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Abstract

Quantile and GAMLSS methods for growth curves are described and applied to data

from the Canadian Health Measures Survey for child Body Mass Index (BMI) and

triceps skinfold thickness. Both methods use cubic splines and GAIC is used to

determine the extent of smoothness. Diagnostic worm plots were used to refine the

models. A measure of smoothness of the final quantiles was developed and applied

to the curves.
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Chapter 1

Introduction

Monitoring the growth of a child is one of the key ways a healthcare provider can

assess if that child is developing normally or if there is a cause for concern. What is

considered the normal range of growth is highly dependent on that child’s age. As

a result, growth charts that are conditioned upon age are a useful tool that allow

healthcare providers to quickly compare the development of a child to that of their

peers. If a child is found to be at the extreme of the normal range for their age,

intervention can begin immediately.

Age conditional growth charts are constructed from a cross-sectional representa-

tive sample of the target population (in rare cases there may be longitudinal data

available). A fixed set of centile curves (in this thesis the 5th, 10th, 25th, 50th, 75th,

90th and 95th) show how we expect the distribution at each age to behave. If the

lines are smooth, reading the chart is easier for the health care provider. Additionally

smooth centile curves make much more sense biologically, because growth takes time

and we would not expect any dramatic or abrupt changes.

There are many methods available for the construction of smooth centile curves.

This work will focus on variations of the LMS method first proposed by Cole and

Green (1992) and on quantile regression (Koenker and Bassett, 1978) for conditional

centile curve estimation. Both methods have attractive attributes: The LMS method

gives a parametric distribution allowing the calculation of an explicit conditional

distribution at any given age, while the nonparametric quantile regression method

requires no underlying assumption about the distribution of the data and allows for

more flexibility in the shape of the fitted curves.

1.1 Canadian Health Measures Survey

The data used in this thesis comes from the Canadian Health Measures Survey

(CHMS) cycles 1, 2 and 3, a cross-sectional survey of Canadians between 3 and

1
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79 years. The CHMS consists of an at-home interview to collect demographic and

lifestyle data as well as a follow-up examination consisting of anthropometric mea-

surements, blood work, blood pressure, and other physical health tests at a mobile

examination clinic. The clinic locations are chosen based on the Labor Force Survey,

and households in those locations are chosen using data from the 2006 census.The

collection of data happened at locations in seven provinces, Nova Scotia, Ontario,

Quebec, British Columbia, Manitoba, Alberta and Newfoundland and Labrador.

Data collection occurred during 2007-2009 for cycle 1, 2009-2011 for cycle 2 and

2011-2013 for cycle 3. The cycles had a response rate of 51.7%, 55.7% and %52

respectively. Data from the two cycles was combined as per Statistics Canada guide-

lines (Statistics Canada, 2013) and weighted to account for the design effect and

non-response bias (Statistics Canada, 2013). This thesis uses children that were be-

tween the age of 6 and 19 at the time of examination. Cycles 2 and 3 collected more

information during the home interview portion of the study than cycle 1 but the

measurements used for this work were done in the same way.

The anthropomorphic measurements captured by the CMHS included height,

weight, body bass index (BMI), hip circumference, chest circumference, and thigh

circumstance as well as five skinfold thickness measurements. Two of these mea-

surements were used to compare and contrast the methods of centile curve creation:

BMI, because of its common usage in identifying overweight and obese individuals,

and triceps skinfold thickness, because the dramatic changes in the distribution of

this variable as a function of age provide challenges during the fitting process. The

population was divided by sex for analysis because males and females show very dif-

ferent growth curves for anthropomorphic measures. A total of 2965 males and 2868

females had their BMIs measured in cycles 1, 2, and 3. Skinfold thickness measure-

ments were only available for cycle 1 and 2. A total of 1996 males and 1942 females

had triceps skinfold thickness measurements in the target age range. Tables 1.1 and

1.2 show mean and interquartile range by age for BMI and triceps skinfold thickness.
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Age 25th centile 50th centile 75th centile
6 14.6 15.6 16.3
7 15.2 16.2 18.4
8 15.8 16.5 18.6
9 15.9 17.3 19.4
10 16.3 17.4 20.7
11 16.6 18.4 20.6
12 17.0 18.6 21.7
13 18.2 20.9 22.8
14 18.6 20.9 24.5
15 19.3 21.8 26.3
16 19.5 21.3 25.0
17 20.4 23.0 25.3
18 21.6 24.0 28.0

(a) Male BMI

Age 25th centile 50th centile 75th centile
6 14.5 15.8 16.8
7 14.8 16.4 17.5
8 15.2 16.6 19.2
9 15.9 16.7 19.0
10 15.9 17.6 19.5
11 16.5 18.6 21.1
12 17.6 19.7 22.0
13 18.0 19.7 23.4
14 18.6 20.2 23.2
15 19.6 21.8 26.7
16 20.0 21.3 24.4
17 20.1 22.4 25.0
18 19.6 21.8 24.8

(b) Female BMI

Table 1.1: Male and female Body Mass Index by age
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Age 25th centile 50th centile 75th centile
6 8.1 9.0 11.7
7 7.9 10.2 15.0
8 8.2 10.4 14.1
9 9.0 11.1 16.1
10 9.0 12.6 17.8
11 8.3 11.1 17.1
12 8.2 12.1 16.6
13 7.7 10.8 16.0
14 8.2 9.0 11.3
15 6.1 8.1 11.1
16 6.2 8.2 11.2
17 6.5 8.4 11.1
18 6.5 8.8 11.9

(a) Male Triceps SF

Age 25th centile 50th centile 75th centile
6 9.1 10.5 12.2
7 8.4 11.0 13.5
8 9.8 11.9 16.6
9 9.9 13.0 17.6
10 10.1 13.1 16.5
11 10.4 12.4 16.7
12 10.5 13.9 16.9
13 11.2 14.0 19.1
14 12.1 16.1 20.9
15 12.7 16.2 20.7
16 14.0 16.9 18.5
17 13.5 16.8 19.7
18 15.4 17.3 20.5

(b) Female Triceps SF

Table 1.2: Male and female triceps skinfold thickness by age
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1.2 Growth Charts

The large range of information gathered during the CHMS allows researchers to ex-

plore the link between obesity and other health indicators such as cardiovascular

disease, infectious diseases, and exposure to environmental contaminants. Addition-

ally the survey data collected during interviews could reveal links between obesity and

lifestyle choices such as nutrition, smoking habits, alcohol use, sexual behavior, and

physical activity as well as demographic and socioeconomic variables. The distribu-

tion of anthropometric measures used to assess body composition vary dramatically

as a function of age. This thesis aims to present models of anthropomorphic mea-

surements that are conditional on a subject’s age through the use of centile charts.

Childhood obesity is a risk factor for many diseases, including diabetes, heart dis-

ease and adverse psychological outcomes in childhood and adulthood (Reilly et al.,

2003). BMI is often used as a measure of obesity because it is convenient and non-

invasive to measure; however, it can not differentiate between muscle and fat and

does not indicate where fat is stored on the body. Cardiovascular disease risk is an

example of a health outcome associated with how fat is distributed around the body

(Daniels et al., 1999). Skinfold measurements provide a clearer picture of how fat is

stored on a child’s body, giving healthcare providers a better understanding of the

risk factors each child faces.

BMI is calculated using height and weight as BMI = weight/height2 [kg/m2].

Weight was measured using a digital scale and height using a stadiometer with mov-

able head mount. Skinfold measurements were conducted according to the CPAFLA

protocol (Canadian Society for Exercise Physiology, 2003) using a Harpenden skin-

fold caliper. Each skinfold was measured twice, the subscapular skinfold used for this

thesis was measured below the inferior angle of the scapula at an angle of 45 degrees

to the spine.

1.3 Thesis Overview

In this thesis, we compare and contrast various methods for the construction of growth

charts for growth measurements from the CHMS data. Chapter 2 describes the

method of quantile regression and fits models using an automatic model selection
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method. Chapter 3 details the LMS method and its generalization the GAMLSS

method, then both model types are fitted to the CMHS data. In Chapter 4 the

models produced in Chapter 2 and 3 are assessed and refined using the diagnostic

tool of worm plots. Finally in Chapter 5 the refined models of each method are

examined for overall smoothness.



Chapter 2

Quantile Regression

Parametric modeling methods for growth curves rely on the assumption that the

data, after transformation, follows some known distribution conditional on age, and

that its distribution is the same for all ages (or at least from the same family of

distributions). Quantile regression is an attractive alternative because it requires no

assumption about the underlying distribution of the data. It also does not impose any

global constraints, meaning one age range can behave quite differently from another

in the model.

2.1 Quantile Regression

Given data (ti, yi), i = 1, . . . , n quantile regression estimates a conditional quantile

function g(ti) by minimizing an objective function given by Koenker and Bassett

(1978)

n∑
i=1

ρτ (yi − g(ti)) ,

where τ is the desired quantile and g belongs to a family of smooth functions G. The

function ρτ is a simple piecewise loss function

ρτ (u) = u(τ − I(u < 0)) =

τu u ≥ 0

(τ − 1)u u < 0.

This loss function weights the errors above and below the fitted curve differently as

seen in Figure 2.1.

If G is the set of constant functions, the estimated function ĝ will be the τ th

sample quantile of Y . For example choosing τ = 0.5 will result in ĝ equal to the

7
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Figure 2.1: Quantile regression loss function, τ = 0.5, 0.75, 0.95

unconditional sample median which minimizes

n∑
i=1

|yi − g(ti)|.

The growth of children, however, is known to be nonlinear so it is convenient to choose

the family of functions G to be cubic splines. Cubic splines are flexible functions

consisting of piecewise cubic polynomials over intervals given by a sequence of knots

u = (u0, . . . , uN+1)
>. These polynomials have equal values, and equal first and second

derivatives at the interior knots. Any cubic spline for a set of knots u can be written

as a linear combination of basis splines, hj, j = 1, . . . , J i.e

g(ti) =
J∑
j=1

βjhj(ti),

so conditional quantile estimation involves finding β = (β1, . . . , βJ)> which minimizes

n∑
i=1

ρτ

(
yi −

J∑
j=1

βjhj(ti)

)
.

One advantage of quantile regression is the speed at which the models can be fitted.
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Quantile regression can be formulated as a linear programming problem and solved

using the simplex algorithm (Roberts and Barrodale, 1973). The error function ρτ is

linear, so given p parameters β there are p possible directional derivatives which are

positive or negative constants, and 2p possible directions. The algorithm shrinks the

objective function by measuring the derivative of the objective function with respect

to each parameter and changing the parameter corresponding to the largest negative

derivative. This step is repeated until there are no negative directional derivatives

remaining, indicating that a solution has been achieved (Koenker and Hallock, 2001).

2.2 B-splines

B-splines are a set of recursively defined basis splines with domain [u0, uN+1]. Let

u0, . . . , uN+1 be a set of nondecreasing numbers. Call uj the jth knot of the knot

vector u, with u0 and uN+1 referred to as the end knots. All the B-splines developed

from the set of knots u will have domain [u0, uN+1]. Knots u0 and uN+1 are end knots

and there are N interior knots. Any cubic splines with these knots can be written

as a linear combination of B-splines of the degree three developed from this knot

sequence.

The splines are defined recursively and depend on the choice of knot sequence u

and the degree of the splines n (n = 3 in this case). For a given set of knots u and

degree n, to define the set of basis function we first define a new vector of knots v

with the end knots repeated m times where m is the order of the basis functions,

m = n+ 1 (m = 4 in this case)

v = (v0, . . . , vN+2m)> = (u01 , . . . , u0m , u1, . . . , u(N+1)1 , . . . , u(N+1)m)>.

The set of B-splines of degree n = 0 is the set of “top-hat” functions spanning the

space between each sequential knot.

Bj,0(t) =

1 for vj ≤ t < vj+1

0 otherwise

for j = 1, . . . , N+2m−1. For n > 0 the B-splines are created by combining B-splines
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of lower order, using

Bj,n(t) =
t− vj

vj+n − vj
Bj,n−1(t) +

vj+n+1 − t
vj+n+1 − vj+1

Bj+1,n−1(t)

where j = 0, . . . , N+2m−1−n. As a example, a spline function with a set of interior

knots (2,3), end knots (1,4) and degree 3 can be constructed from N+m = 2+4 basis

functions B0,3(t), . . . , B5,3(t). These basis functions and the lower order functions used

to create them are shown in Figure 2.2. Bj,n(t) is a weighted combination of two other

Figure 2.2: Basis splines for interior knots 2,3

basis functions so it is only non zero where they are non zero, thus Bj,n(t) is non zero

on at most the interval [uj, uj+n+1). This means that more densely placed knots result

on B-splines that are non-zero on smaller intervals. Because the terms multiplying

Bj,p−1(t) and Bj+1,p−1(t) are linear in t, Bj,n(t) is indeed of order n− 1 + 1 = n.

We can use the set of functions Bj,n(t) for j = 1, . . . , J = N+2m−1−n as a basis

to approximate a function f(t) by using a weighted sum of the basis functions. The

first basis function is omitted B0,n(t) to avoid collinearity because
∑J

0 Bj,n(t) = 1.

The function g(t) =
∑J

j=1 αjBj,p(t) is used to approximate the true function f(t).

This set of basis splines converts a covariate t into a flexible polynomial, that can be
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made more flexible by increasing the number of knots.

2.3 Model Construction

Quantile regression requires selection of a set of knots u from which the basis splines

are constructed. Wei et al. (2004) suggests using the same set of knots for each centile

and choosing a relatively even spacing of knots with additional knots during times

of rapid change (younger ages). There is no universally accepted method of choosing

the best set of knots in the literature.

In an effort to reduce the effect of the arbitrary choice of knots on the final model,

the Generalized Akaike Information Criterion GAIC was used. The GAIC calculation

normally requires the log-likelihood to be calculated. However, since quantile regres-

sion has no explicit distribution from which to calculate a likelihood, the minimized

objective function is used instead, penalized by a factor proportional to the number

of splines used J , and the number of parameters in those splines m (the order of the

splines)(Koenker et al., 2016). For a single centile τ

GAICτ =
n∑
i=1

ρτ

(
Yi −

J∑
j=1

βjBj,p(xi)

)
+ kJm.

The choice of k is left to the user, for BMI and triceps skinfold thickness the value

k = 3 was used.

To created the set of candidate knot vectors we either included or excluded a

knot at each integer value in the data range and enumerated all possible interior

knot vectors for a total of 2Ncandidate vectors. The end knots remain fixed and are

included in each model. By calculating the GAIC of the model constructed from

each possible knot vector and choosing the one with the lowest value, a set of knots

that balances fidelity to the data and smoothness is found. This method is possible

through brute force optimization. Since quantile regression models are so fast to fit,

a model for each possible knot vector can be calculated and compared. For a set of

centiles, the sum of the GAICτ

GAIC =
∑

GAICτ



12

is used. This approach selects the same set of knots for every centile in the set.

2.4 Quantile Regression Results

To illustrate the effect of the number and placement of knots, growth charts are

compared using various numbers of knots with an approximately even spacing across

the domain of the data. For all models, fixed end knots at 6 and 19 are used.

Internal knot sequences of (7,11,14), (7,9,14,16,17), and (7,9,11,13,14,15,16,17,18) are

used to show how the graphs compare using a low, medium and high number of

knots respectively. Each graph shows the 5th, 10th, 25th, 50th, 75th, 90th and 95th

centiles. Figures 2.3, 2.4, and 2.5 show the B-splines constructed for each set of knots.

A function that is the sum of the curves depicted Figure 2.5 will be very flexible but

may overfit the noise in the data.

Figure 2.3: B splines for knots 7, 11, 14
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Figure 2.4: B splines for knots 7, 9, 14, 16, 17

Figure 2.5: B splines for knots 7, 9, 11, 13, 14, 15, 16, 17, 18
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The growth charts of BMI produced for males and females in Figures 2.6 and 2.7

respectively, show that a small and moderate number of knots produce smooth and

plausible results. Using a high number of knots, however, causes rather extreme fluc-

tuations to appear in the highest centiles. Interestingly, for males these fluctuations

also appear in the lowest centiles as well. Figure 2.7 also illustrates another hazard

of knot selection: The 95th percentile curve for female BMI constructed using many

knots crosses the 90th percentile at the beginning of the range, indicating that there

is too much flexibility in the curve there.

Constructing the growth curves of triceps skin fold thickness with the same set of

knots yields results similar to BMI. Curves created with 3-5 knots have a well defined

structure but curves constructed with more knots suffer from sporadic variations and

the problem of crossing near the ends of the age range. Females (Figure 2.9) show

more variation than males (Figure 2.8).
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Figure 2.6: QR growth curves for male BMI using 3, 5, and 9 interior knots
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Figure 2.7: QR growth curves for female BMI using 3, 5, and 9 interior knots
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Figure 2.8: QR growth curves for male triceps using 3, 5, and 9 interior knots
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Figure 2.9: QR growth curves for female triceps using 3, 5, and 9 interior knots
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Using the GAIC method, the interior knot vector selected for each variable and sex

is listed in Table 2.1. The models created for male BMI and female triceps skinfold

both use 3 interior knots along with end knots at 6 and 19. Both feature smooth

curves, with no undesirable rapid changes (Figures 2.10 and 2.13). Female BMI and

male triceps skinfold have 7 and 6 interior knots, respectively. They show much

more rapid variation in their growth curves (Figures 2.11 and 2.12). They both also

suffer from crossing centiles at the endpoints of the graphs. Male triceps skinfold in

particular suffers from the problem of having very wiggly centiles near the end points.

This is likely the result of the knots that were selected being clustered around the

maximum and minimum ages (7 and 8 on the low end, 16, 17 and 18 on the high

end).

Measure Gender Knots selected
BMI Male 10 11 17
BMI Female 10 11 13 14 16 17 18
TRIC Male 7 8 10 16 17 18
TRIC Female 9 14 15

Table 2.1: Knots selected through GAIC for quantile regression

These models selected by automatic model selection will be evaluated and improved

if needed in Chapter 4.
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Figure 2.10: QR growth curves for male BMI with knots at 10, 11, 17 years
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Figure 2.11: QR growth curves for female BMI with knots at 10, 11, 13, 14, 16, 17,
18 years

Figure 2.12: QR growth curves for male triceps skinfold thickness with knots at 7, 8,
10, 16, 17, 18 years
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Figure 2.13: QR growth curves for female triceps skinfold thickness with knots at 9,
14, 15 years



Chapter 3

Generalized Additive Models for Location Scale and Shape

In contrast to the nonparametric method of quantile regression, parametric methods

offer the advantage of creating a full conditional likelihood function that allows for

the creation of centiles at any desired value as well as producing a likelihood of any

observed value. The LMS and GAMLSS methods outlined in this section transform

the data to follow a known distribution and allow the parameters of the distribution

to change smoothly with covariates.

3.1 Generalized Additive Models For Location Scale and Shape

The widely used general linear models and general additive models describe a response

y as a random variable with a distribution in the exponential family. The mean of

y is modeled as function of explanatory variables using a monotonic link function.

The wide range of distributions included in the exponential family give these models

a good deal of flexibility. However while these models allow for the mean of the

distribution to depend on various covariates, the variance of y is a function of the

mean and a dispersion parameter through the variance function, V (y) = φv(µ).

If the variance of y changes as a function of the covariates in a different way than

implied by the variance function then our model may not be accurate. Additionally,

for members of the exponential family the skewness and kurtosis of y are generally

functions of of the mean µ as well.

The GAMLSS method developed by Rigby and Stasinopoulos (Rigby and Stasinopou-

los, 2005) generalizes these methods by relaxing the requirement that the distribution

be a member of the exponential family and by allowing any of the parameters of the

distribution to be a function of covariates. This allows the different moments to have

different relationships with the covariates than the usual dependence on the mean of

the distribution.

In general it is assumed each observation yi is independent of the other and has

23
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probability density function f(yi,θ) where θ = (θ1, . . . , θp)
> is a vector of parameters.

Each parameter is modeled using its own monotonic link function and linear predictor

gk(θk) = ηj.

For most distributions the first parameter θ1 is the mean, or location parameter

µ, and θ2 is the variance parameter σ. Some distributions have one or two shape

parameters customarily denoted θ3 = ν and θ4 = τ . Using this parameterization and

a distribution with four parameters f(y|µ, σ, ν, τ), the GAMLSS model has the form

g1(µ) = η1 (3.1)

g2(σ) = η2

g3(ν) = η3

g4(τ) = η4.

These models have been shown to be very flexible and have been applied to a wide

range of topics. Rigby and Stasinopoulos (Rigby and Stasinopoulos, 2004) showed

that the GAMLSS model could be used to to create centile curves that vary as a

function of an explanatory variable (age).

3.1.1 Parametric Centile Curve Estimation with GAMLSS

To model the distribution of y as a smooth function of a single explanatory variable

x (age) we can use the GAMLSS model. Given X = x, Y is modeled as a random

variable with a density function fY (y|µ, σ, ν, τ) where the parameters µ, σ, ν, τ are

modeled as

g1(µ) = h1(x) (3.2)

g2(σ) = h2(x)

g3(ν) = h3(x)

g4(τ) = h4(x)

where hi are cubic smoothing splines in x.
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The choice of monotonic link function gk, for k = 1, . . . , 4, can be changed to suit

the needs of the problem under consideration, but g1 is conventionally chosen to be

the identity link so that it will have an additive effect and ease in interpretability.

For the second link function, g2 is in general chosen to be the log link to ensure that

the scale parameter is always non-negative. Finally g3 and g4 are also conventionally

chosen to be the identity and log link respectively for similar reasons but these can

vary based on the requirements of the density function f chosen for the model.

The functions hk, k = 1, . . . , 4, are estimated by maximizing the penalized log

likelihood defined as

lp(µ, σ, ν, τ) = ld(µ, σ, ν, τ)− 1

2

4∑
k=1

λk

ˆ
(h
′′

k(x))2dx (3.3)

where ld is the log-likelihood with ld =
∑n

i=1 li due to independence, where li is

the log-likelihood of a single observation from the distribution f(yi|µi, σi, νi, τi). The

constants λk are chosen by the user and determine the amount of penalty that is

applied to each parameter. A large λk results in a smoother curve hk(x) being fitted

at the expense of fidelity to the data. Rigby and Stasinopoulos (2005) show that lp

depends only on the heights of the spline at the observed ages and that the penalty

can be written as a quadratic form in these heights with the matrix dependent on the

second derivatives of the splines. Appendix A contains a description of the smoothing

splines and of the penalty matrix.

3.1.2 LMS Method

Before the GAMLSS framework was developed by Rigby and Stasinopoulos, the first

use of a model from this family for centile curves was in a 1992 paper by Cole and

Green (Cole and Green, 1992). Most growth data exhibits some degree of skewness

so the method assumed that the data could be normalized using a Box-Cox power

transformation. For the positive random variable Y the transformed variable Z is

defined as

Z =


1
σν

[(
Y
µ

)ν
− 1
]

if ν 6= 0

1
σ
log
(
Y
µ

)
if ν = 0

(3.4)
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where µ > 0, σ > 0, −∞ < ν <∞ and Z is standard normal. When ν = 1, this gives

a normal distribution, ν < 1 gives a skewed right distribution and ν > 1 a skewed left

distribution. If we allow the values of the parameters to change as a smooth function

of time t, we can replace ν, µ, and σ with the smooth curves L(t), M(t), and S(t)

respectively giving the form

Z =


1

S(t)L(t)

[(
Y

M(t)

)L(t)
− 1

]
if L(t) 6= 0

1
S(t)

log
(

Y
M(t)

)
if L(t) = 0.

(3.5)

The loglikelihood of this distribution is given by

l(L,M, S) =
n∑
i=1

(
L(ti)log

yi
M(ti)

− log(S(ti))−
z2i
2

)
, (3.6)

where zi is the standardized score of observation yi found in equation (3.5). To

estimate the three curves of the LMS method the penalized log-likelihood

l(L,M, S)− λµ
2

ˆ
(M

′′
(t))2dt− λσ

2

ˆ
(S
′′
(t))2dt− λν

2

ˆ
(L
′′
(t))2dt (3.7)

is maximized, which has the same form as equation (3.3) showing that the LMS

method is a special case of the more general GAMLSS method. Cole and Green (1992)

provide an algorithm for maximizing this penalized likelihood. Once the model has

been fitted we can explicitly calculate any centile 100(1−α) by rearranging equation

(3.5) as

C100(1−α) = M(t) (1 + L(t)S(t)zα)
1/L(t) if L(t) 6= 0

C100(1−α) = M(t)exp(S(t)zα) if L(t) = 0
(3.8)

where zα is the upper α quantile of a standard normal distribution. Since the lines

L(t), M(t), and S(t) are smooth functions, C100(1−α) will be a smooth function (Cole

and Green, 1992).
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3.1.3 Box-Cox Power Exponential

In an effort to deal with the presence of kurtosis seen in some growth data (Van

Buuren and Fredriks, 2001) which the LMS method had no mechanism for model-

ing, Rigby and Stasinopoulos described a generalization of the LMS method (Rigby

and Stasinopoulos, 2004) called the Box-Cox Power Exponential method (BCPE).

The BCPE method works similarly to the LMS method with the exception that the

transformed variable Z is now assumed to follow a standard power exponential dis-

tribution with power parameter τ , rather than a standard normal distribution. As

with the other parameters, τ is modeled as a smooth continuous function of time.

The probability density function of a power exponential distribution is

fZ(z) =
τ

c2(1+τ−1)Γ(τ−1)
exp

(
−1

2

∣∣∣z
c

∣∣∣τ) (3.9)

where τ > 0 and c2 = 2−2/τΓ (τ−1) (Γ(3/τ))−1. If τ is τ = 2 then fZ(z) is the standard

normal distribution, showing that the LMS method is indeed a special case of the

BCPE method. Other distributions are also special cases of the BCPE parameteriza-

tion, with τ = 1 corresponding to a double exponential distribution, and the limiting

case τ → ∞ corresponding to the uniform distribution (Rigby and Stasinopoulos,

2004).

To compute the centiles of a BCPE function a formula similar to the LMS method

is used

C100α = M(t) (1 + L(t)S(t)zα)
1/L(t) if L(t) 6= 0

C100α = M(t)exp(S(t)zα) if L(t) = 0,
(3.10)

however now zα is the 100(1 − α) centile of a power exponential distribution with

power parameter K(t), given by

zα =

−c [2F−1s (1− 2α)]
1/K(t)

if L(t) 6= 0

c [2F−1s (1− 2α)]
1/K(t)

if L(t) = 0
(3.11)

where F−1S is the inverse cumulative probability distribution of a gamma distribution

with shape parameter equal to the inverse of K(t). Rigby and Stasinopoulos (2004)
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showed that this distribution offered a significant improvement over the LMS method

in a study of the growth of Dutch boys. This improvement was due to the presence of

leptokurtosis (fatter tails) at young ages that went unmodeled using the LMS method.

3.1.4 Model Selection

As mentioned above, the smoothing penalty corresponding to the cubic spline for

each parameter can be expressed in a quadratic form. The trace of the correspond-

ing matrix is called the effective degrees of freedom for variable k (edfk), and is

inversely related to λk. Models are specified by the edf of each parameter, for ex-

ample BCPE(5, 4, 3, 3) represents a Box-Cox Power Exponential distribution with 5

effective degrees of freedom on the location parameter µ, 4 effective degrees of free-

dom on the scale parameter σ, etc. The total effective degrees of freedom for a given

model is simply the sum of the parameter edf ’s.

In order to choose how much smoothing to apply to each parameter (what each

edfk should be) the log-likelihood penalized by the total effective degrees of freedom

is maximized using the Generalized Akaike Information Criterion (GAIC). The GAIC

for a given model is

GAIC(b) = −2l(µ, σ, ν, τ) + b • edf (3.12)

with b > 0. A choice of b = 2 is equivalent to using AIC, and b = log(n) with n equal

to the number of observations is equivalent to the Bayesian Information Criterion

(BIC).

To find the optimal choice of smoothing parameters for a chosen model and in-

formation criterion penalty we start with a base model with edfk = 1 for all k, ie:

BCPE(1, 1, 1, 1), and optimize the GAIC of the model over the parameter space

of possible smoothing parameter combinations. The R function gamlss from the

GAMLSS package (Stasinopoulos et al., 2015) is used to fit the models for a given

set of smoothing parameters and to calculate the GAIC. In conjunction with this the

R function optim from the base STATS package (R Core Team, 2016) is used to

determine the best values for the smoothing coefficients.
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3.2 LMS and GAMLSS results

The LMS and BCPE methods described in the previous section were applied to

the CHMS data to construct growth charts for BMI and triceps skinfold thickness.

To illustrate the effect of the choice of smoothing parameters on these results, the

graphs were created by applying a large amount of smoothing and a small amount

of smoothing with the analysis stratified by sex. The constructed charts for both

anthropometric measures using automatic model selection using GAIC, first with the

LMS method, and then with the BCPE model are shown.

Figure 3.1 shows male BMI fitted using the LMS method with 1 effective degrees

of freedom for each of the 3 parameters. This model is notated as lms(1,1,1). The

centile curves are almost straight lines and increase in the spacing of the centiles until

approximately age 13 when they become relatively parallel. This behavior is reflected

in Figure 3.2 which shows plots of the three smoothed parameters L, M, and S as a

function of age. The conditional mean µ is nearly linear while the variance increases

at a relatively constant rate until about 13 years of age when it becomes constant.

The power parameter ν also increases rapidly until age 13 when its increase becomes

more gradual. An increasing power parameter indicates that the distribution of BMI

in the sample becomes more similar to a normal distribution as age increases.
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Figure 3.1: LMS(1,1,1) growth curves for male BMI

Figure 3.2: LMS(1,1,1) parameter curves for male BMI
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Female BMI follows a similar pattern to male BMI (Figure 3.3) with centiles

which are nearly straight lines that diverge slightly until about age 13 when the

spacing becomes more constant. Figure 3.4 shows this reflected in the smoothed

age conditional parameters, L, M, and S with nearly linearly increasing mean and

increasing standard deviation until age 13. The notable contrast with male BMI is

that the power parameter ν begins to decrease at higher ages after peaking in the

12-14 years of age range. This indicates that the distribution of BMI is more skewed

for older females.

Figure 3.3: LMS(1,1,1) growth curves for female BMI
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Figure 3.4: LMS(1,1,1) parameter curves for female BMI
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When an edf of 12 is used for each parameter (model lms(12,12,12)) much less

smoothing is applied and the centile curves are much more responsive to minor fluc-

tuations in the data. Figures 3.5 and 3.6 show the fitted male and female BMI

centiles using this small amount of smoothing. The differences compared to the heav-

ily smoothed centile are immediately obvious, most notably in the highest and lowest

centiles.

Figure 3.5: LMS(12,12,12) growth curves for male BMI
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Figure 3.6: LMS(12,12,12) growth curves for female BMI
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The small fluctuations that appear in the 95th centile of the male BMI curves

are unlikely to be the result of an underling biological process but rather of the

curves being fitted to the noise of the data. However some new features are visible in

this graph that possibly do represent an underlying biological process. Rather than

increasing steadily from age 6 to age 13 the centiles in Figure 3.5 show that BMI is

constant until 7 years of age when it begins a more rapid change than depicted in

the heavily smoothed centiles. The increasing variance and diverging centile lines are

only observed until approximately age 10 compared to the higher degree of smoothing

where they exhibited this behaviour until age 13.

Figure 3.7: LMS(12,12,12) parameter curves for male BMI
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Figure 3.8: LMS(12,12,12) parameter curves for female BMI
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The results are also reflected in the parameter plots seen in Figure 3.7. The σ pa-

rameter increases until age 10 where it reaches a noisy but relatively constant value.

Comparing the parameter plots for low and high levels of smoothing indicates that

the high level of smoothing forces the period during which the centile curves start

to diverge to occur later. This is a result of the smoothing of the σ parameter into

a smooth curve that changes values over a larger range than it should have. Com-

paring the power parameter ν between both models also shows that higher skewness

associated with lower age ranges may actually only occur during this period of rapid

change in the 7 to 10 year age range.

The female BMI growth charts with low amount of smoothing also show some

new features, most notably that the mean parameter µ becomes constant after ap-

proximately age 16 (Figure 3.8). This indicates that the population mean of the

BMI distribution stops increasing after this point. The female low smoothing fit also

exhibits more and larger fluctuations in the highest centiles, suggesting that there is

more noise and that female centile curves might require more smoothing when the

final model is fitted.

Performing the same types of comparisons using the triceps skinfold thickness

measurements produces results similar to those for the BMI measurements. Figure

3.9 and Figure 3.10 show that the high smoothing model for the males is possibly

over-smoothing a bump structure in the 10-13 age range. Once again it is the σ and ν

parameters where this over smoothing seems to be most noticeable, as seen in Figure

3.11 and Figure 3.12. The age of the peak mean measurements is approximately 2

years earlier in the lower smoothed graphs, akin to the BMI graphs.
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Figure 3.9: LMS(1,1,1) growth curves for male triceps

Figure 3.10: LMS(12,12,12) growth curves for male triceps
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Figure 3.11: LMS(1,1,1) parameter curves for male triceps

Figure 3.12: LMS(12,12,12) parameter curves for male triceps
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The female triceps skinfold thickness measurements are shown in Figure 3.13 and

Figure 3.14. Unlike BMI, the distribution of triceps skinfold thickness has a com-

pletely different shape between men and women. This supports the choice to create

different growth charts for males and females. The mean female triceps skinfold

thickness increases at a fairly constant rate as a function of age as seen in the µ

parameter in both Figure 3.15 and Figure 3.16. Apart from adding some noise to the

line, decreasing the amount of smoothing does not change the shape. The σ and ν

parameters are also better approximated by the high smoothing model than with the

previous three sex-variable combinations, suggesting that the final model for female

triceps skinfold thickness will incorporate a higher amount of smoothing.

Figure 3.13: LMS(1,1,1) growth curves for female triceps
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Figure 3.14: LMS(12,12,12) growth curves for female triceps

Figure 3.15: LMS(1,1,1) parameter curves for female triceps
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Figure 3.16: LMS(12,12,12) parameter curves for female triceps
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Using the GAIC model selection method discussed in the previous section, a model

was developed for each measure and gender. Each of the models fell somewhere

between the two extremes of the models discussed above. During the selection process

only integer efds were considered and constrained to be greater than or equal to 1

and less than or equal to 20. The edfs selected for each model are shown in table 3.1.

Measure Gender µ edf σ edf ν edf GAIC k = 3
BMI Male 3 3 5 15623
BMI Female 6 10 2 14963
TRIC Male 4 4 3 10768
TRIC Female 4 3 1 10801

Table 3.1: LMS models selected though GAIC

Figure 3.17 shows the model selected for male BMI and Figure 3.18 shows its

parameter plots. The model allows the power parameter enough flexibility to incor-

porate the increased skewness observed in the 7 to 10 years of age range. The σ

parameter incorporates a more sudden bend, but not quite to the extent that was

observed in the low smoothing model discussed above. This model avoids the unde-

sirable wiggles and bumps observed with the low smoothing model.

The model selected for female BMI has a higher total effective degrees of freedom

resulting in curves which show more fluctuations than those of their male counterpart.

Its power component ν is nearly identical to the heavily smoothed model and µ has

a slight S shape, but most of the rapid variation seen in Figure 19 comes from the σ

parameter shown in Figure 20 that has comparatively little smoothing. It is unlikely

that these rapid variations is σ reflect a biological process.



44

Figure 3.17: LMS(3,3,5) growth curves for male BMI

Figure 3.18: LMS(3,3,5) parameter curves for male BMI
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Figure 3.19: LMS(6,10,2) growth curves for female BMI

Figure 3.20: LMS(6,10,2) parameter curves for female BMI
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The models selected for male and female triceps skinfold thickness have a similar

amount of smoothing in both the µ and σ parameters. The mean for females increases

with age, males increase to age 12 and then decreases. Females, however, have an

almost linear ν function that steadily increases toward zero (Figure 3.24), which is

reflected in Figure 3.23 which shows that the spacing between the bottom centiles

is almost the same as the spacing between the highest centiles. The males have a

comparatively much more skewed distribution which appears to have a biologically

plausible lower limit that many points are clustered against for all age ranges seen in

Figure 3.21.

Figure 3.21: LMS(4,4,3) growth curves for male triceps
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Figure 3.22: LMS(4,4,3) parameter curves for male triceps

Figure 3.23: LMS(4,3,1) growth curves for female triceps
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Figure 3.24: LMS(4,3,1) parameter curves for female triceps



49

3.2.1 BCPE Models

Previous studies have shown that the distributions of anthropometric measures can

contain kurtosis (Rigby and Stasinopoulos, 2004). When using the LMS method this

kurtosis goes unmodeled because there is no explicit term for it, as it is a function of

µ, σ and λ. The BCPE distribution allows the models to have kurtosis where needed,

without requiring the distribution to be kurtotic at all age ranges. This added flexi-

bility helps prevent the incorrect modeling of skewness to attempt to compensate for

unmodeled kurtosis. The BCEP models were fitted to each gender and measurement

combination using GAIC to select the optimal model. This process functions the same

as with the LMS method except that the search for optimal smoothing constants now

occurs over a four dimensional parameter space rather than three. This increases

the computation time significantly, which is one of the drawbacks of choosing this

method. The models selected are shown in Table 3.2.

Measure Gender µ edf σ edf ν edf τ edf GAIC k = 3
BMI Male 3 4 4 5 15621
BMI Female 5 8 3 4 14971
TRIC Male 4 4 4 5 10708
TRIC Female 4 4 1 3 10769

Table 3.2: BCPE models selected though GAIC

The addition of the τ parameter did not dramatically change the amount of smoothing

applied to the mean and variance parameters for any of the models.

Figures 3.25 and 3.26 show the centiles produced and the parameter curves for

male BMI. Comparing them to the LMS models (Figure 3.18) shows they are nearly

identical, with differences only visible in the highest centile. This is reflected in the

µ and σ parameters which also have a near identical shape. The skewness parameter

for the BCPE model shows a linear increase to age 12 instead of the decrease to

age 8 for the LMS method. The kurtosis parameter starts near 1 indicating a heavy

tailed distribution at young ages. After age 8, the kurtosis varies around two, which

corresponds to a normal distribution.

Female BMI curves, using the BCPE model are also relatively similar to those

from the LMS method as seen in Figures 3.27 and 3.28 (compared to Figures 3.19

and 3.20). The waves that were present in the LMS growth curves are still visible
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in the BCPE curves but are slightly less pronounced. The three parameter curves

from the the LMS model also have an almost identical shape to the curves from the

BCPE model. An exception to this is between 16 and 18 years of age where the

BCPE variance curve decreases less than the LMS variance curve. In this range there

is a dramatic rise in τ . The net effect of these differences is that the upper centiles

decrease less than for the LMS models.

Figure 3.25: BCPE(3,4,4,4) growth curves for male BMI
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Figure 3.26: (3,4,4,4) parameter curves for male BMI

Figure 3.27: BCPE(5,8,3,4) growth curves for female BMI
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Figure 3.28: (5,8,3,4) parameter curves for female BMI
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Automatic model selection for triceps BCPE models did not choose models that

were very different from the LMS models for males or females. For males, one degree

of freedom was added to the ν parameter and the τ parameter was choosen to have

an edf of 5. The τ curve increases until peaking at approximately age 11 then drops

again (Figure 3.30), coinciding with the peak seen in the centile curves themselves

(Figure 3.29). The model chosen for female triceps skinfold is also very similar to the

LMS model. The very low edf on the ν parameter remains at 1, meaning it retains its

near linear shape (Figure 3.31). The addition of the τ parameter causes the actual

shape of the curves to change very little (Figure 3.32).

Figure 3.29: BCPE(4,4,4,5) growth curves for male triceps
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Figure 3.30: BCPE(4,4,4,5) parameter curves for male triceps

Figure 3.31: BCPE(4,4,1,3) growth curves for female triceps
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Figure 3.32: BCPE(4,4,1,3) parameter curves for female triceps



Chapter 4

Diagnostics

4.1 Worm Plots

Van Buuren and Fredriks (2001) showed how a detrended QQ-plot called a worm

plot could be used to assess model fit when constructing growth curves. The paper

explains how the method can be used for any model where a likelihood can be ex-

plicitly calculated, such as the LMS or other GAMLSS methods. The method was

later extended to quantile regression by (Buuren, 2007). The worm plot is a useful

diagnostic for fitting growth charts because it not only identifies if there is a lack of

fit to the data but also where the problem occurs and what might be done to correct

it.

In a normal QQ-plot the empirical quantile of each data point is plotted against its

theoretical quantile. For models that fit data extremely well the empirical quantile

and the theoretical quantiles should be very close and the data points will all lie

on a straight line. Deviation from this straight line can be a sign of a poor fit;

however, it can be difficult to tell what amount of deviation is cause for concern or

what exactly causes the deviations. In a worm plot, the vertical axis is replaced with

the difference of the empirical quantile and the theoretical quantile. These points

form the namesake “worm” and a flat worm indicates the data follows the assumed

distribution. Figure 4.1 (Van Buuren and Fredriks, 2001) is an example of a normal

QQ plot and a detrended QQ plot or worm plot for male BMI over all ages. It is

much easier to see the departure from the line in the detrended plot.

Creating a worm plot for the entire data set shows how well the overall model fits

but does not show how well the model fits conditional on age. Splitting the data by

age reveals how well the model fits for different age ranges. The empirical quantiles

are recalculated for the data within each age range and the worms are plotted. If

the worm for an age range dose not lie flat on the zero line there is some aspect of

the model that needs to be improved in that age range. To help visualize where we

56



57

Figure 4.1: QQ-plot and worm plot (Van Buuren and Fredriks, 2001)

expect the the worms to lie the 95% confidence intervals of the theoretical quantiles

are also plotted. Figure 4.2 (Van Buuren and Fredriks, 2001) shows the worm plots

for the same data split up among 16 age ranges with an equal number of observations.

The lowest age range is the the bottom left corner, increasing to the right then up

through the rows with the highest age range in the top right panel.

The worms in these plots show that there are many more problems with the model

fit than the global worm plot would indicate. Several of the age ranges have worms

that do not lie on the zero line or which cross the confidence interval boundaries. The

process of improving the model fit is to change the model tuning parameters one at

a time and to recreate the worm plots until a relatively good fit is achieved in each

age range. (Van Buuren and Fredriks, 2001) suggest the interpretation of the shapes

of the worms in Table 4.1.

Moment Worm Shape Diagnosis
Mean passes above the origin fitted mean is too small

passes below the origin fitted mean is too large
Variance has a positive slope fitted variance is too small

has a negative slope fitted variance is too large
Skewness has a U-shape fitted distribution is too skewed to the left

has an inverted U-shape fitted distribution is too skewed to the right
Kurtosis has an S-shape on the left bent down tails of the fitted distribution are too light

has an S-shape on the left bent up tails of the fitted distribution are too heavy

Table 4.1: Interpretation of various patterns in the worm plot

For methods such as the LMS and BCPE, the tuning parameters available are

the effective degrees of smoothness on each spline corresponding to the parameters
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Figure 4.2: Age stratified worm plots (Van Buuren and Fredriks, 2001)

of the fitted distribution. Since the amount of smoothing applied is the same across

all age ranges we have to try and fit them all simultaneously. We first begin with a

model determined through some optimization program or fitting process. The order

of tuning used by (Van Buuren and Fredriks, 2001) is to increase the effective degrees

of freedom on the mean until the worms all intersect the zero line, then to increase the

degrees of freedom on the variance until each worm’s slope is flat. Finally, increase

the effective degrees of freedom on any remaining tuning parameters such as kurtosis

and skewness until the worms are relatively straight.

Worm Plots with Quantile Regression

Quantile regression has no underlying assumption about the distribution of the data

so a method is needed to extract the theoretical quantiles to compare against the

empirical quantiles. This is done by approximating a theoretical distribution by

fitting many quantile regression models over a fine spacing of percentiles; for example

100 centiles each using the same set of basis splines for τ = {0.01, 0.02, . . . , 0.99}.
Each data point falls somewhere between two of the models and linear interpolation
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can be used to approximate its quantile to compare against its empirical quantile

(Buuren, 2007).

Improving the fit of the quantile regression model based on the information in

the worm plot is done by adding knots to places where the model exhibits poor fit.

Packing knots more densely allows the model to bend more in that interval and to

provide a better fit. Extra knots can be useful for the ages around puberty, for

example, when children’s bodies change much faster than later in life. Worm plots

can also be used to help protect against over-fitting by checking to see if any points

lie outside the 95% confidence intervals. We would expect to see 5% of the points

outside these intervals so if we see none it can be a sign that the model is over fitted

and that knots can be removed from that age range to provide a smoother fit that is

more reflective of the underlying biological process.

4.1.1 Using Worm Plots to Improve Model Fits

Starting with male BMI, in the LMS worm plots (Figure 4.3) some of the panels

show a distinct S shape, which indicates the presence of kurtosis. This is noticeably

improved in the BCPE model (Figure 4.4) as seen in panels 1, 4 and 5. Adding the

fourth parameter has helped model kurtosis that is present in the data. For this

reason we use the BCPE model. However this model is not without its flaws: Panels

3, 6, and 9 show positive or negative slopes and the worm of panel 9 lies below the

center line. Increasing the effective degrees of freedom reduces some of these problems

but does not fix them entirely. Particularly noticeable is panel 3 where a large section

of the worm passes above the confidence interval. Changing the effective degrees of

freedom for any of the parameters proved ineffective in correcting this problem unless

they were allowed to vary so liberally that much larger problems were caused in other

regions of the model. We conclude that the data deviates from the assumed model in

this age range (approximately 9 to 11.5 years old). The final model chosen for male

BMI is BCPE(4,6,4,4) (Figure 4.5).
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Figure 4.3: Worm plots for Male BMI LMS model

Figure 4.4: Worm plots for Male BMI BCPE model
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Figure 4.5: Worm plots for Male BMI improved BCPE model
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Similarly to the male BMI data, the female BMI data shows evidence of kurtosis

that goes unmodeled in the LMS model (Figure 4.6), indicated by the S pattern in

panels 3, 5, 6, and 9 that is improved when using the BCPE method (Figure 4.7).

While the BCPE model improves the problems caused by kurtosis, several of the

worms still have a large positive or negative slope indicating incorrectly fitted variance

in those regions. The automatic model selection method used in the previous section

chose a rather large effective degrees of freedom for the σ parameter at 8. By reducing

it to 4 we see in the worm plots that these problems are much abated, though not

eliminated, and that all of the worms tend to lie flatter on the line. The improved

model for Female BMI is BCPE(5,4,3,4) (Figure 4.8).

Figure 4.6: Worm plots for Female BMI LMS model
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Figure 4.7: Worm plots for Female BMI BCPE model

Figure 4.8: Worm plots for Female BMI improved BCPE model
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The S patterns are very visible in the male triceps LMS model worm plots (Figure

4.9) and they are vastly improved by the BCPE model (Figure 4.10). This model fits

reasonably well with the exception of the panels 1 and 2 where the worm falls below

the origin, indicating an incorrectly fitted mean in this region. Increasing the edf

of the µ parameter did not correct this problem so we will use the model originally

supplied by the automatic model selection technique BCPE(4,4,4,5).

Figure 4.9: Worm plots for Male triceps LMS model
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Figure 4.10: Worm plots for Male triceps BCPE model
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In contrast to the other gender and variable combination the BCPE model (Fig-

ure 4.12) offers only mild improvement over the LMS model (Figure 4.11) for female

triceps skinfold. Some of the S shape that is present in panels 1 and 2 of the LMS

model worm plots is reduced in the BCPE model (Figure 4.12). However, this small

improvement is offset by worsening of the U shape in panel 4. For the ease of com-

parison to the other models we choose to use the BCPE model. The automatic model

selection technique chose to only have an edf of 1 for the ν parameter. Increasing the

edf to 4 improves the fit but doesnt remove the problem entirely. The final model

chosen for female triceps skinfolds is BCPE(4,4,4,4) (Figure 4.13).

Figure 4.11: Worm plots for Female triceps LMS model
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Figure 4.12: Worm plots for Female triceps BCPE model

Figure 4.13: Worm plots for Female triceps improved BCPE model
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The worm plots for male and female BMI and triceps skinfold show that the

quantile regression models fit the data extremely well. Figures 4.14, 4.15, 4.16, and

4.17 show that all the worms lie flat and pass through the origin. Almost no points

fall outside the confidence regions of any of the panels. This indicates the possibility

of overfitting, as we would expect some points to fall outside these regions. For

this reason, we remove extraneous knots from the knot vector used to construct the

models, while requiring that the model remains a good fit. This will make the model

more parsimonious and reduce undulations in the percentile curves.

Figure 4.14: Male BMI QR worm plots
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Figure 4.15: Female BMI QR worm plots

Figure 4.16: Male triceps QR worm plots
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Figure 4.17: Female triceps QR worm plots
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The male BMI model constructed using the quantile regression automatic model

selection chooses knots at 10, 11, and 17. Dropping the knot at 11 does not cause

any major problems to appear in the worm plots but gives the residuals more of the

appearance that we would expect of a model that is not overfitted (Figure 4.18).

Based on this, the interior knots used for the final quantile regression model for male

BMI were reduced to (10, 17). A large number of knots were chosen for female BMI

and the resulting plots exhibit some fluctuations. Removing the knots at 11 and 17

years does not dramatically degrade the fit of the model, but attempting to remove

any more knots does, causing a serious model violation in the region surrounding that

knot. This indicates that female BMI is more variable than male BMI and requires a

more rapidly changing model to accurately fit the data. The final model chosen has

interior knots at (10,13,14,16,18), (Figure 4.19).

Figure 4.18: Male BMI QR improved worm plots
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Figure 4.19: Female BMI QR improved worm plots
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Male triceps skinfold worm plots for the quantile regression model behave similarly

to those for male BMI. Extraneous knots at age 8 and 17 can be removed which don’t

cause any patterns to appear in the worm plots, but do increase the spread of the

data points to what a model that is not overfitted should look like (Figure 4.20).

Female triceps skinfolds is the only quantile regression model where the worm plot

displays a noticeable problem with model fit. Panels 3 and 4 show an upwards facing

U shape, which can be improved by adding a knot at age 10 (Figure 4.21). The final

quantile regression model for female triceps skinfolds has knot vector (9, 10, 14, 15).

Figure 4.20: Male triceps QR improved worm plots
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Figure 4.21: Female triceps QR improved worm plots
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4.2 Measuring Smoothness

A key aspect of the growth charts produced using the methods discussed in this thesis

is the degree to which the centiles are smoothed. Rapid changes in the centiles will

make them less useful for clinicians as a small change in age could cause a large

change in the centile that a child falls into. Additionally, large or rapid fluctuations

may be seen as biologically implausible reducing the chart’s usefulness. Deciding

what exactly constitutes an appropriate amount of smoothing is rather subjective.

In order to remove fluctuations that may be a result of the fitting process or

the randomness of the sample data and not a reflection of the underlying biologi-

cal processes, researchers may add additional smoothing to the models selected by

automatic model selection techniques (World Health Organization, 2008). In the

GAMLSS methods this is done by lowering the edf’s of the parameters, and in quan-

tile regression by removing interior knots from the basis splines. The amount of

additional smoothing deemed appropriate will vary from researcher to researcher,

adding possible bias to the model.

In an effort to quantify smoothness of a particular graph, a measure of smooth-

ness is introduced that allows the comparison of models fitted with different fitting

methods, and even models fitted to different data sets. Having a objective measure

of smoothness allows the researcher to select the model with the best statistical prop-

erties from among models that produce graphs with a similar or perhaps a minimum

acceptable level of smoothness.

The measure used is the integral of the squared second derivative of the centile

Cτ

w(Cτ ) =

ˆ x

(C ′′τ )2dx .

Centile curves with more fluctuations will have a larger second derivative, and the

integral of the square converts this to a single positive constant that can be used for

comparison. The derivatives and integral were preformed numerically. Anthropomet-

ric measures tend to have a biologically defined lower limit so lower centiles tend to

be relatively smooth compared to higher centiles.

This measure could be used by researchers to compare the smoothness of the

graphs produced from their own study to that of previous published works, possibly
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performed on different populations. However, the range of ages and possible values

of the outcome might be different between studies which leads to different values of

the smoothness measure even for graphs with a similar level of apparent smoothness.

A scaled version of the smoothness measure is more appropriate for comparisons of

data created from different data sets

w̃(Cτ ) =
(xs)

3

(ys)2
w(Cτ )

where xs and ys are the range of observed x (age) and y (outcome) respectively.

Multiplying by this constant is equivalent to rescaling the fitted curves to the unit

square and recalculating the smoothness measure.

To show that this multiplicative relationship holds regardless of how the centiles

are constructed, consider the scaled smoothness measure w̃ on a curve f̃(x̃), where x̃

is the data rescaled from x ∈ (a = xmin, b = xmax) to x̃ ∈ (0, 1) on the x-axis and f̃(x̃)

is the curve fitted to that data. The relationship between the original and rescaled

curves and data is f(x) = f̃(x̃) where

x̃ =
x− a
b− a

and x = a+ (b− a)x̃.

The second derivative of the curve fitted to the rescaled data is then

f̃ ′′(x̃) =
d2f̃

dx̃2
=

d

dx̃

(
dx

dx̃

df

dx

)
=

d

dx̃
(f ′(x)(b− a))

= (b− a)

(
df ′(x)

dx

dx

dx̃

)
= (b− a)2f ′′(x).
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Thus the scaled smoothness measure is

w̃ =
´ 1

0

(
f̃ ′′(x̃)

)2
dx̃ =

bˆ

a

(b− a)4 (f ′′ (x))
2 dx

(b− a)

= (b− a)3
bˆ

a

(f ′′(x))
2
dx

= (b− a)3w.

Similarly, if we scale the data in the y direction from the range y ∈ (0, ymax) to

ỹ ∈ (0, 1) with the relations ỹ = y/ymax and f̃ = f/ymax the second derivative of the

curve fitted to the rescaled data will be

d2f̃

dx2
=

1

ymax

d2f

dx2
.

The smoothness measure of the curve fitted to the data that has been rescaled in the

y direction is

w̃ =

bˆ

a

(
f̃ ′′ (x)

)2
dx

=
1

y2max

bˆ

a

(f ′′ (x))
2
dx

=
w

y2max
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4.2.1 Centiles for the Final Models and their Smoothness Measures

Figures 4.22-4.29 show the fitted centiles for each final model. The BCPE models

feature smooth gradually changing lines while the quantile regression plots feature

much more rapid changes in the centile curves. The exception here is male BMI

fitted using quantile regression, where the centile curves look very similar to the

smooth curves fitted using BCPE and the smoothness measure reflects this with the

results being of approximately the same magnitude.

Table 4.2 contains the smoothness measure for each of the final models, computed

for each centile. An immediate observation is that the measure is typically and

approximately an order of magnitude larger for quantile regression models than for

BCPE models. This reflects what might be intuitively expected because the GAMLSS

models are fitted with an explicit smoothness penalty, while the quantile regression

models are not. Quantile regresion uses a penalty that is based on the number of

parameters available to fit the curves, essentially a penalty on how much the curves

might potentially fluctuate, not on how the fitted curves actually fluctuate, as is the

case in the parametric models. The result is that quantile regression seems to produce

models that are insufficiently smoothed.

In all the anthropometric measure, sex, and model combinations, the 90th and

95th centiles have the highest smoothness measures. The highest centiles in each

model tend to be more variable so this is expected. An interesting difference be-

tween BCPE models and quantile regression models is that for the BCPE models the

smoothness measure for the 95th centile is higher than the 90th for each fitted model.

This is not the case for the quantile regression models. For male BMI and female

triceps skinfold using quantile regression models, the smoothness measure is slightly

lower for the 95th centile. This is possible because the quantile regression curves are

fitted more independently of each other. If a bend is fitted in a given centile a similar

bend need not necessarily be fitted in an adjacent centile. BCPE and LMS models,

however, fit all the centile curves simultaneously because the value of all centiles for

a given age are based on the same conditional distribution, which is non-zero for

all positive values of the outcome. If the distribution is made more skewed or more

variable to accommodate the data at a given age, this skewness or variation will be

amplified in the extreme centiles.
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Figure 4.22: Male BMI BCPE final model

Figure 4.23: Female BMI BCPE final model
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Figure 4.24: Male triceps BCPE final model

Figure 4.25: Female triceps BCPE final model
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Figure 4.26: Male BMI QR final model

Figure 4.27: Female BMI QR final model
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Figure 4.28: Male triceps QR final model

Figure 4.29: Female triceps QR final model



Chapter 5

Discussion

Quantile regression, LMS, and BCPE models were fitted for BMI and triceps skinfold

for both males and females. Quantile regression utilized an exhaustive search proce-

dure to identify optimal knot placement by searching all possible models with integer

knot placements. LMS and BCPE models were fitted using a GAIC optimization

procedure. These models were improved using the diagnostic worm plots and had

their overall smoothness assessed.

Both quantile regression and the GAMLSS methods use these automatic model

selection techniques to remove arbitrary choice from the process of fitting centile

curves but they are only marginally successful. The models selected by the automatic

model selection routines are still dependent on a choice of penalty parameter; a larger

penalty will tend to produce a smoother graph. This may be preferable to individually

choosing the edf’s for each parameter in BCPE models, that dictate how much each

moment will be allowed to vary, or the knot number and placement of knots in quantile

regression that dictates where the curves will be allowed to bend the most, but it is

still a conscious choice by the researcher.

The objective of removing choice is further undermined by the diagnostic portion

of the model creation process. While the worm plots are useful for adjusting the

models to obtain a better fit, they are assessed visually. Deciding what constitutes

a pattern in the shape of the worms and what is just noise is left to the user, as is

deciding if the adjustments made adequately solved the problem. While guidelines

exist for how these procedures should be implemented, a more algorithmic method

might remove some of the possible bias introduced by the user preference.

A final and perhaps overlooked choice made by the user is the assumption about

the underlying distribution (this only applies for GAMLSS models). LMS and BCPE

methods assume that the data are normally or BCPE distributed after an appropriate

transformation. These distributions are not the only ones that can be used; the

84
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GAMLSS package for R (Stasinopoulos et al., 2015) contains dozens of options that

can be implemented and the choice of which can have a fundamental impact on the

shape of the curves.

Nonparametric methods like quantile regression can model any distributional

shape. Wei et al. (2004) showed how quantile regression could be used to construct

curves for a population that was bimodal, something that could not be accurately

represented with the unimodal distributions of LMS and BCPE. The population in

question in Wei et al. (2004) was actually the result of two populations being com-

bined, and the diagnostic plots created for this thesis did not reveal any evidence of a

lack of fit but this is a possibility in other datasets and should always be considered.

Quantile regression may seem attractive because of the lack of assumed paramet-

ric distribution but it has some drawbacks compared to GAMLSS methods that are

difficult to justify. The construction of GAMLSS methods inherently provides infor-

mation about how the moments of the distribution change over time by examining

the parameter curves. Understanding how the variance or skewness of a populations

distribution change over time may be of interest to researchers. However, this in-

formation is obtained by visually inspecting the graphs and examining the spacing

of the lines and it is therefore potentially very unreliable. If GAMLSS parameter

curves are published along with the centile curves, other researchers can construct

exact centile curves for any τ they desire. We chose to construct our centile curves for

values of τ corresponding to round numbered percentiles (5%, 10%, 25%, 50%, 75%,

90%, 95%), but some organizations (World Health Organization, 2008) publish centile

growth curves for children based on evenly spaced values of zα. Comparing results

from a GAMLSS model requires only construction of the centiles for the required

value of τ whereas quantile regression model would require interpolating the desired

centiles from the adjacent published centiles. Additionally, growth curves constructed

using quantile regression provide no information about the shape of the distribution

(or growth curves) for centiles higher than the highest published centile curve. For

example, in our case using the quantile regression growth curves we constructed, one

could say nothing about the 99th centile, because the 95th is the highest one we

constructed.

Relatedly, GAMLSS growth charts are also easier for other researchers to use
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with their own data. For given observations, a z-score can be calculated using the

parameters provided by other researchers. Quantile regression models require the user

to approximate a centile by interpolating between the two closest centiles. While this

may be acceptable in a setting where, it might not be very relevant to distinguish

where exactly a point falls between two centiles, but if the variable in question was

part of a larger model this procedure may not be acceptable.

5.1 Future Work

Future work in this area could focus on combining the strengths of the two methods

studied in this thesis and related methods to possibly improve some shortcomings.

Quantile regression’s main attractive feature of no underlying distributional assump-

tion could be used to make the distributional choice of the GAMLSS methods more

informed. Quantile regression models could be fitted and cross sectional profiles ob-

tained to illustrate the shape of the conditional profile at any given age. This would

allow researchers to confirm if the intended distributional choice to be used with a

GAMLSS model is appropriate. For example, if these profiles revealed that the pop-

ulation was bimodal, the LMS and BCPE methods outlined in this thesis would not

be a good choice because they are unimodal distributions.

The smoothness measure developed in Chapter 4 can be used by other researchers

to compare curves to determine if they are smoothing the curves they construct to

a similar degree. The World Health Orginization (World Health Organization, 2008)

and the Center for Disease Control (Grummer-Strawn M et al., 2010) both have

their own published set of growth curves and it would be interesting to study how

the results compared. Both the WHO and the CDC use the LMS method but the

process they used for selecting the smoothing parameters are different.

A method combining a explicit smoothness penalty within the quantile regression

procedure is describe in Koenker et al. (1994). The method uses the objective function

n∑
i=1

ρτ (yi − g(ti)) + λk

ˆ
|g′′(x)|pdx.

When p = 1, minimizing this objective function remains a linear programming prob-

lem which can be solved very quickly. However, the optimal function g(t) is a linear
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spline (Koenker et al., 1994). This leads to centile “curves” that are rather jagged and

unsuitable for the purposes discussed in this thesis. Given the access to computing

power that is now available, a similar method that incorporates a quadratic or higher

order penalty similar to that used in the GAMLSS method could perhaps produce

more useful results and is worth future investigation.
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Appendix A

Splines

A.1 Splines

The GAMLSS method outlined in Chapter 3 utilizes cubic smoothing splines that

differ from the B-splines used in Chapter 2. The derivation of these splines is based

on the work by Pollock (1999). Interpolating splines are presented first, then cubic

smoothing splines are described.

A.1.1 Interpolating Spline

The explanation of how interpolating splines may be explicitly derived as presented

in (Pollock, 1999) is now shown below. Given an ordered set of coordinates (x0, y0)

. . . (xn, yn) we wish to create a piecewise function for interpolating the points between

them. Rather than the jagged form of straight lines linking each point, a cubic

polynomial with the requirements that at each point the first and second derivatives

be continuous provides a smooth curve with no breaks or jumps. Let fi denote the

function over interval i, [xi−1, xi], i = 1, . . . , n, then these requirements are

fi−1(xi) = fi(xi) = yi (A.1)

f
′

i−1(xi) = f
′

i (xi) (A.2)

and

f
′′

i−1(xi) = f
′′

i (xi). (A.3)

We also need to define the behavior of the curve at the endpoints. The often-used

natural cubic spline is linear at the endpoints, leading to the constraints
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f
′′

0 (x0) = 2b0 = 0

and

f
′′

n−1(xn) = 2bn = 0.

In the interval [xi, xi+1] each piecewise polynomial can be expressed as

fi(xi) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di, (A.4)

so its first and second derivatives are

f
′

i (xi) = 3ai(x− xi)2 + 2bi(x− xi) + ci (A.5)

and

f
′′

i (xi) = 6ai(x− xi) + 2bi. (A.6)

Combining these expressions with the constraints above allows the parameters of

one polynomial segment to be defined in terms of the next. Using (6.1) and (6.4) we

get

ai−1h
3
i + bi−1h

2
i + ci−1hi + di−1 = di = yi

where hi = xi − xi−1. Similarly, using 6.2 and 6.5 gives

3ai−1h
2
i + 2bi−1hi + ci−1 = ci

and 6.3 and 6.6,

6ai−1hi + 2bi−1 = bi.

Equation 6.6 also implies

aih
3
i + bih

2
i + cihi + di = yi+1

which can be solved for ci using that di = yi, to give
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ci =
yi+1 − yi

hi
− aih2i − bihi.

The constant ai, can be found by solving 6aihi + 2bi = bi+1, to get

ai =
bi+1 − bi

3hi
.

This allows us to express ci in terms of bi’s

ci =
yi+1 − yi

hi
− 1

3
(bi+1 + 2bi)hi.

Now we have expressed all of our parameters in terms of our data points yi and

the parameters bi and bi+1.

Using these equations to rewrite the first order continuity requirements f
′
i−1(xi) =

f
′
i (xi) gives

bi−1hi−1 + 2bi(hi−1 + hi) + bi+1hi =
3

hi
(yi+1 + yi)−

3

hi+1

(yi − yi−1).

Letting i vary from 1 to n − 1 yields a system of equations that can be reduced

to a bi-diagonal system



p′1 h1 0 ... 0 0

0 p′2 h2 ... 0 0

0 0 p′3 ... 0 0

... ... ... ... ... ...

0 0 0 ... p′n−2 hn−2

0 0 0 ... 0 p′n−1





b1

b2

b3

...

bn−2

bn−1


=



q′1

q′2

q′3

...

q′n−2

q′n−1


where

pi = 2(hi−1 + hi) = 2(xi+1 − xi−1) and qi = 3
hi

(yi+1 − yi)− 3
hi−1

(yi − yi−1).

This system can be solved by back substitution for the values b1, . . . , bn−1. Using

these values and previous equations, the values a0, . . . , an−1 can be obtained as well

as the value c0. The values c1, . . . , cn−1 are generated recursively using

ci = (bi + bi−1)hi−1 + ci−1.
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We have now defined ai, bi, ci, di for all i and fully defined our interpolation spline.

A.1.2 Cubic Smoothing Splines

Pollock (1999) extends the methods used to derive interpolating splines to cubic

smoothing splines that do not intersect every data point. If we imagine that the data

follows a underlying function f(x) with some random variability we can express each

data point as the relationship yi = f(xi)+εi for i = 1, . . . , n where εi is a independent

random variable with variance V(εi) = σ2
i . Fitting a cubic spline strikes a balance

between an exact fit to the data and a smooth function that filters out noise to reveal

the underlying function. The function f(x) is approximated by the spline function

S(x), which minimizes the function

L = λ
n∑
i=0

(
yi − Si
σi

)2

+ (1− λ)

xnˆ

x0

(
S ′′ (xi)

2) dx.
Here we can see that the two extreme cases of λ =1 and λ = 0 are illustrative of

the purpose of each component of L. When λ =1, L is minimized by an piecewise

polynomial that perfectly intersects each data point (an interpolating spline). When

λ = 0

L =

xnˆ

x0

(
S ′′ (xi)

2) dx.
If S(xi) is linear S ′′(xi) = 0 and L = 0. Thus in this extreme with maximum

smoothing L is minimized when S becomes a straight line. We choose λ such that we

balance smoothness with fealty to the data.

The smoothing term is piecewise and can be rewritten as

n−1∑
i=0

xi+1ˆ

xi

(
S ′′i (x)2

)
dx,

where Si is the component of S between xi and xi+1. Since each Si is composed of

a cubic function, its second derivative S ′′i is a linear function that takes on the value

2bi at xi and the value 2bi+1 at xi+1. This allows the integral of each segment to be

written as
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xi+1ˆ

xi

(S ′′i (x))
2

= 4

hiˆ

0

(
bi

(
1− x

hi

)
+ bi+1

(
x

hi

))2

dx =
4hi
3

(
b2i + bibi+1 + b2i+1

)
,

and L to be written as

L = λ

n∑
i=0

(
yi − di
σi

)2

+ (1− λ)
n−1∑
i=0

4hi
3

(
b2i + bibi+1 + b2i+1

)
where di = Si(xi). The major difference between a smoothing spline and an interpo-

lating spline is that the ordinates di are not given by yi. Similarly to the interpolating

spline, the function Si(xi) and its second derivative can be defined in terms of the

coefficients of the polynomial ai, bi, ci and di,

Si(xi) = di

Si(xi+1) = di+1

S
′′
i (xi) = 2bi

and

S
′′
(xi+1) = 2bi+1.

Using the second and fourth condition we can solve for ai and ci in terms of bi, bi+1

and di, di+1 to get

ai =
bi+1 − bi

3hi

and

ci =
di+1 − di

hi
− 1

3
(bi+1 − 2bi) .

Using the condition that the first derivatives are continuous S ′i−1(xi) = S ′i(xi)

gives

3ai−1h
2
i−1 + 2bi−1hi−1 + ci−1 = ci.

By replacing the c’s and a’s with the expressions above we have

bi−1hi−1 + 2bi−1(hi−1 + hi) + bi+1hi =
3

hi
(di+1 − di)−

3

hi−1
(di − di−1).

Summarizing this equation for all i in 1, . . . , n − 1 and the end cases where b0 =

bn = 0 in matrix form yields
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

p′1 h1 0 ... 0 0

h1 p′2 h2 ... 0 0

0 h2 p′3 ... 0 0

... ... ... ... ... ...

0 0 0 ... p′n−2 hn−2

0 0 0 ... hn−2 p′n−1





b1

b2

b3

...

bn−2

bn−1


=



r0 f1 r1 0 ... 0 0

0 r1 f2 r2 ... 0 0

... ... ... ... ... ... ...

0 0 0 0 ... rn−2 0

0 0 0 0 ... fn−1 rn−1





d0

d1

d2

d3

...

dn−1

dn−2


where

pi = 2 (hi−1 + hi) , ri =
3

hi
, and fi = −(ri−1 + ri)

which can be expressed equivalently as

Rb = Q′d.

The function L can be expressed in matrix form

L = λ(y − d)′Σ−1(y − d) +
2

3
(1− λ)b′Rb,

which, using the the relation b = R−1Q′d, allows us to reexpress the function L in

terms of only d, the ordinates at the knots

L = λ(y − d)′Σ−1(y − d) +
2

3
(1− λ)d′QR−1Q′d.

The optimal value of the of the knot ordinates occurs when L is minimized. To

find these values we differentiate with respect to d, giving

−2λ(y − d)′Σ−1 +
4

3
(1− λ)d′QR−1Q′ = 0

which implies that

λΣ−1(y − d) =
2

3
(1− λ)QR−1Q′d
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and

λΣ−1(y − d) =
2

3
(1− λ)Qb.

Premultiplying by λ−1Q′Σ and rearranging gives

(µQ′ΣQ+R)b = Q′y

where µ = 2(1 − λ)/3λ. This expression can be solved for b using the fact that

µQ′ΣQ + R is symmetric with 5 diagonal bands. Once the values for b are obtained

we can substitute it back into our previous equations to find the ordinates of the

splines using

d = y − µΣb

and the remaining coefficients can be obtained from our previous equations and we

have fully defined our smoothing spline for all knot intervals.
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