
A LIKELIHOOD BASED CLUSTERING METHOD FOR
DETECTION OF RECOMBINATION FOR DNA AND AMINO

ACID SEQUENCES

by

Li Li

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

November 2015

c© Copyright by Li Li, 2015



This thesis is dedicated to My Mother

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations and Symbols Used . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Notations of DNA sequences . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Methods based on distance patterns . . . . . . . . . . . . . . . . . . . 2

1.3 Methods based on parsimony and parsimoniously informative sites . . 3

1.4 Permutation-based methods . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Likelihood based methods . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Methods based on a mixture model and a hidden Markov model . . . 6

1.7 GARD method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Phylogenetic block clustering (PBC) method . . . . . . 10

2.1 Site log-likelihood matrix . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Phylogenetic block clustering method . . . . . . . . . . . . . . . . . . 15
2.2.1 Algorithm for the Block-clustering method . . . . . . . . . . . 18

Chapter 3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Simulation design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Analysis of the simulated data . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Results of the simulation analysis . . . . . . . . . . . . . . . . . . . . 23

Chapter 4 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 The Zea Mays data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



4.2 The Neisseria argF genes data . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Mycobacterial Genomes . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 5 Conclusions and Future work . . . . . . . . . . . . . . . . 37

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



List of Tables

1.1 An example of aligned DNA sequences for 4 taxa . . . . . . . . 2

3.1 Running time of different methods on the 1000 simulated data
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Recombination points for Zea Mays actin gene by different meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Recombination points for Neisseria argF genes by different meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Number of Mycobacterial protein data sets identified by different
type of breakpoints of PBC method and MM2 method . . . . . 33

4.4 Number of Mycobacterial protein data sets identified by different
type of breakpoints of PBC method and HMM2 method . . . . 35

v



List of Figures

2.1 Site log-likelihood under Tree 1 and Tree 2: green points are
sites simulated under Tree 2, red points are sites simulated un-
der Tree 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Site log-likelihood difference of Tree 1 and Tree 2: green points
are sites simulated under Tree 2, red points are sites simulated
under Tree 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Site log-likelihood for 1000 sites under 6 different tree topolo-
gies, the true breakpoint is at site 500. The RF distances of
the tree on which the site log-likelihood is calculated from both
true trees are labelled below the horizontal axis. . . . . . . . 16

3.1 The RF distances of 100 pairs of trees, each pair of the trees
serve as the true underlying two phylogenies in a DNA sequence
alignment with one breakpoint. . . . . . . . . . . . . . . . . . 21

3.2 For each true breakpoint position, the number of data sets found
with 0 (green), 1 (blue) and more than 1 (red) breakpoints.
The methods from left to right for each position is in the order
of PBC, PBC-O, MM2, MM4, Phylo-HMM2, Phylo-HMM4,
GARD. The bars below indicate the number of data sets with
the correct number of breakpoint found, the bars above indicate
either false positive or false negative rates. . . . . . . . . . . . 25

3.3 Among the data sets for which one breakpoint was found for
the first 9 scenarios, the boxplots of the estimated breakpoint
positions are plotted for methods PBC (blue), PBC-O (green),
MM2 (red), Phylo-HMM2 (brown) and GARD (grey). For the
last scenario, the MM2 and Phylo-HMM2 estimated many times
with one breakpoint, the boxplot of the estimated positions are
also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Tree 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Tree 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Among all the breakpoints detected by PBC method, agreement
between MM2 and PBC methods on the estimated breakpoint
positions for Mycobacterial Genomes . . . . . . . . . . . . . . 34

vi



4.4 Among all the breakpoints detected by PBC method, agreement
between HMM2 and PBC methods on the estimated breakpoint
positions for Mycobacterial Genomes . . . . . . . . . . . . . . 36

vii



Abstract

Genetic Recombination is a process where parts of different genes are combined
to form a new gene. Recombination detection is an important part of phylogenetic
analysis for DNA sequences and thus the detection of recombination events has re-
ceived great attention in the phylogenetics literature. However most methods are
either computationally expensive and are not suitable for analyzing many genes or
a genome, or are computationally fast but are not accurate enough. Furthermore,
almost all existing packages are developed for DNA sequences, and cannot be easily
used to analyze amino acid sequences. We propose a new algorithm which is fast
and accurate for recombination detection and can be used on both DNA or amino
acid sequences. Our method is a simple clustering algorithm based on the site log-
likelihood. Performance of the method is evaluated on both simulated and real data
examples.
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Chapter 1

Introduction

Genetic recombination is the process under which regions of genetic sequence

which come from different DNA molecules are combined into a new DNA sequence,

so that different parts of the DNA sequence have different evolutionary histories.

Recombination plays a very important role in shaping the genetic patterns and ex-

changing the genetic information in all living organisms and viruses. Recombination

is a strong driver of genetic diversity, and has a large influence on molecular evolution

inference. We will be focused on homologous recombination in which recombination

occurred among homologous genes.

The phylogenetic tree topology estimation can be complicated by recombination

events. Posada and Crandall [24] studied the effect of recombination on phylogeny

estimation under a range of simulated scenarios and found that in some cases, the

tree describing the majority of cases could be inferred, but that in cases where the

recombination event was recent, between divergent taxa, and when the breakpoint

is located around the middle of the alignment, the inferred tree is usually different

from the phylogenies used to simulate either part of the alignment. If the phyloge-

netic inference is inaccurate, all the applications that rely on the phylogeny will be

influenced. Thus detecting the corresponding recombination events and the corre-

sponding recombination breakpoints are very important steps before a phylogenetic

tree is estimated.

A large number of methods have been developed for recombination detection. A

list of different recombination analysis software packages are maintained by Robertson

Lab (http://bioinf.man.ac.uk/robertson/recombination/programs.shtml). Among these

software packages, except the two methods developed in Boussau, Guéguen and Gouy,

2009) [2] which can be used on both DNA sequence data and protein-coding sequences,

all other packages are limited to DNA sequence data.

Different methods are based on different rationales, with most of the methods
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Table 1.1: An example of aligned DNA sequences for 4 taxa

X1 X2 X3 X4 X5 X6 X7 X8

Taxon1 A A T C G T G T
Taxon2 C A T G C A G G
Taxon3 C T G C C A T G
Taxon4 G C C A T G A C

based on a general principle that recombination only happened if a multiple-sequence

alignment can not be described by a single phylogeny. The accuracy of many of these

methods have been evaluated through both simulation and empirical data analysis [23,

22]. In general, these methods can be classified into different categories based on the

methodologies they involve. We present below a brief review of some of these methods

within each of these categories after introducing basic notations for DNA or amino

acid sequence data.

1.1 Notations of DNA sequences

Suppose we have a data set of aligned DNA sequences of length n for m taxa which

form an m×n matrix. A DNA sequence consists of 4 different nucleotide characters:

thymine (T) and cytosine(C) (Pyrimidine), guanine (G) and adenine (A) (Purines).

Columns of the alignment, X1, X2, ..., Xn, also called sites, serve as observations of

the evolutionary process. Table 1.1 is an example of aligned DNA sequences for 4

taxa. Data can also be in the form of amino acid sequences, where each entry in the

above matrix represents one of 20 amino acids.

1.2 Methods based on distance patterns

The Phylogenetic-profile method (Weiller, 1998) [32] uses distance vectors to de-

tect recombinant sequences by checking data coherence at every test location along a

sequence alignment. The method splits the whole length of sequence into two parts

of sequence data, one part contains the sequence data right before the test location,

and the other part contains the sequence data right after the test location. These two

parts of sequence data are interpreted by two distance vectors which contain pairwise
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distances between pairs of sequences. The method compares the distance patterns by

examining the linear correlation coefficient between the test sequence and all other

sequences in each distance vector to see whether it shows similar patterns. Since

this method doesn’t involve estimating a tree topology, it is typically a fast method.

However,this method can have low accuracy for locating the recombination signals

if a large number of recombination events occurred. Posada classified this method

as a distance method and noted the method is computationally efficient and could

possibly be used in larger data sets (Posada, 2002) [22].

Another method that belongs to this category is the split decomposition analysis

(Huson, 1998) [15], which uses the pairwise distance matrix to build the splits graph

for detecting the recombinant sequences which contain the inconsistent phylogeny.

The splits graph indicates the phylogenetic recombination event by showing the dis-

tances between each pair of taxa. This method only infers the presence or absence

of a recombination event, it does not predict the recombination breakpoints and the

corresponding different phylogenies.

1.3 Methods based on parsimony and parsimoniously informative sites

Dividing the sequence data into binary partitions, the Partition matrix method

(Jakobsen, Wilson, and Easteal. 1997) [16] checks the phylogenetic consistency be-

tween the informative sites along a set of nucleotide sequences. Rows and columns of

the partition matrix are the parsimoniously informative sites and binary partitions

respectively. An informative site is one in which at least two nucleotides each occur

twice. For example, site AACCT is an informative site because A and C occur twice.

A site is consistent with a partition if for each nucleotide, all occurrences of that

nucleotide are in the same block of the partition. For example, AACCT is consistent

with the split (1, 2, 5), (3, 4) but not with the split (1, 3, 4), (2, 5), since there is one A

in each block of this partition. This consistency information is arranged into a matrix

whose ijth entry is 1 if site i is consistent with partition j, 0 if site i is inconsistent

with partition j. The idea is that from the way information is consistently distributed

in a given sequence alignment, we can determine whether recombination has taken

place. The method is very fast since less computation is involved.

Another approach to detect recombination in a set of nucleotide sequences is the
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homoplasy test method (Smith and Smith, 1998) [29]. One important measure for

this method is to find the apparent homoplasies h, where h is the difference between

the most parsimonious number of substitutions at all sites under a given tree and

the count of polymorphic sites. Given a fixed number of polymorphic sites and a

fixed number of sites which have the same rate of evolutionary changes, estimating

the value of the probability of having h greater than zero is the key procedure to

determine that recombination has occurred. If this value is relatively large, this

indicates that recombination is unlikely to have happened. This method is especially

useful for alignments of sequences which are very compatible, i.e. which agree on

95%-99% of the sites. Applying the method on three bacterial genes, results show

that the method performed very well if the value of mutation rate is high.

Similar to the partition matrix method, the refined incompatibility matrix method

(Bruen, Philippe and Bryant, 2006) [3] is based on calculating a new test statistic

φw, which is called the pairwise homoplasy index, and finding the distribution of this

statistic. The method permutes the alignment sequences for detecting compatibility

to determine the recombination between the parsimoniously informative sites. Two

sites are compatible if and only if their evolutionary history can be described by a

single phylogeny. Let M be the number of parsimoniously informative sites in an

alignment, the pairwise refined incompatibility scores of informative sites are repre-

sented by the entries of the off-diagonal elements of an M x M matrix. The method

calculates φw by computing the mean refined incompatibility score, where the refined

incompatibility score between two informative sites is the difference between the total

number of required substitutions for representing the possible tree topologies and the

total number of character states of both sites plus a constant 2. For example, the

refined incompatibility score between the site AACC and site AGGA is 1, because

there is one tree that can represent the site AACC with a single substitution, but

this tree needs 2 substitutions to represent the site AGGA. Therefore, 3 substitutions

are needed to represent both sites. Meanwhile the total number of character states

of both sites is 4, so 3 - 4 + 2 is equal to 1. This method estimates the recombina-

tion rate more accurately than the previous methods. Furthermore, this method can

detect recombination correctly regardless of correlation among multiple sequences.
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1.4 Permutation-based methods

Since different sites experience different mutation rates in their phylogenetic his-

tory, a permutation-based method uses the population recombination rate to detect

and estimate recombination in multiple alignment sequences (Hudson, 2001) [12].

Based on the assumption that there is the same mutation rate at each site when

estimating the population recombination rate under an evolutionary model, and con-

sidering the fact that the order of the sites affects the likelihood of the observed data,

the method first estimates the population recombination rate per site by inputting

the original data set, then permutes the sites and generates the new population re-

combination rate per site for each permutation correspondingly. Let P denote the

probability that the population recombination rate per site for the permuted data

sets is greater than or equal to the rate for the original data set. The method would

conclude that recombination has occurred if P is lower than a certain significance

level. This method worked well for detecting recombination events in both HIV-1

and HIV-2 sequences. However, when the actual population mutation rate is much

smaller than it is supposed to be for estimating the likelihoods, it is hard for the

method to detect the recombination (McVean, Awadalla, and Fearnhead. 2002) [20].

1.5 Likelihood based methods

Several methods for detecting recombination have been developed based on the

likelihood scores of different regions of molecular sequences. These methods often

involve sliding windows of different sizes along the sequence.

Holmes, Worobey, and Rambaut (1999) [11] developed a likelihood-based test to

locate the position of recombination events in the alignment sequences. The null

hypothesis is that there is only a single phylogeny for the sequences. The alternative

hypothesis is that at least two different tree topologies exist within the sequence.

For each possible breakpoint, a likelihood ratio test is applied to test if the model

fitting on two tree topologies on two sides of the breakpoint is significantly better

than fitting one tree topology on the whole sequence. The null distribution for the

likelihood ratio test is generated by Monte Carlo simulations. To optimize both the

tree topologies and branch parameters is computationally prohibitive, especially for
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large trees, thus the split decomposition method [15] is applied to identify the can-

didate parental sequences prior to the application of this algorithm. This maximum

likelihood method had been tested on the DEN-1 viruses and recognized the recombi-

nation point by identifying strong contradictory signals from the nucleotide sequence

around the breakpoints [11]. Posada classified these methods as phylogenetic-based

methods and found that phylogenetic-based methods can detect recombination even

when the recombination events were frequent [22]. This method is computationally

very expensive.

Grassly and Holmes (1997) [10] described a method (PLATO) based on a statistic

Q calculated for each window with different windows of varying sizes and positions

along the sequence to identify regions of the sequence with either recombination or

varying selective forces. More specifically, Q is defined as the ratio of average log-

likelihood for the sites within a window and the average log-likelihood for the rest

of the sites. The site log-likelihood is calculated on the global maximum likelihood

phylogeny with the substitution model fixed as F84 (transition transversion ratio set

as 2). For each window size, the maximum of the Q values indicates that the sequence

within that window has the smallest average site log-likelihood under the global max-

imum phylogeny. Based on a Normal approximation to the null distribution, the test

is performed for each window size and the Bonferroni correction is used to control the

type-I error for the multiple tests with different window sizes. Through simulation,

Grassly and Holmes (1997) [10] demonstrated that this method can detect recom-

bination accurately except in the case where the recombination happened in a very

short region. This is reasonable because most methods can’t detect recombination

correctly as the size of region of recombination becomes smaller. The computation in

this method is not heavy, because the site log-likelihood values are all based on one

ML tree with no model parameters estimated from the data. From Posada’s compar-

ison [22] over the 14 methods, PLATO is not shown to be one of the most powerful

methods though.

1.6 Methods based on a mixture model and a hidden Markov model

Many methods reviewed so far are focused on the recombination rates without

detecting the breakpoints and reconstructing the phylogenies in the same algorithm.



7

Boussau, Guéguen and Gouy (2009) [2] developed two methods, based on a mixture

model and a hidden Markov model, to simultaneously detect recombination break-

points and reconstruct phylogenies. In addition, these two methods can handle both

nucleotide and protein sequences.

Both these methods in fact belong to the category of likelihood based methods.

We review these methods separately because these methods have close connection to

the method developed later in this thesis. The mixture model method maximizes the

total log-likelihood of the data assuming that each site follows a mixture distribution

over |T | trees with the across-site rate heterogeneity incooperated in the substitution

model by a gamma distribution. The mixing probability used in the likelihood for

each site is 1/|T | for each tree, i.e. assuming the same probability for each site

generated by each tree. The |T | tree topologies and all the parameters are optimized

in the algorithm. The mixture model algorithm in Boussau, Guéguen and Gouy

(2009) [2] outputs a site likelihood matrix over the |T | optimized trees by maximizing

the mixture log-likelihood of the data and then apply a partitioning algorithm to

partition the sites into consecutive k blocks. The application of this method in the

simulation study and the real data analysis in Boussau, Guéguen and Gouy (2009) [2]

used |T | = 2, this contributed greatly to the claimed fast speed of the algorithm. The

starting two trees in Boussau, Guéguen and Gouy (2009) [2] were each estimated from

half of the input alignments, this naturally gives the advantage to the alignments with

true breakpoints in the middle and could be problematic to the cases that the true

breakpoints are towards the ends of the alignments. Finally the method to decide the

number of partitions is not convincing.

The basic idea of the mixture model approach is to estimate the different under-

lying topologies more accurately by assuming a mixture probability on each site. If

two underlying topologies are very different and each site has clearly very different

likelihood over the two different topologies, then each site will mainly contribute to

the estimation of its underlying true tree. Since there are many uninformative sites

that can come from each tree, these sites will contribute to the estimation of different

topologies with different strength. These sites likely will lead to the wrong estimation

for the Gamma parameters which is used to model the rate variation across sites,

which in turn could lead to the wrong tree estimation. It is not clear how this will
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influence the site likelihood matrix on which the partition method is based. From the

simulation study, the performance of this method is inferior to that of the method

based on a hidden Markov model in that the estimated breakpoints are less accu-

rate. When we apply this method on our simulated data, the computation time is

much longer than that indicated in Boussau, Guéguen and Gouy (2009) [2]. It is very

time-consuming if we set |T | larger than 2.

The method based on a hidden Markov model (Phylo-HMM) can be viewed as a

mixture model with mixing elements as models of partitions. This model is better

than the mixture model approach above in that the block partition structure is taken

care of in the modelling. Again Boussau, Guéguen and Gouy (2009) [2] used |T | = 2,

with the initial two trees each estimated from half of the input alignments. The re-

sults of this method seem to heavily rely on the accuracy of the input starting trees.

For the simulations with true breakpoint in the middle of the sequence, the initial

tree estimates are close to the two true underlying topologies, the Phylo-HMM can

accurately detect the breakpoints. In cases where the recombinant section is short

relative to the whole alignment, when Phylo-HMM inputs two estimated topologies

by each half of the sequence which might be two similar initial topologies both repre-

senting the majority of the sequence, it creates difficulty in optimizing the two trees.

Indeed, Boussau, Guéguen and Gouy (2009) [2] found that the Phylo-HMM method

performs poorly when the breakpoint position is near either end of the alignment,

and that the phylogenies of both trees are poorly reconstructed in this case. It should

be possible to overcome these issues by considering a larger number of starting trees.

However, when we apply Phylo-HMM method with a larger number of starting tress

on the simulated data using the same simulation scenarios in [2] we found that not

only the computational cost is dramatically increased but also the recombination de-

tection accuracy is greatly reduced. The number of breakpoints are highly associated

with the number of input trees |T |. This makes the method invalid when our purpose

is to find if there is any breakpoint and how many there are.

1.7 GARD method

The Genetic Algorithm Recombination Detection (GARD) method is another re-

cently developed recombination detection method by Pond et al. [21]. Two procedures
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are described in [21]. The first procedure is for screening for a single breakpoint in an

alignment by thoroughly searching each variable site, i.e. by calculating the corrected

Akaike Information Criterion (AICc) [4] for all possible partitions of two continuous

blocks where a Neighbor-Joining (NJ) tree is estimated on each block of the align-

ment and the branch parameters are estimated by maximizing the likelihood over the

estimated NJ trees. The other model parameters are estimated on a NJ tree using

the whole sequence and are fixed in the subsequent recombination detection proce-

dures. If any partition generates a AICc score less than the whole sequence AICc

score without breakingpoint, then they deduce that there is a recombination event.

The procedure for searching for multiple breakpoints uses in principle the same

idea as the procedure for searching for a single breakpoint. Since it is infeasible to

exhaustively calculate the AICc for all possible number of breakpoints on all possible

locations, a genetic algorithm is implemented to stochastically search for this space.

It was claimed that GARD has more power and smaller false positive rate than all

other existing recombination detection methods. The idea of GARD is simple, it

tries to find the model with smallest AICc by thoroughly or stochastically searching

the whole model space. From the simulation results in [21], it seems that the false

positive rate is still very high. This may partially be related to the model criterion

AICc and partially related to the stochastic searching. Needless to say that GARD

is a method that relies heavily on computing resources.

In the next chapter, we develop a much simpler likelihood based clustering proce-

dure to separate the sequence alignments into consecutive blocks so that each block

corresponds to a different evolutionary history. The method is based on site log-

likelihoods on a number of trees and can be applied to amino acid sequences as well

as nucleotide sequences without any additional work. The speed of the method makes

it possible to detect all recombination events in a genome as well as in a gene. We

call our method the phylogenetic block clustering (PBC) method.



Chapter 2

Phylogenetic block clustering (PBC) method

With larger number of genomes sequenced, the scale of inference on these genomic

data continuously becomes larger. The detection of recombination, as one of the

most important steps in the phylogenetic inference, is also facing the difficulties of

this larger scale. The computationally intensive methods such as that by Holmes,

Worobey, and Rambaut (1999) [11] and GARD [21] can potentially suffer from the

scale of the problem. Currently GARD can only detect recombinations for DNA

sequences. Although its principles should work the same for amino acid sequences,

due to the computational burden or other issues, it’s not available for analyzing amino

acid sequences. The methods based on a mixture model and a hidden Markov model

[2] could be performed on amino acid sequences, but both their accuracy and speed

in detecting multiple breakpoints are problematic.

We propose in this thesis a much simpler method which is accurate, fast and is

scalable. There are two important elements in our method. The first is that we

start from the site log-likelihood over a number of tree topologies with all the branch

parameters and model parameters estimated from the whole gene alignment. The

second element is a block clustering algorithm along the sequence. Given any DNA or

protein sequence data, we first calculate a site log-likelihood matrix based on a set of

plausible trees. We then cluster the sites of the sequences into blocks of consecutive

sites, so that the maximum likelihood scores on each block of sites are achieved

on different topologies. Finally, we select the number of breakpoints according to

commonly used statistical criteria such as AIC (Akaike information criterion) and

BIC (Bayesian information criterion).

2.1 Site log-likelihood matrix

As we review the related methods that are likelihood based, we find that the basic

building elements for this class of methods are the site likelihood or equivalently the

10
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site log-likelihood. However different methods calculate the site likelihood differently.

Intuitively, the site likelihoods that are calculated on the true topologies that are

underlying the corresponding sites should be the most informative on recombination

detection. Thus all the phylogenetic based methods with sliding window approach,

methods using likelihood ratio tests [11] and the GARD [21] try to calculate the

site-likelihood using estimated trees for different blocks of sequences, which creates a

computational burden and inaccuracy of the estimated tree topologies due to using a

smaller part of the alignment. PLATO [10] is fast and simple because it is based on

the site log-likelihood of the maximum likelihood phylogeny estimated over the full

alignment. However it is not powerful and accurate enough due to the weak signals

in the site log-likelihood calculated on the ML tree only.

The PBC method is based on a site log-likelihood matrix which is calculated over

a number of plausible tree topologies with tree branch and model parameters all

estimated using the whole alignment. This idea works because for any tree topology

that may not be exactly the true tree topology, the sites that are from different trees

have support to the topology in consideration with different strength. The change of

support to a tree along the sequence contains some information to the underlying true

process. With multiple trees included in our site log-likelihood matrix, this signal can

be reinforced and thus can help to identify the block structures along the sequence

with different underlying evolutionary processes.

We can also view this as the joint influence of multiple sites to the log-likelihood

on any given tree topology. The idea of local influence was first developed by Dennis

Cook [5]. Local influence analysis is well established in statistical literature and is

an important method for both model and data sensitivity analysis. The basic idea is

to find the perturbation to which the inference of the model is most sensitive. This

kind of sensitivity analysis can usually be achieved by first designing a perturba-

tion scheme under which the concerned perturbation to either data or model can be

mathematically expressed by a numerical vector. Then the inference results based on

either the total model likelihood or particular parameter estimate of interest under

the perturbation can be compared with the inference results without the perturba-

tion. Assuming the perturbation scale is small (local), the most sensitive direction
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of the perturbation then can be calculated along the first order derivative of the per-

turbed parameter estimate or the second order derivative of the log-likelihood. The

sensitivity analysis has been made possible to phylogenetic analysis now since the

first and second order derivatives of phylogenetic log-likelihood to all parameters can

be calculated [17].

For the recombination detection problem, suppose we have a tree topology τ which

is a good approximation to one of the true underlying tree topologies, then most of the

sites in one block of the alignment will have relatively higher log-likelihood support

to τ than the other block of the alignment. Take the maximized log-likelihood of tree

τ over the whole alignment as a target statistic T = l(τ, θ̂) =
∑n

i=1 li(τ, θ̂), where

θ̂ is the MLE of all the parameters including tree branch lengths and all the other

model parameters, and li(τ, θ̂) is the ith site log-likelihood evaluated under τ and θ̂.

Now consider a perturbation scheme of the data as discussed in [17] by assigning a

weight ωi to the ith site of the data. The weight can be thought of as the frequency

with which that site pattern was observed, which does not necessarily need to be an

integer. The log-likelihood under the new weights for tree topology τ can be now

re-written as l(τ, θω) =
∑n

i=1 ωili(τ, θω), where ω = (ω1, · · · , ωn). The MLE of the

parameters under this weighted log-likelihood is denoted as θ̂ω. The local weighting

that most dramatically change the target statistic T lies in the direction ∂Tω
∂ω

. It

turns out that the most influential direction is proportional to the site log-likelihood,

through the following steps:

∂Tω
∂ωj

=
∂[
∑n

i=1 ωili(τ, θ̂ω)]

∂ωj
(2.1)

= lj(τ, θ̂ω) +
n∑
i=1

ωi
∂li(τ, θ̂ω)

∂θ̂ω

∂θ̂ω
∂ωj

(2.2)

Evaluating this derivative at ω = (1, · · · , 1) and θ̂ω = θ̂ which corresponds to the

point of Tω without perturbation, we have lj(τ, θ̂ω) = lj(τ, θ̂) and
∑n

i=1 ωi
∂li(τ,θ̂ω)

∂θ̂ω
=∑n

i=1 li(τ,θ)

∂θ
|θ̂ = 0.

A block of sites that have large joint local influence to the total log-likelihood

for the tree topology τ means that there is some systematic difference on the evo-

lutionary process for this block of sites. One possibility of this large local influence
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is a recombination event, or alternatively it may mean some changes in the positive

selection pressure. Changes in selection pressure will often have similar influence to

likelihood under all trees, while recombination events will lead to sites with positive

influence under some trees and negative influence under others. It is therefore often

possible to identify the block corresponding to recombination, as opposed to positive

selection.

As an example, we show some simple simulation results on the site log-likelihood.

We simulate a DNA sequence data set D with sequence length 600 for 4 taxa. The

sites in the following intervals: ([1, 150], [201, 300], [451, 600]) are generated from tree

τ1; whereas the sites in the intervals ([151, 200], [301, 450]) are generated from tree τ2.

Site log-likelihoods of τ1 and τ2 and the differences of site log-likelihoods of τ1 and

τ2 are shown in Figure 2.1 and Figure 2.2 respectively. From these figures, we can

clearly observe the patterns of site supports to two different tree topologies. In this

example, the two true tree topologies are used to illustrate the direct difference of the

site support. The site log-likelihood matrix is obtained using standard software; for

the examples in this thesis, we used PAML (Yang, 1997) [35].

In Chapter 3, we use the same simulation design as in [2] to simulate 1000 data

sets. As another example of site log-likelihood, we show in Figure 2.3 the site log-

likelihood for 1000 sites under 6 different tree topologies from one of the simulated

data with the first 500 sites generated under one tree and the remaining 500 sites

generated under a different tree. In order to show the pattern more clearly, we have

centralized the site log-likelihood for each site by the mean site log-likelihood. The

total number of taxa is 40. The details of the simulation will be described later.

The site log-likelihood are calculated on 6 trees of which none is exactly equal to

any of the two true topologies. The RF distances [26] of the tree on which the site

log-likelihood is calculated from both true trees are labelled below the horizontal axis.

RF distance is a commonly used distance measure for two unrooted phylogenetic trees

on the same set of taxa, it calculates the number of the binary patitions of the taxa

which are compatible with one tree but not the other tree. The top two trees have

smaller RF distance to one of the two true trees, the rest of the trees have larger

RF distances with both true trees. It can be seen that even though the tree is far

away from either of the true topologies, the different blocks of sites show clear block
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Figure 2.1: Site log-likelihood under Tree 1 and Tree 2: green points are sites simu-
lated under Tree 2, red points are sites simulated under Tree 1.
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Sites of Simulated Data

Figure 2.2: Site log-likelihood difference of Tree 1 and Tree 2: green points are sites
simulated under Tree 2, red points are sites simulated under Tree 1.

patterns of support to the tree. With all these signals collected together in our site

log-likelihood matrix, we have gained great power to find the block cluster patterns

which provides a solid basis for recombination detection.

Since our method is based on the site log-likelihoods calculated using the whole

data set on several tree topologies, which involves maximizing the likelihood only

once for each tree topology, this is generally much faster than the methods that fit a

tree on each block of sites, such as window sliding methods [11] or GARD [21]. It is

also much faster than the methods based on a mixture model and a hidden Markov

model [2] which need to maximize the likelihood over either a mixture model over

several topologies or estimate a hidden Markov model over several tree topologies.

Our method has some similarities to the mixture model in that the basic idea of both

methods are to perform a block clustering on a site log-likelihood or site likelihood

matrix, however these site likelihoods are fundamentally different.

2.2 Phylogenetic block clustering method

Our PBC method for detecting recombination starts by constructing the site log-

likelihood matrix, which is defined as follows. Suppose we have identified a short-

listed set of tree topologies, denoted as τ1, τ2, ..., τd; Given data X, over the whole
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Figure 2.3: Site log-likelihood for 1000 sites under 6 different tree topologies, the true
breakpoint is at site 500. The RF distances of the tree on which the site log-likelihood
is calculated from both true trees are labelled below the horizontal axis.
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sequence, for each tree topology τi, i = 1, ..., d, we can get the MLE for all the model

parameters for the specified model. Denote the MLE of all model parameters for

tree τi as θ̂i, and MLE for branch lengths as t̂i. Then we have the site log-likelihood

matrix L = (lij), where lij is the log-likelihood value of the jth site given (τi, θ̂i, t̂i),

i = 1, ..., d; j = 1, ..., n.

We expect columns corresponding to sites for different trees to have different

expected values. If the columns of this matrix are clustered as we expect, we need

a tool to identify these clusters. Since the clusters consist of consecutive sites in the

sequences, we can identify them by giving the breakpoints over the sequence. We

introduce a new block clustering method to find these breakpoints.

Given a d × n matrix X, we want to divide this into a number, k, of blocks

B1, ..., Bk, where Bi is an interval x[ai,bi] = {xai , xai+1, ..., xbi−1, xbi}. Our block-

clustering method aims to maximize an objective function with the additional con-

straint that the clusters be blocks of consecutive columns. Our objective function is

the maximum likelihood for a fixed set of parameters (θ̂i, t̂i) for each tree which are

estimated from the whole data, and where each block is allowed to have a different

tree topology. That is we maximize the sum of blocks of site log-likelihoods with

different rows for different blocks:

W (k) = argmax
B


k∑
i=1

max
l

 ∑
j∈[ai,bi]

Xlj

 (2.3)

Where ai and bi are the starting point and ending point in the block Bi.

Our algorithm first divides the whole sequence into many blocks which gives an

initial set of breakpoints, then we refine the positions of these breakpoints by locally

optimizing the position of each point. Finally we use the model selection criterion

such as AIC, AICc or BIC to decide which breakpoints are significant.

To get a good final result, we need a good initial set of breakpoints. We find this

by starting with the whole block and optimally subdividing one block at a time by

exhaustive search, until we have all blocks optimal. At each stage, we subdivide the

block which increases the objective function the most. For the analyses in this thesis,

we restrict minimum block size to 30 to avoid finding very small regions which are

not statistically significant. We stop when no subdivision can increase the objective
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function any more. The exhaustive search is not only possible but also very fast,

because it only involves calculating the sum of the site log-likelihood for each tree for

each possible breakpoint.

To test each bi is optimally positioned between ai and bi+1 , we only need to

consider the data points x[ai,bi+1]. We can quickly find this optimal bi by an exhaustive

search. This provides a greedy searching procedure, where, starting from an initial

block clustering, we reposition each bi optimally between ai and bi+1, until each bi is

locally optimal. A block-clustering is locally optimal if each bi is optimally positioned

between ai and bi+1. Since each step increases the objective function, this procedure

is guaranteed to converge.

2.2.1 Algorithm for the Block-clustering method

In this section, we give a detailed algorithm for our block-clustering method, as

summarized below:

1. Initializing: Start with a given site log-likelihood matrix X, compute the cu-

mulative site log-likelihood matrix. The cumulative site log-likelihood ma-

trix is defined as Cij =
∑j

l=1Xil, so the objective function for fixed k is:

W (b1, ..., bk−1) =
∑k

j=1 max
i

(Cibj − Cibj−1
), where b0 = 0, and bk = N.

2. Adding breakpoints: Find the best new breakpoint sequentially by adding one

breakpoint each time over the sequence, such that the objective function is

maximized at each step. It takes k-1 steps to generate a list of k-1 breakpoints

{b1, . . . , bk−1}, where 0 = b0 < b1 < b2 < . . . < bk−1 < bk = N ;

3. Refine the breakpoints sequentially: For each breakpoint bj, find the new opti-

mum cutting point, bnewj by repositioning bj between bj−1 and bj+1, such that

the objective function is maximized. Remove bj if W (. . . , bj−1, b
new
j , bj+1, . . . )−

W (. . . , bj−1, bj+1, . . . ) is less than a pre-specified tolerance δ, then the total

number of blocks will be reduced by one. Repeat this step until convergence.

4. Testing the significance of the breakpoints: Step 3 generates a list of plausible

breakpoints, to reduce them to a final list, we use the AIC method [1] to test the

significance for each breakpoint. (Note that we refit the model parameters and
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tree branch length parameters for the corresponding trees for each block when

calculating AIC, this is according to the definition of AIC). We first calculate an

AIC value for all plausible breakpoints as a baseline value, then we calculate an

AIC value for the circumstance without the specific breakpointBi sequentially, if

the AIC value is less than the baseline value, then the corresponding breakpoint

is not significant according to AIC, we remove it and go back to step 3.

5. Return the list of breakpoints.

The initial set of tree topologies on which the site log-likelihood matrix X is based

on can be estimated from different sections of the sequence. In our analysis, we use

sliding window approach to estimate a set of tree topologies by the BioNJ [9] method.

Alternatively any method that can provide a confidence region for the tree topologies

should work too.



Chapter 3

Simulation Results

We follow the simulation design from Boussau, Guéguen and Gouy (2009) [2],

which makes it easier to directly compare to the mixture model (MM) method and

the hidden Markov model (Phylo-HMM) method by Boussau, et al. (2009) [2]. We

also run GARD [21] on these simulated data to compare with the performance of

PBC, MM and Phylo-HMM methods.

3.1 Simulation design

We choose the first 100 40-taxon trees from the 5000 “true 40-taxon trees”, to-

gether with their branch lengths from the PhyML website. For each of these 100

trees, we perform a random sub-tree Prune and Regraft operation (SPR). The SPR

procedure randomly selects a subtree from the original tree and then attaches it to

a new branch. This way we get 100 pairs of trees. The RF distances of these 100

pairs of trees range from 2 to 22 as given in Figure 3.1. Each pair of these trees will

serve as the true underlying two phylogenies in a DNA sequence alignment with one

breakpoint.

We simulate nucleotide data based on a GTR model with the Gamma rate vari-

ation parameter fixed at 0.8. The rate matrix parameters are set to equal to the

estimates from the globin pseudogenes data in [34] with a = 0.987, b = 0.11, c =

0.218, d = 0.243, e = 0.395, f = 1 and the equilibrium frequency parameters πT =

0.308, πC = 0.185, πA = 0.308, πG = 0.199. Indelible [8] is used to simulate the DNA

sequences. From each pair of trees, we simulate 10 DNA sequence data sets, with

sequence length for each data set fixed as 1000-nucleotides. Among these 10 data

sets, 9 of them have one breakpoint positioned after site 100, 200, ... 900, and the

last data set has no breakpoint. This way, for each true breakpoint at position L

(L = 100, 200, ..., 900), we get 100 simulated data sets, each of which generated from

20
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Figure 3.1: The RF distances of 100 pairs of trees, each pair of the trees serve as the
true underlying two phylogenies in a DNA sequence alignment with one breakpoint.

one pair of the 100 pairs of trees, and furthermore, we have 100 trees with no break-

points generated from the first of each pair of trees (these are labelled as the L = 1000

case). The different RF distances among these 100 pairs of trees determine the diffi-

culty of the breakpoint detection problem. Generally, if the two true trees have larger

RF distances, the problem is a relatively easy one and the hardest problem is when

the RF distance between two underlying trees is very small.

3.2 Analysis of the simulated data

In our algorithm, we need an initial set of topologies to get the site log-likelihood

matrix. Naturally the algorithm will work better if we can include tree topologies

which are close to both true underlying topologies for each data set. In order to get

this initial set of tree topologies, we use the following procedure.

First, for each data set, a set of topologies are estimated using blocks of the DNA

alignment of length 100 sites with the block moving along the DNA sequence in steps

of 50 sites. Thus the first block includes sites 1-100, the second block includes sites

51-150, the third block includes sites 101-200, etc. This way we have 19 blocks for

each data set. We then compute the pairwise distance matrices for each block under

the F84 model with gamma rate variation across sites parameter equal to 1 using the
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DNADIST program in the PHYLIP package [6]. Note that this is a misspecified model

from the true model, which mimics the reality that we never know the true model and

almost always use a more simplified model than the truth in phylogenetic analysis.

Then 19 trees are estimated using BioNJ [9] based on these pairwise distances for

each data set. The resulting 19 estimated tree topologies for each data set could

include duplicates. The duplicates can be removed at this step; however, it does not

cause any problems for our method to include them all. Thus we include all these

19 topologies. The site log-likelihood matrices for the corresponding 19 estimated

tree topologies for each data set are calculated using PAML, based on the HKY85

model with gamma rate variation across sites. The model parameters and tree branch

lengths are estimated using the whole sequence, and again we include some model

misspecification here to reflect the reality. We then apply the first three steps of our

PBC algorithm on each data set, we obtain an initial list of breakpoints for each data

set. With this initial set of breakpoints, we re-estimate the tree topologies for each

block of the alignment using exactly the same settings as we did above, i.e. estimate

trees by BioNJ based on the pairwise distances calculated by DNADIST. We then

add these newly estimated trees to the set of 19 trees for each data set. This added 2

to 6 trees for different data sets. This expanded set of trees for each data set are now

the initial set of tree topologies. A final list of breakpoints can be then obtained by

applying the PBC method on the site log-likelihood matrix based on this expanded

set of trees.

The above procedure doesn’t guarantee that the set of estimated trees include the

true trees. This is especially true when the number of taxa is large. This raises the

question of whether our method could be improved by using a more sophisticated

tree-search method. In order to know how much the PBC method could perform

better with a better tree-search method, for each data set, we add the two true

tree topologies to the set of 19 tree topologies instead of adding the estimated tree

topologies based on the initial set of breakpoints, and re-apply the PBC method on

the new site log-likelihood matrices for each data set. Since the true trees are never

known in reality, we call this method PBC Oracle (PBC-O).

For comparison, we also apply the mixture model (MM) method and the hidden
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Markov model (Phylo-HMM) method [2] using the default setting of two tree topolo-

gies and also setting the number of tree topologies equal to 4, 10 and 20 for each

method. As for the PBC methods, BioNJ [9] is used by both the MM and Phylo-

HMM to build the starting trees and the model used in the analysis is HKY85. Finally

the GARD [21] multiple-breakpoint searching procedure is applied to our simulated

data sets.

3.3 Results of the simulation analysis

There should be one breakpoint detected in the first nine scenarios, and no break-

point detected in the last scenario. Figure 3.2 shows the number of times among

100 simulations for each scenario that the correct number of breakpoints were de-

tected by different methods, in the order PBC, PBC-O, MM2, MM4, Phylo-HMM2,

Phylo-HMM4, GARD, where Phylo-HMM2 and Phylo-HMM4 refer to the Phylo-

HMM methods with the number of tree topologies set as 2 and 4 respectively; MM2

and MM4 are similarly defined. The blue or green bars below the horizontal axis

in Figure 3.2 show the number of times the methods detect the correct number of

breakpoints, the bars above the horizontal axis show the number of times that the cor-

responding methods detect no breakpoint (false negative) or more breakpoints than

the truth (false positive). It is clear that the PBC method with the true trees in-

cluded is the most accurate, but since true trees are never known in reality, this is not

really achievable. The PBC method with estimated trees performs only slightly worse

than the PBC method with true trees included in each scenario. The overall power

of the PBC method is the highest and the false negative and false positive rates of

the PBC methods are the lowest among the several methods we have included in this

analysis. For some of the datasets with breakpoints near the middle, Phylo-HMM2

does outperform PBC, however, the performance of Phylo-HMM2 decays badly as the

breakpoint moves nearer to the end of the alignment. This is not surprising because

Phylo-HMM estimates its initial starting trees based on dividing the sequence into

two equal pieces, so if this is indeed the case, then it’s initially estimated trees will be

close to the truth. However, when the breakpoint is actually towards one end of the

alignment, then the initial trees will be poorly estimated and the performance will

suffer. The performance of MM2 and Phylo-HMM2 are similar to that shown in [2]
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because we followed their simulation design. Note that even when the number of trees

is set as 2, which has given these methods a great advantage for these simulations

with only a single breakpoint, both MM2 and Phylo-HMM2 don’t perform as well

as PBC. When we set the number of trees to 4, MM4 has a lower rate of correctly

detecting one breakpoint than both MM2 and Phylo-HMM2. The performance of

Phylo-HMM4 decayed even more dramatically. For the last column, when the truth

is that there is no breakpoint, the PBC methods correctly indicate no breakpoint 100

times, but both the MM and the Phylo-HMM detected many cases with one break-

point. The GARD has comparable results to PBC when the true breakpoint is in the

middle of the sequence alignment, but it quickly loses power when the true breakpoint

moves towards the ends of the sequence alignments. It didn’t detect any case with

more than one breakpoint, also didn’t detect any breakpoint when the truth is no

breakpoint. The false positive rate is controlled very well by GARD, but the power is

much worse than the PBC method. Like the other methods, the PBC performance for

scenarios close to the either end is slightly worse than scenarios close to the middle.

This is expected because shorter sequence lengths do not always give enough signal

to indicate the recombination event. However, the performance of PBC decays less

than the performance of other methods in these cases.

Figure 3.3 shows the boxplots of the estimated breakpoint positions for cases

where exactly one breakpoint is detected for the first nine scenarios and the estimated

positions when the truth is no breakpoint. From the left to right for each scenario

in Figure 3.3 the methods are in the order of PBC, PBC-O, MM2 , Phylo-HMM2

and GARD. The best prediction for the breakpoint positions is given by PBC-O.

The PBC performance in terms of accuracy of estimated breakpoint positions is very

similar to PBC-O. With the true trees included in the tree set, PBC performs only

slightly better according to both detection of the correct number of breakpoints and

estimation of their locations. Therefore, there is limited scope for improving the

method by implementing more sophisticated tree searching methods, at least for the

situations tested in this simulation. Both MM2 and Phylo-HMM2 are much worse in

that there are many outlier predictions which are far away from the true breakpoint

positions. When the true breakpoint positions are at 100, 800 and 900, the majority

of the predictions by MM2 and Phylo-HMM2 are far away from the truth. The GARD
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Figure 3.2: For each true breakpoint position, the number of data sets found with
0 (green), 1 (blue) and more than 1 (red) breakpoints. The methods from left to
right for each position is in the order of PBC, PBC-O, MM2, MM4, Phylo-HMM2,
Phylo-HMM4, GARD. The bars below indicate the number of data sets with the
correct number of breakpoint found, the bars above indicate either false positive or
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Figure 3.3: Among the data sets for which one breakpoint was found for the first 9
scenarios, the boxplots of the estimated breakpoint positions are plotted for methods
PBC (blue), PBC-O (green), MM2 (red), Phylo-HMM2 (brown) and GARD (grey).
For the last scenario, the MM2 and Phylo-HMM2 estimated many times with one
breakpoint, the boxplot of the estimated positions are also shown.
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behaves strangely in that most of the predictions fall away from the truth. The reason

for this is not clear.

In addition to the above comparisons on accuracy, we also found that the PBC

method requires the least computation time. We recorded the machine time in run-

ning different methods on these 1000 simulated data sets; the times are listed in

Table 3.1. Notice that Phylo-HMM10 and Phylo-HMM20 seem to have great dif-

ficulty with the convergence of the program, thus only output the analysis results

for a small fraction of the data sets. Phylo-HMM2 and Phylo-HMM4 can output

results for majority of the data sets but are quite time consuming. The GARD is

the most computationally intensive method. For PBC-O, we only analyzed 960 data

sets, since the two true trees are already in the originally estimated 19 trees for 40

of the data sets, thus we didn’t re-analyze these data sets. The recorded times for

PBC and PBC-O are only for the breakpoint detection program after inputting the

site log-likelihood matrix for each data set. That is, we have not included the time

applying BIONJ to estimate the tree topologies or the time used to calculate the site

log-likelihood matrix with PAML. However, this pre-processing work cost no more

than 10 hours for 1000 data sets, so even including this time, PBC will outperform

the other methods on computation time.

Table 3.1: Running time of different methods on the 1000 simulated data sets

Methods No. of data sets run out by the Method Time
PBC 1000 102 Mins 46.234 seconds

PBC-O 960 57 Mins 1.401 seconds
MM2 1000 3691 Mins 74 seconds
MM4 1000 2296 Mins 21.792 seconds
MM10 1000 2550 Mins 35.208 seconds
MM20 1000 5557 Mins 47.006 seconds

Phylo-HMM2 972 1465 Mins 10 seconds
Phylo-HMM4 967 1909 Mins 1 seconds
Phylo-HMM10 277 3112 Mins 46 seconds
Phylo-HMM20 185 28303 Mins 43 seconds

GARD 1000 23424 Mins 47 seconds

Through this round of the simulation, we have shown that the PBC method

outperforms the mixture model based and hidden markov model based methods, and

the GARD method, in all aspects, including: higher power with lower false positive
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rate; accuracy of the predicted breakpoint positions; and in terms of computation

time, even including the time for topology estimation and the site log-likelihood

calculation.



Chapter 4

Real data analysis

We applied our method, in comparison with several other methods, on three real

data sets which include two DNA multiple sequence alignments and one protein mul-

tiple sequence alignment.

4.1 The Zea Mays data

Moniz and Drouin [27] detected some recombination events among forty-four actin

genes from five angiosperm species in 1996. They also mentioned that recombination

rate varied between 2% – 12% within the Zea maize species. These Zea Mays data,

which have been analyzed by Husmeier and McGuire (2003) [13], consist of four

Zea Mays actin gene sequences of 1007 nucleotides. The original four sequences are

downloaded from the GenBank: the maize sequence names and accession numbers

are: Maz56 (U60514), Maz63 (U60513), Maz89 (U60508) and Maz95 (U60507). Since

Moniz and Drouin [27] only analyzed underlined exons of Maz56 and Maz81, for

comparison, we use clustalw2 to delete the alignment gaps and get the same exons of

the four Zea mays actin gene sequences. There are only 4 taxa in the data set, we

use all three unrooted tree topologies to compute the site log-likelihood matrix. We

first apply our PBC method and the GENECONV method (Sawyer, 1989) [28] which

was implemented by the RDP program (Martin et al, 2010) [19], then we compare

the results of the PBC method and the GENECONV method (Sawyer, 1989) [28]

with the other published results by Moniz and Drouin [27] and the two methods by

Husmeier and McGuire (2003) [13].

Table 4.1 shows the comparison results of five different methods. The PBC method

finds that the phylogeny changes from tree 1 (Figure 4.1) to tree 3 (Figure 4.2) at

site 636 of this multiple alignment sequence. The recombination event was placed at

site 620 by the maximum likelihood approach on a Hidden Markov Model, while sites

410 and 880 are the two recombination points detected by the GENECONV method

29
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(Sawyer, 1989) [28]. Without considering other sequences, Moniz and Drouin [27]

found a gene conversion event around site 876 between Maz56 and Maz63. Husmeier

and McGuire [13] placed the gene conversion event around site 886 using the Bayesian

approach on a Hidden Markov Model. We found that the phylogenetic signal (max-

imum site log likelihoods) is almost the same for tree 1 and tree 3 inside the region

from site 636 to site 876. It seems hard to tell exactly where in this region to place

the recombination event. All methods agree that there is a recombination event in

this region.  

 

Detecting 

Recombination   

     First Breakpoint Second Breakpoint 

PBC 636 None 

Moniz&Drouin(1996) 876        None 

HMM-ML(Husmeier 

and Wright, 2001) 

620        None 

Bayesian-HMM(Husmei

er and McGuire, 2003) 

886        None 

GENECONV(Sawyer, 

1989) 

410 880 

Table 4.1: Recombination points for Zea Mays actin gene by different methods
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Figure 4.1: Tree 1
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Figure 4.2: Tree 3

4.2 The Neisseria argF genes data

The argF gene is a kind of gene product which is the component of ornithine

transcarbamylase. Different strains of Neisseria argF gene have shown different se-

quence variation (Zhou and Spratt, 1992) [36]. Recombination rate among the strains
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Detecting 

Recombination   

       First 

Breakpoint 

Second 

Breakpoint 

Third 

Breakpoint 

Fourth 

Breakpoint 

PBC 189 None 531 None 

Zhou&Spratt(1992) 202 507    538 None 

HMM-ML(Husmeier 

and Wright, 2001) 

200    None None    749 

Bayesian-HMM(Husme

ier and McGuire, 2003) 

195 510    545    750 

GENECONV(Sawyer, 

1989) 

208 498    574 None 

Table 4.2: Recombination points for Neisseria argF genes by different methods

of Neisseria argF gene for ornithine transcarbamoylase is around 0–1.3%, and 1.0%

interspecies recombination was also found between the strain Neisseria meningitidis

(HF116) and the strain Neisseria gonorrhoeae (FA19) (Zhou and Spratt, 1992) [36].

We pick 9 strains of Neisseria argF Gene, each with 787 nucleotides for this exam-

ple. These DNA sequences are downloaded from GenBank. The GenBank access

numbers and species names are: Neisseria gohorrhoeae - X64860, Neisseria meningi-

tidis - X64863, X64864, X64866; Neisseria cinera - X64869, Neisseria polysaccharea -

X64870, Neisseria lactamica - X64871, Neisseria flavescens - X64872, and Neisseria

mucosa - X64873. Husmeier and McGuire [13] chose 4 out of these 9 strains for their

analysis and detected some recombination events.

To get an initial set of trees, we use a sliding window technique so that a set of

topologies are estimated using blocks of the DNA alignment of length 100 sites with

the block moving along the DNA sequence in steps of 50 sites. Thus the first block

includes sites 1-100, the second block includes sites 51-150, the third block includes

sites 101-200, etc. This way we have 15 blocks for this data set. Since the sequence

length is 787, the last two blocks use sequences of lengths 87 and 137 respectively. We

then compute the pairwise distance matrices for each block under the F84 model with

gamma rate variation across sites parameter equal to 1 using the DNADIST program

in the PHYLIP package [6]. Tree topologies are estimated by BioNJ [9] and used



32

to construct the site log-likelihood matrix. As in the simulations, we apply PBC to

find an initial set of breakpoints, then we estimate additional trees from the regions

identified by these breakpoints, and add these trees to the site-likelihood matrix. We

apply the PBC method on these 9 strains and compare the result from our method

with the formerly published results from other methods.

Table 4.2 presents all the recombination points detected by the former research,

and the results by GENECONV method [28] using RDP program (Martin et al,

2010) [19] and the PBC method. Most methods agree that there is a recombina-

tion event around site 200. Zhou and Spratt [36] used a different labeling scheme,

they labeled the nucleotides from location 296 to location 1082 corresponding to the

positions 1 to 787 here. They also mentioned in their paper that there is a very

short region, corresponding to positions between 507 and 538, with genetic variation

at 32.3%. Our method detects site 531 as the second recombination point, but no

other recombination points on either side of this breakpoint. This is expected be-

cause our method was configured to only detect the recombinant sequences at least

30 nucleotides long. The first and forth breakpoints detected by HMM-ML are very

similar to the ones detected by Bayesian-HMM. The first and second breakpoints de-

tected by GENECONV are very similar to our method; Three breakpoints detected

by Bayesian-HMM are all close to the ones detected by Zhou and Spratt (1992) [36].

However, Bayesian-HMM finds an extra recombination point which was not detected

by PBC, GENECONV or Zhou and Spratt (1992) [36].

4.3 Mycobacterial Genomes

Genetic variation plays a very important role in Mycobacterial evolution, and has

been detected in a data set consisting of 18 distinct Mycobacterial strains with 13

species, by various authors recently (Smith et al, 2012) [30]. Martin (2010) [19] applied

RDP on a single concatenated DNA sequence from detectable homologous segments

of 18 Mycobacterial strains and found 74 recombination events. This suggests that

there are strong incongruence phylogenetic signals for these protein sequences. Our

data set includes 1052 amino acid alignments with different numbers of strains for

different proteins. The sequences are all from strains of Mycobacterium tuberculosis

CDC1551. As before, we use sliding window technique to get an initial set of trees
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so that a set of topologies are estimated using blocks of the amino acid sequences

of length 100 sites with the block moving along the amino acid sequence in steps of

50 sites. We then compute the pairwise distance matrices for each block under the

Dayhoff PAM matrix model with gamma rate variation across sites parameter equal

to 1 using the PROTDIST program in the PHYLIP package [6]. Tree topologies are

estimated by BioNJ [9] and used to construct the site log-likelihood matrix. The

PBC method, Mixture Model methods and Hidden Markov Model Method (Boussau

et al, 2009) [2] with the default choice of two trees are applied on each gene of the

Mycobacterial Genomes.

 

         Mixture Model 
 
PBC Method 

None 1 2 3 >3 

None 14 209 24 16 68 

1 13 224 15 15 40 

2 0 134 7 14 41 

3 4 63 4 6 18 

>3 4 74 6 13 26 

Table 4.3: Number of Mycobacterial protein data sets identified by different type of
breakpoints of PBC method and MM2 method

The PBC method and the Mixture Model method detect the same number of

breakpoints on 277 of the amino acid alignments ( see the diagonal cells of Table 4.3).

The numbers of the alignments in the lower triangular cells of the table show that PBC

method finds more breakpoints than the Mixture Model method for total of 315 amino

acid alignments. However, the Mixture Model method detects more breakpoints

than PBC in the other 460 amino acid alignments (see the upper triangular cells of

the table). Additionally, according to the first column of the lower triangle of the

table, PBC detects breakpoints in 21 amino acid alignments where the Mixture model

method doesn’t find any breakpoint; Meanwhile, the Mixture model method detects

breakpoints on 317 amino acid alignments where PBC doesn’t find any breakpoint.

All these are consistent with the results of our simulation study (see Figure 3.2) where

the mixture model showed a much higher false positive rate and lower power than
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PBC method. There is some agreement among all the breakpoints detected by both

PBC and MM2 methods as shown in Figure 4.3. Among all the breakpoints detected

by PBC method, about 17% of them are within 10 sites, about 22% of them are

within 15 sites and about 27% of them are within 20 sites of breakpoints detected by

the Mixture Model method.
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Figure 4.3: Among all the breakpoints detected by PBC method, agreement between
MM2 and PBC methods on the estimated breakpoint positions for Mycobacterial
Genomes

The PBC method and the Hidden Markov Model method detect the same number

of breakpoints on 168 amino acid alignments (see the diagonal cells of Table 4.4). The

numbers of the alignments in the upper triangular cells of the table show that Hidden

Markov method finds more breakpoints than our PBC method for total of 839 amino

acid alignments. However, the PBC method detects more breakpoints than Hidden

Markov Model method from only 45 amino acid alignments (see the lower triangular

cells of the table). Additionally, from the first row of the upper triangle the table,

we see that the Hidden Markov Model Method detects breakpoints in 318 amino

acid alignments where the PBC method doesn’t find any breakpoint; Meanwhile, the
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        HMM Model 
 
PBC Method 

None 1 2 3 >3 

None 13 71 17 36 194 

1 20 37 6 14 230 

2 5 6 0 2 183 

3 6 2 1 0 86 

>3 5 0 0 0 118 

Table 4.4: Number of Mycobacterial protein data sets identified by different type of
breakpoints of PBC method and HMM2 method

PBC method detects breakpoints on only 36 amino acid alignments where the Hidden

Markov Model method doesn’t find any breakpoint. Compared to the Mixture Model,

there is much more agreement among all the breakpoint positions detected by both

PBC and HMM2 methods as shown in Figure 4.4. About 71% of the breakpoints

found by PBC are within 10 sites of breakpoints found by HMM2; about 80% are

within 15 sites and about 86% are within 20 sites. This greater similarity may be

partially explained by the fact that HMM2 estimated more breakpoints than MM2, so

the chance of being close to one breakpoint estimate from HMM2 is larger. However,

this does not seem sufficient to achieve this level of accuracy. It therefore seems that

there is good agreement between breakpoints found by PBC and by HMM2.
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Figure 4.4: Among all the breakpoints detected by PBC method, agreement between
HMM2 and PBC methods on the estimated breakpoint positions for Mycobacterial
Genomes



Chapter 5

Conclusions and Future work

We have developed a very simple and yet very fast and effective method for de-

tecting recombination, named the Phylogenetic Block Clustering (PBC) method. The

Phylogenetic Block Clustering method is based on the site log-likelihood matrix on a

number of tree topologies for detecting the recombination points in both DNA and

Amino Acid sequence data. By using the site log-likelihood under different trees with

all tree branch and model parameters estimated over the whole sequence, the PBC

method is able to exploit the weak signals of each site’s support to each tree and

harvest the joint influence of blocks of sites to different trees. This effectively en-

hanced the accuracy of the clustering algorithm developed in this thesis in detecting

recombination events. The method was tested on both simulated data sets and real

data sets. The simulation results showed that it has the ability to detect accurately

the positions of breakpoints most of the time. Meanwhile, it has very low false posi-

tive rate. The method is computationally very efficient because the method doesn’t

need to re-estimate the tree topologies and the model parameters many times and

yet it is a likelihood-based method. The results from both simulated data sets and

real data sets show that the site log-likelihood matrix that our PBC method is based

on contains abundant information and is a useful tool for detecting recombination

events.

With the limited simulation results shown in this thesis, we can conclude that PBC

has high potential to rank as one of the best recombination detection methods. More

simulations are needed to find in which situations it performs the best and in which

situations it needs more tuning. The number of tree topologies in our simulation and

real data analysis was fixed beforehand. It will be very useful to know how sensitive

the results are to the initial number of topologies used, and to the accuracy of these

trees. Our intuition is that including more trees could further enhance the signals and

thus increase the power of the method but won’t greatly increase the false positive
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rate as it does for the mixture model or hidden markov model, because of the way the

clustering algorithm is designed. Increasing number of the trees could also increase

the running time, but only linearly, so the method should scale well. The best balance

needs to be constructed through further simulation studies.

We also fixed the minimum of the block of the recombinant sequences as 30,

since it is very unlikely that sequences shorter than this would be confirmed by AIC.

Therefore, identifying such short sequences could greatly increase computation time,

while having almost no effect on the overall results. This decision was somewhat

heuristic, and more careful study of how choice of minimum block size affects the

results and computation time of the method should be performed in future.

There are a number of ways that the current method can be improved. The

most obvious is to improve the initial tree searching method to improve the chance

of including the true trees among the set of trees used. From the simulation with

PBC-Oracle, we see that improved tree search has the potential to improve results,

but that the improvement that could be attained is limited. Additionally, the method

currently uses AIC to test the significance of the breakpoints, but there are a number

of alternatives available, and more work needs to be done on determining which

alternative performs best for this purpose.
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