensitivities

We utilized artificial coil sensitivity profiles when implementing parallel imaging (PI)

in our calculations. The sensitivity profiles were chosen such that coils were most

sensitive to nearby regions, with a decline in spatial sensitivity as distance from the

coil increased. The coils themselves were modelled as “point coils”, having no spatial

extent. While these assumptions are not entirely realistic, they allow for the inclusion

of spatial encoding in our calculations and the results will be broadly representative

of realistic PI acquisitions that leverage spatial encoding. Future work may wish to

accurately measure the coil sensitivity profiles for a specific PI set-up, allowing for

specific investigation of that system.

The coil sensitivity profile generation algorithm supported the use of either one

uniformly sensitive coil, or the placement of any even number of individual coil with

sensitivity profiles Cl given by:

Cl(x, y, z) = cos

(
2π

Px

(x−Δxl)

)
cos

(
2π

Py

(y −Δyl)

)
cos

(
2π

Pz

(z −Δzl)

)
(3.1)

Where l denotes the coil number, Pr is the period of the sinusoid in the rth dimension

and is chosen such that the first “zero-crossing” occurs at the boundary of the image

(i.e. Pr = 4∗Lr for Lr the voxel-extent of the image object in the rth dimension), r ∈
[x, y, z] represent the row, column and slice coordinates and Δrl are the coordinates

for the placement of coil l. Following the generation of coil sensitivity profiles via

iAvailable from https://mrirecon.github.io/bart/
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equation 3.1, the coil sensitivity profiles are normalized such that the sum of squares

of sensitivities within a single voxel across all sensitivity profiles is 1 (as per BART

requirements).

Figure 3.1 demonstrates examples of coil placements for 8 and 10 total coils. Coil

placements Δrl were made with symmetric placement of coils across from one another

in the y-direction (e.g. placement of 8 coils in total results in 4 coils in the anterior

plane and 4 coils in the posterior plane of the pelvic image, with symmetric placement

of the 4 coils between planes). Δxl and Δzl were then chosen dependent on whether

the number of coils placed in each of the anterior and posterior planes was even or odd.

Even numbers of coils per plane positioned coils such that two lines of coils divided

each plane into thirds; odd numbers of coils per plane placed one coil centrally in

each plane and the remaining coils along the same lines used for even placement of

coils.

Figure 3.1: Coils (represented by red ellipses) were placed symmetrically
in the anterior and posterior planes. Even numbers of coils per plane (e.g.
8 coils total, 4 per plane, left) placed coils along two lines dividing the
slice direction into thirds. Odd numbers of coils per plane (e.g. 10 coils
total, 5 per plane, right) placed coils as in the even case, with the extra
coil added to the central region of each plane.
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3.5 3D Extensions of Objective IQMs

3.5.1 RMSE

The RMSE was calculated by extending equation 2.60 to 3D:

RMSE =

√√√√ 1

NxNyNz

Nx∑
x=1

Ny∑
y=1

Nz∑
z=1

[R(x, y, z)−D(x, y, z)]2 (3.2)

For an image measuring 256×256×30, the RMSE takes on the order of 0.006 seconds

to calculate.

3.5.2 SSIM

As an addition to the image processing toolbox in MATLAB version 2014a, MATLAB

includes a 3D implementation of the SSIMii. We implemented the SSIM using the

function included with MATLAB.

The SSIM function included with MATLAB differs from the SSIM code written

by the authors of the SSIM in two ways. First, while the authors handle edge cases

during local window calculations by entirely avoiding the edge pixels of an image, the

included MATLAB implementation pads the image array with replicates of the border

voxels. We preferred the latter technique because it included all voxels in the 3D

images. Ultimately, the difference in handling of edge-cases was not significant. This

is demonstrated in Figure 3.2, where the handling of border pixels is not a significant

factor in the calculation of the 2D SSIM and is not expected to be significant in the

3D SSIM either.

The second difference between the included MATLAB function and the SSIM code

originally written by the authors is that the MATLAB function does not downsample

the image such that the smallest dimension measures 256 voxels across. While the

images utilized in our study did not exceed 256 voxels in any dimension, this difference

in SSIM implementations may be relevant to future work so we briefly address it here.

The purpose of such a downsampling step is to bring the images into a scale similar

to which the SSIM was originally correlated against non-expert subjective scoring of

natural images. The logic of this downsampling step does not necessarily translate to

iiDocumentation for the function ssim.m included with MATLAB can be found at https://www.
mathworks.com/help/images/ref/ssim.html.
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Figure 3.2: The method by which border pixels were handled during slid-
ing window calculations made an insignificant impact on the SSIM.

3D medical images where the slice direction dimension may be significantly smaller

than the in-plane direction. Furthermore advanced generations of the SSIM have

attempted to include the response of the HVS to distortions at different scales, so

we believe it most appropriate to evaluate the SSIM on MRI images at their original

scale.

In selecting the dimensions of the circularly symmetric Gaussian window for cal-

culation of the local luminance, contrast, and structure changes, we chose in-plane

dimensions of 11× 11 voxels with standard deviation of 1.5iii as suggested by the au-

thors of the SSIM. We found that the extent of the window along the slice direction

did not make a significant difference in the performance of the SSIM when choosing

a slice extent between 1 and 11 slices (see Figure 3.3). The insignificant change in

SSIM response to the addition of extra slices is partially a result of the fact that the

iiiA standard deviation of 1.5 means that over 99% of the weights are contained within 11 voxels.
Changing window size requires changing the standard deviation accordingly.
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SSIM utilizes a Gaussian window to calculate local luminance, contrast, and struc-

ture terms. Voxels in additional slices are weighted less than voxels that are in the

plane of the center of the window, and thus emphasis is placed primarily on the “in-

plane” voxels during local window calculation. This is particularly true of relatively

small window sizes (i.e. between 1 and 11 voxels), where the voxel weights relative

to one another will decline quickly compared to larger window sizes. In addition to

this nearby slices in a 3D MRI image contain very similar structural features, and

the incoherent aliasing artifacts appear relatively consistent in behaviour across the

image when inspected visually. Thus, nearby slices would be expected to have similar

structural degradation quality. The inclusion of additional nearby slices in the SSIM

calculation would not be expected to significantly change the result since they will all

be of similar structural quality. This effect will be dependent upon how quickly the

structure of the images changes, though for the pelvic images we studied the relative

change in overall visual structure between slices tends to be slow (e.g. if a chosen

slice contains views of the femoral head, prostate, and so on, the adjacent slices will

contain broadly similar views of the same anatomy). This, combined with the fact

that slices further from the center of the Gaussian window are weighted less, explains

why the SSIM was not observed to differ greatly when choosing between 1 and 11

slices for inclusion in the Gaussian window.

Given these results, we chose to implement the SSIM with a sliding window that

had equal voxel-extent in each dimension as opposed to scaling the window to have

equal spatial-extent in each dimension. This decision also facilitates implementation

of the SSIM, since the spatial extent of the image in each direction need not be

considered at the time of calculation. Thus, we implemented the SSIM with an

11× 11× 11 voxel circularly symmetric Gaussian window.

The relative weight of luminance, contrast, and structure related distortions were

assigned to be equivalent based on the recommendations of the SSIM authors [35].

Implementing the SSIM as described above, it takes on the order of 16.6 seconds

to calculate a score for a 256× 256× 30 image.
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Figure 3.3: Changing the extent of the sliding window along the slice
direction was found to give insignificant changes to the performance of
the SSIM.

3.5.3 MS-SSIM

We extended the MS-SSIM to 3D by extending the 2×2 voxel averaging window used

in the image re-scaling process for the original 2D implementation of the MS-SSIM

to a 2 × 2 × 2 voxel averaging window. Calculation of the MS-SSIM score for the

3D extension was then similar to the 2D MS-SSIM as originally put forward by its

authors [36]. In line with our implementation of the SSIM (section 3.5.2), we chose

to handle edge cases during luminance, contrast, and structure term calculations by

padding with replicates of border voxels, as opposed to the technique of ignoring

border voxels employed by the authors of the MS-SSIM.

Because of the inherent need for downsampling in the process of calculating the

MS-SSIM, we chose to evaluate the 3D MS-SSIM with 3 scales as opposed to the 5

scales that were studied by the authors of the MS-SSIM. For 3D images with on the
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order of 32 slices, undersampling twice to achieve two additional scales (three scales

in total) will reduce the image extent along the slice direction to 8 slices; beyond

this we considered downsampling as meaningless due to the excessive averaging of

image features along the slice direction. Figure 3.4 shows the change in MS-SSIM as

the number of scales considered increases. As more scales were added, the MS-SSIM

reported higher scores. This is a result of the fact that the MS-SSIM is composed

of a weighted product of intermediate scores calculated at each scale. At each inter-

mediate scale, the image is lowpass filtered to accentuate coarser scale features, the

result being that coarse scales show higher intermediate scores than finer scales (e.g.

incoherent aliases will more detrimentally affect the perceived structure of fine scale

image features in the pelvic MRI image, resulting in lower intermediate score when

examining fine features, while the effect on the coarse features is less severe). As

more weight is allocated to intermediate scales, the inclusion of extra scales results in

a MS-SSIM score calculated from larger intermediate scores that have been allocated

more weight, raising the MS-SSIM score. Due to the fact that radiologists are fre-

quently concerned with small details in an image, we consider the inclusion of three

scales with the MS-SSIM as an appropriate compromise between scale sensitivity and

representation of scales that are most prominently desired in medical images. Future

work must determine the effect of image scale when medical images are viewed by

radiologists, since it is almost certain that radiologist preference will lie in images

with greater preservation of fine detail (e.g. blood vessels) relative to large detail

(e.g. outline of the pelvis).

We chose to implement luminance, contrast, and structural term calculations with

an 11×11×5 Gaussian window, though the MS-SSIM was not found to differ greatly

as the extent of the window in the slice direction changed (Figure 3.5), the expla-

nation for which is similar to that given for the SSIM in section 3.5.2. Because an

image with on the order of 32 slices analysed at 3 scales will result in the smallest

image having 8 slices, we felt that a Gaussian window extending 5 voxels in the slice

direction permitted the window to capture sufficient unique detail in the image dur-

ing structural term calculation (as opposed to a window with 11 voxel extent, for

example, which will already exceed the dimension of the slice direction at the third

scale).
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Figure 3.4: The MS-SSIM scores increased as the number of scales used in-
creased. Future studies relating radiologist perception to MS-SSIM scores
may wish to consider these differences.

Implementing the MS-SSIM as described above, it takes on the order of 5.2 seconds

to calculate a score for a 256×256×30 image. The reason that the MS-SSIM takes less

time than our implementation of the SSIM is that we have used a smaller Gaussian

window in calculating the MS-SSIM (i.e. 11 × 11 × 11 for the SSIM vs 11 × 11 × 5

for the MS-SSIM), and thus less padding of the images is required.
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Figure 3.5: The MS-SSIM scores did not vary greatly as the extent of
the Gaussian window used for local structural term calculations along the
slice direction changed.

3.5.4 IW-SSIM

The information weighting scheme used in the IW-SSIM assumes that the Laplacian

pyramid coefficients are distributed according to a Gaussian scale mixture (GSM)

model, an assumption which was borrowed from detailed studies on the statistics

of natural images showing that the marginal distribution of wavelet coefficients are

modelled by a GSM [39]. While an in-depth study of the statistics of medical images

is beyond the scope of this thesis, we conducted a very brief investigation of the

marginal statistics of both Laplacian pyramid and wavelet coefficients in pelvic MRI

images to provide motivation for the use of the IW-SSIM in the context of MRl

imagesiv. We wished only to observe that the statistics of the pelvic MRI images we

studied were broadly similar to those of natural images, for which the assumptions of

the IW-SSIM information weighting scheme were made. Figure 3.6 shows exemplar

results of the statistics observed for pelvic MRI images compared to a natural image.

The distribution of coefficients were found to be qualitatively similar; both classes of

ivThe reader is reminded that the subset of natural images do not include medical images, and
so assumptions made for natural images do not immediately transfer to MRI images.
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images showed peaks at coefficients of zero with heavy tails as coefficient magnitude

increased. Thus, the assumption that a GSM can model the transform coefficients

of a pelvic MRI image is valid, and the IW-SSIM can be studied in the context of

medical imaging with some measure of confidence.

Figure 3.6: The 15 pelvic images studied showed GSM-like marginal dis-
tributions of both the Laplacian pyramid coefficients and the wavelet co-
efficients. The GSM distributions modelling natural scene coefficients are
characterized by heavy tails and sharp peaks near zero. The pelvic MRI
images we studied showed GSM-like marginal distributions for transform
coefficients, motivating the study of the IW-SSIM in pelvic MRI images.

We implemented a 3D Laplacian pyramid generation by employing a 5× 5× 5 3D
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extension of the 5 × 5 binomial kernel used in the re-scaling step for the 2D Lapla-

cian pyramid. The 3D Laplacian pyramid generation then follows the 2D pyramid

generation steps detailed in section 2.4.5.

As in our 3D implementations for the SSIM and the MS-SSIM, we chose to handle

edge cases during the local window calculations of luminance, contrast, and structure

terms by padding with replicates of the border values as opposed to ignoring the

border values. We implemented the IW-SSIM local window calculations using an

11 × 11 × 5 Gaussian window, evaluated at three scales of the Laplacian pyramid.

We chose to implement three scales in the IW-SSIM for the same reasons discussed

for the MS-SSIM (see section 3.5.3). The effect to the IW-SSIM of changing window

size along the slice direction was similar to the effect in the MS-SSIM (see Figure

3.5), the explanation for which is similar to the discussion given in section 3.5.2 for

the SSIM. The IW-SSIM responded less significantly than the MS-SSIM to different

numbers of included scales (Figure 3.7). This is a result of the fact that statistical

information weighting has been included at each intermediate scale during calculation

of the IW-SSIM, tailoring the intermediate scores according to the presence of salient

distortions. For reasons similar to those stated in section 3.5.3, we felt it appropriate

to use three scales with a Gaussian window slice-extent of 5 voxels.

As opposed to the default use of a neighbourhood that includes a parent coeffi-

cient in the original IW-SSIM, we chose to omit a parent coefficient when calculating

information weighting maps. This was done primarily for coding convenience when

extending the IW-SSIM to 3D images. The omission of a parent coefficient in calcu-

lating the information weighting does not significantly change the results of the 2D

IW-SSIM, as shown in Figure 3.8, and would not be expected to change the results

of the 3D IW-SSIM either.

Implementing the IW-SSIM as described above, it takes on the order of 15.7

seconds to calculate a score for a 256 × 256 × 30 image. The reason that the IW-

SSIM takes less time than our implementation of the SSIM is that we have used a

smaller Gaussian window in calculating the IW-SSIM (i.e. 11× 11× 11 for the SSIM

vs 11 × 11 × 5 for the IW-SSIM), and thus less padding of the images is required.

However, the calculation of the information weighting terms causes the IW-SSIM to

be slower in implementation than the MS-SSIM.
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Figure 3.7: The change in IW-SSIM was not drastic as the number of
scales considered increased.
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Figure 3.8: The inclusion of a parent coefficient in the information weight-
ing calculation does not make a significant impact on the IW-SSIM.
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3.5.5 GMSD

The GMSD, described in section 3.5.5, was extended for use in 3D images. The 3× 3

Prewitt filters used in the 2D implementation of the GMSD were extended to 3 ×
3× 3 gradient filters, normalizing the entries appropriately. Figure 3.9 demonstrates

how the horizontal gradient filter was extended to 3D; vertical and slice-directed

gradient filters were designed similarly. Gradient magnitude similarity map (GMS)

Figure 3.9: The 3 × 3 Prewitt filters were extended to 3 × 3 × 3 filters,
renormalizing the entries appropriately (i.e. by number of active elements
in each directional component of the filters). Shown here is the extension
of a horizontal filter to 3D.

computation was then performed analogously to the 2D GMSD scheme, filtering both

the reference image R and reconstructed image D with the three directional gradient

filters. The standard deviation of the resulting 3D GMS map was taken to report a

GMSD score.

Contrary to the original 2D GMSD implementation, which uses zero-padding to

return convolution results at edge cases, we handle convolution at edge voxels by

padding with replicates of border values. We chose this approach to maintain similar

voxel intensities when padding of the image is necessary, though the difference in

padding techniques is more a matter of preference than performance; because both

R and D are subjected to the same filtering process, the difference in performance

between padding techniques is not significant.

A notable difference in our implementation of the GMSD is that we do not perform

the 2-times downsampling step suggested by the authors. We chose not to include

2-times downsampling largely because the slice direction of 3D MRI images is small
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compared to the in-plane dimensions of the images, and so the images would suffer

unnecessary loss of detail in the slice direction. It should also be noted that the

authors of the GMSD recommended a 2-times undersampling step by citing the use

of such a step in the calculation of the SSIM, however the authors of the SSIM only

recommended an undersampling step be used under certain conditionsv that were not

met in our implementation. Finally, given that the purpose of such a downsampling

step is to bring the images into a scale for which the GMSD was purportedly validated

with the use of natural images, its necessity in medical imaging applications does not

necessarily follow. Regardless, the relative response of the GMSD with and without

downsampling is similar (Figure 3.10), and no preference can be determined in the

context of medical imaging until future work correlates the GMSD with radiologist

opinion.

Figure 3.10: The trends in the GMSD with and without 2-times down-
sampling are very similar.

Implementing the GMSD as described above, it takes on the order of 0.4 seconds

to calculate a score for a 256× 256× 30 image.

vWang et. al. initially recommended 2x undersampling of the luminance channel of images [35],
though later empirically suggest downsampling the image such that the minimum dimension of the
image measures 256 (see https://ece.uwaterloo.ca/~z70wang/research/ssim/).



Chapter 4

Implementing CIRCUS in CS-MRI

4.1 Purpose of Investigation

Although CIRCUS k-space trajectories allow flexible retrospective compromise be-

tween temporal resolution and image quality, the design of the CIRCUS quanta used

during k-space sampling is determined prior to data acquisition through the choice

of b and c and cannot be changed retrospectively. Selection of some values of b and

c may provide inherently better performance of CS-MRI using CIRCUS. CIRCUS

trajectories with inherently better performance for a fixed undersampling factor, as

quantified by objective image quality metrics (IQM), will allow more leniency in the

compromise between temporal resolution and image quality. An informed decision re-

garding the parameters b and c is thus paramount in ensuring favourable performance

using CIRCUS k-space sampling, both for static and dynamic MRI applications.

Though the authors of CIRCUS originally specified that b ∈ Z and c ∈ 0 ∪ (1, 2),

no justification was given for these limitations [14]. Choosing any b, c ∈ R is permitted

by equation 2.59 in theory. By extending the range of possible b and c choices, we

extend the possible range of good CIRCUS parameter choices with regards to CS-MRI

image reconstruction performance.

In this section we investigated the properties of simulated CIRCUS acquisitions

using various b and c parameters in a static pelvic CS-MRI image reconstruction.

Our intent was twofold:

1. Determine whether choices of b and c exist that consistently give improved per-

formance in CS-MRI, as quantified by objective image quality metrics (IQMs),

at a fixed undersampling factor.

2. Determine if the coherence or the incoherence of the CIRCUS pattern point

spread function (PSF) can be used as a surrogate for choosing the best CIRCUS

parameters for CIRCUS trajectories generated for a fixed undersampling factor.

69



70

We began by seeking choices of b and c that produced unique CIRCUS trajectories, to

establish what choices of b and c were truly valid. We then extensively investigated the

PSF coherence and incoherence measures of many CIRCUS trajectories at increas-

ing undersampling factors, to determine if any unusual trajectories existed across

undersampling factors. Following this, with knowledge of the behaviour of CIRCUS

trajectory PSFs at many undersampling factors, we characterized the performance

of CIRCUS trajectories for a single fixed undersampling factor using objective IQMs

and sought correlations between IQM scores and PSF measures.

Then end goal of this chapter was to provide confidence in CIRCUS trajectory

implementations for use with CS-MRI. Our aim was to provide suggestions as to

which values of b and c are favourable for implementation, and to seek whether or not

PSF measures can serve as a tool for predicting CIRCUS trajectory performance. By

utilizing CIRCUS trajectories that inherently allow CS-MRI to produce better quality

images, as quantified by objective IQMs, dynamic MRI applications are afforded a

measure of increased leniency in the compromise between temporal resolution and

image quality.

4.2 Hypotheses

We hypothesize the following:

1. With regards to valid b and c values for unique CIRCUS trajectories:

(a) No two distinct b1 and b2 will produce identical CIRCUS trajectories for

fixed c.

(b) There will exist a subset C ⊂ R such that c1, c2 ∈ C produce identical

CIRCUS trajectories. For all choices c1, c2 ∈ R \C, no two distinct c1 and

c2 will produce identical CIRCUS trajectories for fixed b.

2. With regards to the coherence and incoherence of CIRCUS trajectory PSFs

(equations 2.26 and 2.27 respectively) with varying b and c both at increasing

undersampling factors and within a fixed undersampling factor:

(a) There will exist a region of the b-c parameter space for which consistent

PSF measure behaviours are observed.
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(b) There will exist a region of the b-c parameter space for which PSF coherence

will reach an average minimum behaviour and for which PSF incoherence

will reach an average maximum behaviour.

3. With regards to the performance, as quantified by objective IQMs, of CIRCUS

trajectories with fixed undersampling factor as b and c vary:

(a) There will exist a region of the b-c parameter space for which objective

image quality will be consistent on average.

(b) Objective IQM scores will correlate with both the coherence and incoher-

ence measures of the CIRCUS PSFs.

4.3 Methods

4.3.1 Point Spread Function (PSF) Coherence and Incoherence

CIRCUS trajectories measuring of 256 × 256 × 34 voxels were generated, equivalent

to the size of the pelvic MRI image used for the CIRCUS trajectory performance

study (see section 4.3.2). Varying the sizes moderately was not observed to signifi-

cantly change the final trends in the PSF coherence and incoherence. Undersampling

occurred along the z and y phase encoding axes, with full sampling along the x fre-

quency encode axis. CIRCUS pattern generation used values of b ranging from 0 to

90 in steps of 0.5 (181 values) and values of c ranging from 0 to 5 in steps of 0.05

(101 values), resulting in 18281 CIRCUS trajectories. These values were chosen as a

representative range of parameter values, and it is assumed that any trends observed

will hold as the range of parameters is reasonably extended. The PSF coherence

and incoherence were calculated for each CIRCUS trajectory using equation 2.26 and

2.27 respectively. This was performed for undersampling factors of 2, 4, 6, 8, 10,

and 12. Two-way analysis of variance (ANOVA) testing was performed to determine

if changes in b or c produced significant differences in mean PSF measures. Tukey

honest significant difference (HSD) post hoc analysis (described in appendix A.2),

was used to further investigate the effect of b and c on PSF measures.
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4.3.2 Effect of b and c on IQM Scores

The root mean squared error (RMSE), gradient magnitude similarity deviation (GMSD),

structural similarity index (SSIM), multi-scale SSIM (MS-SSIM), and information-

weighted SSIM (IW-SSIM) were calculated for 3D CS-MRI reconstructions of a single

pelvic MRI image (256×256×34 voxels). RMSE results were normalized to the mean

reference image intensity to yield a unitless normalized RMSE (nRMSE). K-space ac-

quisition used CIRCUS patterns as generated in section 4.3.1 with a simulated 8

coil PI acquisition. Acquisitions were made at an undersampling factor of R = 10,

and CS-MRI reconstructions were performed using total variation (TV), wavelet, and

locally low rank (LLR) sparsity enforcements, all with regularization weight chosen

as λ = 0.02. A single undersampling factor was used because the purpose of the

IQM investigation was to determine how IQMs quantified CIRCUS trajectories at

a fixed R, and whether those scores correlated with PSF measures. The choice of

λ was arbitrary, since the goal was to characterize the relative performance of each

CIRCUS trajectory and not to determine the best regularization weight for a given

undersampling factor.

4.4 Results

4.4.1 Unique CIRCUS Trajectory Parameter Choices

Repetitions in b with Fixed c

The full derivation of these results may be found in appendix B.2.

For two choices b1, b2 ∈ R of the CIRCUS radial parameter b, identical CIRCUS

trajectories occur for the trivial condition when b2 is chosen to be very near in value

to b1. Assuming that a reasonable user does not specify b to more than two decimal

places, this effect will not be observed in practise. The results describing this effect

are therefore presented in appendix B.2 for the interested reader. Aside from trivial

choices of b1 and b2 made exceedingly near to one another, no two distinct b1 and b2

generate identical CIRCUS trajectories.
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Repetitions in c with Fixed b

The full derivation of these results may be found in appendix B.3.

For two choices c1, c2 ∈ R of the CIRCUS radial parameters c, identical CIRCUS

trajectories occur for the trivial condition when c2 is chosen to be very near in value

to c1. This effect will not be observed in practise, assuming that a reasonable user

doesn’t specify c to beyond two decimal places. The results describing this effect are

therefore presented in appendix B.3 for the interested reader. It was found that for

two choices of c1, c2 ∈ Z ≥ 2, the CIRCUS trajectories produced will be identical.

For all other choices of c1 and c2, CIRCUS trajectories will be unique.

4.4.2 Effect of b and c on CIRCUS PSF Measures

As exemplar results of the PSF measure behaviours, Figure 4.1 shows the coherence

and incoherence of CIRCUS PSFs with undersampling factors of 2, 6, and 10 for

various combinations of b and c. These results are representative of results for R =

4, 8, and 12, which may be found in appendix B.4.

Two-way ANOVA tests of the effects of b and c on PSF coherence revealed a

significant (p < 0.05) difference between mean PSF coherence with fixed b and varying

c and the mean PSF coherence with fixed c and varying b the majority of the time;

only for R = 2 and 4 did the PSF coherence not show significant difference in mean

coherences at fixed b as c varied and only for R = 4 did the PSF coherence not show

significant difference in mean coherences at fixed c as b varied. In all cases, the PSF

incoherence showed significant difference in mean values as b and c varied.

Tukey HSD post hoc analysis revealed evidence of regimes in CIRCUS trajectory

PSF incoherences at higher undersampling factors, though the same was not observed

for the PSF coherences. Figure 4.2 gives an exemplar visualization of the effect of

b and c on PSF coherence and incoherence for CIRCUS trajectories with R = 10.

Shown in the subfigures are the mean PSF coherence and incoherence values for fixed

b and for fixed c, plus-or-minus Tukey HSD comparison intervals for each mean. It

was found that no statistically significant trend towards decreased PSF coherence

existed with respect to either b or c (i.e. non-overlapping Tukey comparison intervals

occurred sporadically). There was a statistically insignificant trend towards decreased

mean PSF coherence for c > 1 observed for R ≥ 4. There were no consistent trends



74

Figure 4.1: Coherence (left column) and incoherence (right column) of
CIRCUS pattern PSFs generated for a variety of b and c at increasing
undersampling factor.

in the mean PSF incoherences with changes in b. Finally, a statistically significant

trend towards higher PSF incoherence for c ∈ R\Z > 2 relative to c < 1 was observed

for R ≥ 6, with a similar trend observed without statistical significance for R = 4.

The relative difference in mean PSF incoherences with this statistically significant

increase in mean PSF was typically on the order of 5%.
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Figure 4.2: Visualization of Tukey HSD post hoc analysis for mean PSF
coherence and incoherence as b changes (top row) and as c changes (bot-
tom row) at R = 10. No significant trends are observed in the PSF coher-
ence measure, nor with the PSF incoherence measure as b changes. For
c ∈ R \Z > 2, there is a higher occurance of statistically significant gains
in mean PSF incoherence relative to both c < 1 and to c ∈ Z > 2 (red
line demarcates the maximum of the comparison intervals for c ∈ Z > 2.
This was observed for R ≥ 6.

4.4.3 Effect of b and c on IQM Scores

Results for the nRMSE, GMSD, and SSIM are shown in Figure 4.3. These are repre-

sentative of the MS-SSIM and IW-SSIM, which may be found in appendix B.5.

For approximately c < 1, noticeably different IQM responses to b and c were visible

for CS-MRI reconstructions using all three sparsity enforcements. For approximately
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c > 1 the IQMs all appeared to reach an average behaviour, with no distinct regions

emerging as superior or inferior in terms of objective image quality.

Figure 4.3: Response of the nRMSE (left column), GMSD (middle col-
umn), and SSIM (right column) to changes in b and c for TV sparsity
enforcement (top row), wavelet sparsity enforcement (middle row), and
LLR sparsity enforcement (bottom row).

Two-way ANOVA testing of the effect of b and c on each of the IQMs indicated

that for all IQMs and all sparsity enforcements there was a significant (p < 0.05)

change in the mean IQM scores as b changed. The difference in mean IQM scores

with respect to varying c was significant only for the nRMSE and the GMSD with

a wavelet sparsity enforcements; for all other IQMs and sparsity enforcements the

differences in mean IQM scores were not significant as c changed.

Tukey HSD post hoc analysis was performed to determine whether domains of b

and c values existed that consistently gave statistically significant improvements in
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IQM score relative to the other values of b and c. Figure 4.4 shows representative

results of the Tukey HSD post hoc analysis of the SSIM results. No statistically

significant trends were observed for any of the IQMs utilizing any of the sparsity

enforcements. Statistically insignificant trends towards improved IQM scores existed

for all IQMs and all sparsity enforcements for approximately b > 20. Statistically

insignificant trends towards poorer IQM scores existed for all IQMs and all sparsity

enforcements for approximately c > 1.

Figure 4.4: Visualization of overlap in Tukey HSD comparison intervals
for mean SSIM score as b changes (top row) and as c changes (bottom
row), for each of the three sparsity enforcements.

4.4.4 Correlations Between IQM Scores and PSF Measures

Tables 4.1 to 4.4 show the coefficients of the Pearson linear correlation and Spearman

rank correlation between each of the objective IQM scores and the PSF coherence
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and incoherence measures calculated for the CIRCUS trajectories with R = 10. In

all cases, there was not strong correlation between PSF coherence and incoherence

measures and the resulting objective IQM scores. Figures representing the relation-

ship between each IQM and the PSF coherence and incoherence may be found in the

appendix.

Table 4.1: Pearson linear correlation coefficients for correlation between each IQM
and PSF coherence, for each of the three sparsity enforcements studied. Bolded
entries were statistically significant (p < 0.05).

nRMSE GMSD SSIM MS-SSIM IW-SSIM
TV 0.0400 0.0298 -0.0425 -0.0428 -0.0440
W 0.0173 0.0155 -0.0367 -0.0430 -0.0442
LLR 0.0226 0.0183 -0.0339 -0.0403 -0.0473

Table 4.2: Spearman rank correlation coefficients for correlation between each IQM
and PSF coherence, for each of the three sparsity enforcements studied. Bolded
entries were statistically significant (p < 0.05).

nRMSE GMSD SSIM MS-SSIM IW-SSIM
TV 0.0308 0.0168 -0.0372 -0.0393 -0.0409
W 0.0050 -0.0019 -0.0265 -0.0371 -0.0417
LLR 0.0048 -0.0027 -0.0209 -0.0349 -0.0391

Table 4.3: Pearson linear correlation coefficients for correlation between each IQM
and PSF incoherence, for each of the three sparsity enforcements studied. Bolded
entries were statistically significant (p < 0.05).

nRMSE GMSD SSIM MS-SSIM IW-SSIM
TV 0.0077 0.0300 0.0282 0.0373 0.0451
W 0.0592 0.0636 -0.0089 0.0176 0.0304
LLR 0.0866 0.0980 -0.0506 -0.0145 -0.0129

Table 4.4: Spearman rank correlation coefficients for correlation between each IQM
and PSF incoherence, for each of the three sparsity enforcements studied. Bolded
entries were statistically significant (p < 0.05).

nRMSE GMSD SSIM MS-SSIM IW-SSIM
TV 0.0110 0.0302 0.0264 0.0339 0.0413
W 0.0676 0.0689 -0.0129 0.0139 0.0269
LLR 0.1048 0.1162 -0.0587 -0.0198 -0.0165
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4.5 Discussion

4.5.1 Unique CIRCUS Trajectory Parameter Choices

We investigated when choices of two different radial parameters b1 or b2 (at fixed c)

or two different spiral parameters c1 or c2 (at fixed b) lead to equivalent CIRCUS

patterns. This was done in an effort to determine if redundant subsets of b and c

existed, putting natural limits on the feasible ranges of b and c that could be selected.

With regards to b, it was found that CIRCUS patterns repeated for two choices

of b1 and b2 only if b1 and b2 were chosen exceedingly near in value. This effect

is negligible in practise, assuming that a user doesn’t specify b to beyond 2 decimal

places, and so we conclude that CIRCUS trajectories do not repeat with b in practical

implementations. This confirms hypothesis 1a.

It was found that CIRCUS patterns will repeat for c taken as any integer greater

than or equal to two for fixed b. Though two choices c1 and c2 may give identical

CIRCUS patterns if they are chosen exceedingly near in value, this effect is negligible

in practise assuming that the user is not specifying c to more than two decimal

places. We may conclude that CIRCUS patterns will not repeat with two choices of

c in general, except at integer values of c greater than or equal to two. This confirms

hypothesis 1b, where the hypothesized subset C is C = Z \ [0, 1].
Given the golden ratio design elements incorporated in CIRCUS, it is not unex-

pected that CIRCUS trajectories are largely unique. Knowledge of the theoretical

freedom in CIRCUS parameter choices allows for an unrestricted investigation of

CIRCUS trajectory designs. Furthermore, it opens future possibilities in the imple-

mentation of CIRCUS trajectories. For example, rather than designing a series of

CIRCUS quanta at fixed b and c for dynamic acquisition of k-space data, the unique-

ness of CIRCUS trajectories at different b and c allows the user to generate a series of

different CIRCUS quanta at many different b and c for k-space sampling and to ret-

rospectively interleave the quanta with knowledge that acquired k-space coefficients

will not entirely overlap between CIRCUS quanta designed with different b and c.

Future work may investigate if such a CIRCUS implementation is beneficial.
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4.5.2 Effect of b and c on CIRCUS PSF Measures

Figure 4.1 demonstrates exemplar behaviour of the PSF coherence and incoherence

as b and c change. Noticeable trends between all PSF coherence and incoherence

results existed as undersampling factor increased. Namely, for approximately c < 1

both the coherence and incoherence showed noticeably different response to b and c

than for approximately c > 1. For higher undersampling factors, the variations in the

PSF coherence and incoherence for c < 1 were more consistent. In all cases, for c > 1

the PSF coherence and incoherence measures achieved relatively uniform response to

b and c. This confirms hypothesis 2a.

The PSF incoherence was a more responsive metric than the PSF coherence, which

showed no consistent statistically significant trends as b or c changed. The bottom

right panel in Figure 4.2 suggests that three domains of PSF incoherence may exist

with regards to the effect of c on the behaviour of the resulting CIRCUS pattern;

relatively low incoherence for c < 1 (the “sub-CIRCUS regime” of c), comparatively

higher incoherence for c ∈ R \ Z > 2 (the “super-CIRCUS regime” of c), and a

transitionary region between c = 1 and c = 2 within which the authors of CIRCUS

originally proposed the scheme follow (the “CIRCUS regime” of c). These regimes

were observed, with statistical significance, for undersampling factors greater than or

equal to six. Figure 4.5 demonstrates the change in CIRCUS pattern structure for

values of c taken in each of these three domains prior to the generation of rectangular

phase encoding tables as described in section 2.3.4. While the rectangular CIRCUS

patterns are the one actually used in practise, it is instructive to view the underly-

ing square CIRCUS patterns from which they are generated. In the sub-CIRCUS

regime of c, the change in CIRCUS pattern structure is dominated by changes in

b, with changes in the value of c causing minimal change in the sampled phase en-

code coordinates. Within the CIRCUS regime of c, obvious structure characteristic

to the CIRCUS scheme in the sampled phase encode coordinates exists; this struc-

ture might be described as “boxy spirals”. For non-integer values of c chosen in the

super-CIRCUS regime, the CIRCUS patterns are visibly less structured. Indeed, the

reader may visualize the increase in incoherence of the resulting CIRCUS patterns

as c changes through these three regimes, consistent with the results of Figure 4.2.

No such regimes were observed for varying b, consistent with the Tukey HSD post
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hoc analysis results of Figure 4.2 (top right panel). Figure 4.6 show the resultant

Figure 4.5: Change in structure of CIRCUS patterns (R = 10) prior to
rectangular pattern generation when c is taken in the sub-CIRCUS regime
(top row), the CIRCUS regime (middle row), and the super-CIRCUS
regime (bottom row). The values of c shown for the super-CIRCUS regime
are representative of the entire super-CIRCUS regime. The relative be-
haviour of each regime is consistent for all values of R. Similar regimes in
b were not observed.

CIRCUS structures for each of the three CIRCUS domains following the generation

of rectangular patterns, as described in section 2.3.4, from the square patterns shown

in Figure 4.5. While the distinct structures aren’t as obvious in the rectangular pat-

terns, the rectangular patterns in Figure 4.6 inherit aspects of the square patterns

shown in Figure 4.5 – hence the existence of the regimes we observed in the PSF in-

coherence. However it also becomes clear that through the generation of rectangular
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CIRCUS patterns, the difference in CIRCUS structures is reduced. This explains the

low range in PSF measures that we observed.

Figure 4.6: Change in structure of CIRCUS patterns (R = 10) following
the rectangular pattern generation when c is taken in the sub-CIRCUS
regime (top row), the CIRCUS regime (middle row), and the super-
CIRCUS regime (bottom row). The values of c shown for the super-
CIRCUS regime are representative of the entire super-CIRCUS regime.
The relative behaviour of each regime is consistent for all values of R.
Similar regimes in b were not observed.

These results only partially support hypothesis 2b. With regards to both the

coherence and incoherence measures of the CIRCUS PSFs, there were no preferential

regimes of b. With regards to the coherence of the PSF, a trend towards lower mean
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coherence with c > 1 is observed, but it is generally not statistically significant. With

regards to the PSF incoherence, maximal incoherence is achieved when c is selected

as a non-integral value in the super-CIRCUS regime of values (i.e. c ∈ R \ Z > 2).

This increase in PSF incoherence was not very large however, and was observed only

for R ≥ 6 with statistical significance. The results of Figure 4.1 and supporting

results in the form of Figure 4.2 would suggest that for c > 1 the resulting PSF

measures reach an overall average response to b and c compared to c < 1 across all

undersampling factors. To fully incorporate the effect of the spiral offset introduced

by c, and maintain uniform CIRCUS properties across different R, it is suggested

that c be chosen above the sub-CIRCUS regime of values, i.e. c > 1 (the reader is

again referred to Figure 4.5). While a marginal gain in PSF incoherence was observed

for c ∈ R \ Z > 2, this was not found to translate to significantly better IQM scores

(see section 4.4.4) and thus we make no recommendation to specifically operate in

the super-CIRCUS regime of c values.

4.5.3 Effect of b and c on IQM Scores

Similar to the PSF coherence and incoherence, the IQM scores all showed noticeably

different behaviour in the sub-CIRCUS regime of c values (e.g. Figure 4.3) and

reached a stable average response to b and c above the sub-CIRCUS regime of c

values. Regions of generally poorer IQM scores were often observed near b = 0

and c = 0, though the difference in mean IQM scores relative to larger values of b

and c were typically not statistically significant (e.g. Figure 4.4). Unlike the PSF

incoherence results, no regimes of consistently improved IQM scores existed for c

taken as a non-integral value in the super-CIRCUS regime. In fact, all of the IQMS

demonstrated a slightly higher sensitivity to changes in b, though even with changes

in b there are no statistically significant regimes of consistently improved IQM scores.

The only observations of note are a statistically insignificant trend towards improved

mean IQM scores for approximately b > 20 and a statistically insignificant trend

towards degraded mean IQM scores for approximately c > 1. The relative difference

in mean IQM scores under these trends is exceedingly small however. An explanation

of these trends can be obtained upon inspection of the IQM score results (e.g. Figure

4.3). The worst IQM scores occurred for b and c near zero, and some of the best IQM
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scores occurred for b > 0 with c < 1 (e.g. between b = 30 and b = 40 in Figure 4.3).

These extremes shift the mean IQM scores at fixed b or at fixed c in just such a way

as to demonstrate the statistically insignificant trends suggested in Figure 4.4. These

results only partially support hypothesis 3a. While the IQMs did achieve the most

uniform behaviour for approximately c > 1, the same as for the PSF measures, the

IQM scores were sporadically superior in the sub-CIRCUS regime.

An interesting case occurs when b = 0 and c = 0; the CIRCUS pattern generated

with this combination of parameters is similar to a radial sampling pattern. Our

results indicated that the worst objective image quality tended to occur when CIRCUS

parameters were chosen for such “radial-like” CIRCUS patterns (e.g. Figure 4.3,

where the nRMSE and GMSD were highest near b = 0 and c = 0 and the SSIM was

lowest for the same parameter selections). An explanation for this may be discerned

by examining Figure 4.7. Radial-like CIRCUS patterns are distinctly less random

than CIRCUS patterns incorporating the effects of non-zero b and c. Because CS-

MRI benefits from random undersampling of the k-space coefficients, it is expected

that non radial-like CIRCUS patterns will impart the most benefit to CS-MRI. In

terms of the PSF, it’s seen that the radial-like CIRCUS pattern exhibits lots of energy

in the side-lobes compared to non radial-like CIRCUS patterns. The non radial-like

CIRCUS patterns all exhibited relatively similar PSFs compared to the radial-like

CIRCUS pattern PSF, offering an explanation for why the radial-like CIRCUS pattern

consistently resulted in lower objective image quality.

The results of this section would suggest that all CIRCUS trajectories perform

more or less equivalently when c is chosen above the sub-CIRCUS regime. A “safe

zone” in parameter selection may be considered for c > 1, where CIRCUS performed

uniformly for all parameter choices and would be expected to perform uniformly

across different undersampling factors based on the results discussed in section 4.5.2.

Considering all these factors, our conclusion is that users should operate above the

sub-CIRCUS regime of c values (i.e. c > 1) in order to take advantage of the relative

stability of these regimes.
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Figure 4.7: “Radial-like” CIRCUS patterns (top left) exhibit a pattern
that is distinctly less random than CIRCUS patterns with non-zero b
and c (bottom left). CS theory prefers random sampling of k-space, thus
it is expected that the radial-like pattern will not perform as well. An
alternative viewpoint comes by inspecting the PSF, where a radial-like
CIRCUS pattern PSF (top right) exhibits more energy in the side lobes
compared to a CIRCUS pattern PSF with non-zero b and c (bottom right,
representative of many CIRCUS patterns).

4.5.4 Correlations Between IQM Scores and PSF Measures

No strong correlation, either linear correlation or rank correlation, was found between

any of the objective IQMs and the PSF coherence or incoherence of CIRCUS patterns

generated at a fixed undersampling factor. Hypothesis 3b is therefore rejected, and

neither the PSF coherence nor the PSF incoherence are recommended as quantitative

tools for selection of one CIRCUS pattern over another when considered at the same
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undersampling factor.

The lack of correlation between the PSF coherence and incoherence and each of

the five IQMs is likely a result of the fact that few significant differences existed in the

PSF coherences and incoherences and in the IQM scores; there was very little variation

in all of the values. It may therefore reasonably be concluded that all values of b and

c studied resulted in CIRCUS trajectories that did not differ appreciably in terms of

their objective CS-MRI performance, and so no correlations could emerge between

the objective performance of the CIRCUS trajectories in CS-MRI reconstructions and

their PSF measures.

4.6 Conclusions

In this section, we have investigated what range of CIRCUS b and c parameters

resulted in unique implementations of CIRCUS. We further investigated the coherence

and incoherence of CIRCUS trajectory PSFs at undersampling factors ranging from

2 to 12. Finally, we investigated CIRCUS trajectory performance as quantified by

objective IQMs at an undersampling factor of 10 and investigated the link between

PSF measures and the resulting objective IQM scores.

For typical selections of b and c, CIRCUS trajectories repeat only for two values of

c chosen in the subset c ∈ Z\ [0, 1]. This not only provides confidence that redundant

choices in CIRCUS trajectories will not be made, but opens avenues for future work

to investigate the implementation of several unique CIRCUS trajectories in dynamic

CS-MRI applications.

The mean PSF incoherence demonstrated statistically significant increases for

c ∈ R \ Z > 2 for R ≥ 6, though the relative increase in the PSF incoherence was

small. Both the PSF coherence and incoherence achieved an overall uniform response

to b and c for approximately c > 1 at all R studied, indicating that the most uniform

behaviour of the CIRCUS trajectories across undersampling factors will be expected

when c > 1 is chosen.

The objective IQMs did not demonstrate any statistically significant trends to-

wards improvement for any regimes of b and c, though were often observed to report

lowest image reconstruction quality for b and c chosen near zero. For parameters

chosen such that c > 1, the overall response of the IQMs were uniform. No significant
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correlation was found between the IQMs and the PSF coherence/incoherence mea-

sures at an undersampling factor of 10 due to the small range of the PSF measures

and the small range of the IQM scores. Thus the PSF is not recommended as a

method of selecting CIRCUS trajectory parameters for use at a given undersampling

factor. Given the uniform overall nature of the CIRCUS and super-CIRCUS regimes

of c with regards to objective IQM scores and the PSF measures observed at many

undersampling factors, it is recommended that CIRCUS parameters be chosen such

that c > 1.

The outcome of this chapter is a knowledge of CIRCUS trajectory implementa-

tions, with regards to the uniqueness of CIRCUS trajectories and selections of b and

c that will perform favourably on average across undersampling factors. Moving for-

ward with this knowledge, we are confident that any CIRCUS trajectory designed

with any selection of b and any c > 1 will not inherently limit the capabilities of

CS-MRI reconstructions, and will provide the most uniform performance as under-

sampling factor is adjusted.



Chapter 5

Quantitative Behaviour of IQMs in Static CS-MRI

5.1 Purpose of Investigation

The unofficial standard for quantifying image reconstruction quality in the field of

MRI is the root mean squared error (RMSE). This is in part due to the simple inter-

pretation of RMSE values, as well as the rapid speed and ease of implementation of

RMSE calculation. However, the RMSE has been found to correlate poorly with hu-

man perception of image quality [15]. We investigated the quantitative behaviours of

four alternative objective image quality metrics (IQMs) in static CS-MRI reconstruc-

tions, using pelvic image reconstructions as an exemplar anatomy, and included the

normalized RMSE (nRMSE) for comparison. The four alternative IQMs investigated

were the gradient magnitude similarity deviation (GMSD), the structural similarity

index (SSIM), the multi-scale SSIM (MS-SSIM), and the information-weighted SSIM

(IW-SSIM).

Study of the quantitative properties of the objective IQMs in static CS-MRI is

necessary to obtain foundational knowledge upon which their investigation in dy-

namic CS-MRI may begin. Towards this goal, we studied how the IQM scores varied

for CS-MRI reconstructions across 15 pelvic CS-MRI images, we investigated the

change in favoured sparse regularization weight for each IQM as R increased, and we

studied whether objective IQM scores implied unique image degradation properties.

In addition to informing the use of objective IQMs in dynamic CS-MRI applications,

the results of this chapter will serve as valuable knowledge for future work correlating

the IQM scores to radiologist subjective scoring and future work aiming to optimize

CS-MRI reconstruction parameters.

5.2 Hypotheses

We hypothesize the following:

88
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1. Objective IQM scores will be more consistent (i.e. less variation from the sample

mean) across patients for the four alternative IQMs than for the nRMSE, for

all sparsity regularizations.

2. For all five of the IQMs and for each sparsity regularization, the regularization

weight λ giving the best IQM score will increase monotonically (i.e. never

decrease, but may remain constant) as the undersampling factor R increases.

3. For any of the IQMs, image reconstructions with the same objective IQM

score will not possess degradations with the same visual properties when re-

constructed with different sparse regularizations.

5.3 Methods

5.3.1 Inter-Patient IQM Score Variability

The k-space of images from 15 pelvic MRI images were retrospectively undersampled

using CIRCUS patterns designed with b = 40 and c = 1.5 using a simulated 8

coil acquisition at undersampling factors R ranging from 1 to 12 in steps of 0.5.

The choice of b = 40 and c = 1.5 were made with the knowledge obtained via the

results of chapter 4. Separate CS reconstructions were performed with total variation

(TV), wavelet, and locally low rank (LLR) sparse regularizations using regularization

weights λ ranging from 0 to 0.05 in steps of 0.02. The quality of each reconstruction

was quantified by the five objective IQMs described in section 3.5. For each of the

sparse regularizations this generated 5 sets of 15 IQM score matrices, one matrix per

patient, which will be referred to as R-λ matrices.

The variation between the R-λ matrices calculated for a given sparsity regulariza-

tion and a given IQM was quantified by the normalized root mean squared distance

(RMSD) of the matrices from their sample mean, where normalization was done rel-

ative to the norm of the mean R-λ matrix. Larger RMSD implies larger variation of

the R-λ matrices from their mean, and hence larger inter-patient variability in the

IQM score results. The distance between matrices was quantified by the Frobenius
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norm. For a matrix A of size M ×N , the Frobenius norm ‖A‖F is given by:

‖A‖F =

√√√√ M∑
m=1

N∑
n=1

|am,n|2 (5.1)

5.3.2 Favourable Sparse Regularization Weights at Increased

Undersampling

For each undersampling factor R, corresponding to the rows of the R-λ matrices

described in section 5.3.1, the value of λ that gave the minimum RMSE and GMSD

were recorded and the value of λ that gave the maximum SSIM, MS-SSIM, and IW-

SSIM were recorded. This was repeated for all 15 patient R-λ matrices, for each IQM,

for each of the three sparse regularizations investigated.

5.3.3 Perceptual Equality of Degradations at Similar IQM Score

For each IQM, a metric score Q was selected. The R-λ matrices for a single patient

across each of the three sparse enforcements were then searched to determine which

combination of R and λ resulted in an image reconstruction with objective IQM score

nearest to Q. The value of R was not constrained in the search, and was allowed to

differ between the results for each sparsity enforcement as image reconstructions with

IQM score nearest to Q were sought. The goal was to investigate the visual properties

of CS-MRI image reconstructions possessing similar IQM scores, not to determine if

one sparsity enforcement was better able to maintain high IQM scores for a given

undersampling factor. The images were then visually compared by one graduate

student, looking only for high level perceptual differences.

5.4 Results

5.4.1 Inter-Patient IQM Score Variability

The R-λ matrices may be found in appendix C.1. For each combination of sparsity

enforcement and objective IQM, there were 15 R-λ matrices, resulting in 225 total

R-λ matrices.

Table 5.1 shows the nRMSD of the collection of R-λ matrices from their sample

means for each sparsity enforcement and each IQM. The GMSD was observed to have
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the highest inter-patient variation, followed by the nRMSE, and then the SSIM family

of metrics.

Table 5.1: nRMSD between image R-λ matrices and their sample mean, for CS-MRI
reconstructions with each of the three sparsity enforcements as evaluated by each of
the five objective IQMs.

nRMSE GMSD SSIM MS-SSIM IW-SSIM
TV 0.0796 0.1325 0.0194 0.0075 0.0115
W 0.1196 0.1817 0.0121 0.0038 0.0057
LLR 0.0767 0.1407 0.0167 0.0069 0.0107

5.4.2 Favourable Sparse Regularization Weights at Increased

Undersampling

The favourable λ value for CS-MRI image reconstruction with respect to each IQM

did not always increase monotonically with R. The R-λ matrices in appendix C.1

have favourable λ at each R marked with red diamonds for convenient visualization.

Table 5.2 summarizes instances when optimal λ for each IQM increased monotonically

with increasing R for each patient using a total variation (TV) sparsity enforcement

for the CS reconstruction. Table 5.3 and Table 5.4 summarize the same results for

wavelet and locally low rank (LLR) sparsity enforcements.
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Table 5.2: Indication of whether the favourable λ for each IQM increased monoton-
ically with increasing R for each CS-MRI image reconstruction using a TV sparsity
enforcement. Of the 75 cases, 23 saw favourable λ increase monotonically with R.

nRMSE GMSD SSIM MS-SSIM IW-SSIM
Patient 1 True False False False False
Patient 2 False False False False False
Patient 3 False False False False False
Patient 4 True False False False False
Patient 5 True False False False False
Patient 6 False False True True False
Patient 7 False False False False False
Patient 8 False False False False False
Patient 9 True True True True True
Patient 10 True False True True True
Patient 11 True False True True False
Patient 12 False False False False False
Patient 13 True False True True False
Patient 14 False False True True True
Patient 15 False False False False False

Table 5.3: Indication of whether the favourable λ for each image quality metric in-
creased monotonically with increasing R for each CS-MRI reconstruction using a
wavelet sparsity enforcement. Of the 75 cases, 50 saw favourable λ increase mono-
tonically with R.

nRMSE GMSD SSIM MS-SSIM IW-SSIM
Patient 1 True False True True True
Patient 2 True False True True False
Patient 3 False False False False False
Patient 4 True False False True True
Patient 5 True False True True True
Patient 6 True True True True True
Patient 7 True False False False False
Patient 8 True False True True True
Patient 9 True False True True True
Patient 10 True False True True False
Patient 11 True False True True True
Patient 12 True False False False False
Patient 13 True True True True True
Patient 14 True True True True True
Patient 15 True False True True True
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Table 5.4: Indication of whether the favourable λ for each IQM increased mono-
tonically with increasing R for each CS-MRI reconstruction using a LLR sparsity
enforcement. Of the 75 cases, 50 saw favourable λ increase monotonically with R.

nRMSE GMSD SSIM MS-SSIM IW-SSIM
Patient 1 True True True True True
Patient 2 True False True True True
Patient 3 False False False False False
Patient 4 True False True True True
Patient 5 True False True True True
Patient 6 True False True True True
Patient 7 False False True True True
Patient 8 False False False False False
Patient 9 True True True True True
Patient 10 True False True True True
Patient 11 True True True True True
Patient 12 False False True True True
Patient 13 True False True True True
Patient 14 True True True True True
Patient 15 False False False False False

5.4.3 Similar IQM Scores and Perceptual Equality

Visual properties of image reconstructions using different sparsity enforcements, though

possessing similar objective IQM scores, were noticeably different even to a non-expert

observer. Figure 5.1 shows exemplar results of reconstructions using each of the three

sparsity transformations that have similar IW-SSIM scores. Though all of the recon-

structed images shown in Figure 5.1 have similar IW-SSIM score, the visual properties

between the images are noticeably different. Reconstruction using a wavelet sparsity

enforcement showed more of a “grainy” degradation than reconstructions using a

TV or an LLR sparsity enforcement, which produced images that appeared to have

more of a “blurred” degradation. This trend was common to other patient image

reconstructions and to the other IQMs.
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Figure 5.1: Example CS-MRI image reconstructions with similar IW-
SSIM score using each of the three sparsity enforcements. Reconstruction
using a wavelet sparsity enforcement showed noticeably different artifacts
than TV or LLR transforms, despite having similar IW-SSIM score.

5.5 Discussion

5.5.1 Inter-Patient IQM Score Variability

It was hypothesized that IQM scores produced by the GMSD, SSIM, MS-SSIM

and IW-SSIM would have less variance between patient image reconstructions than

nRMSE scores. This hypothesis was motivated by the design of each of the alternative

IQMs. The GMSD quantifies loss of image quality based on findings that the gradient

of an image can capture local image structure, and on the assumption that the global

variation of local image structure degradation can reflect the degradation of overall

image quality. The SSIM family of IQMs all assume that the human visual system

(HVS) is highly adapted for extraction of structural features in the image domain;

the MS-SSIM includes extra consideration of the sensitive of the HVS to distortions
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of different scales, while the IW-SSIM further includes consideration of the ability

of the HVS to extract statistical information from the image. The RMSE does not

consider any of these factors, and has been found to be sensitive to properties of im-

age artifacts that might otherwise be imperceptible to a human observer [15]. As the

undersampling of k-space increased it was anticipated that the structural degradation

in the image reconstructions through incoherent aliases would be uniform across pa-

tients compared to the pixel-wise introduction of error across patients, and thus that

the four alternative IQMs would show more uniform scoring between patient image

reconstructions than the nRMSE at each combination of R and λ.

Analyzing the distribution of R-λ matrices produced with each sparsity enforce-

ment and each IQM via the nRMSD from the corresponding sample mean showed

that the GMSD had highest relative variance between patient images, followed by

the nRMSE and then the SSIM IQM family. The relative similarity between R-λ

matrices for each IQM may also be inferred through careful observation of Figures

C.1 through C.15 in appendix C.1. These results partially support hypothesis 1, with

the notable exception that the GMSD showed higher inter-patient variability than

the RMSE.

The low variance between SSIM, MS-SSIM and IW-SSIM metric scores across each

of the 15 patient images studied at different combinations of undersampling, sparsity

enforcement, and regularization weight suggests that these IQMs may have utility in

predicting image properties in a larger setting. Assuming that the underlying hypoth-

esis of the SSIM family of IQMs is accurate (i.e. that they all quantify degradation

to image structure that is salient to the HVS), low variability of these IQMs patient

image reconstructions implies that a quantifiable loss of structure can potentially be

predicted for a given set of image reconstruction conditions. This implication can be

taken even further and a hypothesis made that CS-MRI introduces a common class

of structural distortions to all patient images that may be statistically modelled. The

statistics of this structural distortion model could be studied and used to design a

CS-MRI specific no-reference IQM. There is therefore two avenues for future work

that may be taken with regards to the SSIM, MS-SSIM and IW-SSIM:

1. Correlate the SSIM, MS-SSIM, and IW-SSIM scores with radiologist subjective

scoring of the quality of CS-MRI image reconstructions. Only then can the
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assumption that each of these three IQMs is responding to perceptually relevant

structural degradations be validated.

2. Motivated by the low inter-patient variance in IQM scores, a statistical model

of CS-MRI structural distortion may be proposed and investigated. Knowledge

of the statistical changes in image properties under the effect of CS-MRI could

permit the construction of a CS-MRI specific no-reference IQM.

Contrary to hypothesis 1, the GMSD scores showed higher variance between pa-

tients than the nRMSE. Inspection of Figures C.4 to C.6 show that much of the

variance is attributable to differences in GMSD scores across patients at higher val-

ues of R and λ for all three sparsity enforcements. The introduction of incoherent

aliasing artifacts is dependent on the content of the sampled k-space data and can

appear very much like an additive noise structure, especially at high undersampling

factors. Increased regularization weight further manipulates the properties of the

reconstructed image and the appearance of the incoherent aliasing artifacts. The

image gradient domain has been found to be very sensitive to the introduction of

noise [34]. Highly incoherent aliasing artifacts approximately appear like an additive

noise structure; it is thus not unreasonable that image-dependent artifacts which are

known to invoke a sensitive response in the gradient of an image cause wider variation

in GMSD scores across different images. Furthermore the GMSD evaluates gradient

similarity on a voxel-by-voxel basis and considers nearby image structure only during

generation of the gradient maps. In this respect, the GMSD is similar to the RMSE

in that it is effectively blind to the local structure of the domain within which it oper-

ates. The sensitive nature of the GMSD with respect to noiselike artifacts, combined

with its lack of awareness of the nearby voxels during local quality calculation in

the gradient similarity map, make the GMSD less consistent between patient image

reconstructions.

The fact that the SSIM, MS-SSIM and IW-SSIM show lower inter-patient vari-

ability than the GMSD suggests that the effect of CS-MRI on the voxel-wise gradient

magnitude of the image is more dependent on the content of the image than is the

effect on perceived image structural content. Future work must still determine the

ability of the GMSD to correlate with radiologist perception, though the GMSD will

not possess the same reliability as the SSIM family of IQMs in predicting a common
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loss of image structure between patient images. If the GMSD is found to correlate

well with radiologist perception, however, its advantage over the SSIM family of IQMs

comes through significantly faster execution time due to its relative computational

simplicity (i.e. fewer local window calculations). For example, whereas the SSIM

takes on the order of 16 seconds to evaluate a 3D image, the GMSD takes on the

order of 0.4 seconds. The gradient-based SSIM [45] may also be investigated in the

future as an alternative to the GMSD for a gradient-based image quality metric with

low inter-patient variability, although presumably at a higher computational cost

compared to the GMSD.

With regards to quantitative dynamic CS-MRI applications, objective IQMs with

lower inter-patient variability will allow for more consistent predictive capabilities.

If correlations between quantitative mapping accuracy and objective IQM scores are

found to exist, determining objective IQM score thresholds for a desired quantitative

mapping accuracy will be more tractable if the IQM scores are relatively consistent

across patient image reconstructions. The results of this section would thus suggest

that the SSIM family of objective IQMs may provide better performance in predicting

quantitative mapping performance in dynamic applications across a wide range of

patients.

In the pursuit of expediency, the objective IQMs are intended to be applied in

analysing images a whole. This saves the time of having to manually select a region

of the images for objective quality analysis. However, a radiologist may desire to

assess the objective quality of a smaller subset of the image (e.g. the prostate in

a pelvic MRI acquisition), since they may be concerned primarily with the quality

of the image within the specified subset. We predict that the relative inter-patient

variabilities of the objective IQMs we’ve observed when analysing an entire MRI

image would similarly exist if only a subset of the image were analysed. In a broad

sense, the pelvic MRI images we studied are all quite similar; patients may roughly

be approximated as equivalent, all containing very similar anatomical features. This

is true of a 3D pelvic image, as well as for a 3D prostate image. Additionally, the

incoherent distortions present in CS-MRI are roughly uniformly distributed through

the reconstructed images. Given that patient anatomies are roughly consistent when



98

analysis similar portions of the body, and that the distortions introduced by CS-

MRI are roughly uniformly distributed throughout the reconstructed images, we do

not anticipate significant changes in the observed inter-patient variability of the the

objective IQMs if future work investigated the effects of selecting only a subset of an

image for objective image quality assessment.

Limitations of our analysis must be addressed. In assessing the inter-patient vari-

ability of the objective IQMs under similar reconstruction conditions, we assumed

that some semblance of the MRI images were discernible (i.e. that we were not

including what amounted to pure incoherent aliasing artifacts in our analysis) and

that no unexpected distortions were present in the image reconstructions. In the

former case, the accidental inclusion of image reconstructions that had no obvious

anatomical image content would bias the results, since objective IQM scores would

be calculated by comparing the reference image to what is effectively random noise.

Visual inspection of a random selection of image reconstructions confirmed that this

did not occur. In the latter case, the presence of consistent erroneous artifacts (i.e.

artifacts that arising from mistakes during data acquisition or image reconstruction,

as opposed to the artifacts expected to remain from reconstruction of undersampled

data) may affect the inter-patient variability of the objective IQM scores. For exam-

ple, in the trivial case that all image reconstructions were made exactly equivalent

to one another the objective IQM scores would have been identical and the RMSD

results reported in section 5.4.1 would indicate no difference in the inter-patient vari-

ability of the IQMs. Visual inspection of a random selection of image reconstructions

confirmed that no trivial errors in image reconstruction occurred.

Our analysis may also be susceptible to consistent erroneous artifacts that aren’t

reflective of true CS-MRI image reconstruction artifacts. For example, by artificially

zeroing a subsection measuring 40 × 40 × 6 voxels in the center of each of the 15

patient MRI images, we similarly find the the SSIM family of IQMs demonstrate

lower relative inter-patient variability than either the RMSE or the GMSD. This may

be problematic given that a loss of the central features of the image may render the

data diagnostically useless, and hence knowledge of the relative variability of the IQMs

useless. Thus observer intervention is still required intermittently to ensure that the

image reconstruction pipeline is performing as expected, and that the image artifacts
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being assessed with objective IQMs are reflective of the anticipated reconstruction

process.

5.5.2 Favourable Sparse Regularization Weights at Increased

Undersampling

Favourable regularization weights in past studies have typically been chosen empiri-

cally, usually by method of a radiologist observing several image reconstructions and

choosing the value of λ that resulted in the best perceptual image quality at a sin-

gle undersampling factor. It has often been assumed that the regularization weight

should increase as undersampling increases to offset the introduction of increasingly

severe incoherent aliasing artifacts. For example, Feng et. al. [26] have suggested that

after a reference regularization weight λref is established at a reference undersam-

pling factor Rref by an experienced radiologist, the value of λ to be used for other

undersampling factors should vary proportionally with the change in R:

λ ∝
(

R

Rref

)
λref (5.2)

It should be noted that Feng et. al. do acknowledge that equation 5.2 is only a rough

guideline. Nonetheless, it is demonstrative of the assumptions that must be made in

CS-MRI without an objective method for tuning the CS reconstruction parameters.

Contrary to hypothesis 2, and to assumptions frequently made in CS-MRI, our

results indicated that the favourable λ with respect to each IQM does not neces-

sarily increase monotonically with increasing R. This holds true for all five of the

IQMs studied and for each of the three sparsity enforcements (see Tables 5.2 to 5.4).

For some patients a monotonic increase in preferential λ is observed as R increases,

whereas for others it is not. We chose this strict analysis as a means of verifying the

assumptions that are commonly made in CS-MRI, though an argument can be made

that a “tolerance” should be allowed when discussing whether or not a given patient

saw monotonic increase in preferential λ as R increased. For example, patient 4 in

Figure C.8 did not technically exhibit a monotonic increase in preferential λ with

increasing R, though the increase in λ was roughly monotonic with R. However, we

still observed that some patient image reconstructions distinctly broke from the as-

sumption of monotonically increasing λ as R increased (e.g. patient 3 in Figure C.8),
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providing confidence in our rejection of hypothesis 2. It should also be noted that

some patient results in the figures shown in section C.1 demonstrated a “saturation”

in preferential λ at higher R values (i.e. the red diamonds all stick to the maximum

value of λ studied past a certain value of R, such as in patient 12 in Figure C.8).

This is likely an artifact of the discrete selection of λ values we were forced to make,

and finer sampling of λ values or extended range in λ values would aid in further

distinguishing the favourable λ for the affected patient R − λ matrices. Due to the

fact that many patients do not exhibit this saturation in favourable λ, we expect

similar results regarding monotonicity to hold.

These results underline the need for an objective predictor of image quality that

has been well characterized. It is unlikely that a value of λ found to be favourable

for the reconstruction of CS-MRI images for one patient should be used for the CS-

MRI image reconstruction of all other patient images, especially if the sparse en-

forcement used is changed. However, the time required to bring in radiologists for

the perception-based determination of an appropriate λ on a patient-by-patient basis

and for difference sparse enforcement methods is infeasible. Future work correlating

these IQMs with radiologist subjective scoring could, if good correlation is found,

provide tools that allow for the expedient selection of favourable CS reconstruction

parameters on a patient-by-patient basis.

Knowledge that favourable regularization weight does not necessarily increase

monotonically with increased R also benefits quantitative dynamic MRI, where as-

sumptions along the lines of equation 5.2 would otherwise similarly be applied in

reconstructing the dynamic image series. The compromise between image quality

and temporal resolution is made more efficient through the selection of favourable

CS reconstruction parameters. With knowledge that larger R does not necessarily

require larger λ, dynamic image series may be reconstructed with higher objective

quality at a given temporal resolution, on a patient-by-patient basis. Future work

that correlates the objective IQM scores with radiologist subjective scores with thus

aid quantitative dynamic CS-MRI.
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5.5.3 Similar IQM Scores and Perceptual Equality

One of the main advantages of each of the GMSD, SSIM, MS-SSIM, and IW-SSIM

is that they are distortion nonspecific; they are designed to capture a wide range of

common distortions and quantify the perceptual impact of those distortions. However,

this means that similar IQM scores can be obtained for distorted images that are

noticeably different in visual properties.

The visual properties of CS-MRI image reconstructions are dependent upon the

nature of the sparse enforcement used. Figure 5.1 shows representative results ob-

tained with each of the three sparsifying transforms having similar IW-SSIM score.

For all five IQMs it was observed that although the image reconstructions had simi-

lar IQM score, image reconstructions using a wavelet sparsity enforcement appeared

to possess a “grainy” degradation not present when reconstructions were made with

either the TV or the LLR sparsity enforcement. The wavelet sparsity enforcement

seemed to result in images with less of a blurred quality to them however. These

results demonstrate that future studies of the correlation of objective IQM scores and

subjective radiologist scores must consider the sparsifying transform(s) used for CS-

MRI reconstructions. The IQMs may be found to correlate better with radiologist

perception under certain classes of sparsifying transforms than under others, and cer-

tain combinations of sparsifying transforms may be found to complement each other

in a way that drastically improves perceptual quality of the image reconstructions.

For example, Figure 5.1 might suggest pairing a wavelet sparsity enforcement with

a mild TV sparsity enforcement to remove the “grainy” aspect of the reconstruction

while taking advantage of any potentially desirable qualities of a wavelet transform.

Indeed, this combination is frequently seen in the CS-MRI literature. Characteri-

zation of objective IQMs can provide a quantitative means of justifying such sparse

enforcement combinations.

It is worth considering whether this phenomena would be observed if a subset

of an MRI image is selected to be analysed for objective image quality. The arti-

facts present in CS-MRI images with equivalent IQM scores are characteristic of the

sparsity enforcement used, and thus a similar behaviour would be observed even if

assessing only a subset of the images. For example, if objective IQM scores were
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calculated only for the prostate portion of a pelvic MRI image using the total varia-

tion, wavelet, and locally low rank sparsity enforcements in a CS-MRI reconstruction,

prostate images that had the same objective IQM scores would still demonstrate ar-

tifacts with qualities characteristic of the sparsity enforcement used (e.g. wavelet

sparsity enforcements would still impart a “grainy” quality to the image). Thus fu-

ture work must be concerned with the potential impacts of CS-MRI based artifacts

that might remain in a region of interest.

These results may also pertain to quantitative dynamic MRI outcomes. Although

the enforcement of different sparsity enforcements in CS-MRI reconstructions may

result in images with equivalent IQM scores, the degradations present in the images

may prove worse for some sparsity enforcements than for others. For example, refer-

ring again to Figure 5.1, enforcement of only a spatial wavelet enforcement during

CS-MRI reconstruction of dynamic MRI data may introduce too much noise to the

extracted time series and degrade the accuracy of the quantitative mapping relative to

a combination of sparsity enforcements. The development of a no-reference CS-MRI

specific IQM, as discussed in section 5.5.1, may aid in distinguishing the presence of

distortions that would otherwise be deemed equivalent by IQMs such as the SSIM

family.

5.6 Conclusions

Our goal in this section was to study the quantitative properties of the RMSE and

four alternative objective IQMs in order to obtain foundational knowledge that can

inform the application of objective IQMs to quantitative dynamic CS-MRI. Addition-

ally, we intended to provide a base from which future work investigating correlations

between objective IQM scores with subjective radiologist scores may draw. To ac-

complish this we have characterized the inter-patient variability of scores from each

IQM, assessed the change in favourable sparse regularization weight of each IQM, and

studied whether similar objective IQM scores imply unique image degradations

We demonstrated that the SSIM, MS-SSIM and IW-SSIM show lower relative

inter-patient variability across a wide range of undersampling factors and sparsity

regularization weights compared to the RMSE, and that the GMSD shows higher

inter-patient variability under the same circumstances. This motivates future work
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seeking common structural degradations induced by CS-MRI, the properties of which

may allow development of a CS-MRI specific no-reference IQM. The low inter-patient

variability of the SSIM family of IQMs would also suggest that the SSIM family of

IQMs may provide better performance in predicting quantitative mapping perfor-

mance in dynamic applications across many patients, due to less variability in any

thresholds that future work may establish.

We demonstrated that, contrary to assumptions often made in the field of CS-

MRI, it may not be appropriate to increase the sparse regularization weight mono-

tonically with increasing undersampling factor. This is demonstrates the need for

future work correlating objective IQM scores with radiologist subjective scoring, so

that an objective tool for choosing favourable CS reconstruction parameters may be

implemented. Such knowledge would also benefit quantitative dynamic MRI. The

compromise between image quality and temporal resolution is made more efficient

through the selection of favourable CS reconstruction parameters, obtaining higher

image quality for a given undersampling factor.

Finally, we found that the properties of the degradations of images with similar

objective IQM scores are not necessarily equivalent, and depend on the sparsity en-

forcement used during CS reconstruction. Although the IQMs may report equivalent

scores, the degradations present under the enforcement of different sparsity enforce-

ments may be found to affect the accuracy of quantitative dynamic MRI techniques

in different ways. The development of a no-reference CS-MRI specific IQM may aid in

distinguishing the presence of distortions that would otherwise be deemed equivalent

by IQMs such as the SSIM family, which in turn may assist in improving the accuracy

of quantitative mapping techniques.

The outcome of this chapter has been the development of foundational knowledge

necessary to motivate future studies of objective IQMs in CS-MRI, as well as to assist

in the implementation of objective IQMs in characterizing quantitative dynamic MRI

techniques.



Chapter 6

Simulations of a Temporally Dynamic Synthetic Phantom

6.1 Purpose of Investigation

As advancements in MRI image reconstruction techniques, such as compressed sensing

(CS), begin to permit greater temporal resolutions while maintaining higher image

quality compared to conventional techniques, the potential for accurate quantitative

dynamic MRI applications is growing. Methods for characterizing the accuracy of

these quantitative dynamic techniques are currently lacking however. We propose that

objective image quality metrics (IQMs) have utility in characterizing the accuracy of

quantitative dynamic MRI.

As an exemplar of a dynamic application with quantitative mapping capabilities,

we chose to design a simulation investigating a simple dynamic contrast enhancing

synthetic phantom. The synthetic phantom contains features that evolve dynamically

in intensity according to simple, closed-form models. With knowledge of “ground

truth” quantitative parameters describing the dynamic evolution of the synthetic

phantom features, we may investigate the correlations between objective IQM scores

and quantitative parameter recovery accuracy. In this chapter we present a series

of results from simple simulations that validate the expected performance of our

simulation framework, allowing it to serve as a valuable tool for future work. We also

demonstrate evidence of correlations between objective IQM scores and quantitative

parameter recovery accuracy.

In this chapter we present three simple experiments. We begin by investigating

the changing regularization needs for obtaining the most favourable objective image

quality at increasing undersampling factors, comparing the results broadly to trends

observed in chapter 5 to validate the behaviour of the simulation framework against

data obtained from actual MRI image data. We then assess how changes in under-

sampling factor affect the recovery accuracy for quantitative parameters, demonstrate

that the simulation framework may assess the sparse regularization needs for most

104
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favourable quantitative mapping accuracy, and assess whether feature size affects the

accuracy of quantitative parameter recovery accuracy. Finally, we investigate the

correlations between objective IQM scores and the accuracy of recovered quantitative

parameters under simple, well understood conditions. These simple conditions are

meant to emphasize the affect of image quality, as opposed to temporal resolution,

on the accuracy of quantitative mapping.

The goals of this chapter were to validate the simulation framework as a function-

ing tool for future work and to demonstrate proof of concept evidence of correlations

between objective IQM scores and the accuracy of quantitative mapping in dynamic

CS-MRI. These results are intended to serve as a proof of concept to motivate novel

research into characterizing the accuracy of quantitative mapping in dynamic CS-

MRI. Additionally, our intention was to validate the performance of our simulation

framework under simple conditions, such that future work may use it as a tool for

extensive investigation of correlations between quantitative mapping accuracy and

objective IQM scores.

6.2 Hypotheses

We hypothesize the following results from our simple set of simulations:

1. Sparse regularization of fully sampled k-space data will always degrade image

quality. Evidence of changing CS-MRI regularization needs for favourable im-

age reconstruction performance, as quantified by objective IQMs, will exist as

undersampling factor increases.

2. With regards to the accuracy of recovered quantitative parameters:

(a) Recovered quantitative parameters related to the scale of the temporal

evolution (e.g. the initial magnitude of an exponential decay) will show

larger percent error than recovered quantitative parameters related to the

rate of temporal evolution (e.g. the decay constant of an exponential

decay) as undersampling factor increases.

(b) The accuracy of recovered quantitative parameters in smaller features will

not be significantly worse than the accuracy of quantitative parameters

recovered in larger features.



106

3. There will evidence of correlations between quantitative parameter recovery

accuracy and image quality as quantified by objective IQMs.

6.3 Methods

To validate the performance of our newly developed simulation framework, as well

as to seek preliminary evidence of correlations between objective IQM scores and

quantitative mapping accuracy, we have designed and carried out three experiments.

All of the following simulations were performed with noiseless “snapshot sampling” of

the simulated k-space data of a temporally evolving synthetic phantom using a single

uniform coil (see section 6.3.1), enforcing a spatial wavelet sparsity regularization

during the CS reconstructions. While the simulation framework is capable of a more

detailed set of simulations, these simple conditions allow a confident validation of

the simulation framework performance while still allowing proof of concept results

that objective IQMs can characterize quantitative dynamic MRI performance. Use

of snapshot sampling at fixed temporal resolution will emphasize the effect of image

quality on quantitative mapping performance.

6.3.1 Simulation Summary

A more detailed overview of the simulation framework may be found in appendix D.1.

We present a brief summary of the relevant pieces of the simulation framework in this

section.

The simulation framework incorporates a synthetic phantom containing a series

of embedded features that evolve dynamically in time. The features, pictured in

Figure 6.1, include three planes of embedded cylindrical features and two planes of

“pin grids”. For the purposes of this thesis, we made use of two sets of embedded

cylindrical features with decreasing diameters, measuring 19, 15, 11 and 7 voxels

across. One set of embedded cylindrical features decayed exponentially in intensity

while another oscillated sinusoidally over time. The models describing the change in

feature intensity over time for the exponentially decaying features and the sinusoidally

evolving features are given by equations 6.1 and 6.2 respectively, where I(t) is the
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Figure 6.1: A 3D rendering of the features in the synthetic phantom.
These features sit inside a rectangular phantom body.

signal intensity at time t and A,B,C, and D are user specified model parameters.

I(t) = Ae−t/B + C (6.1)

I(t) = A sin

(
2π

B
[t− C]

)
+D (6.2)

We chose to implement “snaphot sampling” of k-space. As opposed to a realistic

k-space acquisition which samples a new frequency encoding line every TR seconds,

snapshot sampling assumes that the entire k-space sampling trajectory is sampled

instantaneously (i.e. TR = 0 seconds) at each point in time and allows for a user

specified lag between snapshot samples to allow the synthetic phantom to evolve

in intensity. We implemented snapshot sampling of CIRCUS trajectories designed

with b = 40 and c = 1.5, and a lag between snapshot samples of 4 seconds. The

choice of b = 40 and c = 1.5 was motivated by the results of chapter 4. Although

it is not entirely reflective of the compromise that must occur between temporal

resolution and the amount of k-space data acquired, we chose to maintain a 4 second

temporal lag at all R in order to demonstrate the fundamental relationship between

image quality (as quantified by objective IQMs) and quantitative parameter recovery

accuracy, as well as to validate the simulation framework under simple conditions. CS-

MRI reconstructions were performed using each of the acquired CIRCUS trajectories.
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At each simulated image reconstruction time, the IQM scores between the CS-

MRI reconstructions and the corresponding true phantom image were calculated.

The mean and standard deviation of each IQM score over time in each simulation

were calculated for reporting of results in this chapter.

To perform quantitative mapping, time series were extracted on a voxel-by-voxel

basis for each set of features across all of the reconstructed images. Least-squares

fitting of the models in equations 6.1 and 6.2 to each extracted time course were

performed for the appropriate features, recovering quantitative model parameters

whose accuracy could be assessed against knowledge of “ground truth”.

6.3.2 Effect of Undersampling on Favourable Sparse Regularization

Weight

The first experiment demonstrates the ability of the simulation framework to study

the changing favourable sparse regularization weight required to obtain relatively high

objective image quality as undersampling factor increases. By utilizing snapshot sam-

pling of k-space, we may temporarily ignore the temporal evolution of the phantom

features and effectively approximate the snapshot sampled k-space data as a series of

static k-space acquisitions for a sample population of phantoms. In this case, we may

study the variance in the observed IQM scores and the behaviour of the mean IQM

scores as regularization weight and k-space undersampling both vary. This allows

broad comparison between any observed simulation trends and the results presented

in chapter 5.

A temporally evolving synthetic phantom measuring 200 × 200 × 32 voxels was

sampled via snapshot sampling of k-space, as described in section 6.3.1. This was

performed for undersampling factors of R = 1, 1.5, 2, 3, 5, 8 and 12. CS-MRI recon-

structions enforced a spatial wavelet regularization with regularization weights of λ

= 0, 0.00125, 0.0025, 0.00375, 0.005, 0.01, 0.0150, 0.02, 0.025, 0.03, 0.04, and 0.05.

Objective IQM scores were calculated as described in section 6.3.1.

6.3.3 Accuracy of Recovered Quantitative Parameters

Simulations were carried out as described in section 6.3.2. By considering the tempo-

ral evolution of the features of the synthetic phantom, as opposed to approximating
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them as a series of static phantom images, we may perform quantitative mapping

to recover the model parameters describing the temporal evolution of the features.

Quantitative parameters were recovered via voxel-by-voxel least squares fitting, as

described in section 6.3.1. Results are presented for the magnitude and time related

parameters of each model (i.e. initial magnitude and decay constant for the expo-

nentially decaying features, and amplitude and period for the sinusoidally oscillating

features), since the offset parameters C and D in equations 6.1 and 6.2 serve pri-

marily to afford the fitting algorithm a measure of freedom. A set of exponentially

decaying embedded cylindrical features with an initial intensity of 0.9(215) arbitrary

units and a decay constant of 80 seconds, and a set of sinusoidally evolving features

with an amplitude of 0.8(215) and a period of 80 seconds, were chosen for analysis.

The diameters of the embedded cylindrical features in each set were 19, 15, 11, and

7 voxels. Total simulated time length was 400 seconds.

6.3.4 Correlations Between Objective IQMs and Quantitative Mapping

Accuracy

Correlations between the objective IQM scores calculated from the results of section

6.3.2 and the error in recovered quantitative parameters from the results of section

6.3.3 were calculated. Pearson linear correlation coefficients and Spearman rank cor-

relation coefficients were calculated.

6.4 Results

6.4.1 Effect of Undersampling on Favourable Regularization Weight

Figure 6.2 shows the effect of increased undersampling factor on the favourable reg-

ularization weights for best objective image reconstruction quality, as quantified by

each of the objective IQMs. Plotted are the mean IQM scores for an entire simulation,

with standard deviations (i.e. each plotted point in Figure 6.2 represents the average

IQM score across a single dynamic simulation).

All IQMs indicated a very slight reduction in image quality for regularization

of fully sampled data. As undersampling factor increased, all of the IQMs began

to demonstrate a preference for nonzero regularization weight; within the standard
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deviation of the IQM scores, the preference towards increased regularization weight is

not always significant. At the highest undersampling factors studied, all IQMs show

less sensitive response to changes in regularization weight. Noteably, the GMSD

indicates that low regularization weight may be preferential at high undersampling

factors.

The SSIM family of IQMs all exhibited lower variance relative to mean scores than

did the nRMSE or the GMSD.
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Figure 6.2: Changing regularization needs for favourable objective image
quality at increasing undersampling factors.
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6.4.2 Accuracy of Recovered Quantitative Parameters

Figure 6.3 shows the accuracy in recovered quantitative parameters for an exponen-

tially decaying set of embedded cylindrical features. Figure 6.4 shows the accuracy in

recovered quantitative parameters for a sinusoidally evolving set of embedded cylin-

drical features. Both plots show mean quantitative parameter accuracies across each

feature, with standard deviations. For the 7, 9, 11, and 19 voxel diameter cylindrical

features studied, there were 111, 267, 531, and 879 constituent voxels per feature

respectively.

For both the exponentially decaying and sinusoidally oscillating features, scale-

related parameters showed tendency towards larger error as undersampling factor

increased. Evidence of favourable regularization weight for best mean quantitative

mapping performance was observed for both scale and temporal evolution parameters,

in both the exponentially decaying and sinusoidally evolving models.

Within the bounds of variance, the size of the features was not observed to make

a significant difference in the accuracy of the recovered quantitative parameters.

A full representation of the change in quantitative parameter accuracy across all

undersampling factors studied may be found in appendix D.2. Figure 6.3 and Figure

6.4 drew example results from the matrices presented in appendix D.2.
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Figure 6.3: Effect of regularization weight on the error in recovered ex-
ponential parameters for embedded cylindrical features with decreasing
diameter (measured in voxels) as undersampling factor and regularization
weight increases.
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Figure 6.4: Effect of regularization weight on the error in recovered si-
nusoidal parameters for embedded cylindrical features with decreasing
diameter (measured in voxels) as undersampling factor and regularization
weight increases.
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6.4.3 Correlations Between Objective IQMs and Quantitative Mapping

Accuracy

Figure 6.5 demonstrates the relationship between the accuracy of recovered exponen-

tial model parameters and the RMSE, GMSD and SSIM. Figure 6.6 demonstrates

the same for the sinusoidal model parameters. Results for the MS-SSIM and the

IW-SSIM may be found in the appendix.

Figure 6.5: Correlation between RMSE, GMSD, and SSIM scores and the
accuracy of recovered parameters from exponentially decaying features.

For both the exponentially decaying and the sinusoidally varying features, statis-

tically significant correlations (p < 0.05 for both Pearson and Spearman correlations)

were observed between the accuracy in recovered scale related parameters and the
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Figure 6.6: Correlation between RMSE, GMSD, and SSIM scores and the
accuracy of recovered parameters from sinusoidally varying features.

objective IQM scores. Correlations between accuracy in parameters related to rate

of temporal evolution and the IQM scores were statistically significant only for the

sinusoidally varying features.

6.5 Discussion

6.5.1 Effect of Undersampling on Favourable Sparse Regularization

Weight

Figure 6.2 demonstrates the capability of the simulation framework in studying the

effects of undersampling on image quality in dynamic CS-MRI applications, and lend
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support for hypothesis 1. As a performance check, simulations with fully sampled

k-space (i.e. an undersampling factor of 1) were acquired and subjected to increasing

sparse regularization weight. As would be expected, there was a slight degradation in

image quality as regularization weight increased, indicated by marginal increases in

the RMSE and the GMSD and marginal decreases in the SSIM, MS-SSIM and IW-

SSIM. Enforcing sparsity on otherwise fully sampled data results in minor artifacts

characteristic to the sparsifying transform; Figure 6.7 shows the effects of wavelet

sparsity enforcement on an image with fully sampled k-space data. Through loss

of high detail wavelet coefficients there are distortions at feature boundaries, and

through an overall loss of power in the wavelet representation there are intensity

reductions in the smooth regions of the image. This is a result of CS trying to “de-

noise” the fully sampled data in the absence of any incoherent aliasing. In particular,

over-regularization of the data in this way causes a reduction of some of the wavelet

coefficients through the use of the �1-norm in the CS-MRI reconstruction algorithm

(equation 2.44), which in turn causes the observed compression artifacts.

Figure 6.7: Enforcing sparsity in the wavelet domain when a complete
representation of the image data is acquired results in compression of the
image. Loss of high frequency wavelet coefficients results in boundary
artefacts, while overall loss of power in the wavelet coefficients results in
loss of signal intensity throughout smooth regions of the image.

As undersampling factor increases, the objective IQMs begin to report different

trends in objective image quality. In particular, the SSIM family of IQMs suggests
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that image quality becomes distinctly worse as undersampling factor and regular-

ization weight increase, whereas the GMSD would suggest that image reconstruction

quality reaches the worst performance for roughly five-times undersampling of k-space.

Within the SSIM family of IQMs, the SSIM suggests that appropriate choice of spar-

sity enforcement at a higher undersampling factor may return better image quality

on average than no regularization at a lower undersampling factor (e.g. R = 5 and

R = 3), whereas the MS-SSIM and IW-SSIM would suggest that the ability of CS to

recover image quality is not as high for these same conditions. Such considerations

may be useful when considering which IQM to use in future work.

It is instructive to broadly compare the results shown in section 6.4.1 with the

results of chapter 5. While exact equivalence in the results cannot be expected, given

the artificial nature of our synthetic phantom, validation of the simulation framework

as a tool for assessing CS-MRI requires that similar trends be observed between sim-

ulation results and trends observed in real MRI data. It was observed that simulated

reconstructions had less relative variance in the SSIM, MS-SSIM, and IW-SSIM com-

pared to the RMSE or the GMSD scores. This is similar to the results observed in

chapter 5, where the SSIM family of IQMs had lower inter-patient variability than

the GMSD or the RMSE for the same image reconstruction conditions. Additionally,

the SSIM family of IQMs showed a distinct loss of objective image quality as the

undersampling factor increased (i.e. no overlap of the resultant IQM score curves

within the bounds of variance). This may suggest that a distinct type of structural

distortion is being imposed on the image space using CS-MRI, to which the SSIM

family of IQMs is more sensitive. This result parallels our conclusion made in chapter

5. Thus, the simulation framework exhibits trends that are similar to those observed

in real MRI images in chapter 5.

As undersampling of the k-space data increases, regularization of the image re-

construction in a sparse domain begins to show benefit in terms of image reconstruc-

tion quality in many cases. Considering the RMSE, SSIM, MS-SSIM and IW-SSIM,

favourable regularization weight for highest mean objective image quality increased

monotonically with R. Favourable regularization weight for the highest mean objec-

tive image quality did not increase monotonically with regards to the GMSD, with an

affinity for lower values of λ demonstrated at undersampling factors above 5. These
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results demonstrate the utility of the simulation framework as a tool that future

work may use to assess the changing CS reconstruction parameter needs for objec-

tive image quality in dynamic CS-MRI. They further demonstrate that correlation

of objective IQMs with radiologist subjective scoring is essential for future work, in

order to select an appropriate set of objective IQMs. Whereas the SSIM family of

IQMs predicts distinctly worse image quality as undersampling factor increases, and

an average increase in image quality when enforcing sparsity in a transform domain

at these undersampling factors, the GMSD would imply that the worst image quality

is rapidly achieved by undersampling k-space and that CS would potentially hinder

the image quality on average.

6.5.2 Accuracy of Recovered Quantitative Parameters

The strength of a simulation framework is that “ground truth” knowledge of quan-

titative parameters describing an intensity evolution model makes it possible to in-

vestigate the effects of different factors on the recovery accuracy of the quantitative

parameters. To validate the performance of our temporally dynamic simulator against

known theory, we sought to investigate the accuracy of parameters as they relate to

different properties of the signal evolution and to investigate the effect of feature size

on recovered quantitative parameter accuracy.

Figures 6.3 and 6.4 demonstrate that the scale-related parameters for both the ex-

ponentially decaying features and the sinusoidally oscillating features suffered greater

error compared to their respective temporal evolution parameters, validating hypoth-

esis 2a. This is the result of a loss of image energy as the k-space is undersampled,

according to Parsevals theorem (equation 2.28), which results in reduced image mag-

nitudes as the undersampling factor increases. Thus is should be expected that scale

related parameters suffer inherently larger error as the undersampling factor increases,

validating the performance of our simulations. The comparatively low temporal pa-

rameter errors are explained by our choice to implement snapshot sampling of k-space.

Although a loss of image energy reduces the image magnitude in general, the relative

evolution of features between images in the dynamic series is the important factor for

temporal parameter recovery accuracy. Since the relative evolution of feature inten-

sity is not as susceptible to the loss of image intensity, the recovery of the quantitative
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parameters describing the rate of temporal evolution shows lower error. There will

still be effects on the extracted time series due to the presence of incoherent aliasing in

the dynamic images, which will affect the accuracy of the temporal evolution param-

eters. Thus by suppressing the effects of temporal resolution via the use of snapshot

sampling of k-space, we obtain the expected behaviour in quantitative parameter

recovery accuracy as undersampling factor increases. Had we chosen to implement

a realistic sampling of k-space for these results (i.e. a nonzero repetition time), we

would expect the “temporal blurring” that affects the k-space acquisitions to begin

to affect the temporal dynamics, reducing the accuracy of the temporal evolution

parameters at lower undersampling factors.

These results demonstrate the ability of the simulation framework to study not

only the accuracy of the recovered quantitative parameters in a dynamic application,

but also the effect on recovery accuracy due to the nature of the parameter in the

model. Future implementations of the simulation framework incorporating physiolog-

ically realistic pharmacokinetic models, such as the extended Tofts model, may study

the loss in quantitative parameter accuracy for each of the physiologically motivated

parameters due to the effect of CS-MRI.

The results also reveal the ability of the simulation framework to study the chang-

ing regularization needs for quantitative accuracy when CS-MRI reconstructions op-

erate with more or less k-space data. The regularization needs differed across under-

sampling factors and between the exponentially decaying and sinusoidally evolving

features. Using our validated simulation framework, future work may examine de-

tailed simulations in order to guide CS reconstruction parameter choice for quantita-

tive dynamic CS-MRI.

Figures 6.3 and 6.4 show no significant difference in parameter error as a result

of feature size across all undersampling factors. Previous results have shown that it

is the feature constrast, rather than the feature size, that primarily determines the

ability of CS-MRI to resolve it in the reconstructed image [8]. Because each of the four

embedded cylindrical features for both the exponentially decaying and sinusoidally

evolving features followed a common evolution, their relative contrasts did not differ at

any point in time and so no significant differences in quantitative parameter recovery

accuracy were incurred. This supports hypothesis 2b.
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6.5.3 Correlations Between Objective IQMs and Quantitative Mapping

Accuracy

Figures 6.5 and 6.6 demonstrate the ability of the simulation framework to investigate

correlations between image reconstruction quality, as quantified by objective IQMs,

and the accuracy of recovered quantitative parameters. The results partially support

hypothesis 3, with correlations observed for the recovery of scale-related parameters in

the both the exponentially decaying features and in the sinusoidally evolving features,

and with the sinusoidal period.

Because quantitative parameters are recovered through voxel-by-voxel fitting of

a model to time series data extracted from reconstructed images, the accuracy of

recovered parameters is affected both by the temporal resolution of the data and the

presence of incoherent aliasing artifacts in each of the voxels. Thus, higher image

quality is valuable for the recovery of quantitative parameters, lest the time series be

contaminated by the image artifacts. Figure 6.8 demonstrates the deterioration of

image quality in a slice of the synthetic phantom as undersampling factor increases.

As the incoherent aliases contaminate the time series used for quantitative parameter

recovery, the accuracy of the recovered parameters will decrease. This is the cause of

correlation between objective IQM score and quantitative parameter recovery accu-

racy.

The results also demonstrate that some IQMs may perform better in character-

izing dynamic MRI. The correlation between quantitative mapping performance and

GMSD scores was not as strong as for the SSIM family of IQMs or for the RMSE.

This is a result of the saturation of GMSD scores at high undersampling factors.

Thus, the results of our simple simulation would suggest that the GMSD is not an

appropriate IQM for characterizing dynamic MRI.

It is acknowledged that, through the use of snapshot sampling of k-space data, the

results presented for correlations between objective IQM scores and recovered quanti-

tative parameter accuracy represent a simplified scenario. This was done to validate

the simulation framework against known theory under simple conditions that are

easily understood and analysed, and to demonstrate the fundamental relationship

between image quality and quantitative mapping accuracy. With the use of realistic

k-space sampling (i.e. nonzero TR), a dynamically evolving phantom will result in a
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Figure 6.8: As the spatial undersampling increases, the image quality
deteriorates (quantified here using the SSIM as an example). Incoher-
ent aliasing artifacts contaminate the extracted timecourse used in model
fitting, and so image quality will relate to the accuracy in recovered quan-
titative parameters.

dynamically evolving k-space during sampling of a single effective CIRCUS quanta.

The “temporal blurring” of acquired k-space data will act to degrade reconstructed

phantom image quality with respect to a reference phantom image, with the effect

being more pronounced for interleaving of larger amounts of k-space data, for faster

temporal dynamics, and for longer TR. However we still anticipate a correlation to

exist between image quality and quantitative parameter recovery accuracy due to the

voxel-by-voxel fitting process, which relies on high quality image data in order to

extract accurate time series for quantitative mapping. Future work may extensively

investigate correlations between IQM scores and recovered quantitative parameter

accuracy using the simulation framework that we have developed. For example, the
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balance between the amount of CIRCUS quanta, sampled at a given TR, and inter-

leaved to reconstruct each image versus the temporal resolution required to achieve

a threshold in quantitative mapping accuracy may be thoroughly investigated and

characterized using our newly validated tool. As realistic sampling of k-space be-

gins to introduced temporal blurring to the k-space data, correlations in quantitative

parameters related to temporal evolution are expected to become more pronounced.

Future work with our simulation framework may incorporate physiologically moti-

vated intensity evolution models, and may investigate correlations between the model

parameters and objective IQMs. The flexibility of the simulation framework would

further allow anatomically specific phantoms to be developed and studied, such that

correlations in specific applications may be studied in detail. Beyond just dynamically

contrast enhancing applications, future work may be undertaken in characterizing any

quantitative dynamic MRI technique with objective IQMs. To the best of our knowl-

edge at the time of writing of this thesis, objective IQMs have not been studied in

the context of quantitative mapping accuracy, and thus our results serve as a proof

of concept which open doors to a wide range of future investigations.

The ability to utilize objective IQMs as a way to predict the accuracy of recovered

quantitative parameters would have profound clinical utility; appropriate thresholds

in objective image quality may be established that delineate “acceptable” levels of

quantitative parameter error from “unacceptable” levels of error. One method to im-

plement the full-reference IQMs could be to acquire a high quality baseline scan prior

to the dynamic scan, permitting retrospective adjustment of image quality relative

to the baseline scan as a means to control quantitative parameter accuracy.

6.6 Conclusions

In this chapter we have aimed to validate the performance of our simulation frame-

work in preparation for future investigations, and we additionally strived to motivate

the use of objective IQMs in characterizing quantitative mapping in dynamic MRI.

We began by investigating the ability of the simulation framework to characterize the

changing regularization needs for objective image quality as undersampling factor

increased, we studied the accuracy of quantitative parameter recovery as undersam-

pling factor increased and feature size decreased, and we sought correlations between
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objective IQM scores and the accuracy of recovered quantitative parameters.

The regularization weight required for favourable mean objective image quality

increased monotonically for the RMSE, SSIM, MS-SSIM, and IW-SSIM. The GMSD

deviated from this trend, showing preference for reduced regularization weight at

higher undersampling factors. These results must be considered against the variance

in the results, which prevents a hard conclusion being made regarding the overall

monotonic nature of favourable regularization weights at each reconstructed image

in the dynamic CS-MRI time series. Nonetheless, the results demonstrate the util-

ity of the simulation framework as a means of assessing the changing regularization

needs in dynamic CS-MRI. Additionally, trends observed in the simulated data were

broadly consistent with the trends observed in static CS-MRI of real MRI image data

as discussed in chapter 5. The SSIM family of IQMs demonstrated lower relative

variance than the RMSE or the GMSD, reminiscent of the results in chapter 5 that

demonstrated lower inter-patient variability for the SSIM family of IQMs. Further-

more, the SSIM family of IQMs indicated a distinct loss of objective image quality

as undersampling factor increased, potentially suggesting the presence of a distinct

set of structural distortions as a result of CS-MRI. The simulation framework thus

exhibited trends that were roughly consistent with those observed in real world MRI

data.

The error in recovered quantitative parameters was found to get increasingly larger

for scale related parameters as opposed to parameters related to the temporal evo-

lution in both exponentially decaying features and sinusoidally evolving features as

the undersampling of k-space increased. This is a result of Parsevals theorem, where

a loss of image intensity results from a loss of k-space energy. Additionally, feature

size was not found to be a significant factor in determining the quantitative parame-

ter recovery accuracy when features maintained the same relative contrast over time.

This is in agreement with results in the CS literature. These results validate that our

simulation framework is performing as should be expected, and further demonstrate

its utility as a tool for characterizing various effects on the accuracy of recovered

quantitative parameters.

Finally, we have proposed the use of objective IQMs for characterizing the accu-

racy of quantitative mapping in dynamic CS-MRI applications. To the best of our
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knowledge, this has not been done in the past. We demonstrated preliminary evi-

dence that objective IQMs are responsive to the inherent relationship between image

quality and quantitative mapping accuracy, with statistically significant correlation

existing between objective IQM scores and the performance of quantitative mapping.

The outcome of this chapter has been the development of a reliable tool for the

assessment of quantitative dynamic CS-MRI, as well as a novel method for charac-

terizing the performance of quantitative mapping techniques. The results we have

demonstrated serve as a proof of concept, and motivate wider investigations into the

utility of objective IQMs in characterizing dynamic MRI.



Chapter 7

Conclusions

We have presented three studies aimed towards motivating the study and use of ob-

jective image quality metrics (IQMs) for the characterization of quantitative dynamic

compressed sensing (CS) MRI. To begin, we studied the CIRcular Cartesian Un-

derSampling (CIRCUS) k-space acquisition scheme designed for CS-MRI in order to

obtain knowledge of how best to implement CIRCUS to inherently obtain the most

favourable objective image qualities. We then characterized the behaviour of five ob-

jective IQMs (the RMSE, GMSD, SSIM, MS-SSIM and IW-SSIM) in static CS-MRI,

obtaining foundational knowledge of IQM properties. Our final study utilized sim-

ple simulations of a temporally evolving synthetic phantom, taking dynamic contrast

enhancing MRI as an exemplar for a quantitative dynamic CS-MRI application, to

demonstrate evidence of correlations between IQM scores and quantitative parameter

recovery accuracy.

Our first study was of the implementation of the CIRCUS k-space trajectory. In

order to obtain maximum efficiency in the compromise between image quality and

temporal resolution in dynamic CS-MRI, it is necessary that k-space be sampled in

a manner that is agreeable with CS. We explored the CIRCUS parameter space to

determine how choices of CIRCUS parameters affected the resulting CIRCUS trajec-

tories, and sought to determine if point spread function (PSF) coherence or incoher-

ence measures would provide a reliable method of determining favourable CIRCUS

trajectories. Although there was evidence of regimes of higher PSF incoherence for

CIRCUS trajectories with higher undersampling factors designed with c > 2, the

performance of the CIRCUS patterns (quantified by objective IQMs) did not show

similar regimes and the PSF measures were not found to be a reliable predictor of

CIRCUS trajectory quality within a fixed undersampling factor. Rather, it was found

that most CIRCUS patterns at a fixed undersampling factor perform similarly, and

that the most stable performance across undersampling factors occurs provided that
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c is chosen to be greater than 1.

Our second study was a characterization of objective IQM properties in static

CS-MRI. In order to obtain foundational knowledge required to understand the quan-

titative behaviour of the objective IQMs, we studied them in retrospective static CS-

MRI reconstructions of 15 clinical MRI images. We observed that the SSIM family of

IQMs show less inter-patient variability than the RMSE, and that the GMSD shows

higher inter-patient variability than the RMSE. This may motivate the description

of a structural distortion model of CS-MRI that would allow for future development

of a CS-MRI specific no-reference IQM. These results would also suggest that the

SSIM family may be better objective IQMs for characterizing the accuracy of quan-

titative mapping in dynamic CS-MRI, since thresholds could be established with less

inter-patient variability affecting the thresholds. In addition to investigating the in-

terpatient variabilities of each IQM, we demonstrated that favourable regularization

weight for maintaining high image quality did not necessarily increase monotonically

with increasing undersampling factor. This goes against assumptions frequently held

in the field of CS-MRI, and motivates the need for a convenient objective assessor

of image quality. Finally we showed that CS-MRI images possessing equivalent ob-

jective IQM score may not necessarily possess the same visible distortions. This can

have implications for quantitative mapping accuracy, where some distortions may af-

fect the accuracy of recovered quantitative parameters differently than others. The

development of a CS-MRI specific no-reference IQM may help to address this.

Our third study introduced and validated a simulation framework that we designed

for studies of quantitative mapping accuracy in a dynamically enhancing synthetic

phantom, with dynamic contrast enhanced MRI taken as an exemplar for dynamic

MRI applications. We demonstrated the utility of the simulation framework as a

method of characterizing the changing regularization needs for maintaining high ob-

jective image quality across a dynamic image series as undersampling factor increased.

We then investigated the ability of the simulation framework to study the accuracy of

recovered quantitative parameters. Specifically, we demonstrated that CS-MRI will

inherently show larger error in scale-related model parameters as undersampling factor

increases compared to evolution-related parameters due to expected losses in image
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intensity, and we demonstrated that feature size does not significantly affect the accu-

racy of recovered quantitative parameters for features at equivalent contrasts. These

results are consistent with the theory in the literature, validating the performance of

our simulation framework and motivating it for future work in physiologically specific

applications (e.g. pharmacokinetic modelling). The third study concluded by show-

ing evidence of correlations between objective IQM scores and quantitative parameter

recovery accuracy. While the simulations presented were a simplified scenario, the

resulting correlations between objective IQM scores and quantitative parameter ac-

curacy are a proof of concept for a novel method of characterizing the accuracy of

quantitative mapping in dynamic MRI, and provide motivation for extensive future

study of objective IQMs in quantitative dynamic CS-MRI applications.

There are several avenues that future work may take. To begin with, future work

may build upon the foundational knowledge of IQM behaviour in static CS-MRI that

we have presented in chapter 5. A simple first task would be to repeat the generation

of the R-λ matrices with both a finer sampling of λ and an extended range of sampled

λ values, to better characterize the change in preferential regularization weights using

CS-MRI on a patient-by-patient basis. While we have presented results that char-

acterize the behaviour of the objective IQMs through the independent enforcement

of either a total variation (TV), wavelet, or locally low rank (LLR) sparsity models,

combinations of these sparsity enforcements must also be investigated. The methods

of chapter 5, combined with the suggestions we’ve just made for future work, should

also be investigated in other anatomies (e.g. brain, liver) to determine if similar

trends in the objective IQM properties exist across anatomies.

Work must be undertaken in the future to correlate the objective IQMs we have

studied with subjective radiologist scoring. If strong correlation between objective

IQM scores and subjective radiologist scores are found, one or more objective IQMs

can be selected as a quantitative surrogate to tune CS-MRI reconstruction parame-

ters expediently on a patient-by-patient basis. To correlate the objective IQMs with

radiologist opinion of image quality, a bank of distorted images must be generated

that are reflective of distortions commonly encountered in MRI and CS-MRI. Ra-

diologists must then be asked to rate the diagnostic quality of the images for each
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distortion, and the subjective scores compared to objective IQM scores. In particu-

lar, the results of chapter 5 demonstrate that care must be taken to seek correlations

between objective IQM scores and subjective radiologist scores with knowledge of the

sparsity enforcements used in CS-MRI; it was observed that different sparsity enforce-

ments gave rise to image reconstructions with noticeably different visual properties

even when the same IQM score was obtained (e.g. wavelet sparsity left a “grainy”

quality to the images that wasn’t present in TV or LLR sparsity enforcements). It

is possible that radiologists will strongly prefer image reconstructions utilizing some

sparsity enforcements over others, and that the objective IQMs may be unable to

discern the difference between these images. These studies should be repeated for

images of several different anatomies, for it is possible that some anatomies may be

less amenable to objective IQM analysis than others. The end result of a study that

correlates subjective radiologist opinion of diagnostic image quality to objective IQM

scores, in several different anatomies, would provide a tool that would allow rapid

evaluation of CS-MRI reconstruction capabilities on a patient-by-patient basis.

Future work may endeavour to study no-reference IQMs for medical image anal-

ysis. No-reference IQMs can be developed with the intention of quantifying the pres-

ence of a single kind of distortion, or to be sensitive to a wide variety of distortions.

There have been many no-reference IQMs developed for the assessment of natural

scenesi, which draw on extensive empirical studies of natural scene statistics (NSS).

Some examples include Distortion Identification-based Image Integrity and Verity

Evaluation (DIIVINE) [46] and Blind Image Notator using Discrete cosine transform

Statistics (BLINDS-II) [47]. It is not clear that the statistics of MRI images are equiv-

alent to those of natural scenes, and thus many of these existing no-reference IQMs

might need to be adapted for application in MRI. Interestingly, a preliminary study

by Woodard et. al. [48] did find that no-reference IQMs incorporating assumptions

from NSS were statistically able to differentiate MRI images of medical brain images

separately contaminated with additive white Gaussian noise or blurring from those

that were not artificially distorted in any way. However the separate additions of

additive white Gaussian noise or blurring are very artifical, and correlations between

iA natural scene, as the name implies, is essentially one which can be seen by the naked human
eye and that is commonly encountered in natural environments. Medical images are not a subset of
the natural images.
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radiologist subjective scoring and the IQM scores were not studied. This leads us

to conclude that further investigation is still required into the use of no-reference

IQMs which assume properties from NSS in the field of medical image processing.

To address this need a comprehensive study of the statistics of medical images may

be undertaken. This may be done for both MRI imaging and x-ray based imaging,

which may have different statistics due to the different underlying physical processes

of image generation (i.e. manipulation of bulk magnetization versus photon interac-

tions). Indeed, a comprehensive study of the statistics of medical images would be

a great contribution to the literature in its own right. If the statistics of medical

images are found to be very similar to those of NSS, no-reference IQMs developed

with assumptions from NSS (such as DIIVINE) may be studied in medical imaging

and correlations sought between no-reference objective IQM score and subjective ra-

diologist scoring. This would open the possibility of using a wide range of IQMs that

may potentially correlate better with radiologist opinion of diagnostic quality, and

may have utility in characterizing dynamic MRI without need of a reference image.

Aside from seeking justification for the use of no-reference IQMs developed for

natural images, the specific distortions introduced by CS-MRI may be studied in de-

tail and an attempt made to construct a CS-MRI specific no-reference objective IQM.

By tailoring the no-reference IQM to seek distortions specifically introduced by CS-

MRI, an IQM may potentially be obtained that better reflects the visual properties

of image reconstructions made with various sparsity enforcements (i.e. could differen-

tiate between “grainy” wavelet enforced reconstructions and “blurred” TV enforced

reconstructions). Such an objective IQM may correlate much better with subjective

radiologist scoring, with the added benefit that no reference image is required.

Much work can be done to improve the simulation framework that we have devel-

oped as well. To begin, a physiologically realistic contrast enhancement model may be

incorporated to replace the simple closed-form functions we utilized in obtaining our

preliminary results. An excellent example would be to have the synthetic phantom

features evolve according to the extended Tofts model [2]. Simulations with a finite

non-zero repetition time may then be extensively undertaken to assess the balance

required between image quality and temporal resolution, and to seek correlations be-

tween physiological quantitative parameters and objective IQM score. Additionally,
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a set of anatomical phantoms may be developed for accurate investigations of the

correlations between objective IQM scores and dynamic MRI performance. Tempo-

ral enhancements may be superimposed onto fully sampled, high quality image data

in order to fabricate these phantoms.

Utilizing future developments in knowledge of objective IQMs, and in results ob-

served in future generations of our simulation framework, one or more objective IQMs

may be selected for characterizing the performance of dynamic MRI applications and

thresholds could be established to delineate acceptable loss of dynamic MRI perfor-

mance from an unacceptable loss. This would have profound utility in clinical practise,

providing an expedient and quantitative means of reconstructing a dynamic image

series to achieve clinically acceptable performance in quantitative dynamic MRI.



Appendix A

Mathematical Background

A.1 Condition for Modular Congruence

Let x, y ∈ R and n ∈ Z. Taking note of equation 2.56 two modulo operations are

equivalent when:

mod (x, n) = mod (y, n)

x− n ·
⌊x
n

⌋
= y − n ·

⌊y
n

⌋
x− y = n ·

(⌊x
n

⌋
−

⌊y
n

⌋)
∴ n|(x− y) (A.1)

Where the notation a|b means “a divides b”.

A.2 Tukey Honest Significant Difference Post Hoc Analysis

While two-way ANOVA testing will report whether a set of sample means are sta-

tistically equivalent or not, the ANOVA test does not report which group means are

statistically different. Post hoc analyses can be performed to acquire this informa-

tion. We implemented a Tukey honestly significant difference (HSD) post hoc analysis

using the multcompare function included with the MATLAB Statistics and Machine

Learning Toolboxi.

Two sample means ȳi and ȳj are considered statistically different if they differ by

the following range:

|ȳi − ȳj| > qα,k,N−k√
2

√
MSE

(
1

ni

+
1

nj

)
(A.2)

Where α is the significance level, k is the number of groups studied, ni are the number

of samples in each group, N = kn is the total number of samples, qα,k,N−k is the upper

iWe obtained the following information from https://www.mathworks.com/help/stats/

multiple-comparisons.html#bum7ugv-1
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100(1 − α)th percentile of the studentized range distribution with parameter k and

N − k degrees of freedom, and MSE ratio of the sum of squares from each group

to the number of degrees of freedom associated with each source. If the comparison

intervals calculated from equation A.2 do not overlap when comparing two sample

means, then they are statistically different.



Appendix B

CIRCUS Investigation

B.1 Derivation of Simplified CIRCUS Equation

Equation 2.59 governing sampled indices along each nested square during CIRCUS

pattern generation is reprinted below for convenience:

i(b, c, q, J) = mod

(⌊
mod

(
q + bJ

ϕ
, 1

)
·K

⌋
+ �J c� − 1, K

)
(B.1)

Where J is the side length of the current nested square in CIRCUS pattern generation,

K = 4(J − 1) is the number of possible sampling indices i on each nested square, ϕ

is the golden ratio, and q is the current CIRCUS quanta. For notational convenience,

define:

α =

⌊
mod

(
q + bJ

ϕ
, 1

)
·K

⌋
(B.2)

Expanding equation B.1 with the definition of the modulo operator (equation 2.56)

and the use of equation B.2:

i(b, c, q, J) = (α + �J c� − 1)−K ·
⌊
α + �J c� − 1

K

⌋
(B.3)

To simplify equation B.3 further, we first simplify the expression for α given by

equation B.2. Expanding the modulo operator inside the floor function:

α =

⌊(
q + bJ

ϕ
−

⌊
q + bJ

ϕ

⌋)
·K

⌋
(B.4)

=

⌊
K

(
q + bJ

ϕ

)⌋
−K

⌊
q + bJ

ϕ

⌋
(B.5)

Where we’ve used the property �x− n� = �x� − n for n ∈ Z. Again moving towards

simplification, we simplify the expressionK
⌊
α+�Jc�−1

K

⌋
in equation B.3 using equation
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B.4:

K

⌊
α + �J c� − 1

K

⌋
= K

⎢⎢⎢⎣
⌊
K

(
q+bJ
ϕ

)⌋
−K

⌊
q+bJ
ϕ

⌋
+ �J c� − 1

K

⎥⎥⎥⎦ (B.6)

= K

⎢⎢⎢⎣
⌊
K

(
q+bJ
ϕ

)⌋
+ �J c� − 1

K

⎥⎥⎥⎦−K

⌊
q + bJ

ϕ

⌋
(B.7)

Combining equations B.4 and B.6 with equation B.3 yields:

i(b, c, q, J) =

⌊
K

(
q + bJ

ϕ

)⌋
+ �J c� − 1−K

⎢⎢⎢⎣
⌊
K

(
q+bJ
ϕ

)⌋
+ �J c� − 1

K

⎥⎥⎥⎦ (B.8)

Which we recognize as the expanded modulo operator (equation 2.56), giving a sim-

plified CIRCUS equation:

i(b, c, q, J) = mod

(⌊
K

(
q + bJ

ϕ

)⌋
+ �J c� − 1, K

)
(B.9)

B.2 Repetitions with b at fixed c

Let c = γ and q = η be fixed. For two choices of radial parameters b1 and b2, the

sampled indices i(b1, γ, η, J) and i(b2, γ, η, J) on two nested squares are equivalent

when:

mod

(⌊
K

(
η + b1J

ϕ

)⌋
+ �Jγ� − 1, K

)
= mod

(⌊
K

(
η + b2J

ϕ

)⌋
+ �Jγ� − 1, K

)
(B.10)

The reader is reminded that J (and consequently K) varies with each nested square

during CIRCUS generation. Equation B.10 is true if:i

K
∣∣∣ (⌊K (

η + b1J

ϕ

)⌋
+ �Jγ� − 1

)
−

(⌊
K

(
η + b2J

ϕ

)⌋
+ �Jγ� − 1

)

∴ K
∣∣∣ ⌊K (

η + b1J

ϕ

)⌋
−

⌊
K

(
η + b2J

ϕ

)⌋
(B.11)

Where the notation a|b means “a divides b” or b = na for n ∈ Z. Condition B.11

must hold true for every J , otherwise there will exist different sampled indices i on

at least one nested square between the resulting CIRCUS patterns.

iSee appendix A.1 for conditions of modular congruence.
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Trivial occurrences satisfying condition B.11 occur when the two floor functions

are equivalent, and correspond to situations where b1 and b2 are very similar. Suppose

that b2 = b1 + δ for δ ∈ R, and let z =
⌊
K

(
η+b1J

φ

)⌋
be the common floor. Then for

each J the corresponding tolerance δJ allowed by the floor function satisfies condition

B.11 for a single J is given by:

z ≤ K

(
η + (b1 + δJ)J

φ

)
< z + 1

∴ 1

J

(
zφ

K
− b1J − q

)
≤ δJ <

1

J

(
(z + 1)r

K
− b1J − q

)
(B.12)

Where it is emphasized that the bounds determining δJ for each J are not equivalent.

To choose a single δb that satisfies condition B.11, we must take the most restrictive

of the upper and lower boundaries across all δJ ; only then will b2 = b1 + δb satisfy

condition B.11 for each and every nested square during CIRCUS generationii. δb is

thus given by:

max
J

[
1

J

(zϕ
K

− b1J − q
)]

≤ δb < min
J

[
1

J

(
(z + 1)ϕ

K
− b1J − q

)]
(B.13)

The bounds on δb are very small for typical values of Jmax, where Jmax is the size

of the largest nested square used in CIRCUS pattern generation. Figure B.1 shows

upper and lower bounds on δb as b1 increases from 0 to 250 with Jmax = 200; the

magnitude of the bounds was found to remain consistent even for larger values of b1,

and to become more restrictive for larger values of Jmax.

Because ϕ ∈ R\Q, it follows that K
(

q+bJ
ϕ

)
∈ R\Q and condition B.11 cannot be

further simplified in general. Aside from the cases where b2 is chosen to be very nearly

b1, as discussed above, condition B.11 is not satisfied for all J in general. Therefore

there exist no pairs b1 and b2, chosen sufficiently distinct of one another, of b for fixed

c in which the generated CIRCUS patterns are equivalent.

iiIf the most restrictive of the limits on all δj are not taken in defining the range of δb, there will
exist at least one J during CIRCUS generation for which the floor functions in condition B.11 are
not equivalent.
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Figure B.1: The upper and lower bounds on δb for b1 and b2 = b1 + δb
to produce identical CIRCUS patterns, calculated for Jmax = 200. The
magnitude of these bounds remains consistent for values of b1 above 250.
As Jmax increases, the bounds on δb become even more restrictive.

B.3 Repetitions with c at fixed b

Let b = β and q = η be fixed. For two choices of spiral parameters c1 and c2, the

sampled indices i(β, c1, η, J) and i(β, c2, η, J) on the two nested squares are equivalent

when:

K
∣∣∣ (⌊K (

η + βJ

ϕ

)⌋
+ �J c1� − 1

)
−

(⌊
K

(
η + βJ

ϕ

)⌋
+ �J c2� − 1

)

∴ K
∣∣∣ �J c1� − �J c2� (B.14)

Trivial pairs of c1 and c2 satisfy condition B.14 when �J c1� = �J c2�, which cor-

respond to situations where c1 and c2 were chosen very near to each other. Define

c2 = c1 + δ for δ ∈ R and let z = �J c1� be the common ceiling. Then for each J

the corresponding tolerance δJ allowed by the ceiling function that satisfies condition
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B.14 for a single J is given by:

z − 1 < J c1+δJ ≤ z

∴ logJ(z − 1)− c1 < δJ ≤ logJ(z)− c1 (B.15)

The most restrictive limits across all δJ are chosen for defining the limits on δ such

that c1 and c2 = c1 + δ produce equivalent CIRCUS patterns:

max
J

[logJ(z − 1)− c1] < δc ≤ min
J

[logJ(z)− c1] (B.16)

The bounds on δc are very small for typical values of Jmax. Figure B.2 shows upper

and lower bounds on δc as c1 increases from 0 to 6 with Jmax = 200. The magnitude

of the both the lower and upper bounds converge to zero as c1 increases, and become

more restrictive for larger Jmax.

Figure B.2: The upper and lower bounds on δc for c1 and c2 = c1 + δc
to produce identical CIRCUS patterns, calculated for Jmax = 200. The
magnitude of these bounds remains consistent for values of c1 above 6. As
Jmax increases, the bounds on δc gradually become more restrictive.

Condition B.14 cannot be further simplified in general for c ∈ R. If we restrict

the choices of c to c ∈ Z > 0, condition B.14 may be further simplified due to the
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fact that J ∈ 2Z. Noting that J c ∈ Z when c ∈ Z, condition B.14 becomes:

K | J c1 − J c2 (B.17)

Without loss of generality, let c1 = c2 + n for some n ∈ Z > 0. Recall also that

K = 4(J − 1). Condition B.17 becomes:

4(J − 1) | J c2(Jn − 1) (B.18)

Condition B.18 can be further simplified by noting that (Jn − 1) = (J − 1)(1 + J +

. . .+ Jn−1). In light of this, condition B.18 requires that the following be true:

4 | J c2(1 + J + . . .+ Jn−1) (B.19)

Since J ∈ 2Z it may be equivalently expressed as J = 2j for j ∈ Z. Thus, condition

B.19 may be viewed as:

4 | (2j)c2 + (2j)c2+1 + . . .+ (2j)c2+n−1 (B.20)

Condition B.20 is satisfied for all values of j when c2 is a positive integer greater than

or equal than 2.

Thus, two pairs c1 and c2 of c will result in identical CIRCUS patterns in only

two situations.

1. c1 and c2 are chosen as positive integers greater than or equal to 2.

2. c1 and c2 are chosen to be very nearly equal in value.
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B.4 Additional Point Spread Function Measure Results

Figure B.3: Coherence (left column) and incoherence (right column) of
CIRCUS pattern PSFs generated for a variety of b and c at increasing
undersampling factors.
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B.5 Additional IQM Results

Figure B.4: Response of the MS-SSIM (left column) and IW-SSIM (right
column) to changes in b and c for TV regularization (top row), wavelet
regularization (middle row), and LLR regularization (bottom row).



142

B.6 Tukey HSD Intervals for Image Quality Metrics

Figure B.5: Visualization of overlap in Tukey HSD comparison intervals
for mean normalized RMSE score as b changes (top row) and as c changes
(bottom row), for each of the three sparsity transforms.

Figure B.6: Visualization of overlap in Tukey HSD comparison intervals
for mean GMSD score as b changes (top row) and as c changes (bottom
row), for each of the three sparsity transforms.



143

Figure B.7: Visualization of overlap in Tukey HSD comparison intervals
for mean MS-SSIM score as b changes (top row) and as c changes (bottom
row), for each of the three sparsity transforms.

Figure B.8: Visualization of overlap in Tukey HSD comparison intervals
for mean IW-SSIM score as b changes (top row) and as c changes (bottom
row), for each of the three sparsity transforms.
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B.7 Correlations Between Image Quality Metrics and PSF Measures

Figure B.9: Correlation between the nRMSE scores and PSF coherence
and incoherence, for each of the three sparsity regularizations studied.

Figure B.10: Correlation between the GMSD scores and PSF coherence
and incoherence, for each of the three sparsity regularizations studied.
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Figure B.11: Correlation between the SSIM scores and PSF coherence
and incoherence, for each of the three sparsity regularizations studied.

Figure B.12: Correlation between the MS-SSIM scores and PSF coherence
and incoherence, for each of the three sparsity regularizations studied.
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Figure B.13: Correlation between the IW-SSIM scores and PSF coherence
and incoherence, for each of the three sparsity regularizations studied.



Appendix C

Image Quality Metric Investigation

C.1 Image Quality Metric Calculation Results

Figure C.1 to Figure C.15 show the objective IQM results for each patient, for each

IQM, and for each sparse enforcement technique. Red diamonds have been used to

mark the value of λ at each R resulting in the most favourable IQM score. Normal-

ization of the RMSE was done relative to the mean of the reference images.
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Figure C.1: The normalized RMSE results for each of the 15 patient
data sets using a total variation sparse enforcement with 8 coil PI CS
reconstruction. The RMSE was normalized to mean signal intensity in
each case. Red diamonds mark the value of λ giving the best score at
each R.
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Figure C.2: The normalized RMSE results for each of the 15 patient data
sets using a wavelet sparse enforcement with 8 coil PI CS reconstruction.
The RMSE was normalized to mean signal intensity in each case. Red
diamonds mark the value of λ giving the best score at each R.
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Figure C.3: The normalized RMSE results for each of the 15 patient
data sets using a locally low rank sparse enforcement with 8 coil PI CS
reconstruction. The RMSE was normalized to mean signal intensity in
each case. Red diamonds mark the value of λ giving the best score at
each R.
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Figure C.4: The GMSD results for each of the 15 patient data sets using
a total variation sparsity enforcement with 8 coil parallel imaging com-
pressed sensing reconstruction. Red diamonds mark the value of λ giving
the best score at each R.
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Figure C.5: The GMSD results for each of the 15 patient data sets using
a wavelet sparsity enforcement with 8 coil parallel imaging compressed
sensing reconstruction. Red diamonds mark the value of λ giving the best
score at each R.
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Figure C.6: The GMSD results for each of the 15 patient data sets using
a locally low rank sparsity enforcement with 8 coil parallel imaging com-
pressed sensing reconstruction. Red diamonds mark the value of λ giving
the best score at each R.
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Figure C.7: The SSIM results for each of the 15 patient data sets using
a total variation sparsity enforcement with 8 coil parallel imaging com-
pressed sensing reconstruction. Red diamonds mark the value of λ giving
the best score at each R.
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Figure C.8: The SSIM results for each of the 15 patient data sets using
a wavelet sparsity enforcement with 8 coil parallel imaging compressed
sensing reconstruction. Red diamonds mark the value of λ giving the best
score at each R.
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Figure C.9: The SSIM results for each of the 15 patient data sets using
a locally low rank sparsity enforcement with 8 coil parallel imaging com-
pressed sensing reconstruction. Red diamonds mark the value of λ giving
the best score at each R.
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Figure C.10: The MS-SSIM results for each of the 15 patient data sets
using a total variation sparsity enforcement with 8 coil parallel imaging
compressed sensing reconstruction. Red diamonds mark the value of λ
giving the best score at each R.
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Figure C.11: The MS-SSIM results for each of the 15 patient data sets us-
ing a wavelet sparsity enforcement with 8 coil parallel imaging compressed
sensing reconstruction. Red diamonds mark the value of λ giving the best
score at each R.



159

Figure C.12: The MS-SSIM results for each of the 15 patient data sets
using a locally low rank sparsity enforcement with 8 coil parallel imaging
compressed sensing reconstruction. Red diamonds mark the value of λ
giving the best score at each R.
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Figure C.13: The IW-SSIM results for each of the 15 patient data sets
using a total variation sparsity enforcement with 8 coil parallel imaging
compressed sensing reconstruction. Red diamonds mark the value of λ
giving the best score at each R.
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Figure C.14: The IW-SSIM results for each of the 15 patient data sets us-
ing a wavelet sparsity enforcement with 8 coil parallel imaging compressed
sensing reconstruction. Red diamonds mark the value of λ giving the best
score at each R.
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Figure C.15: The IW-SSIM results for each of the 15 patient data sets
using a locally low rank sparsity enforcement with 8 coil parallel imaging
compressed sensing reconstruction. Red diamonds mark the value of λ
giving the best score at each R.



Appendix D

Simulations of Temporally Dynamic Synthetic Phantom

D.1 Simulator Framework Organization

The sections of the simulation framework are briefly described below. The full

simulation framework, complete with extensive comments, can be found at https:

//github.com/biotic-imaging/dynamic_sim.

The simulation is implemented in MATLAB, using parallel computations and a

sparse data class to aid in speed and RAM usage.

D.1.1 User Defined Parameters

The user may specify the in-plane dimensions of the synthetic phantom, with support

for minimum dimensions of 175×175 and no upper limit (though it is ideally intended

for dimensions on the order of 200× 200). The number of slices is fixed at 32.

The user may specify the addition of noise, where noise is added to the image

domain during k-space sampling (see section D.1.5) and is modelled with a Rician

distribution [49].

The length of the simulation is controlled by choosing the number of CIRCUS

pairs to acquire, where a CIRCUS pair consists of a calibration region followed by

an “effective” quanta (see section D.1.2). The user may also select the number of

effective CIRCUS quanta to pre-generate for the k-space sampling procedure, defining

the properties of the effective quanta (e.g. b and c, number of individual quanta placed

into a single effective quanta for sampling, and so on). Note that the number of pre-

generated effective quanta is not necessarily equal to the number of CIRCUS pairs

specified for acquisition. For example the user may specify that 150 CIRCUS pairs

(and thus 150 effective CIRCUS quanta) are to be acquired using 75 pre-generated

effective CIRCUS quanta, meaning that the pre-generated effective CIRCUS quanta

will be recycled and sampled twice.
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The user may select snapshot sampling of the CIRCUS patterns by choosing a

repetition time (TR) of zero seconds, or choose a realistic sampling of k-space by

selecting a nonzero TR (see section D.1.5). For snapshot sampling, a temporal lag

between samples to allow for phantom evolution is set by the parameter dTimePerfect.

The user may specify the number of simulated coils to use during k-space sampling.

One coil with uniform sensitivity across the phantom volume may be selected, or any

even number of coils with sinusoidal sensitivity profile (see section 3.4) may be chosen.

The user may select the k-space data interleaving parameters. These include the

number of calibration regions and effective CIRCUS quanta to include in each of

the interleaved volumes, how many calibration regions to jump ahead during the

interleaving process, and whether the effective time of the interleaved k-space volume

should result from equal contributions of calibration region and effective CIRCUS

quanta sampling times or just from calibration region sampling times.

Finally, the CS regularization weight and sparse regularization to be utilized by

BART during CS image reconstruction are set.

D.1.2 Generate of CIRCUS Patterns

CIRCUS was implemented by alternately acquiring effective CIRCUS quanta and

calibration regions. A calibration region is a 6× 6 fully sampled region at the center

of k-space. This provides k-space data where low frequencies are sampled, as well as

permitting the use of advanced techniques that estimate coil sensitivity for PI. An

effective quanta, for the purposes of sampling k-space, is defined as a grouping of

several individual CIRCUS quanta. For example, an effective quanta may consist of

a group of 10 combined CIRCUS quanta.

All calibration regions are identical, but the effective CIRCUS quanta are unique.

The phase encoding coordinates for the calibration region and each effective CIRCUS

quanta are pregenerated. The information for each are stored in seperate structure

arrays.

D.1.3 Determine Sampling Times

For convenience during parallel computations, a vector containing the times at which

sampling occurs is pregenerated. For snapshot sampling, the number of CIRCUS
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pairs acquired and the temporal lag between them controls the sampling times. For

realistic sampling, the number of phase encoded lines across all CIRCUS pairs that

will be sampled and the TR used in sampling control the sampling times.

D.1.4 Generate Numerical Phantom

The synthetic phantom is composed of a static base, stored in a 3D array, in which

vacancies exist for the placement of the phantom features. A structure array contains

phantom feature shapes, intensity evolutions, and intensity evolution parameters. The

phantom features are represented by 3D arrays, such that they may be conveniently

added to the phantom base There are five planes of phantom features, which are

shown in Figure 6.1.

• Slices 3-5 contain cylindrical embedded features. These features decay expo-

nentially in intensity, all beginning at the same initial magnitude but decaying

at different rates.

• Slices 9-11 contain cylindrical embedded features. These features decay ex-

ponentially in intensity, all beginning at the different initial magnitudes but

decaying at the same rate.

• Slices 15-17 contain cylindrical embedded features. These features oscillate

sinusoidally in intensity, all with the same amplitudes but with different periods.

• Slices 21-23 contain static “pin grids”.

• Slices 27-29 contain pin grids that increase linearly in intensity.

The intensity evolution for exponentially decaying features are generated from a model

of the form of equation D.1, the intensity evolution for sinusoidally oscillating features

are generated from a model of the form of equation D.2, and the intensity evolution

for linearly evolving features are generated from a model of the form of equation D.3.

I(t) = Ae−t/B + C (D.1)

I(t) = A sin

(
2π

B
[t− C]

)
+D (D.2)
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I(t) =

(
t

tmax

)
A+B (D.3)

Where C(t) represents the feature intensity at sampling time t, and tmax is the max-

imum sampling time in the simulation. The vector of sampling times described in

section D.1.3 is used to generate vectors containing the temporal evolution informa-

tion for each feature.

D.1.5 Sample K-Space of Temporally Evolving Phantom

At each sampling time, specified by the vector generated in section D.1.3, the synthetic

phantom is assembled with the appropriate feature intensity evolutions. If specified

by the user, Rician noise is added to the phantom image. For each simulated coil used

in k-space sampling, the phantom image is weighted by the appropriate coil sensitivity

map (see section 3.4). The Fourier transform of the resulting phantom image is then

taken, and the resulting k-space sampled with the appropriate CIRCUS pattern for

the current iteration. The sampling acquires a calibration region and then an effective

CIRCUS quanta (pregenerated as described in section D.1.2), and repeats this pattern

until the number of pairs specified by the user for sampling is met. If the number of

CIRCUS pairs to be acquired exceeded the number of pre-generated effective CIRCUS

quanta, the algorithm simply recycles the quanta patterns. Sampling of k-space is

specified by the user to be either “snapshot” sampling or “realistic” sampling.

1. Snapshot sampling of CIRCUS patterns involves setting TR to zero seconds,

such that each of the CIRCUS patterns (i.e. the individual calibration regions

and quanta) are sampled instantaneously. A temporal lag, controlled by a pa-

rameter dTimePerfect, is set to allow temporal evolution between the snapshot

samples.

2. Realistic sampling of CIRCUS patterns utilizes a nonzero TR. One line of

k-space is sampled every TR seconds, where the phase encode coordinates are

selected from the center of k-space outwards and frequency encoding is assumed

to be instantaneous.

The output of the sampling process is a 5D array, containing 3D sampled k-space

data for each coil and for each of the CIRCUS pairs. The intial, mean, and final
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sampling times for each CIRCUS pattern are also returned as vectorsi, allowing the

user to weight the effective sampling times for each CIRCUS pattern as they desire.

D.1.6 Interleave Sampled K-Space Data

The individually sampled k-space volumes from section D.1.5, time stamped with an

effective sampling time (either time of first sampling, time of end sampling, or mean

sampling time) are passed to the interleaving algorithm. The number of calibration

regions Ncal and the number of effective quanta Nquan specified by the user for in-

terleaving are combined by summing the k-space volumes, averaging any overlapping

k-space points according to the number of overlaps that occurred at each location.

The interleaving algorithm is summarized in Figure D.5, taking Ncal = 2, Nquan =

3 and a jump of 1 calibration region between “anchor” calibration regions as an

example. The interleaving algorithm “anchors” on calibration regions (marked with

coloured circles) and begins by seeking out the nearest Ncal calibration regions relative

to the current anchor calibration region. Following this, the nearest Nquan effective

CIRCUS quanta are found. During both of these searches, the algorithm looks sym-

metrically on either side of the anchor calibration region, wrapping at the boundaries

of acquired k-space volumes as needed (e.g. blue interleaved volume in Figure D.5).

The Ncal + Nquan sampled volumes are then interleaved into a new k-space volume.

The effective time t̄i of each interleaved k-space volume is calculated to be either the

average of the effective sampling times ti of all the constituent k-space volumes (i.e.

equal weighting between calibration regions and effective quanta) or the average of

the effective sampling times of only the constituent calibration regions. For example,

the effective sampling time options of I1 in Figure D.5 would give:

(t̄1)equal =
1

5
(t1 + t2 + t3 + t4 + t6)

(t̄1)calib =
1

5
(t1 + t3)

(D.4)

The output of the interleaving algorithm is a 5D array containing 3D k-space

volumes for each coil and each of the interleaved volumes, as well as a vector of the

effective sampling time for each of the interleaved volumes.

iNote that for snapshot sampling, these will all be equivalent.
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Figure D.1: The individual k-space volumes are interleaved prior to CS
reconstruction. The algorithm anchors on calibration regions (shown with
coloured circles), jumping the anchor point by a user specified amount
at each iteration (jump of 2 shown in the figure). The algorithm then
searches for the nearest Ncal calibration regions and Nquan effective quanta
to interleave into the final k-space volume Ii. The effective time t̄i of
each interleaved volume is calculated from either an equal contribution of
constituent ti, or from ti taken only from constituent calibration regions.

D.1.7 Perform CS Image Reconstructions

Coil sensitivity profiles for the appropriate number of coils (through knowledge of

the size of the interleaved k-space array) are generated. The k-space data and coil

sensitivity profiles are then passed to BART for CS reconstruction using the regular-

ization method and weight specified by the user. The output is a 4D array containing

reconstructed 3D images for each of the corresponding effective sampling times.

D.1.8 Calculate Objective IQM Scores

For each reconstructed image, the algorithm seeks the sampled time t (stored in a

vector as described in section D.1.3) that most closely matches the effective sampling

time of the reconstructed image. The synthetic phantom at time t is then generated,

and serves as the reference image. The RMSE, GMSD, SSIM, MS-SSIM, and IW-

SSIM are then calculated between the reconstructed image and the reference image,

where each IQM is implemented as described in section ??.
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D.1.9 Recover Quantitative Parameters

For each voxel, the reconstructed time series is extracted. The appropriate temporal

model for the feature (equations D.1 to D.3) is then fit to the data using a least-squares

fitting routine (specifically the lsqcurvefit routine from the MATLAB optimization

toolbox).

D.2 Quantitative Parameter Recovery Errors
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Figure D.2: The change in mean error for the recovered initial magnitude
parameter in the exponentially decaying features across each embedded
cylindrical feature, as undersampling factor and regularization weight in-
crease.
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Figure D.3: The change in mean error for the recovered decay parameter
in the exponentially decaying features across each embedded cylindrical
feature, as undersampling factor and regularization weight increase.
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Figure D.4: The change in mean error for the recovered amplitude param-
eter in the sinusoidally evolving features across each embedded cylindrical
feature, as undersampling factor and regularization weight increase.
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Figure D.5: The change in mean error for the recovered period parame-
ter in the sinusoidally evolving features across each embedded cylindrical
feature, as undersampling factor and regularization weight increase.
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