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Abstract

Ferry performance is influenced to a great degree by environmental factors. Adverse

weather and ice conditions can severely restrict the ability to conduct operations in

a safe, efficient, and financially viable manner. Furthermore, as regional conditions

vary due to climate change influences, the effects may become more severe. In order

to better understand how specific weather and ice factors influence ferry operations, a

statistical analysis is conducted using a case study of historical Marine Atlantic Incor-

porated traffic data and historical weather and ice condition data from the National

Centers for Environmental Prediction North American Regional Reanalysis and Op-

timum Interpolation Sea Surface Temperature analysis. Random Forest models are

constructed to predict ferry sailing cancellations and delays, using selected environ-

mental factors as inputs, to examine the influence and relationships of specific factors

and combinations of factors, and to project rates of cancellation in the coming decades

using Coupled Model Intercomparison Project Phase 5 data sets. Results show that

(1) environmental factors are good predictors of cancellations and poor predictors of

delays, (2) wind speed is the most important environmental factor for cancellation

prediction, and air temperature the most important for delay prediction, and, (3)

that the ratio of cancelled sailings to total sailings is projected to increase over the

next three decades.
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Chapter 1

Introduction

1.1 Problem Introduction

Ferry operations play a crucial role in transportation and logistics networks in regions

that feature extended coastlines, islands, lakes, and rivers. In Canada, ferries provide

an essential transportation link in the Pacific Northwest, the Great Lakes, Canada’s

North, and Atlantic Canada (Transport Canada, 2015). In 2014, ferries in Canada

transported over 53 million passengers, almost 20 million vehicles, and billions of

dollars of goods (Canadian Ferry Operators Association, 2015).

Ferry operations are subject to their environment in many ways. Ferry service

can be interrupted by mechanical and electrical breakdowns on the vessels or port

infrastructure, traffic congestion, labour disputes, computer system faults in reserva-

tion and check-in systems, and environmental factors. Performance measurement of

ferry operations is a relatively new and growing field, and only large ferry companies

have implemented performance measurement programs to varying degrees. Metrics

typically include reliability of service, on-time departure and arrival, safety incident

occurrence, cost-efficiency, and customer satisfaction (Bennion, 2010).

Many of the factors that affect ferry operations are mitigated by management and

company policies, and indeed performance standards are often set for those factors

over which the company exercises a degree of control, such as mechanical problems,

staffing, and scheduling. Similar to the commercial airline industry, however, ferry

companies tend to exclude environmental factors from their metrics due to the inher-

ent unpredictability and limited ability to control them.

Environmental factors in the context of ferry performance inlcude various aspects

of weather, sea state, and ice, which affect, and potentially interrupt, ferry service

principally through their physical interactions with the ferry vessels. Wind, waves,

and ice can reduce vessel speed and prolong the journey, or increase the navigation

risk, particularly when entering or leaving harbours or when docking or undocking.

1
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Extreme temperatures can have a detrimental effect on mechanical and electric com-

ponents, increase the risk of freezing spray in winter, and increase work hazard and

decrease productivity of employees. Atmospheric pressure is often an indicator of the

presence of severe weather and passing storms.

The focus of this thesis is to examine the influence of environmental factors on

ferry operations, and determine whether significant changes are to be expected in

the future. In particular, the occurrence of ferry trip cancellations and delays are

investigated, as well as the severity of delays. Ferry operations and environmental

conditions are highly location dependent. A case study of the ferry operations of

Marine Atlantic Incorporated (MAI), which operates in Atlanic Canada between Nova

Scotia and Newfoundland, is undertaken. The methods and resulting models are

proposed for application in other regions.

1.1.1 Overview of Marine Atlantic Incorporated

MAI is a Canadian Crown corporation that reports to the Government of Canada

through the Minister of Transport. MAI guarantees a year-round ferry link between

North Sydney, Nova Scotia and Port aux Basques, Newfoundland, in order to fulfill its

constitutional mandate of providing ferry service between the island of Newfoundland

and the province of Nova Scotia (Treasury Board Secretariat, 2016). During the

summer months MAI also provides ferry service between North Sydney and Argentia,

Newfoundland. Figure 1.1 provides a map of the MAI operating area, routes, and

ports.

MAI operates four ice-class Roll-On Roll-Off Passenger (RoPax) vessels, the names

and characteristics of which are described in Table 1.1. The Motor Vessel (MV) Blue

Puttees, MV Highlanders, and MV Leif Ericson operate principally on the North

Sydney - Port aux Basques route, and the MV Atlantic Vision operates on the North

Sydney - Argentia route during the summer and on the North Sydney - Port aux

Basques route on an as-required basis during the remainder of the year. The MV

Leif Ericson is used mainly as a commercial carrier and transports most of the haz-

ardous goods. Table 1.2 provides a summary description of the applicable ice-classes.

Additional information on ice-class designations can be found from Veritas (2016).
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Figure 1.1: MAI area of operations, ports, and routes.

MAI maintains a schedule that typically offers two sailings per day in each direc-

tion between North Sydney and Port aux Basques. This route is 178 km (96 nm) in

length and approximately seven hours in duration. One day per week only one sailing

is offered in each direction, which allows time for vessel management and maintenance

activities. The North Sydney - Argentia route is only offered during the summer be-

tween June and September, normally three sailings per week in each direction. The

route is 520 km (281 nm) in length and approximately sixteen hours in duration.

Most of the MAI business occurs on the North Sydney - Port aux Basques route,

and in order to focus on year-round environmental issues, the Argentia route is not

included in the study.

MAI is the only year-round ferry service between Nova Scotia and Newfoundland

and therefore provides an essential logistics link between the two provinces. The

commercial trucking industry uses the service to transport a wide range of goods,

including important commodities such as fruits and vegetables, dairy, meat, and
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Table 1.1: MAI vessel characteristics.

Vessel Principal Use Length
(metres)

Capacity
(lane-metres†)

Passengers Ice Class

MV Blue Puttees Passenger,
Commercial

199.5 2840 750 1A

MV Highlanders Passenger,
Commercial

199.5 2840 750 1A

MV Atlantic Vision Passenger,
Commercial

203.3 2425 700 1A*

MV Leif Ericson Commercial 158 1550 380 1B

† Unit of deck area for RoRo vessels. One lane-metre is an area one metre long by two metres wide.

Table 1.2: Ice-class designations (Det Norske Veritas 2016)

Ice-class Description

1A* Normally capable of navigating in difficult ice conditions (thickness
0.5-1.0 m) without the assistance of icebreakers

1A Capable of navigating in difficult ice conditions (thickness 0.5-1.0 m),
with the assistance of icebreakers when necessary

1B Capable of navigating in moderate ice conditions (thickness 0.3-0.5 m),
with the assistance of icebreakers when necessary

medical supplies to businesses and institutions in Newfoundland. The service is also

an essential component in the supply chain for Newfoundland-based industries by

providing a means to export goods (Marine Atlantic Inc., 2015).

The main commercial shipping competition for MAI is OceanEx, which provides

year-round container shipping service between St. John’s, Newfoundland, and ports

in North America (although mainly Halifax). OceanEx does not provide Roll-On

Roll-Off (RoRo) service, however, so is often less convenient for commercial trucking

customers.

1.1.2 Atlantic Canada Environmental Characteristics

Due to its temperate climate, Altantic Canada weather varies considerably and is

highly seasonal. The many miles of coastline in Atlantic Canada means that weather

is also heavily influenced by the presence of the ocean. Robichaud and Mullock

(2001) provide a comprehensive synopsis of climate and weather conditions in the

region, summarized here.

Summer is typically characterized by large, stable, high pressure air masses that

move slowly through the region or remain stationary for periods of time. Storms are
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less frequent than other seasons and the effect of the Bermuda High becomes more

pronounced, causing the circulation to be southwesterly. Storms, when they do occur,

are typically the result of a tropical depression originating in the southern latitudes.

Advection sea fog is common due to moist air being pushed up by the southwesterly

flow and cooling over the cooler Atlantic Canada waters. On-shore sea breezes are

typical of warm, sunny days.

Winter sees increased storm activity, in both power and frequency, due to the

greater difference in temperatures between northern and southern latitudes, as well

as increased circulation, generally from the west or northwest. Freezing precipitation

in all its forms is common and can linger even after a low pressure system has passed.

Masses of cold arctic air typically are pushed down by northern high pressure systems

in between passing lows, causing cold but clear conditions. Ice is common in the Gulf

of St. Lawrence and Cabot Strait, but normally isn’t present in large quantities until

mid-winter.

1.1.3 Research Method

The problem of understanding how environmental factors affect MAI operations is

approached by studying the occurrence of cancelled sailings and delayed sailings, as

well as the extent to which sailings are delayed. Relationships between these three

sub-problems and the presence of various environmental factors are investigated us-

ing statistical analysis and modelling techniques. A standard statistical analysis and

modelling methodology is followed, which begins with data acquisition and format-

ting, followed by an exploratory analysis of the data, formulation of a model, model

validation, generation of results, and discussion. The prediction models are then used

to predict the extent to which changes can be expected in the coming decades by us-

ing data sets from recognized climate models. All of the analysis and modelling was

completed using R, a popular open-source programming language and environment

for statistical computing and graphics (R Core Team, 2016).

1.1.4 Thesis Outline

The remainder of this thesis is structured as follows: A literature review makes up

the balance of Chapter 1 and includes past research relevant to this study in the areas
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of maritime risk modelling, weather forecasting and ship routing, maritime incidents,

and statistical modelling. Chapter 2 describes the sources and characteristics of data

used for this thesis, the data formatting and pre-processing, as well as an exploratory

data analysis of the environmental factors. Chapters 3 and 4 conduct a statistical

analysis of the influence of environmental factors on ferry sailing cancellation as well

as delay and delay length, respectively, including the development of a prediction

model for each. Chapter 5 examines the relationships between cancelled and delayed

sailings, projects potential variations due to climate change, offers ideas on future

research, and provides concluding remarks.

1.2 Literature Review

The literature is sparse on the topic of environmental affects and ferry operations.

Some work has been done in the areas of maritime transportation risk modelling,

fisheries, naval architecture, and navigation, however the context tends to be safety-

related, with the focus on incidents, accidents and collisions (O’Connor & O’Connor,

2006; Kelman, 2008; Grabowski, Ayyalasomayajula, Merrick, & Mccafferty, 2007;

Rezaee, Pelot, & Finnis, 2016). Other studies explore the operational context of mar-

itime transportation but typically from the perspctive of marine traffic and trans-

portation network states and efficiency, with relatively little emphasis on environ-

mental factors. This chapter reviews the past literature relative to this study, i.e.,

within the context of environmental factors and ferry operations. A summary of

related works in the areas of maritime risk modelling, weather routing, maritime in-

cidents, and transportation modelling, follows. As there are similarities in modelling

approaches between air and marine transportation, related works in that area are con-

sidered as well. A review of statistical modelling techniques relevant to this research

is also provided.

1.2.1 Maritime Risk Modelling

Risk modelling is becoming more common within the maritime transportation do-

main. Washington State Ferries, the largest passenger vessel ferry system in the

United States, undertakes significant work and supports academic reasearch in this

area. Athough not directly focused on environmental factors, the general approach
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to risk analysis provides a solid framework to approach similar problems. Given that

ferry accidents are low probability, high consequence events, Merrick, Dorp, Maz-

zuchi, and Harrald (2001) approach the problem by combining system simulation,

expert judgment, and available data. The simulation component of the study cap-

tures the dynamic environment of traffic and weather in order to assess risk reduction

policies and system-level decisions in terms of collisions and accidents. This research

is used to underpin a comprehensive risk management framework for Washington

State Ferries (Dorp, Merrick, Harrald, Mazzuchi, & Grabowski, 2001). They build

further upon the risk modelling research by investigating the uncertainty involved in

simulation-based maritime risk assessments, and propose a Bayesian simulation tech-

nique to model this uncertainty (Merrick, 2005). These efforts include environmental

factors as part of their assessments but stop short of actually investigating the effects

of these factors in detail.

1.2.2 Weather Routing

Weather routing of ships involves selecting the optimal route for a vessel with respect

to the potential weather it will experience during the voyage. Given a set of possible

routes, the predicted weather and the vessel’s seakeeping characteristics in various

weather and wave conditions, the best route can be determined depending on the goal

(usually fuel efficiency, time, or safety of crew or cargo). These types of problems are

typically approached as network optimization problems and several researchers have

applied them across different geographic scales, such as trans-ocean voyages (Sen &

Padhy, 2015; Shao, Zhou, & Thong, 2012) and coastal shipping (Takashima, Mezaoui,

& Shoji, 2009; de Osés & la Castells, 2008). A variety of algorithms are employed

in this regard, including Dijkstra’s algorithm (Sen & Padhy, 2015; Takashima et

al., 2009) and dynamic programming techniques (Shao et al., 2012; Fang & Lin,

2015). These studies look at the voyages on an individual basis and proceed with the

assumption that they will not be cancelled.

de Osés and la Castells (2008) get closer to the issue at hand by considering the

weather impacts on several short sea shipping routes in Europe. They approach this

from the perspective of network expansion in the face of competition from speedy

ground and air transportation. The probability of encountering heavy weather on
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possible expansion routes is determined, as is the risk of cancellation and seasickness

(as a measure of comfort and safety) for various types of ships. The study is limited,

however, in that it uses only significant wave height (the average of the highest one-

third of waves in an observation) for the descriptive heavy weather variable.

1.2.3 Maritime Incidents

Significant research has been conducted in Atlantic Canada on the occurrence and

severity of maritime incidents in relation to weather factors. Rezaee et al. (2016)

analysed weather and incident data in Alantic Canadian waters to determine rela-

tionships. A logistic regression model was created for each of incident occurrence and

incident severity. The incident occurrence model found that Laplacian of pressure

(cyclone intensity), wind speed, sea surface temperature, and darkness were signifi-

cant factors. The incident severity model found that ice concentration, wind speed,

sea surface temperature, and darkness were significant factors. This work was focused

on providing insight to the fishing industry, marine traffic decision makers, and the

Canadian Coast Guard.

Wu, Pelot, and Hilliard (2009) found similar results when looking at the effect

of weather on the relative incident rate of fishing accidents. General results demon-

strated an increase in the relative incident rate as weather factors deteriorated. Deci-

sion trees were used to determine the factors of greatest significance, indicating that

ice concentration was the dominant factor. In the absence of ice, wave height was

dominant. The decision tree methodology allowed the authors to determine variable

importance and provide a visual tool for understanding the effects of combinations of

factors. This ability to visualize variable relationships is a strength of decision trees,

however they are limited in the predictive performance. Wu et al. (2009) also provide

a thorough review of the fishing vessel accident literature.

1.2.4 Flight Delay Prediction

The complexity and rapid pace of airline operations drives substantial efforts to pre-

dict and mitigate disruptions to the air transportation system. Like marine trans-

portation, airline operations are affected to a great degree by weather and other
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causes of interruptions such as mechanical breakdowns. Advances in airline sys-

tem operations modelling and optimization have increased system efficiency and re-

silience through problem incident prediction techniques and decision support tools

that help mitigate impacts. Klein (2010) approaches airport delay prediction by

using a modified form of the Weather-Impacted Traffic Index model, a well-known

decision-support tool for predicting the effects of weather on real-time flight oper-

ations. Zhang (2008) proposes airline schedule recovery from interruptions caused

by weather by employing real-time intermodal substitution and optimization using

non-linear programming. Jarrah (1993) analysed flight cancellations and delays and

developed a decision-support tool to assist air traffic controllers based on network

optimization. Ground delay programming is a significant component of airline de-

lay and cancellation management. Provan, Cook, and Cunningham (2011) offer a

probabilistic model to predict aircraft arrival rates and airport capacity based on the

weather forecast to improve ground delay program planning. The methods used in

the airline industry to predict service disruptions tend to rely to a great deal on ex-

isting, industry-standard models and data sets, such as the Weather-Impacted Traffic

Index and ground delay program systems, as well as network-optimization techniques

due to the underlying system frameworks. Although there is some potential for ap-

plication of these methods in the the ferry operations domain, the problem structure

and complexity are fundementally different, and no established industry-wide data

sets or established planning models exist.

1.2.5 Hazard-Based Duration Models

Hazard-based duration modelling involves various approaches to the analysis of inci-

dents from the perspective of the end-of-duration occurrence (predicting the time that

a particular incident will end), and is typically related to choices or behaviours that

result in a specific occurrence. These approaches are often employed in transporation

modelling to predict incident occurrence and duration, such as prediction of traffic in-

cident duration, or prediction of travel time based on transportation mode and route

selection. Specific examples in the literature include traffic incident clearance time

and emergency vehicle arrival time prediction (Ji, 2014), highway incident duration

analysis (Nam & Mannering, 2000; Boyles, Fajardo, & Waller, 2007; Garib, Radwan,
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& Al-Deek, 1997), and activity choice behaviour while commuting (i.e., selection of

transportation modes and routes, activities engaged in while commuting, such as

shopping, etc.) (Bhat, 1996). Hensher and Mannering (1994) provide a summary of

hazard-based duration models and their application to transportation problems. The

current analysis, however, involving ferry operations with respect to environmental

conditions, is approached from a systems point of view, involving specific input vari-

ables and response variables, with no requirement for choice or behaviour modelling,

so hazard-based duration models are of limited use.

1.2.6 Statistical Modelling Techniques

Statistical modelling is often used in risk analysis. The wide variety of tools allows

the modeller to tailor the approach to the application, as evidenced by previously

cited examples for logistic regression (Rezaee et al., 2016), random parameters neg-

ative binomial regression (Rezaee et al., 2016), classification trees (Wu et al., 2009),

and Bayesian techniques (Merrick, 2005). Random Forest (RF) models were chosen

for this analysis for their blend of strong predictive power and useful methods for

understanding variable relationships (further justification of this selection is found in

Chapter 4).

RF is a machine learning model based on the ensemble methodology that takes

a series of weak learners to combine results and increase predictive performance.

Specifically, RF grow many decision trees (a forest) and allow each tree in the forest to

have a say in the predicted response (a theoretical explanation of RF models and their

formulation is provided in Chapter 4). They are particularly powerful in the presence

of many predictors and/or predictors with complex interactions. RF have been used

in many domains, including the classification of molecular compounds (Svetnik et

al., 2003), predicting aquatic toxicity (Polishchuk et al., 2009), classification of plant

species (Cutler et al., 2007), and biomedicine (Strobl, Boulesteix, Kneib, Augustin,

& Zeileis, 2008). Within the risk analysis domain, RF have been used to predict

flood hazard risk (Wang et al., 2015; Albers, Dery, & Petticrew, 2015), model forest

fire occurrence (Oliveira, Oehler, San-Miguel-Ayanz, Camia, & Pereira, 2012) and

forest fire risk factors (Pierce, Farris, & Taylor, 2012), assist in aircraft system fault

detection (Lee, Park, & Jung, 2014), and traffic accident prediction (Lin, Wang, &
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Sadek, 2015) and analysis (Siddiqui, Abdel-Aty, & Huang, 2012).

The predictive power of RF, particularly their strength as classifiers and regression

tools, shows great potential for application in the risk analysis and transportation

modelling fields. Within the context of ferry operations, shipping operations, vessel

scheduling, and transportation and marine risk assessment, there are no examples of

RF models in the literature, and indeed there is a notable lack of machine learning

techniques in general within these domains. Through the use of RF, this research

attempts to highlight the predictive power and insight into variable relationships

that can be obtained by employing machine learning techniques within the marine

operations and risk domain.

Other statistical analysis tools used in this study are the analysis of variance

(ANOVA) test, Tukey’s honest significant difference test, and the Pearson product-

moment correlation. The ANOVA tests the hypothesis that the means between two

or more sets of observations are the same. By comparing the response variable means

at different factor levels the test hypothesis is determined to be true or false. If false,

a comparison method such as Tukey’s honest significant difference test can be used to

determine which factors cause the test hypothesis to fail. This method calculates con-

fidence intervals for the pairwise differences between factor level means to determine

response variable means that are significantly different from each other. The Pearson

product-moment correlation measures the strength of linear association between two

variables by attempting to draw a best-fit line between the data points and measuring

how far all the points are from the line to provide a correlation coefficient. Detailed

explanations and formulas for each of these statistical tools can be found in Hayter

(2012).



Chapter 2

Data Preparation and Exploration

Three types of data were required to conduct this research: MAI ferry operations

data, data on the observed weather factors in the area of the ferry route during the

period of study, and data on ice concentration in the area of the ferry route during

the period of study. This chapter is comprised of two sections: the first summarizes

the source and characteristics of each data type, the key features that were added to

enhance the statistical analysis, and the measures taken to handle errors and missing

data; the second section conducts an exploratory data analysis on the environmental

factors to provide an overview of the conditions in the area of study.

2.1 Data Sources and Preparation

2.1.1 MAI Operations Data

Data on MAI operations were provided by the company in the form of a “traffic

data” set (Marine Atlantic Incorporated, 2015). The traffic data set contains the

details of each sailing, such as scheduled arrival and departure times, actual arrival

and departure times, cancellation status, vessel name, departure port, arrival port,

number of passengers, numbers and types of vehicles, etc.

The traffic data set provided by MAI covers the period from 2000 to 2015, however

only the period from January 2012 to August 2015 was used. This time window was

chosen for two reasons. First, prior to March 2011 MAI was involved in an intense

period of recapitalization. In March 2011 all of the new ferries that are in service today

had been brought into service and the old ferries had been retired. The new vessels

are more capable under challenging environmental conditions than their predecessors

and the intention of this study is to assess current operating conditions, so the period

in which now-retired vessels operated was omitted. Second, as will be seen in the

description of weather data, a large amount of weather data for 2011 is missing, while

12
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the data for 2012-2015 is fully intact.

Furthermore, all sailings on the North Sydney - Argentia route were omitted, as

previously explained. Thus, the MAI operations under analysis for this research were

limited to the North Sydney - Port aux Basques route for the period January 2012

to August 2015.

The traffic data set provided by MAI contained over 100 fields that described

the characteristics of each sailing during the period. Many of these fields were not

relevant to this study and were removed. Table 2.1 summarizes the data fields used

for the analysis.

Table 2.1: Traffic data set fields relevant to analysis.

Feature Description

sch arriva the scheduled date and time of arrival
sch depart the scheduled date and time of departure
act arriva the actual date and time of arrival
act depart the actual date and time of departure
from to po code descriptor of departure port and arrival port
vessel cod code descriptor of vessel
missed boolean indicator of cancelled sailing
on time boolean indicator of on-time sailing

depart sta primary reason for delay
delay reas sub-reason for delay

Several descriptive features of the traffic data were derived from the fields in Table

2.1, which were used to enhance the analysis. Table 2.2 summarizes the features that

were added to the traffic data set.

Table 2.2: Features added to traffic data set

Feature Description

delta arr difference between actual arrival time and scheduled arrival time
delta dep difference between actual departure time and scheduled

departure times
year calendar year
month calendar month

month.pos month and year
day day of the month
wday day of the week
canc boolean indicator for cancelled sailing
late boolean indicator for late arrival

ontime boolean indicator for on-time arrival
status one of “cancelled”, “late”, or “ontime”
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All of the data in the traffic data set was input manually by MAI staff and is

therefore prone to data input errors. Some of the errors were observable due to their

not complying with the logic of ferry operations (i.e., an arrival time that was earlier

than the departure time). Upon inspection it was found that some of these errors

could be identified and corrected manually based on the logic of ferry operations,

however the size of the data set made this impractical. These errors were therefore

addressed by filtering the data through a set of rules based on the logic of ferry

operations and deleting the records that were found to be in error (see Appendix A

for a complete list of the filtering rules). 11.4% of the traffic data set records were

deleted as a result of these rules.

A specific type of data input error was identified but not removed due to an

inability to determine the set of affected records. This is an error in either or both

of the act depart or act arriva fields, in which these values were input without

consideration of the difference in time zone between Nova Scotia and Newfoundland

(30 minutes). These errors remain in the data set because there is no practical method

of determining which records contain erroneous data. The occurrence of this error is

assumed to be random.

Once the fields of interest were extracted and the errors removed, there were no

missing values in the data set. A modified, cleansed traffic data set with 5679 records

and containing only the fields of interest for the period in question was created.

2.1.2 Weather Data

Weather data were obtained from the National Centers for Environmental Prediction

(NCEP) North American Regional Reanalysis (NARR), which is an extension of the

NCEP Global Reanalysis, that features very high resolution for the area covering

North America (32 km, 45 levels, 8 x daily) (Mesinger, Dimego, Kalnay, & Mitchell,

2006). Data were obtained in NetCDF format (a common packaging algorithm for

environmental data), which stores data in grids for a given geographical area. The

grids in question for this research were extracted (the Cabot Strait between North

Sydney and Port aux Basques). See Figure 2.1 for the region in question and the

specific grid points used for this study.
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Figure 2.1: Location of grid points.

Weather factors of interest to this research are wind speed, wind direction, atmo-

spheric pressure, air temperature, and precipitation, which, in consultation with the

MAI ferry captains, are the factors that are most commonly observed and tracked

by the company and forecasted by marine weather forecasts. Table 2.3 summarizes

these factors and their units of measurement.

Table 2.3: Environmental factors used in the study.

Factor Units

Wind speed kts
Wind direction degrees

Atmospheric pressure kPa
Air temperature °C
Precipitation mm

Ice concentration %

For each weather factor, the value at each grid point in the area of interest was

extracted for the entire period of interest at intervals of three hours / eight times daily.

The mean value across all grid points was then calculated or each time interval. This

resulted in a data set with one record for each 3-hour time interval over the period of
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study, consisting of one value for each factor.

With the exception of wind, the NARR weather factor values could be used at face

value. Wind data required pre-processing due to the manner in which wind data are

stored in NetCDF files. Wind data are provided in the form of two vectors, commonly

known as u and v, which are the east-west and north-south components of the actual

wind speed and direction, respectively, measured in m/s. To determine the actual

wind direction in degrees with respect to due north, the vectors were resolved using

Equation 2.1.

wind direction =
180

π
atan2(u,v) + 180 (2.1)

Similarly, Equation 2.2 was used to determine the actual wind speed in nautical

miles per hour (kts).

wind speed =
3600

1852

√
u2 + v2 (2.2)

A derivation of Equations 2.1 and 2.2 is provided in Appendix B.

2.1.3 Ice Data

Ice data were obtained from the National Ocean and Atmospheric Administration

(NOAA) Optimum Interpolation Sea Surface Temperature (OISST) analysis database

(Reynolds et al., 2007). Similar to the weather factors listed above, ice data are stored

in NetCDF files in gridded format.

The characteristic of ice used for this study was ice concentration, which is the

percentage of a given area that is covered by ice. In the case of the Cabot Strait, this

always refers to first year ice and not ice that has accumulated over consecutive years

because the ice clears out each spring. The values provided by the OISST are daily

means. These were extracted for the area of interest over the period of the study and

the mean values across all grid points were computed. The OISST analysis provided

a complete data set with no missing values. There were no obvious errors in the data

set.
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2.1.4 Data Matching

A master data set was compiled using the modified traffic data set, the extracted

weather factors, and the extracted ice concentration. The weather and ice data

records were linked to specific records in the traffic data set based on the scheduled

time of departure of a given sailing. In order to account for changing conditions during

the period of the crossing, the most adverse value of each environmental factor for

the period of the crossing was used. This is to reflect that conditions may often be

benign at the time of sailing, but degrade quickly after departure, and ensure the

influence of adverse conditions was captured.

The result is a data set that contains 5679 records, one for each scheduled ferry

sailing between January 2012 and August 2015, along with all of the relevant opera-

tional, weather, and ice information for that sailing.

2.2 Exploratory Data Analysis

This section provides an overview of the environmental conditions in the MAI oper-

ating area.

2.2.1 Wind Speed and Direction

Data exploration is more straightforward for wind speed than for wind direction.

Wind speed measurements are continuous and linear, which allows for simple cal-

culation of summary statistics and production of histograms, boxplots, etc. Wind

direction data is based on compass bearings and is therefore circular in nature. 0°

is not the minimum value and 360° is not the maximum value, they are the same.

Furthermore, calculation of summary statistics such as mean wind direction may not

provide value in many applications. The mean of a directly east wind and a directly

west wind is useless, however if the wind is varying between southwest and west

over a period of interest, the mean calculation may provide value, depending on the

application.

For this application it was decided that choosing a specific point to measure wind

direction would provide data more beneficial to the study. Thus, instead of taking

the mean of the wind directions for each geographically displaced grid point for every
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3-hour period, the grid point closest to Port aux Basques was chosen to provide the

wind data. This was decided for two reasons. First, due to the geographical area the

the grid points are spread over (almost 16000 km2), the mean of the wind direction

across all grid points for each 3-hour record would have little value. A grid point

on the west side of the area could have a westerly wind while another point on the

east side could have an easterly wind, the average of which would not yield anything

useful. This is in contrast to using the mean of the other factors’ grid values, which

do provide a meaningful description of the those factors. The second reason for using

only the Port aux Basques grid point is that the vessels are much more susceptible to

hazards exacerbated by wind in Port aux Basques harbour due to the local geography,

as compared to North Sydney or other points along the route. In general, the vessels

can navigate in and out of North Sydney and across the Cabot Strait in much more

adverse conditions than they can navigate within Port aux Basques harbour.

2.2.2 Other Environmental Factors

For the remaining environmental factors (atmospheric pressure, air temperature, pre-

cipitation, and ice concentration), the value for each time period of this analysis was

determined by calculating the mean of the 11 grid points within the area of interest.

This provides a representative value of each variable across the area of operations.

2.2.3 Summary Statistics

In order to provide an overview of the environmental conditions in the area of op-

erations during the period of the study, summary statistics, histogram plots, and

monthly summary plots are provided. Table 2.4 shows the summary statistics all of

the enivronmental factors except for wind direction. Figure 2.2 shows the histograms

for the same factors, and Figure 2.3 shows the monthly values in boxplot format.

Wind direction was combined with wind speed in the polar histogram in Figure 2.4

to show how often the wind originates from each direction at various wind speeds.

Additionally, ice concentration in the Cabot Strait varies significantly from year to

year. Figure 2.5 shows the trend in ice concentration over the period of the study.
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Figure 2.2: Histograms of environmental factors.
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Figure 2.3: Boxplots of environmental factors by month.
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Figure 2.5: Ice concentration, 2012-2015.
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Table 2.4: Summary statistics of environmental factors.

Units Min Q1 Median Mean Q3 Max

Wind speed kts 0.274 7.909 12.097 12.738 16.728 40.021
Wind direction degrees 0.034 147.924 224.154 216.250 297.721 359.928
Atmospheric pressure kPa 96.231 100.807 101.449 101.371 102.020 104.677
Air temperature degrees C -23.483 0.023 4.690 5.846 12.212 20.126
Precipitation mm -0.000 -0.000 0.017 0.384 0.214 16.770
Ice concentration % 0.000 0.000 0.000 10.002 11.769 73.769

2.2.4 Relationships Between Independent Variables

Figure 2.6 shows a heatmap of the correlation between descriptive variables, as well

as the correlation coefficients. There is a moderate-strong negative correlation be-

tween air temperature and ice concentration, which is most likely explained by the

coincidence of low temperatures and the presence of sea ice. Wind speed and pressure

both show a weak correlation with precipitation, and the remaining correlations are

negligible.
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Chapter 3

The Influence of Environmental Factors on Cancellation

Occurrence

3.1 Introduction

MAI ferry sailings are cancelled for reasons that make the vessels either incapable of

completing a crossing, unsafe to do so, or impractical from a business perspective.

According to MAI decision-makers, technical breakdowns cause cancellations but not

in great numbers. Staffing and labour issues have also caused cancellations, but these

occurrences are rare and often can be predicted within a reasonable time horizon.

Environmental factors are the dominant cause of cancellation. Data provided by MAI

shows that 90% of the cancellations in the 2014-2015 period were due to environmental

reasons (the remaining 10% were for mechanical reasons). High winds can increase the

risk of collision or grounding while navigating within tight harbours or during docking.

High ice concentrations can cause vessels to become stuck in the ice. Large waves

can cause increased discomfort and safety issues onboard the vessel. The presence

of precipitation, cold temperatures, fog, and other factors can exacerbate hazardous

conditions and increase risk. The presence of these factors and combinations of these

factors are all potential reasons for decision-makers to cancel sailings.

3.1.1 Company Expertise and Experience

Discussions were held with MAI vessel captains and operations staff to gain an un-

derstanding of company practices with respect to environmental factors and cancel-

lations. In most cases the conditions under which cancelling is warranted are well

understood and a sailing will be cancelled if any of those conditions are likely. MAI

staff provided expert opinions on various environmental factors and their influence

on cancellation, which are summarized in this section.

23
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Wind Speed

Wind speed is the the most common reason for cancelling a sailing. The vessels are

designed as ocean-going ferries and can safely navigate in open ocean in almost any

wind speed, however entering and leaving harbour, and docking and undocking can

be very hazardous in high wind. The risk of collision and grounding increases as the

wind increases due to the high sides of the vessels that act like sails, pushing the

vessel off course. This phenomenon is especially problematic at the slower speeds

used in harbour and while approaching docks. Due to the local geography specific to

each harbour and the nature and layout of the ferry docks, different considerations

are evaluated for each port. For example, the wind speed is more of a factor in Port

aux Basques, due to the small size and narrowness of the harbour, and the presence

of a small island in close proximity to the dock. The vessels are designed to be

as maneouverable as possible for their size by being fitted with bow thrusters and

specialized rudders that assist with stern movement, however tugboat assitance is not

available and the vessels must be able to dock and undock independently.

Wind Direction

Certain wind directions are more problematic than others based on the local geog-

raphy and port setup. For example, MAI staff stated that sailings will typically be

cancelled if the the wind is 30 kts or more from a southerly direction, due to the man-

ner in which high winds from that direction are prone to push the vessel off course

within Port aux Basques harbour. However, if the wind is from a northerly direction,

the threshold is higher, around 40 kts. Typically sailings are cancelled if the wind is

40 kts or higher from any direction.

Wave Height

Wave height was indicated as a factor in decision-making due to its ability to cause

discomfort on the vessels. MAI vessels are very seaworthy and capable of safely

navigating in large sea states, however the comfort and safety of the passengers,

crew, and cargo is reduced as wave height increases. In general wave heights of three

metres or more cause a sufficient reduction in onboard safety and comfort to warrant
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a cancellation. Wave height is highly correlated with wind speed and direction, so the

reasons for cancellation in the presence of large waves is often cited as high winds.

Atmospheric Pressure

Atmospheric pressure is not used as a specific data point when making cancellation

decisions. It is a general indicator of weather that is currently occurring or may soon

occur, and can be used as a characteristic in assessing the severity of passing storms

or the stability of favourable weather. Typically, lower pressure is associated with

storms or other adverse conditions, while higher pressure indicates pleasant weather

and decent conditions. Rezaee et al. (2016) found that the Laplacian of pressure,

which is an indicator of the presence of a passing extratropical cyclone, is a factor

in the severity of maritime incidents. It is reasonable to hypothesize that the same

factors that increase the severity of maritime accidents may also negatively influence

ferry operations, albeit in a different manner. From a decision-making perspective for

MAI, if a storm with high winds causes a cancellation, the cancellation will not be

due to the low pressure associated with the storm, but due to the result of the storm

causing high winds. Therefore, although atmospheric pressure is not specifically used

in decision-making, it may be an indicator of cancellation.

Air Temperature

Air temperature is not used as a specific data point when making cancellation deci-

sions. Like atmospheric pressure it often correlates to other weather conditions such

as the presence of storms or favourable conditions, but it has no direct effect on MAI

operations. Rezaee et al. (2016) found that temperature was a factor in the severity

of fishing incidents because of the effect it can have on people doing manual labour.

It is reasonable to assume that MAI deckhands are susceptible to the same influences,

however they are much better protected onboard large ferries than on small fishing

vessels. Low temperatures combined with wind and waves causing sea spray can

cause icing on the vessel, which can reduce stability if allowed to build up over time,

but MAI staff indicate that this is not a problem onboard MAI ferries. Although air

temperature is not specifically used in decision-making, it may yet be an indicator of

cancellation due to its correlation with other weather patterns.
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Precipitation

Precipitation is typically not used as a specific data point when making cancella-

tion decision. The adverse effects of rain, snow, ice, etc., tend to be limited to a

decrease in visibility that can affect vessel navigation, however the ferries are fitted

with navigation systems that allow them to navigate in any condition of visibility.

Ice Concentration

Ice concentration was stated as a factor in cancellation decision-making, although it

is uncommon for a sailing to be cancelled due to ice. If ice concentrations build up to

a point that significantly increases the risk of a vessel becoming stuck in an ice flow,

the sailing may be cancelled. The vessels are capable of navigating in first year ice,

which is the only ice they encounter in the Cabot Strait, however it is possible for the

prevailing conditions to cause areas of very dense ice that can mire the vessels, which

happened most recently in March 2015 (Ayers, 2015). In such a case Canadian Coast

Guard icebreakers are called to assist. This is not a frequent occurrence because the

vessel captains use ice charts for their navigation and the Coast Guard strives to

keep paths clear, but in years with large amounts of ice it is sometimes unavoidable.

Therefore, if it is likely that long delays will be caused by ice, the sailing will be

cancelled until the ice clears enough to allow passage.

Ice concentration was selected to represent the presence of ice for this analysis for

two reasons. First, ice concentration data are relatively easy to collect, have good

accuracy compared to other ice characteristics (such as ice thickness, which is much

more difficult to determine) and are easily available in NetCDF format from various

databases. Second, the Cabot Strait experiences the build up of only first-year ice, so

the variability of ice thickness is low. Areas with increased ice thickness are typically

a result of the wind pushing ice against a coast and causing it to pile up, which can

impede navigation but is very difficult to forecast and detect.

Other Factors

MAI staff reported that other environmental factors that are typically forecasted

and tracked within the maritime environment are not used as factors in cancellation
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decision-making, because their effects on navigation and safety are negligible. These

factors include relative humidity, dew point, boundary layer, and tide.

3.1.2 Decision-Making

The decision to cancel is a balancing of two criteria: the ability of the vessel to safely

complete the sailing and the comfort onboard the vessel during the sailing. Safety

involves avoiding collisions and groundings as well as maintaining the well-being of

the people onboard. Onboard comfort is considered because in adverse conditions the

passengers and crew may be safe, but extremely uncomfortable, which is important

to consider from the context of customer experience (a stated priority of MAI).

Within the context of environmental factors, data used to make the cancellation

decision are obtained from various weather prediction and observation services. The

principal source for weather data is the Environment Canada Marine Forecast for

the Cabot Strait, which covers the area between Cape Breton and the southwest of

Newfoundland. The marine forecast provides predicted wind speed and direction,

wave height, precipitation, visibility, pressure, and temperature for the region. A

secondary weather data source is a local weather station in Port aux Basques harbour

owned by MAI. This provides real-time detailed conditions within the harbour that

are dependent on the local geography and assists vessel captains with planning their

harbour entrance or exit. Ice conditions are provided by the Canadian Ice Sercvice in

the form of ice charts, which detail the observed ice characteristics for a given area.

Ice conditions and the weather forecast are continually tracked and evaluated

every morning during the company operations meeting, attended by vessel captains

and terminal managers. The decision-making is collaborative, but ultimately the

decision to sail or not is the responsible of the vessel captain, in accordance with

Canadian law. If conditions warrant cancellation, the decision will typically be made

24-48 hours prior to sailing. This allows time to alert commercial customers and

passengers that have reservations to make alternate plans. Normally if one sailing is

cancelled all sailings in that timeframe are cancelled, which prevents the buildup of

multiple vessels in one port.
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3.1.3 Cancellation Impacts

According to MAI, cancellation of sailings has financial, traffic congestion, and cus-

tomer experience impacts. Financial impacts include lost revenue due to not sailing,

or the risk of high operating expense if the decision to sail is made but the vessel is

long delayed due to adverse conditions. The impact on traffic is manifested by the

buildup of commercial traffic waiting to board the vessels, which can sometimes take

days to recover from. The impact to customer experience involves both the comfort

onboard the vessel and the inconvenience of a sailing being cancelled. The latter

has been significantly reduced in recent years, however, since MAI instituted a “Red

Alert” system that automatically alerts commercial customers and passengers with

reservations by email and text when a cancellation is likely or has occurred. This al-

lows alternate plans to be made and relieves traffic congestion in the terminal parking

lot.

3.2 Exploratory Data Analysis

This section explores the nature of cancelled sailings with respect to environmental

factors independently.

3.2.1 Data Sources and Preparation

The data sources and preparation used for this analysis are as explained in Chapter

2. The resulting data set consisted of 5679 records, one for each scheduled sailing for

the period of the study on the North Sydney - Port aux Basques route. Table 3.1

lists the independent variables used in this analysis. The year and month fields were

used to establish trends but were removed for the modelling portion of the study in

order to focus solely on the presence of environmental factors. The vessel identifier

and departure and arrival port identidier were not used in the analysis based on the

way cancellations decisions are made, i.e., they are made for all vessels and routes

within a particular period.
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Table 3.1: Independent variables used in analysis of cancellations.

IV Description

year calendar year
month calendar month

month.pos calendar year and month
ws mean wind speed (kts)
wd mean wind direction (degrees)
pres mean atmospheric pressure (kPa)
air mean air temperature (°C)

precip mean precipitation (mm)
ice mean ice concentration (%)

3.2.2 Observations by Month and Year

Of the 5679 sailings, 603 were cancelled, which is 10.62% of all sailings in the data

set. Figure 3.1 shows the percentage of cancelled sailings by month over the entire

study period. Months with no cancellations are rare while some months have cancel-

lations rates higher than 35%. Figure 3.2 shows the percentage of cancelled sailings

aggregated by month over the study period. As expected, the percentage of cancelled

sailings is higher during months when adverse environmental conditions are expected.
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Figure 3.1: Percentage of cancelled sailings by month, 2012-2015.



30

0

5

10

15

20

25

30

35

40

45

50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

%
 c

an
ce

lle
d

Percentage of cancelled sailings by month

Figure 3.2: Percentage of cancelled sailings aggregated by month.

3.2.3 Observations by Environmental Factors

The plots in Figure 3.3 show the cumulative percentages of cancelled sailings aggre-

gated over intervals spanning the range of each environmental factor. As expected, the

percentage increases with wind speed, to the point of all sailings being cancelled once

the wind rises above 35 kts, which ties in with statements made by MAI staff. The

percentage of cancellations aggregated by wind direction ranges from approximately

6-19%. The higher percentage occurring when the wind is eastlery may be explained

by the fact that easterly is not a prevailing wind direction in Atlantic Canada, and

typically is only observed in the presence of approaching storms, thus a higher propor-

tion of sailings may be cancelled when the wind is from that direction. Atmospheric

pressure appears to have dramatic effect. Almost all sailings are cancelled when the

pressure is below 99 kPa, followed by a decreasing trend in cancellatinos as pressure

rises. This is explained by the lower pressures that are typically observed in the

presence of storms that bring higher winds. The plot of air temperature shows a

higher proportion of cancelled sailings when the temperature is between -15°C and

0°C. This is most likely due to the the increase in cancellations in the presence of

winter storms, which typically are accompanied by temperatures slightly below 0 in

this region, as opposed to the stable winter high pressure systems that are typically

accompanied by much colder temperatures but otherwise moderate weather. With
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respect to precipitation, typically, low pressure systems that bring strong winds also

bring significant precipitation, which may explain the upward trend in percentage of

cancellations as precipitation increases. The general upward trend in cancellations

as ice concentration increases is to be expected and ties in with statements made by

MAI staff.
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Figure 3.3: Percentage of cancelled sailings aggregated by environmental fac-
tors.

Figure 3.4 shows the percentage of cancelled sailings by wind speed and direction

in heatmap format. The heatmap supports statements by MAI staff about cancelling

sailings as the wind speed approaches 30 kts from southerly directions, and as the
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wind surpasses 30 kts from any direction. Note that blank elements in the heatmap

reflect a lack of data points for those wind speed and direction intervals.
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Figure 3.4: Percentage of cancelled sailings by wind direction and speed.

3.3 Modelling

This analysis examines the relationship between the dependent variable canc (binary

descriptor of whether a sailing is cancelled or not) and the environmental factors

described above as independent variables. The exploratory data analysis established

trends between the dependent and independent variables as well as limited interac-

tions between variables. In order to analyse the response of the entire set of indepen-

dent variables, classification modelling techniques were employed.

Several classification models were investigated in order to determine the most suit-

able approach to adopt, including Logistic Regression (LogReg), Classification Tree

(CTree), Gradient-Boosted Trees (GBTree), Linear Discriminant Analysis (LDA), k-

Nearest Neighbours (KNN), Support Vector Machines (SVM), and Random Forest

(RF). To make the selection, various performance metrics were measured. Several

authors have analysed classification model performance metrics, including strengths,

weaknesses, and suitable applications of each (Sokolova, Japkowicz, and Szpakow-

icz (2006), Sokolova and Lapalme (2009)). A summary is provided here in terms of

modelling cancellation occurrence.
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Accuracy (Equation 3.1) is the ratio of correct predictions to all predictions. The

data set is quite unbalanced, however, so the utility of this metric is limited because

it is easy for the model to choose “not cancelled” and have a high likelihood of being

correct.

accuracy =
# correct predictions

total # predictions
(3.1)

Sensitivity (Equation 3.2) is the ratio of true positive predictions (i.e., “cancelled”)

to the sum of the true positive and false negative predictions, which provides a mea-

sure of model performance in correctly predicting the positive (“cancelled”) class.

sensitivity =
true positives

true positives+ false negatives
(3.2)

Similarly, specificity (Equation 3.3) provides a measure of performance for predict-

ing the negative class (“not cancelled”). A comparison of sensitivity and specificity

provides insight into the model performance from a class perspective.

specificity =
true negatives

true negatives+ false positives
(3.3)

Balanced accuracy (Equation 3.4) is the average of the class error rates and pro-

vides better insight into model performance for unbalanced data sets.

balanced accuracy =
sensitivity + specificity

2
(3.4)

The Kappa statistic (Equation 3.5) provides more insight into model accuracy. It

is a comparison between the predicted accuracy and the expected accuracy (random

chance accuracy) and provides a measure of the model’s predictive ability compared

to predictions made randomly.

kappa =
accuracy − expected accuracy

1− expected accuracy
(3.5)

AUC is a measure of the model’s ability to avoid false classification and is one

of the standard metrics for evaluating classification model performance. AUC is the

area under the ROC curve, which is a plot of sensitivity (y-axis) against 1-specificity

(x-axis). A value of 0.5 represents a random prediction and of 1 is a perfect prediction.

Similar to kappa, it provides a metric for evaluating model performance across classes

and against random chance.
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The caret package in R (Kuhn et al., 2016) was used to design and implement

a standardized model evaluation to select the best-performing model for this study.

Each model was trained on the same training data set with the same random seed.

10-fold cross-validation was used to improve each model’s performance and reduce

overfitting. Several metrics were measured for each model and are summarized in

Table 3.2. Based on the metrics of AUC and kappa, the Random Forest (RF) model

exhibited the best performance. The RF model also exhibited the best sensitivity

and is therefore the best model at predicting the positive class (in this case, cancelled

sailings), which is important for imbalanced data sets.

Table 3.2: Performance metrics used for cancellation occurrence model selec-
tion

Model Accuracy Sensitivity Specificity BalAcc Kappa AUC

CTree 0.9240 0.5193 0.9724 0.7459 0.5520 0.8870
LogReg 0.9270 0.4309 0.9862 0.7086 0.5210 0.8950
LDA 0.9290 0.5193 0.9777 0.7485 0.5710 0.8820
GBTree 0.9480 0.6630 0.9793 0.8226 0.7030 0.9010
KNN 0.9300 0.4530 0.9862 0.7196 0.5420 0.8990
SVM 0.9370 0.5138 0.9869 0.7503 0.6000 0.8790
RF 0.9540 0.7238 0.9810 0.8524 0.7430 0.9060

3.3.1 Random Forests

Random Forest (RF) is an ensemble machine learning method developed by Breiman

(2001) that takes multiple weak tree-based learners and combines them into a strong

learner in the form of an ensemble, or forest, of trees. The result has a synergistic ef-

fect, i.e., the final model is stronger than the sum of its parts. In the case of RF, many

classification trees are produced, each one with a vote as to the predicted class of the

input vector. The votes are aggregated to determine the predicted class of the forest.

Whereas individual classification trees are fast and provide easily interpretable out-

put, their predictive performance is low compared to more advanced machine learning

methods. RF is typically considered a “black box” method, meaning that gaining un-

derstanding of how variables affect predictions and interact is less straightforward,

however the predictive performance is much higher than for individual classification

trees. Furthermore, methods have been developed to estimate variable relationships

to gain knowledge from RF models, more so than for other black box techniques
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like support vector machines and neural networks. The RF method developed by

Breiman (2001) is summarized here, along with relevant features of the model used

in this research.

An ensemble of k tree-based classifiers is created T1(X, θ1), T2(X, θ2), ..., Tk(X, θk)

where X is the input vector of independent variables and θ1, ..., θk is a set of ide-

pendent identically distributed random vectors (taken from the training data set).

Each tree determines the output class for the input vector X based on the random

vector θi, thereby voting for that class. The votes from all the trees are aggregated

to determine the output class for the ensemble.

Each tree Ti is grown (or trained) first by taking a random sample (with replace-

ment) of the training data as the bootstrap sample. For each bootstrap, each tree Ti

is grown using the CART algorithm developed by Breiman (1984) (i.e., finding the

best split at each node from among the predictor variables, X), but using only a ran-

dom subset of predictor variables at each node (known as random feature selection).

Each tree is grown to its maximum extent with no pruning. This is repeated for each

tree until a forest of sufficient size has been grown.

Using an independent bootstrap sample for each tree in this context is known as

bagging. Bagging allows for a method of cross-validation in parallel with the training

of each tree. The instances in the bootstrap sample are considered in the bag (about

two-thirds of the training data), and the remainder are out-of-bag (OOB) (about

one-third of the instances). Each tree is grown on its bootstrap (in-the-bag sample)

and validated on the OOB sample, from which the misclassification error rate can be

calculated (known as OOB error). As the forest grows, the OOB error from individual

trees is aggregated and a running unbiased estimate of the classification error for the

ensemble is maintained. Breiman (2001) demonstrated that as the number of trees

increases, OOB error converges, which is why RF models don’t overfit as more trees

are added. He also demonstrated that this method of validation may occasionally

overestimate the error (but only by small amounts), but performs as well as, and in

some cases out-performs, other established cross-validation methods.

RF model tuning consists of determining the number of features mtry (input vari-

ables) to randomly select at each node, and the number of trees ntrees to grow in
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the forest. If M is the total number of features, mtry is typically
√
M for classifi-

cation and M/3 for regression, however this value can be modified. Breiman (2001)

demonstrated that increasing mtry increases the correlation between trees (and thus

increases the OOB error) but also increases the strength of the classifier, which in

turn is related to a decrease in OOB error. Thus, an optimum value of mtry can

be determined. Cutler et al. (2007) found that mtry had little effect on classifier

performance in their work on classification in ecology, while Strobl et al. (2008) found

that it had a large effect on their work in bioinformatics and genetic markers. Given

the lack of consensus in the literature, mtry will be optimized for this study.

The number of trees ntrees needs to be sufficiently large to allow the OOB error

to converge. The default is 500 trees, however there is no penalty for larger numbers

aside from processing time. Svetnik et al. (2003) and Polishchuk et al. (2009) found

that most often 500 trees is more than sufficient.

Individual classification tree algorithms are known for their ability to identify

important features among the independent variables and for producing an easily in-

terpretable model that exlains the interactions between independent and dependent

variables. RF retain the ability to identify important features but are limited in their

ability to explain variable relationships compared to single tree methods, due the

lack of an explicit, interpretable model. The tradeoff, however, is a vast increase in

predictive performance.

RF have two methods of determining feature importance. The first is based on

the mean decrease in accuracy that is observed as variables are permuted. For each

tree in the forest, each variable is randomly permuted in the OOB cases one at

a time, and the differences in prediction accuracy from the non-permuted baseline

are aggregated to determine the decrease in accuracy caused by the permutation.

Important features are identified by a larger reduction of prediction accuracy, while

less important features have smaller or negligible reductions in prediction accuracy.

The second method of determining feature importance is based on the mean de-

crease in gini. In the context of classification trees, gini (also known as gini impurity)

is a measure of the purity of the nodes in a tree. The set of predicted outcomes are

distributed across the terminal nodes of the tree and the gini for each node is the

probability that a randomly selected element of a node is mistakenly classified, which
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reaches its minimum (zero) when all the elements in the node are correctly classified.

The reduction in gini observed at every split in the tree is added for each variable

to determine the variable most effective at reducing gini. For RF models, the gini

reduction values are aggregated across all trees to determine variable importance for

the ensemble.

Feature importance identifies independent variables that have a greater effect on

the model, however they provide no information about how the model reacts across

each variable’s range. In order to gain further knowledge of the impacts of inde-

pendent variables three methods are used: comparing the predicted versus actual

responses across the range of each variable, determining the partial dependence of

each variable, and determining the partial dependence of two variables at once (bi-

variate partial dependence).

Comparing the predicted versus actual responses across each variable range is

easily done with a set of simple plots. For each independent variable of interest two

plots are made with the range of the variable on the x-axis: one with the actual values

of the dependent variable from the testing data set on the y-axis, and the other with

the predicted values of the dependent variable based on the testing data set on the y-

axix. A smoothing function is applied to each for ease of viewing, especially when the

number of predictions is large, and the two plots can be compared for each variable

to demonstrate how closely the model tracks the actual data on a per variable basis.

Partial dependence provides an estimate of the marginal effect of a variable on the

class probability for classification models, and on the response for regression models.

Plotting the partial dependence for independent variables of interest is a method of

visualizing the effects of variables on the prediction. Cutler et al. (2007) provide

an excellent explanation of partial dependence plots, which is based on the work of

Hastie, Tibshirani, and Friedman (2001), and apply it to RF classification models used

in the field of ecology. In summary, a classification or regression function f depends

on m predictor variables X = (X1, X2, ..., Xm), such that f(X) = f(X1, X2, ..., Xm).

The partial dependence of f on variable Xj is defined as the expectation of f with

respect to all variables except Xj, or, fj(Xj) = EX−j
[f(X)], where X−j is all variables

except Xj. This is estimated by iteratively fixing values of Xj over the range of Xj

and averaging the prediction function over all the combinations of observed values of
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the remaining predictors.

For partial dependence of classification models there is a prediction function for

each class. If pk(X) is the probability of prediction of the kth class, then the response

function for class k is

fk(X) = log pk(X)− 1

K

K∑
i=1

log pi(X) (3.6)

which, for the case when there are two classes (such as the cancellation occurrence

model) and p is the probability of a sailing being cancelled, reduces to

f(X) = 0.5 log(
p(X)

(1− p(X)
) = 0.5 logit p(X) (3.7)

The scale of the y-axis on the partial dependence plot for classification is then half

of the logit probability of the class, or for the cancellation occurrence model, half of

the logit probability of a sailing being cancelled.

Finally, partial dependence can be extended to two variables to provide the bi-

variate partial dependence, i.e. the conditional expectation of function f(X) with

respect to all variables except Xj and Xl. Bivariate partial dependence plots are

three-dimensional plots to estimate the interactions between two variables on the

response. In theory higher order partial dependence can be determined, however

visualization becomes extremely challenging and very computationally intensive.

3.3.2 Model Development

To examine the relationship between environmental factors and the cancellation of

ferry sailings, a RF model was formulated in R using the randomForest package

(Liaw & Wiener, 2002), the environmental factors previously described, and the bi-

nary response variable canc, which denotes that a sailing was “not cancelled” (0) or

“cancelled” (1). The model variables are summarized in Table 3.3.

The model was trained on a training set consisting of 90% of the original data set

and tested on a testing set consisting of the remaining 10%. Breiman (2001) maintains

that the procedure for OOB error calculation means that RF models are not at risk

of over-training. Furthermore, Millard (2015) found that for RF models the OOB

error decreases and classification accuracy increases as the size of the training data
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Table 3.3: Variables used in cancellation model formulation.

canc dependent categorical (binary)
wind speed independent continuous

wind direction independent categorical
atmospheric pressure independent continuous

air temperature independent continuous
precipitation independent continuous

ice concentration independent continuous

set increases. Therefore, a high ratio of training data set size to testing data set size

was used for the model.

The number of trees ntrees was set as 100 and mtry (number of features to ran-

domly select at each node) was determined by finding the minimal OOB error for the

ensemble over the range of possible values. The plots in Figure 3.5 are representative

plots based on a specific random seed that show (1) for this model the minimum

OOB error occurs when mtry=5, and (2) the effect of the number of trees on the

OOB error. Values of ntree greater than 50 produce a stable minimum error.
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Figure 3.5: Cancellation occurrence model OOB error as a function of number
of variables and of number of trees in the forest.
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3.4 Model Performance

Table 3.4 shows the key performance metrics of the constructed model. The high

measure of specificity is no surprise given the imbalance of the data set. The sensi-

tivity score of 0.7333 is satisfactory given that only environmental factors are being

considered in this model, and cancellations also occur for reasons that are not related

to environmental conditions.

Table 3.4: Cancellation occurrence model performance.

Accuracy Sensitivity Specificity BalAcc Kappa AUC

Model 1 0.9613 0.7333 0.9882 0.8608 0.7788 0.9079

With this in mind, a new feature was added to the data set. The canc field was

examined for cases where it was 1 and recoded to 0 if the environmental conditions

during the planned voyage duration were benign. This decision was made based on

the extreme improbability of benign environmental conditions being the cause of a

cancellation. In other words, cancellations that occurred during benign conditions

were assumed to be caused by another, non-environmentally related reason. These

recoded records were kept in the data set as non-cancelled sailings (as opposed to

deleting them) because the model is based purely on environmental conditions and

it is important for the model to “learn” that moderate or benign environmental

conditions are not a cause of cancellation. For example, if a cancellation occurred

because of a mechanical breakdown, but would the sailing would have otherwise not

been cancelled given the environmental conditions at the time, it is important for

the model to understand that those conditions are satisfactory and would not have

caused a cancellation.

Based on MAI staff, environmental reasons for cancelling a sailing are wind and/or

ice conditions. Thus, minimum thresholds of 20 kts and 10% ice concentration

(Model 2), and 25 kts and 10% ice concentration (Model 3) and were used to re-

code canc. Specifically, canc was recoded to 0 if canc = 1 and wind speed < 20

kts and ice concentration < 10% for Model 2, and recoded to 0 if canc = 1 and

wind speed < 25 kts and ice concentration < 10% for Model 3. Table 3.5 shows

the improved model performance of Model 2 over Model 1, and Model 3 over both
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Models 1 and 2, based on the recoded “reduction” in sailings that were cancelled for

non-evironmental reasons.

Table 3.5: Cancellation occurrence model performance using increased wind
speed and ice concentration thresholds.

Accuracy Sensitivity Specificity BalAcc Kappa AUC

Model 1 0.9613 0.7333 0.9882 0.8608 0.7788 0.9079
Model 2 0.9771 0.8163 0.9923 0.9043 0.8478 0.9866
Model 3 0.9824 0.8750 0.9888 0.9319 0.8391 0.9956

3.5 Results and Discussion

In this section the various aspects of the effects of the independent variables on model

outcomes are explored.

3.5.1 Variable Importance

As discussed previously, RF have two methods of evaluating variable importance, one

that results in a score for the mean decrease in accuracy, and the other a score for the

mean decrease of gini. Figure 3.6 shows the variable importance evaluated by both

methods.

Precip

WindDir

IceConc

AirTemp

Pressure

WindSpd

0.00 0.02 0.04 0.06
Mean decrease accuracy

(a) Variable importance ranked
by mean decrease accuracy

IceConc

WindDir

Precip

AirTemp

Pressure

WindSpd

0 100 200 300
Mean decrease gini

(b) Variable importance ranked
by mean decrease gini

Figure 3.6: Cancellation occurrence model variable importance by mean de-
crease accuracy and mean decrease gini.
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The methods are in agreement on the order of importance and the relative dif-

ferences in importance between the three most important variables. There is some

disagreement in the order of the three least important variables, however both meth-

ods agree on which variables are of lesser importance. This discrepancy is most

likely due to the method in which each importance calculation is made (described

previously). The mean decrease of gini method is known as a quick estimation that

generally has good agreement with the mean decrease in accuracy method for well-

performing models, however the mean decrease in accuracy method is the standard

to be used in the case of discrepencies (Breiman, 2001).

The model found that wind speed is the most important environmental variable

in predicting cancellations, which supports the statements made by MAI staff on how

wind speed affects operations. Pressure is the second most important variable, most

likely due to its indication of the presence of storms and associated higher winds,

however its prediction ability is limited because high winds can occur at any pres-

sure level. Air temperature, precipitation, and ice concentration were found to be

less important, i.e., sailings are generally not cancelled for extreme values of these

factors. Ice concentration and wind direction were expected to have higher impor-

tance. However, high ice concentrations can cause a cancellation but according to

MAI staff, this is rare and could be difficult for the model to detect. Similarly for

wind direction, high winds can originate from any direction and, as a storm passes,

the wind typically clocks through various directions (sometimes up to 270°), which

could make it difficult for the model to detect.

3.5.2 Variable Responses

Figure 3.7 provides a comparison of the predicted and actual responses over the range

of each variable. The curves were generated by applying a smoothing function to the

actual and predicted responses (either 0 or 1) over the range of each variable for ease

of viewing. This provides an estimation of how closely the predicted responses are to

the actual responses on a per variable basis. The variables with higher importance

(wind speed and pressure) track more closely to the actual predictions, however even

the less important variables track closely, indicating a well-performing model.
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3.5.3 Variable Partial Dependence

Figure 3.8 shows the partial dependence of each of the independent variables, in order

of importance, referenced to the “cancelled” class. The plots show the range of each

environmental factor for which the probability of predicting the cancelled class are

highest, independently (i.e., not accounting for interactions).

The probability is higher as the wind increases above 20 kts, the pressure drops

below 99 kPa, the air temperature is less than 5°C, or if the precipitation is greater

than 5 mm. The wind direction shows slightly higher chances of predicting the can-

celled class when the wind is from the northeast, however no wind direction stands out

from the others. As would be expected, the ice concentration shows a sharp increase

as it increases from 0, however the subsequent slowly increasing trend illustrates only

low to moderate partial dependence of ice concentration until the values are quite

high.
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Figure 3.7: Cancellation occurrence model predicted vs actual responses for
each variable.
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3.5.4 Bivariate Partial Dependence

Figure 3.9 shows the bivariate partial dependence plots, which estimate interactions

between two variables, for combinations of the three variables of highest importance

(wind speed, pressure, and air temperature).

The plot of wind speed and pressure shows a high probability of predicting a

cancellation when pressure is low even when the wind speed is low-moderate (i.e., wind

speed that would normally not cause a cancellation alone). This may be explained

by a drop in pressure being an indicator of oncoming adverse weather. The plot

also shows that when winds are low-moderate and pressure is moderate-high, the

probability of predicting a cancellation is much lower, but increases quickly as wind

speed increases, regardless of pressure.

The plot of wind speed and air temperature has a similar form but lower maximum

probabilities. The importance of wind speed remains evident, and low air temperature

increases the probability even over lower wind speeds, perhaps due the correlation

with the presence of ice. Again, over low-moderate wind speeds and moderate-high

temperatures, the probability of predicting a cancellations is lower. The probability

is highest when temperature is 5-10°C and the wind is 35-40kts, however it drops off

slightly as the temperature either increases or decreases.

The moderately strong influences of air temperature and pressure are again re-

flected in the third bivariate plot, as is the lower probability at more moderate levels.

The spike at the higher range of air temperature may indicate cancellations during

the busy summer months that are caused for reasons linked to an increased demand

on equipment, infrastructure, and personnel.

3.5.5 Model Run-Time

The RF cancellation model was run on an Apple Macbook Air with a 1.7 GHz Intel

Core i7 processor and 8 GB of RAM, which was more than capable of running the

model. Model training times of less than 20 seconds were typical, and the next longest

processing times were due to the bivariate partial dependence plot computations,

which each took approximately 8 seconds.
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Figure 3.9: Cancellation occurrence model bivariate partial dependence of
wind speed, pressure, and air temperature.



Chapter 4

The Influence of Environmental Factors on Delay Occurrence

and Length

4.1 Introduction

MAI ferry sailings that are not cancelled are either early, on-time, or late departing

and/or arriving. The arrival status is of greater interest to this study because that

is the final status result of a particular sailing. The company defines late or delayed

sailings as departing and/or arriving more than 15 minutes (0.25 hours) later than

the scheduled departure or arrival time. Sailings can be delayed for many reasons

and the company tracks these in the traffic data set when a delay occurs. Table 4.1

summarizes the reasons, divided into reasons and sub-reasons.

Table 4.1: Reasons for late departure and arrival.

Reason Sub-reason

IT Systems Other, IT Systems
Port Operations Other, Loading Delays, Extra Lashings, Discharging Delays,

Bunkering Operations, Waiting for Passenger Count, Security
Related Delays

Assets Vessel Ramps, Vessel Machinery, Other, Terminal Ramps
Environmental

Factors
High Winds, Heavy Sea Conditions, Heavy Sea Ice, Heavy Snow,
Other, Poor Visibility

Human Factors Other, Vessel Staff not Available, Medical Emergencies, Unruly
Passengers

Safety Other, Vessel Detained (Safety Inspection Certificate)

The previous chapter focused on the effect of environmental factors on sailing

cancellation. This chapter focuses on the status of non-cancelled sailings, so the

cancelled sailings were removed from the data set. Of the remaining 5083 records

in the data set, 1197 were delayed (23.55%). Of these delayed sailings, a significant

number are believed to be caused by environmental factors. The traffic data provided

by MAI contains some degree of tracking of the reasons for delays, but this data field

was found to be somewhat inconsistent and was omitted from the modelling portion

48
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of this analysis (for example, some delayed sailings had no delay reason while some

on-time sailings had delay reasons). As a rough guide, however, Figure 4.1 shows the

relative frequency of delay reasons, for the tracking that does exist. As compared to

the analysis on cancellations, in which environmental factors accounted for 90% of

the cancellations, Figure 4.1 shows that environmental reasons may account for only

about one third of delay reasons. Almost two-thirds of the delays are caused by other

reasons, so it is expected that the analysis of delays with respect to environmental

factors on sailings being on time or delayed will be more challenging than the analysis

of cancellations.

Assets

Environmental Factors

Human Factors
IT Systems

Port Ops

Safety

Relative frequency of delay reasons

Figure 4.1: Relative frequency of delay reasons.

4.1.1 Company Expertise and Experience

Similar to the approach taken for the analysis of sailing cancellations, MAI staff were

consulted on the effects of environmental factors on sailings being delayed or on time.

Unlike sailing cancellations, however, in which there is a concsious decision-making
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process by MAI staff, delays occur despite the company’s best efforts to have ferries

run on time. In general the company does not assess environmental conditions and

choose to delay a ferry, (however this does happen occasionally if the benefits of

delaying outweigh those of cancelling), but will endeavour to have the sailing be on

time, and it is then subject to the external forces.

The environmental factors that can cause delays are the same as those that cause

cancellations, albeit with different effects. These are explained here in terms of the

experience of MAI staff.

Wind Speed

Wind speed can cause delays by increasing the difficulty of navigation in departing or

entering harbours and maneouvering when undocking or docking in the ports. Once

the vessels are at sea, however, wind speed itself becomes less of a factor because the

the vessels are of sufficient displacement and have sufficient power to maintain an

intended course and speed under most conditions. At sea, however, wind speed can

indirectly cause delays if the conditions support the formation of large waves.

Wind Direction

Like wind speed, wind direction may be a factor in causing delays in departing or

entering harbour or undocking and docking. Due to local geography, wind direction

affects each port differently, which makes these activities more challenging, especially

as the wind speed increases. At sea, wind direction is only an indirect factor in that

certain directions support the formation of large waves.

Wave height

Wave height can cause delays through the hydrodynamic effects of larger waves on a

ship at sea. Larger waves require more power to maintain a desired course and speed,

and increasing speed may not be a suitable option due to the increase in onboard

discomfort that can result as the ship’s speed increases. Wave height is effected by

the wind speed (higher wind, higher waves), the wind direction (in relation to the

local geography: fewer land obstructions, higher waves), the fetch (the area over

which waves have to build up: longer distance, higher waves), and the time that
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favourable conditions exist for the formation of waves (longer time, higher waves).

For this analysis wave height was not used as a specific data point due to the lack of

historical data. Wind speed was used as a proxy given its relationship to wave height.

Atmospheric Pressure

Atmospheric pressure itself does not directly cause delays, however the weather that

occurs during the presence of low pressure systems, such as high wind and waves, can

cause delays.

Air Temperature

Air temperature may cause delays due to the effects of extreme temperatures on

labouring personnel and equipment. For example, in order to maintain safety per-

sonnel working on the loading dock in very hot or very cold temperatures may work

at a reduced rate, which could delay departure. Similarly, mechanical equipment

may have trouble functioning in very cold temperatures, and electrical equipment

can malfunction in hot, humid conditions. In particular, the hydraulic ramps used

for loading and unloading vehicles are prone to malfunctions in cold conditions.

Precipitation

Similar to air temperature, precipitation may cause delays if large amounts of pre-

cipitation have a detrimental effect on the personnel or equipment.

Ice Concentration

Ice concentration causes delays either through the ship navigating through ice itself,

or trying to find alternative routes around areas of high ice concentration. The vessels

are all designed to navigate in first year ice, however forward progress is slowed as

ice concentration increases. In rare cases, the vessels can even become trapped in the

ice for periods of time. These cases often require assitance from a Canadian Coast

Guard icebreaker to become free. First year ice can be a challenge to predict because

it can form and move quickly and can be pushed around by the wind and can pile up

in certain areas (usually near land obstructions).
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Other Factors

Poor visibility due to fog, mist, precipitation, etc., was stated as not being a signficant

cause of delay. Vessels may occasionally proceed at slower speeds in conditions of

severely reduced visibility, however they are designed to operate in all conditions of

visibility without restriction. Humidity, dew point, boundary layer, and tide also

have no effect in practice and are thus omitted from the study.

4.1.2 Impacts of Delayed Sailings

The impacts of delayed sailings tend to be less severe than for cancelled sailings.

This is because the revenue stream is not interrupted and customers are not required

to rebook. In some cases a delayed sailing can cause a chain reaction; if it arrives

late it may not have time to offload and reload completely before its next scheduled

departure time, but this was not expressed as a major concern. The most important

impact of delayed sailings is a reduction in customer satisfaction that can result from

late arrival. Customers tend to be more accepting of this when the delay is caused

by environmental reasons, because it is somewhat out of the company’s ability to

control.

The remainder of this chapter is divided into three sections. The first is an ex-

ploratory data analysis of the occurrence of delays and delay length. The second

section explores delay occurrence in detail in a similar fashion to the analysis of the

occurrence of cancellations conducted in Chapter 3, whereby RF modelling was used

to explore deeper relationships and interactions between variables. The third section

explores the length of delays using the same method, however a slightly different

approach is taken because delay length is continuous variable.

4.2 Exploratory Data Analysis

The data sources and preparation used for this analysis are the same as presented

in Chapter 2 and are similar to those used in the analysis of cancelled sailings in

Chapter 3. After removing the cancelled sailings from the data set, the resulting data

set consisted of 5083 records, one for each scheduled (and completed) sailing for the

period of the study on the North Sydney - Port aux Basques route. Table 4.2 lists
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the independent variable used in this analysis. For this analysis the identifier of each

vessel was included because delays are specific to the scheduled sailing and vessel.

This identifier was not used for the cancellation analysis because the cancellation of

one sailing would cause the cancellation of all sailings on a certain route within that

time period due to limitations on port capacity. Delays are different in that a delay

on one vessel/sailing does not imply a delay on another vessel/sailing.

Table 4.2: Independent variables used in analysis of delays.

IV Description

year calendar year
month calendar month

month.pos calendar year and month
vessel cod vessel identifier

ws wind speed (kts)
wd wind direction (degrees)
pres atmospheric pressure (kPa)
air air temperature (°C)

precip precipitation (mm)
ice ice concentration (%)

The year and month fields were used to establish trends but were removed for the

modelling portion of the study in order to focus solely on the effects of environmental

factors.

The analysis of delays is approached in two ways. The first is the occurrence of a

delay, which is represented as a binary factor in the data set. A sailing is considered

to be delayed if it arrives more than 15 minutes (0.25 hours) later than the scheduled

arrival time. The second is the length of a delay, which is a continuous variable

measured in hours. A positive value means the vessel is late departing or arriving,

and a negative value means the vessel was early departing or arriving (0 means exactly

on-time).

General Observations

Of the 5083 non-cancelled sailings, 1197 were delayed, representing 23.55% of all

sailings during the period. Figure 4.2 shows the percentage of delayed sailings and

boxplots of the length of delays, aggregated by month and year over the entire study

period. Figure 4.3 further aggregates the percentage of delayed sailings and delay
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lengths by month only. The percentage of delayed sailings is highly variable on a

month to month basis; some months have delay rates higher than 80%. The monthly

trend has similarities to the monthly trends of environmental factors shown in the

Chapter 2, which identified more adverse conditions during the colder months. The

plots also demonstrate an increase in variance and median delay length during months

when adverse environmental conditions are expected. Note that the boxplots are

zoomed into the range [-1,5] hours for ease of viewing. A small number of outlier

data points exist beyond this range.
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(b) Boxplot of delay length by year/month

Figure 4.2: Occurrence and length of delay by month, 2012-2015.
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Figure 4.3: Occurrence and length of delay aggregated by month.
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Figure 4.4 shows the histogram and ECDF of delay length for all of the records

in the data set (2012-2015 period). The cutoff of 0.25 hours for being considered

delayed or not is identified with a vertical red line. The long tail of the histogram

shows the rare but non-zero frequency of longer delays. The maximum delay in the

data set is approximately 25 hours, however this histogram was zoomed to span -1

hours to 6 hours for ease of viewing. From the ECDF it can be seen that there is an

approximately 75% probability of not being delayed during the 2012-2015 period.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−1 0 1 2 3 4 5 6
Delay length (hours)

F
re

qu
en

cy

(a) Histogram of delay length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−1 0 1 2 3 4 5 6
Delay length (hours)

E
C

D
F

(b) ECDF of delay length

Figure 4.4: Histogram and ECDF of delay length.

Figure 4.5 shows the histograms of delay length by month, which highlights the

more frequent and longer delays in the colder months, and a reduction in both delay

occurrence and delay length in the warmer months. Figure 4.6 shows the ECDF plots

of delay length by month. The probability of not being delayed is significantly higher

in the warmer months than the colder months.

Obsevations by Environmental Factors

The plots in Figure 4.7 show the cumulative percentages of delayed sailings aggre-

gated over intervals spanning the range of each environmental factor, and the plots in

Figure 4.8 show the boxplots of the delay lengths aggregated over the same intervals.

Increasing wind speed appears to be associated with a small increase in delay occur-

rence and in delay length. Wind direction appears to have little effect except for a
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slight peak in delay occurrence and delay length variance when the wind is from the

west. There are significantly more and longer delays when the atmospheric pressure

is low, probably due to low presence being an indicator of adverse weather. Similarly

for air temperature there are more and longer delays at the lower range, perhaps due

to the increased presence of sea ice. Precipitation does not appear to affect delay

occurrence or length to a significant degree. Increasing ice concentration appears to

increase the occurrence and length of delays as well.
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Figure 4.7: Percentage of delayed sailings aggregated by environmental factors.

Figure 4.9 shows the percentage of delayed sailings by wind speed and direction
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Figure 4.8: Delay length aggregated by environmental factors.
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in heatmap format. Unlike the same heatmap for cancellations that demonstrated a

clear trend, little can be discerned from this heatmap in terms of delays. Note that

blank element in the heatmap reflect a lack of data points for those wind speed and

direction intervals.
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Figure 4.9: Percentage of delayed sailings by wind direction and speed.

Figure 4.10 shows the correlation between delay length and the continuous inde-

pendent variables, as well as between the continuous independent variables. Delay

length shows a weak correlation with air temperature and ice concentration and very

weak or neglible correlations with the remaining variables. Air temperature and ice

concentration shows a strong correlation, while pressure and wind speed are weak to

moderately correlated with precipitation. The remaining combinations show weak or

neglible correlations.

An ANOVA test was conducted to determine the statistical significance of the

cardinal wind direction on delay length. The results, summarized in Appendix C,

show a strong statistical significance. The Tukey Honest Significant Differences was

also calculated to determine the confidence intervals on the differences between the

means of the wind directions. The results show that only westerly winds are significant

(see Appendix C for complete results).
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Figure 4.10: Correlation between delay model variables.

Observations by Vessel

Figure 4.11 shows the percentage of delayed sailings by vessel, as well as boxplots

of the delay length for each vessel. The MV HL has the best performance in terms

of both delay occurrence and delay length, and also appears to be early the most

often. The MV BP is the sistership to MV HL but appears to have noticabley worse

performance in terms of delays.

An ANOVA test was conducted to determine the statistical significance of the

vessel on delay length. The results, summarized in Appendix C, show a strong signif-

icance. The relationship between the vessel and environmental conditions is not clear,

however, and the significance may be partially attributed to non-environmental fac-

tors. The Tukey Honest Significant Differences was also calculated to determine the

confidence intervals on the differences between the vessel means. The results verified

that the HL is statistically significant against all other vessels. The remaining vessels

only have partial or no pairwise signifiance (see Appendix C for complete results).
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Figure 4.11: Occurrence and length of delay by vessel.

4.3 Delay Occurrence Modelling

This analysis examines the relationship between the dependent variable late (binary

descriptor of whether a sailing is delayed or not) and the environmental factors de-

scribed above as independent variables. The exploratory data analysis established

trends between the dependent and independent variables as well as limited interac-

tions between variables (which were inconclusive). In order to analyse the response

of the entire set of independent variables, classification modelling techniques were

employed.

4.3.1 Model Development

Several classification models were investigated in order to determine the most suitable

approach to proceed, including logistic regression, classification tree, gradient boosted

trees, linear discriminant analysis, k-nearest neighbours, support vector machines, and

random forests.

The caret package in R (Kuhn et al., 2016) was used to design and implement a

standardized test for model selection. Each model was trained on the same training

data set with the same random seed. Repeated 10-fold cross-validation was used to
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improve each model’s performance and reduce overfitting. Several metrics were mea-

sured for each model and are summarized in Table 4.3. Based on the metrics of AUC

and kappa, the Random Forest (RF) model exhibited the best performance. All of

the models had low sensitivity scores, which reinforces the hypothesis that predicting

delays will be more challenging than predicting cancellations. The sensitivity of the

RF model is not indicative of a well-performing model, however it is much higher

than the other models and is therefore also the best model at predicting the positive

class (in this case, delayed sailings), which is important for imbalanced data sets.

Table 4.3: Performance metrics used for delay occurrence model selection

Model Accuracy Sensitivity Specificity BalAcc Kappa AUC

Ctree 0.7511 0.2134 0.8942 0.5538 0.1255 0.5708
LogReg 0.7872 0.0042 0.9955 0.4999 0.0417 0.5994
LDA 0.7863 0.0084 0.9933 0.5008 0.0026 0.5976
GBTree 0.8004 0.1088 0.9841 0.5466 0.1342 0.6833
KNN 0.7899 0.0502 0.9852 0.5179 0.0532 0.6232
SVM 0.7898 0.0000 1.0000 0.5000 0.0000 0.5770
RF 0.8021 0.1339 0.9800 0.5570 0.1604 0.7147

To examine the relationship between environmental factors and delay occurrence,

a RF model was formulated with the R package randomForest (Liaw & Wiener, 2002)

using the environmental factors previously described and the binary response variable

late, which denotes that a sailing was “not delayed” (0) or “delayed” (1). A detailed

description of RF models is provided in the previous chapter and will not be repeated

here. The model variables are summarized in Table 4.4.

Table 4.4: Variables used in delay occurrence model formulation.

late dependent categorical
vessel cod vessel identifier categorical
wind speed independent continuous

wind direction independent categorical
atmospheric pressure independent continuous

air temperature independent continuous
precipitation independent continuous

ice concentration independent continuous

The model was trained on a training set consisting of 90% of the original data

set and tested on a testing set consisting of the remaining 10%. The number of trees

ntrees was set as 100 and mtry was determined by finding the minimal OOB error
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for the ensemble over the range of possible values. The plots in Figure 4.12 show that

for this model the minimum OOB error occurs when mtry=2 and the effect of the

number of trees on the OOB error. Values of ntree greater than 50 produce a stable

minimum error.
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Figure 4.12: Delay occurrence model OOB error as a function of number of
variables and of number of trees in the forest.

4.3.2 Model Performance

A detailed description of the model performance metrics was provided in the previous

chapter and will not be repeated here.

Table 4.5 shows the key performance metrics of the constructed model. The high

measure of specificity is no surprise given the imbalance of the data set. The sensi-

tivity score of 0.1849, however, is very low, which represents the model’s inability to

correctly predict delayed sailings. This may be an indication of the lack of predic-

tive ability of environmental factors alone. As seen in the exploratory data analysis,

there are roughly twice as many delays caused by non-environmental factors as by

environmental factors, and these delays are distributed throughout the ranges of the

environmental predictors. This makes it very challenging to predict delay occurrence

based on environmental factors alone.

Similar to the approach taken in the cancellation prediction model to attempt
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Table 4.5: Delay occurrence model performance.

Accuracy Sensitivity Specificity BalAcc Kappa AUC

Model 1 0.7673 0.1849 0.9459 0.5654 0.1679 0.7235

performance improvement, a new feature was added to the data set. The late field

was examined for cases where it was 1 and recoded to 0 if the environmental conditions

during the planned voyage duration were benign. This decision was made based on

the improbability of benign environmental conditions being the cause of a delay.

In other words, delays that occurred during benign conditions were assumed to be

caused by another, non-environmentally-related reason. The same wind speed and

ice concentration thresholds as the cancellation model were used (20 kts and 10%

ice concentration and 25 kts and 10% ice concentration). Table 4.6 shows that a

modest gain in specificity is achieved using the lower wind speed threshold, however

the model remains a poor predictor of delayed sailings.

Table 4.6: Delay occurrence model performance using increased wind speed
and ice concentration thresholds.

Accuracy Sensitivity Specificity BalAcc Kappa AUC

Model 1 0.7673 0.1849 0.9459 0.5654 0.1679 0.7235
Model 2 0.9250 0.3725 0.9868 0.6797 0.4646 0.9540
Model 3 0.9665 0.3529 0.9878 0.6703 0.3971 0.9878

4.3.3 Results and Discussion

In this section the various aspects of the effects of the independent variables on model

outcomes are explored.

Variable importance

As discussed previously, RF have two methods of evaluating variable importance, one

that results in a score for the mean decrease in accuracy, and the other a score for

the mean decrease of gini. Figure 4.13 shows the variable importance evaluated by

both methods. The methods agree that air temperature and Vessel are the most

and least important variables, respectively, and that pressure ranks as number three.

Wind speed, wind direction, precipitation, and ice concentration rank differently, most
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noticeably between ice concentration and wind speed. This disagreement between

importance measures may be a symptom of the poor performance of the model in

general. Interestingly, air temperature, which can indicated the presence of ice, is

more important than ice concentration, which is an actual measure of the presence

of ice.
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(a) Variable importance ranked
by mean decrease accuracy
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Figure 4.13: Delay occurrence model variable importance by mean decrease
accuracy and mean decrease gini.

Variable Responses

Figure 4.14 provides a comparison of the predicted and actual responses over the

range of each variable. This provides an estimation of how closely the predicted

responses are to the actual responses on a per variable basis. The variables with higher

importance (wind speed and pressure) track more closely to the actual predictions,

however none of the variables track particularly closely, which is indicative of poor

model performance.
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Figure 4.14: Delay occurrence model predicted vs actual responses for each
variable.



69

Variable Partial Dependence

Figure 4.15 shows the partial dependence of each of the independent variables, in

order of importance, referenced to the “delayed” class. The plots show the range of

each environmental factor for which the probability of predicting the cancelled class

are highest, independently (i.e., not accounting for interactions). The probability of

the model prediciting the positive class (“delayed” class) is highest when the the air

temperature is very low. As expected, ice concentration has very low probability of

predicting a delay in the absence of ice, and higher probability in the presence of ice.

Pressure has a higher probability at its extremes, indicative of the presence of storms

(low pressure) or possibly high traffic levels during the good summer weather (high

pressure). Wind speed and precipitation show a general increase in probability as

those variables increase. The two categorical variables, wind direction and vessel, do

not show strong trends in the probability of predicting a delay, although the lower

probability associated with the MV HL ties in with the results of the ANOVA test

conducted previously.
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Figure 4.16 shows the bivariate partial dependence plots, which estimate interac-

tions between two variables, for combinations of air temperature, pressure, and wind

speed. The interactions do not show clear trends, however some observations can

be made. The correlation between air temperature and ice concentration is evident

in the shape of the first bivariate plot; there is a higher probability of predicting a

delay when the temperature is lower and the ice concentration is higher. The second

plot of air temperature and wind speed emphasizes the importance of air temperature

relative to wind speed; little can be assessed about wind speed from this plot. The

third plot of air temperature and pressure also shows the relative importance of air

temperature over pressure, and the decrease in probability as pressure moderates is

also evident.

4.4 Delay Length Modelling

Another way to analyze delayed sailings is by developing a model to predict the delay

length. If the delay length is zero, the sailing is exactly on time. If the delay length is

positive, it is late arriving, if negative, it is early arriving. This analysis examines the

relationship between the dependent variable delta (the difference between actual and

scheduled arrival times) and the environmental factors described above as independent

variables. The exploratory data analysis established trends between the dependent

and independent variables as well as limited interactions between variables (which

were inconclusive). In order to analyse the response of the entire set of independent

variables, regression modelling techniques were employed.

4.4.1 Model Development

Several regression models were investigated in order to determine the most suitable

approach to proceed, including logistic regression, classification tree, gradient boosted

trees, linear discriminant analysis, k-nearest neighbours, support vector machines, and

random forests.

The caret package in R (Kuhn et al., 2016) was used to design and implement a

standardized test for model selection. Each model was trained on the same training

data set with the same random seed. Repeated 10-fold cross-validation was used

to improve each model’s performance and reduce overfitting. The metrics of RMSE
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and R2 were measured for each model and are summarized in Table 4.7. No model

performed particularly well; a RMSE of 0.8 equates rougly to a 48 minute error in

prediction of delay length. Based on these metrics, however, the Random Forest (RF)

model exhibited the best performance and was selected for the analysis.

Table 4.7: Performance metrics used for delay length model selection

Model RMSE R2

Rtree 0.8455 0.0556
LinReg 0.8417 0.0441
GBTree 0.8219 0.0947
KNN 0.8388 0.0507
SVM 0.8395 0.0742
RF 0.8050 0.1337

To examine the relationship between environmental factors and delay length, a

RF model was formulated with the R package randomForest (Liaw & Wiener, 2002)

using the environmental factors previously described and the continuous variable of

delay length delta, measured in hours. The model variables are summarized in Table

4.8.

Table 4.8: Variables used in delay length model formulation.

delta dependent categorical
vessel cod vessel identifier categorical
wind speed independent continuous

wind direction independent categorical
atmospheric pressure independent continuous

air temperature independent continuous
precipitation independent continuous

ice concentration independent continuous

The model was trained on a training set consisting of 90% of the original data set

and tested on a testing set consisting of the remaining 10% of the original data set.

The number of trees ntrees was set as 150 and mtry was determined by finding the

minimal MSE error for the ensemble over the range of possible values. Figure 4.17

shows that the minimum MSE error was found when mtry=4, and that the MSE

converges as ntrees increases past 50.
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Figure 4.17: Delay length model MSE error as a function of number of variables
and number of trees.

4.4.2 Model Performance

Similar to the delay occurrence model, the delay length model has poor predictive

performance. After tuning, the model achieved a RMSE of 0.7726 and R2 of 0.162

on the testing data set. This is attributed to the fact that the model uses only

environmental factors as predictors, while there are many other factors that cause

delays.

4.4.3 Results and Discussion

In this section the various aspects of the effects of the independent variables on model

outcomes are explored.

Variable Importance

Figure 4.18 shows the variable importance evaluated by both methods (mean decrease

accuracy and mean decrease gini). The methods agree that air temperature is the

variable of greatest importance and vessel is the variable of least importance, but

disagree about the relative importance of the remaining factors. These results are

similar to the delay occurrence model and may be a symptom of the poor performance

of the model in general. Like the delay occurrence model, air temperature, which can
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indicate the presence of ice, is more important than ice concentration, which is an

actual measure of the presence of ice.
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Figure 4.18: Delay length model variable importance by mean decrease accu-
racy and mean decrease gini.

Variable Responses

Figure 4.19 provides a comparison of the predicted and actual responses over the

range of each variable. This provides an estimation of how closely the predicted

resonses are to the actual responses on a per variable basis. The variables with

higher importance track more closely to the actual predictions, however none of the

variables track particularly closely, indicative of weak model performance.
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Figure 4.19: Delay length model predicted vs actual responses for each vari-
able.
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Variable Partial Dependence

Figure 4.20 shows the partial dependence of each of the independent variables, in order

of importance. The plots show the marginal effect of each variable on the predicted

response. Air temperature shows a strong marginal effect at the lowest temperatures,

dropping off as the temperature warms above -10°C. Ice concentration shows a spike

in the marginal effect as the value increases from zero and as concentrations exceed

60%. Logicially speaking, however, it does not make sense that 10% ice concentration

has more of an effect than 50%, so the spike at the lower end is expected to be due

to other factors. Lower pressure also has a larger marginal effect, while moderate

pressure has minimal effect. The increase in effect as pressure increases is probably

due to other factors (like traffic density), similar to the effects observed in the de-

lay occurrence model. Except for a small increase in marginal effect as wind speed

increases, slightly larger effect when the wind is from the west, and slightly smaller

effect for the HL vessel, there is no further compelling evidence of strong marginal

effects in the remaining variables.
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Figure 4.21 shows the bivariate partial dependence plot, which estimates interac-

tions between two variables, of air temperature and pressure. Bivariate dependence

for other combinations of variables were not calculated due to the low marginal ef-

fects of those variables, or due to a high correlation (as is the case for air temperature

and ice concentration). The air temperature by pressure plot shows largest marginal

effect when pressure is lowest, and for moderate pressures air temperatures of less

than -10°C increase the marginal effect. Moderate temperatures and pressures have

little effect, while higher temperatures show an increase in effect over the range of

pressure.
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Figure 4.21: Delay length model bivariate partial dependence of air tempera-
ture and pressure.

4.5 Model Run-Times

The RF delay length and delay occurrence models were both run on an Apple Mac-

book Air with a 1.7 GHz Intel Core i7 processor and 8 GB of RAM, which was more

than capable of running the models. Model training times of less than 20 seconds

were typical, and the next longest processing times were due to the bivariate partial

dependence plot computations, which each took approximately 8 seconds.



Chapter 5

Discussion

5.1 Introduction

The aim of this research is to analyse the effects of environmental factors on MAI

ferry operations. This was approached through a statistical analysis of ferry sailing

cancellations and delays with respect to environmental factors. The analysis of sailing

delays was further broken down into an analysis of delay occurrence and delay length.

Through exploratory data analysis and statistical modelling, the likelihood and im-

pact of each environmental factor on operations was examined. Results demonstrated

that environmental factors alone are good predictors of sailing cancellation but poor

predictors of sailing delay.

This chapter is divided into three parts. The first is a discussion of the inter-

relationships between environmental factors, cancellations, and delays, and their con-

nections to decision-making. The second part explores expected trends based on on

likely climate change scenarios and their potential impacts on company operations.

The third part provides overall conclusions, recommendations for further research,

and final thoughts.

5.2 Relationship Between Cancellations and Delays

The dominant environmental factor for cancellation prediction is wind speed, followed

second by pressure and third by air temperature. Precipitation, wind direction, and

ice concentration followed these three with considerably less influence. The dominant

factor in delay prediction was air temperature, however there was disagreement be-

tween the variable importance measures for the remaining variables. There was some

agreement that pressure and wind speed factored moderately high, however wind di-

rection, precipitation, and ice concentration factored lower and with differing priority.

80
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The delay prediction models did not have good performance, so the variable impor-

tance is harder to reconcile and draw conclusions from, however some observations

can be made.

The fact that wind speed factors much more prominently in cancellation prediction

than delay prediction reflects current company policy and decision-making. MAI staff

stated that in the past (prior to the period of this study) the decision to cancel was

made less frequently. The vessels were very seaworthy so the goal was to send the

ferries even if the wind was high and attempt to enter the destination harbour as

soon as the wind speed dropped to a safe level. Although this would allow ferries to

arrive at the earliest possible time given the weather, it would often cause ferries to be

significantly delayed, waiting outside of the harbour for hours until the wind dropped.

More recently the company found that costs could be reduced by cancelling sailings

based on the forecast, and customer satisfaction also increased because customers in

general preferred to wait for the next sailing on shore than endure bad weather at

sea for extended periods. This change in approach to handling bad weather caused

an increase in cancellations due to wind speed and a related reduction in delays due

to wind speed, reflected in Figure 5.1, which shows this relationship during the 2010-

2011 period when this change in policy was made, and also through a comparison of

Figures 3.3 and 4.7, wherein cancellations increase drastically with wind speed, but

delays increase only slightly. The decision to cancel more frequently due to wind speed

effectively removes wind speed as a dominant factor in delay prediction. Conversely,

one could reasonably assume that cancelling less frequently in the presence of high

winds would increase the overall frequency and length of delays.

Ice concentration factored relatively highly in variable importance of the delay

prediction models in terms of mean decrease accuracy, but quite low in the cancella-

tion prediction model. This again reflects company policy in that sailings are rarely

cancelled due to ice. In general the vessels are capable of completing their voyage in

the majority of ice conditions found in the Cabot Strait, but delays may be encoun-

tered along the way if the ice concentration is high. The approach to ice concentration

is different than for wind speed, however, in that delays due to ice are generally more

acceptable. This is likely for two reasons. One, sailing through ice does not typically

cause an increase in discomfort for passengers because the presence of ice reduces the
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Figure 5.1: Percentage of cancelled and delayed sailings, 2006-2015.

effects of waves and wind on the vessel. Two, the logic behind cancelling a sailing

due to high wind does not hold for ice because high wind typically passes within a

small time window, so it is reasonable to expect that another sailing can occur within

a reasonable amount of time. Ice, however, does not pass quickly and could remain

for several days or weeks. Cancelling for these longer periods is not an option, so the

risk of delay is more acceptable.

Interestingly, air temperature proved to be a more important predictor of delays

than ice concentration. This may be due in part to the procedures for collecting,

interpolating, storing, and displaying these data sets, and also to the fact that ice

concentration is only one factor of concern with respect to the presence of ice (other

factors such as thickness and age were not considered in this study). However, it

is clear that air temperature is a good predictor of delay and a moderate predictor

of cancellations. Figures 3.3 and 4.7 demonstrate that at the lowest temperatures

delays are quite frequent, which is probably an indication of the presence of ice and

a reflection of the company’s decision-making, but also that cancellations increase

significantly as temperature moderates, while delays decrease. This again reflects the

decision making with respect to wind speed, because moderate temperatures reflect

less ice, but also the presence of storms that bring warmer, moist air along with high

winds.
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At the beginning of this study wind direction was expected to have more impor-

tance in predicting cancellations and delays based on the statements of MAI staff with

respect to the difficulty in entering harbour in higher winds from various directions.

Although this is almost certainly a practical reality of harbour navigation, this study

found that wind direction was not a prominent factor. The statistical significance of

cardinal wind direction on delay length found in Chapter 4 by ANOVA determined

that only a westerly wind was significant in producing longer delays, however nei-

ther the cancellation model nor the delay models found wind direction to be of great

importance.

As stated earlier, one fundamental difference between modelling cancellations and

delays is the fact that delays are generally not a result of a decision, but an effect

realized due to some external factor, and that cancellations are always the result

of a decision. This highlights a limitation in the modelling of cancelletions: the

environmental data used for this study is based on observed conditions, but decisions

are made based on forecasts. By using observed conditions it must be acknowledged

that error may be introduced, because actual conditions often have some degree of

difference from their associated forecast. For example, a prediction of high winds may

cause a cancellation, but if the high winds do not actually occur the model will learn

that the cancellation occured during otherwise acceptable wind speeds. Data were

not available on the reliability of forecasts, however the error associated with this is

assumed to be minimal because the decision to cancel is typically made 12-48 hours

prior to sailing, when forecasts have a higher reliability. Furthermore, environmental

factors typically affect operations in their extremes, and the relative frequency of

forecasts being incorrect to the degree that a decision would be changed is assumed

to be low, so the statistical significance of these “incorrect” values of environmental

factors would be low and have little effect on the model.

5.3 Future Trends

The preceding chapters encompass a thorough investigation of the effects of envi-

ronmental factors on MAI ferry operations, using a variety of statistical exploration

and modelling techniques, and from a historical perspective. The findings obtained
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through rigorous statistical analysis reinforce what MAI ferry captains and opera-

tions managers have known for years: that the likelihood of cancellation increases as

wind speed increases, and the likelihood and impact of delays increases as ice con-

centration increases (or, as previously demonstrated, as air temperature decreases).

Less obvious in practice, perhaps, are some of the subtle relationships of and between

environmental factors and their combined effects on cancellations and delays, i.e., the

high likelihood of cancellation if the atmospherice pressure is very low even if wind

speeds are low, and the fact air temperature is actually a better predictor of delays

than ice concentration. It is hoped that these and other findings from Chapters 3

and 4 provide a straightforward explanation of the effects of environmental factors on

current and recent MAI operations.

This knowledge may provide insight into the decision-making for current opera-

tions, however the lack of discovery of a significant and previously unknown environ-

mental effect limits the degree to which changes in company policy or decision-making

would be required. The key to mobilizing this gained knowledge for the benefit of

future decisions lies in attempting to predict how circumstances may change over

the coming years and decades, and what effect that will have on the company. A

determination of how operations may be affected by future environmental scenarios

and what impacts these changes may have can inform longer-term decision making

and initiate further investigation into areas of concern.

5.3.1 Predicting Future Cancellations

In order to better understand how future operations will be affected by cancellations

caused by environmental factors, the RF cancellation prediction model constructed in

Chapter 3 was used to project future cancellation likelihoods using data from select

Climate Model Intercomparison Project Phase 5 (CMIP5) climate change models.

Due to the poor performance of the delay models using environmental factors alone,

the projection study was limited to projecting cancellations. CMIP5 is based on

the latest agreements of the World Climate Research Programme’s Working Group

on Coupled Modelling to promote coordinated atmosphere-ocean general circulation

climate model experiments. The efforts of this working group and the twenty climate
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modelling groups that comprise it provide for freely available state-of-the-art multi-

modal datasets to allow for the wider advancement of climate variability and change

(Taylor, Stouffer, & Meehl, 2012).

The CMIP5 models attempt to project the effects of forcing due to the internal

interactions of the complex and non-linear climate system itself (such as El Nino and

the North Atlantic Oscillation), as well as externally-forced responses due to natu-

ral causes (such as large volcanic eruptions) and anthropogenic activities (such as

the burning of fossil fuels). External forcing is standardized through the “represen-

tative concentration pathways” (RCP) protocol, which establishes radiative forcing

scenarios that provide model inputs. The RCP used in the projection of cancellation

probability was RCP8.5, which is based on radiative forcing of 8.5 W/m2 in 2100,

and represenative of a high emissions scenario (Moss et al., 2010).

Five climate model data sets were used for the projections: CMCC-CM (Scocci-

marro et al., 2011), CNRM-CM5 (Voldoire et al., 2013), INM-CM4 (Volodin, Dian-

skii, & Gusev, 2010), IPSL-CM5A-LR (Dufresne et al., 2013), and IPSL-CM5A-MR

(Dufresne et al., 2013). These were selected based on their availability of data for the

timeframe in question, total size (to remain within download and storage limitations),

variables represented in the data set (i.e., wind speed, wind direction, atmospheric

pressure, air temperature, precipitation, and ice concentration), and observation fre-

quency to fit the cancellation projection model (eight times daily).

The timeframe with which to make cancellation projections was selected as the

20-year period spanning 2026 to 2045. This period represents a medium- to long-term

planning horizon that supports strategic planning, deicision-making, and initiatives,

such as fleet-recapitalization and infrastructure projects, but is not so far in the future

as to be meaningless to current MAI decision-makers. The intent is to determine if

cancellations are likely to increase, decrease, or remain the same, so that the impacts

of these outcomes may be considered in future planning.

The geographical area of interest is the same as the statistical analysis of can-

cellations and delays in Chapters 3 and 4, the Cabot Strait between North Sydney,

Nova Scotia, and Port aux Basques, Newfoundland. The climate model data sets are

provided in NetCDF format (similar to the historical data sets used in Chapters 3 and

4) and the process for extracting and formatting the the data into a data set usable
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by the projection model was the same as outlined in previous chapters. The resulting

data sets (one for each model) consisted of values for each environmental factor for

every three hours from January 2026 to December 2045. To simulate ferry sailings a

list of fictitious scheduled departure times was generated that closely resembles the

operational schedule currently in use, i.e., two sailings in each direction each day.

The final step in data matching involved pairing each scheduled sailing with the most

adverse environmental factors spanning the duration of the voyage.

5.3.2 Results

Each of the five resulting input data sets were fed into the RF cancellation model

developed in Chapter 3, yielding a binary prediction of either “not cancelled” or

“cancelled” for every scheduled sailing from 2026 to 2045. These predictions were

then aggregated by year and month to determine the projected ratio of cancelled

sailings to total sailings and compared to historical data from 2006 to 2015.

Figure 5.2 shows the results of the five climate change data set model runs and

the comparison to previous years. Aggregated annually, the results of all models

demonstrate an increase in the ratio of cancelled sailings to total sailings aggregated

annually. Figure 5.3 shows the mean of the five model results for each projected year,

as well as the ranges between the maximum and minimum values for each year.
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Figure 5.2: Comparison of projected and historical annual cancellation ratios
for each climate model.



87

Historical Predicted

0

5

10

15

20

25

30

35

40

45

50

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
26

20
27

20
28

20
29

20
30

20
31

20
32

20
33

20
34

20
35

20
36

20
37

20
38

20
39

20
40

20
41

20
42

20
43

20
44

20
45

Year

%
 c

an
ce

lle
d

Yearly Mean

2011−2015 Mean

2026−2045 Mean

Mean/Max/Min percentage of cancelled sailings by year, historical vs. predicted

Figure 5.3: Comparison of projected and historical annual cancellation ratios
by mean, maximum, and minimum of all five climate models.

The average of the cancellation ratios between 2006 and 2015 is 6.93% and between

2011 and 2015 is 9.8%. Although it is informative to observe the trend from 2006,

the latter of these ratios is more useful for future comparison for two reasons: (1)

it encompasses the period that only all currently operating vessels were in service

(and the older vessels retired), and (2) it encompasses the period of the company’s

modified policy towards delays and cancellations (i.e., ferries would not sail in adverse

conditions and wait for a “weather window” to enter the destination port (thus risking

a substantial delay), but would be cancelled prior to sailing).

The mean cancellation ratios for all models in 2026 is projected to be 14.81%,

which indicates an increase of 5.02% by 2026. The mean cancellation ratio for all

models over the 2026 to 2045 period is projected to be 19.35%, which indicates an

increase of 9.55% over the 2011 to 2015 period.

Figure 5.4 aggregates the cancellation ratios by month, showing a bar graph com-

parison of the monthly means and standard deviations of historical and predicted

cancellation ratios (2011-2015 and 2026-2045, respectively). This plot shows that the

months from October to June are projected to have significant increases in cancella-

tion rates (almost doubling in some cases and more than doubling in at least three

months), while July, August, and September are projected to remain relatively stable.

Note that the standard deviation of the historical cancellation ratios is of limited use
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because there are only 5 data points for each month (2011, 2012, 2013, 2014, and

2015).
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Figure 5.4: Comparison of projected (2026-2045) and historical (2011-2015)
mean and standard deviation of monthly cancellation ratios.

5.3.3 Study Limitations

These results should be read with the acknowledgement of various model limitations.

First, both the cancellation and the delay prediction models are based on environ-

mental predictors alone. Although the acknowledged poor performance of the delay

model makes clear the requirement for additional inputs or alternate approaches, it

should be remembered that cancellations also occur for non-environmental reasons,

and despite the very good performance of the cancellation model, a degree of error

will always be present for this reason. Second, the historical environmental data in

the study are subject to measurement errors and errors resulting from the modelling

and interpolation methods used in the NARR. Third, the traffic data were found to

have what are suspected to be data-entry errors, and although steps were taken to

reduce these errors (see the rules in Appendix A), it is unlikely that all of the errors

were found. Fourth, only five CMIP5 climate change models were used in this study.

Despite the coordination and standardization of climate change modelling provided
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by the World Climate Research Programme Working Group, variation between mod-

els is expected due to the different model approaches, internal and external forcing

parameters, mathematical structures on which the models are based, and the inherent

error of each model. A better distribution of cancellation predictions would result

from using as many CMIP5 models as possible.

5.4 Knowledge Mobilization

An investigation into the driving forces behind these increases is not the intent of

this study, although one hypothesis is that climate change may in general be causing

an increase in the strength and frequency of storms over the next several decades.

In order to better understand specific drivers, a focused study of the impacts of a

larger set of climate models on MAI operations should be undertaken, inlcuding a

targeted analysis of projected environmental patterns within Atlantic Canada and

the associated variations in specific weather and ice conditions.

A detailed analysis of the decision to cancel sailings could also be undertaken to in-

vestigate potential opportunities for mitigating the losses caused by cancelled sailings.

This could include a risk analysis to identify the risks and opportunities associated

with the decision to cancel, which would provide a framework for understanding the

priorities and tradeoffs. Cancelled sailings generate no revenue but also have reduced

operating costs because the vessel is not waiting at sea for a chance to enter harbour.

This implies an optimal point in the decision between cancelling allowing the sailing

to proceed with a certain likelihood of delay. The problem becomes more complex

when other company priorities are incorporated, such as customer satisfaction and

safety, and would require data on other aspects of MAI operations. However when

combined with the impacts of various environmental factors from this study a frame-

work for informed decisions amidst these tradeoffs could be developed. One example

that would benefit is the study of queue length as cancellations occur, and how quickly

the backlog is dealt with, to determine if more optimal policies are possible.

One of the principal reasons that the vessels are so dominantly affected by high

winds is the geogrpahy of Port aux Basques harbour, which is relatively constrained

for large vessels that risk being pushed off course by the wind when travelling at slower

speeds. The current fleet of vessels are modern, seaworthy, ice-class vessels, but are
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limited in their manoeverability due to their fixed shaft lines. Bow thrusters and

the retro-fitted Becker rudders significantly improve manoeverability at low speeds,

however in constrained harbours without the availability of tug boat assistance, ma-

noeverability remains an issue. Harbour improvement initiatives may improve the

situtation but would be very costly.

Fleet recapitalization is typically planned over decades and normally begins with

an analysis of requirements based on projected future realities. If the company is con-

cerned about the projected rise in cancellations, a more detailed study of the changing

environmental conditions can help shape the requirements for future fleet recapital-

ization. Ship propulsion and manoevering technology has advanced significantly in

recent years and will continue to do so. Examples applicable to this scenario include

the introduction of azipods, which can significantly increase the manoeverability and

autonomy of vessels (but are limited in ice), as well as advances in engine efficiency to

reduce operating costs. Furthermore, potential vessel designs could be simulated in

the operating environment to verify the best-performing option to meet requirements,

as well as to provide an analysis of tradeoffs between costs and requirements.

5.5 Conclusions and Future Work

This thesis set out to analyze the effects that various environmental factors have on

MAI ferry operations and to determine how variations in these factors in the coming

decades may change these effects. Various statistical analysis tools were employed

and RF was selected to model the occurrence of cancellations, the occurrence and

extent of delays, as well as the relative importance of environmental factors on each

of these individually and in selected pairs. The cancellation models was then run

using five climate change model data sets to project the extent to which cancellations

may increase or decrease over the next three decades.

The RF cancellation model had good performance and demonstrated that envi-

ronmental factors alone are good predictors of cancelled sailings. Results showed that

cancellations increase with wind speed and have an inverse relationship with atmo-

spheric pressure, but are affected to a lesser degree by wind direction, air temperature,

precipitation, and ice concentration. Both delay models demonstrated poor perfor-

mance, which is attributed to the lack of predictive power of environmental factors
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alone in this context. Delays are caused by many reasons that are not related to the

environment, and further study is recommended in this area. Results, however, did

show that delays increase in frequency and length as the air temperature decreases

and the ice concentration increases, but show lesser relationships with wind speed,

wind direction, atmospheric pressure and precipitation. For the period 2026-2046

there is consensus among the five climate models used for projections that cancel-

lations will increase significantly over the next three decades in all but the summer

months.

These conlusions highlight areas in which further study would provide better un-

derstanding of MAI operations, both current and in the future, and address some of

the study limitations (some previously mentioned but all summarized here):

• Analysis of non-environmental factors that affect the occurrence and length of

delays to better understand the nature and impacts of delays in general.

• Explore non-machine-learning modelling techniques for the delay problem, such

as hazard-based duration models.

• Analyse trade-offs between environmental and non-environmental factors, and

the presence of any covariance that may affect model results.

• Investigate the impacts of cancelled sailings, including loss of revenue, customer

satisfaction and experience, cancelled/rescheduled bookings, queue length build-

up and recovery, etc., to better understand the cancellation decision and miti-

gation strategies.

• Conduct a study of a larger set of climate change models for the Atlantic Canada

region to better understand how weather and ice conditions are projected to

change and the associated impacts on operations.

• Conduct a detailed risk analysis and cost-benefit analysis on the decision to

cancel to determine if an optimal policy that balances priorities exists and can

be implemented in practice.

• Study the impacts of climate change projections on operations in the context

of long-term decision-making, including fleet recapitalization and infrastructure

upgrades, to ensure future requirements are identified.
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Marine Atlantic Incorporated has a long history of providing essential transporta-

tion and logistics links through its ferry operations in harsh environmental conditions

year-round. It is hoped that this modest contribution can provide some measure of

practical benefit to the already considerable body of knowledge, expertise, seaman-

ship, policies, and decision-making held by the company.
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Appendix A

Traffic Data Set Filtering Rules

A.1 Traffic Data Set Filtering Rules

All of the data in the traffic data set was input manually by MAI staff and is there-

fore prone to data input errors. Some of the errors are observable due to their not

complying with the logic of ferry operations (i.e. an arrival time that was earlier than

the departure time). Upon inspection it was found that some of these errors could

be identified and corrected manually based on the logic of ferry operations, however

the size of the data set made this impractical. These errors were therefore addressed

by filtering the data through a set of rules based on the logic of ferry operations

and deleting the records that were found to be in error. The following paragraphs

list the rules used to identify errors and any supplemental notes for increasing the

understanding of the traffic data set.

Rule 1: The scheduled departure time must be later than the scheduled arrival

time. If the difference between the scheduled arrival time and the scheduled departure

time is negative, an error exists. Note that records are from the perspective of the

port, not the vessel or the individual sailing, and thus the arrival time must be before

the departure time.

Rule 2: The actual departure time must be later than the actual arrival time.

If the difference between the actual arrival time and the actual departure time is

negative, an error exists. Note that records are from the perspective of the port,

not the vessel or the individual sailing, and thus the arrival time must be before the

departure time.

Rule 3: The maximum allowable arrival delay is 3 days (72 hours). If the differ-

ence between the actual arrival time and the scheduled arrival time is greater than

72 hours, an error exists. This is based on the longest delay in recent years being

slightly longer than 2.5 days. Many records had arrival delays of weeks, months, or

even years, which are most likely due data entry errors. (Note that while modelling
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delays in chapter five this was further reduced to 6 hours and any longer delays were

considered as outliers and removed, vastly improving model performance).

Rule 4: The maximum allowable early arrival is 1 hour. If the difference between

the actual arrival time and the scheduled arrival time is less than -1 hours, an error

exists. This is based on consultation with MAI staff wherein it was learned that

vessels almost never arrived more than 1 hour early. Many records had early arrivals

of many hours, days, weeks, or even years, which are most likely due to data entry

errors.

Rule 5: The maximum allowable departure delay is 12 hours. If the difference

between the actual departure time and the scheduled departure time is greater than

12 hours, an error exists. This is based on the MAI schedule, which typically has

departures every 12 hours in each direction. Many records had departure delays of

days, weeks, months, or even years, which are most likely due data entry errors.

Rule 6: The maximum allowable early departure is 1 hour. If the difference

between the actual departure time and the departure arrival time is less than -1

hours, an error exists. This is based on consultation with MAI staff wherein it was

learned vessels only depart more than 1 hour early in the event of a schedule change,

which is a rare event.



Appendix B

Derivation of Equations for Wind Speed and Direction

B.1 Wind Direction

NetCDF files provide wind data using two vectors, u and v. u is the east-west

component of the wind speed and direction vector (the component on the x-axis). It

is positive when blowing to the east, and negative when blowing to the west. v is

the north-south component of the wind speed and direction vector (the component

on the y-axis). It is postive when blowing to the north, and negative when blowing

to the south.

In order to obtain wind direction from the vectors, the two-argument arctangent

function is used. Arctan(y, x) determines the angle between the x-axis and the vector

from the origin to the point (x, y). Thus, in this case, arctan(v, u) determines the

angle between the x-axis and the vector from the origin to the point (u, v). However,

wind direction is in reference to the y-axis (north is at the top), so the agruments are

reversed to yield the angle from the y-axis. The direction the wind is blowing to, in

radians, is then

wind direction = atan2(u,v) (B.1)

where atan2 is the nomenclature for the two-argument arctangent function in most

mathematical computing languages.

In order to convert from radians to degrees, the result is multiplied by 180/π,

becoming

wind direction =
180

π
atan2(u,v) (B.2)

Finally, in order to convert from the direction the the wind is blowing to to the

direction the wind is blowing from (the format used in marine weather forecasts),

180° is added to the result, giving

wind direction =
180

π
atan2(u,v) + 180 (B.3)
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B.2 Wind Speed

Wind speed is determined simply by using the Pythagorean theorem to determine

the length of the vector from the origin to (u, v). The wind speed in m/s is then

wind speed =
√
u2 + v2 (B.4)

There are 1852 m in one nautical mile and 3600 seconds in one hour, so to convert

from m/s to nautical miles per hour (kts), the result is multiplied by 3600/1852,

giving

wind speed =
3600

1852

√
u2 + v2 (B.5)



Appendix C

Results of ANOVA Tests and Tukey HSD

C.1 Statistical Significance of Cardinal Wind Direction on Delay Length

Table C.1: ANOVA test of wind direction on delay length.

Df Sum Sq Mean Sq F value Pr(>F)

wdb.w 7 60.1 8.6 6.7 5.6210E-08
Residuals 5075 6467.9 1.3

Table C.2: Results of Tukey HSD for wind direction on delay length.

diff lwr upr p adj

N-E 0.0487 -0.2041 0.3016 9.9906E-01

NE-E 0.0040 -0.3098 0.3179 1.0000E+00

NW-E 0.2101 -0.0060 0.4261 6.3647E-02

S-E 0.0306 -0.1904 0.2516 9.9990E-01

SE-E 0.0417 -0.1822 0.2655 9.9925E-01

SW-E 0.0266 -0.2193 0.2725 9.9998E-01

W-E 0.3095 0.0784 0.5406 1.2884E-03

NE-N -0.0447 -0.3438 0.2544 9.9983E-01

NW-N 0.1613 -0.0326 0.3553 1.8614E-01

S-N -0.0181 -0.2175 0.1813 9.9999E-01

SE-N -0.0070 -0.2096 0.1956 1.0000E+00

SW-N -0.0221 -0.2488 0.2046 9.9999E-01

W-N 0.2607 0.0502 0.4713 4.3596E-03

NW-NE 0.2060 -0.0626 0.4747 2.7982E-01

S-NE 0.0266 -0.2461 0.2992 9.9999E-01

SE-NE 0.0377 -0.2373 0.3126 9.9990E-01

SW-NE 0.0226 -0.2706 0.3158 1.0000E+00

W-NE 0.3054 0.0245 0.5863 2.2015E-02

S-NW -0.1795 -0.3294 -0.0295 6.9808E-03

SE-NW -0.1684 -0.3226 -0.0142 2.1061E-02

Continued on next page
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Table C.2: Results of Tukey HSD for wind direction on delay length.

diff lwr upr p adj

SW-NW -0.1834 -0.3682 0.0013 5.3225E-02

W-NW 0.0994 -0.0651 0.2640 5.9817E-01

SE-S 0.0111 -0.1499 0.1721 1.0000E+00

SW-S -0.0040 -0.1945 0.1865 1.0000E+00

W-S 0.2789 0.1079 0.4498 2.1486E-05

SW-SE -0.0151 -0.2089 0.1788 1.0000E+00

W-SE 0.2678 0.0931 0.4425 9.3293E-05

W-SW 0.2829 0.0807 0.4850 5.9364E-04

C.2 Statistical Significance of Vessel on Delay Length

Table C.3: ANOVA of vessel on delay length.

Df Sum Sq Mean Sq F value Pr(>F)

vessel cod 3 67.5 22.5 17.7 2.0322E-11
Residuals 5079 6460.5 1.3

Table C.4: Results of Tukey HSD for vessel on delay length.

diff lwr upr p adj

ERC-BP 0.1051 -0.0166 0.2267 1.1805E-01
HL-BP -0.1478 -0.2446 -0.0509 5.1550E-04
VIS-BP 0.1713 0.0391 0.3036 4.8701E-03
HL-ERC -0.2528 -0.3739 -0.1318 4.9432E-07
VIS-ERC 0.0662 -0.0846 0.2171 6.7207E-01
VIS-HL 0.3191 0.1874 0.4507 3.0688E-09
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