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Abstract

Structural biology has been long concerned about the emergence of protein structures

and the convergence to particular folds. It can be said that protein structures are the

realization of genetic information given thermodynamical and biological constraints.

Given these properties, let’s refer to a structure as a phenotype. As such, protein

structures can be analysed as shapes within a geometric morphometrics framework,

and as a phenotype in a quantitative genetics framework. Here, I present a robust

way to analyse protein structures statistically in either evolutionary or molecular

dynamics sampling. I show how General Procrustes Analysis (GPA) can be applied

to aligned molecular dynamics snapshots, and provide evidence that the scaling com-

ponent of GPA is not applicable to protein structures. I also show how analysing

protein structures as shapes can give insights into dynamic and evolutionary patterns.

Analysing proteins as shapes also gives the possibility to apply known techniques to

assess modularity. Traditional techniques have dimensionality limitations. I show

how to overcome these limitations and propose a robust way to analyse protein struc-

ture modularity. I show how a protein can be partitioned into biologically meaningful

clusters, which can be used for description, protein prediction, or analysis of protein

dynamics and evolution. The meaning of such modules is discussed further, and a

hierarchical model for protein structure modularity is proposed. Also, methods to

explore different kinds of modules at different kinds of hierarchy are explored.

Finally, given that protein structures are phenotypes, the potential response to

selection can be assessed by means of comparative quantitative genetics. I show that

traditional comparative approaches have a heavy computational burden, therefore

making the analysis infeasible. Nevertheless, similar approaches are developed to

efficiently and accurately generate the estimations when the phenotypic variance is

partitioned based on repeated measures, using a pooled-within covariance estimation.
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Chapter 1

Introduction

It is often assumed that the information required to produce a properly folded

polypeptide is mostly contained in the sequence of the encoding gene (Anfinsen

and Scheraga, 1975). However, the protein structure universe is smaller than the

sequence universe (Soundararajan et al., 2010). Here, universe is defined as the bi-

ologically plausible sequences and structures. The mechanisms through which the

two universes differ remain unclear (Tiana et al., 2004). There is a fundamental

relationship between protein structure and function (Osadchy and Kolodny, 2011),

and a significant effect in the biological processes is due to restrictions in the con-

formational space in tight cellular compartments (Thirumalai et al., 2010). Thus,

the study of evolutionary patterns in protein structures is useful to understand the

evolution of function and adaptation as a whole.

Despite the literature produced in recent years about protein structure evolution

(Orengo et al., 2001; Kinch and Grishin, 2002; Trifonov and Berezovsky, 2003; Xia

and Levitt, 2004; Goldstein, 2008; Sternberg et al., 2009; Finn et al., 2010; Lakner

et al., 2011; Fleishman and Baker, 2012; Debès, 2013, and references therein), little

is known about how the three dimensional (3D) structures of proteins change over

time. As more data are gathered, more principles of protein folding are questioned.

There is a need for different methods and models to explain the protein folding

patterns and processes. However, the exploration of different methods to evaluate

protein structure and its evolution, the evaluation of other modularity levels in pro-

tein structures other than the domain, the quantification of the genetic contribution

(and therefore the response to selection) of protein structure, and the applicability of

a quantitative genetic approach to the study of protein structure evolution, remain

open non-trivial issues.

The first question can be addressed by means of geometric morphometrics (GM)
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(Macleod, 2002; Zelditch et al., 2004; Slice, 2007, and references therein): statistical

analysis of shapes borrowed from biological sciences (Adams and Naylor, 2000, 2003).

It allows for an efficient comparison of structures abstracted as shapes, an evaluation

of different geometric parameters, and discovery of shape patterns across samples.

Exploring the shape space, and therefore structure, will allow us to gain insights

into protein structure and function, as well as underlying dynamic and evolutionary

relationships.

The second question applies to another area of GM: the phenotypic evolution and

morphological integration. The degree of co-variation between parts of a structure

(its modularity) can be analysed and studied by means of morphometric methods

(Klingenberg, 2009). It can be assessed by analysing the covariance between the

variables of a given shape. This allows the evaluation of evolutionary and/or dynamic

modules, which can be defined as clusters of internally correlated residues within

protein structures. Applying appropriate statistical tests and mathematical tools,

such co-varying behaviour can be assessed.

The third and fourth questions are tackled in a comparative quantitative genet-

ics framework (Steppan et al., 2002). This framework unifies the fields of macro-

evolution and micro-evolution, and allows for the assessment of how natural selec-

tion affects traits (Eroukhmanoff and Svensson, 2011). It is also applicable to protein

structures since they are themselves phenotypes (Csaba et al., 2005): They evolve

according to selective pressures and have underlying genetics that interact with envi-

ronmental factors to create the actual structure. Analysing the response to selection

of a given structure might address evolutionary questions, and hopefully also be

applicable to other problems in biology, biotechnology, medicine and/or systems bi-

ology.

This thesis is organized in four thematic chapters (excluding the present intro-

duction and the conclusions chapter):

Chapter 2 talks about the geometric morphometrics (GM) tools applied to protein

structures. It gives a general background of GM methods: the application of GM

to protein structures, the differences between traditional and molecular applications.

Finally I will show applications of such methods in two real datasets: the α-amylase

and Niemann-Pick disease, type C1 (NPC1) proteins.
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Chapter 3 tackles the protein modularity problem. It gives background develop-

ment of a clustering method and significance testing, and the results of simulation

studies. It ends by explaining the application of this method for generalized 3D

shapes.

Chapter 4 discusses further the modular architecture of protein structures, from

its putative causes for emergence to potential ways to explore the hierarchy. In this

chapter, the domain definition and domain as modules are discussed.

Chapter 5 contains background, modelling, and analysis of the comparative quan-

titative genetics approach applied to protein structures. In the modelling section the

classic quantitative genetics models are modified to be applicable within a protein

structures framework. These methods are applied to simulations of phenotypic data,

as well as simulation of dynamics. It will be concluded by the application of the

methods developed to a subset of the α-amylase data referred to above.
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Chapter 2

Morphometrics of protein structures: Geometric

morphometric approach to protein structure evaluation

Geometric morphometrics is a collection of approaches for the multivariate statistical

analysis of Cartesian coordinate data (Slice, 2007). The “geometry” referred to

by the word “geometric” refers to the spatial configuration of the estimation of

mean shapes and the description of sample variation of shapes using Procrustes

distance (Kendall’s shape space) (Rohlf, 2002). The multivariate part of geometric

morphometrics is usually carried out in a linear tangent space to the non-Euclidean

shape space in the vicinity of the mean shape1. It is mainly based on landmarks which

are “discrete anatomic loci that can be recognized as the same loci in all specimens

of study” (Zelditch et al., 2004, p.443), and must: 1) be homologous anatomical loci;

2) not alter their topology position relative to other landmarks; 3) provide adequate

coverage of the morphology; 4) consistently be found; and 5) lie within the same

plane (Zelditch et al., 2004).

Landmark data is more informative than traditional data since its coordinates

also contain positional information and thus geometric structure. Once homologous

landmarks are assigned, “noisy” factors affecting the dimensionality and degrees of

freedom of the possible shape analysis (such as rotation, translation and size) are

stripped by means of generalized Procrustes superimposition (GPS). This is done by

(Adams et al., 2004; Zelditch et al., 2004):

1. Assigning homologous landmarks to meaningful and descriptive parts of the

shape (Figure 2.1B)

2. Centering each configuration of landmarks at the origin by subtracting the

coordinates of its centroid from the corresponding (X or Y) coordinates of each

1http://life.bio.sunysb.edu/morph/glossary/gloss1.html
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landmark: Translating each centroid to the origin, which removes the positional

variation (Figure 2.1C).

3. Scaling the landmark configuration to unit centroid size by dividing each co-

ordinate of each landmark by the centroid size configuration (Figure 2.1D).

4. Setting one configuration as reference and rotating the other configurations

to minimize the summed squared distances between homolog landmarks, thus

removing rotational variation (Figure 2.1E).

The above method can be expressed as (Rohlf and Slice, 1990):

Xi = ρXH + 1τ (2.1)

where matrix X is the original configuration, ρ is the scaling done to X, 1τ is the

translation performed to Xi to a reference position, and H is a rotation matrix with

an angle of θ of the form:

H =

[
cos θ − sin θ

sin θ cos θ

]

Once the above is done, the set of all matrices representing the landmark config-

urations become the shape space, and its dimensions are given by:

KM − (M + 1) (2.2)

Where K is the number of landmarks, and M the number of dimensions in each land-

mark. After removing the effects of size, rotation and translation, 2K−3 dimensions

are left for 2D data and 3K − 4 for 3D data (Zelditch et al., 2004).

The comparison and analysis is based in the the Procrustes distance (DP ). GPS

applies the Procrustes analysis method to align a population of shapes instead of

only two shape instances (Dryden and Mardia, 1998). The Procrustes distance is the

square root of the sum of squared differences between the positions of the landmarks

in two optimally superimposed configurations (C1 and C2) (Rohlf, 2002):

d2P =
K∑
j=1

[(xj1 − xj2)
2 + (yj1 − yj2)

2] (2.3)
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Component Analysis (PCA), Canonical Variates Analysis (CVA), Principal Coordi-

nates Analysis (PCoA) or classical multidimensional scaling (cMDS), Partial Least

Squares (PLS), among others, can be used to explore the relationship between ob-

servations and between variables.

All these methods can be applied to analyse structures without outliers, but have

strong biases when outlying points are included. A sibling field to GM, Dysmorpho-

metrics (Claes et al., 2012), can be used to explore the impact of outlier variables.

Dysmorphometrics is in summary, “the modeling of morphological abnormalities”

(Claes et al., 2012). Such exploration can be performed by means of a corrected

maximum likelihood estimates approach (as in Claes et al., 2012) or by means of the

Euclidean distance matrix analysis approach (Claude, 2008). In the latter (simpler

and less parameterized) approach, an inter-landmark distances matrix (form config-

uration) is computed using the traditional Euclidean distance for each entry in m

dimensions:

d(a, b) =

√√√√ m∑
1

(am − bm)2 (2.4)

where d(a, b) stands for the Euclidean distance between variables a and b. Therefore

the form matrix (FM) is (Claude, 2008):

FM =

(
d1,1 ··· di,1

...
...

...
d1,j ··· di,j

)

where i and j are landmarks.

FM is therefore a square symmetric matrix, with zeros in the diagonal and

invariant of translation and rotation. With FM computed, different hypotheses can

be tested and influential landmarks can be detected (Lele and Richtsmeier, 1992; Lele,

1993; Lele and Cole, 1996). If two forms are identical, they will have the same entries

in the FM matrix. We can compute the matrix of differences in form (The form

difference matrix or FDM as named by Claude, 2008) between two configurations S1

and S2 by:

FDMS1
S2

= FMS1 � FMS2 (2.5)

If by multiplying FMS1 by a scalar gives you the second FMS2 or vice versa,

one can tell that both configurations have the same shape, meaning also that all

elements of FDM are equal (Claude, 2008). Claude (2008) after the work of Lele and
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Richtsmeier (1992), proposed a way to examine the influence of landmarks (variables)

in shape difference by calculating the sum of residuals (from the median) for each

landmark given the FDM matrix. The landmarks that influence the differences in

shape the most would have a higher score which can be mapped to the given shape.

2.1 GM methods in protein structures

2.1.1 Abstracting a protein structure as a shape

A protein fold can be defined as a 3D geometric shape. Sequence analyses help

to understand some trends, but explain little about geometry. GM can be used

to perform shape analysis from a geometric point of view. It also can be used

to give insights into the phylogenetic relationships of the structures rather than

the sequences. However, the application of GM to protein structures is not trivial.

The scaling component of the Procrustes analysis have no conceptual equivalent for

proteins. Since organisms grow, it makes sense to extract the size effect on shape

in order to compare young with adults. On the other hand, in proteins the atoms

or bonds do not stretch or grow, and therefore the scaling approach (as proposed in

Adams and Naylor, 2000, 2003) is not appropriate.

In (Adams and Naylor, 2000) and (Adams and Naylor, 2003) proposals, they:

• Abstract a residue as a landmark

• Evaluate its homology throughout the samples, using ClustalW (Thompson

et al., 1994)

• Delete gapped columns

• Perform morphometric analyses

The use of a sequence alignment without structural information to infer structural

homology is not appropriate, since the amount of gaps that can be allowed in a loop

region can be different than in other regions of the protein (Kann et al., 2005; Kjer

et al., 2007), and therefore the definition of structural homology can be different as

well. Moreover, since structures are more conserved than sequences, the alignment
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based on the structures has more reliable information of equivalent (homologous)

residues in more distant clades (Wohlers et al., 2012).

In contrast, I used protein structural alignments which has been worked on ex-

tensively (Kolodny et al., 2005; Hasegawa and Holm, 2009; Poleksic, 2011; Joseph

et al., 2011; Shibberu et al., 2012). In particular, I used a flexible structure alignment

method (MATT; Menke et al., 2008). This strips out rotational and translational in-

formation as well as the variability induced by flexible hinges, therefore guaranteeing

better fit and homology of the aligned residues.

The abstraction of the residues and landmarks is similar to that in Adams and

Naylor (2000) and Adams and Naylor (2003). However, those papers do not fully

describe the way the abstraction is made. Here I assign a landmark to the residues’

centroids defined by (x,y,z):

(
1

A

A∑
j=1

Xj,
1

A

A∑
j=1

Yj,
1

A

A∑
j=1

Zj) (2.6)

where A will be the number of heavy atoms (C, O, N) that constitute the side

chain of a residue including the alpha carbon (Cα). This procedure takes into account

only the homologous residues. It captures the variance of both the backbone and the

side chain. In the case of glycine, the centroid is the Cα itself.

2.1.2 GPS vs Protein structure alignment

Both GM methods and traditional protein alignment methods strip out the rotation

and translation of the configuration. One might ask what are the differences between

the two methods. There might be an effect of the scaling process in GPS, the two

methods could possibly be used interchangeably, and if so, what are implications of

using one versus the other. To test this, the GM methods and traditional analyses

have to be done independently but comparatively using the same variables. However,

GPS requires the homology information regarding the landmarks. As mentioned

before, this homology is estimated by the multiple structural alignment. The GPS

is an alignment itself, so providing a starting alignment might bias the result of the

superimposition. To cope with this:

1. The protein structures are aligned using MATT software (Menke et al., 2008)
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for both approaches.

2. The homologous residues’ index for each structure are to be recorded.

3. For the GPS, the coordinates of the residues corresponding to the recorded

indices are used. This process is performed for each independent structure.

The effect of scaling in GPS: Insights from HOMSTRAD and SABmark

superfamily databases

For protein structures it is expected that the scaling does not play a major role in

the alignment of structures. To test this assumption, I analysed the HOMSTRAD

(386 datasets) and SABmark (425 datasets) superfamily subsets reported in MATT’s

paper (Menke et al., 2008). The Homstrad database (Mizuguchi et al., 1998) includes

structures that are manually curated, guaranteeing their homology and avoiding re-

dundant structures. The Sequence Alignment Benchmark (SABmark) (Walle et al.,

2005) includes structures that cover the entire known fold space using SCOP (Murzin

et al., 1995) criteria, with the inclusion of un-alignable but apparently similar se-

quence (Walle et al., 2005). The former database was designed to store structures

based on the quality of the X-ray analysis and accuracy of the structure, while the

latter database was devised to test multiple alignment problems. Using MATT-

reported alignment (Menke et al., 2008, http://groups.csail.mit.edu/cb/matt/) the

residue homology was defined. Once the residue index was defined as homologous,

the coordinates of the corresponding centroid (see section 2.1.1) for that residue were

computed and stored. GPS with and without scaling was performed to the resulting

centroid’s coordinates. Figure 2.2 shows the results of this comparison.

All datasets (Figs. 2.2a and 2.2b) showed the same behaviour with and without

scaling, hence confirming the expectation given the fixed lengths of atomic bonds.

From this point further, all GPS analyses made here will be referred to as non-scaled

GPS.

At this point it is important to state that given the lack of scaling to a unit

size, we remain in the Euclidean space. In GM analysis of 3D shapes, once rotation,

translation, and scaling have been stripped of the data, the latter are placed into a

new space called Kendall space or shape space (Zelditch et al., 2004). In this space,

10





a set of configurations (group of shapes) have the following dimensions:

D = KM − M(M − 1)

2
(2.7)

K being the number of landmarks and M the number of coordinates per landmark.

In the 3D framework three degrees of freedom are lost but seven dimensions are

removed (one in size, three in the translation, and three in rotation), thus 3K - 7 are

the dimensions for the GM analysis. However, if the scaling is not performed, and

the space remains Euclidean, the true dimensionality will be 3K − 6.

Comparing MATT flexible alignment and GPS: Results from the

HOMSTRAD and SABmark super family databases

Since GPS aligns the structures based only on rotation and translation, it is logical to

think of it as having a rigid body super imposition alignment. GPS does not allow

any deformation of the structure (shape), unlike software, such as MATT, which

allows for flexibility. Therefore, it is plausible to hypothesize that a flexible alignment

will perform better than GPS, with GPS being similar to a non-flexible alignment

(Menke et al., 2008; Konc and Janežič, 2010; Nguyen et al., 2011; Daniluk and

Lesyng, 2011; Joseph et al., 2012; Shah and Sahinidis, 2012, among others). Other

flexible structural alignment software have shown a slightly better performance than

MATT (e.g. Joseph et al., 2012); however, MATT is the only software that reports

the alignment on their website (http://groups.csail.mit.edu/cb/matt/). This saves

time since protein structure alignment can be time consuming for big datasets. Also,

the improvements are not significant (See Joseph et al., 2012) and MATT returns

more core residues than most of its competitors, as well as a statistical test of the

“goodness” of the alignment (Menke et al., 2008).

There is not a particular trend towards either of the alignment methods evaluated,

which differs from the expectations (Figs. 2.3a, and 2.3b). In spite of some outliers,

the average RMSDs per dataset in each of the databases are very similar (Figs. 2.3c,

and 2.3d). However, the SABmark dataset (Fig. 2.3d) shows a slightly better fit

with GPS than with MATT. This is a striking observation since the general belief

(some evidence gathered) is that if a protein structure is allowed to bend, the fit will

be better. These results can be explained in the following cases:
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4. Since GPS depends on the definition of homology created by MATT, GPS will

be functioning as a secondary alignment and an extra optimization.

Giventhis lack of difference on average, I will keep using MATT in the rest of this

thesis, since it has to be used in the definition of homology for the GPS.

2.1.3 Form Difference in protein structures

Once aligned, the protein structures abstracted as shapes can be analysed by means

of dysmorphometrics. To detect influential residues in a geometric perspective, the

form difference matrix (FDM; see equation 2.5) can be analysed. In the context of

geometric morphometrics, the FDM accounts for landmarks that have an excessive

variation among a pair of shapes. This “excessive variation” will skew the statistical

analysis towards the influential point in an effect called “Pinocchio effect”. Adding

the sum of the differences from the median value per column (variable) and ranking

the positions, will yield the most influential point (I) in the data. That could be

summarized as:

I = maxc(
∑
i

|FDM −median(FDM)|ic) (2.8)

c being the number of columns and FDM, the form difference matrix.

However, as explained in equation 2.5, this FDM is the representation of the

difference between two shapes. We can generalize this by summing the residuals of

all shapes versus a hypothetical mean shape, which for simplicity can be calculated

as the per-variable per-dimension average. That is, the average of each dimension

of each landmark. This approach will then return a Form Difference (FD) value

per landmark; however, this value is not bounded and it is difficult to interpret.

Also, in the GM context, only the maximum value is important, while the extremely

conserved points are of importance for protein datasets. For this reason I scaled

the resulting FD vector ( �FD) such that it is bounded from -1 (least variation) to 1

(highest variation) by:

FDs =

(
�FD −min( �FD)

max( �FD)−min( �FD)
∗ 2

)
− 1 (2.9)

To illustrate how this works, a simulation of 500 hexagons was performed (Figure

2.4). Given an initial shape, for each point and each dimension in the point, a
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Table 2.1: Scaled FD values for the simulation illustrated in Figure 2.4.

Landmark Standard deviation Scaled FD

1 0.005 -1
2 0.05 -0.78
3 0.05 -0.33
4 0.2 1
5 0.05 -0.28
6 0.05 -0.83

have on the shape, with +1 being the most variable. From Table 2.1, one can also

see that the “average” points are closer to the least variation than to the highest

one, thus displaying a negative tendency. At first sight it might seem trivial to use

the FDs since the standard deviation (sd) seems to correlate with it. However, FDs

represents the influence of a landmark relative to the overall shape, as opposed to the

sd which represents the variation at a single variable level. Variables with high sds in

a medium-sd neighbourhood will have very high FDs, while very low-sd points will

have low FDs. This suggests that the sd can be used as proxy for FD. However, in

a setting where all the points have high sd, the relation between sd and FD is not

as direct. Moreover, for the relationship between sd and FDs to be proportional,

a model of isotropic variation in all dimensions is needed. Such model assumes an

equal amount of variation at each landmark and at each dimension in each landmark.

It also assumes that landmarks are independent, which is not a fair assumption in

most shape analysis (Klingenberg, 2003).

Non-scaled FD can also be used to screen a set of points in a shape to look for

Pinocchio outliers, using statistical tests as the Dixon’s Q test or the Grubbs’ test

for outliers.

In protein structures one can compute the FDs and visualize it in the protein

structure coloring. To explore a more complex system than the hexagon, a protein

simulation was also performed in the same fashion as the one done for the 2D case.

In this case, more extreme points were used for visualization purposes, with 0.0005

being the lowest variation and 0.5 the highest. The protein used for the simulation

and visualization was the Porcine Pancreatic Amylase (PPA) with pdb code 1PPI

(Figure 2.5a).
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because the multiple structural alignment version of MATT cannot process this many

structures reliably or it requires a prolonged amount of time to finish (Hleap et al.,

2013a).

After the alignment, the FDs was calculated as before. Figure 2.5b shows the

mapped FDs values in the Porcine Pancreatic Amylase (PPA) structure. As ex-

pected, most of the highly variable values (and therefore with positive FDs) are in

loops, with the residue 10Arg being the most variable.. This latter residue is also

the beginning of the chain after the signal peptide, and therefore its high variability

might not disrupt the protein greatly despite being conserved among amylases when

analyzed with PDBsum (de Beer et al., 2013). The residue with the least variation

was found to be 136Phe which, surprisingly, was also found in a loop. The 136Phe

residue is not reported to bind to ligands or to have any catalytic activity. However,

this residue is within 15 Å (in a Cα − Cα perspective) of metal and ligand binding

residues and it is also highly conserved.

A correlation analysis between the FDs, entropy, ΔΔG, and evolutionary trace

was performed to test the relationship between the FDs and relative measures of

residue importance. The entropy was computed using the programWebLogo (Crooks

et al., 2004) with default parameters. The ΔΔG was performed by mutating all

residues to Alanine and computing the average difference in energy from the origi-

nal residue. This procedure was performed using the program FoldX (Schymkowitz

et al., 2005), with the default options for the exhaustive replacement of residues to

Alanine. The evolutionary trace (ET) estimates a functionality score for each residue

important residues based on sequence conservation patterns and their mapping onto

the protein surface, generating functional clusters to generate clusters identifying

functional interfaces (Lichtarge et al., 1996). The ET scores were computed with

the program Evolutionary Trace (Wilkins et al., 2012). The input maximum likeli-

hood tree was previously inferred using FastTree (Price et al., 2010) with WAG as a

substitution matrix, and the alignment was provided as stated above.

Figure 2.6 shows the relationship between some measurements of residue impor-

tance and the FDs, as well as their co-relationship. There is a weak (|r| < 0.3)

relationship between the FDs with entropy and with the evolutionary trace and no

relationship with the ΔΔG. The relationship with the entropy (Figure 2.6a) was
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expected since there is a correlation between the centroid and the sequence. It was

also expected because the FDs depends on the degree of variability (entropy) in the

structure as shown in figures 2.4 and 2.5. However, the weakness of this relationship

was not expected. This could be explained by the fact that the abstraction of the

structure as a shape (e.g. landmark extraction) includes some information from the

sequence, but some structural information might have been confounded. However, I

believe that a more plausible explanation is the fact that the structure deformation

is following a more complex process than the one that can be explained by ΔΔG,

ET, and entropy themselves.

In the case of the relationship between FDs and the evolutionary trace (Figure

2.6d), a stronger signal was expected, since the evolutionary trace (ET) measures

the functional importance of sites. However, the weak correlation might also be

due to the zero-bound values of ET, as can also be seen in its lowered correlation

with entropy (Figure 2.6b), where one can see that the bound of ET causes a sub-

estimation of the correlation. That is, given that the points tend to aggregate towards

the zero boundary, the correlation estimation is affected by an artificial zero slope

aggregation towards that boundary. Nonetheless, this under-estimation does not

fully explain the low correlation. Another explanation is that functionally important

sites will be more geometrically conserved, but there might be higher geometric

conservation in other sites related to the geometry of functionally important sites,

burying the FDs value under higher conserved (geometrically) sites.

2.2 Applicability of GM-like methods

So far I have explained how to extract the shape of a protein and enumerate some

possible analyses that can be made with this type of data. However, I have not

gone in depth into the biological meaning of such analysis. This section will go over

two test sets: the homologous alignment of the α-Amylase family and a molecular

dynamic simulation of the NPC1 protein.
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2.2.1 Statistical analysis of the α-Amylase evolutionary variation

The α-Amylase-like family catalyzes the hydrolysis of α-(1,4) glycosidic bonds of

polysaccharides, therefore being classified as glycoside hydrolases (Davies and Hen-

rissat, 1995) in the family 13 (Svensson and Janeček, 2015). It is a multi-reaction

catalytic family since its members can catalyze different reactions (hydrolysis, trans-

glycosylation, condensation and cyclization) (Ben Ali et al., 2006). All members of

this family share a highly symmetrical TIM-barrel ((β/α)8) catalytic domain (Svens-

son, 1994) (Figure 2.7), including those without any catalytic activity (Fort et al.,

2007).

Figure 2.7: Structure of the catalytic domain of the α-Amylase. The TIM-barrel is
highlighted. The image was rendered using VMD (Humphrey et al., 1996) and POVray
(www.povray.org). The structure used to vizualize this is the PDB 1BF2 chain A from P.
amyloderamosa.

The TIM-barrel fold is highly versatile and widespread among the structurally

characterized enzymes, being present in almost 10% of them (Farber, 1993; Höcker

et al., 2001; Wierenga, 2001; Gerlt and Raushel, 2003). There has been a debate

about whether the type of evolution that this fold has been through is convergent,

divergent or a mixture of both (Farber, 1993), but there is some evidence suggest-

ing the divergent evolution hypothesis is the most likely (Höcker et al., 2001). The

catalytic activity and substrate binding residues occur at the C-termini of β-strands

and in loops that extend from these strands (Svensson, 1994). The catalytic site

includes aspartate as a catalytic nucleophile, glutamate as an acid/base, and a sec-

ond aspartate for stabilization of the transition state (Uitdehaag et al., 1999). The

21



catalytic triad plus an arginine residue are totally conserved in this family across all

catalysis-active members (Svensson and Janeček, 2015).

The sampling of homologous structures was made as shown in section 2.1.3.
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Geometry, function, and classification: insights from the principal

coordinate analysis

After aligning the structures and applying the methods described in section 2.1, a

principal coordinate analysis (PCoA) was performed to the resulting landmark data

(Figure 2.8). Analysing the geometry of the protein structures using a PCoA can give

us insights into the relationships of such shapes. This procedure tests for differences

in the structures being compared, and will show patterns of clustering based on their

geometric similarity which in turn might be highly correlated with the functional

similarity (Wright and Dyson, 1999).

The PCoA of the multiple structure alignment (Figure 2.8) showed seven distinct

and tightly clustered groups:

Chloride-dependent α-Amylases

The first group corresponds to the Chloride-dependent α-Amylases (with amy-

lase function or EC # 3.2.1.1). The similarity among these α-amylases is

not a new observation. D’Amico et al. (2000) identified potential chloride-

dependent amylases, based on the chloride allosteric activation positives: A)

PPA or porcine (Sus scrofa) pancreatic α-amylase; B) HPA or human (Homo

sapiens) pancreatic α-amylase; C) TMA or Tenebrio molitor (mealworm) α-

amylase; and D) AHA or Pseudoalteromonas haloplanktis (before classified as

Alteromonas) α-amylase. They showed that the side chains of residues Arg195,

Asn298 and Arg/Lys337 (PPA numbering) are related to chloride ion binding

capabilities (Da Lage et al., 2004).

Thermal/alkalostable or calcium independent α-Amylases

The next tightly defined group in Figure 2.8 are structures that show higher sta-

bility in extreme pH and/or thermal conditions or are calcium independent. As

shown in Figure 2.8 there is a subgroup of mutants (dotted red oval) with higher

structural shift from the main group. In this sub-cluster, three thermo-stable

α-amylases (EC # 3.2.1.1) mutants from the genus Bacillus can be found. In

two of the three cases (3DC0, Rahimzadeh et al., 2012; 1BF2, Fujimoto et al.,

1998), directed mutagenesis was performed to increase thermal stability. The

1UA7 represents a mutant of the catalytic site that is not supposed to change
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stability or function with respect to the wild type (Kagawa et al., 2003). How-

ever, this structure was modeled using 1BF2, and the clustering observed in its

structure suggests a higher performance or thermal-stability than other non-

chloride binding bacterial amylases. The rest of the group includes α-amylases

that exhibits higher thermal/alkaline stability or enhanced efficiency with re-

spect to other amylases of similar function (α-1,4-glucan-4-glucanohydrolase,

EC # 3.2.1.1) (Shimi et al., 2008). Most of these structures were created by di-

rected mutagenesis to enhance their industrial applicability by either increasing

their thermal or alkaline resistance (Hwang et al., 1997; Machius et al., 1998;

Brzozowski et al., 2000; Machius et al., 2003; Lyhne-Iversen et al., 2006; Shi-

rai et al., 2007; Shimi et al., 2008; Alikhajeh et al., 2010) or to make them

calcium independent (Prakash and Jaiswal, 2010). There is also a structure

with a different enzymatic classification, the maltohexaosidase from Bacillus

licheniformis (1WP6; glucan 1,4-α-maltohexaosidase or EC # 3.2.1.98). De-

spite catalysing a slightly different reaction, its native state exhibits higher

alkaline stability than other native amylases (Kanai et al., 2004a).

Cyclomaltodextrinase-like α-Amylases

The Cyclomaltodextrinase + Neopullulanase + Maltogenic Amylases group

(Figure 2.8) includes enzymes classified in seemingly different functional groups

(Cyclomaltodextrinases EC # 3.2.1.54; maltogenic amylases, EC # 3.2.1.133;

neopullulanases EC # 3.2.1.135) that can hydrolyze cyclomaltodextrins effi-

ciently (Park et al., 2000) but cannot hydrolyse starch and pullulan as effi-

ciently (Lee et al., 2002). However, Lee et al. (2002) have shown that despite

their different enzyme codes, there are no thoroughly documented differences

in the literature about their function or structure. They proposed to unify

this group under the same enzyme number and the same name (Cyclomal-

todextrinases). The result, shown in Figure 2.8, suggests that this is the case

given our clustering based on shape. It is important to mention that this

Cyclomaltodextrinase group has to be distinguished from the Cyclomaltodex-

trin glucotransferase group, since those are extracellular enzymes whereas the

Cyclomaltodextrinase-like α-Amylases are intracellular (Lee et al., 2002).
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Cyclomaltodextrinase-like α-Amylases with structural shifts

The Neopullunanases with structurally shifting mutations groups is a subset

of the Cyclomaltodextrinases described above. They carry the same functions

(mainly Neopullunanse; EC # 3.2.1.135), but have been subjected to mutage-

nesis either for binding studies (i.e. 2FH8 and 2FHB ; Mikami et al., 2006) or

to inactivate the enzyme using site-directed mutagenesis (Ohtaki et al., 2001;

Yokota et al., 2001; Ohtaki et al., 2004; Mizuno et al., 2005). As can be seen

in Figure 2.8, even a small number of substitutions cause structural shifts that

can be identified by means of a PCoA.

Cyclomaltodextrin glucotransferases-like α-Amylases

This group is composed entirely of bacterial (mainly from the genus Bacil-

lus) α-Amylases that catalyze the conversion of starch to cyclodextrins (EC #

2.4.1.19) (Kanai et al., 2004b). As can be seen in Figure 2.8, it is a tightly

defined group markedly different from the rest. These differences can be ex-

plained by the presence of four aromatic residues that are not present in other

amylases and are strongly associated with the protein function (Tonkova, 1998;

Kanai et al., 2004b).

Maltotetraose-forming exo-amylase

This is a singleton group, containing the structure 1GCY (Mezaki et al., 2001)

from Pseudomonas stutzeri. It is a glucan 1,4-alpha-maltotetraohydrolase (EC

# 3.2.1.60) that works hydrolyzing amylaceous polysaccharides and remov-

ing successive maltotetraose residues from the non-reducing chain ends (Fleis-

chmann et al., 2004). It behaves as an exo-amylase and structural differences

with respect to endo-amylases were expected. These differences allow the re-

moval of the residues at the end of the chain instead of just breaking the 1-4

glycosidic linkages. The PCoA in Figure 2.8 expresses these differences by

showing a distance between this structure with the “endo-amylases”.

Sucrose-related isomerases and hydrolases

This group contains the structures mainly classified as Sucrose glucosylmutases

(or Isomaltulose synthase EC # 5.4.99.11)(Fleischmann et al., 2004). However,

it also contains three structures (namely 2ZIC, 2ZID, and 4AIE) with Glucan
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1,6-alpha-glucosidase (EC # 3.2.1.70) function (Kim et al., 2005; Hondoh et al.,

2008; Møller et al., 2012). Of these three structures, 2ZIC and 2ZID have been

subjected to directed mutagenesis to improve their catalytic efficiency. This

group also harbors an α-glucosidase (2ZE0; Shirai et al., 2008) and an Oligo-1,6-

glucosidase (Isomaltase; 1AXH) mutant (Yamamoto et al., 2011). In the rest of

structures there are Isomaltulose synthases (EC # 5.4.99.11), including three

(4GIN,4GI6, and 4H2C) misannotations: inexistent EC # 5.4.11.99 instead

of EC # 5.4.99.11. Despite the somewhat disparity in function they all are

classified in the GH13 family (Cantarel et al., 2009; Svensson and Janeček,

2015), and the results shown in Figure 2.8 suggest a high structural similarity.

As can be seen, the principal coordinate analysis of protein structures are tightly

correlated with function, and this might give some insights into misannotations or

potential functional discoveries. It can be useful for the classification of proteins.

This clustering scheme might show an apparent correlation with phylogeny. However,

this approach was shown to be sensitive to structural changes. It identified even

mutants from the wild type if a structural shift has occurred. This may suggest that

this approach is capturing more structural similarities than only phylogenetic ones.

It would be interesting to explore phylogenetic signal free variables to test such a

hypothesis. This approach seems to be robust to find functional/structural groups.

Phylogeny, function and structural similarity

To support and compare the results from the PCoA (Figure 2.8), a Maximum Like-

lihood (ML) analysis was performed using RAxML (Stamatakis, 2006). One hundred

rapid bootstrap replicates (Stamatakis, 2006) were computed to estimate the relia-

bility of the resulting phylogeny. The substitution matrix used was WAG with the

GAMMA model of rate heterogeneity. The alpha-parameter was estimated and the

empirical amino acid frequencies were used. Figure 2.9 shows the result from the

ML search, colored by the EC numbers gathered from the PDB files.

Most of the phylogeny correlates to the function (according to the Enzyme Com-

mission classification) with the exception of the genus Pseudoalteromonas. This

genus clusters robustly (100% bootstrap) with the animal clade and some bacteria
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D’Amico et al., 2006; Feller, 2010; MacGregor et al., 2001; Janeček et al., 2013).

Da Lage et al. (2004) proposed that there should be an ancient horizontal gene

transfer between a bacterium and a putative animal host. However, P. haloplanktis

is an Arctic free-living bacterium, and therefore an HGT event is unlikely to happen.

However, both structurally and in sequence, the α-Amylase of the psychrophilic

bacteria is similar to the animal α-Amylase, supporting the possibility of an ancient

HGT. Nonetheless, it is also known that functional and/or structural constraints

allow only a restricted range of substitutions at each site. This effectively limits the

feasible mutation space and produces different rates at each position (Brocchieri,

2001) and therefore allows different sequences to share high sequence similarity. To

test this further, the protein sequences were used as query against the nucleotide

database using tBLASTn algorithm (Altschul et al., 1997; Gertz et al., 2006) with

Blosum90 substitution matrix to gather closely related sequences available at the

GenBank. The sequences were aligned and pruned with TranslatorX (Abascal et al.,

2010) (using default options), and only codon positions 1 and 2 were taken into

account to avoid mutation saturation noise. A ML tree was inferred with RAxML

(Stamatakis, 2006) using 100 rapid bootstraps and under the GTR model, estimating

the gamma parameter and proportion of invariant sites. This approach is performed

under the assumption that the nucleotide sequences will show relatedness between

more closely related taxonomic units, since the amino acid sequence might have a

higher bias towards the structural constraints and less information available to fully

resolve the hypothesis. If the so-called bacterial animal-like α-amylases still branch

together with the animal clade, more evidence will support an ancient HGT. My

result showed that even taking into account only positions 1 and 2, the mutation

saturation is too high to discern the phylogeny for the taxa sampled. With this I

cannot disprove the hypothesis that an ancient HGT occurred between an ancestor

of the Pseudoalteromonas and an animal. More over, my results give some structural

evidence supporting this theory.

2.2.2 Statistical analysis of the NPC1 protein simulation

The Niemann-Pick Type C-1 protein (NPC1) binds cholesterol and oxysterols (In-

fante et al., 2008a) and has an important role in metabolism of cholesterol and some
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other lipids. Defects in NPC1 cause malfunction of the cholesterol, sphingolipids,

phospholipids, and glycolipids pathways. It is a 1278 residue protein, with 13 mem-

brane helices and three large loops that project to the lumen of lysosomes (Infante

et al., 2008a). The first luminal domain is the N-terminal domain, which comprises

approximately 240 amino acids. This is a lumen domain (therefore not in the trans-

membrane region of the protein) and the cholesterol bound to it has an opposite

orientation of cholesterol bound to NPC2 (Kwon et al., 2009).

Figure 2.10: Structure of the N-Terminal Domain of the NPC1 protein (PDB code: 3GKH)
with the cholesterol bound to it.

The Niemann-Pick type C1 N-terminal domain (NPC1; Fig. 2.10) was simulated

in solution using the software GROMACS 4 (Hess et al., 2008). The force field modes

used for the simulations were GROMOS96 for the protein, and the SPCE for the

water molecules. Data were collected every two picoseconds for 100 nanoseconds, dis-

carding the first 10 nanoseconds of simulation to achieve stability. This process was

performed using a workstation with 24 CPU cores and an NVIDIA TESLATM GPU.

Each sample is treated as an individual observation for the subsequent analyses, and

the data are extracted and processed as explained in section 2.1. To avoid biases in

rotation and translation in the simulation a superimposition was made. Given that

each atom in each snapshot is positionally and structurally homologous through-

out the dataset, GPS can be performed without any other structural alignment to

achieve homology. For this, the GPS was performed using each atom coordinate as

a landmark.
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Two simulations were performed: with Cholesterol bound to the structure, and

another one without the ligand.

PCA of MD simulations: Insights into the simulation trajectory

The NPC1 N-terminal domain dataset was explored using a principal component

analysis (PCA; Figures 2.11a and 2.11b) to analyse the trajectories as a composite

measure of overall structures (principal components).

In both cases it seems that there is more than one state being sampled, and in

neither of the cases is the final state close to the starting state. This can be ex-

plained by the short length of the simulation or by a short burn-in period. Despite

this, with the cholesterol bound to it (figure 2.11b), the structure seems to explore

a narrower structural space than the non-bound version (Figure 2.11a). The space

exploration here is defined by the movement width in the principal components space

(PCS). When the PCS is wider, it implies higher degrees of structural changes. In

Figure 2.11a a greater variance in the points can be seen in each conformation state,

here denoted as a denser cloud of points. The principal component analysis also

showed three somewhat defined conformational states. The simulation with choles-

terol bound to the structure, Figure 2.11b, show at least two major conformation

spaces and a transition between them. However, in the latter simulation, the varia-

tion components are smaller.

FDM analysis of the NPC1: Insights into cholesterol binding

To check the overall contributions of each of the residues to the deformations during

the simulation, the equation 2.5 was applied and the result mapped in the PDB.

Figure 2.12 shows that once the cholesterol is bound to the NPC1 (Figure 2.12b)

most of the highly movable (and therefore higher FDs) residues are not contributing

to the deformation, seemingly to be held in place by interactions with the ligand.

In Figure 2.12a the opposite behaviour can be seen. When cholesterol is not

bound to the structure, the residues in charge of the cholesterol intake/outtake are

highly movable and therefore responsible for most of the deformation found in this

protein during the simulation.
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(a) Whithout Cholesterol (b) With Cholesterol

Figure 2.12: FDM analysis of the NPC1 N-terminal domain (PDB code 3GKH) with 2.12b
and without 2.12a ligand. The color represents the FDs, red being higher score and blue
the lowest. The midpoint of the gradient was set at 0.01, and offset by 0.5 for better
visualization. In this particular case, the negative FDs values (therefore the least variable)
dominate the scale and the most influential is shown in white, and fades with other positive
values.

These results show that the GM-like methods, such as FDM analysis, can be

used to identify possible interesting sites for either protein engineering or biomedical

applications.
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Chapter 3

Defining structural and evolutionary modules in proteins: A

community detection approach to explore sub-domain

architecture

Jacob (1977) stated that “Nature is a tinkerer and not an inventor”. Proteins

are no exception to this rule, since domains are accepted as the evolutionary modules

of proteins, and modular reuse has been demonstrated in all domains of life (Voigt

et al., 2002). This modularity confers protein structures with enhanced flexibility

(Del Sol et al., 2007) and might influence their ability to respond to selection. This

ability is a main concern for evolutionary biology and is related to the robustness of

a system (Pigliucci, 2008; Wagner, 2008). Robustness is the ability of a system to

maintain its function under perturbations. In a robust system heritable phenotypic

variation neither increases nor decreases under disturbances (Wagner, 2008; Rorick

and Wagner, 2011). In the protein world, the phenotype is the structure and the

phenotypic variance is given by slight variations in protein structure.

In organismal biology, the coordination of subunits within a whole, e.g. mam-

malian limb bones, floral and leaf traits, parts of wings, individual organs, etc., has

long been known as morphological integration (Cheverud, 1996b), which was re-

named by evolutionary developmental biologists as modularity (Klingenberg, 2009,

and references therein). The modularity of a system is a property that is closely

related with both evolvability and robustness (Rorick and Wagner, 2011; Rorick,

2012). This property allows a system to increase its evolvability by diminishing

adaptative constraints as well as giving the system the possibility for plasticity and

A modified version of this chapter has been published in BMC structural biology: “Hleap, J.S.,
Susko, E. & Blouin, C. 2013. BMC Structural Biology 13:20, DOI: http://dx.doi.org/10.1186/
1472-6807-13-20”. The simulations of protein structures exposed here are not included in the
article and some real datasets are used instead.
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the emergence of novel functions by rearranging the modules (Rorick, 2012). As

stated by Klingenberg (2009), integration and modularity are concerned with the

degree of covariation between parts of a structure. It is important, from an evolu-

tionary viewpoint, to determine whether a structure is a single unit or consists of

several modules. In molecular biology, the modularity of systems has been used to

an extent, but more work has been done in systems biology (Kitano, 2002; Gavin

et al., 2006; Popescu and Popescu, 2011; Fraser et al., 2013) including analyses of

metabolic networks (Holme, 2011; Yamada and Bork, 2009; Takemoto and Borjigin,

2011; Zhou and Nakhleh, 2012), cell signaling networks (Sudol and Harvey, 2010; Pan

et al., 2012; Tran et al., 2013), and protein interaction networks (Taylor et al., 2009;

Kim and Tan, 2010; Seebacher and Gavin, 2011; Taylor and Wrana, 2012; Di Paola

et al., 2013). In the context of protein architecture, modularity has been used to refer

to modules of exon shuffling (Patthy, 1999; Xing and Lee, 2005), and complexes of

enzymatic machineries (Gavin et al., 2006). Some approaches to protein structure

modularity have also been explored (Gherardini et al., 2010; Rorick and Wagner,

2011; Rorick, 2012), showing modules as domains (Murzin et al., 1995; Andreeva

et al., 2008) and also as sub-domain components (Berezovsky and Trifonov, 2001;

Fedorov et al., 2001; Gelly et al., 2006; Ahnert et al., 2010). However, the criterion to

define protein modules depends on the definition of a proper quantitative treatment,

which is not a trivial problem (Rorick, 2012).

There have been different attempts to identify modules in protein structures (Ror-

ick, 2012) such as highly conserved close loops (Sobolevsky et al., 2007), foldons, and

autonomous folding units (Haglund et al., 2012). Some of the aforementioned mod-

ules can only be identified experimentally and/or in single proteins. Another particu-

larly robust way is to perform modular decomposition by using community detection

algorithms (Girvan and Newman, 2002). This approach has been applied extensively

in systems biology (Kitano, 2002; Gavin et al., 2006; Holme, 2011; Taylor et al., 2009;

Yamada and Bork, 2009; Kim and Tan, 2010; Sudol and Harvey, 2010; Popescu and

Popescu, 2011; Seebacher and Gavin, 2011; Takemoto and Borjigin, 2011; Taylor

and Wrana, 2012; Pan et al., 2012; Zhou and Nakhleh, 2012; Di Paola et al., 2013;

Fraser et al., 2013; Tran et al., 2013) as well as to the protein structure modularity

identification problem (Del Sol et al., 2007; Feldman, 2012). However, most of these
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attempts only consider the contact matrix (Del Sol et al., 2007; Feldman, 2012). This

approach bears no evolutionary information and depends exclusively in the defini-

tion of contact between residues (Rorick, 2012). Here, I postulate that correlation

information across a group of homologous structures, or a group of snapshots from

a molecular dynamics simulation, is more relevant than molecular contact alone.

The analysis of graphs has become crucial to understanding the features of dif-

ferent systems (Fortunato, 2010) such as community structure (Clauset et al., 2004).

Several clustering algorithms have been developed (for a review on such algorithms

see Fortunato, 2010) and applied successfully to different kinds of networks, such

as networks of email messages (Tyler et al., 2003), biological, and social networks

(Girvan and Newman, 2002; Del Sol et al., 2007; Novák et al., 2010; Feldman, 2012).

However, all clustering techniques, including the graph-based ones, lack a statistical

framework to determine the significance of the inferred clusters. This may lead to

results that may not be biologically meaningful. In this chapter I present a graph

theory-based clustering method that includes a test of statistical significance, a power

test, and a test for the accuracy of the estimates given the sample size (i.e. boot-

strap). To do this, a permutation-based t-test to assess statistical significance and

a power test based on Cohen (1988) to assess the reliability of the estimates are

proposed. Also, a bootstrap test and a power analysis to infer cluster robustness

are developed. These tests are applied to coordinate data, but can be generalized

to other applications. Here, a module is defined as any group of residues that has

significant correlation within the group, i.e. among residues within the group. The

correlation within the group also has to be significantly higher than the one obtained

when correlating these residues with residues of other groups in the dataset.

To explore the relationship among residues in a protein, a correlation graph can

be built and its properties can be used. To do this I will need to:

1. Extract the coordinate information as landmarks (Section 2.1.1), and estimate

the residue contact matrix (Section 3.2).

2. Create a graph where each landmark is a node and these nodes are connected

if significant correlation among them is found (Section 3.3).

3. Test if the partition of the data (grouping of residues) is statistically significant
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(Section 3.4).

4. Test for statistical power of each partition (Section 3.5).

5. Test for the stability of the partition to sample size: Bootstrapping (Sec-

tion 3.6).

Each of these steps are explained further.

3.1 Landmark definition

As defined in section 2.1.1, a landmark is a point, vertex, site or control point in a

shape object (protein or simulation object in my case) that can be found repeatedly,

and consistently, in a group of such objects (Dryden and Mardia, 1998). Here,

we define a landmark as the centroid of homologous residues in a multiple structure

alignment. The residue centroid is used to include both sequence (residue side chain)

and geometry, as opposed to only the geometry of the backbone. Equation 2.6 shows

the computation of the landmarks for a 3D shape such as protein structures.

3.2 Contact definition

3.2.1 In 2D simulation datasets

In structured (shape-defined) datasets, a contact matrix can be inferred. Each land-

mark in a given configuration is said to be in contact with any other landmark in

the dataset if the distance between a given pair of landmarks is not greater than one

unit plus the standard deviation of the simulation. This holds true only if the shape

being constructed lays on a grid of one unit per tick.

3.2.2 In protein structures

Inter-residue contact maps are a widely used approach to analyze protein structures

(Faure et al., 2008). They are also important to understand protein folding and

stability (Punta and Rost, 2005), and to identify residues playing structural and/or

functional roles (Faure et al., 2008). Despite this, and the advances in the contact
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definition (Faure et al., 2008, and references therein), accurate contact map predic-

tions are still mainly unsolved. There are some proposed tests (Faure et al., 2008)

and software (Yuan et al., 2012), but they are mainly using Cα-Cα or Cβ-Cβ distances

with a threshold of about 7 to 8 Å (Faure et al., 2008; Yuan et al., 2012). However,

these types of contacts are a mere approximation to true contacts. Here, I defined a

contact between any two residues if the distance between them is equal or less than

4.5 Å in an all-atom (all side chain atoms) contact analysis. The all-atom approach

is more accurate since it takes into account the distance between each possible pair

of atoms in two side chains. This approach is recommended in real datasets, since it

reduces the number of edges in the graph and is a more naturally plausible definition

of subsets in protein structures.

3.3 Graph construction

Assume that one has a dataset made of n observed protein structures. For each of

these structures the input data matrix is composed of k landmarks. Here, a landmark

is defined as the Cartesian coordinates in three dimensions of the centroid of a residue.

This centroid is calculated using the residue’s side-chains (see section 3.1). To deal

with dimensionality, the original data matrix is split into its components (X,Y,Z)

and, for each dimension, a correlation matrix between landmarks is computed. For

each entry in each dimension, I test the significance of the correlation coefficient.

This coefficient is set to 0 if it meets the following criteria:

1

2
log

(
1 + r

1− r

)
<

Zα√
(n− 3)

(3.1)

where the left-hand side of the equation 3.1 is the Fisher transformation of the

estimated correlation r. The right-hand side of the equation 3.1 is the critical value

for an alpha-level test of the null hypothesis that the correlation is 0. There, the Zα is

the standard score which allows the calculation of the probability of a value occurring

within our normal distribution and compare scores from different distributions. In

this thesis the α value used was 0.05.

This step is done to simplify the graph building process such that insignificant

correlations are ignored.
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The overall magnitude of the correlation vector is calculated as:

Ξij =

√√√√ 3∑
p=1

P 2
p (3.2)

where the value for the pth dimension, Pp, is either r or 0 depending on the result

of equation 3.1. The Ξij is obtained for each pair of landmarks and assigned to

the edges of an undirected graph S, using the Python-igraph library (Csardi and

Nepusz, 2006).

The summation in equation 3.2 is performed to agglomerate the dimensions (di-

mension reduction minimizing information loss). Since r is not additive and r2 is,

the sum of r2 is the appropriate way to add the correlations without violating non-

additivity. Also, Ξ is the correlation vector magnitude that guarantees that if there

is any correlation in any of the dimensions, Ξij will include it, regardless of the vector

direction. Let us assume that a given residue is highly and significantly correlated

in the X axis, but poorly and/or not significantly correlated in Y or Z axes. Ξij will

reflect such correlation since the residues must behave completely independent for Ξij

to be zero or close to zero. By doing this, a sensitivity to big rotations might be cre-

ated. However, the input data is a set of aligned structures (with a structural aligner,

such as MATT in the case of real datasets) and therefore any rotation, translation,

and (if the alignment method allow twists) natural deformations are dealt with.

3.3.1 Graph abstraction

Let S = (N, f) be an undirected graph, where N is a list of nodes (landmarks), and

f is a function f : N × N → k that assigns an edge weight to each landmark pair.

An edge Eij is assigned only if Ξij > 0 , and if the residues are in contact (if the

restriction is enforced). The edge weight value is set to Ξij.

3.3.2 Community structure or clustering optimization

With the defined graph, the community structure is assessed using a fast-greedy

approach, since it is an efficient way to detect clusters (Clauset et al., 2004). Clusters

are defined by finding the partition of landmarks that maximizes the modularity

39



index (Q) (Newman, 2004):

Q =
1

2m

∑
vw

[
Avw −

∑
w Avw

∑
v Avw

2m

]
δ(Cv, Cw) (3.3)

where m is the number of edges in the graph, Avw represents the weight of the edge

between vertices v and w,
∑

w Avw and
∑

v Avw are the weighted degree of a vertex

(v or w), defined to be the sum of the edge weights of the adjacent edges for each

vertex. Cv and Cw are communities to which the vectors v and w belong to, and δ

is a binary function where δ(Cv, Cw) is 1 if Cv = Cw and 0 otherwise.

The modularity index (Q) is then the proportion of edges shared within groups

minus the expected proportion if edges were distributed at random. For a given

partition, Q indicates the density of nodes within groups when compared against a

random distribution of connections regardless of the partition. Q ranges between -1

and 1. If positive, there are more connections inside the module than expected by

chance and therefore a possible community structure exists (Newman, 2004, 2006)

(i.e. partition or clustering of the data). In my case, a partition made by the

optimization of Q is a group of residues that correlate in space (i.e. move together)

given the sample. If the sample is across homologous proteins, a cluster or partition

represents a concerted movement in the evolution of the protein. Sampling across

molecular dynamic simulation snapshots represents parts of the protein that are

moving together in solution.

The output is a membership vector that corresponds to the community structure

(partition or clustering) in the graph of landmarks. It is interpreted as a set of

clusters which number is given by the optimization procedure and therefore there is

no need for an a priori determination of the number of clusters to be obtained. Each

cluster is assumed to be a putative module, but this membership vector provides no

support or information about its statistical robustness and significance.

3.4 Statistical significance test of clusters: Controlling the false

positives

Despite the usefulness and ubiquity of tests using similar algorithms, the question of

significance of clusters is critical since there is no support for the obtained clusters,
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and therefore its validity is questionable. To test if each cluster is significant, a

permutation t-test (Good, 2000), as implemented in R (R, 2011; Maindonald and

Braun, 2011), is applied.

The rationale for the test is based on the definition of cluster as an entity where

the distribution of correlations of the elements inside the cluster (intracorrelation) is

significantly distinct from the distribution of correlations with elements from other

clusters (intercorrelation). This test is applied for each possible pair of clusters de-

fined by a membership vector. For a given pair of clusters, we compare the distribu-

tion of the intracorrelation for that cluster with the distribution of intercorrelations

for this pair. If one cluster is artificially broken down by the clustering algorithm,

there should be no significant differences between the distribution of intra and inter-

correlations.

Because the test is performed for a number of pairs, multiple comparisons are

made. Let M(A) and M(B) be the mean intracorrelations for two clusters A and

B, found by the community detection algorithm. Let M(AB) be the mean inter-

correlation. The null hypothesis is then H0 : M(A) = M(AB). With more than

two clusters the number of comparisons (KC) will be K(K − 1), K being the num-

ber of clusters. If a single-inference procedure is used, a false increased significance

can result, which I correct for using the Benjamini-Hochberg False Discovery Rate

correction (FDRc) procedure (Benjamini and Hochberg, 1995).

For example, a given set of homologous proteins is analyzed with this method

and a possible partition is obtained. This will give different pieces of the protein that

correspond to groups of residues that are correlating (moving together) more within

each cluster than among clusters. We use the correlations inside a given group and

test against the correlation that exist between that group and other groups. If there

is no significant difference, both entities are moving together and therefore should

be merged.

3.4.1 Refinement of the membership vector

The results of the significance testing are summarized into a new graph. Let graph

S = (C,E) be a directed graph, where C is a list of inferred clusters, and E a list

of assigned edges. There will be a directed edge from cluster Cu to cluster Cv if the
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hypothesis that M(u) is distinct from M(uv) cannot be rejected. If Cu and Cv are

connected by a bi-directional edge, they are merged into a single cluster. The process

is iterated until no clusters can be merged.

Following the example in the previous section, let’s assume that the protein

dataset analyzed was partitioned into 4 groups of residues (A,B,C, and D). Each

of those groups will be the vertices (nodes) in a new graph. I will draw an arrow

if there are no significant differences between a given group and another group (e.g.

correlations within A are not significantly different than the correlations between

residues in A and residues in B). If this is reciprocal (e.g. correlations within B are

not significantly different than the correlations between residues in B and residues

in A), both groups of residues are merged.

3.5 Statistical power test of clusters: Acknowledging the false negatives

probability

The above statistical test assesses false positives (Type I error). It is important,

as well, to assess the strength of association between members of a cluster. To

determine the minimum resolvable correlation for a given sample size, and for a

given significance and power, let ρres be the correlation that can be resolved with

a power of 1 − β, and a significance level of α. Given the number of observations

n, as suggested by (Cohen, 1988) and implemented in the R package PWR (R, 2011;

Champely, 2009), let γ be a function of i and j:

γ(i, j) =

⎧⎨
⎩1 if rij ≥ ρres

0 Otherwise
(3.4)

where ri,j is the correlation coefficient between landmarks i and j. To assess the power

of a candidate cluster C with c elements, we estimate the proportion of correlation

values between landmarks of C that are larger than ρres. For each C the proportion

of variables with enough power (PVP) is thus:

PV PC = 2

(∑p
1 γ(i, j)

(c2 − c)

)
(3.5)

where p is the number of pairs i, j in cluster C.
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Here, PV PC is the estimated PVP which should be distinguished from the true

PVP, that arises when the estimated rij in equation 3.4 is replaced by the actual ρij.

PV PC provides qualitative information to help interpret the results given the used

sample size. Figure 3.1 shows the behavior of the PVP in the intracorrelations eval-

uated for 85 (Figure 3.1a), 1000 (Figure 3.1b), and 5000 (Figure 3.1c) observations.

Even in simulated data, PVP deviates from the possible values of 0.0 and 1.0 when

the number of observations is small.

For instance, take a cluster (group of residues from the previous example) A

that contains 10 elements, and 45 entries in the upper triangle of its correlation

matrix. Assume that A was inferred with 100 observations (protein structures from

the example). With that sample size, ρres will be approximately 0.28 with a power of

0.8 and a significance level of 0.05. If two thirds of the entries in the upper triangle

of the correlation matrix of A are below ρres, PV PA will be equal to 0.66. In other

words, for 30 entries of the correlation matrix I estimate that there was a power of

0.8 or greater. If there are clusters created by optimizing the modularity score (Q)

using weakly correlated landmarks, this cluster’s PVPs will tend to be close to 0.

This test is post-hoc, and is only to inform about the robustness of the partition

created.

3.6 Bootstrapping: Measuring the accuracy of sample estimates

The previous tests evaluate the probability of false positives (Type I errors) and

false negatives (Type II errors). However, the sensitivity to sampling error in each

estimated cluster can be tested using bootstrapping techniques. The clusters for any

set of n samples can be represented as a set of K bipartitions, b1, . . . , bK , where

bji = 1 or 0 according to whether the ith landmark was in the cluster j or not. Thus,

b1, . . . , bK are a series of binary vectors. The bootstrap approach repeatedly gener-

ates sets of n samples with replacement from the jth original data. For each of these

sets of n samples, I obtain a membership vector as with the original data. All of the

bipartitions from all bootstrap sets are then aggregated. The bootstrap percentage

for an inferred cluster in the original dataset is calculated as the proportion of bipar-

titions in the aggregate set showing no conflicts with that cluster. This proportion

is reported as the bootstrap value which evaluates the cluster’s robustness (Figure
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Algorithm 1 Pseudo-code for the modularity estimation and testing. This algo-

rithm is a high-level pseudo-code where not all details are expressed.

Input: D ← A dataset of aligned PDB structures

Output: V ← a membership vector of clustered residues

Output: P , T , Files with the power and significance of each cluster

procedure Moduler(D, P , T , V )

X,Y, Z ← Compute matrix of residues’ centroids M

CX , CY , CZ ← Estimate significant (Fisher transformed equation 3.1) correlation matrices

LM ← correlation vector magnitude matrix (Apply equation 3.2 to CX , CY , CZ)

S(nodes) ← Create a graph with column labels of LM as nodes

for n ∈ S do

for m ∈ S do

if LMnm > 0 then

Connect n and m with edge of length LMnm

end if

end for

end for

membership ← Find the best partition that optimize the modularity score (equation 3.3)

if contacts are used then Refine(membership,LDA) � Merge linear discriminants collisions

end if

for c ∈ membership do

P ← Test for statistical power in each c � Power to resolve the correlations ∈ c

for d ∈ membership do

T ← Test for statistically significant differences between c and d.

end for

end for

while membership 	= Membership do

Membership ← Refine(membership, T ) � Merge clusters when non-significant

end while

end procedure
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3.7 Simulations

To test the method in known modular entities, two types of simulations were per-

formed using Cholesky decomposition. The first one (Multivariate normal simula-

tion) correlates variables in a matrix of random values given a known correlation

matrix. The second type of simulation (Protein shape simulation) starts with a real

protein shape and then simulates samples with a given correlation.

3.7.1 Multivariate normal simulation

First a multivariate normal random vector is generated as Ly, where y is a vector of

independent N(0, 1) variates. To simulate multivariate normal vectors, a Cholesky

decomposition for the covariance matrix of interest was obtained:

LLT =

⎛
⎜⎜⎝

1 ··· ρ 0 ··· 0

...
. . .

...
...
. . .

...
ρ ··· 1 0 ··· 0
0 ··· 0 1 ··· 0
...
. . .

...
...
. . .

...
0 ··· 0 0 ··· 1

⎞
⎟⎟⎠

A vector, y, of independent N(0,1) variates was generated so that Ly has the

covariance matrix above. The result is a matrix with a set of correlated variables

(cluster), surrounded by random (uncorrelated) variables. Cluster intracorrelations

ranged from 0 to 1 in increments of 0.05. The first 60 entries (accounting for a

cluster with 30 elements with X and Y coordinates) have a given correlation, while

140 entries (accounting for 70 landmarks) are uncorrelated.

A simulation to evaluate the effectiveness in solving the boundaries between two

modules can also be performed. In that case, the correlation matrix was:

LLT =

⎛
⎜⎜⎜⎝

1 ··· ρ1 0 ··· 0

...
. . .

...
...
. . .

...
ρ1 ··· 1 0 ··· 0
0 ··· 0 1 ··· ρ2

...
. . .

...
...
. . .

...
0 ··· 0 ρ2 ··· 1

⎞
⎟⎟⎟⎠

The resulting matrix contains two clusters whose intracorrelations ranged from 0

to 1 in increments of 0.05.

The output of the simulation is a set of coordinates for a given number of samples

to which the method (explained in previous sections) will be applied.
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Estimated correlations: Precision of the simulations

Accurate estimates of correlations were gathered for the simulation performed. How-

ever, precision varied substantially with sample size.

Table 3.1: Precision of the simulations with one module in background noise. Precision of
the simulation of one module on background noise with 100, 500, and 1000 samples. The
quantiles describe the distribution of values in the lower triangle of the correlation matrix
for the full simulated data set. The background quantiles represent the distribution of
values in the rest of the matrix as background noise.

Sample Intra-cluster Intracorrelation Quantiles Background Correlation Quantiles

Size correlation 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

100

0.2 -0.087 0.145 0.206 0.274 0.545 -0.348 -0.058 0.009 0.077 0.304
0.4 0.061 0.288 0.341 0.395 0.589 -0.314 -0.075 -0.0064 0.059 0.331
0.6 0.334 0.542 0.578 0.619 0.765 -0.361 -0.072 -0.002 0.066 0.296
0.8 0.651 0.771 0.791 0.811 0.875 -0.365 -0.073 0.002 0.067 0.291
1.0 1.0 1.0 1.0 1.0 1.0 -0.209 -0.069 -0.019 0.051 0.232

500

0.2 0.061 0.168 0.193 0.220 0.354 -0.169 -0.029 0.001 0.029 0.139
0.4 0.261 0.365 0.389 0.411 0.494 -0.172 -0.029 0.002 0.0332 0.204
0.6 0.485 0.562 0.580 0.597 0.656 -0.152 -0.031 2×10−5 0.031 0.149
0.8 0.743 0.776 0.786 0.795 0.824 -0.161 -0.041 -0.011 0.019 0.144
1.0 1.0 1.0 1.0 1.0 1.0 -0.142 -0.0350 1.7×10−4 0.029 0.087

1000

0.2 0.087 0.170 0.190 0.209 0.308 -0.131 -0.021 7.2×10−4 0.023 0.116
0.4 0.338 0.391 0.407 0.422 0.4745 -0.108 -0.016 0.005 0.0267 0.126
0.6 0.535 0.580 0.591 0.603 0.647 -0.103 -0.018 0.002 0.023 0.129
0.8 0.759 0.791 0.798 0.804 0.827 -0.131 -0.024 -0.005 0.012 0.083
1.0 1.0 1.0 1.0 1.0 1.0 -0.038 -0.014 0.009 0.024 0.068

Despite this, even with low sample sizes the median correlations were close to the

true values (Tables 3.1 and 3.2).

As can be seen, some variance was allowed to make the simulation more realistic.

Performance of the the method

In noisy data, this method is able to correctly identify and assign the membership

vector at very low modular intracorrelations (Figure 3.3) when the sample size is

sufficient. Even for intracorrelations as low as 0.05, the method identifies the true

clusters if more than 3000 observations are used.

Table 3.3 shows the results of the significance tests, power analysis, and boot-

strapping. The significance test controls the Type I error and therefore the false

positives. Here it is reported for an α (false positives or Type I error probability) of
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Table 3.2: Precision of the simulations with two modules. Precision of the simulation of
two modules with 100, 500 and 1000 samples. The quantiles describe the distribution of
values in the lower triangle of the correlation matrix for the full simulated data set. The
intercorrelation quantiles represent the distribution of the sub-matrix corresponding to the
correlation between the two modules.

Sample Intra-cluster Intracorrelation Quantiles Intercorrelation Quantiles

Size correlation 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

100

0.2 -0.12 0.112 0.178 0.247 0.532 -0.349 -0.061 0.009 0.081 0.357
0.4 0.135 0.347 0.401 0.451 0.627 -0.372 -0.075 -0.014 0.049 0.314
0.6 0.405 0.581 0.617 0.653 0.758 -0.468 -0.225 -0.165 -0.104 0.116
0.8 0.716 0.776 0.795 0.813 0.879 -0.256 -0.087 -0.049 -0.011 0.147
1.0 1.0 1.0 1.0 1.0 1.0 -0.018 -0.018 -0.018 -0.018 -0.018

500

0.2 0.059 0.172 0.2 0.229 0.337 -0.177 -0.036 -0.008 0.023 0.151
0.4 0.286 0.371 0.393 0.414 0.495 -0.099 0.013 0.04 0.066 0.183
0.6 0.516 0.587 0.602 0.618 0.67 -0.099 0.005 0.029 0.051 0.153
0.8 0.748 0.793 0.801 0.808 0.838 -0.069 0.014 0.031 0.05 0.131
1.0 1.0 1.0 1.0 1.0 1.0 -0.012 -0.012 -0.012 -0.012 -0.012

1000

0.2 0.109 0.182 0.201 0.221 0.301 -0.116 -0.023 -0.001 0.021 0.128
0.4 0.321 0.388 0.405 0.421 0.488 -0.133 -0.03 -0.011 0.008 0.089
0.6 0.531 0.582 0.593 0.605 0.647 -0.077 -0.008 0.008 0.023 0.091
0.8 0.764 0.793 0.799 0.805 0.825 -0.052 0.007 0.021 0.034 0.082
1.0 1.0 1.0 1.0 1.0 1.0 0.026 0.026 0.026 0.026 0.026

0.05. However, the permutation test is not able to deal with the false negatives or

Type II error (Table 3.3).

Table 3.3: Clusters, significance, PVP and Bootstrap support for the simulated data. The
proportion of pairs that were judged not to be in the same cluster after the permutation test
(Significance), the estimated PVP for the simulated data set and the bootstrap value in the
simulated datasets with 0.35 intracorrelation and 85 observations. PVP is the proportion
of variables in the cluster with enough power (with a β of 0.2 and an α of 0.05) to be
resolved. The significance test critical value was corrected using the False Discovery Rate
correction.

Clusters Significance PVP Bootstrap

One module on background noise

A < 0.0375 0.617 93%
Singletons 0.134 0.006 9%

Two modules

A < 0.0125 0.631 100%
B < 0.0125 0.640 100%

In simulations with correlations of 0.35, the method was able to identify the
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3. Obtain a multivariate normal (as in section 3.7.1) matrix with the same di-

mensions of that one in the previous step.

4. For the equivalent entries of each true module, perform the Cholesky decom-

position on the random matrix as explained in section 3.7.1

5. Sum the random (now correlated) and shape matrices

Given that previous sections showed that 500 samples were enough to resolve

most of the correlations (Figure 3.3), in this section I will only use that amount of

samples.

In the case of structured samples, it is also useful to include contact information in

the same manner that would be advisable in protein datasets. This procedure leads

to fewer edges between no modular components and therefore an easier clustering

scheme. For this reason, the structured simulation was constructed in such a way

that each module’s (each colored “H” in Figure 3.4) intracorrelation was varied in

0.2 increments. Also, inference with and without contacts were performed. The

measure of accuracy was performed using the F-score measure. F-score corresponds

to the harmonic mean of the precision and recall. The former correspond to the

number of correct positive results divided by the number of all positive results. The

latter, recall, express the number of correct positive results divided by the number

of positive results.

Table 3.4: Performance of the structured simulation. Each entry corresponds to the F-Score
of the pair intracorrelations. Cor. = Intracorrelation.

Cluster A

No contacts With contacts

Corr. 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

C
lu
st
er

B

0.00 0.99 0.73 0.90 0.91 0.91 0.89 0.06 0.86 0.82 0.86 0.84 1.00
0.20 0.66 1.00 1.00 1.00 0.86 1.00 1.00 1.00 0.83 0.86 0.92 1.00
0.40 0.91 1.00 1.00 1.00 1.00 1.00 0.87 0.81 1.00 1.00 0.81 0.92
0.60 0.89 1.00 1.00 1.00 1.00 1.00 0.81 1.00 0.74 1.00 0.76 0.83
0.80 0.93 1.00 1.00 1.00 1.00 1.00 0.82 0.83 0.86 0.82 0.83 0.83
1.00 0.89 0.86 1.00 1.00 1.00 1.00 0.99 1.00 0.86 1.00 1.00 1.00

Table 3.4 shows the results of the performance test of the method. Here the

performance was measured by means of the F-score.
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As can be seen, despite good performance in most of the cases with no contacts,

some poorly resolved cases remain (e.g. 0.2 vs 0.0 in Table 3.4). Also, the contact

filtering has a worse performance than the non-contact case. In this case, an over-

fragmentation was expected, but the method was not able to re-merge artificially

broken down clusters.

Despite this result, the use of contacts will be necessary when dealing with real

datasets, since modules in proteins are defined as residues being in contact. To deal

with this “under performance”, I propose a pre-filtering of the membership vector

using Linear Discriminants (LD). LD is a multivariate statistical technique that

allows the visualization of high-dimensional data by projecting it onto a line while

maximizing the distance between the means of the two groups and minimizing the

intragroup variance (McLachlan, 2004). This technique has been used extensively

in pattern recognition (Jain et al., 1999; McLachlan, 2004) to help cluster difficult

datasets. To do so:

1. Clean the membership vector outputted by the optimization of the modularity

score (section 3.3.2) by removing all singletons (components in the graphs made

of a single value/landmark).

2. Use the cleaned membership vector as a classifier for an LD analysis.

3. Perfom an LD analysis on the correlation magnitude vector matrix (as ex-

plained in equation 3.2).

4. Given the first two LDs per classifier, compute the 95% confidence ellipse of

the class.

5. Evaluate collisions between the ellipses. That is, checking for overlaps between

classes, as delimited by the confidence ellipses.

6. Merge overlapping classes and re-label the membership vector.

7. Continue with the approach explained in sections 3.4, 3.5, and 3.6, using the

newly labeled vector as input.

The LD analysis will get rid of most of the possible noise. It is important to

state that performing a LD analysis in correlation magnitude matrices will violate
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the assumption of independence since most variables will be collinear, and in some

cases the normality assumption. However, it has been shown that LD analysis is

somewhat robust against violations of these assumptions (Dziuda, 2010). These

violations affect mostly the coefficients of the linear discriminant function, but the

classification is not greatly affected. Given that my goal does not imply classification

of other datasets with a particular inferred linear discriminant function, this violation

can be omitted in the pre-filtering. The LD analysis can be performed with the library

MASS (Venables and Ripley, 2002) and the 95% confidence ellipses with the package

ellipse (Murdoch and Chow, 2013) available in R (R, 2011). The full membership

refinement is done with an R script that can be coupled with the Python script for

modularity testing.

Table 3.5: Performance of the structured simulation with LD pre-filtering. Each entry
corresponds to the F-Score of the pair intracorrelations. Cor. = Intracorrelation.

Cluster A

No contacts With contacts

Corr. 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

C
lu
st
er

B

0.00 1.00 0.95 0.91 0.91 0.93 0.89 0.68 1.00 1.00 1.00 0.99 1.00
0.20 0.96 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.40 0.92 0.67 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.60 0.92 1.00 1.00 0.67 0.67 1.00 1.00 0.87 1.00 1.00 1.00 1.00
0.80 0.92 1.00 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00
1.00 0.89 1.00 1.00 0.67 1.00 0.67 0.99 1.00 1.00 1.00 1.00 0.67

Table 3.5 shows the results of the modularity inference when the LD pre filtering

is used. In this case, the problem shown in Table 3.4 is inverted. When there are no

contacts involved in the graph construction the performance decreases. This behavior

is mainly due to the over merging when too many edges are drawn and therefore a

more constricted membership vector is outputted. The contact case, on the other

hand, significantly improves the performance of the method, converging to the true

answer in most cases. When intracorrelation is equal to one, both approaches present

glitches. This is due to the fact that to perfectly correlate two modules with a given

structure, both modules will share a similar distribution, and therefore will tend to

merge. It is also important to point out that perfect correlation within subsets is not

a realistic setup, and therefore it is not going to be common on real datasets. Also,

here I am working with an acceptable 95% confidence (an α of 0.05) for the statistical
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tests, so the actual performance can be improved by making it more stringent (in the

case of simulations) or perhaps more lenient (for real and more variable datasets).

Given these results, I will recommend to use the LD prefilter only in cases when

contacts are used, while avoiding its use in the opposite case. With this rule in mind,

most datasets will be correctly clustered.

3.7.3 Protein shape simulation

To test modular architecture in more complex shapes, a protein shape simulation in

3D is performed. To do so the landmarks from a real structure are extracted (see

section 3.1). With these coordinates as a starting point and a desired membership

vector, the Cholesky decomposition explained in the section 3.7.1 is applied. As

before, a multivariate normal random vector is generated as Ly, where y is a vector

of independent N(0, 1) variates with the desired length (e.g number of samples to

generate). The matrix with the desired covariance LLT is then created by Cholesky

decomposition with the correlation matrix that follows the structure of the mem-

bership vector with controlled intracorrelation in 0.2 increments. To the resulting

correlated matrix, the vector of coordinates of the original shape is added. As result,

a given number of samples with the desired correlation between putative residues is

created. The correlation matrix is then dependent on the membership vector but

follows the overall structure of the previous section. The protein Pyruvate kinase

1PKM (Figure 3.5) is here established as a reference structure given that it is a

widely studied protein and its multidomain (and therefore modular) architecture is

known.

It contains three CATH domains and a single chain (Greene et al., 2007). The

creation of a membership vector corresponding to the CATH domain segments al-

lowed the generation of a visual comparison of the CATH domains and modules,

as well as to the simulation of such architecture. To test the convergence to the

true cluster, the intracorrelation was also controlled (instead of the uniform random

values), from 0.00 to 1.0 in 0.2 increments. The sample size will be kept at 500 for

comparative purposes with the other simulations. This sample size is also enough

to solve most correlation and is still plausible to find in real datasets (at least by

modelling sequences).
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Figure 3.5: Structure of the protein Pyruvate kinase (PDB code: 1PKM) color-coded by
CATH domains.

Table 3.6: Performance of the Piruvate Kinase simulation with LD pre-filtering. Each
entry corresponds to the F-Score of the pair intracorrelations. Cor. = Intracorrelation.

Cor. 0.00 0.20 0.40 0.60 0.80 1.00

F-Score 0.62 1.00 1.00 1.00 1.00 1.00

Table 3.6 shows the result for the protein simulation. The method developed here

is recovering the true cluster in almost all cases. The case of the 0.0 correlation is

due to the fact that mostly singletons are found. The F-Score for this case is then

computed as if the test vector is a single string of one particular label and therefore

the low, yet not zero, F-score.

3.8 Exploration of other real datasets

In this section I will present the results of two real datasets. First a set of snapshots

from a molecular dynamics simulation (MD) of the NPC1 N-terminal domain are

analysed to provide insights into the modular architecture of dynamic data. That is,

group of residues that move together in solution.

Then a set of homologous structures of the alpha-amylase catalytic domain are

use to test the sub-domain architecture at the evolutionary level. A module here

(different than the MD modules) refers to a group of residues that are moving to-

gether in the evolution of the structure.
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Dynamic modules of the Niemann Pick C1 protein N-terminal domain

The Niemann-Pick disease type C (NPC) is an autosomal recessive disease, expressed

when there is an error in the exogenous cholesterol trafficking and as result a lysoso-

mal accumulation of it (Patterson et al., 2006). This disease is caused by a mutation

in either of the two NPC proteins (NPC1 and NPC2) (Kwon et al., 2009). The

Niemann-Pick C1 (NPC1) protein regulates the lysosomal cholesterol transport to

other intracellular compartments (Garver et al., 2002). NPC1 contains 13 (13-16

according to (Patterson et al., 2006)) membrane domains and 3 other domains that

are in the lumen of the lysosomes (Davies and Ioannou, 2000). One of these luminal

domains is the N-terminal domain which bears the cholesterol binding site (Infante

et al., 2008b), and has eight α-helices flanked by three β-sheets (Figure 3.6) and its

sequence is highly conserved (Watari et al., 1999). NPC1 N-terminal domain (unlike

the NPC2 protein) can bind with the oxygenated derivatives of the cholesterol (Kwon

et al., 2009) making it an interesting domain to study dynamic properties.

Figure 3.6 shows the modules gathered when the module identification is applied

to the molecular dynamics simulation of the NPC1 N-terminal domain snapshots. All

these modules showed a bootstrap above 66.7% and a PVP over 0.96. Interestingly,

all modules are related with the binding pocket, surrounding the cholesterol molecule.

The first module (Figure 3.6A) encloses three cholesterol binding residues, and an-

other binding residue to the N-Acetyl-D-Glucosamine (NAG). It also spans a residue

associated with the development of the NPC1 disease in adulthood (Fancello et al.,

2009). All other residues correlating with these seem to give structural support

to the back of the cholesterol binding pocket, as well as serving as receptacles for

both ligands. This region also encompasses four residues containing single nucleotide

polymorphisms (SNPs) for the human gene (Karchin et al., 2005).

In Figure 3.6B, a module that comprises more than half of the residues that make

the sterol pocket is shown. From these residues, this module is the only one that

includes the non-hydrophobic ones, being of importance in the direct protein - 3β-

hydroxyl interactions, as well as the water-mediated interaction with such groups.
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and a SNP (Karchin et al., 2005).

The module in figure 3.6D shows a small module that coincides with functionally

important residues involved in the affinity for cholesterol binding (Kwon et al., 2009).

These thus may be related to the expression of the NPC disease. Giving that these

modules are analyzed in the light of dynamics, the module in Figure 3.6D shows

that the affinity for the cholesterol mediated by these residues is given by geometric

constraints induced by cholesterol binding.

Figure 3.6E shows a module that encloses two binding residues to NAG. It has

also been shown that two residues are important in the development of a late infantile

NPC1 disease (Millat et al., 2005; Fancello et al., 2009), and one SNP is also enclosed.

It seems to be also of structural support for the cholesterol binding pocket in the

top(E), creating a pocket that receives the ligand.

The module shown in figure 3.6F encloses the α-helices 3, 7 and 8, that have

been shown to play an important role in the access and release of cholesterol, since

its movement controls the enlargement of the sterol opening (Kwon et al., 2009).

This module also contains some of the residues that decrease the cholesterol transfer

to the liposomes if mutated (Kwon et al., 2009), as well as four SNPs (Karchin et al.,

2005). The module shown in figure 3.6F is therefore of functional importance for the

intake and outtake of cholesterol.

Since there are disease-related mutations in all of the modules, it would be im-

portant to further study the relationship between modules and protein function. The

correlation within modules is large enough to think of them as units, and therefore

it is probable that the residues exposed in (Millat et al., 2005; Kwon et al., 2009;

Karchin et al., 2005) are not the only major contributors to the disease. Further

confirmation of the effects of mutations within these modules is needed.

Evolutionary modules in the α-amylase catalytic domain

Starch is the main storage of carbohydrates in plants. Processing it and discov-

ering novel poly and oligosaccharides is important for biotechnological and chemo

industrial applications (Svensson, 1994). Most starch-related enzymes are classified

within the α-amylase family. This family catalyzes the hydrolysis of α-(1,4) gly-

cosidic bonds of polysaccharides, and therefore is classified as glycoside hydrolases
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(Davies and Henrissat, 1995). This a multi-reaction catalytic family, since its mem-

bers can catalyze different reactions (hydrolysis, transglycosylation, condensation

and cyclization) (Ben Ali et al., 2006). Industrially, some α-amylases are used in the

production of ethanol (Bothast and Schlicher, 2005), high-fructose corn syrup(Visuri

and Klibanov, 1987), and other oligosaccharides. It is therefore of industrial and

biological importance. It has a highly symmetrical TIM-barrel ((β/α)8) catalytic

domain (Svensson, 1994). This fold is highly versatile and widespread among the

structurally characterized enzymes, being present in almost 10% of them (Farber,

1993; Höcker et al., 2001; Wierenga, 2001; Gerlt and Raushel, 2003). There has been

a debate about the type of evolution that this fold has been through: convergent,

divergent, or both(Farber, 1993). However, there is evidence supporting the diver-

gent evolution hypothesis (Höcker et al., 2001). The catalytic activity and substrate

binding residues occur at the C-termini of β-strands and in loops that extend from

these strands (Svensson, 1994).

Four modules are identified in the α-amylase sub-domain architecture (Table 3.7

and Figure 3.7). In Figure 3.7, most of the modules span the surface to the TIM-

barrel (β-sheets of the TIM-barrel are highlighted in Figure 3.7A). This behavior is

due to the interaction of the protein and its catalytic pocket, with the ions calcium

and sodium received by this structure mainly on its surface. Modules shown in

figures 5B, D and E span regions where these ions are frequently found among the

homologs, and the residues in charge of the ligation of the three metal ions (Machius

et al., 1998) as co-factors for the hydrolysis.

Table 3.7: Clusters, significance, PVP and Bootstrap support for the α-amylase data set.
The proportion of pairs that were judged not to be in the same cluster after the permutation
test (Significance), the estimated PVP and the bootstrap value in the α-amylase. The
significance test critical value was corrected using the False Discovery Rate correction

Modules Significance PVP Bootstrap

B < 0.001 0.479 31.3%
C 0.005 0.440 42.9%
D < 0.001 0.503 39.9%
E < 0.001 0.580 51.7%
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et al., 2011) (Figure 3.8), was not homologous throughout our sampling (i.e. was not

present in all the sampled structures), and therefore, no information was available

about this domain.

Figure 3.8: Evolutionary module in α-amylase spanning the smallest active sub-domain of
a TIM-barrel fold. Expansion of the module shown in Figure 5C with a superimposition
of the AmyTM structure reported in Ben Ali et al. (2011) (wire-frame structure). The
images were rendered using VMD Humphrey et al. (1996) and POVray (www.povray.org).

3.9 Concluding remarks

Most biological data are typically highly multivariate and multidimensional in na-

ture. Many tools have been developed to deal with such dimensionality (Muirhead,

2008, and references therein). However, the variable selection and dimensionality re-

duction used in such methods (aiming to reduce matrix complexity) may compromise

information conservation (Berge et al., 2010), or require a larger sample size than is

possible for protein data. To overcome these drawbacks, I introduce a community

detection-based clustering method. Community detection-based approaches do not

need a priori knowledge of the number of clusters (Mishra and Pandey, 2011), are

not heavily parametrized, and can handle multivariate and multidimensional data

without dimensionality reduction. Here I propose a graph based method to explore

protein structure modularity, where:

1. A graph is built where the vertices are the centroids of residues. The correlation

between coordinates is set as edge weight if it is significant (see equations 3.1
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and 3.2), and if the two residues are in contact (See section 3.2).

2. The community structure in the graph is inferred by fast-greedy (evaluating

and selecting the best result at each step, as opposed to maximizing at the

end of the scoring process) optimization of a modularity score (Q; see equation

3.3).

3. The membership vector is pre-filtered using a Linear Discriminant Analysis,

with the community structure of the previous step as classifier.

4. The statistical support for each cluster is obtained.

5. The solution is refined based on this statistical support.

6. The statistical power to resolve each partition with respect to the size of the

dataset is estimated (equations 3.4 and 3.5).

7. The stability of the estimates with respect to the sampling error is measured

using bootstrapping (Figure 3.2).

3.9.1 Putative meaning of the sub-domain architecture

So far I have shown the significant partitions of a domain. But what is the prob-

able meaning of such modules? One might think that these modules can represent

autonomous folding units (AFU); however, my data showed discontinuous amino

acid sequences (in one dimension, since they are in contact in 3D space) per module.

Also, comparative analysis with the dataset analysed by Fischer and Marqusee (2000)

showed no relationship with the groups obtained here. Another plausible hypothesis

could be to assign modules to close loops, but the same continuity argument can

be made. Furthermore, the α-amylase subdomains identified by this method span

several of the TIM-barrel close loops exposed by Frenkel and Trifonov (2005) with no

particular pattern. These discrepancies are expected, since the definition of foldons,

AUFs and close loops have little or no meaning in an evolutionary perspective. These

concepts are derived from the analysis of single structures and their internal interac-

tions (i.e. contact matrix, physical interactions, length, distance) and therefore the
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non-evolutionary approaches for sub-domain determination will identify a different

kind of module than an evolutionary approach.

On a more related framework, Dutheil and Galtier (2007) developed a method

to test co-evolving sites. When tested on the α-amylase dataset used in Chapter 2,

no pattern correlating the two methods was found. Moreover, the largest significant

grouping of co-evolving residues with Dutheil and Galtier (2007) method span only

10 residues of the protein. This discrepancy can be attributed to the fact that Dutheil

and Galtier (2007) are testing co-evolution in a sequence based perspective. That is,

giving a phylogenetic tree and its source alignment, which residues have significant

mutual information. This method disregards completely the geometry of protein

structures, therefore answering a different question than the approach exposed here.

So what is the possible meaning of the sub-domains? Although more work (both

bioinformatic and experimental) is needed to clearly address this question, the sub-

domain architecture here represented is probably co-evolving geometric units (in the

case of homologous sampling) and semi-rigid components (in the dynamic perspec-

tive) of proteins. The partitions shown here can be depicting a level of modularity

out of a possible hierarchical architecture of protein modularity. This concept will

be covered in chapter 4.
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Chapter 4

The semantics of the modular architecture of protein

structures

Protein structures are normally inherently flexible and can be shaped to perform

a wide spectrum of functions. This property of proteins allows for the opportunism

of evolutionary tinkering (Jacob, 1977), that is, the development of a new system or

function by re-engineering an existing one or by combining existing systems. That

tinkering and progressive integration of sub-parts in evolutionary time has shaped

most protein structures as modular systems by epistasis, linkage, and co-evolution

between residues (Schlosser and Wagner, 2008). The epistatic effect refers not only to

directly compensatory effects but the fact that a group of changes can have different

effects than each one of them individually, and therefore creating a structuring in the

protein that tends to be modular. This epistasis does not necessarily require linkage,

but if selected, the linkage can come into play thus creating a stronger modularity

and heritability of such modules. All these processes do not necessarily mean co-

evolving residues, however if epistasis and linkage confer the structure with selective

advantages, co-evolution between residues and modularity might arise.

Modularity makes structures evolvable, or capable to cope with selective pres-

sures, by diminishing the number of constraints (Caetano-Anollés et al., 2013; Harms

and Thornton, 2013). Modular systems also promote the emergence of novel func-

tions by rearrangements and are therefore said to be plastic (Del Sol et al., 2007;

Bridgham et al., 2010; Rorick, 2012; Bornberg-Bauer and Albà, 2013). Plasticity

and resilience lead to robust systems (Pigliucci, 2008; Wagner, 2008). Robustness

is the ability of a system to maintain its function under perturbations. A robust

A modified version of this chapter has been accepted for publication in the first issue of
Current Protein & Peptide Science in 2016; Hleap, J.S. & Blouin, C. 2016. CPPS DOI:
10.2174/1389203716666150923104720.
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biological system tends to neither increase nor decrease its heritable phenotypic vari-

ation (Wagner, 2008; Rorick and Wagner, 2011), allowing it “to undergo innovative

modification without losing functionality” (Rorick and Wagner, 2011). This does

not mean that a robust system cannot be present in different environments, it just

allows it to accept changes that create phenotypic variation. In proteins, as proposed

in Chapter 2, let the structure be considered a phenotype. Phenotypic variance is

given by slight variations in the shape of the protein structure (Hleap et al., 2013b;

Chapter 3). Keeping the robustness of the protein shape allows for higher degrees of

structural variances. This plasticity and the emergence of novel functions was shown

in different systems by Wagner (2008). He has shown that phenotypic robustness

contributes to evolvability while genotypic robustness diminish it. Here, I focus on

the former, since it is the one that relates to the protein shape, its structure.

Modularity in protein structures can be viewed as the linkage within functional units

(Schlosser and Wagner, 2008). Here, a functional unit is defined as a group of residues

that are required for thermodynamic stability or any particular function. Modularity

normally assumes a tight integration of elements within, and a complete indepen-

dence among elements between modules (Rorick, 2012). However, the assumption of

independence is not always valid (Hleap et al., 2013b): a marginal dependence might

exist where the integration between modules is incomplete (Mittenthal et al., 2012)

or the independence is not under selection. Properly formulated, molecular modu-

larity can be modelled in a graph theoretic framework and explored using Newman

and Girvan method (Newman and Girvan, 2004). This approach, which allows to

explore the modularity of a protein structure by standard graph theoretic approaches

(Rorick, 2012; Hleap et al., 2013b; Chapter 3), will be discussed further later on.

4.1 The emergence of modularity: natural selection and the

self-organizing nature of proteins

It has been proposed that modularity arises spontaneously from the duplication pro-

cess in cellular networks instead of by selection (Solé and Valverde, 2008). However,

the authors also support the idea of tinkering as a driving force for the emergence and
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retention of modularity. In protein structures, the concept of expansion by duplica-

tion is not as clear as for cellular networks. Solé and Valverde (2008) acknowledge the

possibility that selection might drive the “deletion” or modification of interactions

within the system, and therefore affect its modularity. The question of the emergence

and retention of modularity remains an open issue. The hierarchical and modular

nature of biological systems have been shown to be widespread (Lorenz et al., 2011).

A more general pattern related to the origin and evolution of biological systems

heavily relies on this concept. Lorenz et al. (2011) also hypothesized that modu-

larity arises spontaneously in a rugged fitness landscape, a changing environment,

and when Lateral Gene Transfer (LGT) is present. These arguments are compelling,

since LGT events will greatly benefit modular systems because of tinkering. Also,

a changing environment creates the need for a greater resilience where modularity

spontaneously emerges. Finally, a rough fitness landscape creates opportunities for

the dynamics of epistatic interactions: Flexibility in interactions is likelier in mod-

ular systems (Schlosser and Wagner, 2008). However, the causality of those three

cases with respect to modularity is not clear, since the modularity itself can facili-

tate LGT events, shape the current evolvability of the system, and can modify the

system behaviour in a given fitness landscape. This does not mean that modularity

is an abstract property. It means that there is a synergistic behaviour between these

factors and modularity. Along with its emergence, modularity further contributes

to the development of these properties. At a lower level, self-organization can ex-

plain all the scenarios mentioned before and the emergence of modularity. If protein

structures are self-organizing systems, the appearance of emerging properties, such

as modularity, are expected. Self-organization is a pattern-forming process, where

the information for the organization mainly comes from the interaction within the

system without intervention of external influences. A self-organized system normally

exhibits the following characteristics (Camazine et al., 2002):

1. Dynamicity : It requires continuous and dynamic interactions among elements

within the system.

2. Exhibits emergent properties : Through interaction between elements within

the system, new properties emerge that cannot be explained by the sum of

individual contributions of the elements.
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3. Oscillation: Self-organized systems normally are explained by parameters that

can be tuned by feedback (positive or negative), and that parameter tuning

causes an oscillation between a pattern-forming system and a chaotic one.

4. Multi-stability : Multiple possible states are often exhibited by self-organizing

systems, and the transition between states can be due to the oscillation pa-

rameters.

However, the diversity and nature of all protein structures cannot be explained

exclusively by self-organization since it is obvious that the genetics and cellular ma-

chinery provide a template and a set of instructions. Nevertheless, self-organization

is playing an important role in the folding of proteins. That is why most proteins

can fold spontaneously in a fraction of the time that it would be theoretically ex-

pected as posed in the Levinthal’s paradox (Zwanzig et al., 1992; Rooman et al.,

2002). If we conceptualize protein structures as a hybrid template/blueprint-self-

organized system, the paradox is resolved. Given that the only information each of

the residues is taking into account are the local interactions at a given time, the de-

grees of freedom or “conformational space” reduces significantly. This allows for the

explanation not only of the folding by close loops modules (as seems to occur in glob-

ular proteins) (Berezovsky and Trifonov, 2002), but virtually of any folding pattern.

The hybrid template/blueprint-self-organized system would also help to explain the

difference between the number protein sequences versus the number of protein struc-

tures they code, since a great number of interactions are actually redundant (Davies

et al., 2013). This hybrid non-self/self-organizing behaviour in proteins is also in line

with current knowledge of energy landscape theory (Wolynes, 2005; Clementi, 2008;

Schafer et al., 2013). Self-organization in protein structures has been measured in a

variety of ways such as energy frustration (Fernández and Berry, 2000), hydrophobic

interactions (Gerstman and Chapagain, 2005), and folding index (Lundgren et al.,

2013). This self-organizing nature of protein structures and protein folding does not

ignore other folding catalyzers. Its is known that other players such as ligands, spe-

cific isomerases, heat-shock proteins, and chaperones might be involved in different

degrees in the production of a folded protein (Jaenicke, 1991). In those cases, the

hybridism mentioned earlier can account for the protein-protein interactions that

might occur during the folding of the peptide.
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In summary, protein structures are context-aware self-organizing systems, where

parameter tuning is provided by the context of the protein folding environment and

natural selection, shifting/modifying the energy landscape of the system (i.e. Crowd-

ing) (Minton, 2000).

Tinkering, self-organization, and natural selection provide the conditions for the

emergence of modularity in proteins. Modularity is an emerging property of a se-

lected self-organization. It provides a model to explain many structural phenomena

in protein structures. An example is the more or less hierarchical packing of residues

within the protein. Modularity emerges when by tinkering and selection, some inter-

actions are favoured and some other selected against. In Solé and Valverde (2008)

terms: “the rich gets richer and the network will be organized around hubs”.

Although the emergence of modularity can be intuitively explained, a sound

methodology to understand its mechanisms and implications for protein structural

biology remains to be explored.

4.2 Domains as modules

Domains are accepted as the protein structure’s evolutionary or functional units

(Ponting and Russell, 2002). It has been widely demonstrated that emerging prop-

erties in protein function may arise by reusing, rearranging, and shuffling domains

(Ponting and Russell, 2002; Voigt et al., 2002; Bridgham et al., 2010). Despite the

widespread use of the term domain, the concept is not fully nor universally defined.

There are differences in domain classifications even in widely used data sources such

as CATH (Greene et al., 2007), SCOP (Murzin et al., 1995), and PFAM (Punta et al.,

2012) (Figure 4.1). In general, we can posit that a domain is a “spatially distinct

structure that could conceivably fold and function in isolation” (Ponting and Russell,

2002). It is also assumed to be the unit of protein evolution (Marchler-Bauer et al.,

2005; Koehl, 2006; Jin et al., 2009; Forslund and Sonnhammer, 2012), and an atomic

concept in structure and function prediction and annotation (Ezkurdia and Tress,

2011; Xue et al., 2013). Therefore studying and classifying protein domains is an

area of intense research.

Discrepancies still exist leading researchers to even propose a consensus solution

combining different protein domain assignments (Day et al., 2003; Holland et al.,
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(a) SCOP (b) CATH

(c) PFAM

Figure 4.1: Domain definition the multidomain protein Pyruvate kinase (PK) from rabbit
muscle (pdb code: 1PKN). a) SCOP domain definition of the PK enzyme. The catalytic
domain (red) is composed by two non-sequential sections; b) CATH domain definition of
the PK enzyme. The catalytic domain (red) is composed by two non-sequential sections.
c) PFAM domain definition of the PK enzyme, derived from HMM search on the sequence
of the 1PKN protein. In the PDB, three domains are reported. Colored cartoon refers to
a domain definition and white are residues not assigned to a domain
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2006; Alden et al., 2010; Schaeffer et al., 2011). As an example, consider the rabbit

Pyruvate kinase enzyme (PDB code:1PKN ; Figure 4.1), a three domain enzyme, with

a more or less clear domain definition. Figure 4.1 shows discrepancies in the domain

assignment in SCOP, CATH, and PFAM. It is understandable that databases such as

SCOP and CATH give similar results, since domain assignment in these has a manual

curation step. Despite this, the discrepancies show that every domain classification

method is constrained by its definition of a protein domain (Alden et al., 2010). In

this light, if what we consider a domain is an evolutionary conserved unit, it will most

likely differ from that of a domain as a structurally independent unit. In the latter,

discontinuity in sequence is not allowed otherwise the domain cannot behave as a au-

tonomous folding unit (AFU). Assignments like the ones in the catalytic domain (in

red) of the Pyruvate kinase in figures 4.1a and 4.1b, for example, would not represent

structural domains that can fold autonomously since they are composed of two non-

sequential sections interrupted by the PK domain (purple). It has been shown that

the “consensus” domain definition among important domain classification databases

(i.e. SCOP and CATH) do not correspond with AFUs (Day et al., 2003; Schaeffer

et al., 2011). A big fraction of the domains are discontinuous along the chain (Redfern

et al., 2007; Kolodny et al., 2013). Despite that, structurally, the lack of sequential-

ity cannot be easily interpreted; evolutionarily and functionally discontinuity can be

explained by different evolutionary scenarios. For example, a domain could be inter-

rupted by an acquisition of a newer domain or flanking regions that serve a functional

purpose. These alternative domain definitions have been exploited in the Multidom

database (Majumdar et al., 2009; http://prodata.swmed.edu/multidom/) provid-

ing insightful information into domain architecture. However, the lack of a unique

answer causes difficulties in the automation of the procedure, the interpretation of

results, and the possible generalizations of the assignment.

In general, protein domain boundaries are inconsistently defined (Kolodny et al.,

2013) and there is a myriad of techniques to try to assess this (Table 4.1).

Not even manually curated domain assignments are in full agreement (Veretnik

et al., 2004). This lack of agreement is primarily due to the complexity of the clas-

sification. It has been pointed out that domain classification is not tree-like as it

was thought before. It contains a more complex hierarchy, leading to a reassessment
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Table 4.1: Some of the Domain classification methods available. Auto refers to automatic
assignment, that is, domain classification based on an algorithm (i.e. Hidden markov
models, modularity optimization). Manual refers to a manually curation step made by
experts. Mixed refers to the usage of different resources to build a consensus. BOC refers
to basis of classification: Sequence (A) or structure (St). F: Functional; E: Evolutionary;
S: Structural.

Method Assignment Domain
type

Tool BOC Reference

Armadillo Auto S Web App. A (Dumontier et al., 2005)
CATH Auto/manual F/E Database St (Greene et al., 2007)
CDD Auto F/E Database A (Marchler-Bauer et al., 2011)
COGS Auto F/E Database A (Tatusov et al., 2000, 2001)
CHOPnet Auto E Application A (Liu and Rost, 2004a,b)
DOMAC Auto E/F Web App. A (Cheng, 2007)
DoBo Auto E Application A (Eickholt et al., 2011)
DomainDiscovery Auto S/E Application A (Sikder and Zomaya, 2006)
Domain Fishing Mixed F/E Web App. A (Contreras-Moreira and Bates,

2002)
DomainParser Auto S Multiple St (Xu et al., 2000)
DomCut Auto S/E Web App. A (Suyama and Ohara, 2003)
DomNet Auto S/E Application A (Yoo et al., 2008)
DomPred Mixed F/E Web App. A (Bryson et al., 2005)
DOMpro Auto S/E Multiple A (Cheng et al., 2006)
DomSSEA Mixed S Application A (Marsden et al., 2002)
Galzitskaya’s Auto S Method A (Galzitskaya and Melnik, 2003)
Ginzu Mixed S/E Multiple A (Chivian et al., 2003)
InterPro Mixed F/E Database A/St (Hunter et al., 2009)
Li et.al. Auto E Method A (Li et al., 2012)
Nagarajan’s Mixed S Web App. A (Nagarajan and Yona, 2004)
PDP Auto S Application St (Alexandrov and Shindyalov,

2003)
PFAM Auto/manual F Database A (Finn et al., 2010)
PIRSF Mixed S/E Web App. A (Nikolskaya et al., 2006; Wu

et al., 2004)
PRODO Auto E Application A (Sim et al., 2005)
ProDom Auto F Database A (Servant et al., 2002)
SBASE Auto/manual F Web App. A (Dhir et al., 2010)
SCOP2 Auto/manual F/E Database St (Andreeva et al., 2014)
SCOP Auto/manual F/E Database St (Murzin et al., 1995)
Sistla et. al. Auto F/E Method St (Sistla et al., 2005)
SMART Auto F/E Database A (Schultz et al., 1998; Letunic

et al., 2012)
SnapDRAGON Auto S Application A (George and Heringa, 2002)
SSEP-Domain Auto S/E Web App. A (Gewehr and Zimmer, 2006)
ThreaDom Auto S/E Web App. A (Xue et al., 2013)
Yalamanchili’s Auto S/E Method St (Yalamanchili and Parekh,

2009)
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of the classes in some databases (Andreeva et al., 2014) and a call for a review of

the concept of domain (Yegambaram et al., 2013). Let’s consider here that there are

many kinds of domains and that each one of them contains a given architecture. It is

important to differentiate between structural, evolutionary, and functional domains.

The former speaks more about the folding and packing of the protein structure. It

is therefore more related to autonomic folding units (AFUs). It is also the concept

that is probably the most relevant for protein structure prediction. The evolutionary

domain is a partition of a structure based on conservation and homology in evolu-

tionary time, and therefore primary structure contiguity is not required. In these

kind of modules, the evolutionary events in protein structure (i.e. domain trans-

location, recombination, shuffling, splicing,etc.) can be traced. This type of domain

is the one that matters the most for studies of natural history of the structures,

but it can also be useful for protein prediction (i.e. assignment of homologs), drug

design, and engineering. The latter type of domain, the functional domain, will be

sometimes tightly related with the evolutionary one, since one of the main drives for

the selection of structures in evolutionary time is function. In this kind of domain,

the classification of residues’ groups are based on the interaction with the catalytic

site (in the case of enzymes) or any functional property that the structure might

have. The latter domain type is probably the most important for drug design and

protein engineering.

Largely because of the distinction about domains explained above, defining do-

main boundaries is still a hard problem. One of the reasons for this is that there are

many forces shaping protein structures (i.e. physical, chemical, and biological). Also,

it seems that there is an architecture below the level of domain that may be shaping

residues interactions (Hleap et al., 2013b; Chapter 3). That lower-level hierarchy in

protein structure architecture will be explored further in the next section.

4.2.1 Proteins as networks: Identifying domains by graph theory

Since a protein structure can be summarized as a chain of amino-acids interacting in

3D, a natural way of abstracting it is as residue interaction networks (RINs)(Doncheva

et al., 2011) or protein structure networks (PSN)(Vishveshwara et al., 2009). By us-

ing edges as proxies for contacts between residues as nodes, a protein structure will

73



be shown as a graph or network. Let S = (N, f) be an undirected graph represent-

ing a protein structure with N residues abstracted as nodes. f will be a function

f : N ×N → k that assigns an edge (and weight if necessary) to each residue pair.

An edge Eij is assigned only if ∃(Ni, Nj), that is if residues Ni and Nj are in contact.

This strategy can use many contact definitions (i.e. all atom, Cα, Cβ; (for a test

on contact definitions see Yuan et al., 2012)), and can have some other constrains.

It can also be constructed as a weighted network, where the edge weight is a given

property (i.e. hydrophobicity difference, van der Waals energy, etc.), including more

information into the abstraction. These approaches have been already used for solv-

ing the domain boundary definition (Xu et al., 2000; Sistla et al., 2005; Yalamanchili

and Parekh, 2009), and other applications in protein structures (Vishveshwara et al.,

2002).

With this definition of protein topology, many graph theory applications can be

used. In my case, the modularity of the protein can be explored as explained in

Chapter 3 and equation 3.3. Here I will focus on the structural definition of domain.

To do so, I will constrain he Q optimization to clusters following a contiguity criteria.

That is, a given residue can only belong to a group if there is sequential connection of

that residue with at one other member of the group. This optimization was performed

with a genetic algorithm, for wich Q represented the fitness of the populations.

By optimizing the modularity score (Q; Equation 3.3) we can obtain the partition

in the protein that contains more contacts within than in between clusters. It is

therefore a proxy for the domain architecture of the protein, at least at the structural

definition level.

Figure 4.2 shows the results of a graph in which partition has been constrained

by contiguity, that is, a graph with unweighted edges representing the contacts in

the structure, and optimized keeping the sequentiality. For the PK example here,

let’s restrict ourselves to interactions based on contacts. As can be seen, there is an

over-fragmentation of the anticipated domains. This particular behaviour is sensitive

to a number of issues:

1. Protein crystal is a rigid body: While the crystal is a rigid body showing some

contacts, the protein in a functional environment is flexible, and therefore the

contacts abstracted might not represent true contacts but a crystallization bias.
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(a) 4.5Å all neighbours (b) 4.5Å NSN (c) 5.0Å AN

(d) 5.0Å NSN (e) 6.0Å AN (f) 6.0Å NSN

Figure 4.2: Partition of the rabbit’s PK (PDB code: 1PKN) by means of modularity
optimization of the contact map with different contact thresholds. Clusters are colored
differentiating the membership of each residue. Clusters in the Pyruvate kinase (PK)
were inferred by means of modularity (Q) optimization of the structure abstracted as a
residue contact network (RCN). The contact was defined as an all-atom interaction less
than a threshold. Figures 4.2a and 4.2b are based in residues within 4.5Å; Figures 4.2c
and 4.2d with 5Å; and Figures 4.2e and 4.2f within 6Å. Figures 4.2a, 4.2c, and 4.2c show
full sequentiality while figures 4.2b, 4.2b and 4.2f do not include immediate neighbors up
to the second position in the sequence. The optimization was constrained to sequentiality
by means of a Genetic Algorithm for the optimization of Q. AN: All neighbours. NSN:
no sequential neighbours.
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2. Too many parameters to tune: Using only the contact map can give you ap-

proximate answers (Figure 4.2). However, to render such accuracies, different

parameters have to be tuned, such as modularity normalization parameter,

number of contiguous neighbours to be disregarded, and again, the contact

definition/threshold (Duarte et al., 2010; Yuan et al., 2012).

3. The domain definition: Depending on what you are optimizing for, your domain

definitions will likely have different answers.

4. A hierarchical architecture of protein structures: Modularity solves for one

optimal partition and disregards hierarchies of organization.

In the particular example in Figure 4.2, despite the over-fragmentation, the in-

ferred modules are somewhat sensible in figures 4.2b, 4.2d, and 4.2f. The partition

of the N-terminal domain (mid domain; red in Figure 4.1) was expected since this

section is composed by two non-sequential fragments. However, based on the agree-

ment on most contact definitions, there seems to be more than one contact-based

domain, implying either a domain definition bias or a subdomain architecture of the

N-terminal domain. However, the disparity in results remains, and the parameter

tuning can become ad hoc.

There are software packages available that make use of contact graphs and render

reasonable results (Xu et al., 2000; DomainParser). However, such programs do not

rely entirely on the contact map, and normally include other variables and normal-

ization procedures to achieve a visually reasonable Domain-level resolution. Also,

the accuracy reported in such software is measured in a given domain definition that

might not be the one being sought in a given problem (i.e. SCOP domain defini-

tion in DomainParser software). Another issue with the software development is that

given a growing amount of citations of databases like SCOP, most programs optimize

their algorithms to fit such domain. Such approaches try to bypass the interesting

properties of protein structure in an attempt to reproduce manual assignment.

4.3 Sub-domain architecture

The hierarchical architecture of proteins can be explored in many ways. The contact

maps explored in the previous section showed a clear example of how a level smaller
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than the domain affects the way we can predict higher level modules. Even in lower

levels of architecture, the definition of modules (sub-domains) is potentially interest-

ing. In Figure 4.2 we can see that by constraining the modularity (Q) partition by

sequence contiguity, structural sub-domains can be found. This sub-domain might

be including known elements such as close-loops (i.e. the tan module in figures 4.2a

and 4.2b) and AFUs (i.e. most other clusters in Figure 4.2 can behave as such).

Identifying such structural modules is of great importance in the development of

new protein structure prediction software. Protein structure prediction currently is

based on the domain boundary prediction with high variability in the accuracies ob-

tained (Wang et al., 2014). Given that protein structure prediction is more related

to folding thermodynamics, partition of the structure into its AFUs and close loops

might give future developers better methodological and conceptual tools for protein

structure prediction.

In the evolutionary/functional definition of modules, I have shown in Chapter 3

that by obtaining correlation information of the coordinates among residues across

homologs, a graph theoretic approach can be employed to explore evolutionary (if

samples are homologs) or dynamic modules (if the samples are snapshots of a molec-

ular dynamics simulation). A quick protein BLAST (Altschul et al., 1997) restricted

to the PDB database can be used in the PK protein example to gather homologous

structures. With a strict cut-off (e − value ≤ 10−100) 42 protein structures were

sampled, ranging from bacteria to human. Applying the method proposed in Hleap

et al. (2013a) and Chapter 3, 5 significant modules were inferred (Figure 4.3).

It can be noticed that both structural modules and evolutionary ones, converge in

the separation of the SCOP N-terminal domain into sub-domains. It seems that such

separation is an evolutionary constraint in the TIM-barrel evolution, since the results

I have shown in Chapter 3 and in Hleap et al. (2013a), the α-Amylase TIM-barrel

have a similar pattern. This does not mean that the two domains are necessarily

homologous, but does stress the need of selection to keep such fold.

These different kinds of data and modules support the idea of a hierarchical

organization of protein structure architecture. (Andreeva et al., 2014) acknowledging

this, created a new SCOP database (SCOP2) in which those motifs, sub-folds and

other kind of classifications, are now included.
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Figure 4.3: Evolutionary modules of the Pyruvate kinase rendered in the rabbit’s PK (PDB
code: 1PKN). After a protein BLAST restricted to the PDB database, 42 structures where
gathered. By using the method in Hleap et al. (2013a), 5 modules were inferred. Non-
homologous sections of the protein are stripped off, but its connections are highlighted in
blue.

An unsolved issue about these sub-levels of architecture is the question of how

many these are. In Chapter 3, I have shown that there might be more than one

level in the evolutionary definition of sub-domain. This question is important in

order to discover new patterns that can lead to the functional role of groups of

residues (Csermely, 2008; Vishveshwara et al., 2009), drug discovery (Csermely et al.,

2013), exploration of protein-protein interaction interfaces (Doncheva et al., 2011)

and binding sites (Reichmann et al., 2007), protein-ligand interaction (Sathyapriya

et al., 2008; Ozbek et al., 2010; Liu and Hu, 2011), or protein folding (Khor, 2012).

Also, it is important to assess the contribution that scaffolding residues are having

with respect to the architecture, since they seem to cluster together often. Luckily,

there are tools such as RINalyzer (http://www.rinalyzer.de) (Doncheva et al., 2011)

and protocols (Doncheva et al., 2012) to explore a more fine grain detail about the

protein residue networks. However, these tools are a post-hoc solution for the domain

and sub-domain boundary prediction and might serve as the exploration/validation

of results.
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4.4 Exploring the hierarchy of protein structure architecture:

Perspectives

In the previous section I have shown that there is a hierarchy in protein structure

architecture. One possible way to explore this hierarchy relies on Newman-Girvan

modularity (Equation 3.3) and related optimization algorithms. If we constrain the

optimization of Q in such a way that it avoids weaker connections to be included

within the resulting cluster, we might be able to “control” the level of exploration.

Figure 4.2 shows how a constraint on the sequentiality applied to the modularity

optimization (here performed with a genetic algorithm) will yield different levels of

modularity. We can also optimize km × Q, where k is the degree of constraint and

m is the number of modules. With this constraint, optimizing km × Q also implies

minimizing m, or the number of modules. This means that a partition is penalized if

not enough edges are shared, and the inverse of k can be interpreted as the “strength”

or degree of improvement needed to further break the protein into modules. That

lack of information for a given level can be controlled by the degree of constraint.

Figure 4.4 shows the results of such strategy for three levels of k: 0.70, 0.80, and

0.90.

With this approach different levels of modularity on a structural domain definition

can be seen, as well as control numerical issues that can arise in a sparse graph. In

Figure 4.4a only two modules are found that, when inspected, might reflect a higher

level organization of folding. In Figure 4.4b the partitions of the structure are already

similar to the SCOP C-terminal domain (orange), half of the N-terminal domain, and

the rest, showing how a second level of interaction reveals a hierarchical architecture.

Finally, in Figure 4.4c a partition into the SCOP domains can already be seen, plus

the partition (by sequentiality) of the N-terminal/TIM-barrel domain. These results

suggest the sub-domain architecture is a real phenomenon, and that this modularity

has a hierarchical nature. It also shows that by means of optimization of km × Q,

this hierarchical sub-domain architecture can be explored.

Within a graph theoretic framework, there are other approaches that can also be

used to explore the hierarchical nature of protein structure architecture. Most graph

software use a dendrogram to partition the network. Each level of the dendrogram
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can be scored for Q in the different levels, and therefore get an idea of the modular

and hierarchical architecture of the structure. Other approaches use statistical tests

to assess the quality of hierarchical partitions. An example of such algorithm is the

(a) k = 0.7 (b) k = 0.8

(c) k = 0.9

Figure 4.4: Weighted modularity optimization. Optimization of the Newman modularity
score Q constrained by a weight and sequentiality. The weight is the Q multiplier km,
where k is the degree of contrain and m the number of modules generated. The constrained
optimization was performed using a genetic algorithm.
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OSLOM (Order Statistics Local Optimization Method) (Lancichinetti et al., 2009,

2011) which simultaneously evaluates the hierarchical and the overlapping commu-

nity structure of graphs. This method includes a fitness function with an α param-

eter, similar to the weighted Q presented here.

Approaches like these should be explored further in the future in order to fully

understand the protein structure architecture.
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Chapter 5

The response to selection in protein structures: A

comparative quantitative genetics approach

Let’s assume that protein structures are phenotypes and that their 3D structures

respond to both genetics and environment. Because of this, protein structures’ coor-

dinates can be treated as phenotypic traits and can be analysed within a quantitative

genetics framework. In this framework, the observed variance of a phenotype is (Fal-

coner and Mackay, 1996):

VP = VG + VGE + VE (5.1)

where VG is the genetic variance, VGE is the variance of the interaction between

environment and the genetic component, and VE is the variance caused by the en-

vironment. Each variance component can be decomposed into finer components

(Falconer and Mackay, 1996):

VG = VA + VD + VI (5.2)

where VA is the additive genetic variance, VD is the dominance variance, and VI

is the epistatic interactions variance. In evolution, the additive variance is the most

relevant from the equations above. This is due to the fact that is the additive genetic

component which is “adding” to the phenotype by genes. It is also the only one that

can be selected since the environmental, dominance, and interaction effects are not

encoded in genes. These other components are therefore not affected by directional

selection but might affect estimations. The dominance effects, for example, can bias

the estimation of the genetic component upward. This dominance variance can be

selected only if there is no fixation in the genes (heterozygotes still exist), and if

the dominance shifts in the phenotypes have a selective pressure, otherwise they

tend to zero. Despite that, selection can affect the dominance effects and their

contribution to the genetic component, however their intensity is typically small.
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In protein structures, the dominance effect is not present in the model since the

phenotype being analysed comes from a unique sequence, thus it can be regarded as

an haplotypic phenotype.

Decomposing the phenotype and the corresponding quantitative analysis can be

performed by analysing the phenotype under the light of kinship in a generalized

linear model (GLM) (Falconer and Mackay, 1996):

yi = μ+ ai + ei (5.3)

where yi is a phenotypic trait being measured in individual i, μ is the population

mean, ai is the breeding value or the genetic effect on the mean value, and ei is a

residual value.

One can generalize the model of equation 5.3 and include other effects as fixed

effects for which we have sampled all intended levels. One example of the usage of

fixed effects is to extract sexual dimorphism from the analysis. With this generaliza-

tion commonly named the animal model, both random (ai) and fixed effects (b) can

be estimated (Wilson et al., 2010):

yi = μ+ bi + ai + ei (5.4)

The estimation can be done with regression analysis given filial designs (i.e. mother-

offspring, half-siblings, full-siblings, etc . . . ). The filial design is needed since it is the

one that allows to partition the phenotype into relatedness components. A pedigree

is therefore required for this kind of model.

All above background is applied to multigenic single traits. That is, a particular

trait encoded by a number of different genes that needs to interact in order to “form”

the trait (i.e. length of a femur, number of abdominal bristles in an insect, milk

production in cattle, etc).

Proteins and other shapes are highly multivariate in nature (Klingenberg and

Leamy, 2001). To comply with such nature a multivariate equivalent of the models

expressed above can be formulated as (Thompson, 2008):

y = Xb+ Za+ e (5.5)
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where y represents a vector of observations of multiple traits, X and Z represent

design matrices for the fixed and random effects in vectors b and a respectively, and

e is the residual component that cannot be explained by the model.

The additive variance (VA) is the actual contribution from genes to the pheno-

type. VA is also the portion of the genetic variance that can be passed from parents

to offspring and be selected. The direct relationship between VA and selection is

expressed in the breeder’s equation (Falconer and Mackay, 1996):

R =
VA

VP

∗ S (5.6)

where R is the response to selection of a population of a given trait, S is the selection

differential, and VA

VP
is also called narrow-sense heritability (h2). Lande and Arnold

(1983) generalized this for a multivariate case as:

Δz̄ = Gβ (5.7)

where Δz̄ is a vector of changes in traits, G is the genetic variance-covariance matrix

(G-matrix), and β is a vector of selection gradients.

As explained in Chapter 2, protein structures can be abstracted as shapes and it is

known that shapes are multivariate traits (Klingenberg and Leamy, 2001). Monteiro

et al. (2002) proposed the use of an univariate approach for multivariate traits, par-

ticularly shapes, to estimate the heritability. However, Klingenberg (2003) demon-

strated that Monteiro et al. (2002) approach only works when all variation in each

landmark is uniform in all orientations. It is intuitive that this is hardly the case

for most shapes. Therefore an estimation of the G-matrix is required (Klingenberg,

2003); this task is not trivial. To deal with the fact that the number of samples is

limited, that inversion of matrices require expensive computation, and that an eigen

decomposition is required, the restricted maximum likelihood (REML) approach has

been traditionally employed to carry out the variance decomposition. When applied

to univariate data, it is more accurate since it deals better with missing data (i.e.

unknown parents, arbitrary breeding designs, etc) and can account for selection pro-

cesses. However, REML has good properties only asymptotically. The reliability of

the estimates is questionable when data is scarce. One way to deal with complex

cases that might bias the REML estimates is to use Bayesian inference of the animal
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model. This approach uses Markov chain Monte Carlo simulations and is a more

robust estimation than REML, with equivalent results in less complex cases, how-

ever (Blasco, 2001). This robustness assumes that the Bayesian model has enough

information in the prior probability distribution. This can considerably affect the

estimation of the variance components. In particular, uninformative priors, such as

flat priors, can lead to biases in the estimation. Another approach that can be used

when the number of variables is large is factor-analytic (FA) models and structural

equations modelling (SEM). These strategies have been proven to have an equivalent

robustness in the estimation of genotype effects to more traditional models (for a

review on such models refer to Smith et al., 2005; Piepho et al., 2008). FA mod-

els allow a higher dimensionality by partitioning the estimations into latent factors

(Meyer, 2009; Runcie and Mukherjee, 2013). Latent factors are variables that are not

directly observed but inferred through a model, using the directly observed variables

to estimate them. The definition of the number of latent factors to use (defined by

the researcher) is the downside of FA models. A wrong number of latent factor can

significantly bias the estimations of parameters. FA models also assume that the

between-factors covariance is a single value. This can warp the response to selection.

Also, FA models have an increased square root of mean square error when estimating

the genetic component as the rank of the matrix get smaller (Meyer and Kirkpatrick,

2008).

5.1 Lynch’s comparative quantitative genetic model: Applications in

protein structures

GLM estimation of quantitative genetics parameters rely on the filial design. Nor-

mally, filial design needs a pedigree to express the relationship within families and

then the variance can be decomposed. Such pedigree can be summarized in an

inbreeding or relationship matrix, and incorporated into the GLM.

In protein structures this type of relationship is not retained since most of the

sampling is performed in different species. Lynch (1991) developed a wider gener-

alization of the linear mixed models, in what he called phylogenetic mixed model

(PMM). In this model, the correlation of phylogenetically heritable components is

85



the time to the shared common ancestor (length of the path from the most recent

common ancestor among two species and the root) in the phylogeny (Housworth

et al., 2004; Hadfield and Nakagawa, 2010). The PMM can be described as (Lynch,

1991):

z̄ci = μc + aci + eci (5.8)

where z̄ci is the observed mean of the trait, μc is the grand mean of the cth character

over the phylogeny, aci is the additive (phylogenetic) value the cth character in the ith

taxon. Finally, eci is the residual deviation or Cheverud’s specific effect (Cheverud

et al., 1985) if within species data has been sampled.

An assumption of the model is that μc is shared among all taxa in the phylogeny.

This is a sensible assumption to make when analysing truly homologous protein

structures, since the mean effect on the phenotype is shared by common ancestry.

This also means that μc + aci can be interpreted as the heritable component of the

mean phenotype for the ith taxon (Lynch, 1991).

The univariate model in equation 5.8 can be generalized to any number of char-

acters by (Lynch, 1991):

z̄ = Xμ+ a+ e (5.9)

where X is an np×p incidence matrix, p being the number of traits and n the number

of observations.

As can be seen, equations 5.4 and 5.5 are almost identical to equations 5.8 and

5.9. The differences are in the definition of the effects, equating the additive effects

to be phylogenetic. Also, in Lynch’s multivariate equation the fixed effect is equated

to the mean.

Here, the phylogenetic effects are the portion of the variation that has been

inherited from ancestral species (Cheverud et al., 1985). It does not only contain

the genetic component, but also some environmental contributions given the shared

evolutionary history of the taxa (Housworth et al., 2004). In PMM, analogous to

traditional quantitative genetics, the ratio between the additive component and the

total variance is the heritability (h2) in an univariate approach. Housworth et al.

(2004) point out also that an univariate h2 in a PMM is actually equivalent to

Freckleton et al. (2002)’s and Pagel (1999)’s phylogenetic correlation (λ).
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Martins et al. (2002) showed that the PMM is comparable to the phylogenetic

generalized least squares (PGLS), spatial auto-regression, and phylogenetic eigen-

vector regression. They all yielded good statistical performance, regardless of the

evolutionary model and even when some of the assumptions where violated.

Despite the robustness of the models, the REML technique has two major draw-

backs: assumption of normality, and restrictions in the sample size . It is widely

known that REML would poorly estimate the genetic correlation when overparam-

eterized (multi-trait inference), the sample size is small (Martins, personal commu-

nication), and when the normality assumption is violated (Hadfield and Nakagawa,

2010). These violations can be handled in a Bayesian framework using Markov Chain

Monte Carlo techniques. In such techniques, the higher complexity of the joint prob-

ability calculation needed for the likelihood estimation can be broken down in lower

dimensional conditionals. From those conditionals the MCMC sampling can be per-

formed and marginal distributions can be extracted (Hadfield and Nakagawa, 2010).

The discussion of the usage of Bayesian MCMC techniques is beyond the scope of

this thesis. I refer the interested reader to Sorensen and Gianola (2002) for a better

description of likelihood and Bayesian methods in quantitative genetics.

Despite its strengths, the Bayesian framework also has weaknesses. The most

important one is that it requires proper and informative priors. Too vague or unin-

formative priors lead to important biases with high variation in results. This is why

the sensitivity to the choice of prior distribution should always be assessed (Lambert

et al., 2005). Given that in evolutionary biology datasets the amount of knowledge

on the estimator is scarce, well informed priors are normally not available and by

informing priors with partial information, the estimation can become ill-conditioned.

5.1.1 Computational infeasibility of the full comparative approach

In a multivariate scenario, both REML and Bayesian methods have a computational

chokepoint. This chokepoint is in the matrix operations needed to estimate a large

number of parameters. As the matrix grows bigger in both number of individuals (n)

and number of traits (p), the computation becomes untractable in terms of memory

and time. For p traits, p(p + 1)/2 covariance components need to be estimated per

random effect, and thus the estimation burden increases quadratically (Meyer and
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Kirkpatrick, 2008; Houle, 2010).

To test how feasible the methods are, I developed a simulation where I constructed

the phenotype from its components. Following equation 5.9, the phylogenetic effects

(a) were simulated using the rbv function in the MCMCglmm R package (Hadfield,

2010) to create a matrix of randomly generated multivariate normal phylogenetic

effects. The generation of phylogenetic effects was constrained with a known p × p

genetic matrix (G) that was drawn from an inverse Wishart distribution with an scale

matrix with one in the diagonal and 0.5 in the off diagonal entries. Also, a random

tree was generated by the functions compute.brtime and rtree of the ape R package

(Paradis et al., 2004). The error component (e) was built by performing a Cholesky

factorization of a known p×p covariance matrix (E) and multiplying the decomposed

matrix with a matrix of random values of shape n×p. The known E matrix was also

drawn from an inverse Wishart distribution, and its scale matrix contained ones in

the diagonal and 0.1 in the off diagonal. Summarizing, the simulation was performed

by:

1. Create the known phylogenetic (G) and error (E) covariance matrices

2. Using G to constrain the simulation of the phylogenetic effects (a), simulate

the n× p matrix a given a random tree

3. Incorporate the desired covariation E into a n× p random matrix

4. Add the error and phylogenetic effects

Table 5.1 shows the time and memory spent in a simulation fixing n to 100 and

varying p. The estimation was performed using Lynch’s PMM model as implemented

in the R package ape (Paradis et al., 2004), where many matrix inversions and Kro-

necker products are involved (see Lynch, 1991; for details). This computation was

performed in a PC Intel R©Xeon R©CPU E5-2620 v2 @ 2.10GHz Intel i3 3.10GHz 128

Gb 2x hexa core processor.

Table 5.1 and Figure C.1 show that at 16 traits it required over 300 Mb of memory

and over 9.4 hours to compute. The behaviour with 32 traits is erratic. In the current

simulation the computation cannot be performed since the memory requirements are

too high. The problem scales up quickly not only with the number of traits, but also
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Table 5.1: Feasibility of the phylogenetic mixed model (PMM). Memory, time and accuracy
of the PMM using Lynch’s and Bayesian approaches. RSA correspond to the random
skewer test for the phylogentic covariance and RSE for the residual. Bold values indicate
correlation of random skewers greater than 0.9 and significant.

Method Traits Time Memory
RSA RSE

(secs) (Mb) p-val ρ p-val ρ

Lynch

2 113.44 13.9 0.109 0.955 0.036 0.997
4 1132.34 27 0.004 0.952 0.000 0.995
8 1780.78 77.7 0.003 0.878 0.000 0.997
16 34159.34 276.8 0.000 0.888 0.000 0.998

BGLMM

2 35.94 50.5 0.103 0.948 0.024 0.997
4 110.36 62.2 0.002 0.971 0.001 0.997
8 624.88 107.8 0.000 0.940 0.000 0.994
16 2508.96 310 0.000 0.897 0.000 0.995
32 9777.48 1110 0.000 0.904 0.000 0.995

Algorithm 2

2 37 47.4 0.062 0.975 0.026 0.996
4 227.96 60.5 0.018 0.890 0.000 0.996
8 1714.86 74.5 0.002 0.911 0.000 0.992
16 6066.8 127 0.000 0.871 0.000 0.994
32 17254.76 406.3 0.000 0.878 0.000 0.993
64 70207.5 427.5 0.000 0.858 0.000 0.992
128 317766.02 74.3 0.000 0.866 0.000 0.993

with the number of individuals. This trend is due to computation of the inverse of

the relationship and the identity matrices. The computation of these matrices take

the most time (≈94%) and memory (≈60%). Also, the time and memory required to

compute the Kronecker product of these very large matrices scale up quickly with the

dimensions of the input matrix. It can take up almost a third of the spent memory,

showing the dependency between complexity and both n and p. The reliability of the

estimates is also affected. The sample size needs to be increased in order to estimate

the covariance matrices with confidence. However, by increasing the sample size

the computation becomes more complex. To test the extent of the bias Table 5.1

shows the mean correlation and corresponding p-values of the Cheverud’s Random

Skewer (RS) test (Cheverud, 1996a; Cheverud and Marroig, 2007) implemented in

the R package phytools (Revell, 2012). Despite that works such as Bégin et al. (2004)

have contentions about any given covariance matrix comparison methods, Cheverud’s

89



test is better suited for my framework. It introduces random vectors of change and

compares the correlation of resulting vectors. This is in line with the quantitative

genetic framework as in equation 5.7. It is also better suited for comparative studies

than other tests of equality such as Anderson’s maximum likelihood test of equality

of covariances (Anderson, 1958) or the common principal component (CPC) analysis

(Phillips and Arnold, 1999). Those tests have big biases given the sample size and

the number of traits. Steppan (1997) showed a positive relationship between the

number of traits and and the likelihood of rejecting equality.

Surprisingly, despite the expected instability of the matrix estimation given the

sample size, most of the estimation were highly correlated (>0.70) and significant. It

is important to state that the (RS) test does not evaluate equality of the covariances

(in fact most covariances were very dissimilar). However, the overall response to a

vector of selection is highly correlated. For the purposes of this thesis, the matrix

equality in response to disturbances is more relevant than the exact match between

the covariance matrices’ values. This is because the response to disturbances ex-

pressed in the RS test, follows the same framework as the expression detailed in

equation 5.7.

Bayesian solution to the memory requirements

Given that Bayesian generalized linear mixed models (BGLMM) use Markov chain

Monte Carlo (MCMC) simulations and usually Gibbs sampling, the memory re-

quirements should lower significantly. However, Table 5.1 show the same trend on a

different scale when using the R package for BGLMM MCMCglmm (Hadfield, 2010).

I simulated up to 32 traits using approximately 2 hours in the bigger dataset when

the sample size and the number of MCMC iterations are held constant. The results

show that it was not the memory but the time that benefited from the Bayesian ap-

proach since over 1Gb was used (Table 5.1 and Figure C.3). However, this memory

requirement can be lowered if fewer MCMC iterations are performed. Neverthe-

less, lowering the number of iterations can only be done on per case basis since the

convergence has to be guaranteed.

Data in Table 5.1 describe the accuracy of this approach. With these particular

data, it behaves better or similar to Lynch’s approach while being faster when the
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number of traits is high. With the given dataset, when more than 32 variables were

analysed, MCMCglmm (Hadfield, 2010) reported ill-conditioned priors when completely

flat ones (identity matrices) were used. With this in mind, and the fact that on 32

traits the memory requirements remain over 1Gb, a new approach was required.

5.1.2 Dealing with computational constraints: An approximation to

the G-matrix

Dealing with time constraints is easier than dealing with memory constraints. For

this reason, a näıve approach can be developed by exploring all pairwise estimations

(Algorithm 2). This approach is time consuming, but theoretically memory efficient.

With this approach,
(
p
2

)
estimations are computed. This means that many rep-

etitions of estimated variances are explored. To choose the best value among the

repeats, one can keep track of each estimation and its Deviance Information Crite-

rion (DIC), and select the best estimation of each pair to reconstruct the full matrix.

The R package MCMCglmm was also used for the pairwise estimations.

The computational cost of this approach is shown in Table 5.1 and Figure C.5.

There it can be seen the high time constraint but the memory feasibility of this

method. Despite the time cost this method can be easily parallelized. This approach

cannot currently be applied with the full-matrix method. If parallelized, Algorithm

2 could in theory take the same amount of time to estimate the parameters as a

2 trait full-matrix analysis. This is true, independently of how many variables are

being analysed, if the number of processors are equal or greater than the number of

pairs explored.

Algorithm 2 computes only an approximation to the true matrix, since this

method does not account for the covariance of other pairs in the estimation. To

test this, I ran this algorithm and used the RS test the response to random vec-

tors between the real matrix and the pairwise-re-constructed matrix (Table 5.1 and

Figure C.6).

Despite its feasibility, algorithm 2 showed a lower accuracy obtained in the cor-

relation of the response to selection vectors. This can be due to an overly simplistic

pairwise approach, but also by the limited sample size.
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Algorithm 2 Pseudo-code for the partial G-matrix estimation. This algorithm is a

high-level pseudo-code where not all details are expressed.

Input: gm ← A dataset of homologous coordinates.

P ← gm Extract the information as phenotypic matrix P

N ← Extract the column labels of P as trait labels

S ← Create an array of all the pair combinations of N

for s ∈ S do

Gs ← Estimate the pair variance-covariance matrix

M ← Gs Store variance-covariance matrix in an array

D ← Ds Compute and store the DIC for the matrix Gs

end for

G Prepare a matrix of p× p dimensions

for i ∈ G do

d ← minimize D where i ∈ s and store variance with minimum DIC

Gii ← d

for j ∈ G do

if i == j then continue � Do not compute the same variance twice

end if

e ← minimize D where j ∈ s and store variance with minimum DIC

Gjj ← e

Gij ← Mij

end for

end for

Fill Gji with Gij return G
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Sample size effect in the estimation

It is known that the sample size is also an is issue in the estimations of G specially

when the number of traits increases. To test this assumption, I simulated and mea-

sured time and memory usage for the estimations following the same strategy used in

section 5.1.2. In this case, the simulation has a fixed p equal to 8 and varying levels

of n: low (16 observations), medium (64 observations), and high (256 observations).

Table 5.2 shows the requirements in time and memory, as well as the average accu-

racy and the standard deviation for 10 replicates. The estimated mean is slightly

biased resulting in a decrease in the mean. These trends can be seen in Appendix

C.7

Table 5.2: Effect of sample size in the phylogenetic mixed model(PMM). Average (±
standard deviation) memory, time and accuracy of the PMM using Lynch’s and Bayesian
approaches. RSA corresponds to the random skewer test for the phylogenetic covariance
and RSE for the residual.

Method Samples Time (secs.) Memory(Mb) RSA RSE

Lynch
16 43.76±53.77 15.77±0.05 0.72±0.26 0.85±0.26
64 2943.23±2746.06 37±0 0.72±0.24 0.98±0.04
256 111986.44±53576.95 444.63±0.05 0.71±0.26 1±0

BGLMM
16 70.41±7.8 100.62±1.96 0.67±0.2 0.86±0.25
64 343.31±65.44 102.82±9.73 0.7±0.12 0.9±0.31
256 1198.12±100.73 123.06±37.9 0.78±0.15 1±0

Algorithm 2
16 235.32±22.64 57.01±5.3 0.63±0.3 0.93±0.09
64 973.11±158.28 65.88±3.41 0.73±0.17 0.99±0.02
256 3002.19±333.75 158.04±114.79 0.66±0.26 1±0

It is expected that accuracy increases with sample size. However, Table 5.2 shows

that this is only significantly true for the residual matrices. This phenomenon might

be attributable to the differences in the scaling structure in the original simulated

matrices.

Data from Table 5.2 also suggest that the cost in time and memory can be

prohibitive. However, a greater problem is that obtaining sample sizes of over 200

protein structures is not always possible. One possibility to increase the sample size

is to include snapshot structures from molecular dynamic simulations of each of the
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homologs. This approach also introduces an extra component to the variance: the

within group (within homolog/species) component. Given that this component is

actually of interest, it is worth to assess it separately. Section 5.1.3 explores this

issue.

5.1.3 Beyond the OTUs: partitioning the variance within taxonomic

units

We know by equation 5.1 that the phenotypic variance can be explained by the

genetic, environmental, and interaction components. It is also known that if repeated

measures of a trait are available, the variance can be further partitioned into a

third component. In general comparative evolutionary biology, such components

may include differences among populations, phenotypic plasticity, sampling variation,

instrument-related error, physiological state, variation related to age, sex, season, or

time of day, among others (Ives et al., 2007). All these sources of variations greatly

depend on the way the sampling was done and the trait in hand. By including a

within-group, within individual in traditional quantitative genetics or within species

in comparative studies, nuisance parameters can be dealt with. Many studies have

shown the importance of dealing with measurement errors and deviations from the

between-group analyses (Harmon and Losos, 2005; Ives et al., 2007; Felsenstein, 2008;

Hadfield and Nakagawa, 2010; Garamszegi and Møller, 2010; Silvestro et al., 2015).

Therefore the within-group analysis is ideal. In protein structures, repeated measures

can be taken as snapshots of molecular dynamic simulations of a protein in solution

(as performed in section 2.2.2). Thereby adding a partition to the variance. In this

set up, another variable is added to the model:

z̄ = Xb+ Za+ e+m (5.10)

where m is the matrix of individual effects or effects of the dynamics of a protein.

This approach has an application in structural biology, since it allows partitioning

the structural variation into:

1. Phylogenetic component: This component will provide information about the

evolutionary constraint in the protein structure. Therefore, it can be used in
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informing decisions of protein engineering, structural constraints in bioinfor-

matics, etc.

2. Dynamic component: This component provides information about the thermo-

dynamic constraints in a set of proteins. It can be use as before to guide within

species protein engineering and on the analysis of the dynamics of a given fold.

3. Residual component: This will encompass all other components of the pheno-

type including noise, different sources of error inclusive of measurement error,

and other environmental factors.

This approach is ideal since it allows to dissociate the phylogenetic (evolution-

ary) variability from dynamic variability. Liu and Bahar (2012) show a correlation

between sequence evolution and dynamics. However, in their approach both entities

can be confounded by permanent effects created by descent. Ideally, this bias should

be stripped to avoid an artificially increased estimation of the correlation. Using

the linear mixed model to estimate this components implies the inclusion of extra

parameters to estimate. To test the computational complexity and the accuracy, the

same approach as in section 5.1.1 was used, but including a dynamic term in the

simulation and the model. This term was included by:

1. Generating a Multivariate normal p × r matrix O, where r are the number of

repetitions.

2. Correlating the variables with a known covariance matrix M (drawn from an

inverse Wishart distribution), by means of Cholesky decomposition.

3. Populating a MD matrix (n ∗ r)× p, with the correlated matrix by repeating

it n times.

4. Generating a multivariate normal (n ∗ r)× p matrix of independent effects.

5. Adding the MD matrix with the independent effects.

The results can be seen in Table 5.3.

With the inclusion of extra parameters there is a significant increase in the time

and memory required for the estimation. However, the high accuracy in the phylo-

genetic covariance matrix estimation is surprising since a more unstable estimation
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Table 5.3: Accuracy and feasibility of the two random effect PMM. Memory (Mb), time
(sec) and accuracy (random skewer correlation) of the PMM using a Bayesian approach
with two random effects. RSA corresponds to the random skewer test for the phylogenetic
covariance, RSM for the dynamic component, and RSE for the residual.

Method Traits Time Memory
RSA RSM RSE

(hours) (Mb) p-val ρ p-val ρ p-val ρ

BGLMM
2 1.497 185.1 0.033 0.992 0.077 0.963 0.227 0.758
4 3.635 255.1 0.005 0.968 0.003 0.958 0.095 0.681
8 11.1946 457.4 0.000 0.947 0.001 0.868 0.060 0.554
16 40.562 1184.4 0.000 0.931 0.000 0.835 0.029 0.450

Algorithm 2
2 1.624 213.4 0.052 0.990 0.090 0.958 0.222 0.758
4 8.663 233 0.004 0.977 0.012 0.957 0.104 0.701
8 36.974 252 0.000 0.950 0.001 0.868 0.046 0.592
16 149.193 245.9 0.000 0.946 0.000 0.842 0.011 0.583

was expected. The accuracy was anticipated to diminish quickly with the number

of variance-covariance components to be estimated. For 3 random effects, there are
3q(q+1)

2
variance-covariance components that have to be estimated. This complexity

makes the estimation of parameters unstable and intractable. However, data in Ta-

ble 5.3 show high correlation values for the phylogenetic and acceptable values for

the dynamic component. In the case of the residual value, most correlations were

low and non significant. This is also an interesting observation since the trend seen

in previous sections showed that an accurate estimation of the residual matrix was

more feasible than the phylogenetic one.

Despite an improvement in accuracy, it can be seen that the time and memory

required for the computation are still prohibitive; therefore, when q and n are high,

another approximation is needed.

5.2 Overcoming over-parametrization: Approaching the G-matrix by

means of the P-matrix

Given the results in section 5.1, the estimation of the G matrix within the Lynch’s

PMM is infeasible. This is not a new observation since in comparative evolutionary

biology it is widely known that accurate measures of G are difficult or impossible

to obtain (Marroig and Cheverud, 2001). This pattern is even more evident when
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dimensionality is high. On average, protein structures are composed of over 200

residues in a three-dimensional system, which means over 600 variables. Also, the

sample size at the species level is typically small. Because of these reasons, a full

and stable estimation of the G-matrix is not possible. However, as referred in section

5.1.3, an increased number of samples can be achieved by means of molecular dynamic

simulations. This increases n considerably depending on the length of the simulation.

I have shown the infeasibility of the GLMM to deal with the dimensionality and very

large sample size. However, it has been shown that phenotypic (P ) matrices can

be estimated with more confidence with large sample sizes (Cheverud, 1988, 1996a;

Roff, 1995). It is also shown that in some cases, P can be used as surrogate for G

when the two are proportional (Marroig and Cheverud, 2001; Revell et al., 2007). To

test this, the same simulation scheme as in section 5.1.3 was used. In this section, the

simulation was performed with 500 replicates as molecular dynamics snapshots, 100

taxa, and the traits were varied from 2 to 1024 in a geometric series increase. Since

the within-homolog matrix structure is known, a pooled-within covariance matrix

(W ) was computed as:

W =
1

n− S

S∑
s=1

⎛
⎝ ∑

ω:f(ω)=s

[xi(ω)− x̄i,s]× [xj(ω)− x̄j,s]

⎞
⎠

i,j=1,··· ,p

(5.11)

where S is a the number of categorical variables describing the groups or species,

ω is an instance, were f(ω) correspond to the class value of the instance, and x̄i,s is

the mean of the variable i for individuals belonging to s. n is the sample size.

Here, W contains the covariance matrix of the within-homolog (i.e. Molecular

dynamic data). To estimate the evolutionary component of P , the between struc-

tures/species covariance matrix (B) has to be taken into account. B will be simply

the difference between the P and W .

Table 5.4 and Figure C.8 show the feasibility and accuracy of the pooled-within

species covariance estimation method. Even with highly multivariate data (1024

traits), the memory requirement is manageable (less than 2 Gb). The evaluation is

done in under an hour. The accuracy of the estimation is high, with the estimated G

matrix being almost identical to the simulated one, and the estimated MD having
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Table 5.4: Accuracy and feasibility of the pooled-within covariance estimation. Memory
(Mb), time (sec) and accuracy (random skewer correlation) of the pooled-within covariance
estimation approach. RSB corresponds to the random skewer test for the phylogenetic
covariance and RSW to the dynamic component.

Traits Time Memory
RSB RSW

(secs.) (Mb) p-val ρ p-val ρ

2 0.60 182.9 0.002 1.000 0.021 0.999
4 0.80 238.2 0.000 0.999 0.007 0.952
8 1.00 387.6 0.000 0.998 0.000 0.983
16 1.82 407.5 0.000 0.998 0.000 0.963
32 6.08 428.5 0.000 0.998 0.000 0.966
64 20.32 465.9 0.000 0.999 0.000 0.953
128 91.14 539.4 0.000 0.999 0.000 0.947
256 341.90 686.8 0.000 0.999 0.000 0.950
512 1342.36 982.2 0.000 0.999 0.000 0.938
1024 5268.82 1843.7 0.000 0.999 0.000 0.937

over 0.97 correlated response to random vectors to the actual MD. This is a sur-

prising result since this method cannot separate completely the error terms from the

genetic and the dynamic component. However, it seems that the split of the error

term between the two other components make the error terms negligible. Moreover,

it seems that error does not affect significantly the structure of G and MD, allowing

them to behave almost identically than the simulated counterparts. Given these re-

sults, and the fact that the application to real datasets can only be made with this

approach, it seems reasonable to keep using this from this point forward. However,

the biological and evolutionary meaning of this approach is less clear than in the

other methods since there is no explicit use of a phylogeny.

5.2.1 The meaning of the pooled within-structure covariance matrix

It has been widely described that P-matrices can be used as surrogates of G-matrices

in cases were they are proportional or sufficiently similar (Cheverud, 1996b; Marroig

and Cheverud, 2001; House and Simmons, 2005; de Oliveira et al., 2009; Marroig

et al., 2009; Porto et al., 2013). Prôa et al. (2013) showed that this assumption can be

relaxed if the correlation between G and P is higher than 0.6. In protein structures,
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we can assume that given the strong selective pressures and long divergence times

that they have been subjected to, the relationship between P and G could potentially

be standardized. Assuming that this is true in protein structures, the estimated

pooled variance-covariance (V/CV) matrices in real datasets might have specific

biological meaning. This has been described in Haber (2015) for morphological

integration in mammals. Following Haber’s (2015) logic, the translation of the pooled

V/CV matrix could be as follows:

1. The within-structure/species (i.e. thermodynamic V/CV matrix) refers to inte-

gration of residues in a thermodynamical and functional manner, and also con-

tains information about environmental factors affecting the physical-chemistry

of the structure. Haber (2015) includes a genetic component for his within

population estimation, since populations follow a filial design. My data, on

the other hand, have a controlled amount of genetic component given that the

sampling is done in a time series instead of a static population. My approach

would be more related to an estimation of within repeated measures design.

2. The among-structure/species (i.e additive or evolutionary V/CV matrix) refers

to the concerted evolution of traits given integration and selection (Haber,

2015).

Therefore the pooled within-structure covariance matrix approach is not only the

one possible to compute for protein structures, but also biologically meaningful.

5.3 Response to selection: The case of α-Amylase

As portrayed in equations 5.6 and 5.7, the response to selection of a phenotype

depends on the within-species change in mean due to selection, the correlation be-

tween different traits, and the amount of heritable component of the shape. The

first component can be referred as β = P−1S, and also known as the vector of se-

lection gradients (Rausher, 1992) or directional selection gradient. The second and

third elements are summarized in the G matrix. As expressed in equation 5.7, this

covariance matrix represents the genetic component of the variation in the diagonal,

and the correlated response of every trait to each other in the off-diagonal.
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Another extension from equation 5.7 is to compute the long-term selection gra-

dient assuming that G is more or less constant over long periods of time:

βλ = G−1Δz̄ (5.12)

Here Δz̄ would be proportional to the differences in mean between two diverging

populations.

It is important to stress the relationship between these concepts and fitness.

Given that fitness (w) is directly related to selection, its mathematical relationship

can be expressed as (Blows and Walsh, 2009):

f = a+
n∑

i=1

βizi + ei (5.13)

and so it behaves as the weights of a multiple regression of f on the vector of

phenotypes z. Fitness is intuitive in organismal biology and can be represented

by the count of the offspring of a given phenotype after an event of selection. In

proteins, however, the definition is not as straightforward. We can portray fitness

in many different ways, depending on the hypothesis being tested. If the analysis is

done comparatively (i.e. across different protein structures from different sources), a

fitness analysis including exclusively structural measures such as Gibbs free energy

(ΔG) can be misleading. The fitness surface that can arise from this data would

only represent departures from every individual native state. Nevertheless, ΔG and

the energy of unfolding (ΔG◦), are important measures to determine the stability

of the protein which is important for the fitness of a protein structure. To improve

this fitness landscape, f can be defined by ΔG◦ coupled with a functional measure.

Since in proteins function is the main selective trait, including a term accounting for

this would create a more realistic fitness surface. In enzymes this can be achieved by

using the efficiency or Kcat/KM of each of the enzymes for a given substrate. The

fitness function (F ) can be expressed as:

F (i, s) = ΔG◦
i

Ki,s
cat

Ki,s
M

(5.14)

where ΔG◦
i is the free energy of unfolding of the structure i, Ki,s

cat is the turnover

number for structure i in substrate s, andK i,s
M is the the Michaelis constant of protein

i working on substrate s.
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As can be seen this is a relative fitness, and its relativity depends on the substrate

in which is being computed.

In the case of the α-amylase family (GH13), one might try to apply the framework

developed in previous sections and try to estimate the response to selection of a

subset of them. However, for this dataset equation, 5.14 cannot be applied since the

information of the relative efficiency given a common substrate is not consistently

available. For this reason I am going to work exclusively with ΔG◦
unfold, but knowing

the caveats that this only speaks about structural stability and it has been shown

that ΔGequilibrium or ΔG◦
unfold are not optimized for during evolution (Alfaro, 2014).

5.3.1 Estimating dynamic and genetic variance-covariance matrices in

the α-Amylase dataset

Given that molecular dynamic simulations are very time consuming, I subset the

dataset presented in chapters 2 and 3, taking randomly one quarter of the 135 struc-

tures to a total of 34 protein structures (Table 5.5).

Following the methods depicted in section 2.2.2, 30 nanoseconds were simulated

and up to 500 snapshots were sampled per simulation. The estimation of the pooled-

within covariance matrix was performed as follows:

1. Align every model within each MD simulation using GPS: Remove extra rota-

tions and translations that could occur during MD simulation.

2. Select an ambassador structure that is closest to the mean structure.

3. Align all ambassadors using MATT flexible structure aligner to identify homol-

ogous sites: Multiple structure alignment to identify structural homology.

4. Extract the centroid of the fully homologous sites (gapless columns): Identify

shared information among all structures.

5. Concatenate the centroid information for all trajectories

6. Perform a GPS on the entire set of shapes: Bring all pre-aligned structures

into the same reference plane.
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7. Apply method described in section 5.2: Estimate Variance-Covariance (VCV)

matrices.

Parallel to this, I computed the ΔG◦
unfold on each model for each protein using

the command line version of FoldX (Schymkowitz et al., 2005). It is important to

notice that the computed ΔG◦
unfold is not comparable in proteins of different size,

therefore I computed the average ΔG◦
unfold per residue as ˆΔG◦

unfold =
ΔG◦

unfold

n
, n

being the number of residues. With this ˆΔG◦
unfold as proxy for fitness we can try to

explore the fitness surface. To do this, I used the first two principal components of

Table 5.5: Subset of the α-Amylase dataset. PDB codes, taxonomic information, Enzyme comission
code and reference of the 34 structures used to estimate the pooled-within covariance matrix

PDB
code

Species EC code Mutation Reference

1CGY Bacillus circulans 2.4.1.19 Y195W Penninga et al. (1995)
1E3X Bacillus amyloliquefaciens 2.2.1.1 Chimeric Brzozowski et al. (2000)
1G5A Neisseria polysaccharea 2.4.1.4 None Skov et al. (2001)

1GVI Thermus sp. 3.2.1.54* None Lee et al. (2002)
1J0H Geobacillus stearothermophilus TRS40 3.2.1.135 None Hondoh et al. (2003)
1KB3 Homo sapiens 3.2.1.1 R195A Numao et al. (2002)
1KXH Pseudoalteromonas haloplanctis 3.2.1.1 D174N† Aghajari et al. (2002)
1M53 Klebsiella sp. LX3 5.4.99.11 None Zhang et al. (2003)
1SMA Thermus sp. IM6501 3.2.1.133 None Kim et al. (1999)
1TMQ Tenebrio molitor 3.2.1.1 None Strobl et al. (1998)
1UA7 Bacillus subtilis 3.2.1 N356Q (Kagawa et al., 2003)
1UD3 Bacillus sp. KSM-K38 3.2.1.1 N289H Nonaka et al. (2003)
1VJS Bacillus licheniformis 3.2.1.1 None‡ Hwang et al. (1997)
1W9X Bacillus halmapalus 3.2.1.1 None Davies et al. (2005)
1WZL Thermoactinomyces vulgaris R-47 3.2.1.135 R469L Mizuno et al. (2005)
1ZJA Pseudomonas mesoacidophila 5.4.99.11 None Ravaud et al. (2007)
2DIE Bacillus sp. KSM-1378 3.2.1.1 None Shirai et al. (2007)
2FH8 Enterobacter aerogenes 3.2.1.41 G680L/V882LMikami et al. (2006)
2TAA Aspergillus oryzae 3.2.1.1 None Matsuura et al. (1984)
2WAN Bacillus acidopullulyticus 3.2.1.41 None� Turkenburg et al. (2009)
2Y4S Hordeum vulgare 3.2.1.41 None Vester-Christensen et al. (2010)
2Z1K Thermus thermophilus HB8 3.2.1.41 NA NA
2ZE0 Geobacillus sp. HTA-462 3.2.1.20 None Shirai et al. (2008)
2ZIC Streptococcus mutans 3.2.1.70 N536L Hondoh et al. (2008)
3AXH Saccharomyces cerevisiae 2.1.1.64/3.2.1.10 E277A (Yamamoto et al., 2011)
3CZK Xanthomonas axonopodis pv. glycines 3.2.1.48 E322Q (Kim et al., 2008)
3DC0 Bacillus sp. KR-8104 3.2.1.1 NA NA
3EDE Flavobacterium sp. 92 3.2.1.54 T49P Buedenbender and Schulz (2009)
3GBD Serratia plymuthica 5.4.99.11 None (Ravaud et al., 2009)
3UEQ Neisseria polysaccharea 2.4.1.4 None (Guérin et al., 2012)

3VM5 Oryzias latipes 3.2.1.1* None Mizutani et al. (2012)

3VM7 Malbranchea cinnamomea 3.2.1.73* None Han et al. (2013)
4E2O Geobacillus thermoleovorans CCB US3 UF5 3.2.1.1 None� Mok et al. (2013)
4GI6 Rhizobium sp. MX-45 5.4.99.11 F164L Lipski et al. (2013)

* EC number derived from enzyme name using BRENDA (Schomburg et al., 2004)
† Inactive mutant
‡ Thermostable α-amylase
� A588 CYS Modelled as oxidised CYS (CSX)
� Truncated
NA Not provided by the RCSB PDB or secondary sources
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of structures with the desired stability. On the other hand, μ0 is the mean of a

population of structures created by a desired vector. One might ask the question

of how does μ0 have to change towards the stability of μ⊕. This can be achieved

by computing βλ (equation 5.12), and replacing Δz̄ by Δz̄�. In the particular case

of the GH13 dataset, let’s assume that the model 1 of the structure 2TAA is the

desired phenotype (with the higher fitness in Figure 5.1), and the model 643 of the

structure 4E2O from Geobacillus thermoleovorans CCB US3 UF5 (with the lower

fitness in Figure 5.1) corresponds to the source phenotype. βλ would have a length

corresponding to the dimensions of the shape. In the GH13 case 297 homologous

residues were identified, which means that these shapes have a dimensionality of 891

traits. This dimension-per-dimension output is important since it tells us the amount

of pressure in each dimension per each residue. However, it makes the visualization

more difficult. For the sake of visualization simplicity, Figure 5.2 shows the absolute

value of the sum of βλ per residue, standardized from 0 to 1.

(a) Selection gradient on G (b) Dynamic gradient on M

Figure 5.2:
∑

i=x,y,z |βλi
| rendered in the source structure 4E2O. White represents the

lowest magnitude (0), while red the highest (1). Blue depics the non-homologous residues.

Figure 5.2a shows the selection gradient using the estimated G. Not surprisingly,

the selection gradient for the TIM-barrel is very low. This means that there is not
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much directional selection on this sub-structure. However, it is somewhat surprising

that there is not any purifying selection either. This can be explained by the fixation

of the trait in the evolution. Since the TIM-barrel is a widespread sub-structure

that has been strongly selected during evolution, it might have reached a point of

fixation of its geometry. Therefore, the Gmatrix shows little covariation among these

residues since the geometric variability is also low. It is important to stress here that

the phenotype measured is the geometry of the structure more than the sequence.

Therefore, despite some variation may have occurred at the sequence level, it might

not have meaningfully affected the positional information.

However, one must be cautious with the approach employed in Figure 5.2 since

the signs are missed, thereby ignoring the direction of selection and the correlated

response to selection. Nevertheless, this approach allows for a coarse-grained visual

exploration of βλi
. Individual instances identified by this method should be analysed

afterwards in each dimension. Table 5.6 shows the actual values of βλ for the top 5

positive values (directional selection) and top 5 negative values (purifying selection).

Table 5.6: Selection gradient in the top 5 residues. Top panel shows the residues were
at least one of its coordinates is under directional selection and the sum of their absolute
values is the highest. Bottom panel contains the information of residues where at least
one of its coordinates is under purifying selection, and the sum of the raw values are the
lowest.

ResIndex Residue βX βY βz Δz̄X Δz̄Y Δz̄Z

Directional

112 TYR -5.225 1.082 11.138 -5.106 2.043 10.248
122 LYS 12.333 -2.321 -0.964 12.452 -1.360 -1.854
124 ASP 14.28 -6.963 -10.036 14.399 -6.002 -10.926
125 TRP 18.001 -0.984 0.336 18.121 -0.022 -0.554
126 PHE 11.53 -0.833 3.253 11.650 0.128 2.363

Purifying

80 HIS -5.580 -2.148 4.023 -5.461 -1.187 3.13
121 THR 2.508 -4.644 -5.731 2.627 -3.683 -6.621
223 TYR -0.010 -7.631 -7.634 0.110 -6.670 -8.524
358 SER -8.647 -3.461 1.963 -8.527 -2.500 1.073
394 GLU -4.561 -0.449 -4.002 -4.442 0.512 -4.892

Figure 5.2b and Table 5.7 show the mean difference between target and source
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when effects of correlated dynamic differentials are removed. Given that effectively

in equation 5.12, G acts as a rotation matrix to remove the selection differentials,

one may posit that the same can be achieved with the dynamic (M) matrix. This

concept is more difficult to interpret than the actual response to selection. Once G is

replaced by M in equation 5.12, we might call it dynamic gradient to differentiate it

from the selection gradient already explained. In this case, if the gradient is zero for a

given trait, this can be interpreted as that the dynamic component of the phenotype

does not contribute significantly to the difference in shape for that particular trait.

In the case of non-zero gradients, these can be interpreted as contributions of the

dynamics to the differential, either towards the target (positive gradient) or away

from the target (negative gradient).

Table 5.7: Dynamics gradient in the top 5 residues. Top panel shows the residues where
at least one of its coordinates is under positive gradient. Bottom panel cointains the
information of residues where at least one of its coordinates is under negative gradient.

ResIndex Residue βX βY βz Δz̄X Δz̄Y Δz̄Z

Directional

117 LEU 13.028 37.149 11.848 2.130 3.521 4.437
125 TRP 29.019 33.605 6.857 18.121 -0.022 -0.554
126 PHE 22.548 33.755 9.774 11.650 0.128 2.363
262 LYS 12.972 38.081 11.412 2.073 4.454 4.001
367 LEU 13.590 34.561 15.609 2.692 0.933 8.197

Purifying

124 ASP 25.297 27.625 -3.515 14.399 -6.002 -10.926
223 TYR 11.008 26.958 -1.113 0.110 -6.670 -8.524

In the GH13 subset, most dynamic gradients were positive having only two

residues that had at one coordinate under negative gradient (Table 5.7). This can also

be inferred by Figure 5.2b. The values of the dynamic gradient are high but sensible

given the definition of fitness. Since I defined fitness as the energy of unfolding (ΔG◦),

most of the information used to select the target and source structures comes from

stability, and therefore thermodynamic information. The results depicted in Table

5.7 and Figure 5.2b suggest that most of the variation that explains the difference in

phenotype between the structure 4E2O and 2TAA, is contained within the molecular
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dynamic component rather than the approximation to the phylogenetic component.

Orientation of G

Arnold (1992) showed that, despite high additive variances, G might not be aligned

with the fitness surface. This implies that even though βλ can be non-zero, the

response to selection might send the phenotype in a different direction than the fitness

surface. To test this, I used the GH13 dataset and applied Blows et al. (2004) matrix

subspace projection approach. This approach assumes that it is usually the case that

most of G eigenvalues account for almost no variation. Therefore a submatrix A can

be created by choosing k eigenvectors ei such that A = (e1, e2, . . . , ek). To choose k I

used Minka (2000) probabilistic PCA model, implemented in Scikit-learn Python

package (Pedregosa et al., 2011).

We can determine what is the closest vector (projection Pro) of G onto βλ, by

projecting the A into the subspace as :

Pro = A(AAT )−1AT (5.16)

Then, the projection that is closest to beta (Pβ) can be calculated as (Blows

et al., 2004):

Pβ = Proβλ (5.17)

The angle of the direction of optimal response (θ) can be estimated by (Walsh

and Blows, 2009):

θ = cos−1

⎛
⎝ P T

β βλ√
PβP T

β

√
βλβT

λ

⎞
⎠ (5.18)

The GH13 θ was 1.4 degrees, which means that the direction of optimal response is

1.4 degrees away from the total genetic variation of 99% explained by the projection.

According to this, the Geobacillus thermoleovorans structure is susceptible to the

selection in the actual direction of the fitness landscape towards the structure of

Aspergillus oryzae to achieve maximum stability. The extend of such change is given
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by Δz̄, which means that the centroid position of the residue i should be displaced

by �v = (Δz̄ix,Δz̄iy,Δz̄iz).

In the case of the dynamics, the same approach can be taken. Here, θM was 1.5

degrees which means that the optimal dynamic response is 1.5 degrees away from

the optimal response. This can be interpreted in a similar way than the regular θ.

However, manipulating the structure along the dynamics gradient is not feasible, and

thus is more applicable to thermodynamic theory of protein structures.

With this approach the spaces of G or M are not considered in their entirety

(Walsh and Blows, 2009). Blows and Walsh (2009) and Hansen and Houle (2008)

develop a similar approach which measures the angle between β and the predicted

response to selection from the multivariate breeders equation, Δz̄ as:

θΔz̄-β = cos−1

(
Δz̄Tβλ√

Δz̄Δz̄T
√

βλβT
λ

)
(5.19)

θΔz̄-β would be zero when there is no genetic constraint, whereas an angle of 90◦

would represent an absolute constraint (Walsh and Blows, 2009).

The GH13 dataset θΔz̄-β was 0.3. This means that the genetic constraints on

4E2O are not affecting the direction of selection. This posits the possibility that

a strong directional selection selection will drive the source structure towards the

target one. The same happens when this approach is applied to M . θMΔz̄-β is 1.46

degrees, which is almost identical to θM . Thus there is almost no within-variation or

dynamic constraints to the vector of response given the dynamic gradient.

5.3.2 Concluding remarks

In this section I have shown the application of the framework described in section

5.2 in a subset of the GH13 proteins. I have demonstrated that this approach is

feasible and gives sensible results given the definition of fitness. This definition is

essential in the interpretation of the results since it is the one that gives polarity

to R�. Therefore, all conclusions about the response to selection and the selection

gradient itself must be analysed under this light.

The usage of M in the determination of the dynamic gradient could be contro-

versial. This is due to the fact that, in the partition of the phenotypic variance, M
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is expected to be the environmental variance plus an error term. However, since the

source data for the estimation of G and M comes from repeated measures by MD, M

contains information about the thermodynamics and folding stability of the protein.

It is therefore also contributing to selection.

It is important to stress the fact that this is an approximation to the true G and

true M , since I have shown in previous sections that these cannot be estimated given

the dimensionality of the phenotype (Section 5.1). However, I have shown in section

5.2 that the pooled-within group approach gives consistent results.

In this section I have also shown that in a stability perspective, the TIM-barrel

show a small phylogenetic/genetic component to the selection gradient when a less

stable structure (4E2O) is analysed with respect to a more stable one (2TAA). In an

engineering perspective, this means that most of the changes in shape come from the

dynamics. Nevertheless, the small θΔz̄-β show that most of the changes applied to

4E2O would result directly into increasing the stability towards the one expressed by

2TAA. 4E2O is a truncated protein, and therefore some loss of stability is expected.

It seems that residues 112Y, 122K, 124D, 125W, and 126P, are good candidates

to increase the stability of the molecule giving their Δẑs. In these cases, the goal

will be to shift the position of their centroids given the resulting vector of the three

dimensions. Testing this is beyond the scope of this thesis.
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Chapter 6

Conclusion

Studying protein structure variation if not a trivial issue. It requires different ways

to tackle the issues that arise when your data is highly multivariate and the sample

size is small.

In chapter 2 I have shown a sound methodology by applying geometric morpho-

metric (GM) principles into protein structure analysis. By aligning protein structures

with standard structural alignment software, I demonstrated that a meaningfully ab-

straction can be made by computing the geometric center (centroid) of each residue. I

also have shown how this abstracted shape can be analysed by standard multivariate

statistics techniques, giving insights into protein structure and function. Particularly,

I found that a classic multidimensional scaling allowed me to explore the shape space

of the α-amylase dataset, giving insights into the relationship between structure and

function. This same technique allowed me to show how certain mutations can create

significant structural shifts. In this chapter, I also showed how principal components

analysis can be used to explore the trajectory of molecular dynamic simulations al-

lowing to focus attention into possible lower energy states that are being sampled

more often than the transitions. I applied a form difference estimation to both kinds

of data and showed how they can be used to identify interesting residues. My results

suggest that despite that the most influential point is not a catalytic or binding site,

it is always close to the catalytic pocket or other functional scaffolds. In the case

of the α-amylase, it seemed to be important in the protein’s ability to bind to the

substrate and to bind metal ions given the proximity (≈ 15Å) to catalytic and metal

binding residues. In the NPC dataset, my results suggest that the deformation of the

structure is affected by the presence of the ligand. When it it present, it decreases the

amount of deformation allowed in the protein. Overall, chapter 2 effectively showed

how GM-like methods can be useful in structural biology.

110



In Chapter 3, I have developed a robust methodology to explore a structural

architecture under the domain level. By abstracting the shape correlation into a

correlation graph, I was able to infer modules. Further statistical significance tests

were performed, along with a bootstrap test of robustness of each of the inferred

modules. Given that the sample size is of concern, a power test also informs the

user about the confidence in the particular partition. In simulation data, I found

that the accuracy of the expected modules was high and highly dependant on the

intracorrelation and the sample-size needed to resolve such correlation. However, I

found that when a constraint is imposed over the graph (such as contacts), an over-

fragmentation is likely to occur. However, I developed a LDA-based pre-filtering

approach to cope with such fragmentation, yielding high accuracies for most of the

simulated data. I have developed a sound and robust method to analyse the geometric

co-variability among residues giving an evolutionary or molecular dynamic sampling.

Chapter 4 expands on the semantics of protein structure architecture. I have

shown a plausible scenario for the emergence of protein structure modularity. I

have also discussed the need for a better definition of domain specifying at least

three types of domains. This need can be seen in the lack of convergence among

domain definitions. This problem arises because the domain boundary prediction is

a hard problem. In this chapter, I provided evidence to suggest that the hardness

of this problem is related to a hierarchical architecture, as well as problems in the

definition. I have also proposed a method to explore such hierarchy in structural

domains, where one constraint is the sequentiality. I have shown that, by using this

method, the estimated modules resemble AFUs and it might be related to the folding

process.

Finally, in Chapter 5, I have developed a a method to estimate the selection

gradient on protein structures. I have shown how traditional quantitative genetics

approach are not feasibly applied to protein structures given computational and sam-

ple size constraints. However, I also have shown how to overcome these issues by

approximation using molecular dynamic simulations along with homolog sampling.

My results suggest that this approach gives more accurate results than traditional

methods. The framework developed in this chapter is, however, dependent on the
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definition of fitness. For simplicity I used ΔG◦, but I suggest more accurate repre-

sentation of fitness by incorporating substrate specific experimental data.

This thesis has set a framework to analyse protein structures at different levels.

It provides a framework that can be used in many fields of structural biology which

can give insights into a wide variety of problems.
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Appendix B

PCoA using Cα as landmark
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Appendix D

BioMed Central license agreement

In submitting an article to any of the journals published by BioMed Central I

certify that:

1. I am authorized by my co-authors to enter into these arrangements.

2. I warrant, on behalf of myself and my co-authors, that:

the article is original, has not been formally published in any other peer-reviewed

journal, is not under consideration by any other journal and does not infringe any

existing copyright or any other third party rights; I am/we are the sole author(s) of

the article and have full authority to enter into this agreement and in granting rights

to BioMed Central are not in breach of any other obligation; the article contains

nothing that is unlawful, libellous, or which would, if published, constitute a breach

of contract or of confidence or of commitment given to secrecy; I/we have taken

due care to ensure the integrity of the article. To my/our - and currently accepted

scientific - knowledge all statements contained in it purporting to be facts are true and

any formula or instruction contained in the article will not, if followed accurately,

cause any injury, illness or damage to the user. 3. I, and all co-authors, agree

that the article, if editorially accepted for publication, shall be licensed under the

Creative Commons Attribution License 4.0. In line with BioMed Central’s Open

Data Policy, data included in the article shall be made available under the Creative

Commons 1.0 Public Domain Dedication waiver, unless otherwise stated. If the law

requires that the article be published in the public domain, I/we will notify BioMed

Central at the time of submission, and in such cases not only the data but also the

article shall be released under the Creative Commons 1.0 Public Domain Dedication

waiver. For the avoidance of doubt it is stated that sections 1 and 2 of this license

agreement shall apply and prevail regardless of whether the article is published under

This is the licence agreement that can be found in
http://www.biomedcentral.com/authors/license
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Creative Commons Attribution License 4.0 or the Creative Commons 1.0 Public

Domain Dedication waiver.

[End of BioMed Centrals license agreement]

Explanatory notes regarding BioMed Centrals license agreement

As an aid to our authors, the following paragraphs provide some brief explanations

concerning the Creative Commons licenses that apply to the articles published in

BioMed Central-published journals and the rationale for why we have chosen these

licenses.

The Creative Commons Attribution License (CC BY), of which CC BY 4.0 is

the most recent version, was developed to facilitate open access as defined in the

founding documents of the movement, such as the 2003 Berlin Declaration. Open

access content has to be freely available online, and through licensing their work

under CC BY authors grant users the right to unrestricted dissemination and re-use

of the work, with only the one proviso that proper attribution is given to authors.

This liberal licensing is best suited to facilitate the transfer and growth of scientific

knowledge. The Open Access Scholarly Publishers Association (OASPA) therefore

strongly recommends the use of CC BY for the open access publication of research

literature, and many research funders worldwide either recommend or mandate that

research they have supported be published under CC BY. Examples for such policies

include funders as diverse as the Wellcome Trust, the Australian Governments, the

European Commissions Horizon 2020 framework programme, or the Bill & Melinda

Gates Foundation.

The default use of the Creative Commons 1.0 Public Domain Dedication waiver

(CC0 or CC zero) for data published within articles follows the same logic: facilitating

maximum benefit and the widest possible re-use of knowledge. It is also the case

that in some jurisdictions copyright does not apply to data. CC0 waives all potential

copyrights, to the extent legally possible, as well as the attribution requirement.

The waiver applies to data, not to the presentation of data. If, for instance, a table

or figure displaying research data is reproduced, CC BY and the requirement to

attribute applies. Increasingly, however, new insights are possible through the use

of big data techniques, such as data mining, that harness the entire corpus of digital
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data. In such cases attribution is often technically infeasible due to the sheer mass

of the data mined, making CC0 the most suitable licensing tool for research outputs

generated from such innovative techniques.

It is important to differentiate between legal requirements and community norms.

It is first and foremost a community norm, not a law, that within the scientific

community attribution mostly takes the form of citation. It is also a community norm

that researchers are expected to refer to their sources, which usually takes the form

of citation. Across all cases of research reuse (including data, code, etc), community

norms will apply as is appropriate for the situation: researchers will cite their sources

where it is feasible, regardless of the applicable license. CC0 therefore covers those

instances that lie beyond long-established community norms. The overall effect,

then, of CC0 for data is to enable further use, without any loss of citations. For

further explanation, we recommend you refer to our Open Data FAQ.

In the following, we provide the licenses summaries as they can be found on the

Creative Commons website:

The Creative Commons Attribution License 4.0 provides the following summary

(where you equals the user): You are free to:

* Share: copy and redistribute the material in any medium or format

* Adapt: remix, transform, and build upon the material

for any purpose, even commercially. The licensor cannot revoke these freedoms

as long as you follow the license terms.

Under the following terms:

Attribution You must give appropriate credit, provide a link to the license,

and indicate if changes were made. You may do so in any reasonable manner, but

not in any way that suggests the licensor endorses you or your use.

No additional restrictions You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the

public domain or where your use is permitted by an applicable exception or limita-

tion.
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No warranties are given. The license may not give you all of the permissions

necessary for your intended use. For example, other rights such as publicity, privacy,

or moral rights may limit how you use the material.

Please note: For the terms set in italics in the summary above further details

are provided on the Creative Commons web page from which the summary is taken

(http://creativecommons.org/licenses/by/4.0/).

The Creative Commons 1.0 Public Domain Dedication waiver provides the fol-

lowing summary:

No Copyright

The person who associated a work with this deed has dedicated the work to

the public domain by waiving all of his or her rights to the work worldwide under

copyright law, including all related and neighbouring rights, to the extent allowed

by law.

You can copy, modify, distribute and perform the work, even for commercial

purposes, all without asking permission. See Other Information below.

Other Information

In no way are the patent or trademark rights of any person affected by CC0, nor

are the rights that other persons may have in the work or in how the work is used,

such as publicity or privacy rights.

Unless expressly stated otherwise, the person who associated a work with this

deed makes no warranties about the work, and disclaims liability for all uses of the

work, to the fullest extent permitted by applicable law.

When using or citing the work, you should not imply endorsement by the author

or the affirmer.

Please note: For the terms set in italics in the summary above further details

are provided on the Creative Commons web page from which the summary is taken

(http://creativecommons.org/publicdomain/zero/1.0/).
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Appendix E

PLOS license

The following policy applies to all of PLOS journals, unless otherwise

noted.

PLOS applies the Creative Commons Attribution (CC BY) license to works we

publish. This license was developed to facilitate open access namely, free immediate

access to, and unrestricted reuse of, original works of all types.

Under this license, authors agree to make articles legally available for reuse,

without permission or fees, for virtually any purpose. Anyone may copy, distribute

or reuse these articles, as long as the author and original source are properly cited.

Using PLOS Content

No permission is required from the authors or the publishers to reuse or repurpose

PLOS content provided the original article is cited. In most cases, appropriate

attribution can be provided by simply citing the original article.

Example citation:

Kaltenbach LS et al. (2007) Huntingtin Interacting Proteins Are Genetic Modi-

fiers of Neurodegeneration. PLOS Genet 3(5): e82. doi:10.1371/journal.pgen.0030082.

If the item you plan to reuse is not part of a published article (e.g., a featured

issue image), then indicate the originator of the work, and the volume, issue, and

date of the journal in which the item appeared.

For any reuse or redistribution of a work, you must also make clear the license

terms under which the work was published.

This is the licence that can be found in http://journals.plos.org/plosone/s/

content-license
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Figures, Tables, and Images

Figures, tables, and images are published under the Creative Commons Attribution

(CC BY) license.

Data

If any relevant accompanying data is submitted to repositories with stated licensing

policies, the policies should not be more restrictive than CC BY.

sectionSubmitting Copyrighted or Proprietary Content

Do not submit any figures, photos, tables, or other works that have been previ-

ously copyrighted or that contain proprietary data unless you have and can supply

written permission from the copyright holder to use that content. This includes:

> maps and satellite images

> slogans and logos

> social media content.
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Appendix F

BENTHAM science Self-archiving policies and copyright

agreement

F.1 Self-archiving policies

By signing the Copyright Letter the authors retain the rights of self-archiving. Fol-

lowing are the important features of self-archiving policy of Bentham Science jour-

nals:

1. Authors can deposit the first draft of a submitted article on their personal

websites, their institutions repositories or any non-commercial repository for

personal use, internal institutional use or for permitted scholarly posting.

2. Authors may deposit the ACCEPTED VERSION of the peer-reviewed article

on their personal websites, their institutions repository or any non-commercial

repository such as PMC, arXiv after 12 MONTHS of publication on the journal

website. In addition, an acknowledgement must be given to the original source

of publication and a link should be inserted to the published article on the

journal’s/publishers website.

3. If the research is funded by NIH, Wellcome Trust or any other Open Access

Mandate, authors are allowed the archiving of published version of manuscripts

in an institutional repository after the mandatory embargo period. Authors

should first contact the Editorial Office of the journal for information about de-

positing a copy of the manuscript to a repository. Consistent with the copyright

This is the Self-archiving policy that can be found in http://benthamscience.com/

self-archiving-policies-main.php
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agreement, Bentham Science does not allow archiving of FINAL PUBLISHED

VERSION of manuscripts.

4. The link to the original source of publication should be provided by insert-

ing the DOI number of the article in the following sentence: The published

manuscript is available at EurekaSelect via

http://www.eurekaselect.com/openurl/content.php?genre=article&doi=[insert DOI]

.

5. There is no embargo on the archiving of articles published under the OPEN

ACCESS PLUS category. Authors are allowed deposition of such articles on

institutional, non-commercial repositories and personal websites immediately

after publication on the journal website.

F.2 Copyright agreement as per electronic mail: Grant of permission

Dear Dr. Hleap,

Thank you for your interest in our copyrighted material, and for requesting per-

mission for its use.

Permission is granted for the following subject to the conditions outlined below:

Hleap, JS & Blouin, C. The Semantics of the Modular Architecture of Protein

Structures, Current Protein & Peptide Science, Volume 16 (E-pub ahead of print)

To be used in the following manner:

Bentham Science Publishers grants you the right to reproduce the material in-

dicated above on a one-time, non-exclusive basis, solely for the purpose described.

Permission must be requested separately for any future or additional use.

For an article, the copyright notice must be printed on the first page of article

or book chapter. For figures, photographs, covers, or tables, the notice may appear

with the material, in a footnote, or in the reference list.

Thank you for your patience while your request was being processed. If you wish

to contact us further, please use the address below.
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Sincerely,

AMBREEN IRSHAD

Permissions & Rights Manager

Bentham Science Publishers

Email: ambreenirshad@benthamscience.org

URL: www.benthamscience.com
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Guilhem Faure, Aurélie Bornot, and Alexandre G de Brevern. Protein contacts, inter-
residue interactions and side-chain modelling. Biochimie, 90(4):626–39, 2008. doi:
10.1016/j.biochi.2007.11.007.

A. Fedorov, X. Cao, S. Saxonov, S. J. De Souza, S. W. Roy, and W. Gilbert. Intron
distribution difference for 276 ancient and 131 modern genes suggests the existence
of ancient introns. Proceedings of the National Academy of Sciences, 98(23):13177–
13182, 2001.

H. J. Feldman. Identifying structural domains of proteins using clustering. BMC
Bioinformatics, 13(1):286, 2012.

Georges Feller. Protein stability and enzyme activity at extreme biological temper-
atures. Journal of Physics: Condensed Matter, 22(32):323101, 2010.

Georges Feller, Francoise Payan, Fabienne Theys, Minxie Qian, Richard Haser, and
Charles Gerday. Stability and structural analysis of α-amylase from the antarctic
psychrophile Alteromonas haloplanctis a23. European Journal of Biochemistry,
222(2):441–447, 1994.

Joseph Felsenstein. Comparative methods with sampling error and within-species
variation: contrasts revisited and revised. The American Naturalist, 171(6):713–
725, 2008.

Ariel Fernández and R. Stephen Berry. Self-organization and mismatch tolerance in
protein folding: General theory and an application. Journal of Chemical Physics,
Volume 112, Issue 11, pp. 5212-5222 (2000)., 112:5212–5222, mar 2000. doi:
10.1063/1.481076.

140



R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L. Gavin,
P. Gunasekaran, G. Ceric, K. Forslund, Liisa Holm, Erik L. L. Sonnhammer,
Sean R. Eddy, and Alex Bateman. The pfam protein families database. Nucleic
acids research, 38(suppl 1):D211 – D222, 2010. doi: 10.1093/nar/gkp985.

Kael F. Fischer and Susan Marqusee. A rapid test for identification of autonomous
folding units in proteins. Journal of molecular biology, 302(3):701–712, 2000.

Astrid Fleischmann, Michael Darsow, Kirill Degtyarenko, Wolfgang Fleischmann,
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ing statistically significant communities in networks. PloS one, 6(4):e18961, 2011.

Russell Lande and Stevan J. Arnold. The measurement of selection on correlated
characters. Evolution, pages 1210–1226, 1983.

Hee-Seob Lee, Min-Sung Kim, Hyun-Soo Cho, Jung-In Kim, Tae-Jip Kim, Ji-Hye
Choi, Cheonseok Park, Heung-Soo Lee, Byung-Ha Oh, and Kwan-Hwa Park. Cy-
clomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistin-
guishable from each other. Journal of Biological Chemistry, 277(24):21891–21897,
2002. doi: 10.1074/jbc.M201623200.

S. Lele and T. M. Cole. A new test for shape differences when variance–covariance
matrices are unequal. Journal of Human Evolution, 31(3):193–212, 1996. ISSN
0047-2484. doi: 10.1006/jhev.1996.0057. URL http://www.sciencedirect.com/

science/article/pii/S0047248496900573.

Subhash Lele. Euclidean distance matrix analysis (edma): Estimation of mean form
and mean form difference. Mathematical Geology, 25(5):573–602, 1993. ISSN 0882-
8121. URL http://dx.doi.org/10.1007/BF00890247. 10.1007/BF00890247.

148



Subhash Lele and Joan T. Richtsmeier. On comparing biological shapes: Detection
of influential landmarks. American Journal of Physical Anthropology, 87(1):49–65,
1992. ISSN 1096-8644. doi: 10.1002/ajpa.1330870106. URL http://dx.doi.org/

10.1002/ajpa.1330870106.

Ivica Letunic, Tobias Doerks, and Peer Bork. Smart 7: recent updates to the protein
domain annotation resource. Nucleic Acids Res., 40(Database issue):D302–5, 2012.
doi: 10.1093/nar/gkr931.

Bi-Qing Li, Le-Le Hu, Lei Chen, Kai-Yan Feng, Yu-Dong Cai, and Kuo-Chen Chou.
Prediction of protein domain with mrmr feature selection and analysis. PLoS
ONE, Edited by Bin Xue, vol. 7, issue 6, p. e39308, 7:39308, jun 2012. doi:
10.1371/journal.pone.0039308.

Olivier Lichtarge, Henry R Bourne, and Fred E Cohen. An evolutionary trace method
defines binding surfaces common to protein families. Journal of molecular biology,
257(2):342–358, 1996.

Alexandra Lipski, Hildegard Watzlawick, Stephanie Ravaud, Xavier Robert, Moez
Rhimi, Richard Haser, Ralf Mattes, and Nushin Aghajari. Mutations inducing an
active-site aperture in rhizobium sp. sucrose isomerase confer hydrolytic activity.
Acta Crystallographica Section D: Biological Crystallography, 69(2):298–307, 2013.
doi: 10.1107/S0907444912045532.

Jinfeng Liu and Burkhard Rost. Sequence-based prediction of protein domains.
Nucleic acids research, 32(12):3522–3530, 2004a. doi: 10.1093/nar/gkh684.

Jinfeng Liu and Burkhard Rost. Chop proteins into structural domain-like fragments.
Proteins, 55(3):678–88, 2004b. doi: 10.1002/prot.20095.

Rong Liu and Jianjun Hu. Computational prediction of heme-binding residues by
exploiting residue interaction network. PLoS ONE, 6(10):e25560, 2011. doi: 10.
1371/journal.pone.0025560.

Ying Liu and Ivet Bahar. Sequence evolution correlates with structural dynamics.
Mol. Biol. Evol., 29(9):2253–63, 2012. doi: 10.1093/molbev/mss097.

Dirk M. Lorenz, Alice Jeng, and Michael W. Deem. The emergence of modularity in
biological systems. Physics of Life Reviews, 8(2):129–160, jun 2011. doi: 10.1016/
j.plrev.2011.02.003.

Martin Lundgren, Andrey Krokhotin, and Antti J. Niemi. Topology and structural
self-organization in folded proteins. Physical Review E, 88(4):042709, 2013. doi:
10.1103/PhysRevE.88.042709.

Louise Lyhne-Iversen, Timothy J. Hobley, Svend G. Kaasgaard, and Pernille Harris.
Structure of bacillus halmapalus-amylase crystallized with and without the sub-
strate analogue acarbose and maltose. Acta Crystallographica Section F: Structural
Biology and Crystallization Communications, 62(9):849–854, 2006.

149



Michael Lynch. Methods for the analysis of comparative data in evolutionary biology.
Evolution, pages 1065–1080, 1991.
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Marie T Vanier. Niemann-pick c disease: use of denaturing high performance
liquid chromatography for the detection of npc1 and npc2 genetic variations and
impact on management of patients and families. Mol. Genet. Metab., 86(1-2):
220–32, 2005. ISSN 1096-7192. doi: 10.1016/j.ymgme.2005.07.007.

Thomas P. Minka. Automatic choice of dimensionality for pca. In NIPS, volume 13,
pages 598–604, 2000.

Allen P. Minton. Implications of macromolecular crowding for protein assembly.
Current opinion in structural biology, 10(1):34–39, 2000.

Pooja Mishra and Paras Nath Pandey. A graph-based clustering method applied to
protein sequences. Bioinformation, 6(10):372–374, 2011.

Jay Mittenthal, Derek Caetano-Anollés, and Gustavo Caetano-Anollés. Biphasic
patterns of diversification and the emergence of modules. Front Genet, 3:147,
2012. doi: 10.3389/fgene.2012.00147.

K Mizuguchi, C M Deane, T L Blundell, and J P Overington. Homstrad: a database
of protein structure alignments for homologous families. Protein Sci., 7(11):2469–
71, 1998. ISSN 1469-896X. doi: 10.1002/pro.5560071126.

Masahiro Mizuno, K.azuhiro Ichikawa, Takashi Tonozuka, Akashi Ohtaki, Yoichiro
Shimura, Shigehiro Kamitori, Atsushi. Nishikawa, and Yoshiyuki Sakano. Muta-
genesis and structural analysis of thermoactinomyces vulgarius r-47 α-amylase ii
(tvaii). Journal of Applied Glycoscience, 52(3):225–231, 2005. doi: 10.5458/jag.
52.225.

Kimihiko Mizutani, Mayuko Toyoda, Yuichiro Otake, Soshi Yoshioka, Nobuyuki
Takahashi, and Bunzo Mikami. Structural and functional characterization of re-
combinant medaka fish alpha-amylase expressed in yeast pichia pastoris. Biochim-
ica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(8):954–962, 2012.
doi: 10.1016/j.bbapap.2012.05.005.

Sook-Chen Mok, Aik-Hong Teh, Jennifer A. Saito, Nazalan Najimudin, and Maq-
sudul Alam. Crystal structure of a compact α-amylase from Geobacillus ther-
moleovorans. Enzyme and microbial technology, 53(1):46–54, 2013. doi: 10.1016/
j.enzmictec.2013.03.009.

Marie S. Møller, Folmer Fredslund, Avishek Majumder, Hiroyuki Nakai, Jens-
Christian N. Poulsen, Leila Lo Leggio, Birte Svensson, and Maher Abou Hachem.
Enzymology and structure of the gh13 31 glucan 1, 6-α-glucosidase that confers
isomaltooligosaccharide utilization in the probiotic lactobacillus acidophilus ncfm.
Journal of bacteriology, 194(16):4249–4259, 2012. doi: 10.1128/JB.00622-12.
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Petr Novák, Pavel Neumann, and Jiŕı Macas. Graph-based clustering and character-
ization of repetitive sequences in next-generation sequencing data. BMC Bioin-
formatics, 11:378, 2010. doi: 10.1186/1471-2105-11-378.

153



Shin Numao, Robert Maurus, Gary Sidhu, Yili Wang, Christopher M. Overall,
Gary D. Brayer, and Stephen G. Withers. Probing the role of the chloride ion
in the mechanism of human pancreatic α-amylase. Biochemistry, 41(1):215–225,
2002.

Akashi Ohtaki, Shin Kondo, Yoichiro Shimura, Takashi Tonozuka, Yoshiyuki Sakano,
and Shigehiro Kamitori. Role of phe286 in the recognition mechanism of cyclomal-
tooligosaccharides (cyclodextrins) by Thermoactinomyces vulgaris r-47 α-amylase
2 (tvaii). x-ray structures of the mutant tvaiis, f286a and f286y, and kinetic analy-
ses of the phe286-replaced mutant tvaiis. Carbohydrate Research, 334(4):309–313,
2001. doi: 10.1016/S0008-6215(01)00190-2.

Akashi Ohtaki, Masahiro Mizuno, Takashi Tonozuka, Yoshiyuki Sakano, and Shige-
hiro Kamitori. Complex structures of thermoactinomyces vulgaris r-47 a-amylase
2 with acarbose and cyclodextrins demonstrate the multiple substrate recognition
mechanism. Journal of Biological Chemistry, 279(30):31033–31040, 2004. doi:
10.1074/jbc.M404311200.

C. A. Orengo, I. Sillitoe, G. Reeves, and F. M. Pearl. Review: what can structural
classifications reveal about protein evolution? J. Struct. Biol., 134(2-3):145–65,
2001. doi: 10.1006/jsbi.2001.4398.

Margarita Osadchy and Rachel Kolodny. Maps of protein structure space re-
veal a fundamental relationship between protein structure and function. Pro-
ceedings of the National Academy of Sciences, 108(30):12301–12306, 2011. doi:
/10.1073/pnas.1102727108. URL http://www.pnas.org/content/early/2011/

06/28/1102727108.abstract.

Pemra Ozbek, Seren Soner, Burak Erman, and Turkan Haliloglu. Dnabindprot:
fluctuation-based predictor of dna-binding residues within a network of interacting
residues. Nucleic Acids Res., 38(Web Server issue):W417–23, 2010. doi: 10.1093/
nar/gkq396.

Mark Pagel. Inferring the historical patterns of biological evolution. Nature, 401
(6756):877–884, 1999.

Catherine Qiurong Pan, Marius Sudol, Michael Sheetz, and Boon Chuan Low. Mod-
ularity and functional plasticity of scaffold proteins as p(l)acemakers in cell sig-
naling. Cellular Signalling, 24(11):2143–2165, 2012.

Emmanuel Paradis, Julien Claude, and Korbinian Strimmer. Ape: Analyses of phy-
logenetics and evolution in r language. Bioinformatics, 20:289–290, 2004. doi:
10.1093/bioinformatics/btg412.

Kwan-Hwa Park, Tae-Jip Kim, Tae-Kyou Cheong, Jung-Wan Kim, Byung-Ha Oh,
and Birte Svensson. Structure, specificity and function of cyclomaltodextrinase,
a multispecific enzyme of the α-amylase family. Biochimica et Biophysica Acta
(BBA)-Protein Structure and Molecular Enzymology, 1478(2):165–185, 2000. doi:
10.1016/S0167-4838(00)00041-8.

154



Marc C. Patterson, Marie T. Vanier, Kinuko Suzuki, Jill A. Morris, Eugene Carstea,
Edward B. Neufeld, Joan E. Blanchette-Mackie, and Peter G. Pentchev. Scriver’s
OMMBID: The Online Metabolic and Molecular Bases of Inherited Disease, chap-
ter Chapter 145: Niemann-Pick Disease Type C: A Lipid Trafficking Disorder.
Mc-Graw HIll Inc, New York, 2006. doi: 10.1036/ommbid.175.
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