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Abstract

Given a graph G whose nodes are perfectly reliable and whose edges fail independently

with probability q ∈ [0, 1], the all-terminal reliability of G is the probability that all

vertices of G can communicate with one another. The all-terminal reliability is a

polynomial in q whose roots (all-terminal reliability roots) were conjectured to have

modulus at most 1 by Brown and Colbourn. This conjecture was proven false by Sokal

and Royle, but only by a slim margin. We present an upper bound on the modulus of

any all-terminal reliability root in terms of the number of vertices of the graph. We

find all-terminal reliability roots of greater modulus than any previously known, and

we study simple graphs with all-terminal reliability roots of modulus greater than 1.

Given a graph G whose edges are perfectly reliable and whose nodes each operate

independently with probability p ∈ [0, 1], the node reliability of G is the probability

that at least one node is operational and that the operational nodes can all commu-

nicate in the subgraph that they induce. We explore analytic properties of the node

reliability on the interval [0, 1] including monotonicity, concavity, and fixed points.

Our results demonstrate a stark contrast between this model of network robustness

and models that arise from coherent set systems (including all-terminal reliability).

A connected set of a graph G is a nonempty subset of vertices of G that induces a

connected subgraph. The connected set polynomial of G is the generating polynomial

of the collection of connected sets of G. The computational complexity, and the nature

and location of the roots of the connected set polynomial are investigated. Our results

have direct implications for node reliability. Further, we consider the connected set

polynomials of trees – the total number of subtrees of a tree has recently garnered

much interest and the connected set polynomial extends this notion.
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Chapter 1

Introduction

Networks play an increasingly important role in modern life; we rely on electrical

networks, transportation networks, and social networks, to name but a few. In most

networks, there are components which are not always perfectly reliable; that is, some-

times parts of the network fail. Power lines are torn down in a storm and homes lose

power, a car accident occurs and closes down a road temporarily, or a Facebook user

is offline and unable to receive a message.

Since the occasional failure of some components is practically unavoidable, we

would like our networks to be able to function properly despite the failure of some

components. One way to measure the robustness of a network is to assume that the

components fail randomly, and to assign a probability of failure to each component

of the network. The reliability of a network is then the probability that the network

functions adequately. Of course, there are many different notions of “functioning

adequately”, each giving rise to a different notion of reliability. If we consider the

power grid of a city we would like power to be delivered to all homes. In a public

transportation network we may want to ensure that riders can travel between all of

the major terminals. In a social network we may want to make sure that everyone

who is interested in attending an event receives an invitation.

For us, a network (or graph) consists of a finite set of vertices or nodes, and a set

of edges that represent links between pairs of nodes. For certain networks it is more

likely that the edges will fail while the nodes remain operational – take for example an

electrical network where a signal is to be passed from one node to another. Physical

1
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wires are easily damaged and may not be able to pass the signal as intended. In

other cases the edges are very reliable while the nodes frequently fail – cell phone

reception has become very reliable in recent years, but phone calls are often missed

simply because the phones themselves are switched to silent, or because the intended

receiver is unable to answer. Generally in networks where edges represent wireless

links, node failure is more common than edge failure.

In this thesis we focus mainly on two different notions of reliability. For the

first model we assume that nodes are perfectly reliable while edges fail with a given

probability. While in general the edges could have different probabilities of failure

and have failure dependencies, we make the simplifying assumption that all edges

fail independently with probability q ∈ [0, 1] (and operate – that is, perform properly

– with probability p = 1 − q). The all-terminal reliability is the probability that

at least a spanning tree is operational. In other words, it is the probability that

all nodes can communicate with one another. For the second model we assume

that the edges are perfectly reliable while the nodes fail with a given probability.

Again, we make the simplifying assumption that all nodes fail independently with

probability q ∈ [0, 1] and operate with probability p = 1 − q. The node reliability is

the probability that at least one node is operational and that all of the operational

nodes can communicate with one another. We will see that the assumption that

all components fail independently with the same probability q implies that both all-

terminal reliability and node reliability are polynomials (in q or p, depending on the

perspective that we take).

As a simple example, we compute the all-terminal reliability and the node re-

liability of the cycle C4 on 4 vertices, pictured in Figure 1.1. For the all-terminal

reliability, the edges operate independently with probability p and fail with proba-

bility 1 − p. All nodes can communicate with one another if and only if either all

4 edges are operational or exactly 3 of the 4 edges are operational. All 4 edges are
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Figure 1.1: The cycle C4.

simultaneously operational with probability p4, while any particular set of 3 edges is

operational and the other edge fails with probability p3(1−p). There are four different

subsets containing 3 edges, so the all-terminal reliability of C4 (the probability that

all nodes can communicate) is given by

Rel(C4; p) = p4 + 4p3(1− p).

For node reliability, the nodes operate independently with probability p and fail

with probability 1− p. We determine the states in which at least one node is opera-

tional and all of the operational nodes can communicate. There are 4 such states in

which exactly one node is operational (corresponding to the vertices), 4 such states in

which exactly two nodes are operational (corresponding to the edges), 4 such states

in which exactly three nodes are operational (corresponding to vertices again, as any

one vertex can fail while the others remain operational), and finally 1 such state in

which all four nodes are operational. The probability that a particular set of k nodes

is operational while the remaining 4−k nodes fail is pk(1−p)4−k. Therefore, the node

reliability of C4 is given by

nRel(C4; p) = p4 + 4p3(1− p) + 4p2(1− p)2 + 4p(1− p)3.

Shier [55] states that the two primary objectives of reliability theory are to assess

the reliability of systems (this is the analysis side of reliability theory), and to design

the most reliable system (if possible) from given components (this is the synthesis side

of reliability theory). The analysis of reliability includes the study of the algorithmic
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complexity of computing the reliability (i.e. computing all coefficients of the polyno-

mial), polynomial time algorithms for computing the reliability for restricted families

of graphs, efficient bounding procedures, and analytic properties of the functions. An-

alytic properties of interest include the shape of the reliability on the interval [0, 1],

as well as the nature and location of the roots in the complex plane. Meanwhile,

synthesis usually involves trying to find a uniformly best graph in a given class; that

is, a graph whose reliability is the largest in the class for all p ∈ [0, 1]. The classes of

all graphs on a fixed number of vertices and edges have been studied most often.

For all-terminal reliability, much work has been done in all of the topics mentioned

in the previous paragraph – see [28], for example, or [11] for a more recent survey.

In this thesis our focus is on the roots of all-terminal reliability polynomials. It was

conjectured in [12] that the roots of all-terminal reliability polynomials lie in a disk of

unit radius in the complex plane. Despite some results which confirmed the conjecture

for particular families of graphs [25, 68], the conjecture was proven false in [54], but

only by a slim margin. We prove the first general upper bound on the modulus of

a root of an all-terminal reliability polynomial of a graph of order n (in terms of n),

and we also find roots further outside the conjectured unit disk than any previously

known.

Node reliability has garnered considerably less attention in the literature than

all-terminal reliability. On the analysis side, it has been shown that the problem

of computing the sequence of coefficients of the node reliability polynomial is #P-

complete, even for the graphs that are both planar and bipartite [62]. On the other

hand, polynomial time algorithms for computing the node reliabilities of certain re-

stricted families of graphs including trees and series-parallel graphs have been found in

[29]. Work on the synthesis side on the existence and identification of uniformly best

graphs in particular classes has been done in [34, 48, 74]. In this thesis we undertake

the first in-depth study of the analytic properties of node reliability polynomials. We
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study the shape of node reliability on the interval [0, 1] including monotonicity, con-

cavity, and fixed points. Our results will often demonstrate sharp contrasts between

all-terminal reliability and node reliability, which are surprising given the similarity

of the formulations.

We then turn our attention to the roots of node reliability, and our deepest results

on the roots of node reliability are achieved through the connected set polynomial.

A connected set of a graph G is a nonempty subset of vertices of G that induces a

connected subgraph. The connected set polynomial of G is the generating polynomial

of the collection of connected sets of G. This places the connected set polynomial in

the same general context as other generating polynomials of graphs including the

matching polynomial, the independence polynomial, and the domination polynomial.

Much research concerning the computational complexity and the combinatorial and

analytic properties of polynomials exists in the literature. It will become evident that

the connected set polynomial is closely related to the node reliability polynomial, and

so our results on the connected set polynomial will often have immediate implications

for node reliability. We study the computational complexity and the nature and

location of the roots of the connected set polynomial in general.

The connected set polynomial of a tree T counts the number of subtrees of T, and

hence we will sometimes call it the subtree polynomial of T. The number of subtrees

of a tree has recently received much attention in the literature; it has applications

to a broad range of topics including combinatorial chemistry and phylogeny. The

search for a tree in a given class with the maximum or minimum total number of

subtrees has been of primary interest, and the subtree polynomial provides a natural

way to extend some results in this direction. Additionally, we determine the trees

for which the sequence of coefficients of the connected set polynomial is unimodal,

and also those for which it is log-concave. Finally, we study the roots of connected

set polynomials of trees, as their location in the complex plane appears to be very
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special.

Before moving on to the background material for the thesis, we make a final

note about the study of roots of graph polynomials in general. The roots of various

graph polynomials including the independence polynomial, the matching polynomial,

the chromatic polynomial, and the domination polynomial have been studied exten-

sively. The chromatic polynomial P (G;λ) is a prime example. In fact, the chromatic

polynomial was introduced by Birkhoff in [5] with the goal of demonstrating that

4 is not a root of P (G;λ) for any planar graph G (which implies the Four Colour

Theorem). Hence chromatic roots (the roots of chromatic polynomials) have been

important since the inception of the chromatic polynomial. Many results on chro-

matic roots have since been proven. For the real roots, it is well known that (−∞, 0)

and (0, 1) are maximal root-free intervals of the chromatic polynomial, and Jackson

proved that
(
1, 32

27

]
is another maximal root-free interval [43]. Finally, Thomassen

proved that any interval (λ1, λ2) with 32
27

≤ λ1 < λ2 contains a chromatic root [65],

concluding the search for root-free intervals. There are also many significant results

on complex chromatic roots. For example, Sokal achieved a proof that if λ is a chro-

matic root of G, then |λ| < 8∆ where ∆ is the maximum degree of G [57], and also

proved that the collection of all chromatic roots is dense in the complex plane [58]. In

short, the roots of various graph polynomials have garnered considerable attention in

the literature, and so our study of the roots of all-terminal reliability, node reliability,

and the connected set polynomial is completely natural.

1.1 Background

Before we proceed with our new results, we provide some general background on

graph theory. The material in this section can be found in any introductory text on

graph theory (see [10, 70], for example).

A (multi)graph G is an ordered pair (V,E), where V is a set and E is a multiset
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whose members are unordered pairs from V . The members of V are called vertices,

and the members of E are called edges. A graph is called finite if it has a finite

number of vertices and edges. We stress that our definition of graph allows multiple

edges but not loops. A simple graph is a graph with no multiple edges. For any

graph G, we let V (G) denote the set of vertices of G and we let E(G) denote the

(multi)set of edges of G. The order of G is |V (G)| and the size of G is |E(G)|. An

edge {u, v} ∈ E(G) is said to join the vertices u and v. We say that u and v are the

endvertices of the edge {u, v}. Two vertices x and y are called adjacent if they are

joined by an edge. A vertex x is incident to an edge e exactly when x is an endvertex

of e. Two edges are incident if they have an endvertex in common.

Adjacent vertices are also called neighbours. The (open) neighbourhood of a vertex

v is the set of all neighbours of v, denoted NG(v) (or N(v) when the context is clear).

The closed neighbourhood NG[v] (or N [v]) of a vertex v is the set of all neighbours

of v together with v itself; that is, N [v] = N(v) ∪ {v}. The degree of vertex v is

the number of edges incident to v, denoted deg(v). A vertex of degree 0 is called an

isolated vertex, while a vertex of degree 1 is called a leaf. An edge incident to a leaf

is called a pendant edge.

Let G = (V,E) be a graph. We say that a graph G′ = (V ′, E ′) is a subgraph of

G if V ′ ⊆ V and E ′ ⊆ E. The induced subgraph of G on vertex set V ′ ⊆ V , denoted

G[V ′], is the subgraph containing all edges of E that join two vertices of V ′. A subset

C of vertices of a graph G is called a clique if G[C] is complete.

We often construct new graphs from old graphs by removing certain vertices. For

a subset W ⊆ V , we define G −W = G[V \W ], the graph obtained by removing all

vertices in W and all edges incident with a vertex in W . We write G − v instead of

G− {v}.

Let G be a graph with vertex set V . A subset W ⊆ V is called independent if no

two members of W are adjacent in G. A graph is called bipartite if its vertex set can
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be partitioned into at most two disjoint independent sets. The independent sets in

such a partition are called bipartition sets.

Graphs G and H are said to be isomorphic if there is a bijection between their

vertex sets which preserves the edges. We distinguish between isomorphic graphs

only if the labelling of the vertices has some importance. Otherwise, we consider

isomorphic graphs essentially equal. When G and H are isomorphic we write G ∼= H,

or simply G = H.

Many graphs have been named in the literature. The graph containing n vertices

and all
(
n
2

)
possible edges is called the complete graph on n vertices, denoted Kn.

The graph containing n vertices and no edges is called the empty graph on n vertices,

denoted On. For m,n ∈ N, the complete bipartite graph on bipartition sets of size m

and n has all possible edges between the bipartition sets, and is denoted Km,n. The

graph K1,n−1 is called the star on n vertices. The path on n vertices is denoted Pn

and the cycle on n vertices is denoted Cn.

For the standard definitions of walk, closed walk, path, cycle, and length of a walk,

we refer the reader to [70]. The existence of a walk is an equivalence relation on

the vertices of a graph whose equivalence classes are called connected components. A

graph G is connected if it has exactly one connected component; that is, there is a

walk between every pair of vertices of G. A cut vertex of a graph is a vertex whose

removal increases the number of connected components, while a bridge is an edge

whose removal disconnects G.

A noncomplete graph is 2-connected if it is connected and contains no cut vertices.

A complete graph Kn is 2-connected if n ≥ 3. More generally, a noncomplete graph

is k-connected for some k ≥ 2 if the removal of any set of at most k−1 vertices leaves

the graph connected. A complete graph Kn is k-connected if n ≥ k + 1. A graph

is 2-edge connected if it is connected and has no bridges. More generally, a graph is

k-edge-connected if the removal of any set of at most k − 1 edges leaves the graph
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connected.

A forest is an acyclic graph (a graph with no cycles). A tree is a connected forest.

Any vertex of degree at least 2 in a tree is called a central vertex.

Let H be a graph. A graph G is called H-free if no subset of vertices of G induces

the graph H. A chordal graph is one in which every cycle of length 4 or more has a

chord – that is, an edge that is not part of the cycle but joins two of the vertices of

the cycle. Equivalently, a chordal graph is a graph that is Ck-free for all k ≥ 4.

A block or 2-connected component of a graph G is a maximal 2-connected subgraph

of G. A block graph (sometimes called a clique tree) is a graph in which every block is

a clique. Block graphs were introduced by Harary in [37]. For each graph G, Harary

defined the block graph B(G) of a given graph G as that graph whose vertices are the

blocks B1, B2, . . . , BN of G, and whose edges are determined by taking two vertices

Bi and Bj as adjacent if and only if they contain a cut vertex of G in common. The

main result of [37] is that a graph B is a block graph for some graph G if and only

if every block of B is a clique. This characterization has become the commonly used

definition for block graphs.

Given graphs G1 = (V1, E1) and G2 = (V2, E2) with disjoint vertex sets, we have

the disjoint union

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2),

and the join

G1 +G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {{v, w} : v ∈ V1, w ∈ V2}).

When H = K1 with single vertex v, we denote G +H simply by G + v. Finally, for

vertices v1 and v2 and G1 and G2, respectively, the vertex bonding of G1 and G2 at

v1 and v2 is obtained from the disjoint union G1 ∪G2 by identifying v1 and v2.

Finally, a rooted graph is a graph with one distinguished vertex, called the root.
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An isomorphism of rooted graphs must respect the root.



Chapter 2

All-Terminal Reliability

Let G = (V,E) be a finite (multi)graph in which each edge fails independently with

probability q ∈ [0, 1] and vertices are always reliable. The all-terminal reliability

of G, denoted Rel(G; q), is the probability that all vertices of G can communicate

with one another; that is, the probability that at least a spanning tree is operational.

All-terminal reliability is a well-studied model of network robustness, and much re-

search has been carried out on a variety of algorithmic and theoretical issues including

algorithmic complexity, polynomial time algorithms for restricted families, efficient

bounding procedures, the existence of optimal graphs, and analytic properties of the

functions (see [28], for example, or [11] for a more recent survey). Note that all-

terminal reliability is often studied in terms of p = 1 − q, the probability that each

edge is operational, but our results on all-terminal reliability are easier to state and

prove in terms of q, so we deal exclusively in the variable q in this chapter.

The all-terminal reliability of a connected graph G with edge set E, denoted

Rel(G; q), is indeed always a polynomial in q of degree (at most) m = |E|, as a

subgraph with operational edges E ′ ⊆ E arises with probability

(1− q)|E
′|q|E|−|E′|.

Summing this probability over all sets E ′ for which all vertices of G can communicate

gives the all-terminal reliability of G. The polynomial turns out to have degree exactly

m, as will be seen from the H-form of the polynomial, described later.

11
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As a polynomial, it is natural to inquire about the nature and location of the

roots of all-terminal reliability polynomials, called all-terminal reliability roots or

ATR roots henceforth. For example, in [13], it was shown that every graph has

an edge subdivision whose ATR roots are all real (this had implications on some

outstanding unimodality conjectures for the coefficients of the all-terminal reliability

polynomial under various expansions).

More interestingly, ATR roots were noted to have modulus at most 1 (in q) for

small graphs, and it was conjectured in [12] that indeed this was the case for all

graphs. This contrasts sharply with what is known for other graph polynomials,

such as chromatic polynomials [58], independence polynomials [18], and domination

polynomials [24] – it is known that the roots are dense in the complex plane for

all of these polynomials. Despite some results and generalizations in the affirmative

[25, 68], the conjecture for ATR roots was shown to be false in [54]. However,

• the ATR roots provided were only outside the unit disk by a slim margin – the

largest modulus of an ATR root found was approximately 1.04;

• the simple graphs with ATR roots outside the unit disk were quite large, with

the smallest having over 1500 vertices and over 3000 edges; and

• all of the simple graphs with ATR roots outside the unit disk had many vertices

of degree 2, and it is unclear whether all simple graphs with ATR roots outside

the unit disk have such low edge connectivity.

Finally, although ATR roots of modulus greater than 1 have been found, there is no

known general upper bound on the modulus of an ATR root.

In this chapter, we continue the exploration of the location of ATR roots. In

Section 2.1, we find a nontrivial (though non-constant) bound on the modulus of any

ATR root of a graph G in terms of the order of the graph. In Section 2.2.1, we study

graphs with ATR roots of modulus greater than 1, finding graphs with ATR roots
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of greater modulus than any previously known. Finally, in Section 2.2.2 we consider

simple graphs with ATR roots of modulus greater than 1. We find a smaller example

of a simple graph with ATR roots outside of the unit disk, and we find simple graphs

that have ATR roots outside of the unit disk and have much higher edge connectivity

than any previously known examples.

2.1 An Upper Bound on the Modulus of any All-Terminal Reliability

Root

Our presentation of a general upper bound on the modulus of any ATR root will be a

long and winding one, requiring us to draw connections to simplicial complexes, sets

of monomials, and a particular game on graphs.

2.1.1 All-Terminal Reliability and Simplical Complexes

As the polynomials of degree at most m form a vector space over the real numbers

(or rational numbers), there are a number of expansions of all-terminal reliability

polynomials in terms of different bases for the polynomial space; one pertinent to our

discussion is expressed as follows. For a connected graph G, let Fi denote the number

of subsets of E of cardinality i whose removal leaves the graph connected. If G has

order n and size m (i.e. n vertices and m edges), then the all-terminal reliability of

G is given by

Rel(G; q) =
m−n+1∑
i=0

Fiq
i(1− q)m−i.

This expansion is called the F -form of all-terminal reliability.

The coefficients Fi arise in another context as well (see [28]). A (simplicial)

complex K on a finite set X is a nonempty collection of subsets of X that is closed

under containment, i.e. if B ∈ K and A ⊆ B then A ∈ K. The elements of K are

called the faces of the complex and the maximal faces with respect to containment



14

are called facets or bases. The dimension d = d(K) of a complex K is the cardinality

of a largest facet. Let Fi be the number of faces of K of cardinality i. The sequence

(F0, F1, . . . , Fd) is called the F -vector of K.

For a connected graph G of order n and size m with edge set E, the subsets S ⊆ E

such thatG−S is connected are the faces of a simplicial complex of dimensionm−n+1

called the cographic matroid of G, and it is clear that the sequence of coefficients of

the F -form of the all-terminal reliability of G is precisely the F -vector of the cographic

matroid of G. Let

F (G;x) =
m−n+1∑
i=0

Fix
i

denote the generating polynomial of the F -vector of the cographic matroid of G,

which we will call the F -polynomial of G. We have

Rel(G; q) =
m−n+1∑
i=0

Fiq
i(1− q)m−i

= (1− q)m
m−n+1∑
i=0

Fi

(
q

1−q

)i
= (1− q)mF

(
G; q

1−q

)
.

The connection to simplicial complexes leads to a second expansion of all-terminal

reliability. Recall the F -form of all-terminal reliability,

Rel(G; q) =
m−n+1∑
i=0

Fiq
i(1− q)m−i.

Since at least a spanning tree must be operational in order for all nodes to be able

to communicate with one another, we see that Fi = 0 for all i < n− 1, and therefore

all nonzero terms in the F -form have a factor of (1 − q)n−1. When we factor out
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(1 − q)n−1 and expand the rest in terms of powers of q, we get the H-form of all-

terminal reliability:

Rel(G; p) = (1− q)n−1

m−n+1∑
k=0

Hkq
k.

The sequence (H0, H1, . . . , Hm−n+1) is called the H-vector of the cographic matroid

(see [28]). Moreover, the generating polynomial

H(G;x) =
m−n+1∑
k=0

Hkx
k

of the H-vector of the cographic matroid turns out to be an evaluation of the well-

known two-variable Tutte polynomial. For a subset A ⊆ E, let k(A) denote the

number of connected components of G[A]. Let r(A) = n−k(A). The Tutte polynomial

is given by

T (G;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

It follows from a result in [8] (see [51]) that

T (G; 1, x) = H(G;x). (2.1)

The values Hi, while guaranteed to be rational numbers from a linear algebra

perspective, turn out to be nonnegative integers – there is an order ideal of monomials

(a finite set of monomials closed under division) such that Hi counts the number of

monomials of degree i in the order ideal (see [14, 28]). This connection was derived

only via a deep connection between simplical complexes and commutative algebra (see

[4]). A newer and different connection between cographic matroids and order ideals

of monomials has been afforded by the chip-firing game [50, 51], which we describe

in some detail, as it is crucial to what follows.
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2.1.2 The Chip-Firing Game and Order Ideals of Monomials

Let G = (V,E) be a connected multigraph without loops, and let w denote a special

vertex of G. A configuration of G is a function θ : V → Z for which θ(v) ≥ 0 for all

v ̸= w and θ(w) = −
∑
v ̸=w

θ(v). For v ̸= w, the number θ(v) represents the number of

chips on vertex v. We imagine that the special vertex w has infinitely many chips. In

configuration θ, a vertex v ̸= w is ready to fire if θ(v) ≥ deg(v); vertex w is ready to

fire if and only if no other vertex is ready. One can think of w as playing the role of

a government, stimulating the economy when necessary. Firing vertex u changes the

configuration from θ to θ′, where

θ′(u) = θ(u)− deg(u)

and for v ̸= u

θ′(v) = θ(v) + l(u, v),

where l(u, v) is the number of edges between u and v in G. A configuration is stable

when θ(v) < deg(v) for all v ̸= w; that is, if and only if w is ready to fire.

A firing sequence Θ = (θ0, θ1, . . . , θk) is a sequence of configurations in which θi

is obtained from θi−1 by firing one vertex that is ready to fire for each i ∈ {1, . . . , k}.

It is nontrivial when k > 0. We write θ0 → θk when some nontrivial firing sequence

starting with θ0 and ending with θk exists. Configuration θ is recurrent if θ → θ.

Stable, recurrent configurations are called critical. For a critical configuration θ, a

critical sequence is a legal firing sequence of minimal length that makes θ recur.

Lemma 2.1.1 (Merino, [50]). Let G be a graph and let θ be a critical configuration

of G. Any critical sequence of θ consists of firing every vertex of G exactly once.

For example, consider the complete graph K4 and label the vertices t, u, v, and
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Figure 2.1: The firing sequence beginning from configuration ψ.

w. Let w be the special vertex and consider the initial configuration ψ defined by

ψ(t) = 2, ψ(u) = 1, and ψ(v) = 0.

This configuration is stable as the vertices t, u, and v are not ready to fire, meaning

that w is ready to fire. Figure 2.1 illustrates the firing sequence that results from

initial configuration ψ, and demonstrates that ψ is recurrent; t will fire after w,

followed by u and then v, at which point we will have returned to configuration ψ.

Thus ψ is a critical configuration.

A monomial in the indeterminates (i.e. variables) x1, . . . , xm is a product of non-

negative integer powers of the variables. Let Mon(x1, . . . , xn) denote the set of all

monomials in the indeterminates x1, . . . , xm. An order ideal of monomials M in the

indeterminates x1, . . . , xn is a subset of Mon(x1, . . . , xn) that is closed under division;

that is, for m1 and m2 in Mon(x1, . . . , xn), if m1 ∈ M and m2|m1 then m2 ∈ M.

An order ideal of monomials M is called pure if all maximal monomials in M (with

respect to division) have the same degree. For i ≥ 0 let ai be the number of mono-

mials of degree i in M, and let d be the largest integer for which ad ̸= 0. The degree

sequence of M is the sequence (a0, a1, . . . , ad).

Let C be the set of all critical configurations of G. For each v ∈ V \{w}, let xv be



18

an indeterminate. For each θ ∈ C, define a monomial

mθ =
∏

v∈V \{w}

xdeg(v)−1−θ(v)
v .

For example, the critical configuration ψ discussed above has corresponding monomial

mψ = xux
2
v.

It was proven in [51] that the set

Mw(G) = {mθ : θ ∈ C}

which consists of the monomials in the n − 1 indeterminates {xv : v ∈ V (G)\{w}}

corresponding to the critical configurations of G is an order ideal of monomials. Es-

sentially, given a critical configuration, we can add a chip to any vertex v with at

most deg(v)− 2 chips and the configuration remains critical (the extra chip need not

move in the resulting firing sequence).

Let ai be the number of monomials of degree i in Mw(G) for all i ≥ 0. The

generating polynomial of Mw(G) is given by

Mw(G;x) =
m−n+1∑
k=0

aix
i.

The (surprising!) key result that connects the chip-firing game to all-terminal relia-

bility was proven in [50].

Theorem 2.1.2 (Merino [50]). For a graph G and a vertex w, the generating polyno-

mial Mw(G;x) of the order ideal of monomials Mw(G) is an evaluation of the Tutte
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polynomial of G; in particular,

T (G; 1, x) =Mw(G;x).

Theorem 2.1.2 implies thatMw(G;x) is independent of the choice of w. Even more

interestingly, we have the following corollary.

Corollary 2.1.3. The degree sequence of Mw(G) is identical to the H-vector of the

cographic matroid.

Corollary 2.1.3 follows immediately from the fact that, from (2.1), the generating

polynomial of the H-vector of the cographic matroid is the same evaluation of the

Tutte polynomial as Mw(G;x), the generating polynomial of Mw(G). In addition,

Merino proved the following about the order ideal of monomials Mw(G).

Theorem 2.1.4 (Merino [51]). For a graph G with special vertex w, the set Mw(G)

is a pure order ideal of monomials.

Equipped with links between all-terminal reliability, simplicial complexes and or-

der ideals of monomials, we are now ready to state and prove a general bound on the

modulus of any root of the all-terminal reliability polynomial of a connected graph

of order n.

2.1.3 An Upper Bound on the Modulus of any All-Terminal Reliability

Root

First we note that the all-terminal reliability of any disconnected graph is identically

zero, so that all complex numbers are ATR roots of disconnected graphs, but in a

fairly trivial manner. We also note that any connected graph on n vertices and m < n

edges is a tree, and

Rel(T ; q) = (1− q)n−1
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for any tree T on n vertices. Thus, the only ATR root of any tree T on n vertices is

z = 1 with multiplicity n− 1. Since we know all there is to know about ATR roots of

disconnected graphs and trees, the result below, which gives the first general upper

bound on the modulus of any ATR root of a graph of order n, is concerned only with

connected graphs of order n and size m ≥ n.

Theorem 2.1.5. Let G be a connected graph of order n and size m ≥ n with b bridges

(edges whose removal disconnects G). Any root z of Rel(G; q) satisfies |z| ≤ n−b−1.

Moreover, if G has a vertex w such that

• w has no incident multiple edges and

• w is incident with a non-bridge

then |z| ≤ n− b− 2.

Proof. Note that b ≤ n− 2 as m ≥ n implies that G has some cycle. Consider

Rel(G; q) =
m−n+1∑
i=0

Fiq
i(1− q)m−i

= (1− q)n−1

m−n+1∑
i=0

Hiq
i.

It is clear that F0 = 1, and F1 = m− b. Factoring (1− q)n−1 from the F -form gives

m−n+1∑
i=0

Fiq
i(1− q)m−n+1−i =

m−n+1∑
i=0

Hiq
i.

The only constant term on the left-hand side is given by F0, so that H0 = F0 = 1.

Collecting all of the linear terms on the left-hand side, we find

H1 = F1 − (m− n+ 1)F0 = m− b− (m− n+ 1) = n− b− 1.
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Consider now the generating function

H(z) =
m−n+1∑
i=0

Hiz
i

for the H-vector of the cographic matroid; this is identical to the generating function

Mw(G; z) mentioned earlier for the order ideal of monomials derived from the chip-

firing game. For the first statement of the theorem it suffices to show that the roots

of H(z) lie in the disk |z| ≤ n− b− 1.

Huh [42] very recently answered an outstanding conjecture about H-vectors of

matroids, proving that the H-vector of the cographic matroid of a connected graph

is a log-concave sequence, that is,

H2
i ≥ Hi−1Hi+1

for all i ∈ {1, . . . ,m− n}. It follows directly that

Hi−1

Hi

≤ Hi

Hi+1

for all i ∈ {1, . . . ,m− n}. Thus we have

Hi−1

Hi

≤ Hm−n

Hm−n+1

for all i ∈ {1, . . . ,m − n}. The well-known Eneström-Kakeya Theorem (see [1], for

example) states that a polynomial
d∑
i=0

aiz
i with positive coefficients has roots in the

annulus

min

({
ai−1

ai
: i = 1, . . . , d

})
≤ |z| ≤ max

({
ai−1

ai
: i = 1, . . . , d

})
.
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From this and Huh’s result, it follows that the roots of H(z) have modulus bounded

above by

max

({
Hi−1

Hi

: i = 1, . . . ,m− n+ 1

})
=

Hm−n

Hm−n+1

.

By Corollary 2.1.3 and Theorem 2.1.4, there is a pure order ideal of monomials

M = Mw(G) with Hi being the number of monomials of degree i in M. Consider

the set

S = {(l, x) : l ∈ M of degree m− n+ 1, x is a variable that divides l}.

For each (l, x) ∈ S, note that l/x is a monomial of degree m − n in M, and the

purity of M ensures that each monomial of degree m−n in M appears at least once

under this construction. It follows that Hm−n ≤ |S|, and since |S| ≤ H1Hm−n+1 =

(n− b− 1)Hm−n+1, we have that

Hm−n

Hm−n+1

≤ n− b− 1,

so that any root z of H satisfies |z| ≤ n− b− 1. It follows that the roots of

Rel(G; q) = (1− q)n−1H(G; q)

satisfy |z| ≤ n− b− 1, and we have proven the first statement.

For the second statement, let w be any vertex of G without any incident multiple

edges and with some incident edge whose removal does not disconnect the graph. We

first note that the conditions on w imply that vertex w is contained in a cycle of

length at least 3, and thus b ≤ n− 3. Consider the order ideal of monomials Mw(G)

constructed via the chip-firing game with w being the special vertex. We claim that

each monomial inMw(G) is a product of nonzero powers of at most n−b−2 variables;
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that is, for each monomial l ∈ Mw(G), there are n− 1− (n− b− 2) = b+ 1 distinct

indeterminates xv1 , . . . , xvb+1
such that xi - l.

Every monomial in Mw(G) corresponds to a critical configuration of G. First of

all, let B denote the set containing each vertex on the opposite end of a bridge from

w. Note that any vertex v in B must have deg(v)− 1 chips, as otherwise v will never

fire. Thus, every vertex in B must have degree 0 in every monomial corresponding to

a critical configuration. Suppose – to reach a contradiction – that we have a critical

configuration in which the b vertices in B are the only vertices with degree many less

1 chips. After w fires, the only vertices that are ready to fire are the neighbours of w

that are connected to w by bridges, i.e. the vertices in B. By Lemma 2.1.1, the vertex

w never fires again, and this leaves the neighbours of w that are not in B (there must

be at least 2) with only one more chip than they started with, which is still not enough

for them to fire. This is a contradiction since the initial configuration was assumed

to be critical, and thus in any critical configuration φ at least one neighbour u of w

that is not in B must have deg(u) − 1 chips. This means that the indeterminate xu

has degree 0 in the monomial corresponding to the critical configuration φ.

Therefore, any monomial l ∈ Mw(G) is divisible by at most n− b− 2 indetermi-

nates. The same pair counting argument as in the previous part of the proof shows

that

Hm−n ≤ (n− b− 2)Hm−n+1

and we conclude via the Eneström-Kakeya Theorem that if z is a root of H(G;x)

then

|z| ≤ n− b− 2,

and hence any root z of Rel(G; q) = (1− q)n−1H(G; q) satisfies |z| ≤ n− b− 2.

Corollary 2.1.6. If G is a connected simple graph with b bridges then any root z of

Rel(G; q) satisfies either |z| ≤ n− b− 2 or z = 1.
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Proof. Let G be a connected simple graph. Either G is a tree and has unique ATR

root z = 1, or G has a cycle. In the latter case, G has some vertex w that is incident

with a non-bridge (and w is not incident to any multiple edges as G is a simple graph).

By Theorem 2.1.5, any ATR root z of G satisfies |z| ≤ n− b− 2.

A consequence of the proof of Theorem 2.1.5 is that

Hm−n(G)

Hm−n+1(G)
≤ n− 2

for any simple graph G of order n and size m ≥ n. While this bound is not best

possible, we are off by at most a factor of 2. We can show that

Hm−n(Kn)

Hm−n+1(Kn)
=
n− 2

2

for all n by considering the critical configurations of the chip-firing game on Kn.

Fix special vertex w of Kn. The minimal critical configurations (minimal in terms

of the number of chips – the configurations corresponding to monomials of order

m − n + 1) are obtained by assigning 0, 1, . . . , n − 2 chips to the remaining vertices

in any order (see [15], for example). There are (n − 1)! such assignments. Each

critical configuration corresponding to a monomial of order m − n can be obtained

from exactly two distinct minimal critical configurations by adding a single chip to

a particular vertex that has strictly less than n − 2 chips (adding a chip to a vertex

with n − 2 chips leads to a configuration that is no longer stable). Since there are

n−2 vertices with strictly less than n−2 chips in each minimal critical configuration

of Kn, we have

2Hm−n(Kn) = (n− 2)Hm−n+1(Kn) =⇒ Hm−n(Kn)

Hm−n+1(Kn)
=
n− 2

2
.
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Using a computer algebra system, we have verified for all n ≤ 9 that if G is a simple

graph on n vertices and m ≥ n edges then

Hm−n(G)

Hm−n+1(G)
≤ n− 2

2
,

with equality if and only if G ∼= Kn, leading us to believe that our bound can be

improved.

2.2 All-Terminal Reliability Roots outside of the Unit Disk

We now turn to providing more example of graphs with ATR roots outside the unit

disk centred at the origin of the complex plane (referred to simply as the unit disk

henceforth).

2.2.1 All-Terminal Reliability Roots of Larger Modulus

Brown and Colbourn investigated the roots of all-terminal reliability polynomials in

[12] where they made the following conjecture.

Conjecture 2.2.1 (Brown-Colbourn Conjecture). Let G be a connected graph. If z

is a root of Rel(G; q) then |z| ≤ 1. In other words, ATR roots all lie inside the unit

disk.

While Wagner proved that the Brown-Colbourn conjecture is true for series-

parallel graphs [68], the conjecture was proven false in general by Sokal and Royle

[54]. However, the largest known modulus of an ATR root is approximately 1.04, as

noted in [16]. We improve on this here, finding ATR roots that are almost three times

further outside of the unit disk.

We generalize the graphs that were found to have ATR roots outside of the unit

disk in [54]. For positive integers m, n, a, and b, let Ga,b
m,n be the graph on m + n
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vertices defined as follows. Take disjoint complete graphs Km and Kn and replace

every edge by a edges in parallel (i.e. replace each edge with a bundle of a edges),

and then connect every nonadjacent pair of vertices with b parallel edges. The graphs

G1,2
3,2 and G6,1

2,2 are shown in Figure 2.2. The graph G6,1
2,2 is the smallest multigraph

known to have ATR roots outside of the unit disk, and G1,6
3,3 has the ATR root with

the largest known modulus of approximately 1.04 (see [54]). We will see that G1,6
n,n

has ATR roots of even larger modulus for n > 3. The following result gives us a way

to compute Rel(Ga,b
m,n; q).

(a) The graph G1,2
3,2. (b) The graph G6,1

2,2.

Figure 2.2: Two examples of the graph Ga,b
m,n.

Proposition 2.2.2. Let m, n, a, and b be positive integers. Then

m∑
i=1

n∑
j=0

(
m−1
i−1

)(
n
j

)
qa[i(m−i)+j(n−j)]+b[i(n−j)+j(m−i)]Rel

(
Ga,b
i,j ; q

)
= 1. (2.2)

Proof. Let G1 and G2 be the complete graphs of orders m and n, respectively, from

which Ga,b
m,n is formed. Let v be a vertex of G1. For a particular subset C of vertices

which contains v and has i ≥ 1 vertices from G1 and j ≥ 0 vertices from G2, we

calculate the probability that C is a connected component in Ga,b
m,n. In order for

C to be a connected component in Ga,b
m,n, all of the members of C must be able

to communicate with one another and all of the members of C must be unable to

communicate with any vertex outside of C. The former occurs with probability

Rel
(
Ga,b
i,j ; q

)
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G1
∼= Km G2

∼= Kn

C

a a

b

b

b

v

i vertices j vertices

m− i vertices n− j vertices

Figure 2.3: The graph Ga,b
m,n and a particular subset Cv of vertices.

while the latter occurs with probability

qa[i(m−i)+j(n−j)]+b[i(n−j)+j(m−i)],

as there are a[i(m− i) + j(n− j)] + b[i(n− j) + j(m− i)] many edges between C and

the remaining vertices of the graph. A rough sketch of Ga,b
m,n is provided in Figure 2.3

to aid in the counting of edges.

There are
(
m−1
i−1

)(
n
j

)
distinct sets of this form as we may choose any i− 1 vertices

from the remaining m− 1 vertices of G1 and any j vertices from the n vertices of G2.

Thus the probability that v lies in some connected component containing i vertices

from G1 and j vertices from G2 is

(
m−1
i−1

)(
n
j

)
qa[i(m−i)+j(n−j)]+b[i(n−j)+j(m−i)]Rel

(
Ga,b
i,j ; p

)

If we sum over all possibilities for i and j we obtain 1 as v must be in some component.

This gives (2.2).
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n ATR roots of G1,6
n,n of greatest modulus Modulus

3 0.6965978094± 0.7739344775i 1.0412603341

4 0.7225077023± 0.7873461471i 1.0686118731

5 0.7415248258± 0.7932060873i 1.0858337645

6 0.7557913447± 0.7946437701i 1.0966673507

7 0.7665525647± 0.7937722633i 1.1034841369

8 0.7747703944± 0.7917743649i 1.1077796753

9 0.7811493576± 0.7892664429i 1.1104664951

10 0.7861847934± 0.7865650322i 1.1121020993

11 0.7902223368± 0.7838329136i 1.1130343112

12 0.7935054014± 0.7811532818i 1.1134860896

Table 2.1: ATR roots of G1,6
n,n of greatest modulus for small n. All values rounded to

10 decimal places.

Proposition 2.2.2 gives a recursion for Rel
(
Ga,b
m,n; q

)
in terms of the smaller poly-

nomials Rel
(
Ga,b
i,j ; q

)
for all 0 < i ≤ m and 0 ≤ j ≤ n with i + j < m + n. A base

case is not necessary as Rel
(
Ga,b

1,0; q
)
= 1 is actually given by the same equation. This

allows us to compute Rel
(
Ga,b
m,n; q

)
efficiently for small values of m and n.

We numerically computed the ATR roots of the graphs Ga,b
m,n for all small m, n,

a, and b, and graphs of the form G1,6
n,n yielded the roots of largest modulus. While

the ATR roots of the graphs G1,6
1,1 and G1,6

2,2 all lie inside the unit disk, for each n ∈

{3, 4, . . . , 12} the graph G1,6
n,n has ATR roots outside of the unit disk. Table 2.1 shows

the ATR roots of G1,6
n,n of greatest modulus for n ∈ {3, 4, . . . , 12}, and it is clear that

the modulus is increasing with n for the values shown. The ATR roots of largest

modulus of G1,6
12,12 have modulus almost three times as far outside of the unit disk as

the best examples from [54] – namely, those for the graph G1,6
3,3.
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2.2.2 Simple Graphs with All-Terminal Reliability Roots outside of the

Unit Disk

Of course, for n ≥ 2 the graphs G1,6
n,n discussed in the previous section contain mul-

tiple edges. In [54], several simple graphs were found that still violated the Brown-

Colbourn Conjecture – the smallest example being the graph on 1512 vertices and

3016 edges obtained from G11,1
2,2 (denoted differently in [54]) by replacing every edge

with 58 edges in parallel, and then replacing every edge with two edges in series (i.e.

with a path of length 2). The ATR roots of this graph can be obtained from the ATR

roots of G11,1
2,2 by transforming to a related generating polynomial and using reduction

formulae for the series and parallel edge replacements (see [54]). All of the simple

graphs in [54] with ATR roots outside of the unit disk are constructed in a similar

manner, and thus they all have edge connectivity 2 (in fact, they have many vertices

of degree 2). We improve on these results in two ways: we find a smaller simple graph

that has ATR roots outside of the unit disk, and we find simple graphs with higher

edge connectivity that have ATR roots outside of the unit disk.

In order to generate examples of simple graphs with higher edge connectivity

that have ATR roots outside of the unit disk, we discuss a more general substitution

operation on graphs. We generalize the idea from [54] of replacing every edge in a

graph with either k edges in parallel or k edges in series. Essentially, our substitution

operation involves replacing every edge in a given graph by any fixed graph of our

choice.

We define a gadget H(u, v) to be a connected graph H together with two special

vertices u and v of H. Let G be a graph and let H(u, v) be a gadget. An edge

substitution of the gadget H(u, v) into G, denoted G[H(u, v)], is any graph formed

by replacing each edge {x, y} ∈ E(G) by a copy H{x,y} of H, identifying u with x and

v with y. Note that in order to obtain a specific edge substitution we need to fix an
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u v

Figure 2.4: A gadget D(u, v) and the edge substitution P4[D(u, v)].

orientation of G, but our results here do not depend on the orientation of G. We let

G[H(u, v)] denote any edge substitution of the gadget H(u, v) into G.

We will present an expression for the all-terminal reliability of any edge substi-

tution G[H(u, v)] in terms of reliability polynomials of G and H. However, we will

need more than just the all-terminal reliability of H. We introduce a new reliability

polynomial which we term the {u, v}-split reliability. This new model of reliability

will be applied to all-terminal reliability here, but there is good reason to believe that

it is of interest in its own right.

Definition 2.2.1. Let G be a connected graph in which each edge fails independently

with probability q, and let {u, v} ⊆ V (G) where u ̸= v. The {u, v}-split reliability of

G, denoted spRel{u,v}(G; q) is the probability that every vertex w in G can commu-

nicate with exactly one vertex from {u, v} (i.e. every vertex in G can communicate

with either u or v but not both).

For example, consider the complete graph on 4 vertices and let u and v be vertices.

All 10 operational states for the {u, v}-split reliability of K4 are pictured in Figure

2.5 – there are 8 states with two operational edges and 2 states with three operational

edges. Hence, the {u, v}-split reliability of K4 is given by

spRel{u,v}(K4; q) = 8(1− q)2q4 + 2(1− q)3q3.

We can now present an expression for the all-terminal reliability of an edge substi-

tution graph G[H(u, v)]. The key is to notice that the internal vertices of the gadget
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Figure 2.5: The operational states for the {u, v}-split reliability of K4.

(that is, the vertices of H apart from u and v) can only communicate with the rest

of the graph G through u and v. Thus, in any operational state of G[H(u, v)] each

individual copy of the gadget must either be connected, or split between u and v.

Proposition 2.2.3. Let G be a graph on n vertices and m edges and let H(u, v) be

a gadget. The all-terminal reliability of any edge substitution G[H(u, v)] is given by

Rel(G[H(u, v)]; q) = [Rel(H; q)]mF
(
G;

spRel{u,v}(H;q)

Rel(H;q)

)
, (2.3)

where F (G;x) is the generating polynomial of the F -vector of the cographic matroid

of G.

Proof. Consider any copy of the gadget in any operational state of G[H(u, v)]. There

are only two possibilities for the gadget if G[H(u, v)] is to be operational:

(i) All of the vertices in the gadget can communicate with one another. This occurs

with probability Rel(H; q). We say that the gadget is operational in this case.

(ii) Each vertex in the gadget can communicate with exactly one of the vertices u or

v. This occurs with probability spRel{u,v}(H; q). We say that the gadget splits

in this case.
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A gadget splitting in G[H(u, v)] corresponds to an edge failing in G, while an opera-

tional gadget in G[H(u, v)] corresponds to an operational edge in G. For any state φ

of G[H(u, v)], let Eop be the set of edges e ∈ E(G) for which He is operational. The

state φ is operational if and only if Eop induces a connected subgraph of G and for

all e ∈ E(G)\Eop the gadget He splits. Thus, the operational states of G[H(u, v)]

in which m− i gadgets are operational and i gadgets split correspond exactly to the

operational states of G in which m− i edges are operational and i edges fail, and the

latter are counted by Fi (the F -coefficient of G). Thus the all-terminal reliability of

any edge substitution G[H(u, v)] is given by

Rel(G[H(u, v)]; q) =
m−n+1∑
i=0

Fi[Rel(H; q)]m−i[spRel{u,v}(H; q)
]i
,

which can be rewritten as (2.3) by factoring [Rel(H; q)]m out of the sum.

The expression for Rel(G[H(u, v)]; q) given in Proposition 2.2.3 allows us to find

ATR roots of G[H(u, v)] by a two-step process. We first find a root r of Rel(G; q)

and then solve a second equation that involves the all-terminal reliability of H, the

{u, v}-split reliability of H, and the root r.

Corollary 2.2.4. Let G be a connected graph and let H(u, v) be a gadget. If r ̸= 1

is an ATR root of G, then any solution of the equation

spRel{u,v}(H; q) = r
1−r · Rel(H; q) (2.4)

is an ATR root of G[H(u, v)].

Proof. Let r ̸= 1 be a root of Rel(G; q). Since we can write

Rel(G; q) = (1− q)mF
(
G; q

1−q

)
,
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the root r of Rel(G; q) corresponds to the root r
1−r of F (G;x). By Proposition 2.2.3,

Rel(G[H(u, v)]; q) = [Rel(H; q)]mF
(
G;

spRel{u,v}(H;q)

Rel(H;q)

)

for any gadget H(u, v). Therefore, any solution of the equation

spRel{u,v}(H; q)

Rel(H; q)
=

r

1− r
,

or equivalently

spRel{u,v}(H; q) = r
1−r · Rel(H; q),

is a root of Rel(G[H(u, v)]; q).

Using Corollary 2.2.4 we can find ATR roots of edge substitution graphs by first

finding an ATR root r of G and then solving (2.4). An inherent problem with this

technique is that we can only solve for the ATR roots of a graph G exactly in special

cases. For many graphs we can only approximate the ATR roots. While we can obtain

very precise approximations to an ATR root r using numerical methods, we then must

solve (2.4), and it is well known that the location of the roots of a polynomial can

be very sensitive to small changes in the coefficients. Wilkinson’s Polynomial [72] is

a classic example of this phenomenon.

To get around this problem, instead of solving (2.4) numerically, we use a par-

ticular stability test due to Schur and Cohn to show that (2.4) has solutions outside

of the unit disk for all values close to r, so that our numerical approximation to the

ATR root r will be sufficient. The stability test that we use is described in detail

in Section 11.5 of [52]. The statement of the key result below requires some new

notation. The complex conjugate of a ∈ C is denoted a and the conjugate transpose
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of a complex matrix A is denoted A∗ (this is the operation of taking the conjugate

of every entry of A and then transposing). Finally, for a finite sequence a1, . . . , an

of nonzero real numbers, B(a1, . . . , an) denotes the number of sign changes in the se-

quence (i.e. the number of indices k ∈ {2, . . . , n} for which ak−1ak < 0). For example,

B(−1, 1, 2,−4,−2) = 2.

Theorem 2.2.5 (Schur-Cohn, [52], Cor. 11.5.14). Let f(z) =
n∑
k=0

akz
k be a polynomial

of degree n. Define the upper triangular matrices

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 . . . ak−1

a0 . . . ak−2

. . .
...

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an an−1 . . . an−k+1

an . . . an−k+2

. . .
...

an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the zero entries have been left blank. Suppose that for k ∈ {1, . . . , n}, the

determinants

Mk =

⏐⏐⏐⏐⏐⏐⏐⏐
B∗
k Ak

A∗
k Bk

⏐⏐⏐⏐⏐⏐⏐⏐
are all different from zero. Then f has no root on the unit circle,

β = B(1,M1,M2, . . . ,Mn)

roots outside of the unit circle, and α = n− β roots inside it.

We now have all the theory that we need to prove our desired results, and we

only need to build up the particular examples. One of our goals was to find simple

graphs with high edge connectivity that have ATR roots outside of the unit disk,

so we will need gadgets with high edge connectivity. While the complete graph is



35

an obvious candidate, we have found that using the complete graph minus an edge

is more effective. For each n ≥ 3, let K−
n denote the graph obtained from Kn by

deleting an edge, and suppose that u and v are nonadjacent in K−
n . Clearly K−

n is

(n− 2)-edge connected. The following result is straightforward.

Lemma 2.2.6. Let G be a 2-edge connected graph. For any n ≥ 3, the graph

G[K−
n (u, v)] is (n− 1)-edge connected.

In order to find ATR roots of an edge substitution G[K−
n (u, v)] using Corollary

2.2.4, we will require formulae for Rel(K−
n ; q) and spRel{u,v}(K

−
n ; q). We deal with

Rel(K−
n ; q) first. We find a recursion for Rel(K−

n ; q) that is similar to the well-known

recursion for Rel(Kn; q) (see [28], for example):

Rel(Kn; q) = 1−
n−1∑
i=1

(
n− 1

i− 1

)
qi(n−i)Rel(Ki; q),

with the base case Rel(K1; q) = 1.

Proposition 2.2.7. For any n ≥ 2,

Rel(K−
n ; q) = 1−

n−1∑
i=1

(
n− 2

i− 1

)
qi(n−i)−1Rel(Ki; q)

−
n−1∑
i=3

(
n− 2

i− 2

)
qi(n−i)Rel(K−

i ; q).

Proof. Let u and v be the nonadjacent vertices in K−
n . We find the probability that

the vertex u can communicate with exactly i vertices of K−
n (including itself) for some

i ∈ {1, . . . , n− 1}. There are two cases:

(i) u cannot communicate with v

The probability that u can communicate with some particular subset U of i

vertices from V (Kn) − {v} is given by Rel(Ki; q). If u is to communicate with
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only these i vertices, then all i(n − i) − 1 edges between U and the remaining

vertices of K−
n must be down. Since there are

(
n−2
i−1

)
ways to choose the vertices

of U (remember that U must contain u and must not contain v), the probability

that u can communicate with exactly i vertices not including v is

(
n− 2

i− 1

)
qi(n−i)−1Rel(Ki; q).

(ii) u can communicate with v

Note that in this case i must be at least 3. The probability that u can commu-

nicate with some particular set U of i vertices of K−
n (necessarily containing v)

is given by Rel(K−
i ; q). If u is to communicate with only these i vertices, then

all i(n − i) edges between U and the remaining vertices of K−
n must be down.

Since there are
(
n−2
i−2

)
ways to choose the vertices of U (remember that U must

contain u and v), the probability that u can communicate with exactly i ≥ 3

vertices including v is (
n− 2

i− 2

)
qi(n−i)Rel(K−

i ; q).

Summing the probabilities over all possible i for each case gives the probability that

K−
n is not operational – thus Rel(K−

n ; q) is 1 minus these sums.

Now that we can find Rel(K−
n ; q) efficiently, we consider spRel{u,v}(K

−
n ; q). The

polynomial spRel{u,v}(K
−
n ; q) can be expressed in terms of the polynomials Rel(Ki; q)

for i ∈ {1, . . . , n− 1}, as we demonstrate below.

Proposition 2.2.8. For any n ≥ 2,

spRel{u,v}(K
−
n ; q) =

n−1∑
i=1

(
n− 2

i− 1

)
qi(n−i)−1Rel(Ki; q)Rel(Kn−i; q).

Proof. In any operational state for the {u, v}-split reliability of K−
n , the vertex u
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must be able to communicate with exactly i vertices (including itself) for some

i ∈ {1, . . . , n − 1}, while the vertex v must be able to communicate with all of

the remaining n− i vertices (including itself). Given a set Vu of i vertices such that

u ∈ Vu and v ̸∈ Vu, let Vv = V (K−
n )\Vu, and note that v ∈ Vv. The probability that

all the vertices of Vu can communicate is given by Rel(Ki; q) while the probability

that all the vertices of Vv can communicate is given by Rel(Kn−i; q). Since no vertex

of Vu can communicate with a vertex of Vv, all i(n− i)− 1 edges that connect Vu to

Vv must be down, and this occurs with probability qi(n−i)−1. Finally, there are
(
n−2
i−1

)
ways to choose the vertices of Vu – remember that Vu must contain u and must not

contain v. Therefore, the probability that u can communicate with exactly i vertices

while v can communicate with the remaining n− i vertices is given by

(
n− 2

i− 1

)
qi(n−i)−1Rel(Ki; q)Rel(Kn−i; q).

Summing over i ∈ {1, . . . , n−1} gives the desired expression for spRel{u,v}(K
−
n ; q).

Our examples of simple graphs with roots outside the unit disk are all of the form

G(k,n) = Gk,6k
3,3 [K−

n (u, v)]

for k ≥ 1 and n ≥ 3. We start with the base graph G1,6
3,3, replace every edge with a

bundle of k edges, and then substitute the gadget K−
n (u, v) for every edge. Before

looking at particular examples we outline our general procedure for demonstrating

that some G(k,n) has an ATR root outside of the unit disk.

We have found numerically that a particular ATR root R of the graph G1,6
3,3 satisfies

0.69659 ≤ Re(R) ≤ 0.69660 (2.5)
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and

0.77393 ≤ Im(R) ≤ 0.77394. (2.6)

This is one of the ATR roots of G1,6
3,3 of greatest modulus (its conjugate R would

work just as well). By Proposition 2.2.3, the all-terminal reliability of the graph Gk,6k
3,3

obtained from G1,6
3,3 by replacing each edge with a bundle of k ≥ 1 edges is given by

Rel
(
Gk,6k

3,3 ; q
)
= Rel

(
G1,6

3,3; q
k
)
,

as the all-terminal reliability of a bundle of k edges is 1− qk and the split reliability

is qk. This means that k
√
R is an ATR root of Gk,6k

3,3 .

Now by Corollary 2.2.4, the ATR roots of G(k,n) = Gk,6k
3,3 [K−

n (u, v)] include the

solutions of the equation

spRel{u,v}(K
−
n ; q) =

k
√
R

1− k
√
R

· Rel(K−
n ; q). (2.7)

Note that both spRel{u,v}(K
−
n ; q) and Rel(K−

n ; q) have a factor of (1−q)n−2, as at least

n − 2 edges must be operational for {u, v}-split reliability of a graph on n vertices,

and at least n− 1 edges must be operational for all-terminal reliability of a graph on

n vertices. So we may consider the equation

spRel{u,v}(K
−
n ; q)

(1− q)n−2
=

k
√
R

1− k
√
R

· Rel(K
−
n ; q)

(1− q)n−2
(2.8)

instead. The bounds (2.5) and (2.6) on the real and imaginary parts of the original

root R of G1,6
3,3 translate to bounds on the real and imaginary parts of

k√R
1− k√R

. For any

real numbers a and b satisfying these bounds (respectively), we apply Theorem 2.2.5
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to the polynomial

fn(z) =
spRel{u,v}(K

−
n ; q)

(1− q)n−2
− (a+ bi) · Rel(K

−
n ; q)

(1− q)n−2
.

We are able to determine the sign of all of the required determinants using only the

bounds on a and b.

In the case that n = 3, note that K−
3
∼= P3 so that the graph

G(k,3) = Gk,6k
3,3 [K−

3 (u, v)]

is obtained from G1,6
3,3 by only parallel and series substitutions. Hence this graph is

constructed in a very similar manner to the smallest simple graph found to have an

ATR root outside of the unit disk in [54]. The main difference is the choice of the

base graph G1,6
3,3 here (as opposed to the use of G11,1

2,2 in [54]). For k ≤ 8, we have found

that the ATR roots of the graph G(k,3) all lie inside the unit disk. However, when

k = 9, an ATR root is pushed outside of the unit disk, as we prove in the proposition

below.

Proposition 2.2.9. The simple graph G(9,3) = G9,54
3,3 [K−

3 (u, v)] on 546 vertices and

1080 edges has an ATR root outside of the unit disk.

Proof. Recall that a particular ATR root R of the graph G1,6
3,3 satisfies

0.69659 ≤ Re(R) ≤ 0.69660 and 0.77393 ≤ Im(R) ≤ 0.77394.

From these bounds we are able to obtain

−1.01749 ≤ Re

(
9
√
R

1− 9
√
R

)
≤ −1.01731 and 10.70762 ≤ Im

(
9
√
R

1− 9
√
R

)
≤ 10.70814.
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It suffices to show that the polynomial

f3(q) =
spRel{u,v}(K

−
3 ; q)

1− q
− (a+ bi) · Rel(K

−
3 ; q)

1− q
.

has a root outside of the unit disk for any real numbers a and b satisfying

−1.01749 ≤ a ≤ −1.01731 and 10.70762 ≤ b ≤ 10.70814. (2.9)

Working either directly from the definitions or using the formulae of Proposition

2.2.7 and 2.2.8, we find that Rel(K−
3 ; q) = (1− q)2 and spRel{u,v}(K

−
3 ; q) = 2q(1− q).

Substituting these polynomials into the equation for f3(q), we obtain

f3(q) = 2q − (a+ bi)(1− q)

= (2 + a+ bi)q − (a+ bi).

Applying the test of Theorem 2.2.5 to f3(q) with a and b as parameters, we get the

single determinant

M1 = 4a+ 4.

In particular, from our bounds we know that a < −1, and hence M1 < 0. Therefore,

B(1,M1) = 1 (recall that B(a1, . . . , an) is the number of sign changes in the sequence

a1, . . . , an), and we conclude that f3(q) has a root outside the unit disk for any a and

b satisfying (2.9).

Since the graph G9,54
3,3 [K−

3 (u, v)] has 546 vertices and 1080 edges, it is just over

one third of the size of the smallest previously known simple graph with ATR roots

outside of the unit disk (the smallest such graph found in [54] has 1512 vertices and

3016 edges). We stress that the only real difference between our graph and the graph

from [54] is the choice of the graph that we start from before performing the edge
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substitutions. We tested many different base graphs of the form Ga,b
m,n and the base

graph G1,6
3,3 produced the smallest simple graph with ATR roots outside of the unit

disk.

It may seem as though our use of Theorem 2.2.5 in Proposition 2.2.9 is a little bit

heavy-handed, as f3(q) turned out to be a linear function, and we could have verified

that its single root was outside of the unit disk directly. However, Theorem 2.2.5

plays a much more important role in the proof of the following proposition. While

we have observed that all of the ATR roots of the graph G(k,4) = Gk,6k
3,3 [K−

4 (u, v)] are

inside the unit disk for k ≤ 6, when k = 7 an ATR root is pushed outside.

Proposition 2.2.10. The 3-edge connected simple graph G(7,4) = G7,42
3,3 [K−

4 (u, v)] has

an ATR root outside of the unit disk.

Proof. Recall that a particular ATR root R of the graph G1,6
3,3 satisfies

0.69659 ≤ Re(R) ≤ 0.69660 and 0.77393 ≤ Im(R) ≤ 0.77394.

From these bounds we obtain

−0.90269 ≤ Re

(
7
√
R

1− 7
√
R

)
≤ −0.90254 and 8.32420 ≤ Im

(
7
√
R

1− 7
√
R

)
≤ 8.32462.

It suffices to show that the polynomial

f4(q) =
spRel{u,v}(K

−
4 ; q)

(1− q)2
− (a+ bi) · Rel(K

−
4 ; q)

(1− q)2
.

has a root outside of the unit disk for any real numbers a and b satisfying

−0.90269 ≤ a ≤ −0.90254 and 8.32420 ≤ b ≤ 8.32462. (2.10)
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Using Proposition 2.2.7 we find

Rel(K−
4 ; q) = (1− q)3(4q2 + 3q + 1),

and Proposition 2.2.8 gives

spRel(K−
4 ; q) = 2(1− q)2(3q + 1)q2.

Substituting these expressions into f4(q) yields

f4(q) = 2(3q + 1)q2 − (a+ bi)(1− q)(4q2 + 3q + 1).

Applying Theorem 2.2.5 to f4(q) with a and b as parameters, we obtain the three

determinants

M1 = 15a2 + 15b2 + 48a+ 36,

M2 = 144a4 + 288a2b2 + 144b4 + 1260a3

+ 1260ab2 + 3284a2 + 980b2 + 3456a+ 1296, and

M3 = 18432a5 + 36864a3b2 + 18432ab4 + 107520a4 + 123648a2b2 + 16128b4

+ 252032a3 + 137344ab2 + 296576a2 + 50816b2 + 175104a+ 41472.

Since the determinants M1, M2, and M3 have all positive coefficients, it is straight-

forward to bound the determinants using the bounds on a and b from (2.10). We

did so using a computer algebra system and found M1,M2 > 0 and M3 < 0, so that

B(1,M1,M2,M3) = 1, and therefore f4(q) has exactly one solution outside of the unit

disk.

Using the same procedure as in the proof of Proposition 2.2.10, we can demonstrate
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n

Smallest value k for
which G(k,n) has an
ATR root outside of

the unit disk

Edge connectivity
of G(k,n)

Number of
vertices of
G(k,n)

Number of
edges of
G(k,n)

3 9 2 546 1,080

4 7 3 846 2,100

5 6 4 1,086 3,240

6 6 5 1,446 5,040

Table 2.2: Simple graphs with ATR roots outside of the unit disk.

that there are 4-edge connected and 5-edge connected graphs with ATR roots outside

of the unit disk. When we substitute the gadgets K−
5 (u, v) and K−

6 (u, v), we find

that replacing each edge of G1,6
3,3 with a bundle of 6 edges is sufficient to push an ATR

root outside of the unit disk.

Proposition 2.2.11. Both the 4-edge connected simple graph G(6,5) and the 5-edge

connected simple graph G(6,6) have an ATR root outside of the unit disk.

All of the important information about the simple graphs we have found with

ATR roots outside of the unit disk is collected in Table 2.2. While we suspect that

our technique could be used to prove that there are simple graphs with yet higher

edge connectivity with ATR roots outside of the unit disk, the time required to apply

Theorem 2.2.5 to the polynomial fn(q) grows large very quickly; after all, the degree

of fn(q) is
(
n−1
2

)
.

Finally, we mention that our technique for finding ATR roots of simple graphs with

high edge connectivity has another important application. Let P = {z ∈ C : Re(z) ≥

−1/2}. It was proven in [12] that roots of the F -polynomial are dense in P. Hence,

for any r ∈ P and any gadget H(u, v), the solutions of

spRel{u,v}(H; q) = r · Rel(H; q) (2.11)
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are limits of ATR roots by Proposition 2.2.3, as the roots of a polynomial are a

continuous function of its coefficients, and there are graphs whose F -polynomials

have a root arbitrarily close to r. In particular, when r = 0 we have

spRel{u,v}(H; q) = 0,

which means that the roots of the {u, v}-split reliability of any gadget are limits of

ATR roots. For small n, the polynomial spRel{u,v}(G
1,6
n,n; q) has roots outside of the

unit disk for any choice of u and v. While none of these roots have modulus larger

than the roots of the corresponding polynomial Rel(G1,6
n,n; q), this demonstrates the

fact that roots of the {u, v}-split reliability polynomial might be useful if we are

interested in finding ATR roots of large modulus.

If we are more creative with our choice of r, we can sometimes find roots of

(2.11) that are larger in modulus than any ATR root of H alone. For example, let

r = −1/2+3i, let H = G1,6
12,12, and let u and v be any two vertices from the same K12

in the construction of H. Then (2.11) has roots of modulus slightly larger than any

roots of Rel(H; q), meaning that there are ATR roots of even larger modulus than

those we found in Section 2.2.1!



Chapter 3

Node Reliability

In this chapter we study the analytic properties of node reliability, with a particular

focus on the shape of the node reliability curve on the interval [0, 1]. In Section 3.1

we explore the question of monotonicity of node reliability, while in Section 3.2 we

consider the concavity of the curve and the number of points of inflection. In Section

3.3 we study the fixed points of node reliability in (0, 1). Finally, we begin the analysis

of node reliability roots in Section 3.4 – this work is continued in Chapters 4 and 5. In

order to lay the ground for our results on the shape of node reliability, we first discuss

the shape of all-terminal reliability (and the shape of coherent reliability polynomials

in general) on the interval [0, 1]. Our findings on node reliability will demonstrate

many interesting contrasts between the models of node reliability and all-terminal

reliability.

The all-terminal reliability studied in the previous chapter is based on the premise

that the nodes are always operational, but edges are independently operational with

probability p. The all-terminal reliability model generalizes to K-terminal reliability,

which asks the probability that all vertices in some particular subset K can commu-

nicate with one another (we call the vertices in K the target nodes, with the target

nodes ranging from two particular vertices in the well-studied two-terminal reliabil-

ity to the entire vertex set for all-terminal reliability). An excellent survey of these

measures can be found in [28].

When investigating K-terminal reliability in general, one is struck by how little

the size ofK affects the structure of the reliability function. For example, consider the

45
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graph K7, the complete graph of order 7. Plots of the all-terminal reliability of K7,

the two-terminal reliability of K7 (with any two distinguished nodes) and K-terminal

reliability of K7 (with K any vertex subset of size 4) are shown in Figure 3.1. The

overall shapes of the all-terminal, two-terminal and K-terminal reliabilities of K7 on

the interval [0, 1] are not so different.

All of these models of reliability fit under the umbrella of coherence. Let X be a

finite ground set; a coherent set system S on X is a nonempty subset of P(X) that is

closed under taking supersets and does not contain the empty set (this last condition

is to ensure nontriviality). The order of S is the cardinality of the ground set X.

We think of the elements of X as components of a system that either operate or fail,

and so we call the sets in S the operational states. Coherence is then the natural

property that if we start with an operational state and make any number of failed

components operational it can only improve matters (that is, will not result in a failed

state). Let X have cardinality n and suppose that each element of X is independently

operational with probability p ∈ (0, 1). The reliability of coherent set system S on X,

denoted Rel(S; p), is the probability that the set of operational elements of X is in

S; that is,

Rel(S; p) =
∑
S∈S

p|S|(1− p)n−|S| (3.1)

=
n∑
i=1

Nip
i(1− p)n−i (3.2)

where Ni is the number of operational states of order i for each i ∈ {1, . . . , n}. There

are obvious relevant coherent set systems underlying each of the network models

introduced earlier, all on the edge set of the graph – in general for K-terminal reli-

ability, the operational states are those edge subsets that connect all vertices of K.

We note that the graph K1 is the only connected graph whose underlying set system
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p

Rel2(K7; p)

(a) Two-terminal reliability of K7.

p

RelK(K7; p)

(b) K-terminal reliability of K7 for
|K| = 4.

p

Rel(K7; p)

(c) All-terminal reliability of K7.

Figure 3.1: Plots of two-terminal, K-terminal (|K| = 4) and all-terminal reliability
of the graph K7.
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for K-terminal reliability is not coherent, as it contains the empty set.

Birnbaum, Esary, and Saunders achieved a beautiful result in [6] that describes

the general shape of any coherent reliability polynomial (that is, the reliability of

any coherent set system) on the interval [0, 1]; it states that any coherent reliability

polynomial is strictly increasing on (0, 1) and has at most one fixed point in (0, 1) (a

fixed point of a function f is a value x for which f(x) = x). Moreover, when written in

the form (3.2), the reliability of any coherent set system S with N1 = 0 and Nn−1 = n

has a sigmoid shape (or S-shape) on [0, 1]; that is,

• Rel(S; 0) = 0 and Rel(S; 1) = 1,

• Rel′(S; p) > 0 for p ∈ (0, 1),

• Rel(S; p) has a unique fixed point p̂ ∈ (0, 1), and

• Rel(S; p) < p for p ∈ (0, p̂) and Rel(S; p) > p for p ∈ (p̂, 1).

A typical S-shaped curve (the all-terminal reliability polynomial of the cycle C4) is

shown in Figure 3.2. The conditions N1 = 0 and Nn−1 = n mean simply that the

system fails whenever at most one component is operational, and that the system

is operational whenever at most one component fails, respectively. For all-terminal

reliability, these conditions are satisfied if and only if the graph lies on at least 3

vertices and is 2-edge connected (i.e. has no bridges).

Returning to the foundation of the network model, in some situations it is more

realistic to assume that the edges are perfectly reliable and the nodes each operate

independently with a given probability. Social networking websites seem to be an

obvious example of this situation. In such a network, the edges represent friendship,

which is (nearly) perfectly reliable. On the other hand, the vertices represent the

users, who may be online or offline. In order to communicate effectively, at any given

time we would like all of the operational nodes to be able to communicate with one
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0 p̂ 1
0

p̂

1

R(p) < p

R(p) > p

R(p̂) = p̂

R′(p) > 0

p

R(p)

Figure 3.2: A plot of an S-shaped curve R(p).

another. We refer to this model as node reliability, condensing the term residual node

connectedness reliability used in [29, 61, 62], for example.

Definition 3.0.1. Consider a network G consisting of n nodes each operating inde-

pendently with probability p ∈ [0, 1]. The node reliability of G, denoted nRel(G; p),

is the probability that at least one node is operational and that the operating nodes

can all communicate in the induced subgraph that they generate.

Like the other measures of reliability we have discussed, the node reliability of a

graph is always a polynomial in p, as

nRel(G; p) =
∑
C∈C

p|C|(1− p)n−|C|, (3.3)

where C is the collection of all nonempty vertex subsets that induce connected sub-

graphs of G.We call these sets connected sets and refer to C as the system of connected

sets of G. As a simple example, the node reliability of the complete graph Kn is

nRel(Kn; p) = 1− (1− p)n,
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as any nonempty subset of vertices induces a connected subgraph (indeed, a complete

subgraph). The node reliability of Kn is equivalent to the all-terminal reliability of a

bundle of n edges (the multigraph on two vertices with n edges between them).

Like that for all-terminal reliability, much of the existing work on node relia-

bility has concerned itself with finding optimal networks, should they exist, given

constraints on the number of vertices and edges allowed (see [34, 48, 61, 74]). Other

research concerns the complexity of computing the polynomials; Sutner et al. showed

in [62] that the problem of computing the node reliability polynomial is NP-hard,

while Colbourn et al. presented efficient algorithms for computing the node reliabil-

ity polynomial of several restricted families of graphs [29]. Results on both of these

problems for node reliability mirror those for all-terminal reliability to a large extent.

In light of the similarity of the formulations (3.1) and (3.3) for general K-terminal

reliability and node reliability, and the similarity of discoveries on the two main

problems (namely synthesis and computation issues) for all-terminal reliability and

node reliability, one cannot help but ask whether there is anything new for node

reliability. Our investigation into the analytic structure of node reliability reveals

some unexpected and remarkable differences from the structure of all instances of

K-terminal reliability, and coherent reliabilities in general. In this chapter, we will

show that the shape of node reliability polynomials is strikingly different than that

of its coherent relatives. We will also show that the nature and location of the roots

of node reliability polynomials differ greatly from those for the roots of all-terminal

reliability polynomials (in this chapter and the next).

The first glaring difference between node reliability and all-terminal reliability

arises from disconnected graphs. The all-terminal reliability polynomial of a discon-

nected graph is always identically zero, but the situation is not so trivial for the node
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reliability polynomial. If G is not connected, then

nRel(G; 0) = 0 and nRel(G; 1) = 0,

but nRel(G; p) > 0 for all p ∈ (0, 1). The node reliability of a disconnected graph is

easily computed in terms of the node reliabilities of its components.

Observation 3.0.1. Let G be a graph with connected components G1, . . . , Gk. The

node reliability of G is given by

nRel(G; p) =
k∑
i=1

(1− p)n−|V (Gi)|nRel(Gi; p).

Proof. In order for all operational nodes of G to communicate, they must all belong

to the same component of G. Thus, the operational nodes in G must all be able

to communicate in some component Gi, and all nodes outside of Gi must fail. The

probability that at least one node of Gi is operational and that the operational nodes

in Gi can all communicate is given by nRel(Gi; p), and the probability that all nodes

outside of Gi fail is (1− p)n−|V (Gi)|. Therefore, the node reliability of G is given by

nRel(G; p) =
k∑
i=1

(1− p)n−|V (Gi)|nRel(Gi; p).

While our focus remains on connected graphs, disconnected graphs will provide

several key examples in the material to come.

3.1 Monotonicity

It was proven in [6] that any coherent reliability polynomial is strictly increasing on

(0, 1). We include our own short proof of this fact here as it is relevant to our work.

For any coherent set system S on a set X of cardinality n, there is an associated set
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system CS on X given by

CS = {X − S : S ∈ S}.

The members of CS are the sets of components whose failure leaves the graph oper-

ational. Since S is coherent, the set system CS is closed under containment, making

it a simplicial complex. We may write the reliability of the coherent system S in its

F -form

Rel(S; p) =
n∑
k=0

Fk(1− p)kpn−k,

where Fk is the number of sets of cardinality k (in simplicial complex parlance,

the number of faces of cardinality k) in the complex CS . These coefficients satisfy

Sperner’s bounds [59] for complexes:

(k + 1)Fk+1 ≤ (n− k)Fk,

for k ∈ {0, . . . , n− 1}. A straightforward computation yields

Rel′(S; p) =
n∑
k=0

[(n− k)Fk − (k + 1)Fk+1](1− p)kpn−k−1. (3.4)

Note that Fn = 0 as ∅ ̸∈ S by the definition of coherent set system. Further, note

that CS is not empty as S is not empty (again by the definition of coherent set

system). Let t be the largest integer for which Ft > 0. The coefficient of the term

corresponding to k = t in (3.4) is strictly positive as Ft > 1 but Ft+1 = 0, and the

remaining coefficients are nonnegative by Sperner’s bounds. We conclude that the

coherent reliability polynomial of any coherent set system is strictly increasing on

(0, 1). As a corollary, the all-terminal reliability of a connected graph of order at least

2 is strictly increasing.

While there might be an expectation that a similar result holds for node reliability,
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the issue of monotonicity is not so obvious for node reliability. It is easy to see that

the system of connected sets of a graph G is coherent if and only if G is complete

(any single vertex of a graph always induces a connected subgraph, but pairs of non-

adjacent vertices do not). The node reliability polynomial of the complete graph Kn,

given by

nRel(Kn; p) = 1− (1− p)n,

is clearly strictly increasing on (0, 1). On the other hand, the coefficients of the F -form

of the node reliability of a graph G,

nRel(G; p) =
n∑
k=0

Fi(1− p)ipn−i,

fail to satisfy Sperner’s bounds (the essential inequalities used above in the proof of

monotonicity for coherent reliability polynomials) whenever G is not complete, as

then Fn−1 = n and Fn−2 < n(n − 1)/2. However, in spite of the failure of Sperner’s

bounds, there are non-complete graphs whose node reliability polynomials are always

increasing on (0, 1). For example, the node reliability of the complete bipartite graph

Kn,n is given by

(1− (1− p)n)2 + 2np(1− p)2n−1 = 1− 2(1− p)n + 2np(1− p)2n−1 + (1− p)2n.

By a straightforward computation,

nRel′(Kn,n; p) = 2n(1− p)n−1
[
1− (2n− 1)p(1− p)n−1

]
,

and its sign is the same as that of 1 − (2n − 1)p(1 − p)n−1 for all p ∈ (0, 1). Setting
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fn(p) = (2n− 1)p(1− p)n−1, we see that

f ′
n(p) = (2n− 1)(1− p)n−2(1− np),

so that p = 1
n
is the unique critical point of fn in (0, 1), and fn is maximized there.

We will demonstrate that

fn
(
1
n

)
= 2n−1

n

(
1− 1

n

)n−1
< 1

for all n ≥ 2. Clearly 2n−1
n

< 2, and it remains to show that
(
1− 1

n

)n−1
< 1

2
. It is

sufficient to show that the function

t(x) =
(
1− 1

x

)x−1

is decreasing on [2,∞) since t(2) = 1
2
. A straightforward computation gives

t′(x)
t(x)

= ln
(
1− 1

x

)
+ 1

x
.

From the power series

ln(1− y) = −y − y2

2
− y3

3
− . . .

which converges on (0, 1), we see that ln(1− y) < −y for y ∈ (0, 1). Hence we have

t′(x)
t(x)

= ln
(
1− 1

x

)
+ 1

x
< − 1

x
+ 1

x
= 0

for x ∈ [2,∞). Since t(x) > 0 for x ∈ [2,∞) we conclude that t′(x) < 0 and thus t(x)

is decreasing on [2,∞). Hence we have
(
1− 1

n

)n−1
< 1

2
and

fn
(
1
n

)
< 2 · 1

2
= 1.
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p

nRel(P6; p)

Figure 3.3: Plot of the node reliability of a path of order 6.

Therefore, nRel′(Kn,n; p) > 0 for all p ∈ (0, 1) for any n ≥ 2, and we conclude that

nRel(Kn,n; p) is increasing on (0, 1).

More surprisingly, there are graphs whose node reliability polynomials are not

always increasing on (0, 1) – it does not even appear to be very rare for the node

reliability polynomial to have an interval of decrease in (0, 1)! Figure 3.3 shows a plot

of the node reliability of a path of order 6, and an interval of decrease between 0.2137

and 0.5851 is clearly evident. Using a computer algebra system, we have found that

the node reliability polynomials of 37 of the 112 connected graphs of order 6 have an

interval of decrease, while the node reliability polynomials of 383 of the 853 connected

graphs of order 7 have an interval of decrease. We will prove in Theorem 3.1.3 that

all graphs that are not too dense have an interval of decrease. Intuitively, the reason

is that when p is close to 1
n
, there is a fairly high probability that exactly one vertex

is operating. As p increases from 1
n
, we are likely to have multiple operational nodes

(but still not many), and since the graph is not dense it is unlikely that such a small

set of nodes will induce a connected subgraph. We now develop the theory to obtain

a formal proof of this fact.

The expression for the node reliability given in (3.3) gives rise to the convenient
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form

nRel(G; p) =
n∑
k=1

ckp
k(1− p)n−k, (3.5)

where ck = ck(G) is the number of connected sets of G of order k for each k ∈

{1, . . . , n}. (Recall that a subset C of vertices is called a connected set if and only

if it is nonempty and the induced subgraph G[C] on C is connected.) We remark

that while the problem of counting the number of connected sets in a graph has been

studied in several different places in the literature [7, 56, 62, 63, 64, 73, 75, 76], very

little of this work distinguishes between connected sets of different orders, which node

reliability inherently does.

We refer to (3.5) as the c-form of the node reliability, and we refer to the coef-

ficients of the c-form collectively as the c-coefficients of the node reliability polyno-

mial. The following straightforward observation giving the exact values of certain

c-coefficients was made in [61].

Observation 3.1.1. Let G be a connected graph of order n and size m, let τ be the

number of triangles of G, and let t be the number of cut vertices of G. Then

(i) c1 = n,

(ii) c2 = m,

(iii) c3 =

⎛⎝ ∑
v∈V (G)

(
deg(v)

2

)⎞⎠− 2τ,

(iv) cn−1 = n− t, and

(v) cn = 1.

As an extension of this observation we note that if p is the order of a smallest

vertex cut in G (a vertex cut is a set of vertices whose removal disconnects the graph),
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then cn−k =
(
n
k

)
for each k ∈ {0, . . . , p−1} and cn−p =

(
n
p

)
− tp where tp is the number

of vertex cuts of order p.

We will not require explicit formulae for any of the other coefficients; we will

simply bound them in terms of these known coefficients. We prove upper bounds on

the c-coefficients of the node reliability polynomial in terms of lower c-coefficients.

These bounds are similar in spirit to Sperner’s bounds, which were used in the proof

that any coherent reliability polynomial is increasing on (0, 1).

Lemma 3.1.2. For any graph G in which a largest component has order d,

2ck ≤ (d− k + 1)ck−1

for all k ∈ {2, . . . , d}. More generally,

(k − t+ 1)ck ≤
(
d− t

k − t

)
ct

for all k ∈ {2, . . . , d} and t ∈ {1, . . . , k − 1}.

Proof. We first prove that for any connected graph H of order n ≥ 1,

ck(H) ≥ n− k + 1

for each k ∈ {1, . . . , n}.We proceed by induction on n. For the base case, when n = 1

we have c1 = 1 ≥ 1 − 1 + 1, and the statement is verified. Now suppose that for

some n ≥ 2, any connected graph H ′ of order n − 1 satisfies ck(H
′) ≥ n − k for

all k ∈ {1, . . . , n − 1}. Let H be a connected graph of order n. Let v be a vertex

whose removal does not disconnect H (such a vertex must exist – take a leaf of some

spanning tree of H, for example). There are exactly ck(H − v) connected sets of G

of order k that do not contain v, and there must be at least one connected set of H
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of order k containing v by the following argument. Every connected graph H has a

unique connected set of order 1 containing v (namely the singleton {v}), and given a

connected set C of order k ∈ {1, . . . , n − 1} in H, there must always be a vertex in

V (H)−C that can be added to C to form a connected set of order k+1, as otherwise

H is not connected. Thus we have

ck(H) ≥ ck(H − v) + 1.

Now by the induction hypothesis applied to H − v,

ck(H) ≥ ck(H − v) + 1 ≥ n− k + 1.

Now we are ready to prove the statement of the lemma. Let G be a graph in which

a largest component has order d. For each k ∈ {1, . . . , d}, let Ck be the collection

of connected sets of G of order k. For any k ≥ 2, consider a member S of Ck. The

induced subgraph G[S] contains at least k − t + 1 connected sets of order t by the

argument in the previous paragraph. Clearly, any connected set of G[S] must also

be a connected set of G. Therefore, every member of Ck can be written in the form

W ∪ X in at least k − t + 1 distinct ways, where W ∈ Ct and X is some subset of

k− t vertices chosen from among the remaining vertices of the component containing

W . The total number of such pairs (W,X) is at most

(
d− t

k − t

)
ct,

as any component contains at most d vertices. Since each member of Ck arises from

at least k − t+ 1 of these pairs, we have

(k − t+ 1)ck ≤
(
d− t

k − t

)
ct
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While we used Sperner’s Bounds to show that the reliability polynomial of any

coherent set system is increasing on (0, 1), we will use the bounds of Lemma 3.1.2 to

show that the node reliability of any graphs with few enough edges has an interval of

decrease in the interval (0, 1).

Theorem 3.1.3. If G is a graph of order n and size m ≤ 0.0851n2, then nRel(G; p)

has an interval of decrease in (0, 1). In particular, nRel′
(
G; r̂

n

)
< 0, where r̂ ≈

1.729474372.

Proof. Let G be as in the theorem statement. A straightforward computation gives

nRel′(G; p) =
n∑
k=1

pk−1(1− p)n−k[kck − (n− k + 1)ck−1], (3.6)

where ck is the number of connected sets of G of order k for k ∈ {0, . . . , n} (recall

that the empty set is not considered to be a connected set, so c0 = 0, and if a largest

component of G has order d < n then cd+1 = . . . = cn = 0). We find directly using

the facts that c1 = n and c2 = m from Observation 3.1.1 that the sum of the first two

terms (corresponding to k = 1 and k = 2) of the sum in (3.6) is given by:

(1− p)n−2[n(1− np) + 2mp] (3.7)

We now bound the remaining terms in the sum from (3.6) for any p ∈ (0, 1). For ease

of reading we let

σ =
n∑
k=3

pk−1(1− p)n−k[kck − (n− k + 1)ck−1], (3.8)

so that

nRel′(G; p) = (1− p)n−2[n(1− np) + 2mp] + σ. (3.9)
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We claim that σ ≤ m
[
p− 1

n−1
+ (1−p)n−1

n−1

]
. We first use the fact that

(n− k + 1)ck−1 ≥ 2ck

for all k ∈ {2, . . . , n} by Lemma 3.1.2. This means that

kck − (n− k + 1)ck−1 ≤ (k − 2)ck,

so that from (3.8) we obtain

σ ≤
n∑
k=3

pk−1(1− p)n−k(k − 2)ck. (3.10)

Using the more general version of Lemma 3.1.2 now for t = 2, we have

(k − 1)ck ≤
(
n− 2

k − 2

)
c2 = m

(
n− 2

k − 2

)

for all k ∈ {3, . . . , n}. From (3.10), we obtain

σ ≤ m ·
n∑
k=3

pk−1(1− p)n−k
(
k − 2

k − 1

)(
n− 2

k − 2

)
. (3.11)

The sum in (3.11) can be evaluated using binomial identities to obtain

σ ≤ m
[
p− 1

n−1
+ (1−p)n−1

n−1

]
, (3.12)

as claimed.
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Substituting the upper bound for σ from (3.12) into (3.9), we get

nRel′(G; p) ≤ (1− p)n−2[n(1− np) + 2mp] +m
[
p− 1

n−1
+ (1−p)n−1

n−1

]
(3.13)

= (1− p)n−2
[
n(1− np) +m

(
2p+ 1−p

n−1

)]
+m

[
p− 1

n−1

]
. (3.14)

We substitute p = r
n
into (3.14) for some fixed r ∈ (1, 2); the exact value of r will be

determined shortly.

nRel′
(
G; r

n

)
≤
(
1− r

n

)n−2
[
n(1− r) +m

(
2r
n
+ n−r

n(n−1)

)]
+m

[
r
n
− 1

n−1

]
<
(
1− r

n

)n−2[
n(1− r) + m

n
(2r + 1)

]
+ m

n
(r − 1)

=
(
1− r

n

)n−2
[
n(1− r) + m

n
(2r + 1) + m

n
(r − 1)

(
1− r

n

)−(n−2)
]

We now show that
(
1− r

n

)−(n−2)
< er. We set f(x) =

(
1− r

x

)−(x−2)
for x ∈ (r,∞),

and find easily that

f ′(x) =
(
1− r

x

)−(x−2)

(
− ln

(
1− r

x

)
+

r(2− x)

x2
(
1− r

x

)).
Using the fact that − ln(1− y) > y for y ∈ (0, 1), we see that

− ln
(
1− r

x

)
+

r(2− x)

x2
(
1− r

x

) > r

x
+

r(2− x)

x2
(
1− r

x

) =
r(2− r)

x(x− r)
,

and hence

f ′(x) >
(
1− r

x

)−(x−2)
(
r(2− r)

x(x− r)

)
> 0

since we fixed r ∈ (1, 2) and x > r. Thus
(
1− r

n

)−(n−2)
is increasing, and as
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lim an = er, we have that
(
1− r

n

)−(n−2)
< er. Thus,

nRel′(G; r
n
) <

(
1− r

n

)n−2[
n(1− r) + m

n
(2r + 1 + (r − 1)er)

]
.

We find that if

n(1− r) + m
n
(2r + 1 + (r − 1)er) ≤ 0 (3.15)

then nRel′(G; r
n
) < 0 and nRel(G; p) is decreasing at p = r

n
. We rearrange (3.15) to

obtain the sufficient condition

m ≤
[

r−1
2r+1+(r−1)er

]
n2. (3.16)

Using a computer algebra system, we find that the function

f(r) = r−1
2r+1+(r−1)er

reaches a maximum on (1,∞) of

f(r̂) ≈ 0.08510464442

where r̂ ≈ 1.729474372. As we assumed that m ≤ 0.0851n2, we conclude that

nRel(G; p) has an interval of decrease in (0, 1).

Remark 3.1.1. One can solve for r̂ of Theorem 3.1.3 exactly in terms of the well-known

Lambert W function (see [30], for example). The Lambert W function is actually a

set of functions; it consists of the branches of the inverse relation of the function

f(x) = xex.



63

p

nRel(K9 ◦K2; p)

Figure 3.4: The node reliability of K9 ◦K2.

As a relation on real numbers the Lambert W function is defined only for x ≥ −1
e
.

It is double-valued on (−1
e
, 0) and single-valued on [0,∞). The restriction W ≥ −1

yields a single-valued function W0(x) on (−1
e
,∞), while the lower branch on (−1

e
, 0)

is denoted W−1(x). A computer algebra system gives

r̂ = 2W0

(
1
2

√
3
e

)
+ 1.

Given that graphs which are far from dense all have an interval of decrease in

(0, 1), one might ask how dense a graph needs to be to ensure that its node reliability

polynomial is increasing on the entire interval (0, 1), and indeed, it must be very

dense. Consider the graph formed from the complete graph Kn−1 by adding a single

pendant edge. Let us denote this graph by Kn−1 ◦K2 (as it is indeed a vertex bonding

of Kn−1 and K2). Note that Kn−1 ◦K2 has n vertices and only n− 2 nonedges.

The reader can verify that

nRel(Kn−1 ◦K2; p) = 1− p(1− p) + p(1− p)n−1 − (1− p)n (3.17)
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for all n ≥ 2. We find that

nRel′(Kn−1 ◦K2; p) = 2p− 1 + (1− p)n−2(n− 2np+ 1), (3.18)

and evaluating at p = 2
5
gives

−1
5
+
(
3
5

)n−2(1
5
n+ 1

)
.

We set g(x) = −1
5
+
(
3
5

)x−2(1
5
x+ 1

)
and find that

g′(x) =
(
3
5

)x−2[
ln
(
3
5

)(
1
5
x+ 1

)
+ 1

5

]
,

which is negative for all x ≥ 0. Further, we find that g(7) < 0, so that g(n) < 0 for

all n ≥ 7. Since g(n) = nRel′
(
Kn−1 ◦K2;

2
5

)
for all integers n ≥ 2 we conclude that

nRel(Kn−1 ◦ K2; p) is decreasing at p = 2
5
for all n ≥ 7. Figure 3.1 shows a plot of

nRel(K9 ◦K2; p) which has a clearly evident interval of decrease.

We close this section with a brief look at the intervals of decrease in (0, 1) of the

node reliabilities of disconnected graphs. The node reliability of any disconnected

graph G is decreasing on some interval (1− ε, 1), as nRel(G; p) > 0 for all p ∈ (0, 1)

and nRel(G; 1) = 0. More surprisingly, there are disconnected graphs whose node

reliability polynomials have two distinct maximal intervals of decrease in (0, 1). For

example, consider the graph formed from the disjoint union of a single vertex and the

star K1,n−1. A plot of nRel(K1,19 ∪K1; p) is shown in Figure 3.5, and one can see two

separate intervals of decrease. In fact, we can prove that nRel(K1,n−1 ∪ K1; p) has

two distinct maximal intervals of decrease in (0, 1) for n ≥ 12.

Proposition 3.1.4. For any n ≥ 12, the node reliability of K1,n−1 ∪K1 has at least

two distinct maximal intervals of decrease in (0, 1).
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p

nRel(K1,19 ∪K1; p)

Figure 3.5: The node reliability of K1,19 ∪K1.

Proof. First note that

nRel(K1,n−1; p) = p+ (n− 1)p(1− p)n−1,

as either the central vertex is operational (this occurs with probability p) or some leaf

is operational and all other vertices fail (this occurs with probability p(1− p)n−1 for

each leaf). By Observation 3.0.1 we have

nRel(K1,n−1 ∪K1; p) = (1− p)nRel(K1,n−1; p) + p(1− p)n

= p(1− p) + np(1− p)n.

By a straightforward computation,

nRel′(K1,n−1 ∪K1; p) = 1− 2p+ n(1− p)n−1(1− (n+ 1)p).

We substitute p = 2
5
to obtain

nRel′
(
K1,n−1 ∪K1;

2
5

)
= 1

5
+ n
(
3
5

)n−1(3−2n
5

)
.
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One can verify that the function

f(x) = 1
5
+ x
(
3
5

)x−1(3−2x
5

)
is increasing for all x > 5 and that f(12) > 0, which implies that f(x) > 0 for all

x ≥ 12. This means that nRel′
(
K1,n−1 ∪K1;

2
5

)
> 0 for n ≥ 12.

This gives us a point near the middle of the interval (0, 1) at which the node

reliability of K1,n−1 ∪K1 is increasing. Now it suffices to show that there is a point

on either side of p = 2
5
at which the node reliability is decreasing. By Theorem

3.1.3, when n ≥ 10 we have nRel′
(
K1,n−1 ∪K1;

r̂
n

)
< 0, where r̂ ≈ 1.729474372

(so in particular, r̂
n
< 2

5
when n ≥ 10). Further, since nRel(K1,n−1 ∪ K1; 1) =

0 and nRel
(
K1,n−1 ∪K1;

2
5

)
> 0, there must be some point p ∈

(
2
5
, 1
)
such that

nRel′(K1,n−1 ∪K1; p) < 0 by the Mean Value Theorem. For any n ≥ 12, we have

shown that nRel(K1,n−1∪K1; p) is decreasing at
r̂
n
< 2

5
, increasing at 2

5
, and decreasing

at some point in
(
2
5
, 1
)
. Therefore, for any n ≥ 12, nRel(K1,n−1∪K1; p) has two distinct

maximal intervals of decrease in (0, 1).

We would be very interested to know if there are any connected graphs whose

node reliabilities have two distinct maximal intervals of decrease in (0, 1). Using a

computer algebra system, we have verified that no such examples exist among all

connected graphs of order at most 8.

3.2 Concavity and Inflection Points

We now turn to the question of concavity and points of inflection. In [20], Brown,

Koç, and Kooij proved that the all-terminal reliability of almost every simple graph

has an inflection point in (0, 1). The arguments there can be extended easily to

show that for any coherent set system S with N1 = 0 and Nn−1 = n, the coherent

reliability polynomial Rel(S; p) is concave up near p = 0 and concave down near p = 1.
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Hence, under these weak conditions, a coherent reliability polynomial has at least

one point of inflection in (0, 1). In [35], Graves demonstrated that coherent reliability

polynomials can have two inflection points in (0, 1). Later, several families of all-

terminal reliability polynomials having two inflection points in (0, 1) were presented in

[20]. Finally, in [36], Graves and Milan proved that all-terminal reliability polynomials

of multigraphs can have arbitrarily many inflection points in the interval (0, 1). The

existence of simple graphs whose all-terminal reliability polynomials have more than

two inflection points is still an open problem. For all-terminal reliability, or more

generally for coherent reliability, the families which are known to have more than one

point of inflection in (0, 1) are rather thin – very few examples of any particular order

n are known (see [20, 35, 36]).

What is the case for node reliability? It is not difficult to see that for any n ≥ 2

the complete graph on n vertices is concave down on the entire interval (0, 1), as

nRel(Kn; p) = 1− (1− p)n,

so that

nRel′′(K − n; p) = −n(n− 1)(1− p)n−2 < 0

for n ≥ 2 and p ∈ (0, 1). Thus there are graphs whose node reliability has no inflec-

tion points in (0, 1). The remainder of this section concerns finding node reliability

polynomials with one or more inflection point.

By a straightforward computation, the second derivative of the node reliability of

G is given by

nRel′′(G; p) =
n−1∑
k=1

dkp
k−1(1− p)n−k−1, (3.19)
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with

dk = (k + 1)kck+1 − 2k(n− k)ck + (n− k + 1)(n− k)ck−1, (3.20)

where ck is the number of connected sets of G on k vertices for k ∈ {0, . . . , n}. We

use this notation for dk throughout the remainder of this chapter.

Lemma 3.2.1. Let G be a graph on n ≥ 2 vertices. The node reliability of G is

concave down near p = 0.

Proof. Consider nRel′′(G; p) in the form given in (3.19). When p is sufficiently close

to 0, the sign of nRel′′(G; p) will be the same as the sign of d1, the coefficient of the

(1− p)n−2 term. This coefficient is given by

d1 = 2c2 − 2(n− 1)c1,

since c0 = 0 (recall that the empty set is not connected). By Observation 3.1.1, we

have

d1 = 2m− 2n(n− 1) ≤ 2

(
n

2

)
− 2n(n− 1) = −n(n− 1).

Therefore, nRel′′(G; p) < 0 for p sufficiently close to 0, and we conclude that the node

reliability of G is concave down near p = 0.

Lemma 3.2.1 demonstrates another major difference between the shape of the

node reliability polynomial and the shape of the all-terminal reliability polynomial –

while the node reliability of any graph on n ≥ 2 vertices is concave down near p = 0

by Lemma 3.2.1, the all-terminal reliabiliy of any graph on n ≥ 3 vertices is concave

up near p = 0 [20].

Near p = 1, the node reliability may be concave up or concave down. In the

next theorem we prove that the node reliability of any tree T on at least 4 vertices
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is concave up near p = 1 in order to reach the conclusion that the node reliability

of T has at least one inflection point in (0, 1). This is again very different from the

case for K-terminal reliability (including two-terminal and all-terminal reliability);

the K-terminal reliability of a tree T is equal to pk (with k being the number of edges

in a minimum subtree containing all vertices of K), and hence has no inflection points

in (0, 1).

Theorem 3.2.2. Let T be a tree on n ≥ 4 vertices. The node reliability polynomial

of T has at least one point of inflection in (0, 1).

Proof. First suppose that T ∼= K1,n−1 for some n ≥ 4. We have

nRel(K1,n−1; p) = p+ (n− 1)p(1− p)n−1,

so straightforward computation gives

nRel′′(K1,n−1; p) = (n− 1)2(np− 2)(1− p)n−3.

We see that nRel(K1,n−1; p) is concave down on
(
0, 2

n

)
and concave up on

(
2
n
, 1
)
, so

that the intended conclusion holds.

Now let T be a tree on n ≥ 4 vertices that is not isomorphic to K1,n−1. Consider

nRel′′(T ; p) in the form given in (3.19). When p is sufficiently close to 1, the sign of

nRel′′(T ; p) will be the same as the sign of the coefficient dn−1 of the pn−2 term (as

long as this coefficient is nonzero). The coefficient dn−1 is given by

dn−1 = n(n− 1)cn − 2(n− 1)cn−1 + 2cn−2. (3.21)

By Observation 3.1.1, cn = 1 and cn−1 = n− t, where t is the number of cut vertices

of T . Since T is a tree, we can write n− t = r where r is the number of leaves of T,
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so that cn−1 = r. Further, cn−2 =
(
r
2

)
+ s, where s is the number of leaves adjacent

to a vertex of degree 2 in G, as the connected sets of order n− 2 consist of either all

vertices but a pair of leaves or all vertices but a leaf and an adjacent vertex of degree

2. Substituting these values into (3.21), we obtain

dn−1 = n(n− 1)− 2(n− 1)r + 2

[(
r

2

)
+ s

]
= n(n− 1)− 2(n− 1)r + r(r − 1) + 2s

= 2s+ n(n− 1)− r(2n− r − 1).

Since T ̸∼= K1,n−1, we have r < n− 1 and thus

r(2n− r − 1) = n(n− 1)− (n− r)(n− 1− r) < n(n− 1).

Thus we have

dn−1 = 2s+ n(n− 1)− r(2n− r − 1) > 2s > 0.

We conclude that nRel′′(T ; p) is positive for p sufficiently close to 1, and therefore

that nRel(T ; p) is concave up near p = 1. Recall from Lemma 3.2.1 that nRel(T ; p)

is concave down near 0. We conclude that nRel(T ; p) has at least one inflection point

in (0, 1) by the Intermediate Value Theorem applied to nRel′′(T ; p).

In the proof of Theorem 3.2.2 we saw that the node reliability polynomial of the

star K1,n−1 has exactly one inflection point in (0, 1) for any n ≥ 4, and we conjecture

that all trees of order at least 4 have exactly one inflection point in (0, 1). While

many of the typical ‘S-shaped’ all-terminal reliability polynomials also appear to

have a single point of inflection in (0, 1), the node reliability of any tree on n ≥ 4

vertices appears to have an ‘N-shape’ on (0, 1) as opposed to the ‘S-shape’ of the

all-terminal reliability polynomials. Figure 3.6 provides a plot showing the node
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nRel

Figure 3.6: Node reliability polynomials of all trees on 7 vertices.

reliability polynomials of all trees on 7 vertices.

We next present a family of graphs whose node reliability polynomials each have at

least two inflection points in (0, 1). Unlike the examples for coherent and all-terminal

reliability, our family provides numerous examples of each order n. We will require

the following lemma.

Lemma 3.2.3. Let G be a 2-connected graph. The node reliability of G is concave

down near p = 1.

Proof. Again we consider nRel′′(G; p) in the form given in (3.19). Let t be the order

of a smallest vertex cut-set in G (note that t ≥ 2 as G is 2-connected by assumption).

We must have

ck =

(
n

k

)
for all k > n− t

and

cn−t <

(
n

t

)
.

Therefore, for any k > n− t+ 1, the coefficient dk of pk−1(1− p)n−k−1 in nRel′′(G; p)
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is given by

dk = (k + 1)kck+1 − 2k(n− k)ck + (n− k + 1)(n− k)ck−1

= (k + 1)k

(
n

k + 1

)
− 2k(n− k)

(
n

k

)
+ (n− k + 1)(n− k)

(
n

k − 1

)
=

n!

(k − 1)!(n− k − 1)!
− 2

n!

(k − 1)!(n− k − 1)!
+

n!

(k − 1)!(n− k − 1)!

= 0

Thus the pn−t(1 − p)t−2 term is the leading term of nRel′′(G; p) near p = 1, and the

coefficient dn−t+1 of this term is given by

dn−t+1 = (n− t+ 2)(n− t+ 1)cn−t+2

− 2(n− t+ 1)(t− 1)cn−t+1 + t(t− 1)cn−t

< (n− t+ 2)(n− t+ 1)

(
n

n− t+ 2

)
− 2(n− t+ 1)(t− 1)

(
n

n− t+ 1

)
+ t(t− 1)

(
n

n− t

)
=

n!

(n− t)!(t− 2)!
− 2

n!

(n− t)!(t− 2)!
+

n!

(n− t)!(t− 2)!

= 0,

where we used the fact that cn−t <
(
n
n−t

)
. Therefore, for p sufficiently close to 1, the

coefficient of the leading term of nRel′′(G; p) is negative. We conclude that the node

reliability of G is concave down near p = 1.

Theorem 3.2.4. Let G be a graph of order n and size m. If m ≤ 0.0851n2 and G is

2-connected then nRel(G; p) has at least two distinct points of inflection in (0, 1).

Proof. Lemma 3.2.1 tells us that nRel(G; p) is concave down near 0, and Lemma 3.2.3

tells us that nRel(G; p) is concave down near 1. By Theorem 3.1.3, nRel(G; p) contains

an interval of decrease in (0, 1). In fact, nRel′
(
G; r̂

n

)
< 0, where r̂ ≈ 1.729474372
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(see Theorem 3.1.3 and Remark 3.1.1). Since nRel(G; p) < 1 for all p ∈ (0, 1) and

nRel(G; 1) = 1, nRel(G; p) must be increasing on some neighbourhood (p̃, 1). Let

p̂ ∈ (p̃, 1) so that p̂ > r̂
n
and nRel′(G; p̂) > 0. By the Mean Value Theorem, there is

some point c ∈
(
r̂
n
, p̂
)
such that

nRel′′(G; c) =
nRel′(G; p̂)− nRel′

(
G; r̂

n

)
p̂− r̂

n

> 0.

Therefore, nRel(G; p) is concave down on some neighbourhood of 0 and some neigh-

bourhood of 1, and concave up at some point c inside the interval. We conclude that

nRel(G; p) has at least two points of inflection in (0, 1) by the Intermediate Value

Theorem applied to nRel′′(G; p).

Theorem 3.2.4 demonstrates that it is not so rare for a node reliabiliy polynomial

to have two (or more) points of inflection in (0, 1). By comparison, the families of

graphs presented in [20] whose all-terminal reliability polynomials have 2 points of

inflection contain far fewer graphs of order n.

Are there graphs whose node reliabilities have three (or more) inflection points

in (0, 1)? Indeed, we have found many graphs of small order with three inflection

points in (0, 1). The graph shown in Figure 3.7 is the unique graph on at most 7

vertices satisfying this property. We have also found that the node reliabilities of

84 of the 11117 nonisomorphic connected graphs on 8 vertices have three points of

inflection in (0, 1). Is there an infinite family of graphs whose node reliabilities have

three points of inflection in (0, 1)? All of the small graphs that we have found whose

node reliabilities have three points of inflection in (0, 1) have exactly one leaf and

exactly one cut vertex. Is this true for every graph whose node reliability has three

points of inflection in (0, 1)?
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p

nRel

Figure 3.7: The unique graph of order at most 7 whose node reliability has three
points of inflection in (0, 1). The node reliability is shown to the right, with the
inflection points labelled in blue.

3.3 Fixed Points

A key result proven in [6] is that the reliability polynomial of any coherent set system

of order at least 2 has at most one fixed point in (0, 1). As a corollary, the all-terminal

reliability of any connected graph with at least 2 edges has at most one fixed point

in (0, 1). There are node reliability polynomials with no fixed points in (0, 1) (e.g.

complete graphs, stars), node reliability polynomials with exactly one fixed point in

(0, 1) (based on calculations for all graphs of small order it appears that the node

reliability of any tree not isomorphic to a star has exactly one fixed point in this

interval), and of course, exactly one node reliability polynomial (for the graph K1)

with all p ∈ (0, 1) being fixed points. Surprisingly, there are many node reliability

polynomials with two or more distinct fixed points in (0, 1). We will prove that the

node reliability of any sufficiently large 2-connected graph of bounded degree has at

least two fixed points in (0, 1). We will require the following lemma.

Lemma 3.3.1. If G is a connected graph on n vertices with t cut vertices, then

nRel′(G; 0) = n
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and

nRel′(G; 1) = t

Proof. By a straightforward computation,

nRel′(G; p) =
n∑
k=1

pk−1(1− p)n−k[kck − (n− k + 1)ck−1], (3.22)

where ck is the number of connected sets of G of order k for k ∈ {0, . . . , n} (recall

that c0 = 0). Substituting into (3.22) and using Observation 3.1.1 yields

nRel′(G; 0) = c1 = n

and

nRel′(G; 1) = ncn − cn−1 = n− (n− t) = t.

The following result follows almost immediately from Lemma 3.22.

Corollary 3.3.2. Let G be a connected graph on n ≥ 2 vertices having t ≥ 2 cut

vertices. Then nRel(G; p) has at least one fixed point in (0, 1).

Proof. We will show that nRel(G; p) > p on some interval (0, p0) and nRel(G; p) < p

on some interval (p1, 1) by considering the function

f(p) = nRel(G; p)− p.

It is clear that f(0) = f(1) = 0.

By Lemma 3.22, we have nRel′(G; 0) = n ≥ 2 and hence f ′(0) = n− 1 ≥ 1. This

implies that f ′(p) > 0 on some interval (0, p0) since f
′ is continuous. Suppose towards

a contradiction that f(p̂) ≤ 0 at some point p̂ ∈ (0, p0). By the Mean Value Theorem,
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there is some value c ∈ (0, p̂) such that

f ′(c) =
f(p̂)− f(0)

p̂− 0
=
f(p̂)

p̂
≤ 0,

a contradiction as f ′(p) > 0 on (0, p0). Hence f(p) > 0 for any p ∈ (0, p0), or

equivalently nRel(G; p) > p on (0, p0).

Similarly, by Lemma 3.22, we have nRel′(G; 1) = t ≥ 2 and hence f ′(1) =

nRel′(G; 1) − 1 ≥ 1. This implies that f ′(p) > 0 on some interval (p1, 1) since f ′ is

continuous. Suppose towards a contradiction that f(p̂) ≥ 0 at some point p̂ ∈ (p1, 1).

By the Mean value Theorem, there is some value c ∈ (p̂, 1) such that

f ′(c) =
f(1)− f(p̂)

1− p̂
=

−f(p̂)
1− p̂

≤ 0,

a contradiction as f ′(p) > 0 on (p1, 1). Hence f(p) < 0 for any p ∈ (p1, 1), or

equivalently nRel(G; p) < p on (p1, 1).

Let p−0 ∈ (0, p0) and p
+
1 ∈ (p1, 1), so that nRel(G; p−0 ) > p and nRel(G; p+1 ) < p.

By the Intermediate Value Theorem, nRel(G; p) = p for some p ∈ (p−0 , p
+
1 ).

We now prove the main result of this section which demonstrates that there are

infinitely many graphs whose node reliability polynomials each have at least two fixed

points in (0, 1). We reiterate that this is very different from the case for coherent

reliability polynomials, which have at most one fixed point in (0, 1).

Theorem 3.3.3. Let G be a 2-connected graph on n vertices and let G have maximum

degree ∆. For fixed ∆, if n is sufficiently large then nRel(G; p) has at least two fixed

points in (0, 1).

Proof. By the same argument as in the proof of Corollary 3.3.2, nRel(G; p) > p on

some interval (0, p0). We now show that nRel(G; p) > p on some interval (p1, 1) using
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a very similar argument. As in the proof of Corollary 3.3.2, let

f(p) = nRel(G; p)− p.

By Lemma 3.22, we have nRel′(G; 1) = 0 since G is 2-connected and hence has no

cut vertices. Thus we have f ′(1) = −1, and so f ′(p) < 0 on some interval (p1, 1)

since f ′ is continuous. Suppose towards a contradiction that f(p) ≤ 0 at some point

p̂ ∈ (p1, 1). By the Mean Value Theorem, there is some value c ∈ (p̂, 1) such that

f ′(c) =
f(1)− f(p̂)

1− p̂
=

−f(p̂)
1− p̂

≥ 0,

a contradiction as f ′(p) < 0 for all p ∈ (p1, 1). Hence f(p) > 0 for any p ∈ (p1, 1), or

equivalently nRel(G; p) > p on (p1, 1).

Now it is sufficient to prove that nRel′(G; p) < p for some p ∈ (0, 1), as the

conclusion will follow from the Intermediate Value Theorem.

We claim that nRel
(
G; 1

∆2

)
< 1

∆2 for n sufficiently large. The node reliability

polynomial of G is given by

nRel(G; p) = np(1− p)n−1 +mp2(1− p)n−2 +
n∑
k=3

ckp
k(1− p)k,

where ck is the number of connected sets of G of order k for each k ∈ {3, . . . , n}.

By Observation 3.1.1,

c3 ≤ n

(
∆

2

)
and so by Lemma 3.1.2,

ck ≤
c3

k − 2

(
n− 3

k − 3

)
≤ n

n− 2

(
∆

2

)(
n− 2

k − 2

)
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for each k ≥ 3. Thus we have for p ∈ (0, 1) that

n∑
k=3

ckp
k(1− p)k ≤

n∑
k=3

n

n− 2

(
∆

2

)(
n− 2

k − 2

)
pk(1− p)n−k

=
n

n− 2

(
∆

2

) n∑
k=3

(
n− 2

k − 2

)
pk(1− p)n−k

=
n

n− 2

(
∆

2

)
p2

n−2∑
k=1

(
n− 2

k

)
pk(1− p)n−k−2

=
n

n− 2

(
∆

2

)
p2
[
1− (1− p)n−2

]
<

n

n− 2

(
∆

2

)
p2.

Using this bound on
n∑
k=3

ckp
k(1− p)k and the elementary bound m ≤ n∆

2
, we have

nRel(G; p) < np(1− p)n−1 +
n∆

2
p2(1− p)n−2 +

n

n− 2

(
∆

2

)
p2

= np(1− p)n−2

[
(1− p) +

∆

2
p

]
+

n

n− 2

(
∆

2

)
p2.

Therefore,

nRel
(
G; 1

∆2

)
< n

∆2

(
1− 1

∆2

)n−2(
1− 1

∆2 +
1
2∆

)
+ n

n−2

(
∆
2

)
1
∆4

= n
∆2

(
1− 1

∆2

)n−2(
1− 1

∆2 +
1
2∆

)
+ 1

2

(
n
n−2

)(
∆−1
∆

)
1
∆2

For n ≥ 2∆ we have (
n
n−2

)(
∆−1
∆

)
≤ 1.

Therefore,

nRel
(
G; 1

∆2

)
< n

(
1− 1

∆2

)n−2(
1− 1

∆2 +
1
2∆

)
1
∆2 +

1
2∆2 .
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∆ n

2 14

3 40

4 82

5 142

6 220

7 318

8 435

9 573

10 732

Table 3.1: Sufficiently large order n for a 2-connected graph of maximum degree ∆
to have node reliability with two fixed points in (0, 1).

It is clear that for n sufficiently large we will have

n
(
1− 1

∆2

)n−2(
1− 1

∆2 +
1
2∆

)
≤ 1

2
(3.23)

as

lim
n→∞

n
(
1− 1

∆2

)n−2
= 0.

We conclude that for n sufficiently large,

nRel
(
G; 1

∆2

)
< 1

2∆2 +
1

2∆2 = 1
∆2

as claimed, and so the node reliability has at least two fixed points for n sufficiently

large.

Remark 3.3.1. We note that the inequality (3.23) can be solved exactly in terms of

the Lambert W function (see Remark 3.1.1) in order to determine just how large n
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must be in terms of ∆. Using a computer algebra system, we find

n ≥ 1

ln
(
1− 1

∆2

)W−1

((
1− 1

∆2

)2
ln
(
1− 1

∆2

)
2∆2 +∆− 2

)
,

where W−1 is the lower branch of the Lambert W function. Table 3.1 shows the

smallest value n for which (3.23) is satisfied for ∆ ∈ {2, . . . , 10}.

3.4 The Roots of Node Reliability

Along with the shape of the node reliability curve on (0, 1), the roots of the node

reliability polynomial have not received very much attention in the literature. Given

that the roots of all-terminal reliability have been studied extensively (along with the

roots of other models of reliability including strongly-connected reliability [16]), it

seems natural to ask questions about the roots of node reliability. Questions involving

the realness of the roots, bounding of the roots, and determining the closure of the

roots are compelling. We begin our discussion of the roots of node reliability in this

section but our deepest results are achieved through the connected set polynomial,

introduced formally in the next chapter.

A root of the node reliability polynomial of a graph G is called a node reliability

root of G. It is fairly easy to see that no graph on n ≥ 1 vertices has a real node

reliability root in the interval (0, 1). For any p ∈ (0, 1), consider

nRel(G; p) =
n∑
k=1

ckp
k(1− p)n−k.

The coefficient c1 = n, all other coefficients are nonnegative, p > 0, and 1− p > 0, so

that

nRel(G; p) > 0

for all p ∈ (0, 1).
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However, the node reliability polynomial can have real roots outside of the interval

(0, 1). In fact, we demonstrate that the node reliability polynomial has arbitrarily

large real roots. This contrasts the situation for all-terminal reliability polynomials

– it was proven in [12] that the real ATR roots of connected graphs are contained in

{0} ∪ (1, 2] in the variable p = 1− q (this corresponds to the set [−1, 0) ∪ {1} in the

variable q).

Theorem 3.4.1. For n sufficiently large, the polynomial nRel(C2n+1; p) has a real

root in the interval (2n2 − 1, 2n2).

Proof. We begin by finding a convenient closed form for the node reliability of C2n+1.

Note first of all that the cycle Cn satisfies ck = n for all k ∈ {1, . . . , n − 1}, as the

connected sets of order k are exactly the n sets of k consecutive vertices. And of

course cn = 1 for any connected graph on n vertices. Thus we have

nRel(C2n+1; p) = p2n+1 + (2n+ 1)
2n∑
k=1

pk(1− p)2n+1−k

= p2n+1 + (2n+ 1)(1− p)2n+1

2n∑
k=1

(
p

1−p

)k
.

Using the basic sum identity

n∑
k=1

xk =
xn+1 − x

x− 1
,

we obtain

nRel(C2n+1; p) = p2n+1 + (2n+ 1)(1− p)2n+1

(
p

1−p

)2n+1

− p
1−p

p
1−p − 1

= p2n+1 + (2n+ 1)
[
p2n+1 − p(1− p)2n

]
· 1−p
2p−1

= p
2p−1

[
(2p− 1)p2n + (2n+ 1)(1− p)

(
p2n − (p− 1)2n

)]
.
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n 2n2 − 1 Largest real root of nRel(C2n+1; p) 2n2

2 7 7.623283978 . . . 8

3 17 17.72122653 . . . 18

4 31 31.75632217 . . . 32

5 49 49.77458407 . . . 50

6 71 71.78581587 . . . 72

7 97 97.79343113 . . . 98

8 127 127.7989376 . . . 128

9 161 161.8031061 . . . 162

10 199 199.8063720 . . . 200

Table 3.2: The largest real root of nRel(C2n+1; p) for n ∈ {2, . . . , 10}.

We have verified using a computer algebra system that

lim
n→∞

nRel(C2n+1; 2n
2 − 1) = −∞

and

lim
n→∞

nRel(C2n+1; 2n
2) = ∞.

Thus for n sufficiently large, nRel(C2n+1; 2n
2 − 1) < 0 and nRel(C2n+1; 2n

2) > 0. We

conclude by the Intermediate Value Theorem that nRel(C2n+1; p) has a root in the

interval (
2n2 − 1, 2n2

)
when n is sufficiently large.

Remark 3.4.1. It appears that “sufficiently large” in the statement of Theorem 3.4.1

is not very large. The largest real root of nRel(C2n+1; p) (approximated using a

computer algebra system) is shown in Table 3.2 for n ∈ {2, . . . , 10} and the root lies

in the interval (2n2 − 1, 2n2) for all n ∈ {2, . . . , 10}.

In the next chapter we shift the focus of our study to the connected set polynomial,
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which is the generating polynomial of the c-coefficients for node reliability. The

connected set polynomial is easier to analyse in some ways, and our work will have

direct consequences pertaining to node reliability. In particular, we will learn much

more about node reliability roots from our study of the connected set polynomial.

Of course, the connected set polynomial is of interest in its own right, as well! It is

defined in the same general context as the well-studied independence polynomial and

domination polynomial, among others.



Chapter 4

The Connected Set Polynomial

Recall that the node reliability of a graph G on n vertices can be written

n∑
k=1

ckp
k(1− p)n−k,

where ck = ck(G) is the number of connected sets of order k in G for each k ∈

{1, . . . , n}. In this chapter we study the related generating polynomial for the collec-

tion of connected sets,

C(G;x) =
n∑
k=1

ckx
k,

which we call the connected set polynomial of G. Given the node reliability of a graph

G, the connected set polynomial of G is easy to find, and vice versa. Explicitly, we

have

nRel(G; p) =
n∑
k=1

ckp
k(1− p)n−k

= (1− p)n ·
n∑
k=1

ck

(
p

1− p

)k
= (1− p)n · C

(
G; p

1−p

)
84
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and

C(G;x) =
n∑
k=1

ckx
k = (1 + x)n ·

n∑
k=1

ck

(
x

1 + x

)k
·
(

1

1 + x

)n−k
= (1 + x)n ·

n∑
k=1

ck

(
x

1 + x

)k
·
(
1− x

1 + x

)n−k
= (1 + x)n · nRel

(
G; x

1+x

)
.

Hence our study of the connected set polynomial will have direct implications for

node reliability.

More generally, whenever we are interested in counting the number of sets of each

order in a given collection, it is natural to study the generating polynomial of the

collection. The analytic and algebraic properties of the generating polynomial are

of interest and can actually give us information about the related counting problem.

Many graph polynomials arise from this general setting, including the independence

polynomial (see [47] for a survey) and the domination polynomial (introduced in [2]).

From this perspective the connected set polynomial is interesting in its own right as

well.

We note that the problem of counting the number of connected sets in a graph has

been studied in [7, 56, 63, 64, 73, 75, 76], although this work is mostly concerned with

the total number of connected sets. For example, Björklund et al. recently proved

an upper bound on the number of connected sets in graphs with bounded degree [7].

Aside from [7], the focus has been on trees, and in particular on finding the tree in

a given class with the most (or least) connected sets. We study the connected set

polynomials of trees in Chapter 5.

In Section 4.1, we study the complexity of evaluating the connected set polynomial

at a fixed complex number z, demonstrating that the problem is #P-hard except

possibly at several specific choices of z. In Section 4.2, we study the connected set
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roots (the roots of connected set polynomials). Our main results include a bound

on the modulus of the connected set roots of a graph G in terms of the order of G,

and a proof that the collection of all connected set roots is dense in the complex

plane. A corollary of this density result is that the collection of all node reliability

roots is dense in the complex plane, revealing another potential difference between the

node reliability and the all-terminal reliability – it is unknown whether all-terminal

reliability roots are dense in the complex plane, but it is suspected that they are not.

Before we proceed with the main results of this section, we state the formal defi-

nition of the connected set polynomial and present some basic results and examples.

Definition 4.0.1. The connected set polynomial of a graph G, denoted C(G;x), is

the generating polynomial of the collection of connected sets of G; that is,

C(G;x) =
∑

W∈C(G)

x|W |,

where C(G) is the collection of connected sets of G. Alternatively, we can write

C(G;x) =
n∑
k=1

ckx
k,

where ck is the number of connected sets of G of order k for each k ∈ {1, . . . , n}.

Example 4.0.1. The nonisomorphic graphs G1 and G2 pictured in Figure 4.1 have

the same connected set polynomial;

C(G1;x) = C(G2;x) = x5 + 4x4 + 6x3 + 6x2 + 5x,

which the reader can verify by counting the connected sets of G1 and G2 of each

order. ♦

Note that the connected set polynomial is well-defined for disconnected graphs –
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(a) The graph G1. (b) The graph G2.

Figure 4.1: A pair of graphs whose connected set polynomials are equal.

the connected set polynomial of a disconnected graph is given simply by the sum of

the connected set polynomials of its components.

Observation 4.0.1. Let G be a graph with connected components G1, G2, . . . , Gk.

The connected set polynomial of G is given by

C(G;x) =
k∑
i=1

C(Gi;x).

In particular, for disjoint graphs G and H,

C(G ∪H;x) = C(G;x) + C(H;x).

Proof. Every connected set of G is contained entirely in exactly one connected com-

ponent of G.

For any (possibly even disconnected) graph G of order n and size m, it is clear

that c1 = n and c2 = m. In addition, G is connected if and only if cn = 1. More

generally, G is k-connected if and only if

cn−i =

(
n

n− i

)

for all i ∈ {1, . . . , k − 1}. The degree of C(G;x) is the order of a largest component

in G, and C(G; 1) =
n∑
k=1

ck is the total number of connected sets of G. Thus the
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connected set polynomial holds a lot of information about the connectedness of a

graph.

4.1 Complexity

Many straightforward algorithms for computing the connected set polynomial of a

graph G exist. The most direct approach requires running through each subset

X ⊆ V (G) and determining whether the induced subgraph G[X] is connected. This

algorithm is clearly exponential in the order of the graph, and although we can im-

prove on this algorithm, finding a polynomial algorithm is likely to be hard.

It was proven in [62] that computing the number of connected sets of a graph is

#P-complete, even for split graphs, and this is equivalent to computing C(G; 1). This

tells us immediately that the problem of computing the connected set polynomial is

NP-hard, but this answer doesn’t quite tell the whole story about the complexity of

evaluating the connected set polynomial at specific values. We can easily evaluate

the connected set polynomial at 0 (we have C(G; 0) = 0 for any graph G), and one

cannot help but wonder if there are any other points in the complex plane at which

the connected set polynomial is easy to evaluate.

For this reason, we would like a result that tells us more about the complexity

of evaluating C(G; z) at various fixed values of z. Vertigan and Welsh demonstrated

such a result for the well-known Tutte polynomial in [67]. They found that the exact

evaluation of the Tutte polynomial is #P-hard at all but a few special points and

two special hyperbolae, even for the class of planar bipartite graphs. We demonstrate

here that evaluating the connected set polynomial exactly is #P-hard at all but a

countable set of points in the complex plane (only three of which are real numbers).

Our proof will require the use of the lexicographic product of graphs.

Definition 4.1.1. The lexicographic product or graph composition G⊙H of graphs
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⊙ =

Figure 4.2: The lexicographic product C4 ⊙K2. The red edges denote the copies of
K2 that are replacing vertices of C4.

G and H is the graph on vertex set V (G)× V (H) such that vertices (u, x) and (v, y)

are adjacent if and only if either

• u is adjacent to v in G; or

• u = v and x is adjacent to y in H.

Intuitively, the lexicographic product G⊙H is the operation of replacing every vertex

of G with a copy of H. Figure 4.2 shows an example of a lexicographic product graph,

namely C4 ⊙K2.

The next lemma gives a formula for the connected set polynomial C(G⊙H;x) in

terms of C(G;x) and C(H;x). The special case of this formula for H = Kn will be

important to several proofs in this chapter.

Lemma 4.1.1. Let G be a graph of order nG and let H be a graph of order nH . The

connected set polynomial of the lexicographic product G⊙H is given by

C(G⊙H;x) = C(G; (x+ 1)nH − 1) + nG[C(H;x)− (x+ 1)nH + 1].

In particular,

C(G⊙Kn;x) = C(G; (x+ 1)n − 1).
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Proof. Let C⊙ be a subset of V (G⊙H). Define

CG = {v ∈ V (G) | (v, x) ∈ C⊙ for some x ∈ V (H)}

and

Cv = {x | (v, x) ∈ C⊙} for each v ∈ CG.

We see that C⊙ is a connected set if and only if either

(i) CG is a connected set of G of order at least two (in this case, for each v ∈ CG,

the set Cv can be any nonempty subset of vertices of H); or

(ii) CG = {v} for some v and Cv is a connected set of H.

The connected sets of G of order at least two are enumerated by

C(G;x)− nGx,

and hence the connected sets of G⊙H corresponding to case (i) are enumerated by

C(G; (x+ 1)nH − 1)− nG[(1 + x)nH − 1].

Meanwhile, the connected sets of G⊙H corresponding to case (ii) are enumerated by

nGC(H;x).

We conclude that

C(G⊙H;x) = C(G; (x+ 1)nH − 1) + nG[C(H;x)− (x+ 1)nH + 1].

We are now ready to prove that for a fixed z ∈ C, evaluating the connected set
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polynomial at z is #P-hard in all but possibly a few specific cases.

Theorem 4.1.2. Fix a complex number z ̸= −1 such that z+1 is not a root of unity.

Then the problem:

INPUT: graph G

OUTPUT: the evaluation C(G; z)

is #P-hard. In particular, the problem is #P-hard for any real number r except 0,

and possibly −1 and −2.

Proof. Suppose that we had a polynomial time algorithm (polynomial in terms of

the order n of the graph) for evaluating the connected set polynomial at some fixed

complex number z ̸= −1 such that z + 1 is not a root of unity. Then for any graph

G on n vertices and each k ∈ {1, . . . , n+ 1} we could compute C(G⊙Kk; z) – since

G ⊙Kk has kn vertices and k ≤ n + 1, the time required to compute C(G ⊙Kk; z)

for all k ∈ {1, . . . , n+ 1} is still polynomial in n. By Lemma 4.1.1,

C(G⊙Kk; z) = C(G; (z + 1)k − 1).

This means that our evaluations of C(G⊙Kk; z) give a system of n+1 linear equations

in the coefficients of C(G;x), namely

C(G⊙Kk; z) = c1
[
(z + 1)k − 1

]
+ c2

[
(z + 1)k − 1

]2
+ . . .+ cn

[
(z + 1)k − 1

]n
for k ∈ {1, . . . , n + 1}. We can solve for the coefficients in polynomial time using

Gauss-Jordan elimination, provided that there is a unique solution. The system of

equations has a unique solution if and only if its corresponding matrix is invertible.
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The matrix for the system of equations can be written

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 z z2 . . . zn

1 (z + 1)2 − 1 ((z + 1)2 − 1)2 . . . ((z + 1)2 − 1)n

1 (z + 1)3 − 1 ((z + 1)3 − 1)2 . . . ((z + 1)3 − 1)n

...
...

...
. . .

...

1 (z + 1)n+1 − 1 ((z + 1)n+1 − 1)2 . . . ((z + 1)n+1 − 1)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This is a Vandermonde matrix (see [40], for example) for the function C(G;x) at the

n+ 1 points

α1 = (z + 1)1 − 1 = z

α2 = (z + 1)2 − 1

...

αn+1 = (z + 1)n+1 − 1

The determinant of a Vandermonde matrix is known to be nonzero if and only if all

of the αi are distinct (see [40]). For our matrix, this condition is satisfied by the

assumption that z ̸= −1 and z + 1 is not a root of unity. Therefore, the matrix is

invertible and we can use Gauss-Jordan elimination to solve for the coefficients of

C(G;x) in polynomial time. In particular, we can find C(G; 1) in polynomial time;

a contradiction as C(G; 1) is #P-complete [62]. We conclude that evaluating the

connected set polynomial at a fixed complex number z ̸= 1 such that z + 1 is not a

root of unity is #P-hard.

By Theorem 4.1.2, the only real numbers at which we are unsure of the complexity

of evaluating the connected set polynomial are r = −2 and r = −1, as we know that
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C(G; 0) = 0 for all graphs G.

Recall that

nRel(G; p) = (1− p)n · C
(
G; p

1−p

)
,

so we can say something about the complexity of computing nRel(G; p) for fixed p.

In particular, we have the following result.

Corollary 4.1.3. Fix a real number p ̸∈ {0, 1, 2}. Then the problem:

INPUT: graph G

OUTPUT: the evaluation nRel(G; p)

is #P-hard.

Proof. Note that since p ̸= 1 the number p
1−p is well-defined and real. Further, note

that

p
1−p = 0 ⇐⇒ p = 0

and

p
1−p = −2 ⇐⇒ p = 2,

while p
1−p = −1 has no solutions. Hence by the assumption that p ̸∈ {0, 1, 2}, we

have p
1−p ̸∈ {0,−1,−2}. The result now follows immediately by the fact that

nRel(G; p) = (1− p)n · C
(
G; p

1−p

)

and the problem of evaluating C(G; p
1−p) is #P-hard by Theorem 4.1.2.

In particular, Corollary 4.1.3 tells us that evaluating the node reliability poly-

nomial is #P-hard for any fixed p ∈ (0, 1), the interval of primary interest for any

measure of reliability. Of course, node reliability is easy to evaluate at p = 0 (it is

0 for all graphs) and at p = 1 (it is 1 for connected graphs and 0 for disconnected

graphs), so p = 2 is the only real number at which the complexity of evaluating the
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node reliability is unknown; this is an interesting open question.

Since evaluating the node reliability exactly is #P-hard for any fixed p ∈ (0, 1),

it would be useful to have a method for bounding nRel(G; p) on this interval. We

demonstrate such a method here, considering connected graphs first. Recall that the

node reliability of a connected graph G on n vertices is given by

nRel(G; p) =
n∑
k=1

ckp
k(1− p)k,

where ck is the number of connected sets of G of order k. While the computation of

nRel(G; p) is #P-hard for any p ∈ (0, 1), we can compute some of the ck coefficients

in polynomial time. We can compute any finite number of coefficients at the bottom

(c1, c2, . . . , cs for some fixed s) in polynomial time by simply running through all pos-

sible subsets of appropriate order and checking whether they induce connected graphs

(there are only
(
n
k

)
vertex subsets of order k to run through, which is polynomial in n

as k ≤ s). Similarly we can find any finite number of coefficients at the top (ct, . . . , cn

for some fixed value of n− t) in polynomial time.

Similar observations have been made about all-terminal reliability (see Chapter

5 of [28], for example). Briefly, several coefficients at either end of the all-terminal

reliability polynomial can be computed in polynomial time, and then Sperner’s bounds

[59] can be used to find upper and lower bounds on the remaining coefficients in terms

of the known coefficients. While many methods have been used to bound the all-

terminal reliability on (0, 1), this method is straightforward and most other methods

are simply improvements of this basic idea.

While Sperner’s Bounds do not hold for the c-coefficients of node reliability (which

count the number of connected sets of each order), we do have the bounds of Lemma

3.1.2:

(k − t+ 1)ck ≤
(
n− t

k − t

)
ct
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for all k ∈ {2, . . . , n} and t ∈ {1, . . . , k−1}. In particular, if we know the exact values

of the coefficients c1, . . . , cs, and ct, . . . , cn, then we have

ck ≤
(
n− s

k − s

)
cs

k − s+ 1

and

ck ≥
(t− k + 1)ct(

n−k
t−k

)
for k ∈ {s+1, . . . , t− 1}. In addition to the bounds of Lemma 3.1.2, we have another

similar set of bounds, presented in the lemma below.

Lemma 4.1.4. For any connected graph G of order n,

kck ≥ ck−1

for all k ∈ {2, . . . , n}. More generally,

(
k
t

)
ck ≥ ct

for all k ∈ {2, . . . , n} and t ∈ {1, . . . , k − 1}.

Proof. LetG be a connected graph of order n, let k ∈ {2, . . . , n} and let t ∈ {1, . . . , k−

1}. Every connected set of order t is contained in some connected set of order k (since

G is connected, we can always add a vertex to a connected set of order less than n

that will preserve connectedness). Therefore, the collection of all subsets of order t

of all connected sets of order k will contain all connected sets of order t. We have ck

connected sets of order k, and
(
k
t

)
subsets of order t for each of these ck connected

sets, giving at most
(
k
t

)
ck connected sets of order t.

In particular, if we know the values of c1, . . . , cs and ct, . . . , cn, then by Lemma
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4.1.4 we have

ck ≥
cs(
k
s

)
and

ck ≤
(
t
k

)
ct

for all k ∈ {s + 1, . . . , t − 1}. Putting our two bounds together gives the following

lemma.

Lemma 4.1.5. Let G be a connected graph on n vertices, and suppose that we know

c1, . . . , cs and ct, . . . , cn with s < t. For k ∈ {s+ 1, . . . , t− 1}, we have

˜
ck ≤ ck ≤ c̃k,

where

˜
ck = max

{
(t− k + 1)ct(

n−k
t−k

) ,
cs(
k
s

)}
and

c̃k = min
{(

n−s
k−s

)
cs

k−s+1
,
(
t
k

)
ct
}
.

From here it is easy to bound the node reliability on the interval (0, 1). Suppose

that we know c1, . . . , cs and ct, . . . , cn. The product

pk(1− p)n−k

is positive on (0, 1) for all k ∈ {1, . . . , n}, meaning that

n∑
k=1

˜
ckp

k(1− p)n−k ≤ nRel(G; p) ≤
n∑
k=1

c̃kp
k(1− p)n−k,

where
˜
ck and c̃k are defined as in Lemma 4.1.5 for k ∈ {s+1, . . . , t−1} and

˜
ck = c̃k = ck
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otherwise. The upper bound
n∑
k=1

c̃kp
k(1− p)n−k can be larger than 1 in practice, but

obviously the node reliability is always less than 1 on the interval (0, 1) as it represents

a probability. Therefore, we have the following theorem.

Theorem 4.1.6. Let G be a connected graph of order n. Suppose that we know the

coefficients c1, . . . , cs and ct, . . . , cn. Then

n∑
k=1

˜
ckp

k(1− p)n−k ≤ nRel(G; p) ≤ max

{
1,

n∑
k=1

c̃kp
k(1− p)n−k

}
,

where

˜
ck =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

{
(t−k+1)ct(

n−k
t−k

) , cs(
k
s

)} if k ∈ {s+ 1, . . . , t− 1}, and

ck otherwise;

and

c̃k =

⎧⎪⎪⎨⎪⎪⎩
min

{(
n−s
k−s

)
cs

k−s+1
,
(
t
k

)
ct
}
if k ∈ {s+ 1, . . . , t− 1}, and

ck otherwise.

To demonstrate the use of these bounds on node reliability, we randomly generated

some graphs on 12 vertices, including each possible edge independently at random

with various fixed probabilities, and discarding any disconnected graphs that resulted

from the process. A plot of the node reliability of the resulting graphs, along with

the lower and upper bounds (using s = 3 and t = 10) are shown in Figure 4.3. We

have found that the bounds often appear to be tighter for graphs with fewer edges.

Finally, we mention that the bounds of Lemma 4.1.5 on the c-coefficients of con-

nected graphs also allow us to bound the node reliability of disconnected graphs.

First, we can find the connected components of a disconnected graph G in polyno-

mial time. Then we can bound the c-coefficients of each connected component of G

separately using Lemma 4.1.5, and sum the lower and upper bounds over all compo-

nents to get bounds on the c-coefficients of G. The bounds on the c-coefficients of G
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p

nRel(G1; p)

(a) Node reliability of a graph G1 on
12 vertices and 13 edges

p

nRel(G2; p)

(b) Node reliability of a graph G2 on
12 vertices and 17 edges

p

nRel(G3; p)

(c) Node reliability of a graph G3 on
12 vertices and 23 edges

Figure 4.3: Bounds (red) on the node reliabilities (blue) of various randomly produced
graphs.
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transfer directly to bounds on nRel(G; p).

4.2 Roots of the Connected Set Polynomial

As we have stated several times throughout this thesis, the roots of many graph

polynomials including the matching polynomial, the independence polynomial, the

domination polynomial, and the chromatic polynomial have been studied extensively.

This means that it is natural to ask questions about the roots of the connected set

polynomial. For any graph G, we call a root of the connected set polynomial of G a

connected set root of G. Most of our results have direct implications for the roots of

node reliability, and we present these as corollaries when they are of interest.

4.2.1 Realness and Connected Set Roots

In this section we focus on the nature of connected set roots, primarily with regard to

their realness. A wide variety of results concerning the realness of the roots of graph

polynomials exists in the literature. The question of whether a polynomial has all real

roots is often of primary interest, as having all real roots implies that the sequence of

coefficients of the polynomial is log-concave (and hence unimodal if the coefficients

are positive) by a result due to Newton (see [60]). For example, it was shown in

[38] that all roots of the matching (generating) polynomial are real. A generalization

of this result was recently proven by Chudnovsky and Seymour in [26], namely that

the independence polynomial of any claw-free graph has all real roots (the matching

polynomial of G is an evaluation of the independence polynomial of the line graph of

G, and line graphs are claw-free).

Here we settle the problem of whether the connected set roots of a connected

graph G are all real; we demonstrate that no connected graph on 3 or more vertices

has all real connected set roots! Since C(K1;x) = x and C(K2;x) = 2x + x2, this

implies that the graphs K1 and K2 are the only connected graphs whose connected
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set roots are all real. This is in stark contrast to the situation for the matching

polynomial and the even the independence polynomial, as the relatively large family

of all claw-free graphs have all real independence roots.

In order to prove that every graph of order at least 3 has a nonreal connected set

root, we will need the following straightforward result, demonstrated on page 265 of

[66]. Since all nonzero real roots of the connected set polynomial must be negative,

we will actually apply the corollary that follows immediately.

Theorem 4.2.1. Let f(z) =
n∑
k=0

akz
k with an ̸= 0. If all zeros of f are real and

positive then

an−1

an
· a1
a0

≥ n2.

Corollary 4.2.2. Let f(z) =
n∑
k=0

akz
k with an ̸= 0. If all zeros of f are real and

negative then

an−1

an
· a1
a0

≥ n2.

Proof. Suppose all zeros of f(z) are real and negative. Then all zeros of f(−z) are

real and positive. Thus by Theorem 4.2.1, we must have

(−1)n−1an−1

(−1)nan
· −a1
a0

≥ n2.

Cancelling signs gives the desired result.

Now we are ready to prove that every connected graph of order at least 3 has a

nonreal connected set root.

Theorem 4.2.3. Let G be a connected graph of order n. If n ≥ 3 then C(G;x) has

a nonreal root.

Proof. Let C(G;x) =
n∑
k=1

ckx
k = x

n∑
k=1

ckx
k−1. Suppose – to reach a contradiction

– that C(G;x) has all real roots. Since ck > 0 for all k ∈ {1, . . . , n}, all roots of
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C(G;x)/x =
n∑
k=1

ckx
k−1 must be strictly negative. Thus by Corollary 4.2.2, we must

have

cn−1

cn
· c2
c1

≥ (n− 1)2.

However, from Observation 3.1.1,

cn−1

cn
· c2
c1

= (n− t)
m

n
,

where m is the number of edges and t is the number of cut vertices. Since m ≤
(
n
2

)
and n ≥ 3,

(n− t)
m

n
≤ (n− t)

(n− 1)

2
≤ n

(n− 1)

2
=
n

2
(n− 1) < (n− 1)2,

a contradiction. Therefore, C(G;x)/x (and hence C(G;x) itself) must have a nonreal

root.

Theorem 4.2.3 implies almost immediately that any connected graph of order at

least 3 has a nonreal node reliability root. The details are below.

Corollary 4.2.4. Let G be a connected graph of order n and size m. If n ≥ 3 then

nRel(G; p) has a nonreal root.

Proof. By Theorem 4.2.3, the connected set polynomial C(G;x) has some nonreal

root ζ. Let pζ =
ζ

1+ζ
, which is well-defined as ζ ̸= −1. The reader can verify that pζ
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is real if and only if ζ is real, so pζ is nonreal. We evaluate

nRel(G; pζ) = (1− pζ)
nC(G;

pζ
1−pζ

)

= (1− pζ)
nC

(
G;

ζ
1+ζ

1− ζ
1+ζ

)

= (1− pζ)
nC(G; ζ)

= 0,

which shows that pζ is a nonreal root of nRel(G; p).

Since nonreal roots of polynomials with real coefficients come in conjugate pairs,

every connected graph on 3 or more vertices has at least two nonreal connected set

roots. Using a computer algebra system we have found that there is a connected graph

on n vertices with exactly two nonreal connected set roots for each n ∈ {3, 4, 5, 6}.

However, there is no connected graph on 7 vertices with exactly two nonreal connected

set roots.

It is obvious that every graph has a real connected set root, namely 0 (correspond-

ing to the node reliability root at 0). We can prove that any connected graph G of

even order n must also have a negative real connected set root. Close to 0, the dom-

inant term of C(G;x) is nx, so that C(G;x) < 0 on some interval (−ε, 0). Further,

lim
n→−∞

C(G;x) = ∞ since C(G;x) has even degree n, so it follows by the Intermediate

Value Theorem that C(G; r) = 0 for some real number r < 0.

On the other hand, there are many connected graphs of odd order for which 0 is

the only real connected set root. The smallest such examples are P3 and K3 (their

connected set polynomials have degree 3 and by Theorem 4.2.3 they each have a pair

of nonreal connected set roots). It is easy to see that

C(K2n+1;x) = (x+ 1)2n+1 − 1
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has no nonzero real roots for all n ≥ 1 – the roots of C(K2n+1;x) are the (2n + 1)st

roots of unity shifted to the left 1.

We have also found that there are purely imaginary connected set roots. This

contrasts sharply with the chromatic polynomial, where it is widely suspected that

there are no purely imaginary roots (see [9]). The graph K1,4 has

C(K1,4;x) = x5 + 4x4 + 6x3 + 4x2 + 5x

= x(x2 + 4x+ 5)(x2 + 1),

so that ±i are connected set roots of K1,4. In fact, we can find an infinite number of

purely imaginary connected set roots by considering the graph Gt = P4 ∪ tK2 ∪ 2K1

for each t ≥ 0; that is, the disjoint union of P4, t copies of K2, and 2 copies of K1.

We find

C(P4 ∪ tK2 ∪ 2K1;x) = C(P4;x) + tC(K2;x) + 2C(K1;x)

= (x4 + 2x3 + 3x2 + 4x) + t(x2 + 2x) + 2x

= x4 + 2x3 + (3 + t)x2 + (6 + 2t)x

= x(x+ 2)(x2 + t+ 3),

and hence for all t ≥ 0 the graph Gt has connected set roots at ±i
√
t+ 3.

The fact that the graph Gt has connected set roots at ±i
√
t+ 3 also demonstrates

that the collection of all connected set roots is unbounded in modulus. We will see

more examples of families with connected set roots tending to infinity in the next

section.

Before moving on to the next section we discuss the realness of connected set

roots of disconnected graphs in general. Theorem 4.2.3 implies that the connected

set polynomial of a connected graph has all real roots if and only if it has degree at
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most 2. However, we have found disconnected graphs whose connected set polynomials

have degree 3 and still have all real roots. Consider the graphK3∪kK2, i.e. the disjoint

union of K3 and k copies of K2. We have

C(K3 ∪ kK2;x) = C(K3;x) + kC(K2;x)

= x3 + 3x2 + 3x+ k(x2 + 2x)

= x3 + (3 + k)x2 + (3 + 2k)x

= x(x2 + (3 + k)x+ (3 + 2k))

The discriminant of the quadratic factor in the above expression factors to

(k − 3)(k + 1).

Therefore, C(K3 ∪ kK2;x) has all real roots for k ≥ 3. One can show similarly that

C(P3 ∪ kK2;x) has all real roots for k ≥ 6. The question of whether or not there are

disconnected graphs whose connected set polynomials have degree greater than 3 (or

possibly even arbitrarily high degree) and still have all real roots remains open.

4.2.2 Bounding the Connected Set Roots

While there is no constant bound on the modulus of an arbitrary connected set

root, the main result of this section is that the modulus of any connected set root

of a graph G is bounded above by the order of the graph G. The proof is similar

to the proof of Theorem 2.1.5, which gives a bound on the modulus of any all-

terminal reliability root of the graph G in terms of the order of G. Similar results

exist for many graph polynomials including the independence polynomial [21] and

the chromatic polynomial [57]. A tool commonly used in the proof of such results is

the well-known Eneström-Kakeya Theorem, which we restate here for ease of reading.
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We also include a characterization from [1] of the polynomials for which the bounds

of the Eneström-Kakeya Theorem are tight.

Theorem 4.2.5 (Eneström-Kakeya (c.f. [1])). If f(x) = a0 + a1x + ... + anx
n has

positive real coefficients, then all complex roots of f lie in the annulus

r ≤ |z| ≤ R,

where

r = min
{

ai
ai+1

: 0 ≤ i ≤ n− 1
}

and R = max
{

ai
ai+1

: 0 ≤ i ≤ n− 1
}
.

Further, f has a root of modulus r if and only if

gcd{j ∈ {1, . . . , n+ 1} : aj−1 > raj} > 1,

where an+1 = 0, and f has a root of modulus R if and only if

gcd{j ∈ {1, . . . , n+ 1} : ad−j < Rad+1−j} > 1,

where a−1 = 0.

The nonzero connected set roots of all graphs on 7 vertices are shown in Figure

4.4. It is evident that there are no connected set roots close to 0 and also that there

are no connected set roots of modulus greater than 7 – it does appear that there is

a connected graph with connected set root at or near −6 and a disconnected graph

with a connected set root at or near −7. We will confirm all of these observations in

this section.

Theorem 4.2.6. Let G be a connected graph on n ≥ 2 vertices. If z is a nonzero
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Re(z)

Im(z)

(a) Connected set roots of all connected graphs
on 7 vertices.

Re(z)

Im(z)

(b) Connected set roots of all disconnected
graphs on 7 vertices.

Re(z)

Im(z)

(c) Connected set roots of all graphs on 7 ver-
tices.

Figure 4.4: The nonzero connected set roots of all graphs on 7 vertices. The roots
are partially transparent so that the viewer gets an impression of the density of the
roots.
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root of C(G;x), then

2
n−1

≤ |z| ≤ n.

Proof. Let C(G;x) =
n∑
k=1

ckx
k. By Lemma 3.1.2, we have

2ck ≤ (n− k + 1)ck−1 =⇒
ck−1

ck
≥ 2

n− k + 1
≥ 2

n− 1

for all k ∈ {2, . . . , n}. Moreover, by Lemma 4.1.4 we have

kck ≥ ck−1 =⇒ ck−1

ck
≤ k ≤ n

for all k ∈ {2, . . . , n}. Therefore, by the Eneström-Kakeya Theorem (Theorem 4.2.5)

applied to C(G;x)/x, if z is a nonzero root of C(G;x) then 2
n−1

≤ |z| ≤ n.

We can extend Theorem 4.2.6 to all graphs (including disconnected graphs) as

follows.

Corollary 4.2.7. Let G be a nonempty, though possibly disconnected graph on n

vertices. Let d be the order of a largest component in G, and for each k ∈ {1, . . . , d−1}

let αk be the number of components of order k in G. Let α = max{α1, . . . , αd−1}. If z

is a nonzero root of C(G;x), then

2
d−1

≤ |z| ≤ d+ α ≤ n.

Proof. Note that d ≥ 2 as G is nonempty and thus contains at least one edge. We first

prove the upper bound. For each k ∈ {2, . . . , d}, let βk be the number of components

of G of order at least k. Without loss of generality let G1, . . . , Gβk be the components

of G of order at least k. By Lemma 4.0.1 and the bounds of Lemma 4.1.4 applied to
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the components G1, . . . , Gβk , we have

kck(G) = k[ck(G1) + . . .+ ck(Gβk)]

≥ ck−1(G1) + . . . ck−1(Gβk)

= ck−1(G1 ∪ . . . ∪Gβk)

There are at most α connected components of G of order k−1, and every component

of order k − 1 has exactly one connected set of order k − 1. Therefore,

ck−1(G) ≤ ck−1(G1 ∪ . . . ∪Gβk) + α ≤ kck(G) + α.

Thus we have

ck−1(G)

ck(G)
≤ k +

α

ck(G)
≤ k + α ≤ d+ α.

Therefore, by the Eneström-Kakeya Theorem, any root z of C(G;x) satisfies |z| ≤

d + α. The inequality d + α ≤ n follows almost immediately from the definitions of

d and α. We know that α = αj for some particular j ∈ {1, . . . , d − 1}, so G has α

components of order j. Since G also has at least one component of order d, we have

n ≥ d+ jα ≥ d+ α.

For the lower bound, by Lemma 3.1.2 we have

ck−1(G)

ck(G)
≥ 2

d− k + 1
≥ 2

d− 1
,

and we conclude by the Eneström-Kakeya Theorem that any nonzero root z of C(G;x)

satisfies |z| ≥ 2
d−1

.

We have shown that any connected set root z of an arbitrary graph G of order n
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satisfies |z| ≤ n, and an obvious question is whether or not this bound is tight. We

prove that the bound is tight for disconnected graphs by finding a disconnected graph

of order n with a connected set root of modulus n for each n ≥ 2. In fact, we prove that

this is the only graph on n vertices with a connected set root of modulus n. Further,

for n sufficiently large we find a connected graph on n vertices with a connected set

root of modulus close to n − 1. Thus, while the upper bound of Theorem 4.2.7 may

not quite be tight for connected graphs, it is within 1.

Proposition 4.2.8. The unique graph (up to isomorphism) on n vertices with a

connected set root of modulus n is the graph K2 ∪ On−2; that is, the graph on n

vertices with exactly one edge.

Proof. By inspection,

C(K2 ∪On−2;x) = x2 + nx = x(x+ n),

and hence −n is a connected set root of K2 ∪On−2 for all n ≥ 2.

In order to see that K2 ∪On−2 is the unique graph on n vertices with a connected

set root of modulus n, first note that the empty graph On has only a single root at

0. Now we may assume that G is a graph on n vertices and m ≥ 2 edges. Let

C(G;x) = c1x+ c2x
2 + c3x

3 + . . .+ cdx
d,

where d is the order of a largest component of G. By Theorem 4.2.5, the polynomial

C(G;x)/x = c1 + c2x+ . . .+ cdx
d−1

has some of its roots on the boundary

|z| = R = max
{

ci
ci+1

: 1 ≤ i ≤ d− 1
}
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only if the greatest common denominator of the set

S = {i ∈ {1, 2, . . . , d} : cd−i < Rcd+1−i}

is greater than 1, where c0 = 0. We way assume that R = n as otherwise any root z

of C(G;x)/x satisfies |z| ≤ R < n and we are done. Using the facts that c1 = n and

c2 = m ≥ 2, we have

c0 = 0 < n · n = nc1

so that d ∈ S and

c1 = n < n · 2 ≤ n ·m = nc2

so that d − 1 ∈ S. Since the consecutive integers d − 1 and d are both in S, we

must have gcd(S) > 1. We conclude by Theorem 4.2.5 that C(G;x)/x has no root of

modulus n. Therefore, K2 ∪ On−2 is the only graph on n vertices with a connected

set root on the boundary |z| = n.

Proposition 4.2.9. Let ε ∈ (0, 1). For n sufficiently large, there is a connected graph

of order n with a connected set root of modulus within ε of n− 1.

Proof. Consider the cycle Cn for some n ≥ 3. From the discussion of the connected

sets of the cycle in Theorem 3.4.1,

C(Cn;x) = xn + n ·
n−1∑
k=1

xk,

and hence

C(Cn;x) = xn + n · x
n − x

x− 1
.
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Substituting x = 1− n, we obtain

C(Cn; 1− n) = (1− n)n + n · (1− n)n − (1− n)

−n

= (1− n)n − (1− n)n + (1− n)

= 1− n < 0.

Let ε ∈ (0, 1). We will show that for n sufficiently large,

C(Cn; 1− n+ ε) > 0

when n is odd and

C(Cn; 1− n− ε) > 0

when n is even. It will then follow by the Intermediate Value Theorem that Cn must

have a connected set root in (1 − n, 1 − n + ε) if n is odd, and a connected set root

in (1− n− ε, 1− n) if n is even.

We have

C(Cn; 1− n+ ε) = (1− n+ ε)n + n · (1− n+ ε)n − (1− n+ ε)

−n+ ε

= (1− n+ ε)n(1− n
n−ε) +

n
n−ε(1− n+ ε),

which is clearly dominated by the first term for n sufficiently large. Since 1− n
n−ε < 0,

this term is positive if and only if n is odd, so that C(Cn; 1−n+ε) > 0 for sufficiently

large odd n. Similarly, we have

C(Cn; 1− n− ε) = (1− n− ε)n + n · (1− n− ε)n − (1− n− ε)

−n− ε

= (1− n− ε)n(1− n
n+ε

) + n
n+ε

(1− n− ε),
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Graph Nonzero connected set roots of smallest modulus Modulus

K2,1 −1.0000000000± 1.4142135624i 1.7320508076

K2,2 −0.4348022826± 1.0434274359i 1.1303954348

K3,2 −0.1878126933± 0.8572041254i 0.8775377601

K3,3 −0.1036608393± 0.6865199499i 0.6943019597

K4,3 −0.0441420165± 0.5823193347i 0.5839900043

K4,4 −0.0220825810± 0.4969667341i 0.4974571090

Table 4.1: The nonzero connected set roots of smallest modulus of all graphs of order
n for small n. All values rounded to 10 decimal places.

which once again is dominated by the first term for n sufficiently large. Since 1− n
n+ε

>

0, this term is positive if and only if n is even, so that C(Cn; 1 − n − ε) > 0 for

sufficiently large even n.

The lower bound of Theorem 4.2.7 appears to be less tight. We have found

using a computer algebra system that for n ∈ {3, . . . , 8}, the graph on n vertices

with the nonzero connected set root of smallest modulus is the (nearly) balanced

complete bipartite graph K⌈n
2
⌉,⌊n

2
⌋. The nonzero connected set roots of K⌈n

2
⌉,⌊n

2
⌋ of

smallest modulus are nonreal for all n ∈ {3, . . . , 8}. The modulus of a smallest root

for n ∈ {3, . . . , 8} is shown in Table 4.1. At least for these small n, the smallest root

is relatively far from our lower bound of 2
n−1

.

We can show that the lower bound of Theorem 4.2.7 is never sharp for any graph

with a component of order at least 3. Let G be a graph with a component of order

at least 3 and let d be the order of a largest component in G. By Theorem 4.2.5, the

polynomial

C(G;x)/x = c1 + c2x+ . . .+ cdx
d−1

has a root on the boundary

|z| = r = min
{

ci
ci+1

: 1 ≤ i ≤ d− 1
}
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if and only if the greatest common divisor of the set

S = {j ∈ {2, 3, . . . , d+ 1} : cj−1 > rcj}

is strictly greater than 1, where cd+1 = 0. We way assume that r = 2
d−1

as otherwise

any root z of C(G;x)/x satisfies |z| ≥ r > 2
d−1

and we are done. First of all, note

that d+ 1 ∈ S as

cd > 0 = cd+1.

From the proof of Theorem 4.2.7, we have

cj−1

cj
≥ 2

d− j + 1

for all j ∈ {2, . . . , d}. Thus for all j ∈ {3, . . . , d} we have

cj−1 ≥
2

d− j + 1
cj >

2

d− 1
cj.

Therefore, we have {3, . . . , d+1} ⊆ S, meaning that gcd(S) > 1. Finally, this implies

that C(G;x)/x (and hence C(G;x), as well) has no roots on the boundary |z| = 2
d−1

.

In a slightly different direction, we can show that any connected graph G on n

vertices has a connected set root with modulus at least n−t
n
, where t is the number

of cut vertices of G. We will actually demonstrate the truth of the slightly stronger

statement that C(G;x) has a connected set root z with Re(z) ≤ −n−t
n
. We will make

use of the Gauss-Lucas Theorem (See [49], for example) that gives a geometrical

relation between the roots of a polynomial f and the roots of f ′.

Theorem 4.2.10 (Gauss-Lucas). If f is a non-constant polynomial with complex

coefficients, then all roots of f ′ lie in the convex hull of the set of roots of f .

Using the Gauss-Lucas Theorem we can gain information about the roots of
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C(G;x) by differentiating until we reach a linear function whose unique root is easy

to determine. We use this procedure to prove the next result.

Theorem 4.2.11. If G is a connected graph on n vertices with t cut vertices, then

the connected set polynomial of G has a root z with Re(z) ≤ −n−t
n
.

Proof. By Observation 3.1.1, cn = 1 and cn−1 = n− t, so that the (n− 1)st derivative

of C(G;x) is given by

C(n−1)(G;x) = n!x+ (n− 1)!(n− t).

Therefore, the unique root of C(n−1)(G;x) is −n−t
n
. Thus, by the Gauss-Lucas The-

orem (4.2.10), the convex hull of the set of roots of g(G;x) must contain the point

−n−t
n
. We conclude that C(G;x) has a root z with Re(z) ≤ −n−t

n
.

In particular, if G is 2-connected (i.e. if t = 0), then C(G; z) has a root with

Re(z) ≤ −1. This implies that any 2-connected graph for which z = −1 is not a root

has a connected set root outside of the disk |z| ≤ 1.

In the next section, we prove that the collection of all connected set roots is dense

in the complex plane. We use an approach similar to the one used to demonstrate

that the roots of independence polynomials are dense in the complex plane [19] and

that the roots of domination polynomials are dense in the complex plane [24]. The

approach relies on the use of lexicographic products to “fan out” connected set roots.

Before we proceed to our density result, we first show that for any fixed graph G,

the connected set roots of the family {G ⊙ Kn : n ∈ N} are bounded. By Lemma

4.1.1,

C(G⊙Kn;x) = C(G; (1 + x)n − 1)
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so that x is a root of C(G⊙Kn;x) if and only if

(x+ 1)n − 1 = r

for some root r of C(G;x). Essentially, as n increases, all of the connected set roots of

G⊙Kn are fanned out evenly around the point −1, but they are also pulled towards

the unit circle centred at −1.

Theorem 4.2.12. Fix a graph G. Any connected set root x of G⊙Kn satisfies

|x+ 1| ≤ max{1, |r∗ + 1|},

where r∗ is a connected set root of G furthest from −1.

Proof. Let r∗ be a root of C(G;x) at greatest distance from 1. From Lemma 4.1.1,

any root x of C(G⊙Kn;x) satisfies

(x+ 1)n = r + 1

for some root r of C(G;x). Since r∗ is a root of C(G;x) at greatest distance from 1,

we have

|x+ 1|n = |r + 1| ≤ |r∗ + 1|,

and hence

|x+ 1| ≤ |r∗ + 1|1/n.

We conlcude that if |r∗ + 1| ≤ 1 then |x + 1| ≤ 1, and if |r∗ + 1| > 1 then |x + 1| ≤

|r∗ + 1|.
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This tells us that if we hope to find a family of graphs of the form

{H ⊙Kn : H ∈ H, n ∈ N}

whose connected set roots are dense in the complex plane, the collection of connected

set roots of all graphs in H must at least be unbounded – hence H must contain

infinitely many graphs.

4.2.3 The Closure of the Collection of Connected Set Roots

We now build up the necessary tools to prove that the collection of all connected

set roots is dense in the complex plane. Results on the closure of the roots of many

other graph polynomials have been obtained. For example, the roots of the fol-

lowing polynomials have been shown to be dense in the complex plane: chromatic

polynomials [58], domination polynomials [24], independence polynomials [19], and

strongly-connected reliability polynomials [16]. On the other hand, while it is known

that all-terminal reliability roots are dense in the disk |z| ≤ 1 (in the variable q), it

is unknown whether they are dense in the entire complex plane, and it is suspected

that they are not.

Our proof that the collection of all connected set roots is dense in the complex

plane involves several steps, so we give a brief summary of our method here. Essen-

tially, in order to find a connected set root close to an arbitrary complex number, we

use the lexicographic product with a complete graph to “fan out” a connected set root

at appropriate distance from −1 evenly around the point z = −1. We first prove that

if for every positive real number r > 0 there is a connected set root whose distance

from −1 is arbitrarily close to r, then the collection of all connected set roots is dense

in the complex plane. Our proof follows that given for Theorem 11 in [24] that the

roots of domination polynomials are dense in the complex plane. We then present
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some background on the Beraha-Kahane-Weiss Theorem for finding limits of roots of

families of polynomials, which allows us to find a limiting curve of connected set roots

that extends from the point z = −1 to infinity. This gives us a limit of connected

set roots at any distance from −1, which completes the proof, as we can then find

a connected set root whose distance from −1 is arbitrarily close to any positive real

number r.

Lemma 4.2.13 (adapted from [24]). Suppose that for any r > 0 and ε > 0 there is

a connected set root z satisfying

||z + 1| − r| < ε;

that is, for any real number r there is a connected set root z whose distance from −1

is arbitrarily close to r. Then the collection of all connected set roots is dense in the

complex plane.

Proof. Let r > 0 and θ ∈ [0, 2π). It suffices to show that for any ε > 0 there is a

root x of a connected set polynomial such that x+ 1 has modulus within ε of r and

argument within ε of θ. We may assume that ε < r, so that r− ε > 0. We can choose

m large enough so that π
m
< ε, and hence for any complex number w ̸= 0, there is an

mth root of w whose argument is within ε of θ.

By the supposition in the theorem statement, there is a connected set root z of

some graph G that satisfies

(r − ε)m < |z + 1| < (r + ε)m.

Consider the graph G⊙Km. By Lemma 4.1.1, any complex number x satisfying

(x+ 1)m − 1 = z
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is a root of C(G⊙Km;x). For any such x, we have

|x+ 1|m = |z + 1|,

so that

r − ε < |x+ 1| < r + ε.

Further, for at least one such x, the argument of x+ 1 is within ε of θ by our choice

of m.

In order to show that connected set roots are dense in the complex plane, by

Lemma 4.2.13 it now suffices to show that there is a limiting curve of connected set

roots that extends from the point −1 to infinity. We will need a precise definition for

a limit of roots.

Definition 4.2.1. If {fn(x) : n ∈ N} is a family of (complex) polynomials, we say

that a number z ∈ C is a limit of roots of {fn(x) : n ∈ N} if there is a sequence

{zn : n ∈ N} such that fn(zn) = 0 and zn → z as n→ ∞.

Under certain nondegeneracy conditions given in [3], z is a limit of roots of

{fn(z) : n ∈ N} if and only if either fn(z) = 0 for all sufficiently large n, or z is

a limit point of the set of all roots of the family. The main result in [3] concerns

limits of roots of certain recursively defined families of polynomials. The solution of

the recursion

Pn+k(z) = −
k∑
i=1

fi(z)Pn+k−i(z)

depends on the roots of the characteristic equation

Qz(λ) = λk +
k∑
i=1

fi(z)λ
k−i = 0.

Let these roots be λ1(z), λ2(z), . . . , λk(z), with possible repetitions. If the λi(z) are
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distinct for a particular z, then

Pn(z) =
k∑
i=1

αi(z)λi(z)
n, (4.1)

where αi(z) are fixed polynomials determined by solving the system of equations that

arises from letting n = 0, . . . , k − 1 in (4.1). If there are repeated root values at z,

the solution is modified in the usual way (see [3]). For example, if λi(z) = λj(z), the

term αiλ
n
i + αjλ

n
j is replaced by αi1λ

n
i + nαi2λ

n−1
i .

Beraha, Kahane, and Weiss characterized the limits of roots of such a recursive

family in [3], and Brown and Hickman made the observation that any family of

polynomials of the form (4.1) satisfies such a recursion [17]. This gives the following

important theorem, which we refer to as the Beraha-Kahane-Weiss Theorem.

Theorem 4.2.14 (Beraha-Kahane-Weiss Theorem, cf. [17]). Let

fn(x) = α1(x)λ1(x)
n + α2(x)λ2(x)

n + . . .+ αk(x)λk(x)
n,

where the αi(x) and λi(x) are fixed non-zero polynomials such that for no pair i ̸= j

is λi(x) = ωλj(x) for some ω ∈ C of unit modulus. Then z ∈ C is a limit of roots of

the family {fn(x) : n ∈ N} if and only if either

(i) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus)

than the others; or

(ii) for some j, λj(z) has modulus strictly greater than all the other λi(z) have, and

αj(z) = 0.

The same characterization holds when the characteristic equation of the associated

recursion has repeated roots. In particular, if the term αiλ
n
i +αjλ

n
j in fn(x) is replaced

by αi1λ
n
i + nαi2λ

n−1
i , the same conclusion holds. In this case part (ii) needs to be
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reworded slightly to: for some j, λj(z) has modulus strictly greater than all the other

λi(z) have, and αjk(z) = 0 for some k.

We now present a simple decomposition of the connected set polynomial of an

arbitrary graph G which will be useful in computing the connected set polynomials

of the family of graphs used in the proof of our main result. The idea behind the

decomposition is to pick a vertex v of G and to count the connected sets of G that

contain v separately from the connected sets that do not contain v. An analogous

decomposition holds for many generating polynomials related to graphs, and perhaps

the best known example of such a decomposition is for the independence polynomial

I(G;x) (see [39], for example). The polynomial xI(G−N [v];x) enumerates the inde-

pendent sets of G that contain v (recall that N [v] denotes the closed neighbourhood

of v in G) while the polynomial I(G − v;x) enumerates the independent sets of G

that do not contain v. This gives

I(G;x) = I(G− v;x) + xI(G−N [v];x).

For the connected set polynomial, the connected sets of G that do not contain v are

counted by the polynomial C(G − v;x), and we introduce the rooted connected set

polynomial to count the connected sets of G that contain v.

Definition 4.2.2. Let G be a rooted graph on n vertices with root v. Let Cv(G) ⊆

C(G) be the collection of all connected sets of G containing vertex v. The rooted

connected set polynomial of G at v, denoted Cv(G;x), is the generating polynomial

of the collection Cv(G); that is,

Cv(G;x) =
∑

C∈Cv(G)

x|C|.
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Alternatively, we can write

Cv(G;x) =
n∑
k=1

rkx
k,

where rk is the number of connected sets of G of order k that contain v.

Observation 4.2.15. Let G be a graph of order n ≥ 1 and let v be any vertex of G.

Then

C(G;x) = C(G− v;x) + Cv(G;x).

Proof. We can partition the connected sets of G into those which contain v and those

which do not. The polynomial Cv(G;x) enumerates the former while the polynomial

C(G− v;x) enumerates the latter.

First of all, we can use Observation 4.2.15 to compute C(Pn;x). Let i ∈ {1, . . . , n}

and let vi be a leaf of the graph Pi. It is clear that

Cvi(Pi;x) =
i∑

k=1

xk,

as there is a unique connected set of Pi of order k containing the leaf vi for each

k ∈ {1, . . . , i}. By Observation 4.2.15, we have

C(Pn;x) = C(Pn−1;x) + Cvn(Pn;x)

Applying Observation 4.2.15 recursively leads to

C(Pn;x) =
n∑
i=1

Cvi(Pi;x)

=
n∑
i=1

i∑
k=1

xk

=
n∑
k=1

(n− k + 1)xk
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Re(z)

Im(z)

Figure 4.5: The connected set roots of Pn for n ∈ {1, . . . , 30}.

Hence ck(Pn) = n − k + 1 for all k ∈ {1, . . . , n}. This can be verified directly as a

connected set of order k in Pn must consist of k consecutive vertices, and there are

n− k + 1 sets of k consecutive vertices in Pn.

We will need a closed form for C(Pn;x), and this is easily obtained. We have

(x− 1)C(Pn;x) = xC(Pn;x)− C(Pn;x)

= xn+1 + xn + . . .+ x2 − nx

=
xn+2 − x2

x− 1
− nx,

so that

C(Pn;x) =
xn+2 − x2

(x− 1)2
− nx

x− 1
.

The connected set roots of the path Pn for n ≤ 30 are shown in Figure 4.5. In

Section 5.4 we will prove a result that implies the modulus of any connected set root

of Pn (for any n) is at most 2. However, we see below that joining a single vertex to

the path Pn has a drastic effect on the connected set roots.

Lemma 4.2.16. Let G be a graph on n vertices. The connected set polynomial of the
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join G+ v is given by

C(G+ v;x) = C(G;x) + x(x+ 1)n.

Proof. By Observation 4.2.15,

C(G+ v;x) = C(G;x) + Cv(G+ v;x).

The connected sets of G+ v containing v correspond simply to the vertex subsets of

G, since v is adjacent to every vertex of G. Explicitly, U ⊆ V (G) corresponds to the

connected set U ∪ {v} of G + v. Hence the connected sets of G + v containing v are

enumerated by x(x+ 1)n. This gives

C(G+ v;x) = C(G;x) + x(x+ 1)n.

The connected set roots of Pn+v for n ≤ 50 are shown in Figure 4.6, and one can

see that there are roots that appear to grow large in several directions. We are now

ready to prove our main result – the proof entails showing that the limiting curve of

the connected set roots of the family of graphs {Pn + v : n ∈ N} extends from −1 to

infinity. The result then follows immediately by Lemma 4.2.13.

Theorem 4.2.17. The collection of all connected set roots is dense in the complex

plane, even if we restrict to connected graphs.

Proof. It suffices to show that the supposition of Lemma 4.2.13 is true. We do so by

proving that the limits of roots of the family {C(Pn+v;x) : n ≥ 1} include the points

on the line Re(z) = −1
2
of modulus at least one, the points on the circle |z + 1| = 1

with Re(z) ≥ −1
2
, and the points on the circle |z| = 1 with Re(z) ≤ −1

2
. See Figure

4.7 for an illustration of the limiting curve, which clearly extends from −1 to ∞. For
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Re(z)

Im(z)

Figure 4.6: The connected set roots of Pn + v for n ∈ {1, . . . , 50}.

n ≥ 1, the connected set polynomial of Pn + v is given by

C(Pn + v;x) = C(Pn;x) + x(x+ 1)n

=
xn+2 − x2

(x− 1)2
− nx

x− 1
+ x(x+ 1)n

Consider the polynomial fn(x) = (x−1)2C(Pn+v;x).We multiply by (x−1)2 to clear

the denominators of the rational terms and this adds only a simple root at x = 1. We

rewrite fn(x) as follows:

fn(x) = xn+2 − x2 − nx(x− 1) + (x− 1)2x(x+ 1)n

= x(x− 1)2(x+ 1)n + x2 · xn − x2 − nx(x− 1)

= α1λ
n
1 + α2λ

n
2 + α31λ

n
3 + nα32λ

n−1
3 ,

where

α1 = x(x− 1)2, α2 = x2, α31 = −x2, and α32 = −x(x− 1);
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|z + 1| = |z|

|z + 1| = 1 |z| = 1

Re(z)

Im(z)
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|z + 1| = |z| > 1

|z| = 1 > |z + 1|

|z + 1| = 1 > |z|
Re(z)

Im(z)

Figure 4.7: The curves |z + 1| = |z|, |z + 1| = 1, and |z| = 1 (left), and the limiting
curve for the connected set roots of Pn + v (right).

and

λ1 = x+ 1, λ2 = x, and λ3 = 1.

Clearly no αi is identically zero and no λi = ωλj for i ̸= j and some complex number

ω of unit modulus, so the nondegeneracy conditions of Theorem 4.2.14 are satisfied.

Applying part (i) of Theorem 4.2.14 involves three cases. Figure 4.7 is provided to

aid the reader in seeing the characterizations below.

Case (i): |λ1| = |λ2| ≥ |λ3|

The condition |z + 1| = |z| is true if and only if z is equidistant from −1 and 0;

that is, if and only if Re(z) = −1
2
. Further, when |z+1| = |z| we have |z+1| ≥ 1 and

|z| ≥ 1 if and only if z has modulus at least one. Hence, we have |z + 1| = |z| ≥ 1 if

and only if z lies on the line Re(z) = −1
2
and z has modulus at least one.

Case (ii): |λ1| = |λ3| ≥ |λ2|

The condition |z + 1| = 1 is true if and only if z lies on the circle of radius 1

centred at the point −1. Further, when |z + 1| = 1 we have |z + 1| ≥ |z| and 1 ≥ |z|

if and only if Re(z) ≥ −1
2
. Hence, we have |z + 1| = 1 ≥ |z| if and only if z lies on
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the circle of radius 1 centred at −1 and Re(z) ≥ −1
2
.

Case (iii): |λ2| = |λ3| ≥ |λ1|

The condition |z| = 1 is true if and only if z lies on the circle of radius 1 centred

at the point 0. Further, when |z| = 1 we have |z| ≥ |z+1| and 1 ≥ |z+1| if and only

if Re(z) ≤ −1
2
. Hence, we have |z| = 1 ≥ |z + 1| if and only if z lies on the circle of

radius 1 centred at 0 and Re(z) ≤ −1
2
.

Finally, it is straight forward to verify that part (ii) of Theorem 4.2.14 yields only

a single limit of roots at x = 1. We suspect that this limit of roots is only the result

of multiplying by (x− 1)2.

Since the limiting curve of the connected set roots of the graphs Pn + v extends

continuously from the point −1 to infinity and we can find a connected set root arbi-

trarily close to any point on this curve, the supposition of Lemma 4.2.13 is satisfied.

We conclude that connected set roots are dense in the complex plane. The result

holds even if we restrict to connected graphs as we have only used the connected set

roots of the connected graphs (Pn + v)⊙Km for n,m ∈ N.

We can also make a similar statement to Theorem 4.2.17 for disconnected graphs,

which is surprising as asymptotically almost all graphs of order n are connected. The

proof is very similar to that of Theorem 4.2.17, but we use the disconnected graphs

Pn ∪Kn in place of the connected graphs Pn+ v. The connected set roots of Pn ∪Kn

for n ≤ 30 are shown in Figure 4.8, and appear to have the same limiting curve as

the connected set roots of the family Pn + v shown in Figure 4.7. We confirm that

this is true in the proof of the next theorem.

Theorem 4.2.18. The collection of connected set roots of disconnected graphs is

dense in the complex plane.

Proof. It suffices to show that the supposition of Lemma 4.2.13 is true even for dis-

connected graphs. We will show that the limiting curve of the connected set roots of
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Re(z)

Im(z)

Figure 4.8: The connected set roots of Pn ∪Kn for n ∈ {1, . . . , 30}.

the family of graphs {Pn ∪Kn : n ≥ 1} extends from −1 to infinity. By Lemma 4.0.1

we have

C(Pn ∪Kn;x) = C(Pn;x) + C(Kn;x)

=
xn+2 − x2

(x− 1)2
− nx

x− 1
+ (x+ 1)n − 1

As in the proof of Theorem 4.2.17, consider the polynomials

gn(x) = (x− 1)2C(Pn ∪Kn;x).

We rewrite gn(x) as follows:

gn(x) = xn+2 − x2 − nx(x− 1) + (x− 1)2(x+ 1)n − (x− 1)2

= (x− 1)2(x+ 1)n + x2 · xn − x2 − (x− 1)2 − nx(x− 1)

= α1λ
n
1 + α2λ

n
2 + α31λ

n
3 + nα32λ

n−1
3 ,
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where

α1 = x(x− 1)2, α2 = x2, α31 = −x2 − (x− 1)2, and α32 = −x(x− 1);

and

λ1 = x+ 1, λ2 = x, and λ3 = 1.

From here we see that the limiting curve of the connected set roots of Pn ∪ Kn is

the same as the limiting curve of the connected set roots of Pn + v shown in Figure

4.2.17. Since the limiting curve extends from −1 to infinity, we conclude by Lemma

4.2.13 that the connected set roots of disconnected graphs are dense in the complex

plane.

Finally, as a corollary to Theorem 4.2.17 and Theorem 4.2.18 we can prove that

the collection of all node reliability roots is also dense in the complex plane, whether

we restrict to connected graphs or disconnected graphs. This is potentially another

significant difference between node reliability and all-terminal reliability. While all-

terminal reliability roots were shown to be dense in the disk |z| ≤ 1 (in the variable q)

in [12], the largest known modulus of an all-terminal reliability root is 1.1134860896,

found in Chapter 2 of this thesis! It seems as though all-terminal reliability roots

are bounded in modulus by some constant, which would make them far from dense

in the complex plane. If this is indeed the case then we have found another striking

difference between all-terminal reliability and node reliability.

Corollary 4.2.19. The collection of all node reliability roots is dense in the complex

plane, even if we restrict to connected graphs (or disconnected graphs).

Proof. Let z ∈ C and let ε > 0. We will find a complex number z̃ and a graph G such
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that |z − z̃| < ε and nRel(G; z̃) = 0. Recall that

C(G;x) = (1 + x)n · nRel
(
G; x

1+x

)
,

so that any connected set root x ̸= −1 of the graph G yields a node reliability root

x
1+x

of G. The complex function f(x) = x
1+x

is a Möbius transformation and hence

it is one-to-one and continuous on its domain. Let x = f−1(z) = z
1−z (we may

assume that z ̸= 1). Since f is continuous, we can find δ > 0 such that |x − x̃| < δ

implies |f(x)− f(x̃)| = |z− f(x̃)| < ε. By Theorem 4.2.17, the connected set roots of

connected graphs are dense in the complex plane, and hence there is some connected

graph G with connected set root x̃ ̸= −1 satisfying |x− x̃| < δ. The complex number

f(x̃) = x̃
1+x̃

satisfies |z − f(x̃)| < ε and nRel(G; f(x̃)) = 0.

The result for disconnected graphs follows analogously from Theorem 4.2.18.



Chapter 5

The Subtree Polynomial

A subtree of a tree T is a connected induced subgraph of T with at least one vertex.

Recently, there has been much interest in enumerating the subtrees of a tree. The

problem of finding the tree in a given class that maximizes (minimizes) the total

number of subtrees has been of primary interest. It is not hard to demonstrate that

among the class of all trees on n vertices, the path Pn has the least subtrees, while

the star K1,n−1 has the most (see [63]). In [64], Székely and Wang describe the binary

tree with the maximum (minimum) number of subtrees among all binary trees with

n leaves. In [73], Yan and Yeh describe the tree on n vertices with diameter at

least d which has the maximum number of subtrees, and the tree on n vertices with

maximum degree at least ∆ which has the minimum number of subtrees. In [76],

the authors generalize a result from [44] in characterizing the tree with given degree

sequence that has the largest number of subtrees. On the other hand, the tree with

given degree sequence that has the minimum number of subtrees is not always unique;

this problem was studied in [56, 75].

The number of subtrees of a tree has a strong connection to combinatorial chem-

istry, where topological indices are used to describe the structural properties of graphs.

One such index, the Wiener index of a graph (sometimes called the path number),

is the sum of the distances between all pairs of vertices. The Wiener index has been

studied extensively as a molecular descriptor (see [31, 71], for example). There is

an interesting negative correlation between the number of subtrees of a tree and its

Wiener index, first pointed out in [63]: among certain classes of trees, the tree that

130
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maximizes the number of subtrees minimizes the Wiener index, and the tree that

minimizes the number of subtrees maximizes the Wiener index. In fact, the negative

correlation between the Wiener index and the number of subtrees has been shown to

be stronger than the correlation between the Wiener index and several other common

topological indices used in combinatorial chemistry (see [69]).

Apart from this connection to the Wiener index, the study of the number of

subtrees of a tree is of interest in its own right in fields including graph theory,

number theory, and computer science. The number of subtrees of a tree also has

applications to the study of phylogenetics (see [45], for example).

In [73], the authors studied a weighted variant of the problem. The weight of a

subtree S of a tree T is the product of the weights on the vertices and edges of S. The

authors found a linear-time algorithm to count the sum of the weights of all subtrees

of a tree T. When both weight functions map identically to 1, this sum is exactly the

number of subtrees of T. Alternatively, if the weight function on the vertex set maps

identically to x while the weight function on the edge set maps identically to 1, the

sum of the weights is a polynomial in x whose coefficients count the number of subtrees

of T of each order. Note that the subtrees of T are in one-to-one correspondence with

their vertex sets, which are exactly the connected sets of T. Thus, when the weight

function on the vertex set maps identically to x while the weight function on the edge

set maps identically to 1, the sum of the weights of all subtrees is exactly C(T ;x).

This polynomial is only briefly mentioned in [73], but we commit this chapter to its

study.

In Section 5.1 we prove that the graphs for which the connected sets are the same

as the nonempty g-convex sets are exactly the block graphs (this result is included

here as trees are block graphs). The characterization is of interest as the g-convexity

polynomial – the generating polynomial of the collection of g-convex sets – has been

studied in [23, 22]. In particular, it means that most of the results proven about
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the connected set polynomials of trees in this chapter apply immediately to the g-

convexity polynomials of trees as well (some results on the roots of connected set

polynomials of trees will require small adjustments because the constant term of

the connected set polynomial is always 0 while the constant term of the g-convexity

polynomial is 1). In Section 5.2 we prove that the path (star) on n vertices has

the coefficient-wise smallest (largest) connected set polynomial among the class of all

trees on n vertices. This strengthens the result that the path (star) on n vertices has

the fewest (greatest) total number of subtrees among all trees on n vertices (see [63]).

In Section 5.3, we characterize the trees that have unimodal connected set polynomial

and the trees that have log-concave connected set polynomial. Finally, in Section 5.4

we study the roots of connected set polynomials of trees. While we saw in Section

4.2.3 that the collection of connected set roots of all connected graphs is dense in

the complex plane, it appears that the collection of connected set roots of trees is

bounded. We present a bound on the modulus of a connected set root of a tree in

terms of the number of leaves, which improves on the bound of Theorem 4.2.7 for

connected graphs in general.

5.1 Connected Sets and Convexity

Although we are interested here in connected sets, there has been considerable interest

in the literature in convex sets, which are connected (at least in a connected graph)

but also satisfy a stronger property. Several notions of convexity exist for vertex

subsets of graphs (see [32]), all of which try to capture the essential properties of

convexity for a subset of Euclidean space. The notion of convexity that we study

here is called geodesic convexity or g-convexity.

Definition 5.1.1 (c.f. [32]). A nonempty subset X of vertices of a graph G is called

geodesically convex (g-convex) if G[X] is connected and whenever u and v belong to
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X, all vertices on shortest paths between u and v also lie in X. Additionally, the

empty set is g-convex.

Note that many definitions of g-convex set do not require that the set induces a

connected graph. We have chosen to include this stipulation because it more closely

mirrors convexity in Euclidean space, where there is always at least one shortest

path between every pair of points, and thus every convex set is connected. The

requirement that a g-convex set must induce a connected graph implies that every

nonempty convex set must be a connected set, which is not true in disconnected

graphs otherwise.

The generating polynomial of the collection of g-convex sets of a graph was stud-

ied by Brown and Oellermann in [23, 22]. We call this polynomial the g-convexity

polynomial.

Definition 5.1.2. Let X (G) be the collection of g-convex sets of G. The g-convexity

polynomial of G, denoted g(G;x), is the generating polynomial of the collection of

convex sets of G; that is,

g(G;x) =
∑

X∈X (G)

x|X|.

Alternatively, we can write

g(G;x) =
n∑
k=0

gkx
k,

where gk is the number of g-convex sets of G of order k for each k ∈ {0, . . . , n}.

We briefly summarize the work that has been done to date on g-convexity polyno-

mials. In any graph G, the empty set, the singletons, the edges, and the entire vertex

set are necessarily g-convex sets. The graphs for which these are the only convex

sets, called g-minimal graphs, were studied in [22]. It is clear that g-minimal graphs

have the fewest convex sets among the class of all graphs on the same number of

vertices and edges. While it was found that the collection of all roots of g-convexity
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polynomials is unbounded, it was proven that no root of a g-convexity polynomial of

a g-minimal graph has modulus exceeding β ≈ 2.1475.

The main purpose of this section is to describe the graphs for which the connected

set polynomial and the g-convexity polynomial are the same up to the constant term.

Several relationships between the coefficients ck of the connected set polynomial of

a connected graph G and the coefficients gk of the g-convexity polynomial of G are

obvious. Note that ck = gk for k ∈ {1, 2, n} as for any connected graph on n vertices

the singletons, the edges, and the entire vertex set are both connected and g-convex.

Further, every nonempty convex set of a graph G is also a connected set, so we must

have

gk ≤ ck

for all k ∈ {1, . . . , n}. Here we characterize the connected graphs for which equality

holds for all k ∈ {1, . . . , n}. That is, we determine all graphs G for which

W is a connected set ⇒ W is a convex set

for any W ⊆ V (G). We introduce the term simply convex to describe the graphs

for which this property holds. For all such graphs, the connected set polynomial and

the g-convexity polynomial are identical up to the constant term (remember that the

empty set is considered a convex set but not a connected set). This characterization

is of interest because the study of the connected set polynomial is very closely linked

to the study of the g-convexity polynomial for simply convex graphs.

Definition 5.1.3. A connected graph G is called simply convex if for any nonempty

subset W ⊆ V (G), W is connected if and only if W is g-convex.

We first show that simply convex graphs do not have any induced cycles of order

4 or more or any induced diamonds. The diamond D = K4 − e is the unique simple
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v

x

y

z

Figure 5.1: The diamond graph D.

graph (up to isomorphism) on 4 vertices and 5 edges.

Lemma 5.1.1. If G is simply convex then G is a diamond-free chordal graph.

Proof. Let G be simply convex and suppose G contains an induced cycle of length

k ≥ 4. Label the vertices v1, v2, . . . , vk in cyclic order. The subset {v1, v2, . . . , vk−1}

is connected but not convex, as it does not contain the shortest path (vk−1, vk, v1)

between vk−1 and v1.

Suppose now that G contains a diamond graph as an induced subgraph. Without

loss of generality let the diamond be labelled as in Figure 5.1. Then the set {x, y, z}

is connected but not convex in G, as it does not contain the shortest path (x, v, z)

between x and z.

Lemma 5.1.1 leads us to a nice characterization of simply convex graphs. Recall

that a block graph is a connected graph in which every block is a clique. We make

use of several known characterizations of block graphs to demonstrate that a graph

G is simply convex if and only if it is a block graph.

Theorem 5.1.2. Let G be a graph. The following are equivalent:

(i) G is a block graph;

(ii) G is a diamond-free chordal graph;

(iii) Between every two vertices in G there is exactly one induced chordless path;
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(iv) G is simply convex.

Proof. The equivalences (i) ⇔ (ii) and (ii) ⇔ (iii) are stated in Theorem 1.1 of [46].

Lemma 5.1.1 covers the implication (iv) ⇒ (ii). Lastly, we show (iii) ⇒ (iv). Suppose

that between every two vertices in G there is exactly one induced chordless path. This

means that there is a unique shortest path between every two vertices in G and that

this shortest path is contained in any connected induced subgraph of G containing

this pair of vertices. Therefore, G is simply convex.

Theorem 5.1.2 has some important implications for the remainder of the material

in this chapter. Since trees are block graphs, for any tree T we have

C(T ;x) + 1 = g(T ;x).

The differing constant term has little to no effect on most of the results that follow

in the remainder of this chapter. In particular, the main results of Section 5.2 and

Section 5.3 (Theorem 5.2.1 and Theorem 5.3.6, respectively) apply equally well to

g-convexity polynomials. The roots of g-convexity polynomials of trees differ slightly

from the roots of the corresponding connected set polynomials due to the different

constant term, but overall we have found that they are still very similar in nature.

Our results on the roots of connected set polynomials of trees can be reworked slightly

into very similar results that hold for the roots of g-convexity polynomials of trees.

5.2 Paths and Stars

Since the focus of much of the existing research on subtrees has been on finding the

tree with the maximum (minimum) total number of subtrees in a given class (if such

a tree exists), it is natural to ask the following question: is there a tree in a given class

that maximizes (minimizes) all of the coefficients of the connected set polynomial?
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Of course, such a tree would necessarily have the maximum (minimum) total number

of subtrees among all trees in the class, but satisfies a stronger property in that it has

more (fewer) subtrees of each order than any other tree. We answer this question for

the class of all trees on n vertices. Recall that the star on n vertices has the most

subtrees in this class while the path on n vertices has the least [63]. It is obvious that

all trees of order n satisfy c1 = n, c2 = n− 1, and cn = 1, so our result is concerned

only with the coefficients ck for k ∈ {3, . . . , n− 1}.

Theorem 5.2.1. Let T be a tree of order n ≥ 4. For any k ∈ {3, . . . , n− 1},

n− k + 1 ≤ ck ≤
(
n− 1

k − 1

)
,

with equality on the left if and only if T = Pn and equality on the right if and only if

T = K1,n−1.

The rest of this section is essentially devoted to proving Theorem 5.2.1. We found

in Section 4.2.3 that the path Pn has connected set polynomial

C(Pn;x) =
n∑
k=1

(n− k + 1)xk,

whose coefficients match the lower bound of Theorem 5.2.1.

The connected set polynomial of the star K1,n−1 can be computed easily using

Lemma 4.2.16, as K1,n−1
∼= On−1 + v, where On−1 is the empty graph on n − 1

vertices. We have

C(K1,n−1;x) = C(On−1;x) + x(x+ 1)n−1

= (n− 1)x+
n∑
k=1

(
n− 1

k − 1

)
xk

= nx+
n∑
k=2

(
n− 1

k − 1

)
xk.
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Thus we see that the path and star of order n meet the lower and upper bounds,

respectively, of Theorem 5.2.1. The next lemma will show that any tree on n vertices

not isomorphic to the path Pn must have strictly more connected sets of each order

k ∈ {3, . . . , n− 1} than the path Pn.

Lemma 5.2.2. Let T be a tree on n vertices that is not isomorphic to Pn. If k ∈

{3, . . . , n− 1} then

ck(T ) > n− k + 1.

Proof. We proceed by mathematical induction on n. For the base case, suppose that

T is a tree of order 4 and that T ̸∼= P4. Then T ∼= K1,3 and

C(T ;x) = 1 + 4x+ 3x2 + 3x3 + x4.

Thus, c3(T ) = 3 > 2 = n− 3 + 1, and the base case is satisfied.

Suppose now that for some n ≥ 4, every tree T of order n not isomorphic to Pn

satisfies ck > n+ k− 1 for all k ∈ {3, . . . , n− 1}. Let T be a tree of order n+ 1 with

T ̸∼= Pn+1. Let v be a leaf of T such that T − v ̸∼= Pn. Such a leaf v is guaranteed

to exist by the conditions T ̸∼= Pn+1 and n ≥ 4. We note that the graph T − v is

connected since v is a leaf. By Observation 4.2.15,

C(T ;x) = C(T − v;x) + Cv(T ;x).

Let Cv(T ;x) =
n+1∑
k=1

rkx
k. Then we have

ck(T ) = ck(T − v) + rk(T ).

Since T −v ̸∼= Pn we have ck(T −v) > n−k+1 for k ∈ {3, . . . , n−1} by the induction

hypothesis. Note also that cn(T −v) = 1 as T −v is connected. Since T is connected,
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there must be some connected set of order k containing v for each k ∈ {3, . . . , n},

and hence rk(T ) ≥ 1. Putting all of this together, we have

ck(T ) > (n− k + 1) + 1 = (n+ 1)− k + 1

for all k ∈ {3, . . . , n}. Therefore, by mathematical induction, any tree T of order

n ≥ 4 not isomorphic to Pn satisfies ck(T ) > n− k + 1 for all k ∈ {3, . . . , n− 1}.

We now turn our attention to the upper bound of Theorem 5.2.1. We will demon-

strate that any tree on n vertices not isomorphic to the star K1,n−1 must have strictly

fewer connected sets of each order k ∈ {3, . . . , n− 1} than K1,n−1.

Lemma 5.2.3. Let T be a tree on n vertices that is not isomorphic to K1,n−1. If

k ∈ {3, . . . , n− 1} then

ck(T ) <

(
n− 1

k − 1

)
.

Proof. The connected sets of order k ≥ 3 of a tree T correspond to the subtrees of

T of order k, which correspond to their set of k − 1 edges. In other words, each

connected set of order k ≥ 3 in a tree corresponds to a set of k − 1 edges of the tree.

For the star, every subset of edges induces a subtree, meaning that

ck(K1,n−1) =

(
n− 1

k − 1

)
.

Let T ̸∼= K1,n−1 be a graph of order n.We will show that for each k ∈ {3, . . . , n−1}, the

tree T has a set of k−1 edges that induces a disconnected graph, so that ck(T ) <
(
n−1
k−1

)
for each k ∈ {3, . . . , n− 1}.

Recall that a pendant edge in a graph G is an edge incident to a leaf. Since

T ̸∼= K1,n−1, there must be some non-pendant edge e = {u, v} in E(T ). Pick edges

eu and ev which are incident to u and v, respectively, but distinct from e. Any set of

edges containing eu and ev but not e induces a subgraph with at least two components
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(i.e. not a subtree). Let the edges in E(T )\{e, eu, ev} be e1, e2, . . . , en−3. For each

k ∈ {3, . . . , n− 1}, the set

Ek :=

⎧⎪⎪⎨⎪⎪⎩
{eu, ev} if k = 3

{eu, ev, e1, . . . , ek−3} if k ∈ {4, ..., n− 1}

contains k−1 edges and induces a disconnected subgraph. Therefore not every set of

k−1 edges induces a subtree of T and hence ck <
(
n−1
k−1

)
for all k ∈ {3, . . . , n−1}.

Lemma 5.2.3 is the last piece in the proof of Theorem 5.2.1. In summary, we have

improved the result from [63] that among all trees on n ≥ 4 vertices, the path has

the least subtrees while the star has the most. We can now say that among all trees

on n ≥ 4 vertices, for all k ∈ {3, . . . , n − 1} the path has the least subtrees of order

k while the star has the most subtrees of order k. It would be interesting to know

whether other results such as those from [64, 73, 76] that give the tree in a given class

with the largest (or smallest) total number of subtrees can be strengthened in this

way. We close this section with a corollary to Theorem 5.2.1 which lends yet more

weight to the result, and gives more motivation to determine whether there is a tree

in a given class with the coefficient-wise greatest or least subtree polynomial. We

say that a graph G has uniformly best node reliability among the collection of graphs

H if nRel(G; p) ≥ nRel(H; p) on [0, 1] for every H ∈ H. Uniformly worst is defined

analogously.

Corollary 5.2.4. Among the class of all trees on n vertices, the path Pn has the

uniformly worst node reliability while the star K1,n−1 has the uniformly best node

reliability.

Proof. Let T be a tree on n vertices. By Theorem 5.2.1,

ck(Pn) ≤ ck(T ) ≤ ck(K1,n−1)
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for all k ∈ {1, . . . , n}, and hence

nRel(Pn; p) ≤ nRel(T ; p) ≤ nRel(K1,n−1; p).

We note that the star on n vertices was known to be uniformly best among the

class of all trees on n vertices (see [61]), but the result that the path on n vertices is

uniformly worst in this class is new to us.

5.3 Unimodality and Log-Concavity

A sequence a0, a1, . . . , an is said to be unimodal if there is some k for which

a0 ≤ a1 ≤ . . . ≤ ak ≥ ak+1 ≥ . . . an.

In this case k is called a mode of the sequence (note that a mode is not necessarily

unique). The sequence a0, a1, . . . , an is called log-concave if

a2k ≥ ak−1ak+1 for all k ∈ {1, . . . , n− 1}.

It is not hard to see that a log-concave sequence of positive terms is unimodal. A

polynomial is called unimodal (log-concave) if its sequence of coefficients is unimodal

(log-concave). A common question in the study of graph polynomials is whether or

not a given polynomial is unimodal or log-concave. For example, a long-standing

conjecture that the sequence of absolute values of the coefficients of the chromatic

polynomial is log-concave has recently been proven in [41]. The following result that

gives a sufficient condition for a real polynomial with positive coefficients to have

log-concave polynomial is due to Newton (see [60]).
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Theorem 5.3.1. Let

f(x) =
n∑
k=0

akx
k

be a real polynomial with positive coefficients. If f has all real roots then

a2k(
n
k

)2 ≥ ak−1(
n
k−1

) ak+1(
n
k+1

) for all k ∈ {1, . . . , n− 1}.

Since
(
n
k

)2 ≥
(
n
k−1

)(
n
k+1

)
, this implies that a2k ≥ ak−1ak+1 for all k ∈ {1, . . . , n − 1},

so that the sequence a0, . . . , an is log-concave, and hence unimodal as all terms are

positive.

Theorem 5.3.1 has been used to demonstrate the log-concavity of certain graph

polynomials. For example, it was proven in [26] that independence polynomials of

claw-free graphs have all real roots and hence are log-concave.

In this section we characterize the trees that have unimodal connected set poly-

nomial and the trees that have log-concave connected set polynomial. Unfortunately,

Theorem 5.3.1 will not be useful for us – Theorem 4.2.17 implies that no tree of order

3 or more has all real roots. We approach the problem directly instead.

We will see that most trees have neither unimodal nor log-concave connected set

polynomial. Consider a tree T on n vertices with connected set polynomial

C(T ;x) =
n∑
k=1

ckx
k.

Since c1 = n > n−1 = c2 by Observation 3.1.1, our technique for demonstrating that

a tree T has a non-unimodal subtree polynomial is to show that either c3 or c4 is at

least n. As we will shortly see, almost all trees satisfy either c3 ≥ n or c4 ≥ n.

Once again, the path to our main result requires plenty of building blocks. The

following definition makes several proofs in this section much easier to write.



143

v

y

xz

(a) The tree T.

v x

(b) The v-branch of T containing x.

v

y

(c) The v-branch of T containing y.

vz

(d) The v-branch of T containing z.

Figure 5.2: A tree T and its v-branches.

Definition 5.3.1. Let T be a tree and let v be a vertex of T . A v-branch of T is

a maximal subtree of T having v as a leaf. The set of v-branches of T is denoted

B(T, v). The v-brances of a particular tree are illustrated in Figure 5.2.

Observation 5.3.2. Let T be a tree. If v ∈ V (T ) then T has deg(v) distinct v-

branches.

Proof. The vertex v is incident to deg(v) distinct edges. Each v-branch of T contains

exactly one of these edges. Further, the maximality condition in the definition of

v-branch implies that choosing an edge incident to v completely determines a v-

branch.

We now move on to some results that will narrow down our search for trees with

unimodal connected set polynomial greatly. Essentially, we find a lower bound on the

coefficient c3 of the cubic term in the connected set polynomial of a tree in terms of

the order of the tree and the degree of any particular vertex.

Lemma 5.3.3. Let T be a tree on n vertices. If T has a vertex v of degree d ≥ 3,

then c3(T ) ≥ n+
(
d
2

)
− d− 1.
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Proof. Each subtree of T of order 3 either has central vertex v or is contained entirely

in some v-branch of T . There are
(
d
2

)
subtrees of T of order 3 with central vertex v.

Each v-branch B ∈ B(T, v) contains exactly c3(B) subtrees of order 3. Therefore,

c3(T ) =

(
d

2

)
+

∑
B∈B(T,v)

c3(B)

For each B ∈ B(T, v), if V (B) ≥ 3 we have

c3(B) ≥ |V (B)| − 3 + 1 = |V (B)| − 2

by Theorem 5.2.1. If V (B) ≤ 2 then c3(B) = 0 and c3(B) ≥ |V (B)| − 2 still holds.

By Observation 5.3.2 we know that T must have d distinct v-branches. Therefore,

c3(T ) ≥
(
d

2

)
+

∑
B∈B(T,v)

(|V (B)| − 2)

=

(
d

2

)
+

∑
B∈B(T,v)

|V (B)| − 2d

=

(
d

2

)
+ (n+ d− 1)− 2d

= n+

(
d

2

)
− d− 1,

which completes the proof.

Lemma 5.3.3 has several fairly straight forward corollaries – the lower bound we

find for c3 is at least n for every tree with a vertex of degree 4 or more, and every

tree with two or more vertices of degree 3.

Corollary 5.3.4. Let T be a tree on n vertices. If T has four or more leaves, then

C(T ;x) is not unimodal.

Proof. We first demonstrate that if T has four or more leaves then T either has a
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vertex of degree four or more, or at least two vertices of degree 3. Let the degree

sequence of t be

(d1, d2, . . . , dn−4, 1, 1, 1, 1).

By the handshaking lemma (which says that the sum of the degrees of all vertices in

a graph is equal to twice the number of edges) we know that

n−4∑
k=1

dk = 2(n− 1)− 4 = 2(n− 4) + 2,

and this 2(n−4)+2 must be distributed among n−4 locations in the degree sequence.

By the generalized pigeonhole principle, either some degree is at least 4 or at least

two degrees are 3.

First suppose that T has a vertex v of degree 4. By Lemma 5.3.3, we have

c3(T ) ≥ n+

(
d

2

)
− d− 1.

Since d ≥ 4 we have
(
d
2

)
− d = d(d−3)

2
≥ 2 and thus

c3(T ) ≥ n+ 1.

Therefore, c3(T ) > c1(T ) > c2(T ) and we conclude that C(T ;x) is not unimodal.

Suppose instead that T has at least two vertices of degree 3. Let u and v be

vertices of T of degree 3. Let B1, B2, and B3 be the u-branches of T and without loss

of generality let v ∈ V (B1). Then

c3(T ) = 3 + c3(B1) + c3(B2) + c3(B3)

by the same argument as in the proof of Lemma 5.3.3. Applying Lemma 5.3.3 to B1
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at vertex v yields

c3(B1) ≥ |V (B1)| − 1,

and the lower bound of Theorem 5.2.1 applied to Bi for i ∈ {2, 3} gives

c3(Bi) ≥ |V (Bi)| − 2

for i ∈ {2, 3}. Thus we have

c3(T ) ≥ 3 + (|V (B1)| − 1) + (|V (B2)| − 2) + (|V (B3)| − 2)

= (|V (B1)|+ |V (B2)|+ |V (B3)|)− 2

= n

Therefore, c3(T ) ≥ c1(T ) > c2(T ) and we conclude that C(T ;x) is not unimodal.

Corollary 5.3.4 gives a very restrictive necessary condition for a tree to have a uni-

modal connected set polynomial – it says that any tree with a unimodal connected

set polynomial has at most 3 leaves. Thus, we can tell already that very few trees

have a unimodal connected set polynomial. From here, our approach involves com-

puting the connected set polynomials of certain trees with 3 leaves and verifying their

unimodality directly. The following general result will be needed.

Theorem 5.3.5. Let T be a tree with vertex v. Let u1, u2, . . . , udeg(v) be the neighbours

of v. Then

Cv(T ;x) = x ·
deg(v)∏
i=1

[1 + Cui(Bi − v;x)],

where Bi is the v-branch of T containing ui.

Proof. We proceed by induction on deg(v). In the base case, suppose deg(v) = 1.

We know that T has a unique connected set of order 1 containing v. Consider the
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set of connected subgraphs of T of order k ≥ 2 containing v. Removing v from each

subgraph in this set gives the set of connected subgraphs of B − v of order k − 1

containing u, the unique neighbour of v. Further, this operation of removing v is

clearly a one-to-one correspondence. Thus we have

Cv(T ;x) = x+ x · Cu(T − v;x) = x · [1 + Cu(B − v;x)],

which matches the theorem statement for deg(v) = 1.

Now suppose that for some d ≥ 1, the statement holds. Let T be a tree with

vertex v of degree d+1. Let u1, . . . , ud+1 be the neighbours of v and let B1, . . . , Bd+1

be the corresponding v-branches of T. By the inductive hypothesis, the tree T ′ =

T − V (Bd+1 − v) satisfies

Cv(T
′;x) = x

d∏
i=1

[1 + Cui(Bi − v;x)].

The connected sets of T ′ containing v are also connected sets of T containing v, and

all connected sets of T containing v but not ud+1 are contained in T ′. Further, the

union of any connected set of Bd+1−v of order k1 containing the vertex ud+1 and any

connected set of T ′ of order k2 containing v is a connected set of T of order k1 + k2

containing v. Furthermore, all connected sets of T containing both v and ud+1 arise

in this way. Therefore,

Cv(T ;x) = Cv(T
′;x) ·

[
1 + Cud+1

(Bd+1 − v;x)
]

= x ·
d+1∏
i=1

[1 + Cui(Bi − v;x)]

By the principle of mathematical induction, the statement holds.

We are now ready to prove the first main result of this section, which characterizes
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the trees having unimodal connected set polynomial.

Theorem 5.3.6. Let T be a tree of order n. The connected set polynomial C(T ;x)

is unimodal if and only if T has an induced Pn−1.

Proof. (⇐) Suppose T has an induced Pn−1. Then either T ∼= Pn or T ∼= Pn,k for

some k ∈ {2, . . . , n− 2}, where Pn,k denotes the tree on vertices v1, . . . , vn with edges

{v1, v2}, {v2, v3}, . . . , {vn−2, vn−1}, {vk, vn};

i.e. the n− 1 vertices v1, . . . , vn−1 make up an ordered path and vn has unique neigh-

bour vk in the interior of this path. The graph Pn,k is illustrated in Figure 5.3.

v1 v2 vk−1 vk vk+1 vn−2 vn−1

vn

Figure 5.3: The tree Pn,k.

Suppose first that T ∼= Pn. We saw in Section 4.2.3 that

C(Pn;x) =
n∑
k=1

(n+ 1− k)xk,

which is clearly unimodal (in fact, the sequence of coefficients is monotone decreasing).

Suppose instead that T ∼= Pn,k for some k ∈ {2, . . . , n − 2}. We demonstrate

that C(Pn,k;x) is unimodal by finding an explicit formula for C(Pn,k;x). By Lemma

4.2.15, we have

C(Pn,k;x) = C(Pn−1;x) + Cvn(Pn,k;x). (5.1)
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By Theorem 5.3.5, we have

Cvn(Pn,k;x) = x · [1 + Cvk(Pn−1;x)], (5.2)

and applying Theorem 5.3.5 once more, we have

Cvk(Pn−1;x) = x · [1 + Cu(Pk−1;x)] · [1 + Cw(Pn−1−k;x)] (5.3)

= x · [1 + x+ . . .+ xk−1] · [1 + x+ . . .+ xn−k−1], (5.4)

where u is a leaf of Pk−1 and w is a leaf of Pn−1−k. Finally, we substitute (5.4) into

(5.2) to obtain

Cvn(Pn,k;x) = x+ x2 · [1 + x+ . . .+ xk−1] · [1 + x+ . . .+ xn−k−1]. (5.5)

Now we wish to express Cvn(Pn,k;x) in such a way that the coefficient of each power

is easier to read off. Continuing from (5.5) and assuming without loss of generality

that k − 1 ≤ n− 1− k, we have

Cvn(Pn,k;x) = x+ x2 ·

[
k−1∑
i=0

(i+ 1)xi +
n−k−2∑
i=k

kxi +
n−2∑

i=n−k−1

(n− 1− i)xi

]

= x+
k+1∑
i=2

(i− 1)xi +
n−k∑
i=k+2

kxi +
n∑

i=n−k+1

(n+ 1− i)xi.

Subsituting this expression for Cvn(Pn,k;x) and the known formula for C(Pn−1;x) into

(5.1) gives

C(Pn,k;x) = C(Pn−1;x) + Cvn(Pn,k;x)

=
n−1∑
i=1

(n− i)xi + x+
k+1∑
i=2

(i− 1)xi +
n−k∑
i=k+2

kxi +
n∑

i=n−k+1

(n+ 1− i)xi,
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and regrouping yields

C(Pn,k;x) = nx+
k+1∑
i=2

(n− 1)xi +
n−k∑
i=k+2

(n+ k − i)xi +
n∑

i=n−k+1

(2(n− i) + 1)xi.

Since
n−k∑
i=k+2

(n+ k − i)xi = (n− 2)xk+2 + (n− 3)xk+3 + . . .+ (2k)xn−k

and

n∑
i=n−k+1

(2(n− i) + 1)xi = (2k − 1)xn−k+1 + (2k − 3)xn−k+2 + . . .+ xn,

we can see directly that the sequence of coefficients of C(Pn,k;x) is nonincreasing,

and hence C(Pn,k;x) is unimodal and we are done with this direction.

(⇒) Suppose T has no induced Pn−1. Then n ≥ 5 (every tree on n ≤ 4 vertices has

an induced Pn−1) and T has at least three leaves (if T has less than 3 leaves then

T ∼= Pn). By Corollary 5.3.4, if T has four or more leaves then it has non-unimodal

connected set polynomial, so we may assume that T has exactly three leaves. In this

case, T has only one vertex v of degree greater than 2, deg(v) = 3, and v is not

adjacent to a leaf (otherwise T would have an induced Pn−1). This means that the

three v-branches of T are all paths on at least 3 vertices each. Let the v-branches of

T be called B1, B2, and B3. A sketch of T is given in Figure 5.4.

Each subtree of T of order 4 either has v as a central vertex or is contained entirely

in a single v-branch of T . By inspection, there are 7 subtrees of T of order 4 which

contain v as a central vertex (one where v has degree 3, and six where v has degree

2). Recall that c4(Pn) = n− 3 for n ≥ 3 and that B1, B2, and B3 are paths on 3 or
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B1
v B3

B2

Figure 5.4: A sketch of T.

more vertices. Therefore,

c4(T ) = 7 + c4(B1) + c4(B2) + c4(B3)

= 7 + (|V (B1)| − 3) + (|V (B2)| − 3) + (|V (B3)| − 3)

= (|V (B1)|+ |V (B2)|+ |V (B3)|)− 2

= n

Thus c4(T ) = c1(T ) > c2(T ) and C(T ;x) is not unimodal.

The number of nonisomorphic trees of order n containing an induced Pn−1 is

exactly
⌈
n−1
2

⌉
. It is well known that the total number of nonisomorphic trees on n

vertices grows exponentially (see [27], for example). Therefore, almost all (unlabelled)

trees have non-unimodal subtree polynomial.

We conclude this section with a characterization of the trees with log-concave con-

nected set polynomial. Since log-concavity of a sequence of positive numbers implies

unimodality, we know by Theorem 5.3.6 that any tree T with log-concave connected

set polynomial must be isomorphic to either Pn or Pn,k. We have formulae for both

C(Pn;x) and C(Pn,k;x), so characterizing the trees with log-concave connected set

polynomial is very straightforward.
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Theorem 5.3.7. Let T be a tree of order n. The connected set polynomial C(T ;x)

is log-concave if and only if T = Pn.

Proof. We know that log-concavity of a polynomial with positive coefficients im-

plies unimodality. Thus by Theorem 5.3.6, any tree of order n that has log-concave

connected set polynomial must be isomorphic to either Pn or Pn,k for some k ∈

{2, . . . , n− 2}.

First of all, ci(Pn) = n− i+ 1 for i ∈ {2, . . . , n− 1}, and hence

ci(Pn)
2 = (n− i+ 1)2 > (n− i)(n− i+ 2) = ci−1(Pn)ci+1(Pn)

for i ∈ {2, . . . , n − 1}. Thus we have shown directly that C(Pn;x) is strictly log-

concave.

On the other hand, for any k ∈ {2, . . . , n− 2} we have

c2(Pn,k)
2 = (n− 1)2 < n(n− 1) = c1(Pn,k)c3(Pn,k),

and thus C(Pn,k;x) is not log-concave.

We conclude that for a tree T of order n, C(T ;x) is unimodal if and only if

T ∼= Pn.

While we have shown that there are very few trees that have unimodal connected

set polynomial, this is largely due to the fact that c1 = n and c2 = n − 1 for all

trees, and hence the sequence of coefficients must in fact be nonincreasing (a stronger

condition than unimodality). Intuitively, it seems much more likely that the connected

set polynomial of a graph will be unimodal if it has at least as many edges as it has

vertices, so that c2 ≥ c1. In this situation, the sequence of coefficients of the connected

set polynomial may first rise and then fall.

We have verified that every connected graph on n ≤ 8 vertices and m ≥ n edges
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has unimodal connected set polynomial. On the other hand, while all disconnected

graphs on n ≤ 7 vertices and m ≥ n edges have unimodal connected set polynomial,

there are 4 distinct disconnected graphs on 8 vertices and at least 8 edges whose

connected set polynomials are not unimodal.

As for log-concavity, there are many graphs of small order with at least as many

edges as vertices whose connected set polynomials are not log-concave. For example,

there are 50 connected graphs (and 5 disconnected graphs) on 6 vertices and at least

6 edges whose connected set polynomials are not log-concave.

5.4 Connected Set Roots of Trees

In this section we continue the study of connected set roots begun in Section 4.2, but

here we focus exclusively on trees. In general, if z is a nonzero connected set root of

a connected graph G on n vertices then

2
n−1

≤ |z| ≤ n

by Theorem 4.2.6. However, plotting the connected set roots of all trees of a given

small order makes it seem as though this bound may be far from tight for trees. For

example, the nonzero connected set roots of all trees on 10 vertices are pictured in

Figure 5.5.

While we demonstrated in Proposition 4.2.9 and Proposition 4.2.8 that the cycle

Cn has a connected set root close to −(n − 1) for n ≥ 3 and that the disconnected

graph K2 ∪On−2 has a connected set root at −n for n ≥ 2, respectively, there are no

trees of order 10 with a connected set root of modulus anywhere close to 10. In fact,

we have numerically solved for the connected set roots of all trees of order at most

12, and the connected set root of largest modulus among all of those trees belongs to
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Re(z)

Im(z)

Figure 5.5: The nonzero connected set roots of all trees on 10 vertices.

the star on only 4 vertices! We have

C(K1,3;x) = x4 + 3x3 + 3x2 + 4x,

so we can solve for the root in question exactly – it is

−1− 3
√
3 ≈ −2.44225.

If we restrict to trees, we can improve on the general upper bound on the modulus

of a connected set root found in Theorem 4.2.6. We will show that the modulus of a

connected set root of a tree T cannot exceed the number of leaves of T . While this

bound still seems far from best possible based on our computational evidence, it is

a step in the right direction. The following lemma will be used in our proof of the

improved upper bound on the modulus of a connected set root of a tree. We rely on

the fact that connected sets of a tree T are in one-to-one correspondence with the
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subtrees of T.

Lemma 5.4.1. Let S be a subtree of T . If S has s leaves and T has t leaves then

s ≤ t.

Proof. We can obtain S from T by recursively deleting leaf vertices not contained in

S. Therefore, it suffices to show that deleting a leaf from a tree cannot increase the

number of leaves. Suppose R is a tree with r leaves and that v is a leaf vertex of R.

Let u be the unique neighbour of v. The number of leaves in R− v is given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
r − 1 if deg(u) ≥ 3

r if deg(u) = 2

0 if deg(u) = 1

and therefore R− v has at most r leaves.

Theorem 5.4.2. Suppose T is a tree on n ≥ 2 vertices with r leaves. If z is a root

of C(T ;x) then 2
n−1

≤ |z| ≤ r.

Proof. Let T be a tree of order n ≥ 2, and let

C(T ;x) =
n∑
k=0

ckx
k.

For the upper bound it suffices to show that ck
ck+1

≤ r for each k ∈ {1, . . . , n − 1}

by the Eneström-Kakeya Theorem. Let Tk be the set of subtrees of order k for each

k ∈ {1, . . . , n}. For each 1 ≤ k ≤ n− 1, every member of Tk is the result of deleting

some leaf from a member of Tk+1. Thus the number of subtrees of order k is at most

the sum of the number of leaves over all members of Tk+1. We have ck+1 subtrees in

Tk+1 and each such subtree has at most r leaves by Lemma 5.4.1. Therefore,

ck ≤ rck+1,
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as desired. The lower bound in the theorem statement was proven in general for

connected set polynomials of connected graphs in Theorem 4.2.6, so we are done.

We can indeed demonstrate that the bound of Theorem 5.4.2 is far from tight for

at least one particular choice of r. We show below that the modulus of a root of

C(K1,n−1;x) cannot exceed 1 + 3
√
3 for any n ∈ N. This means that there is no tree

on n vertices with n− 1 leaves having a subtree root close to n− 1 in modulus, the

upper bound given by Theorem 5.4.2.

Proposition 5.4.3. Let n ≥ 2. If z is a root of C(K1,n−1;x) then |z| ≤ 1 + 3
√
3.

Proof. We demonstrate the stronger result that if z is a root of C(K1,n−1;x) then

|z + 1| ≤ 3
√
3. Recall that

C(K1,n−1;x) = x(x+ 1)n−1 + (n− 1)x = x
[
(x+ 1)n−1 + (n− 1)

]
,

and hence z is a root of C(K1,n−1;x) if and only if either z = 0 or z+1 is an (n− 1)st

root of −(n− 1). The modulus of any (n− 1)st root of −(n− 1) is given by

f(n) = (n− 1)
1

n−1

Considering f as a function of a real variable x > 1, a straightforward computation

yields

f ′(x)
f(x)

= 1
(x−1)2

[1− ln(x− 1)].

Since f(x) > 0 for x > 1, we see that f ′(x) > 0 when x < e + 1 and f ′(x) < 0 when

x > e + 1. Therefore, the maximum of f(n) for n ≥ 2 falls at either n = 3 or n = 4.

By inspection, we find that the maximum is f(4) = 3
√
3.

We conclude that any root z of C(K1,n−1;x) for n ≥ 2 satisfies |z + 1| ≤ 3
√
3, and

hence |z| ≤ 1 + 3
√
3.
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The following is a straightforward consequence of Theorem 5.4.2 and Proposition

5.4.3. It gives an upper bound on the modulus of any connected set root of a tree,

but appears to be far from tight.

Corollary 5.4.4. Let T be a tree of order n ≥ 5. If z is a root of C(T ;x) then

|z| ≤ n− 2.

Proof. By Proposition 5.4.3, if T = K1,n−1 then any root z of C(T ;x) satisfies |z| <

1 + 3
√
3 ≤ n− 2 as n ≥ 5. Otherwise, T has at most n− 2 leaves and if z is a root of

C(T ;x) then |z| ≤ n− 2 by Theorem 5.4.2.

While we do not have a proof that there is a constant bound on the modulus of

any connected set root of a tree T, we can prove that the roots of the rooted connected

set polynomial have modulus at most 2.

Theorem 5.4.5. Let T be a tree with vertex v. Any root z of the rooted connected

set polynomial Cv(T ; z) satisfies |z| ≤ 2.

Proof. For any graph G, let C̃v(G; z) = 1 + Cv(G; z). We will first demonstrate that

for any tree T, we have
⏐⏐⏐C̃v(T ; z)⏐⏐⏐ ≥ |z| − 1 for any z satisfying |z| > 2. We proceed

by induction on the order of the tree.

In the base case, the tree K1 has

⏐⏐⏐C̃v(K1; z)
⏐⏐⏐ = |z + 1| ≥ |z| − 1

for all z ∈ C, but for |z| > 2 in particular. Now suppose that for some n ≥ 2, any

tree S of order strictly less than n satisfies

⏐⏐⏐C̃v(S; z)⏐⏐⏐ ≥ |z| − 1

for |z| > 2. Let T be a tree of order n, and let v be a vertex of T. Let deg(v) = d and
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let the neighbours of v be u1, . . . , ud. By Theorem 5.3.5,

C̃v(T ; z) = 1 + z ·
d∏
i=1

[
C̃ui(Bi − v; z)

]
, (5.6)

where Bi is the v-branch of T containing ui. Applying the reverse triangle inequality

and then the induction hypothesis to (5.6) yields

⏐⏐⏐C̃v(T ; z)⏐⏐⏐ ≥ |z| ·
d∏
i=1

⏐⏐⏐C̃ui(Bi − v; z)
⏐⏐⏐− 1

≥ |z|(|z| − 1)d − 1.

Finally, by the hypothesis that |z| > 2 we have (|z| − 1)d > 1, which gives

⏐⏐⏐C̃v(T ; z)⏐⏐⏐ > |z| − 1.

We have shown that any tree T satisfies
⏐⏐⏐C̃v(T ; z)⏐⏐⏐ ≥ |z|−1 for any z with |z| > 2.

Since Cv(T ; z) = C̃v(T ; z)− 1 by definition, we conclude that

|Cv(T ; z)| ≥
⏐⏐⏐C̃v(T ; z)⏐⏐⏐− 1 ≥ (|z| − 1)− 1 > 0

for |z| > 2.

We don’t see any immediate consequence of Theorem 5.4.5 that gives a constant

bound on the moduli of connected set roots of trees (i.e. the roots of the connected set

polynomial C(T ;x) as opposed of the roots of the rooted connected set polynomial

Cv(T ;x)). However, the hope is that Theorem 5.4.5 may eventually aid in the proof

of such a bound on the connected set roots of trees.

We conclude this section with a very interesting observation. Among all trees on

n vertices for n ∈ {3, . . . , 12}, we have found that the star K1,n−1 has the connected
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Re(z)

Im(z)

Figure 5.6: The nonzero connected set roots of all trees on 7 vertices. The connected
set roots of K1,n−1 are shown in blue while the connected set roots of Pn are shown
in green. All other roots are shown in red.

set root of greatest modulus and the connected set root of smallest modulus. On the

other hand, the path Pn has the connected set root at greatest distance from −1 and

the connected set root at smallest distance from −1.

The nonzero connected set roots of all trees on 7 vertices are shown in Figure 5.6.

In particular, the connected set roots of K1,6 are shown in blue while the connected

set roots of P7 are shown in green. All other roots are shown in red. We have also

included the circles (blue) centred at 0 of largest and smallest radius that intersect

such a connected set root (they intersect the roots of the star K1,6) and the circles

(green) centred at −1 of largest and smallest radius that intersect such a connected

set root (they intersect the connected set roots of the path P7).

Recall that K1,n−1 is the tree on n vertices with the most subtrees and Pn is

the tree on n vertices with the least subtrees (in fact, they have the coefficient-wise

largest and smallest subtree polynomials among all trees on n vertices, by Theorem

5.2.1). We can’t help but wonder if the location of the roots of subtree polynomials
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is somehow related to the total number of subtrees. This would be interesting as a

strong correlation between the number of subtrees of a tree and the Wiener index has

been confirmed in [69]. In any case, it appears that the connected set roots of trees

are worthy of more study.



Chapter 6

Conclusion

This thesis was concerned primarily with studying the analytic properties of two

different reliability functions, namely all-terminal reliability and node reliability. We

introduced the connected set polynomial which allowed us to achieve certain results

on the computational complexity and the roots of node reliability more easily, and

our results on the connected set polynomial are of interest in their own right. In

particular, the connected set polynomials of trees provide a means for extending

some recent results concerning the tree in a given class with the most (or least) total

number of subtrees.

6.1 All-Terminal Reliability

We have proven a nonconstant bound on the modulus of any ATR root, and we have

found ATR roots with larger modulus than any previously known (though they are

still relatively small in modulus). We found the ATR roots of the graphs G1,6
n,n for

n ≤ 12, producing ATR roots of modulus greater than 1.11. We suspect that for

n ≥ 13 the graphs G1,6
n,n will have ATR roots of even larger modulus. What is the

limiting behaviour of the modulus of the ATR root of largest modulus of the graph

G1,6
n,n? We are not even certain that the sequence of moduli need be increasing.

It still seems as though all-terminal reliability roots are bounded in modulus by

some constant. We note, however, that data from small graphs and special families of

graphs does not necessarily rule the day. For example, it was originally conjectured

by Farrell that chromatic roots lie in the right half-plane [33], and this was proven

161
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false by a slim margin by Read and Royle in [53] before Sokal finally proved that

chromatic roots are in fact dense in the entire complex plane [58]! The question of

whether ATR roots are bounded in modulus by some constant is a tantalizing open

problem.

Our study of simple graphs with ATR roots outside of the unit disk produced a

smaller example than any previously known, although it is still rather large (it has

546 vertices and 1080 edges). What is the smallest simple graph with ATR roots

outside of the unit disk?

In addition to finding a smaller simple graph with ATR roots outside of the unit

disk, we found simple graphs with edge connectivity as high as 5 that have ATR

roots outside of the unit disk. This is notable as all previously known examples have

edge connectivity 2, with many vertices of degree 2. We also have good candidates

for simple graphs of even higher edge connectivity that have ATR roots outside of

the unit disk, although the computations required to prove that the roots are outside

of the unit disk become increasingly large. Are there simple graphs with arbitrarily

high edge connectivity that have ATR roots outside of the unit disk?

Finally, while we produced examples of simple graphs that have ATR roots outside

of the unit disk and have edge connectivity higher than 2, the vertex connectivity of

all of our examples is still only 2. Are there simple graphs with vertex connectivity

greater than 2 that have ATR roots outside of the unit disk? Every graph formed

from an edge substitution by a gadget on 3 or more vertices has vertex connectivity

at most 2, so the theory we developed in Section 2.2.2 does not lend itself well to

solving this problem.

6.2 Split Reliability

All-terminal reliability and {u, v}-split reliability are simultaneously generalized by

the following notion: Let G be a graph in which each edge fails independently with
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probability q and let K ⊆ V (G). The K-split reliability of G, denoted spRelK(G; q), is

the probability that every vertex of G can communicate with exactly one vertex from

K. When |K| = 1 this is all-terminal reliability and when |K| = 2 this is {u, v}-split

reliability.

The {u, v}-split reliability has proven itself useful in the study of all-terminal reli-

ability, but we believe that K-split reliability could have several applications outside

of all-terminal reliability as well and is worthy of study in its own right. For example,

consider a network with a set K of leader nodes which give orders or instructions,

where we would like all of the other vertices to receive orders from exactly one of the

leader nodes. The condition for K-split reliability ensures that every node receives

orders from exactly one leader node, and thus conflicting orders cannot be given.

Chain of command structures seem to be an obvious application of this concept.

We also note that K-split reliability gives a measure of the reliability of dis-

connected graphs. Let G be a graph with components G1, . . . , Gk and let K =

{v1, . . . , vk} where vi ∈ V (Gi) for i ∈ {1, . . . , k}. Then

spRelK(G; q) =
k∏
i=1

Rel(Gi; q).

This seems to be a natural measure of the reliability of a disconnected network with

edge failures.

6.3 Node Reliability

What is striking about node reliability is that on the surface its definition is analogous

to that of other well-known forms of reliability (such as all-terminal, two-terminal and

K-terminal), but its shape and analytic properties can be so different. The frequent

lack of monotonicity, the contrasting concavity near 0, the frequency of points of

inflection, the multiplicity of fixed points, and the nature and location of the roots all
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illustrate that node reliability is quite different from the other models of probabilistic

robustness on graphs (or even coherent systems), and merits further attention.

In Section 3.1 we proved that the node reliability of any graph of order n and

size m ≤ 0.0851n2 is decreasing at the point r̂
n
, where r̂ ≈ 1.729474372. Could it

be true that the node reliabilities of almost all graphs of order n have an interval

of decrease in (0, 1)? We have also found examples of disconnected graphs with two

disjoint maximal intervals of decrease in (0, 1). Are there connected graphs with two

such intervals of decrease?

For those graphs whose node reliability polynomials have an interval of decrease

in (0, 1), a natural question to ask is how long the interval of decrease can be. For

any n ≥ 2, the node reliability polynomial of the empty graph On on n vertices is

given by nRel(On; p) = p(1− p)n−1 which can easily be seen to be decreasing on the

interval ( 1
n
, 1). This means that the interval of decrease can have length arbitrarily

close to 1 for disconnected graphs, but for connected graphs we conjecture that the

length is at most 1
2
. We can demonstrate that the length of the interval of decrease

can be arbitrarily close to 1
2
for connected graphs, and we give a brief sketch of this

result. Let fn be the node reliability polynomial of Kn−1 ◦K2 for each n ≥ 2 (recall

that Kn−1 ◦K2 is the complete graph Kn−1 with a single pendant edge added, also

called a vertex bonding of Kn−1 and K2). From the expression for f ′
n given in (3.18),

we find that for p ∈
(
0, 1

2

)
,

f ′
n(p) < gn(p) = 2p− 1 + (n+ 1)(1− p)n−2.

We find that

lim
n→∞

{
gn
(

1
lnn

)}
= −1

and

lim
n→∞

{
ngn
(
1
2
− 1

n

)}
= −2
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so that both gn
(

1
lnn

)
< 0 and gn

(
1
2
− 1

n

)
< 0 for n sufficiently large. Also,

g′n(p) = 2− (n+ 1)(n− 2)(1− p)n−3

has a unique real root

qn = 1−
(

2

(n+ 1)(n− 2)

)1/(n−3)

.

As lim
n→∞

{qn lnn} = 0, it follows that for n sufficiently large, qn is to the left of 1
lnn

,

and so gn, and hence f ′
n, is negative on

(
1

lnn
, 1
2
− 1

n

)
, which has length tending to 1/2.

In Section 3.2 we found a large family of graphs whose node reliabilities have

2 inflection points in (0, 1). We also found a finite number of graphs whose node

reliabilities have 3 points of inflection in (0, 1). This leads to two open questions: Are

there infinitely many graphs whose node reliabilities have 3 inflection points in (0, 1)?

Can the node reliability have arbitrarily many inflection points in (0, 1), as has been

shown for all-terminal reliability [36]?

In Section 3.3 we found a large family of graphs whose node reliabilities have

two fixed points in (0, 1). This is very different from the case for coherent reliability

polynomials, which were shown in [6] to have at most one fixed point in (0, 1). Are

there graphs whose node reliabilities have three or more fixed points in (0, 1)? We

have verified that the node reliability of any connected graph on at most 8 vertices

has at most two fixed points in (0, 1).

Finally, in Section 3.4 and also in Chapter 4 we discovered much about the nature

and location of the roots of node reliability. We first found that the real roots of node

reliability can be arbitrarily large in modulus – this is very different from all-terminal

reliability where the real roots are contained in {0} ∪ (1, 2] (ignoring disconnected

graphs for which the all-terminal reliability is identically zero). In Section 4.2.3 we
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proved that node reliability roots are dense in the entire complex plane, and note

that this is not suspected to be true for all-terminal reliability.

6.4 The Connected Set Polynomial

In Section 4.1 we demonstrated that the problem of evaluating the connected set

polynomial is #P-hard at any complex number z ̸= −1 such that z+1 is not a complex

root of unity. In turn, this tells us that the problem of evaluating the node reliability

polynomial is #P-hard for any real number p ̸∈ {0, 1, 2}. While nRel(G; 0) = 0 for

any graph G, and nRel(G; 1) is 1 if G is connected and 0 otherwise (and hence can be

computed quickly), we do not know the complexity of evaluating the node reliability

polynomial at 2. Can nRel(G; 2) be found in polynomial time? More generally, can

we evaluate the connected set polynomial at z in polyomial time if z + 1 is a root of

unity?

In Section 4.2 we studied the roots of connected set polynomials. We found that

every connected graph of order at least 3 has a nonreal connected set root. We

proved that any connected set root of a graph of order n has modulus at most n, and

demonstrated that this bound is tight for disconnected graphs and nearly tight for

connected graphs. Finally, we found that the closure of the collection of connected

set roots is the entire complex plane.

This last result leads to another open question. What is the closure in R of the

collection of all real connected set roots? By Theorem 4.2.17, we can find a connected

set root arbitrarily close to any real number x, but not necessarily a real connected

set root. Since the connected set polynomial has all nonnegative coefficients, the real

connected set roots must be nonpositive. Is the collection of real connected set roots

dense in (−∞, 0]?

We demonstrate here that any rational number x ≤ −2 is a connected set root of

some graph. Let x = −p
q
where p, q ∈ N and assume that x ≤ −2, so that p ≥ 2q.
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Consider the graph qK2 ∪ Op−2q; that is, the disjoint union of q copies of K2 and

p− 2q isolated vertices. The connected set polynomial of this graph is given by

C(qK2 ∪Op−2q;x) = qx2 + px = qx
(
x+ p

q

)
,

which has a root at −p
q
.

From the above paragraph we can conclude that real connected set roots are

at least dense in (−∞,−2], but we are unsure whether this density extends to the

interval (−2, 0). We have found many small graphs with connected set roots at −1 –

a graph has a connected set root at −1 if and only if it has the same number of even

and odd connected sets. We have also found many small graphs with a connected set

root in (−2,−1), and several small graphs with a connected set root in (−1, 0).What

is the closure of the real connected set roots in (−2, 0)?

6.5 The Subtree Polynomial

In Section 5.2 we proved that the path Pn and the star K1,n−1 have the coefficient-

wise least and greatest connected set polynomials, respectively, among all trees on n

vertices. This generalizes a result of [63] that the path and star have the least and

greatest total number of subtrees. It would be interesting to know if similar results

on the tree in a given class with the least or greatest total number of subtrees can

be generalized. For example, in [73], Yan and Yeh describe the tree on n vertices

with diameter at least d which has the maximum number of subtrees, and the tree

on n vertices with maximum degree at least ∆ which has the minimum number of

subtrees. Do these results extend to all coefficients of the connected set polynomial?

Other results of this type can be found in [64, 76]. Any extensions of these results to

all coefficients of the connected set polynomial would have immediate applications for

node reliability, as the graph in a given class with the coefficient-wise greatest (least)
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connected set polynomial necessarily has the uniformly best (worst) node reliability

among all graphs in the class.

In Section 5.3, we characterized the trees that have unimodal connected set poly-

nomial and the trees that have log-concave connected set polynomial. The question

appears to be more difficult for graphs with at least as many edges as vertices. Is the

connected set polynomial of every connected graph on n vertices and m ≥ n edges

unimodal? We have verified that this is true for n ≤ 8.

Finally, in Section 5.4 we studied the roots of connected set polynomials of trees.

While the collection of connected set roots of all graphs is dense in the complex

plane, it appears that the connected set roots of trees are bounded in modulus by

some constant. The root of largest known modulus belongs to the tree K1,3 and has

modulus 1 + 3
√
3 ≈ 2.44225. Is this the largest that the modulus of a connected set

root of a tree can be? While we have proven that the roots of the rooted connected

set polynomial Cv(T ;x) of a tree T are contained in the disk of radius 2 centred at

the origin, the best general upper bound that we have found on the modulus of a root

of the connected set polynomial C(T ;x) is given by the number of leaves of T.
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[64] L. A. Székely and H. Wang. Binary trees with the largest number of subtrees.
Discrete Appl. Math., 155(3):374–385, 2007.

[65] C. Thomassen. The zero-free intervals for chromatic polynomials of graphs.
Combin. Probab. Comput., 6:497–506, 1997.

[66] P. van Mieghem. Graph Spectra for Complex Networks. Cambridge University
Press, 2010.

[67] D. L. Vertigan and D. J. A. Welsh. The computational complexity of the Tutte
plane: the bipartite case. Probab. Combin. Comput. Sci., 1:181–187, 1992.

[68] D. G. Wagner. Zeros of reliability polynomials and f -vectors of matroids. Com-
bin. Probab. Comput., 9:167–190, 2000.

[69] S. G. Wagner. Correlation of graph-theoretical indices. SIAM J. Discrete Math.,
21(1):33–46, 2007.

[70] D. B. West. Introduction to graph theory. Prentice-Hall, second edition, 2001.

[71] H. Wiener. Structural determination of paraffin boiling points. J. Amer. Chem.
Soc., 69:17–20, 1947.

[72] J. H. Wilkinson. The evaluation of the zeros of ill-conditioned polynomials.
Numer. Math., 1:150–180, 1959.

[73] W.-G Yan and Y.-N Yeh. Enumeration of subtrees of trees. Theoret. Comp. Sci.,
369(1–3):256–268, 2006.

[74] S. Yu, F.-M. Shao, and H. Meng. Uniformly optimal graphs in some classes of
graphs with node failures. Discrete Math., 310(1):159–166, 2010.

[75] X.-M. Zhang and X.-D. Zhang. The minimal number of subtrees with a given
degree sequence. Graphs Combin., 31(1):309–318, 2015.



174

[76] X.-M. Zhang, X.-D. Zhang, D. Gray, and H. Wang. The number of subtrees of
trees with given degree sequence. J. Graph Theory, 73(3):280–295, 2013.


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Background

	All-Terminal Reliability
	An Upper Bound on the Modulus of any All-Terminal Reliability  Root
	All-Terminal Reliability and Simplical Complexes
	The Chip-Firing Game and Order Ideals of Monomials
	An Upper Bound on the Modulus of any All-Terminal Reliability Root

	All-Terminal Reliability Roots outside of the Unit Disk
	All-Terminal Reliability Roots of Larger Modulus
	Simple Graphs with All-Terminal Reliability Roots outside of the Unit Disk


	Node Reliability
	Monotonicity
	Concavity and Inflection Points
	Fixed Points
	The Roots of Node Reliability

	The Connected Set Polynomial
	Complexity
	Roots of the Connected Set Polynomial
	Realness and Connected Set Roots
	Bounding the Connected Set Roots
	The Closure of the Collection of Connected Set Roots


	The Subtree Polynomial
	Connected Sets and Convexity
	Paths and Stars
	Unimodality and Log-Concavity
	Connected Set Roots of Trees

	Conclusion
	All-Terminal Reliability
	Split Reliability
	Node Reliability
	The Connected Set Polynomial
	The Subtree Polynomial

	Bibliography

