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Abstract

With the increasing number of Wi-Fi enabled portable devices, and the ubiquitous

Wi-Fi networks, analyzing multiple aspects of a population is becoming more insight-

ful, inexpensive and non-intrusive. Network packets propagated from Wi-Fi enabled

devices encapsulate spatial, spatiotemporal and behavioral information about the de-

vice holders. An opportunity that was available only to online stores a decade ago.

In this thesis, we propose two methods to expand the possibilities of Wi-Fi Analyt-

ics. First, we present a remote localization technique as an essential preprocessing

step to enable Wi-Fi Analytics in the retail and hospitality sector by analyzing non-

intrusively collected Wi-Fi packets using supervised learning. Our method is capable

of estimating positions without any prior knowledge about the store plan or the an-

tennas’ location with only one off-the-shelf access point. Unlike other positioning

techniques, instead of estimating a relative position of a device from an antenna, we

provide an absolute position for a device as inside or outside of a venue without mak-

ing any assumption about the site nor the positioned devices. Second, we present

a non-intrusive technique to learn about past spatial behaviors of a population by

analyzing their SSID data. The main outcome of this component is to expand our

knowledge about previously visited locations of a population by collecting few net-

work packets of the Wi-Fi enabled devices and mining the data using unsupervised

learning techniques.
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Chapter 1

Introduction

In the big data era, the proliferation of Wi-Fi enabled devices and the considerable

amount of data gathered from public Wi-Fi communications have introduced new

opportunities in research and industry. Particularly, network packets propagated by

portable devices have been very appealing as they encapsulate spatial and spatiotem-

poral information of the device carrier which can be any moving object like a human

or a automobile. Collecting and analysing this type of data which will be explicated

in the following chapters, is gaining huge attention as it enables us to collect valuable

information from humans across a broad spectrum of industries from retail analytics

to public security. The popularity is due to inexpensive, ubiquitous Wi-Fi Access

Points (AP) accessible in public venues. They are capable of collecting smart phones’

data with little or no modification while serving internet to the public.

Regardless of being connected to a Wi-Fi network, smart phones with an active

wireless network interface card (WNIC) repeatedly transmit Wi-Fi packets called

probe requests. The packet contains useful information about the device and conse-

quently the device owner, such as the device’s Media Access Control (MAC) address,

the list of SSID names the phone was previously connected to, the timestamp of the

message propagation and the received signal strength indicator (RSSI) to name a few.

Portable Wi-Fi enabled computing devices are becoming more popular in the en-

tire world. This number is significantly large for developed and developing countries.

In a report by Cisco [22], there were close to 3 billion smart phones and 97 million

Wi-Fi enabled wearable devices in 2015, globally. Cisco believes that there were

64.2 million public Wi-Fi hotspots in 2015 that this figure is predicted to grow ap-

proximately 600% to 423.2 million by 2020. Based on this report, users also prefer

Wi-Fi over other alternatives as 51% of the entire network traffic was through Wi-Fi

networks in 2015 which is predicted to reach 53% by 2020.

The possibility of collecting probe requests from this large population of Wi-Fi

1
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Figure 1.1: The left figure shows the number of devices (PC and Tablet only) that
will be connected to Wi-Fi networks by 2020. The plot on right shows the growth of
public Wi-Fi by region from 2015 to 2020. (Source [22])

enabled portable devices, unveils interesting information about the device holders.

For example [29, 30, 57] show that the spatial data can accurately unveil complex

characteristics of individuals and groups. Moreover, there have been studies on an-

alyzing coarse-grained and fine-grained spatial and behavioural activities of the cus-

tomers known as Physical Analytics [64], such as obtaining customers relationships

[18] measuring the engagement index of customers [56], predicting dwell time [49],

quantifying campaign performance and forecasting the number of customers and pick

hours. Therefore, mining the raw data gathered from smart phones provides venue

owners with different layers of visibility on the performance of their stores. This

motivates several tech companies to leverage this massive opportunity to provide ac-

tionable insights to venue owners. For instance, Euclid Analytics [1], AisleLabs [2],

TurnStyle [3], and Purple [4] have built successful platforms known as Wi-Fi Analytics

to provide Wi-Fi data rich insights to brick-and-mortar businesses. Many providers

of turn-key Wi-Fi solutions are also interested in building tools that will supply their

customers with knowledge about their clients’ behaviors. This thesis is a report from

one such project between the Institute for Big Data Analytics and the SolutionInc

Limited.

In this thesis we demonstrated two prominent aspect of Wi-Fi Analytics Platforms

that can extend the potentials of such systems. As first, using RSSI value of the probe

requests we propose a novel positioning system to identify the location of the users.

Second, by mining another field in probe request known as SSID, we explore the

spatial behavioral similarities of a population.

Wi-Fi Analytics is a double-edged sword. In spite of massive opportunities that

analysing Wi-Fi data creates, it can be a hazardous technology. One of the most
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controversial outcomes of analysing Wi-Fi data, particularly public Wi-Fi data, is

the possibility of privacy breach. Although this aspect is not included in the scope

of this thesis, it is very important to mention that preserving privacy of individuals

is of the utmost importance. In a collaboration with the Institut de Recherche en

Informatique et Systmes Alatoires and the Institut National des Sciences Appliques

de Lyon we are working on several techniques[8] focused on Wi-Fi data to preserve

the privacy in Wi-Fi Analytics tasks.

1.1 Aim and Objectives

Based on the provided introduction, the main aim of this thesis is to extend the

possibilities of Wi-Fi Analytics platforms by introducing: 1) a non-intrusive absolute

indoor localization technique system and 2) a non-intrusive framework to identify

population spatial behavioral characteristics from partial spatial historical data.

In order to address aim, the following objectives are identified:

1. Investigate and survey the existing methods proposed for indoor localization

systems.

2. Propose a new method for indoor positioning system to be used in brick-and-

mortar domain.

3. Investigate and survey existing works on analyzing SSID.

4. Propose a framework to capture the spatial behavioral characteristics of a pop-

ulation from SSID data.

5. Demonstrate the results and effectiveness of the proposed methods.

1.2 Contributions

The contribution of this thesis is twofold. The first contribution of the thesis is

based on the previously published work of the thesis author [61]. The theoretical and

empirical aspects of the published work has been updated and provided in this thesis.

The second contribution is based on an unpublished research project as an extension

to the theme of the thesis. The contributions of this thesis is provided below:
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• Investigation of two sources of data to be used as the data sources of indoor

positioning system.

• Proposal of the framework of an indoor positioning system based on the investi-

gated data sources, a novel framework as an essential part in the prepossessing

stage of Wi-Fi Analytics platforms.

• Implementation of the proposed indoor positioning system.

• Evaluation of the proposed indoor positioning system using visualization and

quantitative approaches.

• Investigation of methods to map SSID data to actual locations, a method that

yields partial spatial historical.

• Proposal of a framework to cluster a population based on their spatial be-

havioural features extracted from the partial spatial historical data, a novel

framework that has application in various domains.

• Implementation of the proposed clustering framework.

• Evaluation and illustration of the results of the proposed clustering framework

using visualization and quantitative approaches.

1.3 Thesis Outline

The remainder of the dissertation is organized as follows. In Chapter 2 we provide a

review on the background of positioning system and its types. Then, we provide the

related works in this field. In the second part of Chapter 2, we explain the background

and the past research works that have been published on SSID data, in general.

In Chapter 3 we present our positioning system and the proposed crowdsourcing

technique. First, we explain the problem statement and an overview of the proposed

positioning system in Section 3.1. Then, we explain the main method in Section

3.2. We define our crowdsourcing datasources in this section in addition to the noise

cancellation (Section 3.2.1), feature engineering (Section 5.3.1), and hypothesis vali-

dation methods (Section 3.3). And finally, in Section 3.4 we explain our positioning

system based on the crowdsourced data.
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In Chapter 4, we provide the evaluation results of the positioning system. First

we investigate its performance in position estimation task in Section 4.1. Then, we

provide the performance of the positioning system in transfer learning task in Section

4.3.

In Chapter 5, we present our method to cluster a population using SSID data.

First, we provide the problem statement and an overview of the proposed solution in

Section 5.1. Then, we provide our method to map SSID data to its actual location in

Section 5.2. The main method including feature engineering (Section 5.3.1), feature

vectorization (Section 5.3.2), feature normalization (Section 5.3.3) and the clustering

task (Section 5.3.4) is provided in Section 5.3.

In Chapter 6, we provide the evaluation results of the clustering task. First, in

Section 6.1, we present our evaluation methods that we employed to evaluate the

clustering task. In this section we explain the Silhouette Analysis technique. Then,

in Section 6.2, we present the employed data visualization technique. Finally, in

Section 6.3, we introduce the final result of the clustering task and provide a deep

explanation of the result.

Lastly, in Chapter 7, we present the conclusion for both the positioning system

and the clustering task on Partial Spatial History in addition to the possible future

improvements of the proposed methods (Section 7.1.1 and 7.2.1).



Chapter 2

background and Related Work

In this chapter we provide a survey on two different problems this thesis wants to

solve. First, we investigate the related research work in the field of indoor positioning

systems. Then, we provide a survey on analysing SSID data. The former is a well

studied research field while the latter has a shallow depth as it could attract the

attentions of a few researchers.

2.1 Positioning Systems

Due to the wide application of positioning systems, this field has attracted many

attentions in the pas two decades. The application of indoor positioning system

appears when tracking a moving object is of great interest such as tracking automo-

biles, planes, humans, ships, drones, etc. To solve many of the positioning challenges,

Global Positioning System (GPS) is a great answer. However, there are several scenar-

ios in which this service is not practical such as tracking a moving object in indoors.

This is due to the inaccessibility of GPS signals in indoor settings [73]. As a result,

conventional positioning systems are not appropriate for such situations. Due to the

huge application of indoor positioning systems in a wide range of problems, this field

has attracted many attentions in research and industry.

The main objective of a positioning system is to estimate the positioning of a

moving object in a 2D or a 3D surface. In other words, the tracker is responsible

to estimate the position of a trackee. For example, a GPS enabled device is capable

of estimating its position from the received GPS signals. To achieve this objective,

a positioning system requires two hardware devices: a signal transmitter and a mea-

surement unit. The transmitter might be a GPS satellite that transmits GPS signals

and a measuring unit can be a GPS enabled device that measures its global location

from the characteristics of the received GPS signals. In indoor setting, in spite of the

maturity of this research field, there is no universally accepted choice for these two

6
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components. The main reason is that each choice provides a unique level of cost and

accuracy which is completely domain dependant.

The diverse solutions can be grouped into four different topologies[28]. In the first

topology, the trackee and the tracker are one device and which is the signal receiver.

The signal transmitter, such as a GSM tower, does not have any responsibility to

estimate the position of the signal receiver. This topology is called self-positioning

system. In the second topology, the transmitter is the mobile device and the measuring

unit is one or several fixed devices that estimate the position by measuring the received

signals. This topology is called remote positioning system as the signal receiver is the

tracker and the signal transmitter is the trackee. The third topology is called indirect

remote positioning system if a self-positioning system sends its position data to a

remote location. Finally, the fourth topology is called indirect self positioning if the

remote positioning system sends the position data to the trackee.

Two very famous indoor self-positioning systems are indoors and iBeacon. in-

doors1 is a dedicated positioning and navigation solution that operates as a self-

positioning system and is capable of positioning and navigating a smart phone user

in a roofed environment. iBeacon2 is an Apple3 product which is built to estimate

the distance of a smart phone from the iBeacon. As a self-positioning system it is

used to estimate the position of a device from an iBeacon in a roofed environment.

In Wi-Fi Analytics domain, where position of devices as the indicator of customers’

positions is of great interest, a low cost and reliable method is required to achieve this

data. The first topology requires the analytics platform to access the device to obtain

the positioning information. However, generally, Wi-Fi Analytics platforms should be

able to obtain this information independently. The third topology, needs the device

to calculate the position using its inertial sensors and contribute its position to the

analytics platform. This topology is not practical because in this case, the platform

becomes completely dependant upon the wish of the device owner as the device should

willingly contribute its location to the measuring unit. However, the second topology

can work independently as the measurement can occur remotely at the tracker unit

while the trackee should only transmit signal than the position information. The

1https://indoo.rs/solution/navigation/
2http://www.ibeacon.com/what-is-ibeacon-a-guide-to-beacons/
3http://www.apple.com/
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fourth topology is not of interest as the location does not need to be passed to the

trackee in this domain. Therefore, the second topology suits best with the domain of

this thesis.

2.1.1 Signal Features for Indoor Positioning Systems

There are a number of features that can be extracted from a travelling signal to help

estimating the positioning of the signal transmitter. These features can be grouped

into three main categories:

1. Power: This type feature is a physical feature obtained and measured at the

receiver which indicates the power (not the quality) of the received signal. One

of the popular power features is RSSI which is accessible in a wide range of wire-

less mediums such as Wi-Fi, Bluetooth [52], and ZigBee[31]. The power feature

is measured at the signal receiver for each transmitted message. However, this

feature is unreliable due to multipath effects. Multipath effect is referred to the

phenomenon in which the travelling signals pursue different paths to the receiver

at each packet transmission due to the complexity of the indoor environment.

This happens particularly in situations where there is no Line-Of-Sight (LOS)

that signal may collide with several surfaces before reaching the signal receiver.

This makes a single power feature unreliable in estimating the position. Similar

to the proposed method in this thesis, fingerprinting techniques, can offset this

drawback and obtain reliable results.

2. Time: The Time Of Arrival (TOA) and Time Difference Of Arrival (TDOA)

are popular time features. In LOS conditions, TOA is proportional to the dis-

tance between the transmitter and the measuring unit. In order to measure

the accurate distance between the units, the system time in both components

should be synchronized and the transmission time should be included into the

transmitted packet. The TDOA is to measure the relative distance of a trans-

mitter by measuring the time difference of the signal arrival w.r.t to the TOA

of signals of other transmitters. Therefore, by TDOA feature, the measuring

unit can estimate the distance of the transmitters relative to each other. These

features, rely heavily on LOS conditions as in complex indoor settings, they
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cannot provide reliable values.

3. Angle: The angle feature is the angle of arriving signal which combined with

the distance, can provide the position data of the transmitter. Angle of Ari-

val (AOA) is a popular angle based feature. Calculating angle based features

requires directional antennas or Multipath Input Multipath Output (MIMO)

interface (such as antenna arrays) on the measuring unit. The cost of dedicated

infrastructure makes it a costly and impractical in some scenarios.

2.1.2 Position Estimation Techniques

In a remote positioning system, the measuring unit uses several techniques to estimate

the position of the trackee. These techniques try to estimate the position by utilizing

the features extracted from the flying signal in two way. We divide the estimation

techniques into two main categories: Geometric Mapping and Fingerprinting position

estimation techniques.

1. Geometric Mapping: This method builds geometric models to calculate the

location of a device from geometrical features of the propagated signal. Using

triangulation amongst multiple reference points (three and more), this method

estimates the position of signal transmitter from the extracted features: time,

power or angle. A trivial implementation of this method is to find the intersec-

tion point of the circles of TOA. In other words, assuming TOA feature draws

a circle around a reference point e.g. an antenna, having three reference points

which have three circles, the intersection of the circles indicates the approximate

location of the signal transmitter (Figure 2.1). The combination of TOA and

AOA makes geometric mapping technique more efficient. For example, calcu-

lating the distance at the measuring unit from TOA and the angle of arrival

provides a line that points to the signal transmitter (Figure 2.3). It is believed

that this model work well in LOS conditions while considerably suffers from

complex indoor environments where LOS is not available [38, 45].

2. Fingerprinting: Another approach in indoor localization is called finger-

printing or scene analysis [47] in that a database from the site is surveyed to

populate a database of known locations with the corresponding radio signal
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features. The site survey task is known as the offline stage and is an essential

part of this method. Then from the populated knowledge base, new instances

are classified known. The classification of the new instances is called the online

phase. This model uses statistical or machine learning techniques to position

new unseen observations. The offline phase of this method requires full ac-

cess to the site as it is required to survey multiple instances of signal features

e.g. RSSI from each position. However, this method is very costly as it takes

a considerable amount of resources and time to collect adequate number of

data points for each spot of a location to obtain a reasonable classification re-

sults. Although the fingerprinting approach provides reasonable accuracy, the

offline phase makes it unattractive. To overcome the offline/site survey phase,

a method called Crowdsourcing is introduced in which it relies on the public

to contribute their signals and labels to populate the database. For instance, a

positioning system may require a number of users to install a site survey app

[58] that reports the location of the devices to a measuring unit. Collecting a

large number of crowdsourced position information reduces the efforts of offline

phase.

Because of the popularly of Wi-Fi networks, and the proliferation of the Wi-Fi

enabled smart devices, Wi-Fi analytics platforms leverage this opportunity to track

customers by tracking the smart devices. Tracking the position of the devices is an

important step to provide deep and accurate insights about the customers of brick-

and-mortar businesses. As a result, Wi-Fi analytics platforms use APs to measure the

position of Wi-Fi enabled devices. Similarly, the positioning system proposed in this

thesis, is a remote positioning system that estimates the Wi-Fi enabled devices using

fingerprinting approach by measuring the RSSI value of the packets transmitted by

trackee and received at AP level as the tracker (the measuring unit). Moreover, the

offline stage of our proposed method is equipped with a crowdsourced technique which

is explicated in Chapter 3. Therefore, in the rest of this section, we focus on related

research works that are implemented based on RSSI feature, employ fingerprinting

and utilize crowdsourcing for their proposed methods but first we explain the theory

behind the RSSI value.

RSSI value is in a range starting from 0 to -120. RSSI values closer to -120 are
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Figure 2.1: An overview of a triangulation method using three reference points (cir-
cles) e.g. three antennas to estimate the position of the transmitter (start) e.g. a
smart phone. The larger circles surrounding the smaller circles are the distance fea-
tures such as TOA. The intersection of the three circles is the approximated position
of the transmitter device.

considered stronger. This feature is calculated from the voltage of the signal received

at the receiver unit using the following equation:

V =
N∑
i=1

‖Vi‖e−jθi (2.1)

where V is the signal voltage of all the signals received at the measuring component

Figure 2.2: An overview of a the combination of angle and distance features to locate
the transmitter device. The θ is the angle of the received signal (AOA) and the orange
line is the distance which is measured by time feature (e.g. TOA).
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Figure 2.3: Figure (a) shows an overview of a positioning system. It first collects the
site survey to populate a database of fingerprints. Then from the database, using a
localization algorithm (e.g. classifier), it estimates the position of an unseen device.
Figure (b) shows the positioning system in action that the blue points are the surveyed
positions, measuring unites are provided by icons of AP and the red dot indicates
a new unseen device with specific RSSI values from each measuring unit. Then a
localization algorithm will identify the location of the device based on the measured
values and the populated database. (Source [35])

once a signal is received. Due to the multipath effect, the measuring unit receives N

signals from a device for a single packet. Vi indicates the voltage of the ith multipath

component of the original signal and N is total number of components. RSSI value is

calculated from the computed voltage value using the following equation in decibels

(dB):

RSSI = 10 log2(‖V ‖2) (2.2)

Most of the Wi-Fi based fingerprinting positioning systems use RSSI value to

estimate the position of the signal transmitter [9, 67, 41, 11, 74, 46, 21]. Padmanabhan

et al. proposed Radar [9, 67] which is known to be the first introduced positioning

system based on RSSI values. Their research proved that fingerprinting approach

offsets the unreliability of RSSI values and makes it a reliable feature for indoor

positioning systems. They introduced the site survey in offline phase to populate the

Radio Map of a location and employed Nearest Neighbor(s) in Signal Space (NNSS) in
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the online phase to estimate the position of a new unseen device. Their investigation

shows that their proposed method performs well in complex situations with 5-10 meter

error. This work is the main reference point for the other fingerprinting positioning

techniques that were proposed afterwards.

Saxena et al. [25], proposed a positioning system based on the RSSI value of the

received signal at the AP level. As a fingerprinting positioning system, the RSSI

fingerprints were collected from several points of a site to generate a grid of known lo-

cations. Then, the mean of the RSSI fingerprints for each reference point is calculated

as the feature for the positioning system. Using kNN algorithm, they classify the new

unseen observations based on the RSSI for the new device. Their analysis shows that

this method is capable of estimating the positioning of a new unseen device with 1.1

meter accuracy 90% of the time.

Chen et al. [17] presented a Wi-Fi based fingerprint method for Location-Based

Services (LBS). They introduced two different methods in their paper. First, they pro-

posed a fingerprinting approach based on the RSSI value received at the AP to train a

kNN classifier as the positioning system and second, they proposed a distance-based

trilateration method using three APs to detect a new unseen device. By building

a radio map of RSSI values for several points of their test location, they compared

the performance of both methods. The results showed that fingerprinting approach

outperforms the distance-based trilateration approach and the combination of both

can achieve better results.

Al-Ahmadi et al. [7] proposed a Wi-Fi based fingerprinting positioning system

in multi-floor situation. They first investigated the RSSI value characteristics such

as the statistical distribution and its unreliability in multipath effect. Then they

studied the RSSI values in multi-floor situation to justify their method accordingly.

In the offline phase, they collected samples from multiple floors of a university. Using

Bayesian graphical model, they trained their model using the collected fingerprints.

The model is tested using four sets of Markov chain Monte Carlo sampling techniques.

Their investigation shows that their method is capable of positioning a device with

2.3 meter accuracy in multi-floor environments.

Khodayari et al. [39] proposed a RSSI fingerprinting approach known as predicted

K-nearest-neighbor (PkNN). As its name suggests, they use kNN in the online phase
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as the trained classifier to predict the unseen devices. In order to estimate the position

of a device, they take into account the K found neighbours, the past visited location

and the speed of the device. The evaluation of the PkNN method shows that it

outperforms the kNN method by 33% with 1.3 meter improved accuracy.

In [32], Fang et al. proposed a fingerprinting positioning system based on Principle

Component Analysis (PCA) in which the RSSI values are transfomed into principal

components (PC) to efficiently utilize the information of each AP. This method con-

siders the PCs instead of APs for the positioning system. The investigation of this

approach shows significant improvement in accuracy and computation time in online

phase.

In order to avoid the expensive task of site survey, a new method called Crowd-

sourcing is introduced. For example, Bolliger [13] proposed the very early crowd-

sourced methods called Redpin which builds fingerprints exclusively from user collab-

oration. Redpin assumes that people install location information reporting system on

their phones and report their RSSI fingerprints to the positioning system. Bhasker et

al. [12] proposed a method that requires user interaction on a map to provide their

geolocation information to a positioning system. Then from the provided information,

the positioning system builds a model to predict new unseen devices. Lee et al. [44]

proposed a similar crowdsourced method that requires a software be installed on the

smart phones of the crowds and requires their consent to contribute their positioning

information to the positioning system in addition to collecting the RSSI fingerprints.

Then, from the contributed fingerprints, it trains a kNN classifier to predict the new

unseen devices.

Wu et al. [71] proposed an advanced crowdsourcing method called Locating in

Fingerprint Space LiFS in which it transforms the site plan into a stress-free floor

plan for location estimation task using graph theory. Then, it maps the already

collected and unallocated RSSI values to the floor plan based on a proposed mapping

process. Then using kNN algorithm, it estimates the position of a new unseen device.

The experiments show that LiFS has low cost of implementation, with maximum of

6 meters of error.

Our proposed indoor positioning systems, as an enabler of Wi-Fi Analytics, tries

to answer a very fundamental question about users’ absolute position. Using Wi-Fi
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signals, we would like to identify users’ location as inside or outside a store with no

knowledge about the floor plan nor the position of the antenna and with only a single

off-the-shelf AP. In addition, we would like to replace the site survey in offline mode

with a method which is not only crowdsourced but non-intrusive. Previous works

that are based on fingerprinting approach are able to answer the absolute question.

In addition, the proposed fingerprinting methods also use a machine learning classifier

to estimate the position of a new unseen device. In these regards our work is similar

to [9, 67, 41, 11, 74, 46, 21, 25, 17, 7, 39, 32]. However, the main difference between

our method with the provided works is that they require a heavy site survey phase as

we call assumption about the site which is not required in our method. However, the

provided research works have an advantage over our proposed method which is the

relative (fine-grained) position of a device which is not achievable in our technique.

The previous crowdsourced techniques also require heavy user interactions or their

collaboration to contribute their position information to the positioning system [58,

13, 12, 44]. Our proposed method has an advantage in this regard as it collects the

crowdsourced position data non-intrusively which makes it different from the provided

research works. Another provided crowdsourced method [71] does not required user

interaction but requires the site plan. In this regard, our method is superior as we

do not require any information about the site plan nor the location of the antenna.

However, this method has one advantage over our method as it requires no labeled

data for the positioning system.

Finally, our system is capable of operating using one off-the-shelve AP and does

not require dedicated devices for the position estimation task which makes it dissimilar

to the iBeacon and indoors solutions.

2.2 Mining SSID Data

Due to the popularity of the Wi-Fi Analytics to provide business insights from Wi-Fi

data has attracted many of the attentions in industry and academia. Analysing SSID

data as one of the extensions of Wi-Fi data has been appealing to both sectors in the

past decade. In this section, we investigate the previous attempts that leverage SSID

data to provide insights into a population. First, we start with explaining SSID data.

Whenever a Wi-Fi enabled device makes a connection to a Wi-Fi network, it
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saves the name of the Wi-Fi network known as Service Set Identifier (SSID, a.k.a

ESSID) in a list called Preferred Network List (PNL). PNL contains the SSID names

of all the previously connected networks. In case a device moves from one location to

another, it searches the available networks by sending a packet called probe request.

Inside the packet, the device includes several information about itself including MAC

address, device type, and OS. In addition, it includes one of the records from the PNL

list inside the probe request which is known as SSID field. If the packet is received

by the AP which is hosting a Wi-Fi network with similar name to the transmitted

SSID name, it sends a packet called probe response to indicate its presence. Then

the device starts the connection establishment if it decides to. Transmitting probe

request is not limited to the connection establishment process. An active WNIC

repeatedly and blindly sends the probe request into space. Therefore, by collecting

several probe request packets from a device, we can capture a number of SSIDs from

its PNL list.

Before providing the literature review we should mention one point. In general, the

literature of the works on the SSID data consists of into two aspects: 1) highlighting

the concerns over privacy and the threats of SSID data and 2) application of SSID in

different fields. Most of the search works, tried to cover both sides.

One of the most popular and viral examples of practical usage of SSID data is

the Snoopy project [69, 70]. It successfully highlighted the opportunities and the

threats SSID data can provide and cause. This project captured many attentions

as several conferences, video tutorials, and blogs that covered it went considerably

viral4. In this project, Glenn Wilkinson built a framework to show the insights SSID

data can provide from different angles of view like security, privacy, and business.

He programmed several drones hovering a crowded neighborhood in London, UK to

capture SSID data from the probe requests of the crowds. Sending captured data to a

back-end server, it can identify the past visited locations of the crowd. He argued that

this has many applications in public security and business. Similar to Wilkinson’s

work, Bonné et al. [14] built a platform named SASQUATCH to study the privacy

threats of the SSID data and to increase the public awareness for such threats. By

displaying the live results of the platform showing the past visited locations of the

4The DEF CON 22 coverage at YouTube → https://www.youtube.com/watch?v=knrvrR-B1ZI
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people passing the display by mapping their SSID data to actual locations, they

presented the level of information they managed to achieve from the public in a

non-intrusive manner. The displayed information shocked many of the passersby as

90% expressed their fear that others can view their past visited locations, 60% of

the participants signed up to receive updates to help improve their privacy and 83%

where not aware of such threat.

Inspired by Snoopy project [70], Chernyshev et al. [19] investigated the hypothesis

that whether in aggregate view SSID names can unveil personal or professional in-

formation about the device owner. They validated their hypothesis by first mapping

the SSID names to actual locations using Wigle and Google Places API (more detail

is provided in Section 5.2.1). Then, by Named Entity Recognition (NER) techniques

they tried to discover semantic information from the SSID data. Then, they studied

the quality of the mapping process. The result of their investigation shows that 49% of

the SSIDs are identifiable and potentially provide some information about the owner

of the device such as past visited locations or even names. Although they discussed

that SSID data is not very reliable and accurate, they believe that it provides a level

of inference for identification of linkage between devices and their owners.

Chunche et al. [24] proposed a framework to find social links amongst people from

their SSID data. Their research is based on a hypothesis that people with similar and

low frequent SSIDs should have strong social links. They investigated several methods

to validated their hypothesis. Amongst the employed similarity metrics, cosine-IDF

achieved the highest score to identify the social links. The cosine-IDF similar to

TF-IDF technique offsets the effect of highly frequent SSID names in the entire SSID

dataset. In addition, they discussed the application of their proposed method for

advertisement and forensic purposes. Barbara et al. [10] proposed a similar research

work to infer social and socioeconomic status of a population through their SSID

inspired by a graph-based model known as affiliation network [42]. They discovered

that the built social graph has similar structure to well-know social structures. Other

contribution of their research work is to infer the language of the population and the

social class.

Seneviratne et al. [62] presented a research work to find SSID links to business

entities using word similarity metrics. First, they discovered the names of businesses
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in the neighbourhood of data collection center. Then using word techniques such

as TF-IDF and cosine similarity they tried to discover the actual location of the

SSID. Their result shows that word level cosine similarity has the highest score to

link SSID to its actual business venue with 97% precision. Similarly, Di Luzio et al.

[48] proposed a research work to deanonymize the location such as province, city and

address of a location from the SSID with a simple search in Wigle dataset. Then by

comparing the results with their ground truth dataset they showed high possibility

to deanonymize the actual locations from the SSIDs of a population.

Similar to [10], we would like to find the social structure of a population through

mining their SSID data. However, instead of direct utilization of SSID names, we

considered the location types to find the semantic similarities of a population. In

addition, we used several information theory and unsupervised learning techniques

to prepare, process and visualize the data that has not been done before. In order

to find the location type, we mapped the SSIDs to their actual locations using an

online location search API that in this regards our work is similar to all the provided

research works.



Chapter 3

Absolute Wi-Fi Positioning System

In this chapter, we aim to explain our proposed localization system which is capable of

classifying people as inside vs. outside w.r.t a location. First, we explain the problem

statement and its importance. We continue by explaining the nature of datasets and

the necessary preprocessing steps before proceeding to the main method. Then we

explain our method for the localization technique.

3.1 Problem Statement

A probe request is a packet which is sent by any Wi-Fi enabled device with an active

WNIC. An antenna, such as an AP, can capture those probe requests. If the antenna

is located in a crowded location, like a store, it can capture several packets from

the devices in its proximity. Probe request contains several information about the

source device such as MAC address, operating system (OS), the device model, RSSI

1, etc. This data is interesting to the venue owner as it provides some quantitative

information about the customers in a non-intrusive fashion by feeding this data into a

Wi-Fi Analytics platform. A typical task of such platforms is to count the number of

unique MAC addresses to estimate the number of customers in a given time. However,

a naive implementation of this trivial task can return a non-realistic number which

is much higher (2-20 times) than the actual number of customers. The reason is that

the captured probe requests are originated by devices located at the proximity to the

antenna. It can be from a car which is parked outside the store or a customer in

another store a block away from the capturing site. This problem is more significant

in busy neighborhoods. Therefore, the platform must be capable of identifying the

location of the observed devices as whether they were inside or outside of a location to

provide more accurate insights. We call such capability, absolute localization system

1Although we discussed in Section 2.1 that the RSSI value is calculated at AP level for each
receiving packet, in the rest of the this thesis, we assume that the RSSI value is included inside the
probe request packet to avoid confusion.

19
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as it identifies the location of a device as inside or outside w.r.t a location instead of

a relative location of the device from the antenna. We achieve this goal by leveraging

the characteristics of RSSI to identify the location of a device.

We define the objective of our proposed positioning system as: let A be the list of

locations where we capture probe requests and α ∈ A be one of those locations, U be

the set of all captured users2 and u ∈ U be a unique user, φu,α is a set that contains

the entire captured probe requests of user u during a visit to location α is denoted by

φu,α = {Ot1 , Ot2 , ..., Otp} where data point Otj is the RSSI of a probe request received

by the antenna at location α at time tj for user u, we would like to classify the visit

φu,α of user u as inside or outside of the location α. An overview of the process is

illustrated in Figure 3.1.

In other words, the initial challenge before applying any analytics on the raw

data is to identify the signals amongst the noise. APs and antennas are capable of

capturing probe request packets in proximity where it can be from a passerby in the

street across from the store or a real customer ordering a take away food at the store.

From a real world dataset we found that in some cases 85% of the captured data were

from outside users. Considering this, an indoor localization step is essential at the

preprocessing stage to label the observations as outside people or inside customers

before being able to extract any useful information from the data.

Indoor localization is a well studied research field in which its main objective is

to gain a level of accuracy based on the problem domain. The accuracy can be from

room- to decimeter-level [66] using signals available in indoor settings (e.g. Wi-Fi,

GSM, Bluetooth, and RFID) or smart phone built-in sensors (e.g. accelerometer, and

gyroscope). However, these methods suffer from several limitations and assumptions

that make them impractical in this domain. Existing solutions assume that they have

either full access to the users’ devices to read smart phones’ inertial sensor data, or

have full access to the venues and enough resources to collect fingerprints from every

corner of the store. In some methods they need to equip the location with multiple

access points, or cameras. We believe that in many real-world cases, similar to the

aforementioned companies, these methods are not practical. Having a large number of

clients, a generic method with low computational and technical complexity is required

2From here by using the term user we mean the Wi-Fi enabled device which is carried by a
person unless otherwise stated
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Figure 3.1: The framework for the absolute positioning system to classify the entire
visits of users U={u1, u2, ..., uk} at location α as inside or outside. The main process,
which is painted in dark blue, classifies each visit as inside or outside based on the
given historical dataset. Finally, the a new dataset is retrieved which contains the
position information of each visit. This dataset can be an input to any Wi-Fi Analytics
platform for further analytical tasks or can be used to identify the location of an
unseen user.

which is applicable in different settings.

In this chapter we introduce a generic method proper for the essential preprocess-

ing stage of other Wi-Fi Analytics tasks. This non intrusive method assumes that

the localization system has no access to the venue nor the device; the whole process

happens remotely at AP level. Moreover, it requires a single AP to manage the local-

ization task. The test results showed high accuracy and easy adaptability. We tested
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the method in different scenarios using real world Wi-Fi datasets gathered from 5

different restaurants and cafés . By means of this method, Wi-Fi Analytics platforms

are able to diagnose the coarse grained location of customers with the maximum

flexibility and adaptability.

3.2 Method

In this section, we explain the method for the aforementioned problem. This po-

sitioning system is a fingerprinting approach (Section 2.1) where data is provided

by crowdsourcing. A fingerprinting positioning system relies on the dataset of RSSI

values collected from different spots of a location. Each location is considered to be

a label or class for the captured dataset. By building a classifier using this labeled

dataset, a positioning system becomes capable of classifying the location of a Wi-Fi

enabled device. As a Wi-Fi platform, this method is very costly especially consid-

ering having several customers there should be several locations to be scanned. We

investigated two sources of data as crowdsourced datasources to avoid this expensive

data collection process.

Most of the public Wi-Fi networks in brick-and-mortar businesses require a simple

registration process before granting access to its network users. This process gener-

ates a dataset known as Authentication dataset that contains the MAC address of the

registered device and the time of the registration. Considering the Wi-Fi RSSI values

of users who registered at Authentication dataset, we can assume these devices as the

inside population, therefore, we have the labeled data for the inside class. In addition,

most of these locations, are closed at night. Hence, if any packet is received at that

period, we assume that it should be originated from the outside population. There-

fore, we can generate the labeled data for the outside population. These two classes

can build a complete map of inside and outside population to build a comprehensive

positioning classifier. Our indoor positioning system is based on these two hypotheses,

that in this chapter, we try to validate. Firs, let’s describe the datasources:

Wi-Fi Dataset: This datasource contains the probe requests collected from 5

restaurants and cafés located in Halifax, Canada. The dataset consists of 43,216,265

probe requests for 472,497 unique devices in the past three years. For reasons of

confidentiality, these locations are labeled as location A, B, C, D, and E. Data was
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gathered from users in the proximity to APs installed at those locations. As explained

above, the collected packets can be originated from inside and outside devices. Each

location is equipped by one off-the-shelf AP3, that its in-store position is unknown to

us. The APs operated continuously 24/7 for the whole period and recorded the entire

received probe requests. The RSSI value for each probe request is calculated at the AP

in the arrival time. In average, each device propagated a packet in every 3 minutes.

The dataset was collected completely non-intrusively with no user interaction; it only

needs a person to hold a Wi-Fi enabled device with an active WNIC.

Definition 1 (Wi-Fi Dataset) Let Wα = {wα,1, wα,2, ..., wα,n} be the Wi-Fi dataset

for location α containing n data points where each data point wα,i representing a probe

request that is a 3-element tuple denoted by wα,i =< MAC,RSSI, T ime >.

Dwell Period: Wα dataset consists of several observations denoted by wα,i which

contains the MAC address, the RSSI and the time of the observation. From this

dataset, another dataset called Dwell Period is generated to represent each visit of

user u.

Definition 2 (Dwell Period) Let α ∈ A be a location and user u ∈ U be a user,

φα,u,i = {Ot1 , Ot2 , . . . , Otp} is the ith Dwell Period of user u in location α where data

point Otj corresponds to the RSSI value of the probe request captured at time tj from

device u at location α and ∀t (t1 < t2).

Dwell Period is an ordered set which contains the probe requests of user u at location

α. In other words, φα,u,i contains the RSSI value of the probe requests captured from

user u for her ith visit to location α. The AP at location α should receive at least one

signal from a user u within a window of 10 minutes to be considered a continuous

Dwell Period and place the probe request in the ith Dwell Period. Hearing back from

the device u after 10 minutes of silence is considered the beginning of a new φα,u,i+1

dataset. As a result, we may have several Dwell Periods for user u and location α

if user u where at the proximity to the antenna at location α for several times. The

combination all Dwell Period for location α generates a larger dataset denoted by

Φα = {φ1, φ2, ..., φn} where φi = φα,u,i is a shorter symbol to name a Dwell Period.

3The brand of APs for all 5 locations is Meraki MR12
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Definition 3 (Dwell Dataset) Dwell Dataset is denoted by Φα = {φ1, φ2, ..., φn}
where data point φi = φα,u,i is a Dwell Period.

Authentication Dataset: Another source of data called Authentication Dataset

is populated at the moment when user u logs in to the public Wi-Fi network of location

α. This dataset contains device MAC address, and the time of login.

Definition 4 (Authentication Dataset) Let Kα = {κ1, κ2, ..., κn} be the Authentica-

tion Dataset where data point κ = (mu, tj) contains MAC address m of user u who

logged in to the network at time tj.

Authentication Dataset contains the information of users who logged in to the

public Wi-Fi network of location α. It is possible that user u has multiple records in

dataset Kα if she logged in to the network multiple times. Similar to Wi-Fi Dataset,

the Authentication Dataset is populated non-intrusively but with a minimal user

interaction. In this crowdsourcing approach, data is gathered in a normal process of

users connecting to a public Wi-Fi network, with no intention of contributing their

spatial data to a localization system.

Registered Data: The combination of Dwell Dataset (Φα) and Authentication

Dataset (Kα) for location α can generate another dataset as we call Registered Dataset

and denoted by Πα where Πα ⊂ Φα. Let the time of the first and the last probe

requests Ot1 and Otp where both ∈ φi ∈ Φα be t1 and tp, respectively, the MAC

address of φi be mi, the time of an element πj ∈ Πα be tj, and the MAC address

of πj be mj, then φi is a member of Registered Data Πα if the following conditions

satisfies:

1. if t1 ≤ tj ≤ tp

2. if mj = mi

Definition 5 (Registered Dataset) Registered Data Πα for location α is denoted by

Πα = {π1, π2, ..., πn} where Πα ⊂ Φα and π1 ∈ Φα.

In words, the Dwell Periods φi of user u can be a member of Registered Dataset

if the user logged in to the Wi-Fi network during her visit φi.
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Night Dataset: This dataset is a subset of Φα (Dwell Period of location α)

where the Dwell Period happened after the closing hour and before opening hour of

location α.

Definition 6 (Night Dataset) Let t1 and tn be the start time and the end time of

Dwell Period φi, and τclosing,α and τopening,α be the time that location α closes and

opens, Night Dataset is denoted by Γα = {γ1, γ2, ..., γn} where data point γi ∈ Φα and

Γα ⊂ Φα and τclosing,α ≤ t1 and tn ≤ τopening,α.

Amongst the defined datasets, the Registered (Definition 5) and Night (Definition

6) datasets (Quantitative information of these datasets for all 5 locations is provided

in Table 3.2) are the key ingredients for the proposed indoor positioning system based

on the two hypotheses explained at the beginning of this section. However, in order

to validate the hypotheses, we collected two other data sources; SurveyDataI and

SurveyDataO as are explained below.

Survey Data: To validate the initial hypotheses that whether Registered and

Night Datasets are true representatives of inside and outside population, respectively,

we have worked with 5 volunteers as regular customers of location A who agreed to

identify their data in the Dwell Dataset ΦA (Definition 3) to gather ground truth data.

We gathered all the recent Dwell Periods (last three months) from ΦA. The volunteers

were asked to mark the records as I if the majority of their presence was inside the

location A, and O, otherwise. From the surveyed data, totally, we labeled 200 Dwell

Periods. They were labeled equally: 100 inside and 100 outside observations which

are referred as SurveyDataI and SurveyDataO in the rest of the thesis. These 200

Dwell Periods consist of 5708 data points from Wi-Fi Dataset WA (Definition 1) and

have a variety of dwell durations.

Table 3.1: Location type and dataset description of each location

Location Registered Night Dataset Reg / Night Ration Type

A 29586 32387 0.91 1 floor
B 9398 34713 0.27 1 floor
C 5406 8708 0.62 1 floor
D 4251 53638 0.08 2 floors
E 6537 24241 0.27 2 floors
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3.2.1 Noise Filter

Before the feature engineering task, in order to stabilize the RSSI values in Dwell

Period sets (φi), we applied Wiener filter [68] on RSSI values. This filter is a popular

noise filtering method used in a wide range of studies related to signal processing. The

Wiener filter is applied to the values of each Dwell Period separately. The effect of

applying this filter on the prediction performance is out of the scope of this research.

3.2.2 Feature Engineering:

In this section, we explain the features engineered from the defined datasets. The

key value to identify the location of a device is the RSSI value of the probe request.

Because of the multipath effect (Section 2.1) on the flying signal, the RSSI value

of a stationary device changes frequently during a period. This is the motivation

behind fingerprinting approach to classify the position of a device. In other words,

the ultimate goal is to classify each Dwell Period φi ∈ Φα as inside or outside a store

based on the characteristics of RSSI values in φi.

To achieve this goal, we engineer three time domain features from all data points

in Registered, Night, SurveyDataI and SurveyDataO datasets. The resulting feature

vector Pα,D for each of the mentioned datasets is provided below:

Pα,D =



µ1 δ1 σ2
1

µ2 δ2 σ2
2

µ3 δ3 σ2
3

...
...

...

µn δn σ2
n


(3.1)

where n is the total number of the Dwell Periods in the target dataset of location α,

and D is the target dataset indicator such as Night, and Registered datasets. Below

each feature is explained:

µi =
∣∣∣E[φi]

∣∣∣
=

∣∣∣∣∣1k
k∑
j=1

Oj

∣∣∣∣∣ (3.2)

Here µi is the arithmetic mean of RSSI values of Dwell Period φi ∈ Φα. For each

Dwell Period, δi is denoted by:
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δi =
∣∣∣argmax(φi)− argmix(φi)

∣∣∣ (3.3)

where δi is the difference of the maximum and the minimum RSSI values in φi.

Finally, the σ2
i is the variance of the RSSI values in vector φi which is defined as:

σ2
i = V ar[φi]

=
1

k − 1

k∑
j=1

(Oi − µi)2
(3.4)

As we have the Wi-Fi and Authentication Datasets for all 5 locations, we can

generate Registered and Night datasets for all locations. However we managed to

gather the ground truth datasets SurveyDataI and SurveyDataO from location A.

Therefore, in total, we produced 12 different datasets for all 5 locations as 5 Regis-

tered, 5 Night, and 2 ground truth (SurveyDataI and SurveyDataO) datasets. Hence,

the feature engineering process results in 12 feature vectors P for each dataset.

3.3 Hypothesis Validation Method

Our initial hypothesis HR is that the device owners who log in to a Wi-Fi network

at location α have spent the majority of their time inside that location (Registered

Dataset). The other hypothesis HN is that the data acquired from the environment

by Wi-Fi APs at closing hours can represent the outside population (Night Dataset).

In the following sections, we aim to explain our methods to validate these hy-

potheses using visual, statistical and machine learning techniques.

3.3.1 Data Exploratory Analysis

Figure 3.2 shows how data is distributed in 2d space for all of the datasets of location

A. This figure contains 3 scatter plots for all combinations of the features. In all

of the three plots, Registered and Night Datasets are clearly separated for all the

combinations of the features as colored in green and blue, respectively. Similarly, the

survey data for both inside and outside classes are distinctly separable. The data

points for SurveyDataI which are colored in yellow are in the same area as Night data

points are. Similarly, SurveyDataI data points are settled in the space that Registered

data points generally occupy.
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Figure 3.2: Projection of all combinations of features on a 2D space for 4 datasets of
location A
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Figure 3.3: Probability density function (PDF) of RSSI Mean for all four datasets for
location A

The probability density functions of location A for RSSI Mean µ of four datasets

Registered, Night, SurveyDataI and SurveyDataO are shown in figure 3.3. The dis-

tribution of Registered and SurveyDataI datasets are very similar to Gaussian distri-

bution, while the distribution of night and SurveyDataO are right-skewed. The same

visual similarity exists for other features, too. As a result this initial visual analysis

does not reject the HR and HN hypotheses.

3.3.2 Statistical Test

In this section we present the study we conducted on statistical distance between

the distributions of SurveyDataI and SurveyDataO datasets and the distributions of

Registered and Night datasets, respectively. For this purpose, we choose the two-

sample Anderson-Darling test to quantify the distance for each feature.

The K-sample Anderson-Darling (AD) test is a non-parametric test for comparing

k samples by quantifying the distance between the distribution of k samples. As a

rank test, it makes no assumption on the probability distribution of the samples and
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its parameters are determined based on the input samples. For the purpose of this

study, we need to compare the distribution of two samples; therefore we choose the

two-sample AD [53] test which is denoted by:

A2
mn =

mn

N

∫ ∞
−∞

{Fm(x)−Gn(x)}(2)

HN(x){1−HN(x)}
dHN(x) (3.5)

where Fm(x) is the empirical distribution of a random sample X1, . . . , Xm for

m ≤ x. Here Gn(x) is the empirical distribution of the second random sample

Y1, . . . , Ym obtained from a continuous population where n ≤ x and HN (x) =

{mFm (x) + nGn (x)} /N , in that N = m+n is the empirical distribution function of

the combined sample. The A2
mn statistic is the comparison result of the two-sample

AD test to accept the null hypothesis denoted by H0 if F = G is failed to reject.

For the four datasets we perform 2 groups of test as Registered vs SurveyDataI

and Night vs SurveyDataO. In each group, three individual tests are conducted for the

three features. In total there are 6 individual tests accomplished in this experiment.

Based on the size of both samples, the critical value for 5% significance level is 1.961

and H0 is rejected if the A2
mn statistic is higher than 1.961.

Table 3.2: 2-sample Anderson Darling Test Results

A2
mn statistic P-value

Registered vs. SurveyDataI

Mean 0.79630 0.154512
Variance -0.34740 0.50148
Distance -0.70229 0.73186

Night vs. SurveyDataO

Mean -0.02231 0.35630
Variance 0.47718 0.21314
Distance 0.51380 0.20536

As illustrated in table 3.2, there is no significant statistical evidence to reject H0

at 5% level of significance where all six results are significantly lower than 1.961.

It concludes that the distribution of all three features for both paired datasets are

not statistically dissimilar. The same conclusion can be derived from the P-value as

all of the results are significantly higher than 0.5 at the same level of significance.

Consequently, this test fails to reject the HR and HN hypotheses.
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3.4 Positioning System

In fingerprinting approach, a supervised method is generally used to build a model

based on a training data. In fine-grained localization techniques where there are

more than one spot in a location to identify (e.g. the location of each square meter

should be identified), multiclass classification approach is employed to classify the

observations into different classes representing different parts of a location. In this

study, however, as the accuracy of interest is store level, it is adequate to differentiate

observations as outside vs. inside. In this section, we explain our positioning system

which is built by using Registered and Night Datasets (Figure 3.4).

As HR and HN hypotheses are accepted in the previous sections, we now have

two labeled datasets to represent the inside and outside populations. Based on this

conclusion, we draw two different scenarios as are explain in the followin sections.

Figure 3.4: The detailed graph of the proposed positioning system
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3.4.1 Two-Class Classification

Results of AD test explained in Subsection 3.3.2 show that, statistically, there is no

enough evidence to fail HR, therefore, it can be inferred that the registered dataset is

pooled from a distribution very similar to the distribution of the SurveyDataI dataset.

Similarly, HN successfully passes the test. Consequently, it can be statistically in-

ferred that night dataset is the representative of the outside population.

Considering the RSSI fingerprints of Registered and Night datasets as two classes

for inside and outside populations, we have adequate material to build a two-class

classifier to identify the location of Dwell Periods. This classifier is capable of iden-

tifying the absolute location of an unseen new device.

We employed Random Forests [37, 15] on Registered and Night Datasets to build

the two-class classifier.

3.4.2 One-Class Classification:

There are some plausible scenarios in which the Night Dataset is not available. For

example a restaurant where customers are served for 24 hours, 7 days a week. In

addition, if night data is available, based on our knowledge about the understudied

stores’ neighborhood, the night data may not be a complete representative of the

complete behaviour of the outside population. There are many activities that rarely

happen or are totally missed at night. For instance, public transportation stops

operating which affects the nature of data at certain locations close to bus stops.

Offices and universities are also closed at night time. This excludes the students’ or

workers’ activities from the night data which results in missing some unique forms of

RSSI signals observed at night time. There are also some scenarios where Registered

Dataset is not available if the public Wi-Fi does not require log in to access the

network. In this case the Registered Dataset is not available to build a two-class

classifier as explained above. Therefore, we choose the one-class focus approach to

investigate both classes separately. In other words, we see how a one-class classifier

performs when trained on Registered Dataset only and how it performs when modeled

on Night Dataset. As a result, it shows the power of this model in handling similar

situations. We employed One-Class SVM algorithm as the classifier to build the

positioning system.
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3.5 Discussion

As we explained in several occasions in this thesis, the proposed positioning system is

an enabler of Wi-Fi Analytics as it separates the noise (outside population) from the

signal (inside customers). We employed this technique as the preprocessing step for

several projects in the Institute for Big Data Analytics. However, due to the scope of

this thesis, we just mention the title of three projects that leveraged our positioning

system as their essential part.

1. Quantifying and predicting the dwell time (duration of stay) of the customers.

2. Predict the number of customer per hour in the next 10 days.

3. Quantifying and predicting the opportunities outside of a store.

Although it is not considered in the scope of this thesis, the proposed positioning

system can be used as the preprocessing stage for Partial Spatial Mining task (Chapter

5) to separate the understudied population into two groups of inside and outside

population for in-depth investigation.
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Evaluation of Positioning System

In this section we investigate the performance of the classifier for both one-class and

two-class classification approaches as the essence of the proposed positioning system.

First, we investigate the performance of models built on the Registered and Night

Datasets in several scenarios (Section 4.1). Then we build the proposed positioning

system and with several experiments we measure its strength (Section 4.2).

For all of the experiments in the following sections, we employed Cross Validation

[40] to tune the parameters of the classifiers. However, this method is used for model

validation only in Section 4.2 where we employ Cross Validation to measure the

performance of the models in prediction tasks.

4.1 Performance of the Classification Task

In this section, we inspect the performance of the positioning system proposed in

Chapter 3 and Section 3.4 in several scenarios to show its strength in handling different

situations. To achieve this goal, we conducted two group of experiments as provided

below::

1. Including full dataset size in training phase and use ground truth datasets to

test the classifiers (Section 4.1.1):

• Employed the entire Night and Registered datasets to train one-class and

two class classifiers.

• Investigate the performance of the classifiers in predicting the the ground

truth (SurveyDataI and SurveyDataO) datasets.

2. Including variable dataset sizes (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,

90%) in training phase and use the ground truth datasets to test the classifiers

(Section 4.1.2):

34
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• Split the Registration and Night datasets into different dataset sizes and

train the models on each data size.

• Inspect the performance of each model in predicting the ground truth

(SurveyDataI and SurveyDataO) datasets.

The results of the performance tests have two outcomes. First, we can quanti-

tatively measure the performance of the positioning system in different situations in

predicting ground truth datasets. Second, results can be another indicator to accept

or reject the initial hypotheses HR and HN .

4.1.1 Train Classifier on Entire Dataset

We first investigate the predictive capability of the model trained on Registered and

Night datasets and tested on SurveyDataI and SurveyDataO using one-class classi-

fication and two-class classification techniques. Because the SurveyDataI and Sur-

veyDataO datasets were collected from location A, for this test we only consider the

ΠA and ΓA for location A. In this experiment, we build two one-class SVM and one

Random Forests classifiers. The first classifier, referred as One-Class SVM 1, uses

Registered Dataset (ΠA) as the positive class to train the model. Then we measure

the performance of the model in classifying SurveyDataI and SurveyDataO instances

as inliers and outliers, respectively. The second one-class classifier named One-Class

SVM 2 is trained on Night Dataset (ΓA) as positive class, then tested on the Sur-

veyDataI and SurveyDataO observations. Finally, a binary Random Forests classifier

is trained on both Registered and Night Datasets as positive and negative classes.

Similar to other tasks, we measure the performance of this classifier based on its

classification strength on SurveyDataI and SurveyDataO datasets.

The performance of the classifiers are illustrated in Figure 4.1. The performance

metrics show that the classifiers are able to achieve considerably high scores for all of

the experiments. A closer look at the plots, it is clear that in scenarios where both

Registered and Night datasets are available, a two-class classifier can outperform the

other situations by achieving 98% score for all the metrics. However, the same plot

confirms that the classifier trained on Registered Dataset only can still achieve a

competitive score of 95% for all of the metrics. The lowest score is for the classifier
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Figure 4.1: Performance of One-Class SVM1, One-Class SVM2 and Random Forests
classifiers in predicting the ground truth datasets (SurveyDataI and SurveyDataO).
The left bars show the comparison of the classifiers performance with Accuracy score.
The middle bars compare their performance with AUC score and the right bars com-
pare the models based on their F1-Score.

trained solely on the Night Dataset alone, however, the results show that this model

can still provide reasonable score of approximately 85% for all of the metrics.

This test again validates the HR and HN hypotheses because a model trained by

Register and/or Night datasets is able to classify the SurveyDataI and SurveyDataO

datasets with considerably high scores.

4.1.2 Training on Variable Data Sizes

In this experiment, we study the performance of all three types of classifiers that

are trained on different training dataset sizes and tested on the survey data. Using

shuffling techniques, we shuffle and divide the data into different sizes and run the

whole process 10 times. The experiment results are provided in Figure 4.2. The results

show that the performance of two-class classifiers trained on both Registered or Night

Datasets achieve considerably more stable and higher scores with any training sizes.

These metrics are dropped significantly for both types of one-class classifications

in respect to score and stability particularly with smaller data sizes (10% - 30%).
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Figure 4.2: The performance results of the three types of classifiers on different train-
ing data sizes. The performance is measured based on the quality of classification
on ground truth (SurveyDataI and SurveyDataO) datasets. The performance of the
models is provided in Accuracy, Precision, Recall and F1-Score metrics.

However, they still show reasonably predictive capability.

The results demonstrate impressive stability and performance in different situa-

tions with small to large training sizes. In addition, these results show the acceptance

of HR and HN hypotheses as the classifiers managed to obtain good predictive scores

with different data sizes.

4.1.3 Discussion

Both one-class and two-class classifiers trained on Night and/or Registered Datasets

in two conducted experiments managed to obtain satisfactory results in classifying

ground truth data. Considering the 2-sample AD test results (Section 3.3.2), we

can conclude that Registered and Night Datasets are very similar to SurveyDataI

and SurveyDataO datasets. Hence, they can be representative of inside and outside

populations. However, classifiers trained solely on the Night Dataset showed that

Night Dataset is not as powerful as the classifier trained solely on Registered Dataset
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or on both datasets.

4.2 Performance of the Positioning System

In this section, we inspect the performance of the positioning system in several sce-

narios. We build a positioning system with both assumptions using one-class and

two-class classification methods. Then, we evaluate and compare the ability of all ap-

proaches in classifying positions of Dwell Periods from different angles (Section 4.2.1).

Next, we investigate a transfer learning approach, where a model is trained on one

location, and evaluated based on the predictive capability of the model in classifying

Dwell Periods of other locations (Section 4.3).

4.2.1 Model Validation with Cross Validation Test

After achieving reasonable results in the previous section (Section 4.1), we concluded

that the positioning system has reasonable performance in all three scenarios in clas-

sifying ground truth datasets in addition to other two tests (Section 3.3) we concluded

that Registered and Night Datasets are reliable representatives of inside and outside

populations, respectively. Hence, these datasets can be used as the labeled datasets

to build the absolute fingerprinting positioning system. In this section, we aim to

validate the performance of the positioning system built by the two datasets. We

conducted three experiments to inspect the performance of the positioning system in

all three scenarios: 1) availability of Registered Dataset only, 2) availability of Night

Dataset only, 3) availability of both Registered and Night Datasets. Then, using

k-fold Cross Validation technique, we validate the models.

We performed three experiments on the classifier trained on Registered and Night

Datasets using k-fold Cross Validation. For the one-class classification we train the

model on one of the datasets (Registered or Night Datasets) using 10-fold Cross Val-

idation where the model is trained on 9 folds and then validated by the remaining 1

fold. However, because of the essential limitation of one-class classification, in valida-

tion set we include the other dataset in the validation set. For example, considering

One-Class SVM 1 that is trained on Registered Dataset, we build the model on 90%

(9 folds) of the Registered Dataset and validate the model on the remain 10% (re-

maining 1 fold) of the Registered Dataset in addition to the entire Night Dataset.
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Figure 4.3: The ROC AUC graphs of the positioning system in all three scenarios:
1) One-Class focus - availability of Registered Dataset only, 2) One-Class focus -
availability of Night Dataset only, 3) Two class focus - availability of both Registered
and Night Datasets

This process is repeated for both datasets, separately. This experiment is slightly

different for two-class classification task where in this approach we build the model

on 90% (9 folds) of the both Night and Registered Datasets and validate the model

on the remaining 10% (1 fold) of the entire datasets. The entire process for both

one-class and two-class approaches are repeated 10 times for all 5 locations. The

results of this experiments are provided in Figure 4.3 using ROC AUC graph.

The results show that Random Forests outperformed the other classifiers with

reasonable AUC scores for all five locations. However, except one location (Location

C) in One-Class SVM 2, the results of other classifiers show reasonable performance.

Similar to other experiments, we can conclude that the performance of the positioning

system increases significantly when both datasets are available.
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Table 4.1: AUC Score of mapping a model from one location to the rest of the
locations

Trained on Algorithms
Tested On

Mean
A B C D E

Location A OC SVM1 0.83 0.61 0.83 0.95 0.81
OC SVM2 0.79 0.57 0.73 0.87 0.74

RF 0.81 0.71 0.90 0.96 0.84

Location B OC SVM1 0.85 0.74 0.66 0.77 0.76
OC SVM2 0.64 0.56 0.54 0.61 0.59

RF 0.78 0.67 0.75 0.76 0.74

Location C OC SVM1 0.97 0.69 0.84 0.94 0.86
OC SVM2 0.84 0.51 0.61 0.85 0.70

RF 0.95 0.60 0.83 0.95 0.83

Location D OC SVM1 0.96 0.88 0.68 0.94 0.87
OC SVM2 0.74 0.63 0.51 0.68 0.64

RF 0.84 0.67 0.61 0.84 0.74

Location E OC SVM1 0.97 0.83 0.61 0.84 0.81
OC SVM2 0.73 0.68 0.53 0.63 0.64

RF 0.93 0.75 0.62 0.83 0.78

Mean 0.85 0.72 0.62 0.75 0.84 0.76

4.3 Evaluate the Positioning System in Transfer Learning

Transfer Learning is to improve the performance of a learning task by transferring the

knowledge from another by related task that is already learnt [55, 16, 72]. Motivated

by this method, in this section, we investigate performance of the proposed indoor

positioning system in transfer learning situation. In other words, we inspect how

accurate a model trained on datasets of location α can classify Dwell Periods of

location β.

Here, we present the strength of model transferability for all locations where we

evaluate the positioning system built on datasets of location α by measuring its

performance in classifying the Dwell Periods of other 4 locations. The main purpose

of this experiment is to study the feasibility of mapping a model from one location to

another. This result is appealing in particular scenarios where neither of Night nor

Registered Datasets are available or the labeled data is very limited.
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As table 4.1 suggests, with the availability of only Registered Dataset, in average,

we can confidently achieve a high score (AUC 82%) in predicting the data of other lo-

cations using one-class classification. However, unlike other experiments, availability

of both datasets results in slightly lower scores in almost all experiments compared

to other scenarios as Random Forests classifier obtained the second best results in

transfer learning with 0.79 AUC score in average.

4.4 Discussion

In this chapter we evaluated the positioning system using several experiments and

provided the results. In general, we found that the Registered and Night datasets can

be true representatives of inside and outside populations, respectively. In addition, we

discovered that in the lack of one of those datasets, we can still achieve a reasonable

performance for the positioning system. However, in most of the results we found

that the ideal case is to acquire both datasets to build the positioning system. Finally,

we showed that the positioning system is reliably transferable to other locations in

case the labeled datasets are unavailable. This positioning system can be used at the

preprocessing stage of a Wi-Fi Analytics platform to identify the absolute position of

the users.

The performance of the classifiers trained on both the Registered and Night

Datasets had much higher performance than the performance of the classifiers trained

on only one of the datasets. The main reason is the additional information that is

available to the classifier in the training phase. On the other hand, the one class

classifiers have only one side of the information: the inside or the outside popula-

tion. Therefore, the positioning systems built solely on one of the datasets have lower

predictive capability than the one trained on both datasets.



Chapter 5

Mining Partial Spatial History

In this chapter, we present our method to extract spatial behavioral patterns from

a group of people from their SSID data. The first section explains the problem

statement and the challenges, then we explain the necessary preprocessing steps and

finally we explain our proposed method.

5.1 Problem Statement

A probe request propagated from a device, contains several fields such as device

MAC address, RSSI value, time of packet propagation and the SSID. The SSID

field contains a Wi-Fi network name (SSID) that refers to a network the device was

previously connected to. For instance, if you have been connected to the Wi-Fi

network of café α with SSID Network α, then your phone saves the name in a list

called Preferred Network List (PNL). PNL in each smart device contains the names

of the previously connected networks. In the next visit to location α, the smart

device includes one of the SSID records from the PNL into the probe request. This

is a normal mechanism of connection reestablishment to reduce the network search

process in roaming situation. SSIDs leak some information as they are simply human

readable [51]. Mapping this coarse-grained spatial information to its actual location

can unveil valuable insights into the smart device holder. This spatial data is more

machine readable. Therefore, collecting the SSIDs from the probe request of a large

population can provide deep insights into a population because each SSID can be

treated as spatial information about the owner of the device. The type and the

geographical information of the location tells us some information about the interest,

nationality, ethnicity, and social class of an individual. For example, if the collected

SSIDs of a large population who attended a conference include SSIDs from country

β, we can infer that the attendees and the conference have some links to this country.

In addition, if the SSIDs of the population contain a large number of SSIDs related

42
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to a university, it can be inferred that a percentage of the population attended the

university and probably have university degree. These are some examples to show

how the history of visited locations can provide interesting information about an

individual or a population. Collecting a large number of SSIDs from a population,

provides a number of inferences about the population. Considering the inferences as

the features which are extracted from a given a set of SSIDs T for population U , we

are interested to group the population into k groups based on the features1. In this

chapter, we aim to present a framework to find similar groups of people from the

collected SSIDs. An overview of our proposed framework is plotted in Figure 5.1.

This task, in particular, is priceless for brick-and-mortar businesses as they can

understand the types of their customers in a non-intrusive and inexpensive fashion.

Considering a small or medium size brick-and-mortar business by leveraging this tech-

nique is able to extract the history of previously visited locations of their customers at

their first visit without paying the price of explicit tracking systems. In other words,

the alternative way to obtain such information is to track the individuals by having

an app installed on their smart devices or purchasing such data from mobile network

operators which can cost from thousands to millions of dollars [6].

To reach the aim of this chapter, there are two important but challenging phases

that should be passed before reaching the clustering step. First, the SSIDs should be

mapped to an actual location. Second, the spatial behavioral features of population

based on the mapped locations should be extracted. Then, individuals can be clus-

tered based on the extracted features. In the rest of this chapter we address each in

detail.

5.2 Map SSIDs to Actual Locations

In this section, we preset our method to map SSIDs to their actual locations. For

example, we want to map SSID name CoburgCoffeeWiFi to Coburg Coffee House

located at ’6085 Coburg Rd, Halifax, NS B3H 1Z3’. But first, let’s explain character-

istics of SSID data that makes this mapping process challenging:

• Duplication of SSID names: Unlike MAC address, SSIDs are not unique.

1In this thesis, we are not interested to make individual level inferences, instead, aggregate of the
data is appealing to us
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Figure 5.1: An overview of the SSID-based population clustering framework

Therefore, there may be several Wi-Fi networks with the same SSID name.

For instance, anyone is allowed to name her Wi-Fi network TimHorton′s even

if there is no relation between her and Tim Horton’s Café. In addition, it is

possible that all of the branches of a chained store like Walmart use a unique

SSID name (walmart) for the entire of their store chain. Therefore, in this

case, it is infeasible to identify the exact location of the SSID. Instead, this

SSID indicates that this person most probably visited a Walmart in the past.

• Unclear number of visits: The hidden number of visits is unclear from the

SSID record of a probe request. Retrieving the SSID S form a device only

confirms that the device owner, visited a location with SSID name S at least

once. However, it is not clear how many times she visited the location in the

past.

• Lack of temporal information: The SSID field does not contain any tem-

poral information about the connection event. In other words, there is no field
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Figure 5.2: The SSID section in a probe request packet

in the probe request that shows a temporal information about the connection

event. Therefore, we can only infer that the visit happened in the past with no

precise temporal information.

To alleviate these challenges we first describe the nature of the collected data and

the preprocessing steps taken to ease the mapping process.

5.2.1 Mapping Approaches

SSID data is extracted from probe request packets. This information is a string with

maximum of 32 characters that consists of ASCII letters (Figure 5.2)[5].

We collected SSIDs in three events at two locations including Goldberg Computer

Science Building2 and the office of SolutionInc Limited3 that both are located in Hal-

ifax downtown using Paspberry PI 3 B+ programmed with Python 2.7 and equipped

with a long range USB WiFi wireless adapter. In total, we recorded the probe re-

quests of 7053 individuals (unique MAC addresses) and 3340 unique SSIDs. The

reason for obtaining less SSIDs than the total number of observed devices is that 1)

many of the SSIDs are shared amongst many devices (Figure 5.2) and 2) the majority

of devices unveiled zero4 - one SSID through their probe requests (Figure 5.4).

In order to map the SSID to a location, the related research work that are ex-

plained in Section 2.2, used two different methods 1) Using Named-Entity Recognition

(NER) techniques [19] and 2) Online Services [48, 20, 19]. Based on the cited research

work, online services provide better results compared to the NER techniques.

2Located at: 44.637409, -63.587189
3Located at: 44.657883, -63.596461
4The SSID field in some of the probe requests is empty and the author could not find a reliable

source to explain the reason of this behavior
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Figure 5.3: The frequency of SSIDs collected from the probe request packets. Each
point in x axis corresponds to an SSID. In order to plot a comprehensible visualization,
we removed the most frequent SSID (BELL WIFI ) with 3546 appearance from the
graph. Therefore, this plot shows the SSID occurrence from the second most frequent
SSID (left hand side) to the least frequent SSID (right hand side)

For a number of reasons, amongst the geo-location online services 5, Wigle.net

and Google Places API gained more popularity. A comparison of these services is

provided below.

Wigle: Wigle.net is a popular API to resolve the location of SSIDs in a majority

of the related work[48, 20, 19]. The Wigle is a crowdsourced database filled by

volunteers who have Wigle’s phone app installed on their smart phones. This app

reports all of the reachable Wi-Fi networks SSIDs with the current GPS coordinates

of the phone. This introduces the first error as a Wi-Fi network can be several meters

far from the phone while the registered coordinates in the database is the coordinates

of the smart phone. Therefore, the geometric information of the SSID is not reliable

51) Skyhook → www.skyhookwireless.com
2) Wigle → https://wigle.net
3) Microsoft Bing Search API → https://datamarket.azure.com/dataset/bing/search
4) Google Places API → https://developers.google.com/places/
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and cannot be easily mapped to the actual location. The other essential error of this

service is its disability to remove non-existing SSIDs. In other words, many of the

reported Wi-Fi network names do not exist in that location. Wigle returns the entire

results for a given SSID. This is another reason of uncertainty as it does not remove

the abolished locations. The other limitation is that it does not provide any semantic

information about the location. And finally there is a 100 query limit per user per

day which makes it very impractical.

Google Places API: Google Places API is a service to search the Google

database for a specific location by a keyword like TimHortons. It almost addresses

the majority of the limitations and errors Wigle possesses. First, it provides the exact

location of an SSID given the SSID name is similar to the location name. In addition,

Google Places repeatedly renews and validates its search results[33] to avoid return-

ing out-dated information. The returned results contain several semantic information

about the location such as location types, address, ratings (if applicable), logo, screen

shot. Finally, Google API provides a generous package to request 150,000 queries in a

day for free. Google Places API also provides some features which are very useful for

retrieving better results. SSID names have several wild characters, non-split words

and typos. This API internally solves all of these potential issues with automatic

Figure 5.4: The number of SSIDs captured from the devices where each point in x
axis corresponds to a device. In total there were 7053 devices.
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word breaker and spell correcter to make SSIDs search friendly. It also enables us to

search based the relevancy to a location or coordinate termed location constraint. As

we collected the entire SSID data from Halifax downtown, we employed this feature to

sort the results based on their distance to Halifax downtown. By setting the location

constraint to Halifax Downtown, we assume that the first item of the response object

is the most relevant amongst others.

Although Chernyshev et al. [19] proposed that Wigle API provides better results

than Google Place API, because we are interested in semantic information about

the locations to cluster the population based on their interests, and considering that

Google Places API provides almost all the required information, we preferred Google

Search API over the other alternatives.

5.2.2 Discovering Semantic and Geographical Information

We searched the entire 3340 SSIDs using Google Search API with considering Halifax

Downtown as the location constraint. Each item in a search result contains several

fields. Amongst them we are interested in location address (formatted address),

coordinates (geometry), location name (name), and location types (types). The

selected fields provides related data that is used in the feature engineering section

(Section 5.3.1). A sample result is provided in Appendix A.1.

Search results: Most of the brick-and-mortar businesses choose a descriptive

name for their SSIDs. However, we found that residential places have very similar

names with no actual meaning. For example, residential places that are Bell Cus-

tomers have very similar SSID names that start with BELL-WIFI. Google Places,

mistakenly maps these SSIDs to the office of the internet provide company that in

this case is Bell Canada. In addition, there are some SSID names that have no mean-

ing from geographical point of view like a sequence of random numbers or a Twitter

user account. We found that there are 255 frequent SSIDs that have such character-

istics. Because we are interested in finding the interests of the people based on their

spatial history, a residential location can not provide related information to help our

objective. As a result, we removed these locations from the entire dataset.

This mapping process unveils initial yet interesting results as presented in Figure

5.5, 5.6 and 5.7. These plots present initial insights about the observed population.
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Figure 5.5: The geographical distribution of SSIDs throughout the world. The size of
the bubble shows the number of users observed at these locations. The color intensity
indicates the the distance from the data collection point and the location coordinates
(Definition 14).

Figure 5.6: The entire location types extracted from the captured SSID. The bubble
size corresponds to the frequency of the location type y (Definition 12) w.r.t the
number of devices observed at locations with location type y.
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Figure 5.7: The countries of the captured SSIDs. The size of the bubbles corresponds
to the frequency of a country c w.r.t the number of SSIDs with the country name c.

Such as the most frequent places, countries, and location types that the understud-

ied population visited in the past. There are some business questions that can be

answered by plotting these graphs such as popular location types, ethnicity, and na-

tionality. For example, from 5.5 and 5.7 we can infer that the majority of people

have come from Canada and US. However, there are several SSIDs that highlighted

Europe, and East Asia. Moreover, it shows that members of this population have

visited several countries in all continents. We can also infer that people visited east

and west of the US in addition to the major Canadian cities.

5.3 Clustering the Population Based on their SSID Data

In this section, we present our method to cluster individuals based on the extracted

initial information explained in Section 5.2 in addition to the engineered features that

is explained in Section 5.3.1. Later we describe our method to cluster SSID data to

group the observed people into similar clusters based on their spatial behaviours.
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5.3.1 Feature Engineering

In this subsection we explain our feature engineering technique necessary for clustering

the observed population based on their trajectories. First, amongst the retrieved

information explained in the previous section, we extract 4 features to describe a

location as location type, the distance between the location and the data collection

center, location entropy, and location user count. Then, from these features, we

generate several user related spatial behavioural features to define the a user. We

first start with the traditional definition of a trajectory.

Definition 7 (Trajectory) A Trajectory is a finite set Tu = ((x1, t1), (x2, t2), ...,

(xn, tn)) where each point xi indicates a multidimensional feature vector of a visited

location and ti indicates the time of the visit of the moving object (user) u.

The level of granularity of trajectories can be very diverse from any movement of

a moving object in decimeter level granularity to visited points of interest (POI) in

a continent. In addition, the temporal aspect of trajectory data can be represented

as multidimensional time series [43] or multidimensional data points [54]. On the

other hand, SSID data are special form of trajectory data as temporal information

as for each data point in trajectory set visited time t is unknown. Hence, we define a

modified definition for SSID-based trajectory and name it Partial Spatial History.

In the rest of this thesis, we refer SSID-based trajectory as Partial Spatial History.

Definition 8 (Partial Spatial History) Partial Spatial History is a finite set Tu =

((x1), (x2), ..., (xm)) where each data point xi corresponds to the multidimensional

feature vector of a point of interest (POI) with no temporal information for user

In other words, a data point xi corresponds to one SSID name extracted from

the device of user u. Unlike normal trajectories, Partial Spatial History is coarse-

grained and inexact as the data is sparsely collected. For instance, we may capture

three unique SSIDs from probe requests of user u that each of them may belong to a

different continent while normal trajectory data can be as fine-grained as decimeter

movements of a moving object. However, it does not necessarily mean that this user

only connected to three other networks before.
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Definition 9 (SSID Database) Let U be the list of observed users, and u ∈ U be

an individual user, there is a vector D = (Tu1, Tu2, ..., Tun) where data point Tui

corresponds to the Partial Spatial History vector of user ui. Data points in vector D

have the following characteristics:

- The length of Tui is denoted by
∣∣∣L(Tui)|∃Tui∃TujwhereL(Tui) 6= L(Tuj)

∣∣∣
The number of captured SSIDs is proportional to the length of the proximity of a

device to the capturing antenna and the number of saved SSIDs on the device. Hence,

the length of data points in vector D varies from one user to another. This results in

different lengths of SSID list for each individual.

D =


x1
u1

x2
u1

. . . xou1

x1
u2

x2
u2

. . . xnu2
...

...
. . .

...

x1
uk

x2
uk

. . . xmuk

 (5.1)

Database D contains k rows as the number of individual users u ∈ U and a

variable length column size that is different from one user to another depending on

the number of captured locations (SSIDs). Each data point xiuj corresponds to a

multidimensional feature vector of location xi in Partial Spatial History vector Tui .

One group of features corresponds to the type of the location that is retrieved from

Google Places API.

Definition 10 (SSID Types Vector) Let Yx = (y1, y2, ..., yn) be the SSID Types

Vector for location x where an item yi is a type that explains one aspect of location

x. Data point yi has the following characteristic:

- The length of yi is denoted by
∣∣∣L(yi)|∃yi∃yjwhereL(yi) 6= L(yj)

∣∣∣
The length of retrieved types for each location can be different from one SSID to

another. Therefore, based on the L(yi) the length of feature vector varies for each

observed location.

In addition to the location types, we produced three other features for each loca-

tion x named Entropy denoted by Entropy(x), Distance denoted by Distance(x,O),

and UserCount denoted by UserCount(x).
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Let y be a type, U be the list of all users and u is a user where u ∈ U , Ou is

the set of types where u was visited and O = ∪u∈U and o ∈ O is a two-tuple entity

o.MAC, o.Type. Let Uy = {u ∈ U |u was observed at type y}, Ou,y = {o ∈ O :

o.Type = y} is the set containing observation of user u at locations with type y and

Oy = {o ∈ O : o.Type = y} is the set of observations that happened for type y

regardless of the user u. The probability that in a random draw u belongs to Oy is

Py(u) = |Ou,y |
|Oy | . In words, Py(u) is the total fraction of all records of user u at locations

with type y.

Definition 11 (Type Entropy) Type entropy is denoted by

Entropy(y) = −
∑

u∈UyPy(u) logPy(u) which quantifies the homogeneity of the type y

w.r.t the variation of observed users u.

In words, Type Entropy shows how much a location type is homogeneous w.r.t the

users. For example, if the locations with location type y were visited by completely

different users, Entropy(y) obtains a high value.

Definition 12 (Type Frequency) Let Freq(y) = |Oy| be the frequency of type y which

indicates the total number of times a location with type y was visited.

In words, Type Frequency shows how frequent locations with location type y were

visited regardless of the homogeneity of users. For example, if locations with type y

were visited several times solely by user u, Freq(y) obtains high value.

Considering Uy to be the list of types that each individual user visited, the other

feature is the total number of unique users defined as:

Definition 13 (User Count) Let UserCount(y) = |Uy| be the number of unique users

(devices) observed in locations with type y.

Definition 14 (Location Distance) Given the coordinates of location x and data col-

lection point C, Location distance Distance(x,C) is the geographical distance between

x.Coordinates and C.Coordinates.

Location Distance is the geographical distance between the coordinates of location

x and the coordinates of data collection centers (Goldberg Computer Science Building
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Figure 5.8: The entropy of location types w.r.t the observed users. The size of the
bubble is the frequency of the location types while the color intensity shows the
entropy.

Figure 5.9: The entropy, frequency and the user count features for a four hypothetical
types (y1, y2, y3, and y4) and three users. This plot is inspired from the work of
Cranshaw et al. [23].
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and SolutionInc Office). As we collected data from two sites, we consider the related

data collection center for each location to calculate this feature.

In order to find the distance between locations, we consider geographical distance

instead of other distance functions because of the spherical shape of earth. The

geographical distance equation is provided below:

hav(θ) =
1− cos(θ)

2
(5.2)

h(ϕ1, ϕ2, λ1, λ2) = hav(ϕ1 − ϕ2) + cos(ϕ1)cos(ϕ2)hav(λ1 − λ2) (5.3)

d(ϕ1, ϕ2, λ1, λ2) = r2 arcsin(
√
h(ϕ1, ϕ2, λ1, λ2)) (5.4)

where ϕ1 and ϕ2 are latitude of point 1 and 2, λ1 and λ2 are longitude of point 1

and 2, h(P1, P2) is the Haversine formula [59] for points P1 and P2, r is the radius of

the sphere which is 6371e3 meters for earth, and finally, d(P1, P2) is the geographical

distance between P1 and P2.

From the retrieved address provided by Google Places API, the country is also

extracted as the last location related feature.

Definition 15 (Country) The country of location x is defined as Country(x) =

x.Country.

The total extracted features for location x are brought in Equation 5.5 and Figure

5.10:

x =< Yx,Entropy(Yx), UserCount(Yx), F requency(Yx),

Distance(x,C), Country(x) >
(5.5)

where Yx is the set of types for location x, Entropy(Yx), Frequency(Yx) and

UserCount(Yx) are the set of entropy, frequency and user count, respectively, for the

location x with types Yx. Distance(x,C) is the distance of x to C and Country(x)

is the country of location x.

Considering Definition 8, and Equations 5.5 and 5.1, for each user u there is a

variable length feature vector Tu that for each item xi in Tu there is a multidimen-

sional feature vector that defines location xi. Therefore, for user u, the features that

defines the spatial behaviours of user u are the concatenation of the feature vectors

of locations in Tu. in other words, for user u the feature vector is defined as follow:
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Figure 5.10: A graphical representation of extracted features for location x.

Definition 16 (User Types Vector) For user u there is a vector Yu = (Yx1, Yx2, ...,

Yxn) as user types vector that each item Yxi consists of types of location xi.

Definition 17 (User Types Entropy) For user u, there are four features calculated as

argminEntropy(Yu), argmaxEntropy(Yu), µ(Entropy(Yu)), and σ2(Entropy(Yu))

are the min, max, mean and variance of Type Entropy vectors of Yu for user u.

Definition 18 (User Types User Count) For user u, there are four features calcu-

lated as argminUserCount(Yu), argmaxUserCount(Yu), µ(UserCount(Yu)), and

σ2(UserCount(Yu)) are the min, max, mean and variance of Type UserCount

vectors of Yu for user u.

Definition 19 (User Types Frequency) For user u there are four features calculated

as argminFrequency(Yu), argmaxFrequency(Yu), µ(Frequency(Yu)), and σ2

(Frequency(Yu)) are the min, max, mean and variance of Type Frequency vectors

of Yu for user u.

Definition 20 (User Visited Locations Count) For user u LocationCount(u) = |Tu|
is the number of locations user u visited.

Definition 21 (User Visited Locations Distance) For user u there are four features

calculated as argminDistance(Tu, C), argmaxDistance(Tu, C), µ(Distance(Tu, C)),

and σ2(Distance(Tu, C)) are the min, max, mean and variance of the the distance

between the locations in Tu vector and data collection center C for user u.
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Definition 22 (User Country Count) For user u, CountryCount(u) = |Country(Tu)|
is the number of countries user u visited.

Considering the features explained in Definitions 16 to 22 the produced multidi-

mensional features tuple for user u is:

Fu =<Yu, argminEntropy(Yu), argmaxEntropy(Yu), µ(Entropy(Yu)),

σ2(Entropy(Yu)), argminUserCount(Yu), argmaxUserCount(Yu),

µ(UserCount(Yu)), σ
2(UserCount(Yu)), argminFrequency(Yu),

argmaxFrequency(Yu), µ(Frequency(Yu)), σ
2(Frequency(Yu)),

argminDistance(Tu, C), argmaxDistance(Tu, C), µ(Distance(Tu, C)),

σ2(Distance(Tu, C)), LocationCount(u), CountryCount(u) >

(5.6)

5.3.2 Feature Vectorization

The User Types Vector Yu (Definition 16) has variable length which results in variable

length tuple Fu for user u as the size of Yu varies from one user to another. We

employed the TF-IDF (Equation 5.9) vectorization technique to vectorize Yu to a

fixed length feature set for all users u in U . Although all items in Yu are important,

there are highly repeated location types in Yu which carry less meaning than other

types to cluster users. For instance, assuming that if location type store is repeated

in 80% of the entire database D, considering this weight to find similarities does

not provide reasonable results as it is believed that a highly frequent item does not

necessarily indicate higher importance. Conversely, considering less frequent items

have higher potential to obtain similarities of two input items. Therefore, similar to

text-mining, this technique considers some location types as stop words or noise. To

fulfill this consideration, TF-IDF reduces the effect of highly frequent types in Yu.

tfi,j =

{
1 + log2fi,j iffi,j > 0

0 otherwise
(5.7)

idfi = log
N

ni
(5.8)

tfi,j − idfi = tfi,j × idfi (5.9)
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5.3.3 Feature Normalization

Because the features engineered by TF-IDF method are inherently sparse, it is be-

lieved that the direction of the vector provides more meaning than the magnitude of

the vector [75]. As a result, the extracted features are normalized to become unit-

length vectors. For instance, in a study, Zhong et al.[76] showed that unit-length

TF-IDF vectors provide better clustering results than multinomial or multivariate

Bernoulli models. To achieve this advantage, we employed L2-norm (Equation 5.10)

to normalize TF-IDF results.

xnorm =
x

‖x‖2

xnorm =
[x1, x2, ..., xn]√
x2

1 + x2
2 + ...+ x2

n

(5.10)

In addition to the location types, we apply the l2-norm on other 18 features

provided in Equation 5.6.

The outcome of TF-IDF vectorization and l-2 normalization techniques is to com-

pute fixed length feature vector for all users in U . Therefore, we present a new form

for database D as Drefined:

Drefined =


x1
u1

x2
u1

. . . xnu1

x1
u2

x2
u2

. . . xnu2
...

...
. . .

...

x1
uk

x2
uk

. . . xnuk

 (5.11)

where for each row at database Drefined the features have fixed length of size n and

each data point xiuj contains normalized values for user j and feature i.

5.3.4 Clustering Users’ Feature Vectors

We employed k-Means [34] clustering algorithm to group users with similar features.

It is shown how spherical k-Means [75, 27] have reasonable performance in clustering

high dimensional data particularly in vectorized and normalized form. The normal-

ized data transforms the data space to spherical form that each value has unit-length

distance from the center of the multidimensional space. To find the similarities be-

tween the normalized and unit-length vectors, cosine similarity has shown better
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Figure 5.11: The representation of database Drefined (Equation 5.11) before (top) and
after (bottom) normalization process. The representation is done by applying t-SNE
[65] dimensionality reduction technique to 2D (red) and 3D (green) space.

performance than Euclidean distance [63, 75]. The intuition behind it is that the

direction of a unit-length vector is more important than the magnitude of such vector

as a similarity metric. The cosine distance is defined by:

simcos(A,B) = cos(A,B) =
~A. ~B

‖ ~A‖ ‖ ~B‖
(5.12)

The simcos(A,B) function measures the similarity of two vectors by comparing

the cosine of angle between of the feature vectors A and B. The cosine value for the

similarity metric is a value between -1 (highest dissimilarity) and 1 (highest similarity)

that is used to measure the distance between two feature vectors.

The outcome of the k-Means algorithm is k clusters which their data points have

minimum intra-cluster and maximum inter-cluster similarity. It assigns all n data
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points xui to exactly k clusters. The convergence criterion for k-Means algorithm is

to obtain the least sum of squared error E for the members of their respective clusters

w.r.t the centroid of their clusters (c1, c2, ..., cm).

E =
k∑
i=1

∑
xui∈cp

sim(xui , cp)
2 (5.13)

To discover the best number for k of k-Means algorithm, we used Silhouette anal-

ysis [60] by calculating the Silhouette Coefficient for each input item xui . The in-

tuition behind silhouette analysis is to find whether items are assigned confidently,

marginally, or loosely to their assigned clusters. The average of the silhouette coeffi-

cient of the entire data points, shows the correctness of parameter k which the higher

average of coefficients shows a better value for parameter k. This method is explained

in detail in Subsection 6.1.

To sum up this chapter, the entire process of mapping SSID data to actual lo-

cations, feature engineering, vectorization, normalization and clustering is brought

below:

1. Map SSID data points to actual locations using Google Places API.

2. Extract Types, Countries, and Coordinates of the locations from the results of

step 1.

3. Calculate Entropy(Yx), UserCount(Yx), and Frequency(Yx) for all types Y of

location x.

4. Calculate the distance for location x from data collection point C as Distance(x,

C).

5. Extract visited countries as Country(x).

6. Concatenate features generated for each location in user Partial Spatial History

vector Tu for user u:

(a) Calculate TF-IDF for User Types Vector Yu.

(b) Calculate argmin, argmax, µ, and σ2 for UserCount(Yu), Frequency(Yu),

and Entropy(Yu) for user u.
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(c) Generate argmin, argmax, µ, and σ2 forDistance(Tu, C), and CountryCount(Tu)

for all locations in vector Tu.

(d) Normalize TF-IDF vectors with L2− norm.

(e) Normalize extracted features at step 6b and 6c using L2-norm.

(f) Concatenate the entire normalized features in new database Drefined.

7. Discover the best value for k using Silhouette Analysis.

8. Cluster the users into k clusters from database Drefined using k-Means algorithm

with Cosine distance function.



Chapter 6

Evaluation of SSID Clustering Task

In this chapter, we present the results of the clustering task on SSID data. At

first, we explain our evaluation method. Then, we present and interpret the resulting

clusters. Due to the lack of ground truth dataset in this task, instead of quantitatively

evaluating the performance of the clustering task, we describe the amount of insights

we could gain in a real-world scenario from the captured SSID data.

6.1 Evaluation Method

Collecting gold standard or ground truth dataset was not feasible in the scope of

this master thesis. Therefore, we designed our evaluation method independent of

ground truth dataset. In the lack of ground truth data, the performance evaluation

of a clustering task is not trivial compared to a classification task where calculating

a performance score like precision or AUC ROC would be adequate. Instead, we

pursued a different path. In this method, we would like to achieve the most meaningful

clustering model that 1) has reasonable performance scores independent of the ground

truth data and 2) meaningfully separates the population based on the their spatial

behaviours. In order to achieve this goal, first we propose our method on how to

optimize the parameters of the clustering algorithm which is quantitatively reliable

regardless of the ground truth data, then, we propose our approach to interpret the

clusters to show how the optimized model performs on the Drefined dataset.

Before explaining the evaluation techniques, we should mention the minimum

acceptance criteria for a clustering task which is defined below:

Definition 23 (Minimum Acceptance Rules) Let C be the result of a clustering task

containing individual clusters and Cj ∈ C be one of the clusters, the minimum accep-

tance criteria for a clustering task should satisfy the following two conditions:

• |C| > 1. In word, let |C| be the number of the clusters in a clustering, the

62
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number of clusters should be more than one.

• |Cj| > 1. In words, let |Cj| be the size of cluster Cj, the number of elements

assigned to this cluster should be more than 1.

A clustering model with only one cluster does not convey any insight as the main

objective of a clustering task is to separate the data into different groups of similar

objects. In addition, a cluster in a clustering model with only one element does not

provide any information as we would like to see how objects are similar to each other

within a cluster.

6.1.1 Parameter Optimization

The most important parameter of k-Means algorithm is the number of clusters or

parameter k. In order to find the best value for this parameter we employed Silhou-

ette Analysis technique. The outcome of utilizing this method is to reach the most

confident model in the lack of the ground truth data. Silhouette Coefficient sil(xui)

for input item xui is calculated by Equation 6.3:

a(xui) =
1

|CA| − 1

∑
xui∈CA,xuj 6=xui

sim(xui , xuj) (6.1)

b(xui) = minCBA
1

|CB|
∑

xui∈CB

sim(xui , xuj) (6.2)

sil(xui) =
b(xui)− a(xui)

max{b(xui), a(xui)}
(6.3)

where a(xui) is the calculated distance between data point xui , and its respective

cluster CA and b(xui) is the distance of the data point from its nearest cluster CB

where xui /∈ CB. The output of sil(xui) function shows the confidence of assignment

of data point xui to cluster CA. The resulting sil(xui) coefficient has a range of [−1, 1].

Value close to +1 shows the sample is away from its neighbours. In other words, we

can infer that it is correctly assigned to its cluster CA. Value approaching to 0 shows

that the data point is close to the decision boundary of two or more clusters. In other

words, its assignment is not very confident. Finally, values close to −1 show that

the data point is closer to a neighbouring cluster CB than to its assigned cluster CA

which means its assignment should be wrong.
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Silhouette Coefficient can be extended to evaluate the quality of individual clusters

by computing the average of Silhouette Coefficients of items assigned to cluster Cj as

brought in Equation 6.4. The quality of the entire clustering task can be viewed as

the average of Silhouette Coefficients of all clusters defined in Equation 6.5.

sil(Cj) =
1

|Cj|
∑

xui∈Cj

sil(xui) (6.4)

sil(C) =
1

k

k∑
i=1

sil(Ci) (6.5)

The provided Figures 6.1 and 6.2, show the Silhouette analysis results of applying

clustering task for k = [2, 20, 40, 60, 80, 100] on database Drefined. The applied

dimensionality reduction method is t-Distributed Stochastic Neighbor Embedding (t-

SNE) that is explained in Section 6.2. The left plots show the Silhouette Coefficient

for each cluster. Within each cluster, Silhouette Coefficients of individual data points

are displayed and ordered from lowest (bottom) to highest (top). The red dashed

vertical line shows the average of Silhouette Coefficients and the blue lines are the

standard deviation of the coefficients. The right plot shows the results of applying

k-Means on the dataset Drefined. The graph is plotted based on the projection of

Drefined dataset on a 2D surface for visualization purpose. Each cluster is displayed

with a similar color in both left and right plots.

We ran the entire process for k = [2..200] on the Drefined dataset to find the best

parameter k based on the average and standard deviation of Silhouette Coefficient

for all clustering tasks. The result of the of this experiment is provided in Figure 6.3.

This figure shows the upward trend of average and standard deviation of Silhouette

Coefficient as the number of clusters increases. The most significant growth is between

7 and 22 clusters that the average grows by almost 15 percent from 0.39 to 0.55. From

k = 23 to k = 37 the growth is still sharp. After k = 37, the growth rate decreases.

On the other hand, the standard deviation of Silhouette Coefficient shows no change

after k = 7. As the number of clusters grows, the average Silhouette Coefficient value

increases because of the fact that smaller clusters are more likely to contain more

homogeneous data points than larger clusters. On the other hand, a big number for

k reduces the readability of the clustering task. Therefore, there should be a balance
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Figure 6.1: Silhouette Coefficient values for k = 2 (top), 20 (middle) and 40 (bottom).

between the Silhouette Coefficient and the number of clusters.

Considering provided discussion, we chose k = 37 for the number of clusters on
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Figure 6.2: Silhouette Coefficient values for k = 60 (top), 80 (middle) and 100 (bot-
tom).
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Figure 6.3: Silhouette Coefficient average and standard deviation values for k = 10
to 200.

the Drefined dataset to maintain the balance between the Silhouette Coefficient and

the interpretability of the clustering task. Moreover, we would like to satisfy the

Minimum Acceptance Rules defined in Definition 23.

6.2 Visualizing Clustering Results

Visualizing high dimensional data is a non-trivial task. As humans, we can com-

prehend objects in maximum 3D space. In a 3D space, although we can visualize

maximum of 10-15 features (e.g. size of bubble, color, shape, etc.), the visualization

loses its comprehensibility. Therefore, instead of maximizing the number of possible

plottable features in a 3D space, there is another way to visualize high dimensional

data by utilizing dimensionality reduction techniques which have a similar objec-

tive. We employed a dimensionality reduction technique that reduces the number of

features for all the data points whilst keeps the structure of the data points in the

mapping process from high dimensional space to low dimensional space.

The employed algorithm is t-SNE[65] that maps the original high dimensional

dataset Drefined to a low dimensional dataset for visualization purpose. The original

dataset Drefined consists of 125 dimensions which 107 of the features correspond to
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the User Types Vector (Definition 16) and the other 18 dimensions represent the en-

gineered features for Entropy (Definition 17), User Count (Definition 18), Frequency

(Definition 19), Distance (Definition 21), Country Count (Definition 22) and Location

Count (Definition 20).

t-SNE dimensionality reduction technique tries to map a high dimensional dataset

into n dimensional space (mostly 2D or 3D) using a variation of Stochastic Neighbor-

ing Embedding (SNE) [36] which arguably provides much better visualization results

compared to other dimensionality reduction techniques [65] by preserving much of the

local and global structure of high dimensional dataset in the mapping process. SNE

that is the essence of t-SNE, converts the original dataset into a pairwise similarity

matrix for all the data points. The similarity of data point xi to xj is the conditional

probability p(j|i) (Equation 6.7), which shows how probable xi would choose xj as

its neighbour.

p(j|i) =
e
−‖xi−xj‖

2

2σ2
i∑

k 6=ie
−‖xi−xk‖2

2σ2
i

(6.6)

For the data points xi and xj in high dimensional space and yi and yj in low dimen-

sional space, using Equation 6.6, the SNE produces the same conditional probability

as q(j|i) for yi and yj in low dimensional space.

q(j|i) =
e−‖yi−yj‖

2∑
k 6=ie

−‖yi−yk‖2
(6.7)

Finally, the aim of t-SNE is to find the best values for yi and yj that mini-

mizes Kullback-Leibler divergence (Equation 6.8) between joint distribution p(i, j) =
p(j|i)+p(i|j)

2n
and joint distribution q(i, j) =

(1+‖yi−yj‖2)−1∑
k 6=l(1+‖yk−yl‖2)−1 . In other words, it finds a

mapping process acceptable when for data points yi and yj, conditional probability

q(j|i) is closest to p(j|i).

C = KL(P‖Q) =
∑
i

∑
j

p(i, j) log
p(i, j)

q(i, j)

=
∑
i

∑
j

p(i, j) log p(i, j)− p(i, j) log q(i, j)
(6.8)
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Figure 6.4: The results of the t-SNE hyper parameter tuning. The graphs are plotted
by different values for each parameter: Perplexity = [50, 100, 200, 400], Learning
Rate = [10, 1000, 1750], and No. of Iterations = [4000, 5000, 9500]

Amongst several hyper parameters to optimize t-SNE, there are three hyper pa-

rameters that their different values produce significantly different mapping results.

These hyper parameters are Perplexity, Number of Iterations, and Learning Rate. To

the best knowledge of the author, there is no proposed method to quantitatively tune

the hyper parameters of the t-SNE. Therefore, we pursued a greedy approach, in

which, given a wide range of values for these hyper parameters, we tried to find a set

of parameters that best represent the clusters from visual stand point. Some of the

results of this experiment are provided in Figure 6.4.
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Figure 6.5: The final result of applying k-Means clustering algorithm on Drefined after
the Silhouette Analysis and t-SNE hyper parameter tuning.

6.3 Clustering Results

As we chose k = 37 for the number of clusters, k-Means algorithm assigns all the

data points to 37 distinct clusters. The 2D and 3D representation of this task are

illustrated in Figure 6.5. The clustering task interestingly separates individuals based

on the extracted spatial behavioural features. In this section, the final outcome of

the clustering task is explained.

The consequence of collecting one SSID for the majority of the understudied pop-

ulation, is producing a sparse matrix that consists of overwhelmingly zero entries for

the User Types Vector. In addition, there are few types that considerably appeared

in the majority of User Types Vectors, this causes the majority of entries have very

similar feature vectors. For these group of users, the k-Means algorithm can group

them into clusters with high Silhouette Coefficients. For example, cluster number

0 which contains the largest number of data points consists of users who just vis-

ited locations with location type Crop. Consequently, it achieved 1 for Silhouette

Coefficient. On the other hand, cluster number 28 has 16 members whose feature

values are completely diverse. Therefore the Silhouette Coefficient for cluster C28 is

-0.1. The weight of User Types Vector Yu is more considerable compared to other 18
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features because of the larger number of members (107) and overwhelmingly zero val-

ues. Therefore, clusters with similar Yu but diverse values for the rest of the features,

are clustered confidently and obtain high Silhouette Coefficient. On the other hand,

clusters with diverse Yu but similar values for the rest of the features are clustered

less confidently and obtain a Silhouette Coefficient value close to zero. The lowest

Silhouette Coefficient value (close to -1) is assigned to clusters with completely di-

verse values for the entire feature vector Fu. The much higher effect of User Types

Vector Yu us intentional as we believe it has more importance in clustering people

with similar spatial behaviours compared to the rest of the features in Fu.

We gathered the center of the clusters and listed in Table 6.1. In order to improve

the readability of the table for four features of Entropy, UserCount, Frequency and

Distance, we just brought the mean (µ) attribute in the table. For the same reason, we

categorized the numerical values such as entropy into three groups of Low, Med, and

High. Considering the range of values for each attribute, the categorization process

of the numerical features follows the following rules:

• Entropy:

– Low: µ < 5

– Med: 5 ≤ µ < 9

– High: 9 ≤ µ

• Frequency:

– Low: µ < 270

– Med: 270 ≤ µ < 840

– High: 840 ≤ µ

• User Count:

– Low: µ < 200

– Med: 200 ≤ µ < 450

– High: 450 ≤ µ

• Distance:
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– Low: µ < 2, 500, 000

– Med: 2, 500, 000 ≤ µ < 8, 500, 000

– High: 8, 500, 000 ≤ µ

• Location Count:

– Low: LC < 5

– Med: 5 ≤ LC < 10

– High: 10 ≤ LC

• Country Count:

– Low: CC < 2

– Med: 2 ≤ CC < 3

– High: 3 ≤ CC

Overview of each cluster is provided in Table 6.1. As explained above, the numer-

ical features are categorized to increase the readability of the results.

The first column, No. is the cluster number which starts with 0. SC is the

Silhouette Coefficient of the cluster Cj, the third column Size shows the number of

elements in cluster Cj, UTY corresponds to the User Types Vector Yu, where u is

the user whose feature vector is at the center of cluster Cj, Ent is the mean (µ) of

Entropy for user u, UC is the mean (µ) of User Count for user u, Freq. is the mean

(µ) of Frequency for user u, Dist. is the mean (µ) of Distance feature for user u,

CC is the Country Count for user u, and LC is the Location Count for user u. If

the value in UTY is a maximum of three-length tuple, we listed the whole elements,

but if it contains more than three elements, we indicated with keyword Diverse but

is explained later. Below, we explain each cluster to discuss how the population is

clustered by describing the members and their values. For some of the clusters, we

also provided our hypothesized description of the potential type of the people that

are members of a cluster.

1The table headers are as follows: No. → Cluster Number, SC → Silhouette Coefficient, UTV
→ User Types Vector, Ent → Entropy, UC → User Count, Freq. → Frequency, Dist. → Distance,
CC → Country Count, LC → Location Count
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Table 6.1: The values of the 37 cluster centers

No. SC Size UTV Ent UC Freq. Dist. CC LC1

0 1 473 Corp. High High High Low Mid Low
1 0.1 148 Diverse Low Low Low Low Mid High
2 0.9 31 Bar, Restaurant High High High Low Mid Low
3 0.9 69 Store High High High Low Low Low
4 1 32 Bar Low Low Low Low Mid High
5 1 29 University Low Low Low Low Mid Low
6 0.7 18 Cafe, Bar, Restaurant Mid Low Low Low Low Low
7 0.25 12 Diverse Mid Low Low Low Low Low
8 0.9 24 Electronics Store Mid Low Low Low Mid Mid
9 0.35 30 Beauty, Hair Salon Mid Mid Mid Low Low Low
10 1 65 Store Low Low Low Low Mid Mid
11 0.9 32 Restaurant Low Low Low Low Mid High
12 0.2 88 Diverse Mid Mid Mid Mid Mid Low
13 -0.05 11 Diverse High High High Low Mid Low
14 0.9 23 Airport High High High Low Mid Low
15 1 18 School Mid Low Low Low Low Low
16 0.3 23 Travel Related Low Low Low Low Mid Low
17 1 58 Lodging Low Low Low Low Low Low
18 0 7 Travel Related Low Low Low Low Low Low
19 0.1 105 Diverse Low Low Low Low Mid High
20 0.9 14 Food Mid Mid Mid Low Low Low
21 0.9 74 Corp. Low Low Low Low Mid Mid
22 0.9 14 Clothing Store Low Low Low Low Low Low
23 0.9 78 Real Estate Agency High High High Low Mid Low
24 0.1 41 Diverse Low Low Low Low Mid Low
25 1 21 Insurance Agency Low Low Low Low Low Low
26 0.2 62 Diverse Low Low Low Low Low Low
27 1 15 Health Low Low Low Low Low Low
28 -0.1 16 Diverse Mid Low Low Low Low Low
29 1 32 Finance Low Low Low Low Mid High
30 0 18 Diverse Low Low Low Low Mid Low
31 0.8 41 Furniture Store Mid Mid Mid Low Low Low
32 0 32 Diverse Mid Low Low Low Mid Low
33 0.7 32 Night Club Mid Low Low Low Low Low
34 0.5 27 Hospital, Church Mid Low Low Low Mid Mid
35 0.2 61 Diverse Mid Low Low Mid Mid Low
36 1 20 Doctor Low Low Low Low Low Low

• The 1st cluster which contains the largest number members with highest possible

Silhouette Coefficient, contains the users who visited one location with User
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Types Vector (Yu) Corp. As these users have very similar Yu, the rest of their

features are very similar. From this cluster we can possibly extract the name of

their companies they visited or probably they work(ed). People in this cluster

have visited 2-3 countries. We can call this cluster, the cluster of professionals.

• The 2nd cluster which contains the second largest population, consists of items

which have diverse Yu feature vectors but very similar values for the rest of the

features. These people have visited mostly food and beverage (F&B) related

locations. In general, they visited location types with homogeneous population

and visited a large number of locations mostly in the city of Halifax. They also

visited at least 2-3 foreign lands. This cluster may contain people with good

socioeconomic status who enjoy spending time in F&B related locations.

• The 3rd cluster contains users who visited several locations mostly bars and

restaurants located in Halifax. The members of this cluster are very similar to

the members of the 2nd cluster.

• The 4th cluster contains users who visited locations only with type Store and

have less significant diverse values for the non-type features (features other than

Yu). In general, they visited few locations and travelled only in Halifax. It is

possible that the members of this cluster are sales assistants of retail stores.

• The 5th cluster contains users with completely similar feature vector Fu. They

visited several locations with type Bar. The members of this cluster and the

2nd cluster have high similarities.

• The 6th cluster contains users who visited one or more universities in the past/p-

resent and visited 2-3 countries. The feature vector Fu of these people is very

similar. This cluster may contain international students.

• The 7th cluster contains users with similar feature vector Fu. They mostly

visited cafes, bars and restaurants only in Halifax.

• The 8th location contains users with similar non-type features but diverse User

Types Vector Yu. They visited several locations with less frequent location types

in only Halifax.
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• The 9th cluster contains users who visited several electronic stores in 2-3 coun-

tries. People in this cluster are very similar to population of 8th cluster.

• The 10th cluster contains users who visited beauty and hair salons with diverse

values for non-location type vectors. In general, they visited 1-3 locations in

Halifax. They may probably work in salons.

• The 11th cluster is similar to the third cluster which contains users who visited

a store. However, the users in this cluster visited much more locations with

higher frequent types.

• The 12th cluster contains users who visited several restaurants in 1-2 countries.

• The 13th cluster contains users who visited diverse locations with similar non-

type features (features other than Yu in Fu). They mostly visited health and

beauty related locations. They also travelled to several locations in 2-3 coun-

tries.

• The 14th cluster contains users who have diverse values for the entire feature

vector Fu. In general, they visited few health and sports related locations in

2-3 countries.

• The 15th cluster contains users who have been to only airports mostly in 2-3

countries. This cluster may contain people who are tourist.

• The 16th cluster contains users who visited only few schools in Halifax. This

cluster may contains local students.

• The 17th cluster contains users who visited several travel and tourist related

locations in 4-5 countries. This cluster may contain people who are tourist or

active travellers.

• The 18th cluster contains users who visited few hotels or resorts with completely

similar feature vector Fu. Similar to the 15th and 17th clusters, this cluster may

contain people who are tourist or active travellers.

• The 19th cluster contains users who visited few diverse locations. In general,

the locations are travel related and in 1 country.
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• The 20th cluster contains users who visited many locations in 1-2 countries.

In general, their travelled locations are a combination of F&B and touristic

locations.

• The 21st cluster contains users with similar spatial history. They visited few

food related locations in 1 country. They should be food lovers.

• The 22nd cluster contains users who visited several corporations in 1-2 countries.

They can be professionals.

• The 23rd cluster contains users with similar Partial Spatial History. They visited

few locations that were clothing store related in 2-3 countries.

• The 24th cluster contains similar elements. The users in this cluster visited few

real estate agencies in 2-3 countries. They can be staff members of real state

agencies.

• The 25th cluster contains users with diverse spatial history. They visited few

locations in 1-2 countries. In general, the locations are entertainment related.

• The 26th cluster contains users with completely similar spatial history. They

visited insurance agencies in the past. The members of this cluster can be

people who work in insurance agencies or frequently visit one.

• The 27th cluster contains users with diverse spatial history but similar non-type

feature vector. They visited several locations that are mostly food and health

related.

• The 28th cluster contains users with completely similar spatial history. They

visited few health related locations in Halifax.

• The 29th cluster contains diverse elements. The users in this cluster visited a

large number of locations. Ignoring the most common location type which is

Corp. the rest of location types are university or F&B related.

• The 30th cluster contains users who visited several locations with type Finance

(e.g. banks or financial institutes).
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• The 31st cluster contains users who visited few but diverse locations in the past.

In general, they visited electronic related stores.

• The 32nd cluster contains users who visited few furniture stores in Halifax.

• The 33rd cluster contains diverse elements who visited few locations in 1-2 coun-

tries. The visited locations are generally related to services such as car repair

shops and F&B related locations.

• The 34th cluster contains users visited few night clubs in Halifax.

• The 35th cluster contains users who visited few hospitals and religious (e.g.

church, mosque) related locations.

• The 36th cluster contains users with diverse spatial history. In general, they

visited health and business related (e.g. corporation) locations. They mostly

visited several locations in 2-3 countries.

• The 37th and last cluster contains users who visited few health related locations

in Halifax. This cluster may contain patients or health related professionals

(e.g. doctors).

6.3.1 Discussion

The 37 clusters provided above show the possibility of clustering a population based

on their SSID data which was non-intrusively collected. From the clustering task,

the different types of users in a population based on their spatial behavioural history

is distinguished. For example, the clustering result on the understudied population

shows that the majority of the people are those who have been to a business unit

(probably adult). Moreover, several of them visited several food and tourist related

locations. In addition, the Spatial History shows that most of the population visited

a foreign land (other than Canada) which can be an indication that they have strong

socioeconomic status. A new unseen user can be clustered into one of these clusters

based on the retrieved Partial Spatial History. Obtaining this knowledge from a

population comes with no cost.
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This framework is an example of what a brick-and-mortar business can achieve

by clustering their customers based on their past visited locations. This data can

provide invaluable insights about their customers to provide several business oppor-

tunities. For example, it helps them to directly target group of individuals with

specific interests for marketing. Collecting such data from a neighbourhood can help

advertisement agencies to provide related materials for the residents.

Combining this method with the proposed positioning method explained in Chap-

ter 3 provides deeper insights into the understudied population as inside and outside

population. For example, a venue owner can be empowered as she can study the char-

acteristics of the inside customers and outside people separately to design different

marketing strategies for each distinct population.



Chapter 7

Conclusion

In this thesis we presented two frameworks that each can extend the potentials of

Wi-Fi Analytics platforms. The first contribution of this thesis was the proposal

of a fingerprinting positioning system based on a new crowdsourcing method. The

advantage of this method is its non-intrusiveness and low cost of implementation.

We also showed how the implemented positioning system can be transferred to other

locations in the lack of positioning data.

Second, we proposed a framework to cluster a population based on their spatial

history. The advantage of this framework is its strength in extracting the spatial

history in the first visit of a device. In addition, the framework is capable of under-

standing a population based on the extracted information. This framework extends

the knowledge of brick-and-mortar businesses on their customers with a fast and

inexpensive technique.

7.1 Positioning System

Our proposed fingerprinting positioning system is enriched with a new crowdsourc-

ing technique that non-intrusively collects the fingerprints from crowds. We studied

two sources of data as Registered (Definition 5) and Night (Definition 6) Datasets.

First, using statistical and machine learning approaches we proved that the features

extracted from these datasets are very similar to the features extracted from inside

and outside populations.

In order to prove it, we first gathered 200 samples as ground truth datasets for

inside (SurveyDataI ) and outside (SurveyDataO) populations. Then, we visualized

the dataset using three scatter plots to observe the visual and statistical distribution

of the extracted features of the datasets. From the visualization we found that the

Registered and SurveyDataI datasets have similar characteristics. In addition, we

reached a similar conclusion for the Night and SurveyDataO datasets.
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Then, we employed Andrew Darling (AD) test to validate the statistical similarity

of Registered Dataset with the SurveyDataI dataset. We employed AD to perform

the same experiment on Night and SurveyDataO Datasets. The AD test showed that,

statistically, the Registered Dataset is very similar to the SurveyDataI and the Night

Dataset is very similar to the SurveyDataO dataset.

The final experiment to test the similarity of these datasets was using machine

learning techniques. We built two One-Class SVM and one Two-Class Random

Forests classifiers to investigate the capability of the classifiers trained on Registered

and/or Night Datasets in classifying the ground truth datasets. The performance of

the classification tasks showed that the ground truth dataset is highly classifiable by

the classifiers trained on Registered and/or Night Datasets.

Then we proposed the positioning system that was built on the investigated Regis-

tered and/or Night datasets to classify devices as inside or outside of a store. Through

three different experiments, we achieved reasonable performance in estimating the de-

vice positions.

Finally, we showed that the positioning system build by Registered and Night

datasets are generally transferable from one location to another in case the Registered

and/or Night datasets are are not available there.

7.1.1 Future Work

One of the possible improvement of our proposed positioning system is to improve

the performance of the classifiers. The current positioning system showed that in

some situations, like imbalanced data and complex indoor environments, its perfor-

mance drops considerably. One possible solution is applying windowing techniques

to improve the quality of the classifiers in location estimation [25]. In addition, ap-

plying more complex signal-based feature extraction techniques such as extracting

frequency or time-frequency domain features can potentially improve the positioning

performance. Some immediate techniques can be Fourier transform for frequency do-

main features and Wavelet transform for time-frequency domain features [26]. These

changes can potentially improve the performance of the positioning system in transfer

learning task too.

Another possible future direction for the proposed positioning system is to identify
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fine-grained positions. The current system is capable of identifying the coarse-grained

position as whether a device is inside or outside of a location and the precise location

information of the device is unknown. This is particularly due to the nature of the

proposed method because it considers the whole RSSI vector as a unit in the prediction

task. Windowing the Registered and Nights datasets into smaller chunks combined

with a distance calculation function can potentially help to achieve this goal.

7.2 Clustering Partial Spatial History

The proposed clustering task to distinguish the type of a population based on their

spatial behavioural features extracted from the Partial Spatial History dataset. The

Partial Spatial History dataset is the dataset that contains the SSID records non-

intrusively collected from the Preferred Network List (PNL) of Wi-Fi enabled devices.

Using Google Places API, we proposed our method to map the SSIDs to actual

locations. In the mapping process we managed to extract several semantic features

about the locations using Google Places API including location name, location types,

and location address. Then, we applied data cleansing on entries which have no or

negative contribution in the clustering task such as residential locations.

From these attributes, we extracted 125 features to describe the spatial behaviours

of a user. First, we calculated the Entropy, User Count, and Frequency of each

location type. Then, considering the total visited locations, we calculated the number

of visited locations and countries as Location Count and Country Count. Finally, we

calculated the distance between the data collection center (Goldberg Building and

SolutionInc office) to measure the Distance feature for each location. Then, using TF-

IDF technique we vectorized the types of the visited locations. This task produced a

matrix with 107 attributes corresponding to 107 locations types at User Types Vector

(Yu) for user u. In order to vectorize the other extracted features we calculated the

mean, variance, minimum and maximum of Entropy, Frequency, and User Count

features for the types of the visited locations. We also calculated these four features

for the Distance feature of the visited locations. Then by combining the Yu and other

features, we generated the user feature vector Fu for the each user u. Combining the

entire feature vectors F for all users, the database D is generated.

We employed l-2 normalization on the entire database D to transform the vectors
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into unit-length vectors. The resulting dataset is named dataset Drefined.

The refined dataset Drefined is then clustered using k-Means clustering algorithm

equipped with cosine-similarity function. The k for k-Means algorithm was discovered

using Silhouette Analysis for the entire clustering task. Then, using t-SNE, the re-

sulting clustering task is visualized. Finally, we described the result of the clustering

task by explained the members of each cluster.

The resulting clusters shows that the extracted SSID data (Partial Spatial History)

contains valuable insights about a the spatial behaviours of a population. It also

shows that a brick-and-mortar business can leverage this freely accessible data and

inexpensive method to extend their knowledge about their customers.

7.2.1 Future Work

Our proposed clustering method is capable of accurately clustering people with highly

similar User Types Vectors. However, if the User Types Vector of some users contain

long and diverse location types, the clustering algorithm is not able to provide a clear

distinction among them. Therefore, people with long and diverse locations types are

mostly grouped into one-two clusters. This makes interpreting of those clusters hard.

An immediate solution for this problem is to reduce the location types vector by

replacing similar types with a more general type. For example, bar, restaurant, and

café are related to food and beverages (F&B). Therefore, we can replace these types

with F&B. Such measures can reduce the size of User Types Vector significantly.

Consequently, the number of features for the User Types Vector can be reduced to

7-8 instead of current 107 attributes as we can group the entire location types into

7-8 major groups. In other words, it helps to reduce the sparsity of the produced

matrix as the TD-IDF vectorizer produces smaller matrix instead of a large one with

overwhelmingly zero values.

The proposed method does not consider the semantic meaning of location types

in the clustering task. For example, it does not consider the semantic similarity of

location type bar and restaurant. A possible solution for this limitation is to use

word embedding techniques such as Word2Vec [50]. In other words, by constructing

a model that is capable of discovering semantic similarities among words, instead of

directly using the location types, we can cluster location types based on the embedded
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representation which contains the semantic information. Therefore, the clustering

task is able to consider the similarities. For example, because the representation

of restaurant and bar is very similar compared to insurance agency, the clustering

algorithm considers this similarity in clustering the location types.

We believe this is just the tip of the iceberg. In addition to the technical im-

provements, we believe that the possible opportunities that SSID data can provide

for several types of use cases is massive. However, we should consider the privacy

threats in such improvements to make useful yet secure and safe systems.

7.3 Discussion

Wi-Fi Analytics platforms have proven their importance in a wide range of indus-

tries. However, their enormous applications does not neutralize the concerns over

the potential breach of privacy. A possible improvement for both methods that are

proposed in this thesis is to leverage privacy preserving techniques to avoid similar

misuses. We have worked with the Institut de Recherche en Informatique et Systmes

Alatoires and the Institut National des Sciences Appliques de Lyon in France to ad-

dress the privacy concerns by leveraging methods that are designed for Wi-Fi data

to preserve the privacy of individuals [8].
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