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ABSTRACT 

Recent advancements in tracking technology have increased the ability to 

unravel key parameters affecting behaviour patterns among marine animals 

where direct observations are scarce. Within the suite of biologging techniques, 

tri-axial accelerometers are particularly promising for providing data that can 

link physiological and ecological processes in the context of movement. The 

objective of my thesis research was to determine how the analysis of 

accelerometer data can provide reliable and complex information on fish 

locomotion and behaviour that are relevant for advancing the informed 

management of commercially and recreationally valued fish. To reach this 

objective, a high-frequency accelerometer data logger was developed. Based on a 

series of controlled-environment and field experiments using this technology, a 

library of automated signal-processing algorithms was developed that relate 

acceleration signals to rates of activity, swimming speed, size-at-time and 

behavioural states in a variety of fish species. The algorithms are efficient in 

extracting behavioural states (feeding, escape, swimming) relevant to energy 

budgets as well as behaviour associated with spawning and courtship and 

parasite dislodging while being independent of animal size or tag placement. 

The most novel contribution is the development of a scaling relationship 

between tail beat frequency, speed and length in free-swimming fish that is 

based on accelerometer signal-processing techniques and early theoretical 

predictions. In the future, the technology and the models may provide valuable 

input for fish stock modelling by the in situ delivery of more reliable time series 

of length-at-age, and thus growth rate, in wild fish than that achieved using 

conventional techniques. Throughout this thesis, accelerometer data analyses 

challenge the assumption that movement data collected by accelerometer tags 

represent the normal behavioural repertoire of the tagged animal given low rates 

of tag sampling frequency currently employed as well as significant behavioural 

changes caused by tagging and handling stress as demonstrated by post-release 

fish behaviour modification observed in a field study. This thesis presents a 

significant contribution to the field through the development of an advanced 

accelerometer tag and processing algorithms that can be applied to many animal 

species to advance ecological and physiological theory. 
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Chapter 1 INTRODUCTION 

 

1.1 General 

Quantifying activity patterns, energy budgets and the spatial-temporal distribution 

among animal species is essential to assess and identify basic life-history traits, 

habitat requirements and intra- and inter-specific interactions. Such information is 

also crucial for parameterising ecosystem models and for advancing the informed 

management of commercially and recreationally valued fish species. Traditionally, 

data on free-ranging animal distributions have been collected using simple physical 

tags (Petersen, 1896, Rounsefell and Lawrence, 1945; Eschmeyer, 1959; Ferreira and 

Russ, 1994). As a result of recent advancements in tracking technology a suite of 

electronic tags are now available to collect more detailed information on fish 

distribution in the wild (Cooke et al., 2004; Wilson et al., 2006; Bograd et al., 2010). 

Especially, the miniaturization of storage and processor technology over the past 

decade has facilitated the development of micro-storage tags that provide the means 

to remotely study the behaviour and environment of animals through a suite of 

sensors (e.g., temperature, pressure, light). Such data can be used to indirectly 

quantify variation in behaviour, energetics, and physiology, and therefore provide 

objective measurements of how animals interact with each other and their 

environment (Cooke et al., 2004). Acoustic telemetry or pop-up satellite tags 

(PSATs) can archive such information and (or) send the data to receivers moored on 

the ocean floor or to orbiting satellites, from where they can be accessed from 

anywhere in the world. Over the past decade, these tags have provided valuable 

insights on animal distribution, migration patterns and habitat use in time and 

space, and are now used for advancing habitat and ecosystem modeling and 

conservation management (e.g., Block et al., 2001; Bograd et al., 2010; Jensen et al., 

2010). 

 

1.2 Accelerometer Technology 

Within the general suite of biologging techniques, tri-axial accelerometers are 

especially promising in providing data that can link physiological and ecological 
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processes in the movement context (Wilson et al., 2006; Nathan et al., 2012). The 

use of accelerometers for studying the movement of organisms stems from 

epidemiological studies, originating in the 1950s, aimed at assessing changes in 

human health status in relation to physical activity (e.g., Smidt et al., 1977; Chen and 

Bassett, 2005). Accelerometer data collected from animals can be used to quantify 

behavioural states and rates and to estimate energy expenditure in the field (Kawabe 

et al., 2003a,b; Tsuda et al., 2006, Wilson et al., 2006; Sato et al., 2007; Shepard et 

al., 2008b; Whitney et al., 2010; Carroll et al., 2014) and in mesocosm environments 

(Gleiss et al., 2010; Noda et al., 2013; Noda et al., 2014; Wright et al., 2014). In fish, 

acceleration metrics have been linked to heart rate and energy expenditure (Clark et 

al., 2010), spawning behaviour (Tsuda et al., 2006; Gleiss et al., 2010), activity 

(Kawabe et al. 2003a,b) and more recently, feeding behaviour (Føre et al., 2011; 

Noda et al., 2013; Noda et al., 2014).  

 

Generally, accelerometer tags continuously record data at some defined frequency, or 

time-averaged data thereof, that are either digitally stored or transmitted for 

subsequent post-processing. Post-processing is typically based on a broad 

categorization of the acceleration data (signal) using the average and extreme values 

of the acceleration (e.g., Murchie et al., 2010; O’Toole et al., 2010), or various 

frequency components thereof (e.g., fast Fourier transform, FFT, and wavelets; Sato 

et al., 2007; Sakamoto et al., 2009), and often this is done subsequent to data 

transformation to various components of dynamic and static acceleration (Tanaka et 

al., 2001; Wilson et al., 2006; Gleiss et al., 2010). These signals and their variation 

(e.g., rates of change) are then combined to estimate activity and energy budgets or 

to classify various behaviours such as resting, swimming, etc. For example, during 

body or caudal fin propulsion, fish contract their muscles on either side of their body 

to generate waves of flexion that travel the length of the body from head to tail 

(Videler, 1993). The vector forces exerted on the water by this motion generate a net 

force backwards, which in turn pushes the fish forward through the water. The 

acceleration in the lateral plane during these body oscillations represents a 

sinusoidal wave at a frequency that corresponds to the frequency of the oscillation. 

This is referred to as the tail beat frequency and each zero-crossing in the oscillation 

corresponds to the lateral excursion of the tail and is easily measured with an 
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accelerometer (Kawabe et al., 2003a,b). In contrast, the extraction of more complex 

behaviours such as predator-prey interactions, require species-specific accelerometer 

measurements that are calibrated and validated by observations from tagged animals 

in the field or laboratory (Nathan et al., 2012). The development of automated 

methods that relate the accelerometer signal pattern to a range of activities and 

behaviours of a given species at accelerometer sampling frequencies capable of 

resolving such patterns remains challenging (Nathan et al., 2012).  
 

While the use of accelerometer tags in the field and laboratory has increased due to 

their data-storage capabilities, decreasing size (Ropert-Coudert and Wilson, 2005; 

Rutz and Hays, 2009) and commercial availability, the technology remains costly 

($1000 - $4000/unit), provides little customisation and often with limited 

functionality in hardware (storage capability, size, duration) and software (sensor 

programmability), and thus presents challenges for many applications.  

 

1.3 Objectives 

The goal of my research is to determine how the analysis of accelerometer sensor 

data can provide more reliable and more complex information on fish locomotion 

and behaviour that is relevant to advance habitat and ecosystem modeling for 

sustainable management. Given the challenges surrounding the hardware and data-

processing techniques, I aim to improve the current tag technology to make it more 

suitable for fish-specific applications and then demonstrate how these tags can be 

used to measure a suite of behaviours and activities in the context of locomotion. 

 

I set out to develop a library of automated signal-processing methods that relate 

accelerometer signal patterns to a suite of fish behaviours and movements. To 

achieve these goals, I first focus on the development of a reusable micro-

accelerometer tag relevant to fish applications that records and stores tri-axial 

acceleration at high (up to 1 kHz) sampling frequencies. I then use this tag to obtain 

laboratory and field measurements of acceleration in free-swimming fish of various 

species (sturgeon, sculpin, cod, saithe) in controlled-environment experiments. The 

data collected in the controlled-environment experiments are used to advance the 
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signal processing of acceleration records to identify fish behaviour, activity (e.g., 

time-varying tail beat frequency) and size-at-age (over time, growth). I then seek to 

apply the developed tag technology and computational algorithms to extract 

information on fish movement and behaviour routines in relation to the ambient 

environment in a field study. This provides a proof-of-concept for the tag design 

along with insights into the efficiency of the analytical techniques in differentiating 

behaviour and activity based on data that are not validated through visual 

observations.  

 

With this thesis I further aim to challenge the assumption that movement data 

collected by the current generation of accelerometer tags represent the normal 

behavioural repertoire of the tagged animal given 1) the sampling frequency 

constraints of the current technology and how that may lead to aliasing of the signal 

and thus compromised behaviour classification and 2) the effect of tagging 

procedures and the tag load of externally attached tags and how they can lead to 

reduced swimming performance through added drag as well as behavioural 

adjustments due to tag load. This is especially relevant in biologging studies where 

typically, data from a few (<10) individuals are collected to make inferences about 

entire populations (Cooke et al., 2004).   

 

Therefore, my thesis focuses on two main themes. 1) How can data from high-

frequency accelerometer sensors be analyzed to measure a variety of fish behaviours 

and movements in the framework of locomotion and 2) how such information may 

be compromised based on technological limitations and behaviour.  

To realize the overall objective and using the new accelerometer technology, I will 

address the following specific questions:  

 

• Can high-frequency (> 50 Hz) accelerometers be used to measure fast-start 

movements (feeding, escape response) in fish? 

• Can accelerometers be used to measure size-at-time in fish across species and 

could this method provide an alternative to traditional methods that estimate 

size-at-age in the wild? 
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• How are accelerometer data and extracted estimates on fish behaviour 

compromised by technological limitations (e.g., sampling frequency)?  

• Can accelerometer data be compromised due to tagging effects such as tag 

weight, or behavioural effects resulting from tag load, tagging and handling in 

the lab and in the wild? 

• How can the established signal processing techniques be used to determine 

how fish change their behaviour and activity in response to variation in their 

surrounding environment (temperature, light, depth)? 

 

1.4 Outline And Structure of Thesis 

This thesis is divided into seven chapters (including this general introduction). 

Chapters 2 through 7 address the above objectives. Apart from Chapter 2, each 

chapter has been designed as a stand-alone manuscript for primary publication. 

Hence, the reader is forewarned that parts of this introduction and subsequent 

chapters contain some repetition. Chapter 2 outlines the electronic and mechanical 

design considerations for a low-cost, rechargeable miniature high-frequency 

accelerometer data logger that I developed in collaboration with A. Bezanson 

(Dalhousie University). A Bezanson was responsible for the majority of the 

implementation of the tag design and some proprietary information is not disclosed 

herein. Chapter 3 introduces a novel algorithm that links different behaviours to 

acceleration signals in a model fish species and investigates the effect of sampling 

frequency on algorithm performance. The chapter emphasizes the importance of 

sufficient sampling frequency to record behaviour and associated energy expenditure 

in fish. Chapter 4 introduces a new scaling relationship between tail beat frequency, 

speed and length in free-swimming fish based on accelerometer signal-processing 

techniques and theoretical predictions and provides a discussion on the implications 

of measuring size-at-age, and ultimately growth rate in the wild based on the scaling 

relationship. Chapter 5 introduces an algorithm to extract behavioural response to 

tag and parasite load in fish and discusses how this may be used in extracting 

parasite load in aquaculture settings. It further considers the implications for data 
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collected from external tags in the wild and how such data may be compromised. 

Chapter 6 determines post-release behaviour and the behavioural response to 

environmental variability in shortnose sturgeon in the wild. Finally, in Chapter 7, I 

present the summary and conclusions, provide a discussion of my overall research 

and attempt to predict future directions in acceleration biologging. 

 

At the time of submission, several parts of this thesis have been published, submitted 

for publication in the primary literature and presented at conferences. Parts of 

Chapter 3 are published in the University of Washington Library as Broell et al 

(2011)1 and the majority of Chapter 3 is published in the Journal of Experimental 

Biology as Broell et al. (2013)2. I was responsible for designing and implementing 

the data analysis (with insights from JP Auclair), interpretations and implications of 

results for this manuscript. T Noda and S Wright contributed to data collection and 

along with P Domenici and JF Steffensen contributed to the design and execution of 

the experimental design. As primary author I was also responsible for drafting and 

editing the final manuscript and all other co-authors provided critiques on the 

research and the manuscript.  

 

The majority of Chapter 4 is published in PLoS ONE as Broell and Taggart3. CT 

Taggart conceived of the research and I was responsible for experimental design and 

data collection. I helped design the instruments used in the study, developed the 

theoretical framework and conducted the analyses and prepared the manuscript with 

help and advice on writing and interpretations from CT Taggart.  

 

 

 

                                                        

1 Broell, F., Noda, T., and Wright, S. (2011). Analysis of fast-start movements using 
accelerometer and video tracking in the Great Sculpin (Myoxocephalus 
polyacanthoceaphalus). University of Washington Library 

2 Broell, F., Noda, T., Wright, S., Domenici, P., Steffensen, J. F., Auclair, J.-P. and 
Taggart, C. T. (2013). Accelerometer tags: detecting and identifying activities in fish and 
the effect of sampling frequency. J. Exp. Biol. 216, 1255-1264. 

3 Broell, F. and Taggart, C.T. (2015) Scaling in free-swimming fish and implications for 
measuring size-at-time in the wild. PLoS ONE 10(12), e0144875. 



 7

Chapter 5 is in press as Broell et al.4 in the Journal of Experimental Biology. CT 

Taggart conceived of and secured funding for the research. I developed the 

experimental design with ideas from CT Taggart and executed the experimental 

studies. I helped design the accelerometers and conducted the analyses with input 

from C Burnell and prepared the manuscript with help and advice on writing and 

interpretation of the results from CT Taggart and C Burnell.  

 

Parts of Chapter 6 is under review in Animal Biotelemetry as Broell et al5. As lead 

author was I was responsible for the experimental design with insights from MK 

Litvak and CT Taggart. Data collection was achieved in collaboration with MK Litvak, 

AD Taylor and CT Taggart. I was responsible for data analysis and manuscript 

preparation with insights and interpretation from CT Taggart and all authors 

contributed to the manuscript.  

 

Chapter 2 will not be published but as a result of the technological advancements, 

in 2014, A Bezanson and I have founded Maritime bioLoggers, a start-up company 

to commercialize the tag technology and we are currently in the process of obtaining 

a patent surrounding the technology. 

                                                        

4 Broell, F., Burnelle, C.T., and Taggart, C.T. (in press). Measuring abnormal rotational 
movements in free-swimming fish with accelerometers: implications for quantifying tag- 
and parasite-load. Submitted to J. Exp. Biol. doi: 10.1242/jeb.133033 

5 Broell, F., Taylor, A. D., Litvak, M. K., and Taggart, C. T. (under review). Post-release 
behaviour and habitat use in shortnose sturgeon measured with high-frequency 
accelerometer and PSATs. Anim. Biotel. 
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Chapter 2 DEVELOPMENT OF A LIGHT-WEIGHT, 

OPEN-SCOURCE, REUSABLE ACCELERATION DATA-

LOGGER FOR MONITORING ANIMAL MOVEMENT 

 

2.1 Introduction 

Recent advancements in tracking technology have increased our capacity to unravel 

key parameters affecting behaviour patterns in the context of movement among 

animal species. Such tracking technology is especially promising for collecting data 

in marine animals due to a paucity of direct observations and the need for 

parameterising ecosystem models and to advance the informed management of 

commercially and recreationally valued fish species (Lowe & Goldman, 2001; Lowe, 

2002; Schindler et al., 2002). Micro-accelerometer tags are the most promising 

technology in providing data that can link physiological and ecological processes in 

the context of movement (Wilson et al., 2006; Nathan et al., 2012). In fish research 

such tags have been used to identify and/or measure behavioural and energetic 

states/rates and thus provide critical information for advancing ecosystem and 

fisheries management (e.g., Kawabe et al., 2003a, Tsuda et al., 2006; Gleiss et al., 

2010; Gleiss et al., 2011). Accelerometers provide measurements of two types of 

acceleration: static and dynamic acceleration. Static acceleration is due to the force 

of the gravitational field of the earth, whereas dynamic acceleration is due to animal 

movement (Shepard et al., 2008a).  

 

Generally, accelerometer tags continuously record data at some defined frequency, or 

time-averaged data thereof, that are either digitally stored or transmitted (acoustic 

or satellite telemetry) for subsequent post-processing. Unlike other electronic sensor 

output (e.g., temperature, pressure and location) that has been the focus over the 

past decades for integrating movement and environmental data (e.g., Block et al., 

2001), acceleration data are not suited for intuitive interpretation, and often require 

validation via visual observation. While some routine movements in fish such as 

steady-swimming can be readily extracted from acceleration signals since the rate of 

change of velocity during swimming describes a well-defined acceleration signal 
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(Videler, 1993; Kawabe et al., 2003a), the linkage between acceleration and 

behaviour, for example, requires a more sophisticated analytical approach.  

 

The general method for obtaining acceleration-based behavioural classification is 

characterized by a two-step protocol (e.g., Nathan et al., 2012), which is especially 

important where no prior knowledge on animal behaviour is known (Figure 2.1). The 

first step serves to obtain accelerometer data along with visual observations (e.g., 

through video recordings) in controlled laboratory of field conditions using a high-

frequency recording accelerometer tag (5 to 10 times that of the expected signal 

frequency, Ogata, 1970). Validated acceleration measurements can then be used to 

train machine-learning algorithms that can subsequently be used to classify 

unobserved behaviours from non-validated acceleration data derived from field 

deployments (Step 3, Figure 2.1, and e.g., Nathan et al., 2012; Noda et al., 2013; 

Noda et al., 2014). Additionally, validated accelerometry data provide the 

opportunity to determine a minimum sampling frequency required to resolve for the 

classification. After the validation step, an intermediary step can serve to optimize 

the tag technology (battery and storage) by incorporating either a variable sampling 

frequency and (or) duty cycling, or by the on-board data processing of classification 

algorithms burned into the tag microcontroller (Step 2, Figure 2.1). This not only 

ensures sufficient sampling frequency to capture behaviours and movement of 

interest, but by determining the minimum required sampling frequency, storage and 

battery power can be maximized for field applications. Since both are a function of 

sampling frequency and directly relate to recording duration and tag size, this can 

significantly contribute to minimizing tag load and tag effects (Jepsen et al., 2005). 

This can be especially relevant for fish where information on activity patterns can 

inform sleep-mode for the tag during periods of low activity (e.g., diurnal activity).  
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Figure 2.1 A conceptual outline for a two or three-step protocol for accelerometer 
research. Step 2 is optional but desirable to optimize tag logging duration and size. 
 

Step 1 typically requires the use of a (low-cost), lightweight, short-duration, high 

frequency micro-accelerometer data logger with simple deployment and data 

retrieval for controlled environment (lab or mesocosm) experiments. Commercially 

available accelerometer tags are generally expensive (from $1000 to $4000/tag 

available from various animal tag manufacture companies) or have limited 

functionality due to low sampling frequencies (≤ 32 Hz). Although, recent trends in 

the development of low-cost yet sophisticated integrated circuits have revolutionized 

such industries as telecommunications and portable computing (Sastry and Sreenu 

2012, Kaur 2013), many other applications have yet to implement these technological 

advances.  

 

The accelerometer tag outlined here uses such low-cost accelerometer circuit boards 

and associated open-source coding that is readily available through Arduino 

(Kushner, 2011). The acceleration data-logger, MBLog mini is specifically designed 

for applications in fish to collect acceleration data on the three Cartesian axes at high 

(~550 Hz) sampling frequency. The MBLog mini is packaged in a cylindrical 

Step 1 
  Collect validated acceleration 
observations using visual 
observations 
  Train classification algorithm with 
validated observations 
  Determine minimum required 
sampling frequency to resolve 
classification algorithm 

Step 3 
  Deploy tags in the field  
  Data Retrieval 
a.  Unobserved behaviour obtained 
from data logger in post-processing 
using classification algorithm 
b. Unobserved behaviour obtained by 
acoustically transmitted information 
via underwater receiver or satellite 

Step 2 
  Incorporate classification algorithm 
and/or duty cycle into on-board 
micro-processor of  accelerometer 
  Data continuously classified into 
Event ID and raw acceleration data 
discarded 
  Event ID transmitted (acoustically or 
satellite telemetry) 
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pressure casing optimized for internal or external attachment.  Data are saved on-

board a MicroSD card and can be uploaded to a computer via a standard MicroSD 

card reader after the tag is retrieved. To control the device, the open-sourced 

Arduino microcontroller, Arduino Pro Mini 3.3 V (SparkFun Electronics, Boulder, 

USA), is utilized.  The board is powered by a 3.3 V supply that makes it ideal for 

battery powered applications and facilitates small size, functionality and low-cost.  

The board provides an 8 MHz processor clock speed allowing for high frequency data 

collection.  The open source nature of the Arduino microcontroller simplifies the 

development of the data-logger since it supplies pre-existing software thus reducing 

development time and allows for direct customization with respect to tag size, 

logging duration, sampling frequency, and sensor resolution.  The data-logger design 

is a significant contribution to the field given its customization ability to capture high 

frequency data.  

 

2.2 Development Considerations 

2.2.1 Accelerometer Chip Selection 
The selection of an appropriate accelerometer chip for the data logging device 

requires the consideration of several factors including sampling rate, measurement 

range, sampling resolution, communication protocol, and battery type. In the design 

process for the MBLog mini these factors were considered in the context of 

laboratory applications in fish research.  

 

Sensor type. Ultimately, the choice of sensor package is governed by a balance 

between miniaturization and the desire for multi-sensor sampling (Muramoto et al., 

2004). Typically, the addition of sensor packages directly relates to the size of the 

resulting tag, not only because these sensors need to be fitted on the circuit board, 

but increased sensor capability generally results in higher power consumption and 

storage requirements and therefore battery size and tag size needs to increase 

accordingly (Muramoto et al., 2004). The number of parameters that can be 

recorded is often limited for smaller devices. For motion recording tags, the choice 

lies between accelerometer sensors (tri-axial acceleration), gyroscope (tri-axial 

vector velocity) and magnetometer (tri-axial compass). Given the context of 
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measuring movement in fish in the laboratory, I chose the accelerometer sensor 

without gyro or magnetometer given the advantage of the lowest power 

consumption. For example, a sensor chip commonly used in biologging tags 

(InveSense MPU-9250, InveSense, 2015) with a typical operating circuit in the 3-axis 

gyro mode requires a supply of 3.2 mA, while in the 3-axis accelerometer mode 

requires 0.45 mA – nearly 7-fold less at the same operating supply voltage.  
 

Sampling frequency. Digital systems can only store data at specific intervals 

governed by the sampling frequency.  As the sampling frequency is increased a more 

accurate representation of the underlying signal is obtained (Figure 2.2), however, 

this occurs at the cost of increased memory usage and file size and power 

consumption. Appropriate sampling frequency depends on the underlying signal, the 

purpose of the experiment and the range of frequencies of interest. If the data of 

interest were to be a sine wave (e.g., lateral acceleration in a swimming fish as shown 

in Figure 2.3 as a solid waveform) then aliasing will occur if the sampling frequency 

drops below twice that frequency, i.e., the Nyquist frequency (Oppenheim and 

Schafer, 1989, Sabin, 2008). For example, when data are sampled at regular intervals 

less than twice the frequency of interest (e.g., 80 Hz), then the frequency of interest 

(100 Hz) appears as a lower frequency signal at 20 Hz. If the signal of interest is not 

a sine wave or has a spectral peak and/or there is noise that can be aliased, then the 

signal needs to be sampled at much higher rates and the standard practice to avoid 

the effects of aliasing is to select a sampling frequency greater than 10 times the 

frequencies of interest in the signal (Ogata, 1970).  

 

A sampling frequency that is significantly lower than the frequency content of the 

acceleration signal of interest, may lead to movements occurring over short time 

scales either to be missed or misidentified. Given that short-burst acceleration events 

associated with high energy expenditure during predator-prey interactions typically 

span a range of 200-700 ms in fish (Domenici and Blake, 1997), high sampling rates 

(> 50 Hz) are likely required to adequately capture these events in the accelerometer 

record. It is especially important to quantify such events in the context of activity and 

energy budgets since they are energy intensive (Goolish, 1991), and thus make 

critical contributions to energy expenditure. In contrast, if the purpose of the 
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experiment is to observe a lower-frequency signal such as steady-swimming, which is 

typically between 1 - 10 Hz depending on fish species and size (Bainbridge, 1958; 

Videler, 1993) a lower sampling frequency may be sufficient (Videler and Wardle, 

1991; Kawabe et al., 2003a,b).  

 

Figure 2.2 The effect of discretization in the time domain where the solid line indicates 
the waveform of interest at (100Hz), solid circles indicate the times at which the system 
can sample and record the sensor output, the dashed line indicates the recorded 
waveform sampled at 500 Hz, and the dotted line when sampled at 250 Hz.  
 

 

Figure 2.3 The effect of aliasing when the sampling frequency is less than twice the 
highest frequency of interest results in a significant distortion known as aliasing. The 
distortion causes signals near the sampling frequency to be detected at a lower 
frequency.  The solid line is the true waveform at 100 Hz, the solid circles indicate the 
times at which the system can sample and record the sensor output, and the dashed line 
indicates the sampled signal at 80 Hz appearing as a 20 Hz signal. 
 

Given these considerations, the MBLog mini was designed to provide the option of 

being adjusted to a sampling frequency up to 1 kHz. This not only allows the capture 

of short-time-scale events such as those that occur during burst acceleration (~100 
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ms) and associated with swimming, escape, or feeding in fish (Domenici and Blake 

1997), but also for the detection of higher frequency components not previously 

accounted for without very high sampling frequency (> 500 Hz, Ogata, 1970; Pflug et 

al., 1993; Schreier, 2005). If the purpose of the experiment is the recording of a 

lower-frequency signal (e.g., steady-swimming) a lower sampling frequency (e.g., in 

the 10 to 100 Hz range) can then be selected to maximize battery power.  

 

Accelerometer Resolution. The range of acceleration values that a chip can 

record has an impact on the maximum acceleration values that can be captured as 

well as the resolution of the accelerometer.  In fish, maximum acceleration can vary 

across species, size, maturity and animal health (Webb, 1978). Experimental studies 

(Webb, 1978; Harper and Blake, 1990) have shown that across various species and 

sizes, maximum acceleration rates can range from 2 to 4 g0 with average rates from 

0.6 to 1.2 g0, and with the highest rates of acceleration reaching 12 g0 to 25 g0 in rare 

cases (e.g., Northern Pike, Esox Lucius, Harper and Blake, 1990). Therefore, a sensor 

chip capable of capturing a wide range of acceleration values is necessary. 

 

The resolution of an accelerometer is the minimum change in acceleration that can 

be detected and it is directly related to the range of acceleration. A N-bit 

accelerometer with a binary output has a resolution corresponding to the range of 

acceleration values that can be measured, divided by 2N.  

 

To compute an acceleration value at time t, At, from a digital value with Bin 

representing the value output by the accelerometer, the following formula is used: 

 

 
At = (Amax − Amin )

Bin
2N −1

 
Eq 2.1 

Therefore, increasing the bit count will increase the resolution of the device by 

decreasing the amount of change in the signal that can be measured. The choice in 

acceleration range requires a thoughtful approach in weighing the need to capture 

maximum acceleration and the degree of resolution required. In most cases, the 

output from the sensors is digitized using an analog-to-digital (A/D) converter with 

12-bit resolution, after being amplified and filtered with an analog circuit. Although 
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A/D converters with > 14-bit resolution are commercially available, it is not normally 

required because of the comparatively low signal-to-noise ratio of measurements 

made on wild animals (Muramoto et al., 2004, see section 2.2.5).  

 

Based on considerations of sensor type, sampling frequency, accelerometer range 

and resolution, the ADXL345 accelerometer chip was selected due to its variable 

range (from  2 g0 to  16 g0) combined with its small footprint (< 0.5 cm2), 

customizable sampling rate (as high as 3.2 kHz), I2C Inter-Integrated circuit digital 

communication, and 10-bit resolution. Currently, the ADXL354 chip costs less than 

US$17.90  (Digikey, Thief River Falls, United States), making it ideal for low-cost 

applications.  The I2C communication protocol is advantageous as it requires only 

two communication lines, one data transmission line and one clock line, while still 

providing a peak data transmission rate as high as 25 kilobytes per second (kBps).  

 

The ADXL345 is an integrated 3D MEMS accelerometer, with the basic principle of a 

simple mass spring system. The ADXL345 consists of a proof mass-spring system, a 

capacitive sensor to measure displacement, and the appropriate signal conditioning 

circuitry. The proof mass is a freestanding beam of silicone, and tethers, which attach 

to each corner of the mass and implement the spring system. When acceleration 

occurs, the mass, m, moves with respect to the anchored ends of the tethers. This 

displacement, d, is captured by differential parallel-plate capacitance where the 

motion of a central movable plate is measured by a capacitance change. The 

displacement can then be used to deduce acceleration, a, based on Hooke’s and 

Newton’s law (kS d = ma), where kS is the constant factor characteristic of the spring.  

 

2.2.2 Memory Storage  
The rate of data generation is a function of the sampling frequency, the resolution 

and the number of channels. Each sample consists of 10-bit data for each of the three 

channels (corresponding to the three axis, x-lateral, y-forward and z-vertical), which 

is padded out to 16 bits (2 bytes) to simplify memory addressing by allowing the data 

to fit within standard sizes of memory block.  This equates to 8 bytes per sample as 

the 6 data bytes are followed by 2 bytes to mark the end of the sample. Given a 

sampling frequency of 500 Hz the data transfer speed is subsequently 4 kBps (500 
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Hz 8 bytes/sample). This means, 14.4 MB of data are generated per hour. Since the 

device is intended for applications across several days, a storage capacity of ≥ 1 GB is 

required.  Given this memory storage requirement, several storage solutions are 

available such as on-board flash memory or external memory devices; such as USB 

flash drives or MicroSD cards. MicroSD cards provide advantages due to their small 

size (12 mm x 16 mm x 1.5 mm), simple interface and large memory capacity (up to 

64 GB). Furthermore, in contrast to other memory storage solutions that require the 

direct interfacing of the device with a host PC, data retrieval is simplified since the 

MicroSD card can be removed from the storage tag and inserted into a standard 

memory card reader. 

 

To further simplify data retrieval the data can be saved to the MicroSD card as a 

standard text file. While this involves the conversion from binary values to ASCII 

characters, and thus increases the size of each data file, the large data storage 

capabilities of the MicroSD card can easily accommodate this conversion. For 

example, at a sampling frequency of 1 kHz during a three-day recording, around 2 

GB of data would be collected. In the case of MBLog mini, the battery constraint 

(e.g., 72 hours) will outweigh the data storage constraint for any possible sampling 

rate.  

 

2.2.3 Circuit Design 
The circuitry has three sections (Figure 2.4): the battery, the peripherals (used for 

data capture and storage) and the Arduino microcontroller. The behavioural layout 

of the data-logger circuit illustrates the data flow from the ADXL345 accelerometer 

to the Arduino Pro Mini microcontroller (Figure 2.4).   
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Figure 2.4 MBLog mini behavioural circuit. The design utilizes a three level (stack) 
layout composed of a battery, the sensory/storage peripherals, and the microcontroller.  
 

The Arduino microcontroller then writes the data to a MicroSD card where it is 

stored for later upload.  A rechargeable 3.7 V, 110 mAh lithium-ion battery provides 

power to the microcontroller, the ADXL345 accelerometer and the MicroSD card. To 

further reduce power consumption, LED current limiting resistors of 10 kΩ are used. 

The current consumption of the entire circuit is approximately 4 mAh and in this 

configuration the device can run for 24 hours on a single 3.7 V, 100 mAh battery.  If a 

longer recording duration is desired, multiple battery packs can be connected in 

parallel increasing the logging duration in a linear manner (i.e., 2 packs 48 hours 

etc.).  

 

Both the rechargeable battery and MicroSD card are removable allowing for charging 

and data retrieval.  A 10 μF capacitor is placed next to the power supply pin to the 

ADXL345 accelerometer to reduce power supply noise.  As MicroSD cards generate 

significant levels of electrical noise, the power supply is connected to the power 

supply of the MicroSD card via a 10 Ω resistor with a 47 μF capacitor; this decouples 

the power supply from the MicroSD card. 
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The Arduino controller and battery can be purchased directly, however, the various 

peripherals require a customized printed circuit board. Cadsoft – Eagle circuit layout 

software (CadSoft Inc., Pembroke Pines, United States) was used for the layout of the 

circuit and the circuit boards were fabricated by SEEEDStudio (Seeed Technology 

Inc., Shenzhen, China). Components were purchased from Digikey Corporation 

(Digikey Corporation, Thief River Falls, USA) and manually soldered onto the circuit. 

 

To minimize the complexity of the circuit and to reduce the overall package size, the 

Arduino microcontroller is programmed prior to installation in the circuit.  This 

reduces the packaging size of the sensors by removing headers and components 

necessary for the programming of the circuit.  However, as the sampling frequency 

and acceleration ranges may need to be tailored to the specific application, the device 

is programmed such that a configuration file can be uploaded to the MicroSD card, 

which allows for control of these parameters by the user.  The microcontroller then 

reads the file and automatically adjusts the sampling rate and range to the desired 

input parameters.   

 

2.2.4 Packaging  
As salt water is electrically conductive, it is essential to protect the electronics in the 

device from exposure. Since the protection may be subject to a high-pressure 

environment, a pressure casing was designed to be water tight and robust to > 100 m 

with a cylindrical shape, which is optimal due to its high strength to weight ratio. The 

case was manufactured from polyoxymethylene (Delrin™) with Buna-N O-rings for 

the sealing surfaces (Parker Hannifin Corp, Mayfield Heights, United States). 

 

The inside diameter of the cylinder is a function of the size of the electrical 

components (circuit board and battery pack(s)) and the outside diameter was 

determined based on an analysis of the diameter required to withstand the pressure 

stresses (>100 m) the package would likely experience.  For a 24-hour application (1 

battery pack) the inside diameter is 14.2 mm and the outside diameter is 16 mm.  The 

length of the electronics and the length of the two end caps to seal the cylinder 

determine the length of the pressure casing making the total length 52 mm (Figure 

2.5, Figure 2.6).  To accommodate additional battery packs that extend the sampling 
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duration, a longer (or wider) case can easily be implemented based on this basic 

design. 

 

 

Figure 2.5 Cylindrical Pressure case diagram (units in mm) where the right side shows 
the end cap with internal features. This design can accommodate the sensor board and 
one 3.7 V, 110 mAh lithium-ion battery and can be modified to accommodate more 
batteries.  
 

Each end cap uses one 2-017 Buna-N O-ring to seal the pressure case.  The 

dimensions for the O-ring grooves were determined from the Parker O-ring 

Handbook (Parker Hannifin GmBH & Co. KG, Bietigheim-Bissingen, Germany) 

under static O-ring applications. For O-ring lubrication TriboGel, Medium Gel 

Structure (Aerospace Lubricants, Inc. Columbus, USA) is used. In its current design 

the packaged device is within -1 g of being neutrally buoyant and with a total weight 

of 13.2 g in air. To achieve neutral buoyancy of the packaged device, the end cap 

material can be substituted with a denser material (resulting in a reduction of 

buoyancy) or the length of the cylindrical section can be elongated (resulting in an 

increase of buoyancy).  The pressure case has been tested to 120 m depth.  



 20

 

Figure 2.6 MBLog mini schematic showing the pressure case for a 24 h duration 
configuration (top), a 24-h lithium-ion battery (middle) and the accelerometer sensor 
board (bottom). For deployment, the battery is connected to the sensor board and then 
sealed in the pressure case.  
 

2.2.5 Signal To Noise Ratio 

The primary concern in the design of an acceleration data-logger is to construct a 

device capable of obtaining the acceleration data required to determine behavioural 

events reliably. While the sampling rate of the digital signal is crucial (see above), 

another important degradation of the signal is the signal to noise ratio.  Though data 

related to the required signal to noise ratio are not currently available, it is important 

to outline how the conversion from analogue signals to digital data affects the signal 

to noise ratio due to quantization error, SQNR, which is given by: 

 
SQNR = 20 log10 (2Q ) Eq 2.2 

where the SQNR is in decibels (dB) and Q represents the bit resolution of the device.  

The ADXL345 chip has a noise level of 1.1 bits (Analogue Devices, Norwood, United 

States). The SQNR of the ADXL345 can be determined where 2Q = Signal 

Amplitude/Noise Level Amplitude. The Signal Amplitude is equal to (210 - 1) bits and 

the Noise Level Amplitude is equivalent to the value of 1.1 bits amounting to a SQNR 

of 59.4 dB.  
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Though more research is needed to determine the SQNR 's necessary to accurately 

resolve behavioural events, a SQNR of approximately 60 dB should provide an 

appropriate level as high quality electronic equipment used for medical imaging 

typically operate within a SQNR of 60 dB (Bushberg, 2012).  As such this SQNR 

should represent strong signal integrity. Another option is to sample at a much 

higher frequency than required (e.g., 2 kHz) and then subsample or average the raw 

acceleration series for data processing after low-pass filtering to remove high-

frequency noise. 

  

A second source of noise stems from animal-related factors such as tag movements 

on the animal that are independent of body movements. When a tag is not securely 

attached to the animal it may independently move or vibrate even when the animal is 

immobile. This is especially problematic in aquatic environments where ambient 

currents can cause such vibrations. To minimize such movements a secure and two-

pointed tag attachment (internal or external) is necessary. For that purpose, the 

pressure case caps can be furnished such that they allow for a two-point anchor 

either internal or external, via sutures.  

 

Data collected by the acceleration sensor has three major components: the 

translational or dynamic acceleration, gravitational or static acceleration (Shepard et 

al., 2008a) and the external noise. Static acceleration is due to the force of the earth’s 

gravitational field and the orientation of the accelerometer with respect to that field 

while the dynamic acceleration relates to the animal movement (Shepard et al., 

2008). Isolating static from dynamic acceleration allows separating the changes in 

animal attitude from changes in animal movement. Analytical methods for 

separating static and dynamic acceleration typically rely on the assumption that the 

gravity-based acceleration component is characterized by low-frequency changes in 

the acceleration signal. Conventional methods include the running-mean smoothing 

method (e.g., Wilson et al., 2006; Shepard et al., 2008) or the frequency-based 

filtering method (e.g., Tanaka et al., 2001). Yet, recently, Noda et al. (2013) suggest 

that it is difficult to precisely estimate attitude and dynamic acceleration using only 

an accelerometer, because gravity-based acceleration and dynamic acceleration 

cannot be fully separated using only these sensors and can only be achieved by 
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combining information from inertial sensors (gyro, magnetometer, accelerometer). 

This is suggested to be especially problematic for fast-moving animals during un-

steady locomotion such as fast-start movement in fish (e.g., Domenici and Blake, 

1997) where the error of estimating true dynamic acceleration and attitude by the 

conventional method will become larger because the attitude change is much faster 

than during steady locomotion (Noda et al., 2013). Therefore, additional to external 

noise sources, the effect of gravitational acceleration on the accelerometer signal 

requires consideration in the development of analysis methods. 

 

2.3 Discussion  

The MBLog mini is a customizable, high-frequency tri-axial accelerometer data 

logger that is light-weight, low-cost (< US$100 in production) and reusable. Design 

considerations included appropriate sensor chip selection, sampling frequency, chip 

resolution, data storage and device packaging. The tag is now commercially available 

through Maritime bioLoggers, a start-up company founded by A. Bezanson, who was 

responsible for the technology development of the sensors, and myself. 

 

Due to the customization ability of the sensor and the low-cost, this technology opens 

up research areas where data on many (>10) individuals are required 

simultaneously. The reusability of the tags allows for a more economical application 

than comparable units and an increased number of replicas (animals, time, space) in 

laboratory studies. The MBLog mini is most suitable for laboratory-based studies 

where tag retrieval is possible and to establish appropriate sampling frequencies and 

validate accelerometer signals to train classification algorithms (Figure 2.1). The 

current design and battery duration constraints do not yet allow for recording a 

duration exceeding 72 hours in a tag size configuration that minimizes impact on 

smaller fish. Furthermore, the tag does not include a real time clock, which is 

essential for time referencing the collected data as well as for synchronizing data 

from different instruments (e.g., video observations). Another disadvantage is that 

the tag does not have an ON/OFF switch and is turned on when the battery is 

connected, which is inconvenient and given the short battery duration requires direct 

access to the animal and prohibits internal attachment.  
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Currently, Maritime bioLoggers is in the process of developing a novel rechargeable 

long-duration inertial biologging tag that addresses the issues outlined above. By 

implementing the more advanced micro-processor ARM and sophisticated ARM 

architecture, the data-logging capacity has been increased significantly to 1 month 

given the tag dimensions outlined above. The tag is cased in epoxy and able to 

withstand > 1000 m pressure, turned on with a magnetic switch and a micro USB 

connector serves for data download and battery recharging. Further features include 

a real-time-clock and programmable duty cycle to increase tag logging duration, as 

well as an advanced sensor suite (inertial sensor chip, pressure, temperature). The 

first prototype of this tag has been successfully tested in a 1-month field deployment 

on Pacific Halibut in Alaska, USA and long-term tests (> 6 months) are currently 

underway on a large group (> 15 individuals) of grey seals on Sable Island, Canada.  

 

Future Design Considerations The main drawback in the current and other 

commercially available inertial and accelerometer tags is the logging duration at 

small sizes. In the near future, revisions of the data-logger will center on minimizing 

the overall size of the package, reducing power consumption and developing signal-

processing techniques for the extraction of critical data on board. Investigations into 

additional battery storage solutions for increasing the runtime of the device will be 

conducted. For example, an ideal application would be piezoelectric energy 

harvesting power supplies that have been developed for other applications (e.g., 

Aktakka et al., 2011; Shafer et al., 2015a). To further reduce power consumption a 

sleep-mode could be implemented that constantly collects data without saving to the 

SD card (which consumes most of the power on the tag) and if the acceleration 

exceeds a certain pre-determined threshold (e.g., 1.5 g0) it triggers a transfer into the 

operational mode when the tag records data and/or turns on other channels (e.g., 

gyro and magnetometer) that consume significantly more power than the 

accelerometer sensor. Implementing on-board micro processing of a priori 

determined classification algorithms could further increase tag capability. While this 

would likely not reduce power consumption, it would allow for data to be 

compressed and then transmitted acoustically to underwater receivers or via 
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satellite-telemetry, thus allowing for more wide-range applications that do not 

require a physical retrieval of the data logger, as this is challenging in the marine 

environment. 
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Chapter 3 ACCELEROMETER TAGS: DETECTING AND 

IDENTIFYING ACTIVITIES IN FISH AND THE EFFECT OF 

SAMPLING FREQUENCY 

 

 

The majority of this chapter has been published as: 

Broell, F., Noda, T., Wright, S., Domenici, P., Steffensen, J. F., Auclair, J. 

-P. and Taggart, C. T. (2013). Accelerometer tags: detecting and identifying 

activities in fish and the effect of sampling frequency. J. Exp. Biol. 216, 1255-

1264. 

 

3.1 Introduction 

Quantifying activity patterns and energy budgets among animal species is essential 

to assess and identify basic life-history traits, habitat requirements and intra- and 

inter-specific interactions. Such information is also essential for parameterising 

ecosystem models and for advancing the informed management of commercially and 

recreationally valued fish species. Field observations of the behaviour and 

locomotion of aquatic animals in the wild are typically challenging, though micro-

accelerometer (archival or acoustic and satellite telemetry) tags now provide the 

means to remotely monitor animals in the wild.  

 

Accelerometer data can be used to quantify behavioural states and rates and to 

estimate energy expenditure in the field (Tsuda et al., 2006; Sato et al., 2007; 

Murchie et al., 2010; Payne et al., 2011; Whitney et al., 2010). In fish, acceleration 

metrics have been linked to heart rate and energy expenditure (Clark et al., 2010), 

spawning behaviour (Tsuda et al., 2006), activity (Kawabe et al., 2003a,b) and more 

recently feeding behaviour (Føre et al., 2011). Generally, accelerometer tags 

continuously record data at some defined frequency, or time-averaged data thereof, 

that are either digitally stored or transmitted for subsequent post-processing. Post-

processing is typically based on a broad categorization of the acceleration data 
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(signal) using the average, extreme values of the acceleration signal (e.g., Murchie et 

al., 2010; O’Toole et al., 2010), or various frequency components thereof (e.g., fast 

Fourier transform, FFT, and wavelets; Sato et al. 2007, Sakamoto et al. 2009), and 

often this is done subsequent to data transformation to various components of 

dynamic and static acceleration (Tanaka et al., 2001; Wilson et al., 2006; Shepard et 

al., 2008a,b; Gleiss et al., 2010). These signals and their variation (e.g., rates of 

change) are then combined to estimate activity and energy budgets or to classify 

various behaviours such as resting, swimming, etc.  

 

Many accelerometer studies involving fish (Kawabe et al., 2003a,b; Tsuda et al., 

2006; Murchie et al., 2010; O’Toole et al., 2010) employ sampling frequencies ≤32 

Hz due to battery, data-storage and size constraints associated with commercially 

available tags. Observations obtained at such frequencies may allow for the 

identification of relatively simple behaviours such as resting and swimming or some 

complex behaviours such as spawning in large salmon (Tsuda et al., 2006) or mating 

in large sharks (Whitney et al., 2010). However, few studies address behaviours that 

in some fish species occur over short time-scales of the order 100 milliseconds; e.g., 

feeding strikes or escape responses (Webb, 1978). These kinds of short-duration 

high-amplitude accelerations are essential components when estimating activity and 

energy expenditure.  

 

A link between accelerometer data and the movements associated with swimming 

bouts such as haphazard turns, predator-prey escape response, or feeding strikes in 

fish has yet to be established. Video analyses, based on kinematic experiments 

focusing on such ‘fast-start’ behaviours in controlled laboratory conditions have 

demonstrated relations among acceleration metrics and high-resolution video 

records of movement (Harper and Blake, 1989; Harper and Blake, 1990; Domenici 

and Blake, 1997; Domenici et al., 2004). The above studies suggest that 

accelerometer data can be used to qualify and quantify more detailed variations in 

locomotion and behaviour, provided that the sampling frequency is sufficiently high 

(Harper and Blake, 1989). If the sampling frequency is too low, aliasing of the 

acceleration signal will occur (e.g., Oppenheim and Schafer, 1989; Sabin, 2008). 

Thus, behaviours associated with swimming, predator-prey escape response or 
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feeding strikes may either be missed or misidentified. Since such short bursts of 

activity may result in anaerobic metabolic pathways being used and thus increased 

energetic demand (Goolish, 1991), the estimates of activity and energy budgets will at 

best be biased. To obtain estimates of state- and rate-inferred behaviours, and for 

confident estimation of activity patterns in any fish species, quantifying the species-

specific effect of sampling frequency on the detection of locomotion associated with 

such behaviours is essential – especially if the activities occur over short time-scales.  

 

Given the above concerns, this study focused on two questions. 1) How can I 

statistically differentiate among various locomotion behaviours such as spontaneous 

movement, escape response and feeding strikes in fish? 2) What is the effect of 

accelerometer sampling frequency on the detection and identification of these event 

classes; i.e., when does sampling frequency compromise detection and 

identification? I used a readily available and hardy species, the great sculpin 

(Myoxocephalus polyacanthocephalus), as a model fish to collect acceleration data 

and associated statistical parameters from a suite of activity trials to address the two 

questions. I then considered how appropriate sampling frequencies could be used in 

field studies to remotely monitor complex fish behaviour in a manner not previously 

possible.  

 

3.2 Materials 

Study animal 

Seven great sculpin (Myoxocephalus polyacanthocephalus, Pallas 1814) ranging in 

size from 29.0 to 35.0 cm fork length (average ± SD, 31.8 cm ± 2.0) weighing 

between 560 – 940 g (average ± SD, 668.7 g ± 142.9) were collected using a beach 

seine at two locations on the southeast side of San Juan Island, Washington, USA, 

and were used in the activity trials conducted at the Friday Harbor Laboratories. The 

fish were held in a 1.70 m diameter outdoor tank with flow-through seawater 

maintained at 11±1 °C (average ± SD) and 1 m depth. Fish were acclimatized to the 

tank for at least one week prior to the tagging and the activity trials that took place 

over a 14-day period. After tagging, food was withheld to ensure a feeding response 

to the presence of live, wild-caught sandlance (Ammodytes spp.); a preferred prey-
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type for sculpin based on preliminary food selection trials using multiple natural 

prey-types. The use of dead prey was also tested, but it elicited unnatural feeding 

behaviour from the animals. 

 

Accelerometer 

An ORI-380D3GT micro-accelerometer (Little Leonardo Ltd., Tokyo, Japan) was 

used to record tri-axial acceleration. The accelerometer (±4 go) sampling frequency 

was set at 100 Hz using a 12-bit resolution and 10 h data-storage capacity. The 

accelerometer tag was 12 mm in diameter and 45 mm length with a weight of 10 g 

(≤2% of fish fresh-weight). 

 

Activity trials 

Fish anaesthetized with MS222 (80 mg l-1) were measured for length and weight and 

tagged using Petersen Disk tags (Floy Tag & Mfg. Inc, Washington, USA) one week 

prior to the feeding and escape activity trials. Two disk-tags, one forward and one aft 

of the centre of the 1st dorsal fin were attached ~0.5 cm below the insertion point of 

the fin; a location assumed to be the least invasive and located at an attachment 

point closest to the centre of gravity, estimated (post-mortem, point balance) at 0.35 

body lengths from the tip of the snout (Figure 3.1). The temporary (for trials) 

attachment of the accelerometer tag to the disk-pair was accomplished using 

Velcro®. No complications were experienced during the tagging procedure.  

 

Figure 3.1 Schematic representation of a sculpin with a Petersen Disc tag mounted with a 
tri-axial accelerometer showing the orientation of the lateral (x), longitudinal (y) and 
vertical (z) axes. 
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For each activity trial an individual fish was tagged with the accelerometer during 

transfer from the holding tank to an identical and adjacent trial tank where the water 

level was maintained at 0.5 m depth to ensure reliable video (see below). The 

transfer and tagging time ranged between 2 and 3 min after which none of the 

animals showed signs of stress and settled quickly in the trial tank. Fish were 

acclimated to the trial tank for 30 min prior to the start of the activity trials. For 

escape trials, an escape response was triggered at ~30-min intervals using the 

method of Domenici et al. (2004). Between 9 and 15 escape responses were elicited 

and recorded for each fish. For feeding trials, 5 live sandlance were introduced to the 

tank to allow the fish to feed ad libitum. Depending on the responsiveness of the fish, 

between 12 and 22 feeding strikes (successful or not) were recorded per fish. 

Additionally, 10 spontaneous swimming events (haphazard turns, swimming, minor 

body movements when at rest) were recorded for each fish during the suite of trials. 

Activities were noted manually when visually observed, recorded using the 

accelerometer, and video-recorded using a 30 Hz standard USB webcam (Microsoft 

LifeCam, VX-1000 and H264 Webcam 3.83 software) located 2.6 m above the tank 

bottom. Manual notation (computer clock), accelerometer, and video recording were 

synchronized prior to a set of activity trials.  The data used for analyses were based 

on a total of 160 h of accelerometer recordings among the activity trials. 

 

The care and sampling protocol for the tagging surgery and live predator-prey 

experiments in this study was approved by the University of Washington in 

accordance with Institutional Animal Care and Use Committee (IACUC) standards 

(permit number 4238-04). 

 

3.3 Methods 

3.3.1 Acceleration Data Extraction 
The timestamps on the accelerometer and the video recording were used to localize 

acceleration events. Using visual observations of locomotion, the events were 

assigned a class, either spontaneous, S, or ‘fast-start’, FS, (Domenici and Blake, 

1997), where the latter was further divided into feeding, F, and escape, E, activity 

classes. For each observed fast-start event and 10 randomly selected spontaneous 
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events, a 1-s period of the acceleration record was extracted, and centred on the 

maximum acceleration. This 1-s interval is hereafter referred to as ‘event’. The length 

of the event period was chosen after video observations revealed that all observed 

fast-start events occurred within that period. 

 

The acceleration data were processed as 3-dimensional acceleration (lateral, 

longitudinal and vertical) here referred to as the x-, y-, and z-axes, and the 

magnitude of acceleration (MA) which is the vector norm, not corrected for 

gravitational acceleration (cf. Chapter 2):  

 
 Eq 3.1 

To avoid unnecessary complications due to the directionality of events in the lateral 

x-axis (left- or right-lateral), the events were standardized such that the maximum 

acceleration amplitude in the x-axis was always positive. Event data (nDs = 70, nDe = 

82, nDf = 105) were randomly divided into two subsets, the training subset (nTs = 40, 

nTe = 51, nTf  = 53), which served to establish parameter threshold values, and the 

validation subset (nVs = 30, nVe = 31, nVf = 52) that was treated as a independent data 

set with the purpose of testing parameter efficiency and the effect of sampling 

frequency. Statistical analyses and algorithm computations were performed using ‘R’ 

Statistical Computing Software (version 2.13.0, R Foundation for Statistical 

Computing, Vienna, Austria, 2011), and MATLAB 7.12 (Natick, Massachusetts: The 

MathWorks Inc., 2011). 

 

3.3.2 Discrete Parameter Analysis 
My goal was to establish a parameter or a parameter set capable of detecting events 

and identifying the activities with minimal variation within and amongst individuals, 

and independent of values that depend on the accelerometer mounting position and 

the size of the fish (e.g., maximum acceleration). Parameters from the frequency 

domain, using spectral and wavelet analysis, the probability domain using the 

probability density function, population parameters such as mean, maximum, and 

variation in acceleration, and the time domain using autocorrelation and pattern 

descriptive parameters (integral, derivative) were examined for their utility in 

detecting and identifying activity in the acceleration records. While there are more 

222 zyxMA ++=
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formal systematic ways to determine suitable parameters and parameter 

combinations (e.g., Linear Discriminant Analysis), I chose to implement a more 

pragmatic approach. A systematic signal processing approach, as conceptualized in 

Figure 3.2, was developed to: 1) detect fast-start events using an event detection 

parameter (Ф), and 2) to identify fast-start events as being either feeding or escape 

activity by using a parameter set, Ω = [ω1, ω2, ..., ωi], where ωi is the i’th 

identification parameter in the Ω set. Suitable parameters were established using the 

entire event data set [I]. Threshold values for significant parameters were then 

determined using an optimization routine based on the training subset [II]. Finally, 

the efficiency of the established parameters and the effect of sampling frequency 

were determined using the validation subset [III].  

 

Figure 3.2 Schematic representation of using tri-axial (x-lateral, y-longitudinal, and z-
vertical) acceleration (g0) time (s) series to first detect (Φ parameter) and then identify 
(Ω parameter set) spontaneous (S) events, and feeding (F) and escapes (E) activities in 
sculpin with representative event acceleration series for illustration. 
 

I. Establishing suitable parameters 

Procedure – All parameters identified as being potentially useful were tested for 

average differences (Student’s t-test after testing for normality, Wilcox-Sign Rank 

test otherwise) between spontaneous and fast-start events and between activity 

classes for all fish in the aggregated and the disaggregated (individual fish) data. 
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Parameters were rejected if differences between event or activity classes were 

insignificant for either the aggregated or disaggregated data. Parameters derived 

from the frequency and probability domains suffered from low data density. For 

example, escape activity, typically occurring over an average of 250 ms, contain ~25 

data values when sampled at 100 Hz. Thus, these domains were suboptimal and were 

dismissed. Parameters describing the ‘shape’ of the event, such as the acceleration 

integral or the acceleration derivative, were tested and dismissed because no 

difference between activity classes was determined. Furthermore, average 

acceleration values for MA (the vector norm), or individual components thereof, 

were not different between activities.  

 

Detection Parameter Φ – The most robust and efficient detection parameter for the 

fast-start movements was the standard deviation of the vector norm of acceleration, 

σMA. The standard deviation was significantly smaller for spontaneous than for fast-

start events (Figure 3.3, Table 3.1). Maximum acceleration of the vector norm was 

also greater among the fast-start events; however it was dismissed because of its 

dependency on fish size and the attachment location of the accelerometer.  

 

 

Figure 3.3 Box and whisker plots of standard deviation of the magnitude of acceleration 
(σMA) for 7 different great sculpin from spontaneous (S, ns = 71) and fast-start events (FS, 
nFS = 187) using aggregate fish based on the entire dataset where the box illustrates the 
inter-quartile range (IQR), the bar the median, the whiskers are ±1.5 IQR, the open 
circles represent outliers and the asterisk (*) indicates that spontaneous events 
population mean is lower than that of fast-start events (see Table 3.1) for details  
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Identification parameters Ω – Six significant parameters [ω1, ..., ω6] that were 

different between fast-start event activity classes were determined following the 

procedure outlined above and as summarized in Figure 3.4 and in Table 3.1. For 

parameters [ω1, ..., ω4], a statistical property of acceleration in the x-axis differed 

from that in the y-axis for escape activity, but not for feeding activity. For example, 

ω1 was based on the standard deviation, i.e., σx - σy > 0 for escape events and σx - σy= 

0 for feeding events. The other parameters were based on the maximum acceleration 

(ω2), the range of the acceleration data (ω3) and the root mean square (ω4). 

Parameter ω5 was based on the sum of the autocorrelation coefficient τ at lags 1 to 3 

in MA, which was significantly greater in escape events than in feeding events. 

Parameter ω6 was based on the Spearman correlation coefficient, ρ, between the x-

and y-axis which was greater in feeding than escape events.  

 

 

Figure 3.4 Box and whisker plots illustrating differences between escape (E) and feeding 
(F) activities for each ωi parameter values, where the box illustrates the inter-quartiles 
range (IQR), the bar the median, the whiskers are ±1.5 IQR, the open circles represent 
outliers and the asterisk (*) indicates that parameter values are higher (p < 0.05) in E 
than F for all except the ω6 parameter where the reverse is the case, see Table 3.1 for 
details).  
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Table 3.1 Summary of differences (p) in the Φ parameter in detecting spontaneous (S) 
and fast-start (FS) events, and in the ω1 through ω6 parameters in detecting feeding (F) 
and escape (E) activities, all based on the number (n) of events and activities in the 
entire event data. Student’s t-test statistic (t) with degrees of freedom (df) was used if the 
data were normal based on the Anderson-Darling (AD) test statistic (A) and the Wilcox 
Sign-Rank (WSR) test statistic (V) if otherwise.  
 

Parameter 
AD test statistic (A)  
nDs = 70, nDe= 82, nDf = 105 

WSR (V) and Student’s (t) 
test statistics 

Φ pFS < 0.05 (A=1.5) 
pS < 0.05 (A=2.5) 

V = 108 p  < 0.001 

ω1 pE = 0.11 (A=0.62) 
pF = 0.83 (A=0.22) 

p < 0.001 (df = 159, t = 10.3) 

ω2 pE = 0.2 (A=0.51) 
pF = 0.4 (A=0.38) 

p < 0.001 (df = 183, t = 8.13) 

ω3 pE = 0.09 (A=0.64) 
pF = 0.14 (A=0.57) 

p < 0.001 (df = 177, t =9.21) 

ω4 pE = 0.56 (A=0.31) 
pF = 0.07 (A=0.70) 

p < 0.001 (df =185, t = 9.02) 

ω5 pE < 0.05 (A=1.5) 
pF = 0.22 (A = 0.48) 

V = 3526  p < 0.05 

ω6 pE < 0.05 (A=1.3) 
pF = 0.01 (A=0.97) 

V = 3795  p < 0.001 

 

 

II. Establishing parameters thresholds values 

For the Φ and each of ω1, ..., ω6, parameters a threshold value and parameter weights 

were empirically determined using an optimization routine based on the test data 

subset. This routine was designed to find cut-off values, vk (k = 1, ...,7), which 

maximize both the percentile of the observed parameter values of one event/activity 

class falling below vk, and the percentile of the observed values falling above vk of the 

other event/activity class (Table 3.2). For example, the detection parameter, σMA was 

greater than the optimized threshold value, v1, of 0.2, for fast-start events and  <0.2 

for spontaneous events. Hence the threshold of 0.2 was of significance in correctly 

detecting a fast-start event. This example applied for each of the ω parameters 

accordingly (Table 3.2). The optimized percentiles represent the empirical weight 

(CΦ, Cωi,E, Cωi,F ; Table 3.2) of each parameter for a given threshold, which can be 

interpreted as a confidence in each parameter for each event class. For example, the 



 35 

detection parameter, σMA had a weight of 0.989 for fast-start events, which means 

that 98.9% of all fast-start events exhibited a standard deviation that was greater 

than the optimized threshold.  

 

Table 3.2 Summary of the threshold values from optimization routine results for 
spontaneous (S) and fast-start (FS) events and feeding (F) and escape (E) activities all 
based on the number of events and activities in the training subset data. The parameters 
include the standard deviation of the acceleration vector norm, σMA (Φ), and the 
parameter set Ω including the standard deviation, σ, in the x or y acceleration axes (ω1), 
the maximum acceleration amplitude Amax in the x or y axes (ω2), the range in 
acceleration, RA, in the x or y axes (ω3), the root mean square, RMS, in the x or y axis 
(ω4), the sum of autocorrelation coefficients, τ, for lags 1, 2, 3 in the vector norm (ω5), 
and the correlation coefficient, ρ, between the x and y axis (ω6). The subscripted 
parameter weights, C, are the number of events where the parameter threshold applies, 
expressed as a proportion. 
 

Parameter 
Event/ 
activity class 

Optimization Result Weight, C 

Φ FS 
S 

σMA > 0.2 
σMA < 0.2 

CFS = 0.989 
CS = 0.949 

ω1 E 
F 

σx-σy  > 0.08 
σx-σy  < 0.08 

CE = 0.714 
CF = 0.700 

ω2 E 
F 

Amax,x-Amax,y  > 0.31 
Amax,x-Amax,y  < 0.31 

CE = 0.755 
CF = 0.750 

ω3 E 
F 

RA,x-RA,y > 0.54 
RA,x-RA,y < 0.54 

CE = 0.673 
CF = 0.670 

ω4 E 
F 

RMSx-RMSy  > -0.01 
RMSx-RMSy  < -0.01 

CE = 0.642 
CF = 0.652 

ω5 E 
F 

  > 2.7 

  < 2.7 

CE = 0.611 
CF = 0.625 

ω6 E 
F 

ρxy  < -0.14 
ρxy  > -0.14 

CE = 0.653 
CF = 0.648 
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III. Testing parameters  

Procedure – Parameter efficiency was tested using the validation data subset. 

These data stem from 50 h of continuous acceleration records (1.8 x 107 data values) 

spanning numerous spontaneous and 83 observationally verified fast-start events.  I 

used these data to determine the detection probability (fast-start events), the 

identification probability (feeding or escape activity) of detected events, and the 

performance of the individual parameters. I also examined the effect of 

accelerometer sampling frequency on detection and identification probability (see 

3.3.3 below).  

 

Detection probability – The fast-start detection probability was established using 

a fast-start detection algorithm. This is a sliding window algorithm that calculated 

the standard deviation for each 1-s window of the MA time series and, based on that 

value (compared to the threshold v1, Table 3.2), allocated an event ID (‘fast-start 

event’, ‘spontaneous event’) to the acceleration window. The detection P(D|R) and 

false detection P(D|NR) probabilities were then established by comparing the fast-

start events detected by the algorithm with the observed (‘real’) events, where D = 

event detected, R = real event, NR = not real event. 

 

Identification probability – For each 1-s (detected and real) event from the fast-

start detection algorithm, the parameter set Ω was calculated. The identification (F, 

E) was obtained from a sum of diagnostic indicators (‘feeding’ or ‘escape’) for every 

parameter weighted by their confidence (Table 3.2). To determine the identification 

probability (number of correctly identified events/number of real events), the 

identification (F, E) was compared to the real event identity (F, E). I then estimated 

the probability of correctly identifying a detected and real event, and the equivalent 

probability for escape (E) given detection and for feeding events (F) given detection. 

These probabilities determined the performance of the algorithm (detection and 

identification). Given detection, the probability of correct identification, P(E|E) and 

P(F|F), and misidentification, P(F|E) or P(E|F), was also determined for each 

activity class and parameter, and was used to assess the performance of the 

identification parameters. 
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3.3.3 Sampling Frequency 
Various sampling frequencies were considered to assess their effect on the ability of 

the algorithm to correctly detect events and identify activities. The lower frequency 

time series were obtained from the 100 Hz data by subsampling the original 

acceleration record to generate an array of every possible sub-sampled series. For 

example, four different 25 Hz series were generated by starting from each of the first 

through fourth data point and keeping every fourth subsequent data point. Multiple 

lower frequency sets of series from 50 Hz to 3.33 Hz were generated similarly, by 

starting with the 2nd trough 30th data point in the original series. To avoid additional 

biasing in the lower frequency analyses, parameters, thresholds values and weights 

(as detailed in I – Establishing parameters and II – Establishing thresholds above) 

were re-assessed for each sampling frequency. Consequently, ‘dynamic’ threshold 

values for spontaneous and fast-start events and feeding and escape activities and 

their associated ‘dynamic’ weights were generated as a function of frequency. 

 

The detection parameter, Φ, remained significant in differentiating fast-start and 

spontaneous events for all sampling frequencies considered. The previously 

determined threshold also applied across all the decreasing sampling frequencies, 

with a slight decrease in weights (ranging from 0.95 to 0.85).  

 

For the set of identification parameters, Ω, only [ω1, …, ω4] remained applicable for 

differentiating between escape and feeding events across the decreasing sampling 

frequencies (Figure 3.5).  Parameters [ω5, ω6] did not provide sufficient confidence 

(≤0.5) and were therefore removed from the analysis. For significant parameters, a 

dynamic threshold and dynamic weights were established (Figure 3.6). The dynamic 

weights for the identification parameters also decreased with decreasing frequencies. 

Using the recalculated thresholds and weights, detection and identification 

probabilities for each sampling frequency were established, as above.  Since the 

subsampling procedure provided multiples series at each simulated frequency, the 

detection/identification probability was described by the average detection 

probability and one standard deviation for all sampling frequencies < 100 Hz. 
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Figure 3.5 Median values with upper and lower quartiles for parameters [ω1, ω2, ω 3, ω 4] 
as a function of sampling frequency calculated using the entire event dataset for escape 
(solid line) and feeding (dashed line) activities (see Table 3.2) on a semi-log scale. 
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Figure 3.6 Median values ±1 SD of weights for parameters [ω1, ω2, ω 3, ω 4] calculated 
using the entire event dataset for escape (dashed) and feeding (solid) activities as a 
function of sampling frequency (see Table 3.2) on a semi-log scale. 
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3.4 Results 

3.4.1 Parameter Performance  
The detection parameter Φ was highly efficient, with a detection probability of 0.89 

and a miss-detection probability of 0, specifically 0.94 for escape and 0.85 for 

feeding (Table 3.3). The identification parameter set, Ω, was also efficient with a 

cumulative identification rate of 0.77. 91% of escape events and 69% of feeding 

events were detected and correctly classified. The efficiencies of each parameter in 

identifying escape or feeding, given detection, were variable, as illustrated in Figure 

3.7.  

 

Table 3.3 Summary of detection and classification results for feeding events (F) and 
escape events (E) based on 83 verified behavioural events.  
 

Detection Event ID Classification Event ID 

 E F  E F 

Detected 0.94 0.85 Escape 0.97 0.2 
Not Detected 0.06 0.15 Feeding 0.03 0.8 
Total 1 1 Total 1 1 
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Figure 3.7 Colour coded quadrangle representation of the parameter efficiency space 
showing the probabilities of activity identification for each of the parameters in Ω (solid 
colour) and the Ω parameter set (dashed black) where correct identifications are 
represented by the vertical between P(E|E) and P(F|F) and misidentifications are 
represented by the horizontal between P(E|F) and P(F|E).  
 

The quadrangle in this figure allows a relative comparison of efficiencies among 

parameters and the entire parameter set, where perfect event identification is 

represented by a line from -1 to 1 on the vertical; i.e., 100% probability of properly 

identifying both escape (-1) and feeding (1) events. The horizontal axis corresponds 

to the probability of misidentifications P(E|F) on the negative side and P(F|E) on the 

positive side. While the full parameter set, Ω, was very efficient in the identification 

of escape events with P(E|E) = 0.97, it was less efficient in identifying feeding events 

with P(F|F) = 0.79 (Figure 3.7). This asymmetry in performance was also evident for 

most individual parameters [ω1, ω2, ω3, ω4], where P(E|E) > P(F|F). In turn, ω5 

performed poorly for escape event identification while being efficient in identifying 

feeding events and ω6 seemed generally poor. However, neglecting ω6 led to a 

noticeable decrease in the identification efficiency. This shows that less accurate 
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parameters can compensate for diagnostic errors introduced by other parameters 

when there was low agreement among the high confidence parameters.  

 

3.4.2 Identification And Detection Rates 
The average detection and identification probabilities and their standard deviations, 

over the range of sampling frequencies examined, are provided in Figure 3.8. The 

detection and identification rates are the probabilities of detection and identification 

(i.e., correct classification) given detection, as a function of sampling frequency. I 

considered this to be the most appropriate tool for assessing the total effect of 

sampling frequency because it incorporated the cumulative effect of sampling 

frequency on both detection and identification. The detection rate decreased 

hyperbolically while identification rates decreased logarithmically (Figure 3.8a) with 

decreasing frequency. At 100 Hz, 89% of all fast-start events were detected and 77% 

were properly identified. The class-specific identification probability was 69% for 

feeding and 91% for escape (Figure 3.8b). Detection decreased to 50% near 4 Hz and 

identification near 14 Hz for all fast-start events combined, or near 16 Hz for feeding 

and 7 Hz for escape separately. At 30 Hz, the maximum frequency typically used in 

the field, 85% of the events were detected and 67% were properly identified. Class-

specific identification rates decreased to 62% for feeding and 74% for escapes at this 

frequency.  



 43 

 
Figure 3.8 Cumulative detection and identification algorithm efficiency expressed as a 
probability (%) as a function of sampling frequency on a semi-log scale for (a) event 
detection (‘+’) and identification (‘x’), and (b) identification of feeding (‘x’) and escape 
(‘+’) activity (b) given detection. 
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3.5 Discussion 

As best as I can determine, this is the first study that uses a high-frequency (> 50 Hz) 

accelerometer tag to detect and identify different types of behavioural events in fish 

with relatively high efficiencies of ~90% for event detection, ~80% for event 

identification, and between ~70% and ~90% for feeding and escape activities given 

detection respectively. I have shown that these efficiencies can be achieved using a 

relatively simple set of statistical parameters drawn from the time and probability 

domains of the acceleration record without the need to pre-process (filter) or remove 

gravitational acceleration from the acceleration signal. Apart from the generally 

descriptive, and cautionary work of Ropert-Coudert and Wilson (2004) and the 

metabolic studies of Halsey et al. (2009), this also appears to be the first study that 

quantitatively demonstrates that achieving the above efficiencies is a function of the 

accelerometer sampling frequency; i.e., decreased sampling frequency results in 

decreased event detection and identification probability. 
 
Accelerometers are often used in studies where the sampling frequency of the device 

depends on the technology (power, storage, etc.) and the size of the animal. Securing 

high-frequency data generally implies a larger battery requirement and a larger 

storage capability, each of which increase the tag dimensions. They are typically 

attached to animals in the field, retrieved at some later time and the data are 

analysed. In fish, simple parameters such as tail beat frequency and general activity 

is readily available, yet constrained sampling frequencies will alias the signal and 

thus compromise the ability to detect movements that occur over short time scales.  
 
Parameters 
The suite of parameters I established were selected by statistical significance with 

some biological underpinnings. For the giant sculpin, acceleration variation in the y- 

and z-axes provided a smaller contribution to the vector norm in spontaneous 

movements of any type investigated. For example, steady swimming was dominated 

by sinusoidal lateral acceleration (tail beat) with little acceleration in the longitudinal 

and vertical axes. As shown above, fast-start movements resulted in accelerations 

and decelerations over milliseconds in all three axes. Not surprisingly, these 
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movements exhibited greater variation in the vector norm (MA) and became 

manifest in the detection parameter σMA. To identify the fast-start events, I used 6 

parameters, 4 of which were generally robust and of use at sampling frequencies 

<100 Hz (Figure 3.5). While the detection parameter, Φ, and only one identification 

parameter (ω5) were based on the vector norm (comparable to overall dynamic body 

acceleration, ODBA, see Wilson et al. (2006) and Halsey et al. (2009) without a 

correction for gravity), these other 4 identification parameters were related to inter-

axial (x- and y-axes) comparisons.  When based on the vector norm, they failed in 

event identification. This indicates that MA may be suitable for some applications, 

though my results demonstrate that valuable information is lost when the 3 axes are 

combined into one metric, especially when investigating short time-scale movement. 

Interestingly, parameters for MA or axis-specific metrics such as the acceleration 

integral or derivative, or average acceleration, have been used for physiological 

classification purposes (Clark et al., 2010), for both physiological and activity 

classification (Murchie et al., 2010, O’Toole et al., 2010) and for metabolic studies 

(Payne et al., 2011). However, these parameters were incapable of detecting or 

identifying events and/or activities in my study due, in part, to large intra-individual 

variation – too large to establish a significant difference between events or activities. 

Perhaps more importantly, relatively infrequent events associated with substantial 

changes in acceleration over short time scales, if averaged, may become undetectable 

and unidentifiable, and increasingly so with the width of the averaging window 

exacerbated with decreasing sampling frequency. This implies that physiological and 

(or) metabolic estimates based on data manipulations, such as averaging, may be 

compromised, especially if fast-start activities comprise a substantial proportion of 

the behavioural repertoire; e.g., ambush predators. 

 

Limitations on Parameters 

The family of identification parameters achieved high rates of event detection (89%) 

and identification (77%) for a sampling rate of 100 Hz. While powerful in the correct 

identification of escape events (> 90%), 20% of detected feeding events were 

misidentified as escape events. This is likely explained by feeding events being more 

variable than escape events because they are influenced by prey direction and 

distance, as well as by strike success. This would also be consistent with the variation 
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in most parameters being greater among feeding events than among escapes. 

Preliminary examinations of parameter interactions (not presented here) did not 

improve the efficiency of the parameter set. Additionally, the activity identification of 

feeding events was more limited by feeding event detection (85%), which was lower 

than that for escape events (94%). 

 

Many studies address the effect of size on fast-start acceleration in fish, especially 

Amax (Webb, 1976b, 1978; Domenici and Blake, 1997; Domenici unpublished); 

therefore, in my study I kept the size of the animals relatively constant. The detection 

parameter was specifically designed to exclude values such as Amax (although 

significantly different between spontaneous and fast-start events) to avoid the 

influence of size, and fortuitously the attachment location and (or) angle (Tsuda et 

al., 2006). The [ω1, ..., ω4] parameters were based on inter-axial differences (0 or ≠ 

0) and I assumed that if acceleration values (±) or magnitude changed with size, the 

relative differences of axes within the animal would be near constant. Correlation 

parameters [ω5, ω6], which were not based on inter-axial comparisons but on inter-

event comparisons, may have been subject to changes in threshold values 

accordingly to animal size. 

 

Compared to most other fish, the sculpin is limited in terms of movement, especially 

vertical, and this most likely explains the negligible contribution of the vertical axis 

to the full parameter set, Ω.  If a fish species that moves more in the vertical domain 

had been used, such as a cruise predator, I would expect vertical acceleration to 

make a greater contribution to the parameter set (e.g., Kawabe et al. 2003a). Fast-

start event detection may be more complex if the vertical acceleration contribution to 

spontaneous movement increased, which could decrease the power of the standard 

deviation as a stand-alone detection parameter and thus other parameters may be 

required to detect fast-start events. 

 
Sampling Frequency 

The issues associated with aliasing are well known in the time series analysis and 

signal processing literature (Oppenheim and Schafer, 1989). However, in the field of 

animal accelerometry, the question of sampling frequency has received 
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comparatively little attention. Given that fast-start events typically span a range of 

200-700 ms in animals of comparable size (Domenici and Blake, 1997), high 

sampling rates are required to adequately capture these events in the accelerometer 

record. I have shown that detection and identification rates of these events 

significantly decrease with decreasing sampling frequency; i.e., the signals of interest 

are increasingly aliased at lower frequencies. 

 

There are only few accelerometer studies on aquatic organisms that employ 

accelerometer tags sampling at frequencies greater than 32 Hz (Noda et al., 2013; 

Noda et al., 2014). Sampling at such low frequencies may be justified for large 

animals such as whales and large sharks where observable behaviour occurring over 

milliseconds is unlikely (Whitney et al., 2007; Gleiss et al., 2009; Whitney et al., 

2010; Gleiss et al., 2011; Goldbogen et al., 2011), but for smaller species such as 

trout, salmon, flatfish etc. (Kawabe et al., 2003a,b; Tsuda et al., 2006) higher 

accelerometer sampling frequency will likely prove informative, as shown above. The 

decrease in event detection probability at low sampling frequencies may be 

acceptable (a sampling frequency of 20 Hz results in detection probability of ~ 60% 

of fast-start events), yet the identification of the event type decreases rapidly – 

especially for feeding events, where only 60% of events are properly identified at 30 

Hz. Coincidentally, <30 Hz is a typical sampling frequency for archival or acoustic 

transmitter tags used in most experiments cited above and thus some information 

may be compromised. While the foci of such studies are on large time-scale 

movements (e.g., tail beat frequency) and the quantification of general activities 

(resting vs. swimming), short-burst acceleration events such as feeding and escape 

are energy intensive and thus make critical contributions to activity and (or) energy 

expenditure. It is therefore necessary and essential to be able to detect the events to 

avoid compromised activity budgets and related physiological estimates. This will 

apply in the laboratory and perhaps more so in the wild where there is virtually no 

knowledge of how often fast-start events occur. Further, activity detection and 

identification in the wild, particularly with the differentiation of successful and 

unsuccessful feeding events, could be especially useful in estimating energy budgets, 

especially the temporal (day vs. night) and spatial variation (e.g., depth-structured 

temperature gradients) in energy expenditure and gain (feeding), for which we also 
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know little.  For example, methodologies similar to those developed here, used in 

combination with depth or location sensors could allow the determination of feeding 

grounds with important implications for various habitat management strategies 

(Cartamil and Lowe, 2004).  

 

Technological constraints do not, as yet, easily allow for conventional accelerometer 

tags to sample at high frequencies for durations greater than several days. However, 

I argue that continuing advances in micro-technology should result in decreased size 

and more efficient accelerometer units (battery, storage, micro-processors) that will 

allow for increasing sampling frequencies, onboard processing, greater storage and 

longer duration. Until such time, I recommend that accelerometer field studies 

focusing on behaviour, activity, physiological costs, kinematics etc., include phases of 

laboratory experiments with high-resolution, short-duration accelerometer tags as 

shown here to quantify: a) the parameters of interest, and b) the essential sampling 

frequencies (see Chapter 2). While many studies have demonstrated the use of 

accelerometers to link some behavioural traits and animal locomotion to acceleration 

in field applications, for short time-scale events it will be necessary to a priori 

establish the link between the behaviour or physiology and acceleration and to do so 

at the appropriate sampling frequency.  

 
Future in tag micro-processing 

On-board micro-processing, such as already used in some accelerometer tags, 

decreases the amount of storage of high-resolution data to be archived or 

transmitted. Based on this study, micro-processing technology could be advanced to 

the point where algorithms determined a priori (e.g., activity detection and 

identification) constantly calculate the key parameters, allocate event IDs as they 

occur, and store or transmit the data (see Føre et al., 2011); thus the in situ delivery 

of activities and behaviour over time. This would only be possible if micro-processing 

uses little power.  While this study cannot solve the technological issues around high-

resolution accelerometers, it does address the consequences of aliasing when using 

low sampling frequencies. Although not all studies will require high-resolution 

accelerometers, I stress the importance of aliasing when embarking on field-tagging 

studies. 
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Chapter 4 SCALING IN FREE-SWIMMING FISH AND 

IMPLICATIONS FOR MEASURING SIZE-AT-TIME IN THE 

WILD 

 

 

The majority of this chapter has been published as: 

Broell, F., and Taggart, C. T. (2015). Scaling in free-swimming fish and 

implications for measuring size-at-time in the wild. PLoS ONE 10(12), 

e0144875. 

 

4.1 Introduction  

In 2007, Neuheimer and Taggart postulated that it might be possible to collect 

length-at-age time series (and thus growth rate) among fishes in the wild by using 

archival accelerometer tags. The underlying principles for such a postulate can be 

found in A.V. Hill’s (1950) isometric scaling model that predicts geometrically 

similar animals should move their limbs at a similar velocity and run or swim at the 

same velocity with a stride frequency that is proportional to mass-1/3 or length-1. This 

scaling model relies on basic physics where the work produced by a muscle during 

locomotion is a function of its mass and thus the resultant kinetic energy will depend 

on the mass and the velocity squared. Consistent with this model, observations on a 

range of free-swimming seabirds and mammals, presumed to be swimming 

‘efficiently’ (Sato et al., 2007), suggested that the animals adopted cruising speeds 

that are independent of body size and that the associated dominant stroke cycle 

frequencies scaled with mass-0.29 (Sato et al., 2007) For geometrically similar soaring 

seabirds  (Sato et al., 2009) and penguins (Sato et al., 2010) the dominant stroke 

cycle frequency was shown to be proportional to mass-0.30 and mass-0.28 respectively, 

and in each the scaling exponent was not significantly different from -1/3 (Sato et al., 

2007, 2009, 2010). Most recently, Gazzola et al. (2014) proposed that for a turbulent 

flow regime, at a given speed u, tail beat frequency is inversely proportional to tail 

beat amplitude. Given the experiments by Bainbridge (1958) that indicate tail beat 
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amplitude is proportional to length at any given speed, tail beat frequency therefore 

is inversely proportional to length, which provides a new theoretical justification for 

such observations (Sato et al., 2007, 2009, 2010). Such scaling relationships are 

expected to hold for large (adult) swimmers in the inertial flow regime or as long as 

swimmers are not trading efficiency for another performance parameter such as 

speed, with a likely nonlinear relationship in laminar and intermediate flow regimes 

(e.g., van Leeuwen et al., 2015). 

 

Notably, the above multi-species studies (Sato et al., 2007) included only two species 

of fish and each with a small sample size: Japanese flounder (Paralichthys 

olivaceus), n = 5, and chum salmon (Oncorhynchus keta), n = 2. Not only does the 

limited sample size not allow me to firmly conclude that the scaling law does apply 

for fish species, for the flounder the dominant stroke frequency (tail beat frequency, 

TBF) was anomalously low relative to the fitted inter-specific scaling model. This was 

attributed to the estimates being derived from potentially ‘inefficient’ swimming, and 

thus contradicts the assumption of ‘efficient’ locomotion (Hill, 1950; Sato et al., 

2007, 2010) although there is no clear definition of efficient swimming for fishes.  

 

Efficiency can be defined at several organizational levels such as mechanical 

efficiency (propeller efficiency) or metabolic efficiency (entire organism). In 

swimming and locomotion research, studies define efficiency as the ratio of useful to 

total work or power. To assess propulsive performance, studies often calculate 

hydrodynamic or mechanic efficiency as the ratio of useful over total work done by 

the propeller (e.g., Chattopadhyay et al., 2006, Kern and Koumoutsakos, 2006); 

swimming or metabolic efficiency include muscle and respiratory processes to 

calculate efficiency (e.g., van Ginneken et al., 2005) or measure oxygen consumption 

(energy expenditure) in closed respirometer experiments during steady-swimming 

(e.g., Steinhausen et al., 2005). Efficient swimming is also assumed to occur during 

high-energy-cost movements, e.g., during migration or feeding bouts (Sato et al., 

2007). Some of these efficiencies are only applicable in a narrow range of behaviours, 

e.g., steady-swimming. For example, efficiency during steady-swimming has also 

been measured using the Strouhal number, which relates tail beat amplitude and 

frequency to swimming speed (Sato et al., 2007; Gazzola et al., 2014). According to 
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Sato et al. (2007), unlike breath-holding mammals, reptiles and birds, fish do not 

necessarily swim efficiently, at least at top speed, and thus Hill’s isometric scaling 

may not hold. Furthermore, the deviation of the studied fish species from the 

interspecific scaling relation should not be unexpected since interspecific scaling 

relations are known to differ from intraspecific relations (e.g., Toro et al., 2003; 

Glazier, 2005) given ontogenic constraints (Toro et al., 2003) as well as the 

complications that arise from fitting a bivariate relation to a multivariate problem 

(Taylor and Thomas, 2014).    

 

To my knowledge, there is a very limited literature examining the above scaling 

relations among sizes and/or species of (adult) fish, and this is likely due to the 

inherent difficulty of obtaining such data on free-swimming fish. The few studies that 

have been published do not include sufficient data or information to allow the 

conversion of measurements to a common size-related parameter. The consequence 

is that most analyses of the relations between fish size and locomotion remain 

theoretical (Hill, 1950; Bainbridge, 1961; Gray, 1968; Webb, 1976a). However, 

advances in digital accelerometer tags now provide a method of obtaining the 

necessary swimming data in the laboratory (Noda et al., 2013; Noda et al., 2014), and 

in the field (Kawabe et al., 2003a,b; Tsuda et al., 2006), and such data have been 

used to quantify behavioural states and rates and to estimate such things as energy 

expenditure and swimming activity (Kawabe et al., 2003a,b; Wright et al., 2014) 

through the extraction of tail beat frequency estimates (Sato et al., 2007; Kawabe et 

al., 2003a,b; Tsuda et al., 2006). 

 

Quantifying relationships between size and movement may help reconcile co-

evolutionary mechanisms (Sato et al., 2009) and help address the ecological 

implications of size-dependent locomotion (Peters, 1983). It will also have practical 

applications in fisheries science because fish size influences metabolic rate, 

physiology, and ingestion rate, and thus growth, maturity and fecundity and 

ultimately abundance (Peters, 1983). Size-at-age measures are also essential in 

fisheries science because virtually all population and assessment models involve 

some component of growth-rate-dependent demography that varies among cohorts 

and age-classes. Measuring size-at-time and inferring growth rate in wild fish is 
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inherently difficult, and to date can only be achieved over relatively long time scales 

using mark and recapture techniques or by using post-mortem morphometrics such 

as otolith microstructure that have their own inherent uncertainties (Pannella, 1971; 

Campana, 1990).  

 

Here, I suggest a new method of measuring size-at-time in fish, and potentially 

growth rate, based on Hill’s isometric scaling. I hypothesise that if it is possible to 

establish a within- or among-species allometric relationship (model) that relates fish 

size to tail beat frequency from acceleration data, then such a model could be used to 

estimate size-at-time, and thus growth rate over time in the wild. I therefore 

collected acceleration data and the derived tail beat frequency estimates among a size 

range of free-swimming saithe (Pollachius virens), a species widely studied in 

kinematic experiments (Videler and Hess, 1984; Hess and Videler, 1984; 

Steinhausen et al., 2005) and analytical models (Cheng et al., 1998; Kohannim and 

Iwasaki, 2014), and shortnose sturgeon (Acipenser brevirostrum) (Webb, 1986; 

Long, 1995; Deslauriers and Kieffer, 2012). 

 

4.2 Materials  

4.2.1 Study Animals 
Saithe (n = 18) of fork length (l; m) ranging from 0.26 to 0.56 m (average ± SD, 0.41 

m ± 0.089) with mass (m; kg) between 0.18 and 1.6 kg (0.93 kg ± 0.48) were 

collected near Nova Scotia, Canada. Accelerometry data were collected from the fish 

swimming freely in the Aquatron pool tank (Dalhousie University), a large mesocosm 

with a diameter of 15.24 m, a depth of 3.54 m at the perimeter and 3.91 m at the 

centre, and a volume of 684 m3 natural seawater held at 9 °C ± 2.  Swim trials were 

conducted over 9 trial-days spanning a month. Each individual fish swim trial lasted 

between 24 and 29 h with a recovery period of two to five days. 

 

Shortnose sturgeon (n = 22) with l ranging from 0.56 to 1.2 m (0.79 m ± 0.18) were 

used for free-swimming trials. Individual mass, which could not be measured, was 

estimated using a mass-at-length relationship for adult fish (Figure 7 in Dadswell, 

1979) based on average age (collected in 1998-1999 in the Saint John River, NB, 
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Canada and held in captivity at the nearby Mactaquac Biodiversity Facility). 

Accelerometry data were collected over a one-week period in two 11 x 11 m-wide, 1 m-

depth, outdoor flow-through tanks held at an ambient river-water temperature of 

15.5 °C ± 0.5. 

 

4.2.2 Accelerometers 

I used three tri-axial accelerometer tag models (Maritime bioLoggers, Halifax, 

Canada). For saithe, I recorded tri-axial acceleration at 50 Hz (10-bit resolution) at ± 

4 go. Saithe exceeding 40 cm were tagged with the MBL PT-1 (50 mm length, 23 mm 

diameter, 18.8 g in air). Smaller fish were tagged with the MBL PT-2 (25 mm length, 

17 mm width, 11 mm height, 6.1 g in air). Shortnose sturgeon were tagged with the 

MBL PT-0 (53 mm length, 35 mm width, 15 mm height, 14.6 g in air) sampling at 

550 Hz (10-bit resolution) at ± 3 go. 

 

4.2.3 Swim Trials 

Saithe were anaesthetized with MS222 (40 mg l-1), measured for l and m and tagged 

using Petersen Disc tags (see Chapter 3 for tag attachment details) and before each 

swim trial an accelerometer was attached (in a removable manner) to the disc. Fish 

swam ad libitum for 48 hours with no external stimulus save a natural daylight cycle. 

Following each trial the accelerometer was detached and the animals recovered in a 

holding tank (2 x 2 m). At least 4 h of free-swimming accelerometer data were 

collected for each individual fish for a total of 845 h of data. 

 

Sturgeon were measured for l and tagged using a spandex belt (housing the 

accelerometer) wrapped around the caudal peduncle, anterior to the dorsal fin. Fish 

were randomly assigned to the swim-trial tank (isolated) or the holding tank 

(communal) where they were allowed to swim ad libitum in a continuous but 

spatially variable current (0.0 to 0.3 ms-1) in natural daylight conditions. At least 0.5 

h of free-swimming data were collected for each individual for a total of 18 h of data.  
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4.3 Methods 

4.3.1 Estimating Dominant Tail Beat Frequency  

Tail beat is a non-stationary periodic oscillation in the acceleration time series 

(Kawabe et al., 2003a,b; Sato et al., 2007). Thus, to extract continuous, steady 

swimming data from accelerometer records, I defined steady swimming segments as 

intervals during which TBF (Hz) did not statistically vary. I then developed a TBF 

extraction algorithm that was based on zero-crossings (Figure 4.1; see also Kedem, 

1986; Stein, 2000) with adaptive window lengths. The algorithm was applied to an 

acceleration time series after removing the high-frequency noise (IIR Butterworth 

filter with a 15 Hz cut-off). An initial window length was chosen to resolve the lowest, 

expected, species-specific TBF (Videler and Hess, 1984; Long, 1995), e.g., 2 seconds 

for saithe given their minimum observed tail beat frequencies at ~0.5 Hz 

(Steinhaussen et al., 2005). Steady swimming segments were those where the period 

between zero-crossings was ‘stable’; established by comparing the variability in the 

time between zero-crossings (i.e., beat periods, Δt’s) to a stability threshold, Th that 

was based on the range of differenced Δt’s in the entire series (Δtj – Δtj+1)max - (Δtj – 

Δtj+1)min) multiplied by a scaling parameter (ThS*). Segment length was then 

established by statistically comparing consecutive windows of TBF estimates based 

on nonparametric mean comparisons. Each series of consecutive windows of 

relatively invariant TBF was assumed to represent a steady swimming segment. To 

estimate the dominant TBF, I combined segments from the same individual among 

multiple swim trials. The algorithm above was used to extract a list of frequencies 

and corresponding segment lengths. Stable TBF segments within the longest 10 % by 

duration, were used for analyses, assuming they represented preferred steady 

swimming modes. These segments were then used to establish weighted histograms, 

means, medians and standard deviations, where the weights corresponded to the 

length of each segment with a stable TBF. The evaluation of the zero-crossing 

algorithm can be found in Appendix A. 
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Figure 4.1 Flow-chart of the zero-crossing algorithm used to extract time-varying tail 
beat frequency (TBF) where Δt is the beat half period, σ is the standard deviation, 
mean(Δt)i is the average beat half period within window i and Th is a function of the 
range of all differenced periods in the times series and the tuning parameter ThS* (i.e., 
Th = ThS*((Δtj – Δtj+1)max -(Δtj – Δtj+1)min)). Finding zero-crossings is based on Kedem, 
1986. A typical species-specific initial window length, lW for e.g., saithe is 2 seconds. (a) 
shows time series of lateral acceleration (blue) and zero-crossings (red). (b) green line 
indicates differenced Δt’s for a stable period, turquoise line indicates unstable periods. 
(c) time series of Δt’s (green) with unstable segments (turquoise) and individual 
windows (pink lines) 
 

4.3.2 Species-Specific Scaling Analyses 
I calculated weighted log-log regressions for each species using the moments of the 

TBF distribution. The response variable was loge of the median TBF obtained from 

the weighted TBF distributions for each individual, and the predictor variable was 

loge of l or m. The regression weights were determined using the variance of the TBF 

(Aitken, 1935; Burnham and White, 2002).   
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Absolute average swimming speed, u (ms-1), was estimated as a function of dominant 

TBF and l based on literature models. For saithe I used the empirical relation 

provided by Videler and Hess (1984) where u  = l 0.977 TBF 0.883. For shortnose 

sturgeon I used the relation from Long (1995) where u = l  (0.005 + 0.138 TBF). 

 

Algorithm computations and statistical analyses were performed using R (version 

0.98.977, R Foundation for Statistical Computing, Vienna, Austria), and MATLAB 

R2014b (The MathWorks, Natick, MA, USA). Unless otherwise noted, all estimates 

are provided as the average estimate plus or minus one standard deviation. 

Subscripts indicate species (P, saithe and S, sturgeon). 

 

Fish care and protocols for fish holding, surgery, tagging, and swim trials were 

approved by Dalhousie University (saithe, Permit 12-049) and Mount Allison 

University (sturgeon, Permit 10-16) in accordance with the Canadian Council for 

Animal Care standards. 

 

4.4 Results 

4.4.1 Tail Beat Frequency 

Distributions - TBF estimates for saithe were log-normally distributed (Figure 4.2) 

with medians ranging from 0.6 to 2 Hz (1 Hz ± 0.3) across all sizes. Estimates for 

sturgeon were near log-normal (Figure 4.2) with medians ranging from 1.1 to 2.4 Hz 

(1.5 Hz ± 0.3). For each species no significant deviation from normality for loge l was 

determined. 
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Figure 4.2 Examples of normalized tail beat frequency (TBF, Hz) distributions from 
accelerometer records of free-swimming (a) saithe (n=6) and (b) sturgeon (n=6) based 
on weighted histograms of TBF extracted using the zero-crossing algorithm 
 

TBF as a function of length - In general, fish length and mass tend to be strongly 

correlated  (for saithe from my data r2 = 0.93 and for sturgeon from Dadswell (1979), 

r2 = 0.99). As shown in Figure 4.3 and Table 4.1 the dominant (median) TBF was a 

strong function of l for each species:  

 

for saithe  

 
TBFP = 0.43 l -0.99 (n = 18, r2 = 0.73) Eq 4.1 

for sturgeon 

 
TBFS = 1.1 l -0.89  (n = 22, r2 = 0.82) Eq 4.2 

The above length exponents were not different (p = 0.64) between species and the 

95% confidence intervals (CIs) for the slopes each bracketed a slope of -1.0 (Table 

4.1) as predicted (Hill 1950; Sato et al., 2007, 2009, 2010). 

 

The species-specific relations could not be combined for phylogenetic analyses (Sato 

et al., 2007, 2009, 2010) because average TBF and length among the sturgeon were 

each greater than among the saithe (Student’s t-test, p < 0.05) and thus the 

difference between their respective proportionality constants. When TBF estimates 
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and lengths were scaled by the species-specific average TBF and average length, the 

TBF for the combined species was again a strong function of l (Table 4.1, Figure 4.3);  

 
TBF = 0.94 l -1.0 (n = 40, r2 = 0.73) Eq 4.3 

 

Table 4.1 Summary of allometric relations among swimming parameters based on 
dominant tail beat frequency (TBF, Hz), estimated swimming speed (u, ms-1), and fork 
length (l, m) in two fish species. Subscript, sd, indicates standardized by the species-
specific average, where the 95% confidence interval (CI), coefficient of determination (r2) 
and sample size (n) are provided. aPredicted value based on Hill (1950); *from log-log 
ordinary least square slope, using u and TBF model from †Videler and Hess (1984); and 
‡Long (1995) 
 

Species Relation 
Exponent 
(β)*(±SE) 

95% CI for β 
Pred. 
β a 

r2 n 

P. virens TBF  α  lβ 
-0.99  
(±0.15) 

-1.3; -0.68 -1 0.73 18 

 
u   α  lβ 

0.12† 
(±0.13) 

-0.16; 0.40 0 0.01 18 

A.  
brevirostrum 

TBF  α  lβ 
-0.89  
(±0.094) 

-1.09; -0.69 -1 0.82 22 

 
u   α  lβ 

0.12‡  
(±0.092) 

-0.067; 0.32 0 0.01 22 

Combined TBFsd  α  lβsd 
-1.0  
(±0.097) 

-1.2; -0.80 -1 0.73 40 

 
usd  α  lβsd 

0.12†‡  
(±0.086) 

-0.054; 0.29 0 0.05 40 
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Figure 4.3 Log-log relations between (a) dominant tail beat frequency (TBF, Hz) and 
length (m) and (b) standardized TBF in relation to standardized length for saithe (solid 
circles, n=18) and sturgeon (open triangles, n=22). Weighted ordinary least square 
regressions (solid line) are bracketed by the 95% confidence intervals (CIs) around the 
regression (dashed line) and the unweighted 95% CIs around the predictions (dotted 
lines). 
 

TBF as a function of mass - Tail beat frequency was a function of mass (Figure 

4.4, Table 4.2) for saithe TBFP = 0.99m-0.29 (n = 18, r2 = 0.63) and for sturgeon TBFS  

= 2.22m-0.29 (n = 22, r2 = 0.82). The model exponents were not different (p = 0.99). 

The 95% confidence intervals for the species-specific slopes bracket a slope of -1/3 as 

predicted (Table 4.2). When beat frequencies and mass were scaled by the species-

specific average TBF and average mass, the best-fit model for mass (Figure 4.4, Table 

4.2) was TBF = 0.90m-0.29 (n = 40, r2 = 0.63). 
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Table 4.2 Summary of allometric relations among swimming parameters based on 
dominant tail beat frequency (TBF, Hz), estimated swimming speed (u, ms-1), and body 
mass (m, kg) in two fish species. Subscript, sd, indicates standardized by the species-
specific average, where the 95% confidence interval (CI), coefficient of determination (r2) 
and sample size (n) are provided. aPredicted value based on Hill (1950); *from log-log 
ordinary least square slope, using u and TBF model from †Videler and Hess (1984); and 
‡Long (1995) 
 

Species Relation 
Exponent 
(β)*(±SE)  

95% CI for β 
Pred. 
βa 

r2 n 

P. virens TBF  α  mβ 
-0.29 
(±0.055) 

-0.41; -0.17 
-1/3a 
-0.28b 

0.63 18 

 u†   α  mβ 
0.052† 
(±0.040) 

-0.034; 0.14 
0a 
0.05b 

0.11 18 

A.  
brevirostrum 

TBF  α  mβ 
-0.29 
(±0.030) 

-0.35; -0.22 
-1/3a 
-0.28b 

0.82 22 

 u‡  α  mβ 
0.039‡ 
(±0.029) 

-0.021; 0.10 
0a 
0.05b 

0.01 22 

Combined TBFsd  α  mβ
sd 

-0.29 
(±0.057) 

-0.36; -0.22 
-1/3a 
-0.28b 

0.63 40 

 usd  α  mβ
sd 

0.052†‡ 
(±0.026) 

-0.001; 0.11 
0a 
0.05b 

0.11 40 

 

 

 
Figure 4.4 Log-log relations between (a) dominant tail beat frequency (TBF, Hz) and 
mass (kg) and (b) standardized TBF in relation to standardized mass for saithe (solid 
circles, n=18) and sturgeon (open triangles, n=22). Weighted ordinary least square 
regressions (solid line) are bracketed by the 95% confidence (dashed line) and prediction 
(dotted lines) intervals.  
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4.4.2 Swimming Speed 
Speed as a function of length - The derived absolute swimming speed estimates, 

which were estimated from the literature (Videler and Hess, 1984; Long, 1995), were 

normally distributed (Anderson Darling, p > 0.5, Figure 4.5) with average speeds of 

0.41 ms-1 ± 0.05 for saithe, and 0.15 ms-1± 0.01 for sturgeon. The predictor variable, 

l, was log transformed to stabilize the variance. Within species, average swimming 

speed was independent of l (p > 0.01, Table 4.1, Figure 4.5). While the length 

exponents for each species were not different (Table 4.1), the proportionality 

constants were (Figure 4.5) again preventing inter-species comparison. When 

standardizing the response and predictor variables by the species-specific averages, 

the standardized average swimming estimates were independent of l (weighted 

ordinary least squares, p = 0.17, Table 4.1, Figure 4.5)  

 

 

Figure 4.5 Log-log relations between (a) swimming speed and length and (b) 
standardized swimming speed and standardized length for saithe (solid circles, n=18) 
and sturgeon (open triangles, n=22) where weighted ordinary least square regressions 
(solid line) are bracketed by the 95% confidence intervals (CI) around the regression 
(dashed lines) and unweighted 95% CI around the predictions (dotted lines). 
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Speed as a function of mass - Within species, average swimming speed was 

independent of m (p > 0.05, Table 4.2, Figure 4.6) However, when speed and mass 

were standardized by the species-specific averages, the relationship was marginally 

significant (weighted ordinary least square regression, p < 0.03, Table 4.2, Figure 

4.6). 

 

Figure 4.6 Log-log relations between (a) swimming speed (ms-1) and mass (kg) and (b) 
standardized swimming speed and standardized mass for saithe (solid circles, n=18) and 
sturgeon (open triangles, n=22) where weighted ordinary least square regressions (solid 
line) are bracketed by the 95% confidence intervals (CI) around the regression (dashed 
lines) and unweighted 95% CI around the predictions (dotted lines). 
 

4.4.3 Prediction Of Length 
Given Eq 4.1 and Eq 4.2 above, it was not surprising that, from a prediction 

perspective, length was a function of dominant TBF (Figure 4.7, Table 4.3) where l = 

0.47 TBF−0.74 (r2 = 0.73), and also for sturgeon (Figure 4.7, Table 4.3) where l = 1.1 

TBF−0.91 (r2 = 0.81). The species-specific exponents were different (p = 0.003) and 

the exponent for sturgeon was not different from -1 (p = 0.4), and for saithe it was 

marginally different from -1 (p = 0.03). Figure 4.7 illustrates the uncertainty in size 

predictions for each species based on the maximum sizes (~1.2 m) typically observed 

in nature (Dadswell, 1979; Cargnelli et al., 1999). For each species, the 95% 

prediction uncertainty was expressed as PU = t0.975,n-2 SElp/lp, where lp is the model 

predicted size and SE the associated standard error. Due to the fish lengths available 

for the study, the greatest confidence for prediction was at intermediate sizes (> 0.2 
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and < 0.6 m for saithe and > 0.4 m for sturgeon). The least uncertainty for saithe was 

at 0.4 m (~25%) and for the sturgeon at 0.7 m (~18%), while the largest uncertainty 

for saithe was at 1.2 m (~36%) and for sturgeon at 0.2 m (~30%). For each species m 

was also related to dominant TBF. For saithe, mass was proportional to TBF -2.2, for 

sturgeon to TBF -2.9 (Table 4.3). The exponents were not statistically different (p = 

0.27) between species. When TBF estimates collected from a comparable sturgeon 

species in the wild (Chinese sturgeon, Acipenser sinensis, Watanabe et al., 2008) are 

used as model input (1.08 Hz, 0.77 Hz, 0.91 Hz) length predictions (1.03 m, 1.39 m, 

1.19 m) are between 4 – 14 % when compared to the measured length (0.95 m, 1.22 

m, 1.15 m, respectively), which provides more confidence in my results.  

 

 

Figure 4.7 (a) Log-log relations between dominant tail beat frequency (TBF, Hz) as 
predictor and length (m) for saithe (solid circles, n=18) and sturgeon (open triangles, 
n=22) showing ordinary least square regressions (solid line) bracketed by the 95% 
confidence intervals around the regression (dashed lines) and predictions (dotted lines), 
and (b) prediction uncertainties, PU as a function of length (m) for saithe (sold line) and 
sturgeon (dashed line) expressed as PU =100 t0.975,n-2 SElp/lp where lp is the model 
prediction and SElp is the standard error for the prediction. 
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Table 4.3 Summary of regression models for predicting fork length (l, m) as a function of 
dominant tail beat frequency (TBF, Hz) for saithe (P. virens) and sturgeon (A. 
brevirostrum) where the proportionality constant with the 95% confidence interval (CI), 
exponent (β) with standard error (SE) and 95% CI, coefficient of determination (r2) and 
sample size (n) are provided. * from log-log ordinary least square intercept and slope 
 

Species Relation 
Proportionality 
constant, b*  
[95% CI] 

Exponent, β* 
(±SE)  
[95% CI] 

r2 n 

P. virens l  α  b TBFβ 
0.47  
[0.39; 0.45] 

-0.74 (±0.11)  
[-0.97; -0.50] 

0.73 18 

 m  α  b TBFβ 
0.85  
[0.66; 1.1] 

-2.2 (±0.42)  
[-3.0; -1.3] 

0.63 18 

A.  
brevirostrum 

l  α  b TBFβ 
1.1  
[0.97; 1.1] 

-0.91 (±0.10)  
[-1.1; -0.70] 

0.81 22 

 
m  α  b TBFβ 

13  
[9.8; 16] 

-2.9 (±0.31)  
[-3.5; -2.2] 

0.81 22 

 

 

4.4.4 Maximum Tail Beat Frequency 

Maximum TBF was estimated based on a relationship obtained from observations 

provided in the literature (Bainbridge, 1958, Videler and Hess, 1984) (Table 4.4, 

Figure 4.8). Maximum TBF, TBFmax was a function of length (n = 44, r2 = 0.41, 

Figure 4.8) and dominant TBF was a predictor of TBFmax for saithe (n = 18, r2 = 0.79, 

Table 4.4, Figure 4.8) and sturgeon (n = 22, r2 = 0.78) respectively, with different 

relationships (slope and intercept) for each species. 

 

Table 4.4 Summary of log-log regression models for predicting tail beat frequency (TBF, 
Hz) as a function of maximum tail beat frequency (TBFmax) for saithe (P. virens) and 
sturgeon (A. brevirostrum), and fork length (l, m) a function of TBFmax for various fish 
species†, where the proportionality constant/intercept and exponent/slope (β) with 
standard errors (SE) and 95% confidence intervals (CI), coefficient of determination (r2) 
and sample size (n) are provided. †data from Bainbridge, 1958; Videler and Hess, 1984 * 
from log-log ordinary least square intercept and slope 
 

Species Relation 

Intercept or 
proportionality 
constant, b* 
(±SE) [95% CI] 

Slope or 
exponent, β* 
(±SE)  
[95% CI] 

r2 n 

P. virens TBF  α b + β TBFmax 
3.9 (±0.38)  
[3.0; 4.7] 

2.6 (±0.32) 
[1.9; 3.3] 

0.79 18 

A. brevirostrum TBF  α b + β TBFmax 
2.6 (±0.26)  
[2.1; 3.2] 

1.5 (±0.18)  
[1.1; 1.9] 

0.78 22 

Various species† l  α  b TBF βmax 
4.18 (±0.21) 
[2.76; 6.36] 

-0.51 (± 0.09) 
[-0.71; -0.32] 

0.41 44 
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Figure 4.8 (a) Log-log relation between maximum tail beat frequency (TBF, Hz) in 
relation to length based on 11 species (n = 44) from the literature (Bainbridge, 1958; 
Videler and Hess, 1984) and (b) linear relation between maximum tail beat frequency 
(TBFmax, Hz) and dominant TBF (Hz) for saithe (filled circles, n=18) and sturgeon (open 
triangles, n=22) with ordinary least square regressions (solid line) bracketed by 95% 
confidence intervals around the regression (dashed line) and the predictions (dotted 
lines). 
 

4.5 Discussion 

It has been historically difficult to examine allometric scaling relationships between 

swimming speed, tail beat frequency and size in fish beyond the theoretical (Hill, 

1950; Bainbridge, 1961; Gray, 1968; Webb, 1976a), largely due to the difficulty of 

obtaining data on free-swimming fish across a suitable size range (Robinson and 

Motta, 2002). Here, I quantified and validated theoretical allometric scaling 

relationships for two different free-swimming fish species of relatively large but 

different size ranges by using accelerometer tags. Using the acceleration records 

from the free-swimming saithe and sturgeon, I developed a signal-processing 

algorithm that extracts, from a non-stationary signal, the dominant tail beat 

frequency (TBF) for steady swimming and demonstrated that TBF is a function of 

size for each species; scaling with length-1 and mass-0.29. These exponents are not 

statistically different from Hill’s isometric prediction that TBF scales with length-1 

and mass-1/3 (Hill, 1950) and results from the species-specific independence between 

average swimming speed and each of length and mass (Sato et al., 2007). These 
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results subsequently allowed me to demonstrate that dominant TBF can be used to 

predict species-specific length-at-age with prediction uncertainties as low as 18%, 

thus providing a novel method for estimating length-at-age in the wild. 

 

Similar to my results, Sato et al. (2007) provided a unifying scaling model that 

predicts that similarly sized animals, among many large and widely disparate species 

(0.5 to 1600 kg), should display the same dominant stroke cycle frequency at a given 

mass (or length). In contrast, I found species-specific differences manifested as 

different model proportionality constants, despite the presumed geometric 

similarities. Such differences may be masked in Sato et al. (2007) by the large 

species-size range they analyzed and when their data were reanalyzed from a species-

specific perspective, the differences emerged. My results above predict that the 

dominant TBF for sturgeon is twice that of saithe at the same size (and the observed 

was as much as three fold higher), and I estimated that the swimming speed for 

saithe, while necessarily taken with caution, was lower in sturgeon of the same size. 

Since my results also indicate that swimming speed and size are independent for 

each species (Sato et al., 2007), this difference may be due to differences in pressure 

load (Gazzola et al., 2014). Morphological limitations, such as high drag resulting 

from body form and external bony scutes, exacerbated by low thrust from a 

heterocercal tail (Webb, 1986), may further account for reduced swimming 

‘efficiency’ (Wu, 1971) among sturgeon relative to similarly sized saithe. Differences 

between interspecific and intraspecific scaling are to be expected given that 

intraspecific scaling may not accommodate ontogenetic constraints. Interspecific 

scaling coefficients can also be expected to differ (e.g., scaling across mammalian leg 

bones versus scaling within bovine leg bones, (Christiansen, 1999). Such 

complications arise from fitting a bivariate relation to a multivariate problem (Taylor 

and Thomas, 2014).  

 

A theoretical basis for the observed species-specific differences may be found by 

extending the theory provided by Gazzola et al. (2014).  At very high Reynolds 

numbers (Re > 103 to 104, as for all fish studied here), and balancing thrust and skin 

drag for elongated swimming bodies, u is proportional to TBF ATBF (Gazzola et al., 

2014), where ATBF is the tail beat amplitude. For fish of a given size, when swimming 
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at high speeds, they maintain an approximately constant length-specific tail beat 

amplitude (Bainbridge, 1958; Gazzola et al., 2014) which can be defined as ATBF = al, 

where a is some species-specific coefficient; e.g., a = 0.18 for saithe (Gazzola et al., 

2014). Given that u α TBF a l, and if TBF α l-1 as indicated by my observations and 

those of others, then u must be constant. Similarly, at a given speed u, TBF relates to 

length as TBF α (al)-1 and this not only provides a mechanical justification for the 

observed scaling relationship, it also offers an explanation for the differences in the 

species-specific models; i.e., the species-specific coefficient, a (that scales the 

constant tail beat amplitude with body length), affects the constant in the scaling 

relationship accordingly. Until it can be demonstrated that length-specific stroke 

amplitude (ATBF) is species independent, it is difficult to validate an interspecific 

relationship. Not only does this advance the scaling between TBF and length, it 

implies that for a given species, fish swimming speed is independent of length.  

 

Hill’s isometric model (1950) is assumed to hold only for efficient movement during 

“natural swimming behaviour of free-ranging animals in contexts where they are 

expected to swim efficiently” (Sato et al., 2007). While my studies did not allow the 

observation of movements unequivocally known to be associated with the above 

contexts, the predicted relationship was validated. This was achieved by estimating 

the dominant TBF from the acceleration record using a novel algorithm and 

discarding unsteady swimming movements. Additionally, I confirmed that for the 

longest 10% of the continuous steady swimming segments used in the analysis, 

swimming could be shown to be efficient by calculating the Strouhal number (St), a 

commonly used index of efficient swimming, St = ATBF TBF/u, where ATBF = tail beat 

amplitude and u = swimming speed (Sato et al., 2007; Gazzola et al., 2014). For 

example, St for saithe was calculated using the estimated swimming speed (Videler 

and Hess, 1984) with a tail beat amplitude of 0.18 l (Gazzola et al., 2014). For the 

stable TBF segments the St estimates were between 0.22 and 0.23; close to that 

expected for saithe during efficient swimming (Kohannim and Iwasaki, 2014). 

Additionally, it can be shown that dominant TBF is linearly proportional to 

maximum TBF (Figure 4.8, Table 4.4), which further validates its use as a proxy for 

efficient swimming.  
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My results are coherent with the Sato et al. (2007) cross-species model and 

consistent with the prediction by Hill who equated the work a muscle produced (α 

m) at a given frequency (TBF) with the mechanical power required to counteract 

drag. However, my results are in stark contrast to the theoretical suggestions 

presented by Bainbridge (1958) that u α l 0.39 for high Reynolds numbers, by Gray 

(1968) that TBF α l -0.44, and by and Wu (1971) that TBF α l -0.88. If swimming speed is 

proportional to length, with some exponent c, then TBF scales with l c-1 as predicted 

by Webb (1975). For example, at maximum sustained tail beat frequency, TBFmax  is 

proportional to l -0.51. Given u α TBF a l, this occurs if uMS α l 0.49, which is close to the 

predictions by Webb (Pedley, 1977; Peters, 1983). This suggests that the above 

theoretical models based on muscle power output are insufficient in explaining the 

underlying mechanism(s) for fish. The most likely reason is the discrepancy between 

(theoretical) swimming speeds and the swimming modes considered (e.g., critical, 

maximum, sustained, etc.) and how poorly those modes correspond to the observed 

dominant swimming mode, which may in fact be the ‘efficient’ or preferred 

swimming mode adapted to by a given fish/species. This may help explain why my 

estimates of average TBF are much lower than those predicted by Videler and Hess 

(1984) and Videler and Wardle (1991); and closer to estimates made for comparable 

species in the wild, such as Chinese sturgeon (Acipenser sinensis, Watanabe et al., 

2008), trout (Oncorhynchus mykiss, Kawabe et al., 2003b), and sockeye salmon 

(Oncorhynchus nerka, Stasko and Horrall, 1976). Thus, I suggest that “efficient” 

swimming in fish be defined by the free-swimming fish itself; i.e., the characteristic 

swimming associated with the steady and dominant TBF. Such a definition is 

testable and it may help advance the science of fishing swimming that has been 

undergoing refinement for more than six decades. 

 

Calculation of Swimming Speed 

Since it is difficult to obtain measurements of swimming speed in situ, I used the 

species-specific prediction models from the literature to estimate swimming speed. 

However, different models in the literature that scale TBF with swimming speed 

appear incommensurable. For example, while using similar sized white sturgeon 

(Acipenser transmontanus), Long (1995) predicts swimming speeds that are 3 to 4 

fold lower than those provided by Cheong et al. (2006). Similarly for saithe; Videler 
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and Hess (1984) predict almost twice the swimming speed reported by Steinhausen 

et al. (2005). Therefore, absolute values of estimated swimming speeds, including 

the estimates I provide here for saithe and sturgeon, must be considered cautiously. 

Nevertheless, the independence of body length with swimming speed at the 

dominant TBF holds for all speed and TBF prediction models found in the literature. 

I note that for saithe, I used the Videler and Hess model because the observations 

corresponded well to the theoretical model proposed by Kohannim and Iwasaki 

(2014) and Lighthill (1960, 1971). 

 

Implications for measuring size-at-age in the wild 

I have demonstrated that it is possible to predict size from dominant TBF by using 

species-specific models based on accelerometer tags mounted on free-swimming 

saithe and shortnose sturgeon of various sizes. While the confidence intervals for 

each of the models are reasonable, the large prediction intervals may not yet provide 

a suitable alternative to the conventional methods of estimating size-at-age to infer 

growth rate. I think that the model coefficients of determination and the prediction 

intervals, and therefore length prediction certainty, should improve if such studies 

were repeated over longer periods within more natural environments using a greater 

range of lengths. Based on the theoretical prediction as outlined above, and 

demonstrated by empirical data for sturgeon, this scaling exponent is predicted to be 

-1 since TBF α (al)-1 and therefore l α (a TBF)-1. In summary, for a given species, size 

is directly and inversely related to the dominant tail beat frequency, thus allowing 

the estimation of size from the dominant TBF in the lab or in the wild, as shown here 

from an empirical and theoretical perspective.  

 

Differences that fish experience in the lab vs. field environment (currents, schooling, 

behaviour) may certainly affect the observations and associated prediction model. 

Some of my observations may allow me to predict such effects on the prediction 

model. The experimental set-up leads me to conclude that the effect of currents is 

expected to be minimal, since for sturgeon, which were exposed to variable currents, 

the scaling relationship did not seem to be affected. This is not surprising as for 

most, but not all fish in the ocean, lakes and large rivers the current eddy-field is 

much larger than the fish. Furthermore, when adding data on TBF collected in the 
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field in a similar species (Acipenser sinensis, Watanabe et al., 2008), the prediction 

model holds and the TBF observations support my model. Given the TBF 

observations, my model predicts size-at-time to an accuracy of 4 – 14% compared to 

their measurements, which certainly suggests confidence in my model. The effect of 

schooling may have an effect on steady swimming. For example, saithe are a 

schooling species and the data were collected while fish were spending some of their 

time swimming in schools or solitary. This difference in swimming behaviour was 

not apparent in the scaling relationship. Sturgeon were randomly assigned to a swim 

tank where they were allowed to swim solitary or with conspecifics. Again, when data 

were pooled by experiment type (solitary vs. communal) no trend appeared. I do not 

believe that behavioural differences in the wild will have a significant effect on the 

scaling relationship since, e.g., feeding behaviour and other movement-related 

behaviour (e.g., spawning, escape etc.) is often exhibited by non-steady and burst 

acceleration swimming (e.g., Domenici and Blake, 1997). Since the proposed 

algorithm removes such swimming bouts prior to estimating the dominant tail beat 

frequency, such behavioural differences should not affect the result. 

 

For the model predictions to prove useful in measuring size-at-time (and eventually 

growth) a study similar to mine needs to be conducted using fish as they grow to 

unambiguously demonstrate that within individual variation over time is less than 

within and among size-class variations. Such a study would determine the utility of 

the model and using accelerometry to estimate size-at-time (and growth) in the wild 

as a reasonable alternative to conventional methods such as post-mortem 

morphometrics that include otolith microstructures. While it is generally accepted 

that otolith growth is a “running average” of somatic growth (Campana and Neilson, 

1985) there are uncertainties in the accuracy of back-calculations of fish size or 

growth rate from otolith size due to reader bias (Faust et al., 2013; Sardenne et al., 

2015) or bias introduced by the way the otolith is cut (Panfili and Ximenes, 1992; 

Francis and Campana, 2004). 

 

The use of more replicates among size-classes and across a larger size range will 

likely improve the prediction interval and explained variance by reducing within-

class variation that is likely related to individual variability in the short-term 
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response to tagging-induced stress. Adding additional parameters that scale with 

length, and (or) by combining the knowledge of the initial size at fish capture along 

with the theoretical characteristics of growth potential, could further improve the 

model prediction of size over time by using the prediction from the scaling model in 

a state-space model. The indirect observations of length from the scaling relationship 

provides the final element to be combined with an initial measurement of fish length 

(when tagged) and a prediction from fish growth theory, which may even include 

additional predictors (such as temperature, Neuheimer and Taggart, 2007) to 

construct a state space model of fish length at time. Such a model may provide a 

more reliable time series of length-at-age. For example, an additional parameter 

could be the maximum velocity (or maximum tail beat frequency) that scales with 

length as shown in Table 4.4 and Figure 4.8 using 11 species drawn from the 

literature (Bainbridge, 1958; Videler and Hess, 1984) and maximum TBF that is 

proportional to l -0.51. However, it is difficult to observe maximum TBF in nature and 

likely more difficult to determine when maximum TBF is reached. Furthermore, 

when such a model is used to calculate maximum TBF for the saithe and the 

sturgeon, maximum TBF was linearly related to dominant TBF for saithe with a slope 

of 2.6 and for sturgeon with a slope of 1.5 (Table 4.4). Therefore, adding this 

parameter to the scaling model may prove redundant.  

 

Assuming these prediction models can be further validated in nature, and that 

micro-processing technology of archival accelerometer sensors can employ an a 

priori determined algorithm that continuously (or duty-cycled) calculates size-at-

time, then in situ estimation of size-at-time and growth rate could be achieved. The 

algorithm that relates dominant TBF to size has the potential of providing a powerful 

tool in estimating size-at-time in the wild; something yet to be achieved. Since this 

algorithm is based on sampling a known log-normal TBF distribution, which would 

require ~30 measurements for reliable estimation (Central Limit Theorem), and the 

dominant TBFs among comparable species can be sampled at a low frequency (~ 

15Hz), then the accelerometer-tag power consumption would be comparably low. 
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Chapter 5 MEASURING ABNORMAL ROTATIONAL 

MOVEMENTS IN FREE-SWIMMING FISH WITH 

ACCELEROMETERS: IMPLICATIONS FOR QUANTIFYING 

TAG- AND PARASITE-LOAD 

 

 

The majority of this chapter is in press as: 

Broell, F., Burnell, C. and Taggart, C. T. (2016). Measuring abnormal 

rotational movements in free-swimming fish with accelerometers: 

implications for quantifying tag- and parasite-load. J. Exp. Biol. 
doi:10.1242/jeb.133033 

 

5.1 Introduction 

Quantifying the spatial-temporal distribution of free-ranging animals in the marine 

environment is problematic due to the paucity of direct observations (Sakamoto et 

al., 2009; Preston et al., 2010).  This can be partially overcome by using a variety of 

tags that range from conventional tags (e.g., Petersen or Floy tags; Petersen, 1896, 

McFarlane et al., 1999) to more advanced electronic tags (Cooke et al., 2004; Bograd 

et al., 2010). Animal-borne archival tags can provide a means to monitor movements 

of aquatic animals and their environment through in situ measurements such as 

acceleration, temperature and depth. Such data can be used to indirectly quantify 

variation in behaviour, energetics, and physiology, and to infer how animals interact 

with each other and their environment (Cooke et al., 2004) for habitat modeling and 

conservation management (Bograd et al., 2010; Whitney et al., 2010). For example, 

micro-storage accelerometer tags allow for remote measurements of fine-scale 

movements and behaviour among free-swimming fish in time and space in 

controlled mesocosm environments (Chapter 3; Chapter 4; Gleiss et al., 2010; Noda 

et al., 2014; Wright et al., 2014), as well as in the wild (Kawabe et al., 2003a; Kawabe 

et al., 2003b; Tsuda et al., 2006; Whitney et al., 2010; Carroll et al., 2014).  
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The use of accelerometer tags in bio-logging studies has increased due to their 

commercial availability, data-storage capabilities, and versatility of attachment 

(Ropert-Coudert and Wilson, 2005; Rutz and Hays, 2009). As with any tagging, 

external or internal, tag attachments can alter the natural behaviour and physiology 

of the tagged fish (Ross and McCormick, 1981; Greenstreet and Morgan, 1989; 

Barrowman and Meyers, 1996; Björnsson et al., 2011; Cooke et al., 2012, Jones et al., 

2013). In situ capture-recapture or tag-recovery studies using conventional or 

electronic tags are typically based on the assumption that there is no significant 

effect of the tag on the fish and that tags are not lost or shed through erratic 

swimming (Bridger and Booth, 2003). If invalid, the assumption can lead to 

compromised estimates of the metrics used to estimate population size and 

distribution as well as activity patterns and energy budgets (Bridger and Booth, 

2003; Drenner et al., 2012). This is especially problematic in bio-logging studies 

where data from a few (typically <10) individuals are collected to make inferences 

about entire populations (Cooke et al., 2004).  

 

In fisheries applications, the general criterion used to minimize potentially adverse 

tag effects is the “2% rule” that assumes tag effects are negligible if tag weight is < 2% 

the body weight of the tagged animal (Winter, 1996), regardless of attachment 

method. However, tag weight is not the only factor influencing tag impact (Jepsen et 

al., 2015), and percent weight is regarded by many to be a questionable metric 

(Brown et al., 2006; Jepsen et al., 2015) because it assumes a 1:1 scaling effect of tag 

and animal, which is invalid. For some aquatic animals tag weight may have little or 

no effect, especially in organisms with bladders or lungs that can adjust their 

buoyancy (Jones et al., 2013). Other factors influencing tag effect include the tag 

dimensions, volume, buoyancy and attachment position, all of which significantly 

affect drag (Hoerner, 1965; Jones et al., 2013; Jepsen et al., 2015). Therefore, these 

variables require consideration to ensure that fish behaviour and movement is 

unaffected by the tag and attachment designs (Jepsen et al., 2015). 

 

As a behavioural response to tag burden, tag shedding has been reported extensively 

for various fish species, however, it is rarely quantified in relation to changes in 

natural behaviour and associated energy expenditure (Barrowman and Meyers, 1996; 
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Björnsson et al., 2011, Musyl et al., 2011). While direct observations of tag loss and 

associated swimming behaviour are limited, shortnose sturgeon (Acipenser 

brevirostrum), rainbow trout (Oncorhynchus mykiss), and salema (Sarpa salpa) 

fitted with transmitters attached below the dorsal fin have been observed to scour 

vigorously against tank enclosures leading to external tag loss and skin abrasions 

(Mellas and Haynes, 1985; Collins et al., 2002; Jadot, 2003). This distinctive and 

repeated scouring-associated rotational movement (flashing, scraping) in the 

vertical-lateral plane has also been observed in Atlantic cod (Gadus morhua) in 

order to dislodge parasites (Dr. Jeffrey A. Hutchings, Department of Biology, 

Dalhousie University, Canada, personal communication).  

 

To investigate the effect of external accelerometer tag burden on free swimming 

Atlantic cod held in a large mesocosm, I quantified the effect of different tag loads 

(mass) on the swimming behaviour associated with tag shedding, i.e., scouring. I first 

collected data from a size range of free-swimming Atlantic Cod (Gadus morhua) 

tagged with two different sizes of accelerometer tags. I then developed an automated 

algorithm to extract the scouring-associated rotational movement from the 

acceleration time series. I used the extracted scouring events to quantify the amount 

of time individuals spent scouring, a proxy for energy expenditure and fish size in 

relation to tag load and time of day, where for the latter there is limited knowledge of 

swimming behaviour during night-time conditions.  

 

5.2 Materials  

5.2.1 Study Animals 
Atlantic Cod (n = 22) of total length (l; m) ranging from 0.47 to 0.72 m (average ± 

SD, 0.61 m ± 0.069) with mass (m; kg) between 0.95 and 3.4 kg (2.0 kg ± 0.66) were 

collected near Nova Scotia, Canada. Data on the free-swimming fish were collected in 

a large mesocosm (Dalhousie University) with a diameter of 15.24 m, a depth of 3.54 

m at perimeter and 3.91 m at the centre, and a volume 684 m3 held at 11 °C ± 1.5.  

Experiments were conducted over 6 trial-days spanning a month. Each individual 

fish swim trial lasted between 24 and 30 h with a recovery period of three to five 

days. 
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5.2.2 Accelerometers 
I used two tri-axial accelerometer tag models (Maritime bioLoggers, Halifax, 

Canada): the cylindrical MBLog PT-1 (2.3 cm diameter, 5.0 cm length, 4.15 cm2 

frontal area, 18.8 g in air, hereafter referred to as the “large” tag) and the rectangular 

MBLog PT-2 (2.5 cm length, 1.7 cm width, 1.1 cm depth, 1.87 cm2 frontal area, 6.1 g 

in air, hereafter referred to as the “small” tag) (Table 5.1). Both tags were set to 

record tri-axial acceleration at 50 Hz (10-bit resolution) at ± 6 go. Drag coefficients 

for the tags were determined using the characteristic shape and length ratio (Table 

5.1) given high Reynolds number flow (Re > 104) (e.g., White, 1986). For both tags, 

the ratio between tag and body mass was < 2% (Table 5.1).  

 

Table 5.1 Specifications for tags used in free-swimming trials of Atlantic cod with tag-
specific drag coefficient (cd), sample size (n) and tag load (% body weight). 
 

Model Shape 
Outline  
dimensions  
(cm) 

Mean 
weight 
(g) 

Frontal 
area 
(cm2) 

Mean Tag 
load (%) 
(range)  

cd  n 

MBLog  
PT-1 

cylindrical 5.0 x 2.3  18.8  4.15 
1.1 
(0.57, 2.1) 

0.85 22 

MBLog  
PT-2 

rectangular 2.5 x 1.7 x 1.1 6.1  1.87 
0.42 
(0.17, 1.7) 

1.05 20 

 

 

5.2.3 Swim Experiments 
Cod were anaesthetized with MS222 (40 mg l-1), measured for l and m and 

permanently tagged using rectangular Petersen Disc tags to which the accelerometer 

was attached for swim trials. The Petersen discs were attached using two nickel pins, 

which ensured that the discs were stable and could not rotate (see Chapter 3 for tag 

attachment details). Fish were randomly assigned a small or large tag (Figure 5.1) for 

each swim trial. Fish swam ad libitum with no external stimulus save a natural 

daylight cycle. Following each trial the accelerometer was detached and the animals 

recovered in a holding tank (2.0 x 2.0 m). At least 22 h of free-swimming data were 

collected for each individual for a total of 1200 h of data. Data from the same 

individual carrying the same size tag were combined resulting in nD = 42 datasets 

with nS = 20 from fish carrying small tags and nL = 22 from fish carrying large tags. 



 76 

Animal care and sampling protocol for the tagging surgery for this study was 

approved by Dalhousie University (Permit number 12-049) in accordance with the 

Canadian Council for Animal Care standards.  

 

 

Figure 5.1 Smoothed histograms of size distribution for Atlantic cod for small tag (nS=29, 
dashed line) and large tag (nL=60, sold line) 
 

5.3 Methods 

5.3.1 Extracting Scouring Movements  
Scouring movements were characterized by a change in orientation of the tag as the 

animal rotated on its side to scrape its body along a substrate in the water column. 

Such movements varied in duration ranging from short (~3 s) to long (10 – 60 s). 

Typically, shorter duration movements were characterized by high-acceleration while 

longer duration scouring was characterized by lower maximum acceleration during 

which fish continued to beat their tail (Figure 5.2).  
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Figure 5.2 Illustration of fish movement and acceleration time series as accelerometer 
tag rotates during scouring. When the fish is in the upright position, gravitational 
acceleration is measured in the vertical axis (red). When animal turns laterally, 
gravitational acceleration is measured in the lateral axis (blue). 
 

To extract such movements, I make use of the fact that gravitational acceleration (g0) 

is recorded by the tag (Chapter 2), and when the fish is in its natural vertical 

(upright) position, gravitational acceleration is recorded in a combination of axes. 

When the animal rotates laterally (up to 90°), the contribution of g0 to the different 

axis can be used to measure rotation. For example, if most of g0 is recorded in the 

vertical (z) axis, during lateral rotation the contribution of g0 to the lateral (x) axis 

increases until all of g0 is recorded in x; corresponding to a full 90° rotation (“roll”, 

Figure 5.2). This shift in gravitational acceleration can be used to identify scouring 

movements. To extract this movement, the algorithm was designed to determine the 

angle in the xz-plane relative to the long-term average of the mean gravity relative to 

the tag (Figure 5.3). If this angle exceeded the pre-set threshold θTh, a scouring event 

was identified. Here, scouring was defined when an animal rotated at least θTh = 45°. 

At the centre of the algorithm is a sliding window of length lW, with an overlap of 5%. 

Within each window, the cross-over points (tci ) between the static acceleration in the 

x and z axes (Figure 5.4) using a zero-crossing approach are established (Kedem, 

1986; Stein, 2000; Chapter 4). Static acceleration was calculated applying a 2-s 

moving average to the time series (cf. Shepard et al., 2008a; Wright et al., 2014). 

Each rotation segment Ci within window W is bracketed by time tci,1 and tci,2. Within 

each segment, the angle between the acceleration component in the xz-plane and 
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reference alignment (vertical gravity), θCi is calculated. The angle of rotation θR 

within each segment is then calculated by comparing θCi with the initial orientation 

of the tag, θTag. The largest rotation angle, θR,max is then compared with the threshold 

value θTh. If θR,max is larger than θTh, the segment is classified as a scouring movement 

(e.g., Figure 5.5). The beginning and end of the scouring event is then defined by the 

first and last roll angle to exceed the threshold; thereby bracketing θR,max within the 

segment. This algorithm allows for variable tag orientation, and sliding window size, 

and by adjusting the angle threshold parameter, it is also allows for an adjustment to 

the degree of rotation of interest. By examining the sign of the rotation angle, this 

algorithm also extracted the directionality of the scouring event, i.e., left or right-

lateral side (Figure 5.5).  

 

 

Figure 5.3 Left panel: illustration of acceleration tag as attached to Atlantic cod. Right 
panel: illustration of angle projection on the xz plane where a is instantaneous 
acceleration at time ti,  is the time averaged acceleration vector (i.e., direction of 
acceleration when fish is upright). In this case, the tag is tilted in the positive xy-
direction relative to the fish.  is the projection of  in the xz-plane. Here, the fish has 
rotated ~120° with  the projection of a in the xz-plane. θR is the angle between  and 

. 
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Figure 5.4 Flow chart of the extraction algorithm used to extract scouring movement 
based on angular rotation in the lateral-vertical (xz) plane. θTag is the xz-plane 
orientation of the sensor on the fish, θTh is the threshold angle that denote vertical-lateral 
rotation (here θTh = 45°). The rotation angles θC,i are calculated within cross-over points 
tci,1 and tci,2, which are found through zero-crossing algorithm (Chapter 4). If the 
maximum vent rotation angle θR,max,i = |θC,i  - θTag | exceeds θTh, then scouring movement 
is identified . The output of the algorithm is a matrix containing start and end indices of 
events, event ID and the event rotation angle θR,i . 
 

tci,1 tci,2 

Input static lateral, aL and vertical acceleration aV, 
window length, lw, threshold angle θTh    

Step 2 Standardize event directionality 

 i. If |θR,max,i| ≥ θTh → high degree of  rotation = scouring  
ii. If |θR,max,i | < θTh → low  degree of  rotation = non-scouring 

Output Matrix with event start and end indices, event ID and 
rotation angle θR,i  

Step 3 Within each window i of  length lw, find cross-over points at time 
tci,1 and tci,2 through zero-crossing algorithm1 which bracket the rotation 
segment Ci 

Step 5 Determine rotation angle,  
θR,i = \θC,i – θTag\ and maximum rotation 
angle, θR,max,i 

Step 1 Calculate tag axes orientation, θTag = tan-1(aL/aV) 

Step 4 Calculate angle θC,i between 
acceleration component in xz-plane and 
reference aligment  

Step 6 Determine movement ID 
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Figure 5.5 Normalized histogram of roll angles within extracted window segments for 
four different cod showing fish scouring on both lateral sides (a, b), and individuals 
scouring mostly on the (c) left and (d) right lateral side respectively. 
 

The sensitivity and specificity of the algorithm was determined using a test data set 

comprised of a random selection of 10% of the experimental data spanning over 

1000 positive scouring events where all windows were visually classified. The 

accuracy, precision, recall or sensitivity, and F-measure were calculated as follows: 

 
Accuracy = (TP + TN)/(TP + FP + TN + FN) Eq 5.1 

 
Precision = TP/(TP+FP) Eq 5.2 

 
Recall or Sensitivity = TP/(TP+FN) Eq 5.3 
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 F – measure = (2 x precision x recall)/(precision + 

recall) 
Eq 5.4 

 

where TP, TN, FP, FN signify true positive, true negative, false positive and false 

negative respectively.  

 

Other detection methods (e.g., wavelet analysis) could not be used since the energy 

in the frequency spectrum for scouring (~1 Hz) is similar to that of steady-swimming 

(e.g., tail beat frequency of ~1 Hz; cf. Chapter 4). 

 

5.3.2 Statistical Analysis 
All scouring events were analysed using conventional methods (mean-comparison 

with (non) parametric tests) on the time spent scouring over the entire time series 

(hereafter referred to as %TSS) as a function of animal length, l (m), tag type, (s = 

small, l = large), tag load (% tag mass/body mass) and diurnal pattern (day, night). 

The energy spent during scouring movements was analyzed as a function of tag type. 

While energy expenditure could not be calculated exactly using respirometer 

calibrations (e.g., Wright et al., 2014), the nearly linear relationship between the 

vectorial sum of dynamic acceleration values, VeDBA (Eq 5.5) and oxygen 

consumption MO2 in a comparable species (Wright et al., 2014) suggests that VeDBA 

is a valid proxy for energy expenditure (Wilson et al., 2006). VeDBA was calculated 

using the following equation:  

 
 Eq 5.5 

where Ax, Ay and Az are the absolute dynamic acceleration values. Dynamic 

acceleration was calculated by removing the static component from the acceleration 

times series after applying a 2-s moving average to the acceleration time series 

(Shepard et al., 2008a; Wright et al., 2014).  

 

A time series of percent of time spent scouring (±SD) as a function of experimental 

day for all fish was calculated and differences between day and night scouring were 

assessed. Directionality of scouring movement was also assessed to determine if 
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animals spent more time scouring on the right-lateral side, where the accelerometer 

tags were attached.  

 

Algorithm computations and statistical analyses were performed using R (version 

0.98.977, R Foundation for Statistical Computing, Vienna, Austria), and MATLAB 

R2014b (The MathWorks, Natick, MA, USA). All estimates are provided as the 

average estimate plus or minus one standard deviation unless otherwise noted. 

 

5.4 Results 

5.4.1 Algorithm Efficiency 
The identification probability for scouring movements in the test data had an 

accuracy of 98.7%, a precision of 94.2%, a sensitivity of 92.9%, and an F-measure of 

0.936. This demonstrates that the algorithm was highly efficient in detecting and 

classifying scouring events.  

 

5.4.2 Statistical Analysis 
No significant differences for size distributions of fish used for each tag type were 

determined (Figure 5.1) and this allowed me to compare tag types independently of a 

fish-size effect.  

 

Time Spent Scouring, TSS 

TSS ranged from 0 to 20%. (4.2% ± 3.6) and there was no relationship between TSS 

and tag load (log-linear ordinary least square, OLS, p > 0.1, Table 5.2, Figure 5.6). 

Tag type was not a significant confounding factor (or interaction) when TSS was 

regressed against animal size, and animal size did not affect TSS (OLS with 

interaction, p for all parameters > 0.2, Figure 5.6). TSS did not differ between tag 

type (Figure 5.6, Wilcox Sign Rank Sum test, p > 0.2) and TSS was significantly 

higher during day (80%) than during night (20%, Figure 5.7). TSS increased 

significantly from an average of 3% to 8% after 6 experimental days regardless of 

recovery time between experimental days (Figure 5.8). On average, 70% (69.8 % ± 

1.7) of scouring time was on the right-lateral side where the tag was attached.  
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Table 5.2 Relations between tag effect (tag mass/body mass) and parameters: %time 
spent scouring (TSS), maximum lateral acceleration (Amax,x), maximum magnitude of 
acceleration, (MAmax), and VeDBA a proxy for energy expenditure. Intercept or 
proportionality constant, slope or exponent is provided if predictor is significantly 
different from zero with p-Value from Ordinary Least Square. 
 

Response Intercept (SD) Slope (SD) p-Value r2 n Model  

TSS   p = 0.93 0 42 Log-linear 

Amax, x 0.91 (0.051) 0.27 (0.056) p < 0.001 0.35 42 Log-log 

MAmax  1.6 (0.052) 0.37 (0.60) p < 0.001 0.49 42 Log-log 

VeDBA 0.38 (0.11) 0.79 (0.12) p < 0.01 0.51 42 Log-log 

 

Maximum Acceleration  

Lateral maximum acceleration, Amax,x, ranged from 0.05 to 1.63 g0 (0.37 g0 ± 0.28) 

and the maximum magnitude of acceleration, MAmax, ranged from 0.44 to 2.26 g0 

(0.63 g0 ± 0.46). Both parameters were positively related to tag load (log-log 

Ordinary Least Squares, r2 = 0.61 and 0.70 respectively, Table 5.2, Figure 5.6). Amax,x 

and MAmax were significantly higher (Wilcox Sign Rank Sum test, p > 0.05, Fig 6.5) 

for fish tagged with large tags (0.52 g0 ± 0.29, and 0.94 g0 ± 0.43 respectively) than 

small tags (0.20 g0 ± 0.10, and 0.21 g0 ± 0.28 respectively). Animal size did not 

affect either parameter (OLS with interaction, p > 0.05, Figure 5.6).  
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Figure 5.6 % time spent scouring (TSS), maximum lateral acceleration (Amax,x (g)) and 
maximum acceleration norm (MAmax (g)) as (a), (d), (g) a function of tag effect 
(expressed as % body weight); (b), (e), (h) Box and whisker plots illustrating differences 
between tag type (L – large, S – small); and (c), (f), (i) as a function of fish size (cm). In 
all panels, closed circles = small tag, open circles = large tag. Box and whisker plots 
illustrating differences, where the box illustrates the inter-quartiles range (IQR), the bar 
the median, the whiskers are ±1.5 IQR. 
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Figure 5.7 Box and whisker plots of time spent scouring, % TSS (%) during daylight vs. 
nighttime. Box illustrates the inter-quartiles range (IQR), the bar the median and the 
whiskers are ±1.5 IQR. 
 

 

 

 

Figure 5.8 Differences in time spent scouring (TSS (%)) over experimental days for all 
fish. Solid line is average % time spent scouring, dashed lines are 95% standard errors.  
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Proxy for Energy Expenditure  
The proxy for energy expenditure VeDBA was positively related to tag load (log-log 

OLS, p < 0.001, r2 = 0.51, Table 5.2, Figure 5.9) and animals tagged with large tags 

displayed significantly higher VeDBA during scouring movements (Figure 5.9). 

VeDBA was independent of fish size. When VeDBA was compared within individuals 

during times when they were tagged with a small vs. large tag, VeDBA was higher for 

fish tagged with large tags in more than 80% of the cases. Of those where VeDBA 

increased, the increase varied amongst individuals with an average of 62% and a 

range of 26% to 88%, confirming an increase in VeDBA with tag load across 

individuals. 

 

Figure 5.9 VeDBA as a proxy for energy expenditure as (a) a function of tag effect (% 
body mass) (b) box and whisker plots illustrating differences between tag type (L – large, 
S – small) and (c) as a function of size (cm). In all panels, closed circles = small tag, open 
circles = large tag. 
 

 

5.5 Discussion 

Based on high-frequency acceleration data, I have developed an algorithm to detect 

and identify rotational movement in the lateral-vertical plane of fish that is 

associated with a variety of behaviours and the algorithm has a high efficiency with 

98.7% accuracy and 94.2% precision. The efficiency was achieved by a relatively 

simple algorithm based on the rotation of the three dimensional coordinate system of 



 87

the tag given the orientation of the animal. Not only is this algorithm independent of 

tag attachment and orientation, it also can be easily modified to identify and 

differentiate various degrees of rotation through the adjustment of the input cut-off 

threshold. Furthermore, a rotation in a different plane (e.g., forward-vertical or 

forward-lateral) could easily be implemented to extend the algorithms’s applicability 

to identify various aberrant swimming behaviours among other species; i.e., those 

deviating from steady continuous swimming (e.g., Chapter 4), such as similar erratic 

swimming that has also been observed with other behaviour-associated movements 

as a modal action-pattern in at least 81 fish species (Wyman and Walter-Wyman, 

1985). For example, cichlids (Entroplus sp.) incorporate scouring as a means of 

courtship and pair-formation (Wyman and Walter-Wyman, 1985), ludericks (Girella 

tricuspidata) rotate when feeding on seagrass epiphytes (Matthew D. Taylor, New 

South Wales Department of Primary Industries, NSW AU, personal 

communication), and various salmonids exhibit comparable swimming patterns 

when building spawning redds (Evans, 1994; Esteve, 2005). Despite the widespread 

observations of this behaviour, there remains a lack of evidence that explicitly 

examines rotational swimming among fish species (Wyman and Walter-Wyman, 

1985). Therefore, the algorithm not only allows for the identification of a behaviour 

specific to scouring, it can potentially be applied to acceleration data collected from 

similar movements associated with parasite load, spawning, courtship or feeding and 

foraging in the wild. 

 

By changing the threshold angle (θTh), the algorithm can easily be adjusted to detect 

and identify different degrees of rotation and therefore the classification of 

movements associated with various behaviours beyond scouring, such as feeding, 

courtship, or spawning. Furthermore, the algorithm is robust and input parameters 

such as the window overlap and window length have little effect in algorithm 

efficiency (<1%). Since the initial orientation of the tag on the animal (i.e., angle 

between lateral and vertical axis in the frame of reference of the acceleration sensor) 

is incorporated in the design of the algorithm, constant tag orientation amongst 

individuals or even within a single individual is not essential. It is further possible to 

determine the scouring direction (clockwise or anticlockwise) by using the sign of the 

rotation angle and thereby delivering even more fine-scale behavioural information.  
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5.5.1 Usability 

Typically, accelerometer measurements do not provide rotational information such 

as angular velocity and the direction of movement. A gyroscope can directly measure 

angular velocity and if the initial attitude is known any new attitude achieved 

through rotational movement can be estimated using the attitude change calculated 

from the gyroscope measurements (Noda et al., 2013). Therefore, a gyroscope sensor 

could easily and directly measure rotations in any plane. However, due to battery and 

tag-size constraints, tags are frequently deployed with a single sensor, and 

accelerometers are typically preferred over gyroscopes. Accelerometer sensors not 

only deliver crucial information such as a proxy of energy expenditure (Wilson et al., 

2006) and behaviour, they also draw less power than gyroscopes. For example, a 

sensor chip commonly used in biologging tags (InveSense MPU-9250, InveSense 

2015) with a typical operating circuit in the 3-axis gyro mode requires a supply of 3.2 

mA, while in the 3-axis accelerometer mode requires 0.45 mA – nearly 7-fold less at 

the same operating supply voltage. This is especially important for data-logging 

applications in fish where tag size, which is a direct function of battery size and 

power consumption, is severely constrained by fish body size. Here, I have shown 

that rotational movement can be well identified using the tri-axial acceleration signal 

without the use of a gyroscope sensor and can be of considerable value in studies 

where only accelerometer tags are deployed.  

 

5.5.2 Tag Effect 

Energetic Consequences of Tag load: Chronic and Acute Effects 

Reduced swimming performance of tagged fish has been observed in various 

salmonids (Greenstreet and Morgan, 1989; McCleave and Stred, 1975) and 

perciformes (Mellas and Haynes, 1985; Ross, 1981). However, < 2% tag load (i.e., tag 

mass/body mass, Winter, 1996) is often assumed to not significantly affect 

swimming ability and behaviour. Despite adhering to the 2% tag-load rule I found 

that all tagged animals spent a significant amount of time scouring – a behaviour 

often observed in Atlantic cod to dislodge parasites (Dr. Jeffrey A. Hutchings, 

Department of Biology, Dalhousie University, Canada, personal communication). 

My findings indicate that there may be more fine-scale effects of tag load that have 

not yet been considered given traditional metrics such as tag retention and survival 
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(e.g. Ross and McCormick, 1981; Greenstreet and Morgan, 1989; Barrowman and 

Meyers, 1996; Björnsson et al., 2011; Cooke et al., 2012). Another important point to 

note is that despite a ‘small’ tag load of less than 2%, significant tag effects were 

observed, including some individuals that spent up to 20% of their time scouring. 

The total time the animals spent scouring was independent of tag load and this 

indicates that lower tag load does not necessarily result in reduced tag effect. The 

acute cost and physical damage that is caused by scraping the body to dislodge the 

tag can damage skin and provide opportunity for secondary infections to occur. 

Secondary infections can affect animal behaviour and can have energetic 

consequences, affect growth rate, reproductive performance and survival (Barber et 

al., 2000).  

 

The chronic cost is the cost to the animal due to energy expenditure associated with 

added drag as well as tag-load. While individual fish exhibited high variability in 

scouring behaviour and associated VeDBA, generally, fish that carried a tag with a 

higher tag to body weight ratio exhibited higher lateral and full-body acceleration 

during such scouring movements, which implies that they used more energy when 

attempting to dislodge a larger tag.  Specifically, VeDBA increased 5 fold when tag 

load (related to body mass) was doubled from 1 to 2%. Subsequently, these exhibited 

significantly higher maximum lateral acceleration, Amax,x and whole body 

acceleration, MAmax. Therefore, the scouring force, FD, exhibited must be higher 

since FD α m MAmax, where m is fish body mass, and this naturally leads to an 

increase in energy expenditure (Videler, 1993).  

 

The strategy for allocation of energy is an important contributor to physiological 

(e.g., oxygen consumption and heart rate) and behavioural (e.g., reproduction, 

foraging) ecology (Clark et al., 2010) and growth. An increased energy expenditure 

associated with tag-load reducing response in fish could result in reduced 

reproductive rates, growth rates or survival.  

 

Tag Load Confounding Factors 

For aquatic organisms with the capability to regulate buoyancy through swim 

bladders (or lungs), the effect of tag load as the weight of the tag and fish in air is 
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negligible in comparison to the drag coefficient, frontal area, and increased drag 

(Jones et al., 2013).  My results are confounded by other factors beyond just tag 

weight, given the large difference in tag frontal area (5.14 cm2 vs. 1.87 cm2) as well as 

tag length and shape, which affect the friction drag. Thus, tag load expressed as 

%body weight does not reflect the true tag load. In an attempt to disentangle mass 

and other tag effects I separated tag types and examined the effect of tag to fish 

frontal area ratio (tag frontal area/fish frontal area) within tag type (mass term 

disappears). While increase in parameters (Amax, Mmax, VeDBA) persists within tag 

type, the amount of explained variation was marginal, indicating that other factors 

(mass, buoyancy, etc.) are likely involved. Given the strong correlation between tag 

load expressed as weight and tag load expressed as frontal area (r2 = 0.9) due to the 

same aspect ratio, the experimental design did not allow me to disentangle the 

underlying effects that are responsible for the observed pattern in increased Amax,x, 

MAmax, and VeDBA. However, it remains that the 2% body rule may not be a valid 

metric given the other variables that affect tag burden (tag buoyancy, shape, friction, 

etc), and even if the % weight load is small, the effect on the animal due to the 

confounding factors may be high. Furthermore, the time spent scouring in my study 

was clearly independent of tag mass or tag frontal area, which in turn, suggests that 

the observed effect of tag burden is likely attributable to irritation, rather than tag 

properties, and there is no simple means of assessing irritation. 

 

Additionally, externally attached tags have been shown to influence the 

hydrodynamics around the fish and can lead to decreased swimming performances 

and associated energy expenditure given increased frictional drag and flow resistance 

(Arnold and Holford, 1978; Ross and McCormick, 1981; Mellas and Haynes, 1985; 

Bridger and Booth, 2003; Jones et al., 2013; Janak et al., 2014). An increase in drag 

causes a proportional increase in power output, P, of the tagged animal, described by  

 P = FD u or  

P α cdu3 
Eq 5.6 

where FD is the drag force, cd is the drag coefficient and u is swimming speed (Jones 

et al., 2013). Therefore, increased drag requires an increase in power output by the 

animal at constant speed (Jones et al., 2013). For example, for a 0.73 m fish (cd = 
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0.01 (Blake, 1983)) swimming at 1 m s-1, a first principle approximation of the drag 

force,  

 
FD = 0.5 ρd u2 cd Atag  Eq 5.7 

where Atag is the cross-sectional area of the tag and ρd the density of the water (1029 

kg m-3), reveals that FD increases from 1.24 N for a fish carrying the small tag (cd,S = 

1.05, Atag,S = 0.00027 m2 ) to 1.26 N for a fish carrying the large tag (cd,L = 0.85, Atag,L 

= 0.00038 m2). This incremental drag increase is nearly independent of fish size, 

since the difference in theoretical drag from the tag is negligible compared to the 

drag at different size (m) of fish (FD,0.25m = 0.13 N, FD,0.42m =0.36 N, FD,0.73m = 1.1 N at 

1 ms-1). While here, only energetic consequences of tag-load reducing behaviour were 

investigated, the added drag due to tag load would likely increase the estimated 

energy expenditure during routine swimming movement and exacerbate the overall 

energy expenditure. Arnold and Holford (1978) suggest that a tag of similar drag 

coefficient (cd = 0.6) only increases total drag by 5 to 7% in Atlantic cod during 

routine swimming. In their calculations the authors do not observe or quantify 

scouring movement since experiments were conducted in a flume and not on free-

swimming fish. Given that the tags in this study and based on the ratio between tag 

drag, dtag = Atag cd,tag, and animal drag Dfish = Afish cd,fish the increase of drag for a 0.73 

m fish would be 12 and 13% for the small and large tag respectively in free-swimming 

fish. There is little difference between the two tags and both estimates are much 

higher than in Arnold and Herford (1978) for the same sized fish (1%). Since the 

cross-sectional areas of the tags used here are 3 to 4.5 times larger and drag 

coefficients are significantly higher, then the estimated added drag is higher. While 

this increase may not significantly affect swimming ability (Arnold and Holford, 

1978; Cooke, 2003), given my findings that relate to scouring behaviour, tag effect 

studies that only investigate added tag drag may underestimate overall tag effect. 

  

Given my observations, a decrease in tag load may be able to reduce chronic cost 

associated with increased energy expenditure during scouring movements and drag. 

However, acute costs associated with physical damages will likely be constant since 

they are independent of tag load (even below the 2% body rule). This is a significant 

result, since generally a decrease in tag load has been assumed to lead to a decrease 
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in tag effect, but there is no means of decreasing irritation, and this suggests external 

tagging will always incur a cost.  

 

Diurnal patterns 

Cod spent a significantly greater amount of time scouring during the day (80%) than 

during the night (20 %) and exhibited preferential scouring on the right-lateral side 

where the tag is attached suggesting that they experience the asymmetry in the tag 

load. Typically, if a single-sided load is attached to a buoyant normally-upright object 

(e.g., a submarine) it creates a rolling movement since the weight is not equally 

distributed and neutral causing an angle of list and/or angle of loll – referred to as 

the trim or ballasting problem. Since it is only during the day that cod, a visual 

predator and schooling species, experiences sufficient light for visual referencing of 

its position (dispersed vs. aggregated; Brodeur and Willson, 1996; Axenrot et al., 

2004), I assume that only then do they have a substrate reference for scouring. It is 

equally possible that it is only during day that the angle of tilt caused by the 

asymmetrical tag load is apparent to the fish and therefore they try to compensate 

(Webb, 2002) and/or remove the load. If it is indeed related to the angle of list 

and/or the asymmetrical load, it becomes essential that tag load (external or internal 

tags) is mounted symmetrically around the centre of gravity and possibly the centre 

of buoyancy, though the latter is likely much more difficult to achieve with a 

physostomous fish. 

 

5.5.3 Implications 
Validity of data in the field 

Many studies now use implanted tags (Bridger and Booth, 2003; Cooke et al., 2004) 

due to a variety of advantages such as higher tag retention, reduced biofouling, and 

reduced added drag that may affect swimming ability, and thus increased survival 

rates (Bridger and Booth, 2003). However, in certain environments and 

experimental settings external tags are necessary (Cooke, 2003; Johnson et al., 2015) 

though they are not always ideal (Methling et al., 2011, Tudorache et al., 2014). This 

is especially true for Pop-up Satellite tags (PSAT), which have significant effects of 

added drag to the body (Bridger and Booth, 2003; Methling et al., 2011; Tudorache 

et al., 2014). Others (e.g., Thorstad et al., 2000; Cooke, 2003) did not observe 
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adverse short-term effects of tags with a similar tag load for fish, that unlike cod, 

spend little of their time on the bottom (e.g., salmon, except when spawning) and 

rolling behaviour was not observed in either species. Similar observations on 

shortnose sturgeon (Collins et al., 2002) have shown that these animals 

‘occasionally’ scrape the substrate causing eventual tag loss. Other research using 

similar tags and attachment methods (Chapter 4) on saithe (P.virens) did not show a 

similar behavioural reaction to tag load, but these animals are pelagic species and did 

not exhibit parasite reducing behaviour as observed in cod. Consequently scouring 

may be species-specific and more apparent in species associated with a benthic 

habitat.  

 

Given the results presented here and the significant time allocated by individuals to 

engage in tag load reducing behaviour, the assumption that the effect of the tag on 

behaviour and survival of the fish is minimal should be challenged. Especially the 

assumption that data from tags (especially externally attached tags) represents the 

normal behavioural repertoire of the tagged animal may be violated in species 

similar to Atlantic cod.  

 

Effect of missing scouring events 

The identification of scouring movements is crucial not only to determine potential 

tag effects, but also to differentiate such behaviour from routine swimming 

movements and other behaviours (e.g., feeding, migration etc.). If such movements 

are overlooked or misidentified, energy and activity budgets and related 

physiological estimates may be compromised. This is especially crucial given that 

some algorithms that are designed to identify burst acceleration movements 

associated with a feeding or escape response (Chapter 3; Noda et al., 2013; Noda et 

al., 2014) are based on comparing the variance amongst lateral and vertical or 

forward acceleration within movements. During scouring movements, fish also 

exhibit burst acceleration characterized by higher variance among the lateral and 

vertical axis when compared to other behaviours and therefore could easily be 

misidentified as a feeding or escape response. To ensure the identification of such 

events it is also crucial to ensure sufficient accelerometer sampling frequency: 

scouring movements, similar to feeding and escape response in other fish (Chapter 
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3), can occur over short time scales (< 1s), and if sampling frequency is too low (< 

10Hz) such movements may be overlooked or misidentified due to aliasing (Chapter 

3). This too could lead to compromised estimates of energy expenditure, but more 

importantly, a failure to challenge the assumption that the effect of the tag on 

behaviour and survival of the fish is minimal. Only by examining tagging effects on 

animal welfare and behaviour can data from such tags be used to make prediction on 

routine behaviour and movement (McMahon et al., 2012) 

 

Algorithm as parasite indicator with internally attached tags 

Demersal fish such as Atlantic cod have been observed to dislodge parasites (Barber 

et al., 2000; Øines et al. 2006) by scraping their lateral side along the bottom 

substrate. Documenting the functional significance of scouring with respect to 

parasite load is particularly important for cod (and salmon) given their increasing 

economic value in aquaculture production (Lysne et al., 1994) that can be 

compromised by external parasite infestations (Øines et al., 2006) and thus 

monitoring such behaviour becomes diagnostic. Infections in cod can induce altered 

time allocations for foraging and reproduction, reduce swimming performance, 

increase energy expenditure and change habitat selection, all of which may have 

implications for anti-predator behaviour, growth and ultimately survival (Barber et 

al., 2000; Jones and Taggart, 1998). While in this study the externally attached tags 

elicited a response in cod that is similar to parasite infestation, if accelerometer tags 

were attached internally and symmetrically they would likely not elicit scouring 

behaviour and all scouring movements recorded would then relate to parasite 

infection. Such data could then be used to quantify a response to parasitic infections 

and the onset of disease. Beyond diagnosing parasitic infections in species such as 

cod, this would prove especially useful given most fish species loose equilibrium in 

advanced stages of disease which is exhibited by lateral-vertical rotations due to loss 

of balance (e.g., whirling).  In an aquaculture setting this could help diagnose 

infected fish, by monitoring parameters studied here such as the percent time spent 

scouring or loss of equilibrium, and when an individual exceeds a predetermined 

threshold it could then be removed to help contain the infection. This would be 

useful given the continuous advancement in miniaturization and low-cost sensor and 
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telemetry applications that would allow for large-scale direct observations and an in 

situ diagnostic of infection.  

 

Limitations 

Dorso-lateral rotations as observed during scouring may also occur during other 

movement-associated behaviours such as feeding, courtship and spawning. Given the 

design of the algorithm I provide, it would be difficult to differentiate between 

different rotational behaviours if they occur in the same movement (xz) plane and to 

the same degree. Fish that were observed in this experiment did not exhibit other 

rotational behaviours that could confound the classification. For field or aquaculture 

applications, the algorithm would have to be optimized to account for other burst 

acceleration movements based on statistical parameters that are capable of 

differentiation among different behaviours (feeding, escape, scouring). 

  

In this study it was not possible to collect direct measurements of energy expenditure 

through conventional techniques (e.g., calorimetry, Walsberg and Hoffman, 2005; or 

oxygen consumption MO2, Clarke and Johnson, 1999) due to the need to collect data 

from free-swimming fish. However, given past research, it is reasonable to assume 

that either the integral of the acceleration vector norm (Bouten et al., 1994; Wang et 

al., 2005) or dynamic body acceleration, VeDBA (Gleiss et al., 2010; Wright et al., 

2014) can be used as a proxy for energy expenditure, since both are assumed to be 

(linearly) proportional to energy expenditure. While this proxy is useful in 

determining relative changes in energy expenditure it does not allow me to make 

deductions on ‘real’ energy expenditure (e.g., as measured by oxygen consumption). 

While the use of this proxy may be a debatable approach, especially when comparing 

across individuals, it is reassuring to find that when VeDBA is compared within 

individuals during times when they are tagged with a small vs. large tag, VeDBA is 

higher for fish tagged with large tags in more than 80% of the cases. Of those where 

VeDBA increased, the increase varied amongst individuals with an average increase 

of 62% and ranges from 26% to 88%, confirming an increase in VeDBA with tag load. 
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5.6 Conclusions 

Reduced swimming performance of tagged fish has been observed in various 

salmonids (Greenstreet and Morgan, 1989; McCleave and Stred, 1975) and 

perciformes (Mellas and Haynes, 1985; Ross, 1981). However, the effects of tagging 

are typically not addressed, and, there are few studies that have quantified fine-scale 

post-tagging behavioural responses in fish. This study has shown that even if 

relatively small tags (<2% body weight) are used on fish, there are significant effects 

on behaviour and likely associated energy expenditure. To further quantify the effect 

of external tags, assessing specific drag of the external tag is important. The results of 

this study have potential implications for the nature of tag deployments in the wild 

where external attachment methods are used. Based on the observations here, it may 

be worth considering additional factors when determining tag load and type 

especially for demersal fish associated with the benthic environment and species 

where a history of parasite load reducing behaviour is known. 

 



 97

Chapter 6 POST-RELEASE BEHAVIOUR AND HABITAT 

USE IN SHORTNOSE STURGEON MEASURED WITH HIGH-

FREQUENCY ACCELEROMETER AND POP-UP SATELLITE 

TAGS 

 

 

The majority of this chapter is under review in Animal Biotelemetry as:  

Broell, F., Taylor, A. D., Litvak, M. K. and Taggart, C. T. (under review) 

Post-release behaviour and habitat use in sturgeon measured with high-

frequency accelerometer and PSATs. Anim. Biotel.  

 

6.1 Introduction 

Quantifying the spatial-temporal distribution of free-ranging animals in the marine 

environment is problematic due to the paucity of direct observation (Cooke et al., 

2004; Preston et al., 2010).  This can be partially overcome by using a variety of tags 

ranging from simple physical tags (e.g., Petersen discs, Floy tags, etc., Petersen, 1896, 

McFarlane et al., 1999) to more advanced electronic tags (Cooke et al., 2004; Bograd 

et al., 2010). For example, animal-borne micro-storage (archival) tags provide a 

means to monitor high-resolution movement and behaviour of aquatic animals 

through in situ measurements from a suite of sensors such as temperature, depth or 

acceleration. Such data can be used to quantify variation in behaviour, energetics, 

and habitat use and therefore provide objective measurements of how animals 

interact with each other and their environment (Cooke et al., 2004). Most recently, 

accelerometer sensors have been used for remote measurements of fine-scale 

movements among free-swimming fish and the acceleration signals can be used to 

quantify movement in time and space in controlled mesocosm environments (Gleiss 

et al., 2010; Noda et al., 2014; Wright et al., 2014), as well as in the wild (Kawabe et 

al., 2003a,b; Tsuda et al., 2006; Sakamoto et al., 2009; Whitney et al., 2010; Carroll 

et al., 2014). Typically, in situ measurements are collected using implanted archival 
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tags or pop-up satellite tags (PSAT) that are deployed over weeks to months or even 

years (Musyl et al., 2011).  

 

Implanted archival tags involve the recovery of fish, whereas PSATs release after 

some pre-set time, float to the surface and processed data are transmitted to a 

satellite system without the need to recover the tags. This allows for applications in 

environments where fish move vast distances in the open ocean and in cases where 

physical tag retrieval is logistically impossible. Since PSATs typically use the ARGOS 

satellite system, which constrains data transmission (Fedak et al., 2002), data are 

binned prior to transmission (Musyl et al., 2011). While raw data are archived on 

board, they are rarely recovered since it requires tag recovery. For low data-volume 

sensors such as temperature, depth or light, the associated binned (histogram) data 

can be informative and provide insights into animal distribution and habitat 

characteristics (Block et al., 2001; Campana et al., 2011; Armsworthy et al., 2014). 

However, more complex inertial sensors collect a much higher data volume due to a 

typically higher sampling frequency that cannot (limited band width) be directly 

transmitted to the satellite. Consequently, the binned or summarized data provide 

limited information on the rates of activity and fine-scale variation in the local 

environment especially for high-resolution sensors such as accelerometers or 

gyroscopes. 

 

A major challenge with PSAT accelerometer data relates to the PSAT attachment. 

Such tags generally employ a single-point attachment and release located at the 

leading end of the tag and tethered to the fish using various anchoring methods to 

the dorsal musculature (Block et al., 1998; Chaprales et al., 1998; Lutcavage et al., 

2001; Prince et al., 2002; Swimmer et al., 2002). While this provides the most 

reliable tag release (Musyl et al., 2011), the essential PSAT buoyancy (for recovery) 

causes the tag to flutter in the water column current and (or) as the fish swims in a 

manner comparable to a handheld balloon in the wind. Such an attachment causes 

increased drag due to the large cross-sectional area (Methling et al., 2011). The 

consequence is that the acceleration data are compromised due to the decoupling 

between animal movement and the fluttering movement and may not correspond to 

the movement of the animal. For example, it is simple to imagine a scenario where 
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the tag moves independently of the animal as unbalanced forces cause it to flutter 

when the fish is swimming. Further, when accelerating, the length of the tether will 

influence the extent of tag movement in relation to the animal movement. The 

solution to this problem is a rigid tag mount achieved by a longitudinal two-point 

attachment similar to methods used for archival accelerometer tags on fish (e.g., 

Kawabe et al., 2003a,b; Tsuda et al., 2006; Gleiss et al., 2010; Whitney et al., 2010; 

Noda et al., 2014; Wright et al., 2014; Carroll et al., 2014) and air breathing animals 

(e.g., penguins, or pinnipeds Payne et al., 2014).  

 

Further to these challenges, the trauma and stress associated with capture, handling 

and tagging injury or tag placement that impedes body functions and mobility can 

affect the behaviour of the tagged fish (Bridger and Booth, 2003; Hoolihan et al., 

2011). Observed behavioural changes have been related to the physiological and 

biochemical effects of exhaustive exercise associated with capture and handling 

(Wells et al., 1986; Skomal and Chase, 2002) along with blood acidosis and high 

blood lactate levels that have been reported for tuna, sharks, and billfish subjected to 

capture and handling (Wells and Davie, 1985; Skomal, 2007).  

 

In an attempt to collect high-resolution accelerometer data to determine fish 

movement as well as post-release behaviour I designed a short-duration PSAT study 

in an environment where physical tag retrieval was possible (a tidally influenced 

river) over a short period (days). I first developed a tagging protocol for a secure 

attachment of a high-resolution accelerometer on a PSAT tag and then investigated 

short-term behavioural response to tagging and behavioural and locomotion routines 

in relation to local environmental variables (temperature, light, depth, sea-level). The 

study animal was the readily available shortnose sturgeon (Acipenser brevirostrum) 

that inhabit the Saint John River and it tributaries. Along the east coast of North 

America, shortnose sturgeon typically remain in their natal river and estuary 

(Dadswell, 1979; Kynard, 1997), where they mostly feed on molluscs and large 

crustaceans without natural predators. In American waters their abundance is less 

than the minimum estimated for a viable population (Kynard, 1997) mainly due to 

anthropogenic impacts such as by-catch and poaching, blockage of spawning runs by 

dams and the regulation of river flows. Thus they are listed as endangered under the 
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Endangered Species Act 1973 (Kynard, 1997). There is an active recreational (catch-

and-release) fishery in Canada regulated by minimum size restrictions, however, 

direct and post-release mortality and injury have not been quantified. Therefore, a 

further aim of this study was to assess the suitability of high-resolution 

accelerometers for evaluating post-catch-and-release behaviour and assessing 

potential short-term effects of the catch-and-release fishery. For this purpose, I 

tagged 5 shortnose sturgeon with high-frequency accelerometers mounted on PSATs 

that recorded environmental variables over a short period of 2 days. 

 

6.2 Materials  

6.2.1 Study Site And Animals 
The shortnose sturgeon were caught in a recreational fishing competition in the 

Kennebecasis River, New Brunswick (45.49 N, 65.92 W, Figure 6.1). The River is 

estuarine with a fjord-like bay that connects it to the St. John River and the Bay of 

Fundy. The River has very little fresh water flux with only minor inflow (Trites, 1960, 

Hughes Clark and Parrott, 2001). The fresh water layer is between 5 and 13 m thick 

depending on the state of the river flow and the tide (Trites, 1960, Hughes Clark and 

Parrott, 2001) and the water in the Kennebecasis Bay is fairly stagnant although salt 

water can spill over the sill during a flood tide if the conditions are correct. Therefore, 

this environment presented an ideal testing ground for the deployment study.  

 

Shortnose sturgeon (n = 5, Table 6.1) of total length (l; m) ranging from 0.83 to 1.09 

m (0.96 m ± 0.096) in fork length and 0.94 to 1.21 m (1.06 m ± 0.11) in total length 

with mass (m; kg) between 4.00 and 12.8 kg (6.55 kg ± 3.68) were caught by rod and 

reel fishermen involved in the annual October catch-and-release sturgeon fishing 

derby. Fish were transferred to a holding pen set in the river were they were kept 

between 6 to 49 hours and each fish was tagged with a PSAT (SeaTag-MOD, Desert 

Star Systems LLC, USA), upon which I mounted a tri-axial accelerometer (MBLog 

PT-1, Maritime bioLoggers, Halifax, Canada) and a V9 acoustic transmitter (VEMCO, 

Amirix, Halifax, Canada). The MBLog PT-1 (50 mm length, 23 mm diameter, 18.8 g 

in air) and V9 (24 mm length, 5 mm diameter, 3.6 g in air) were glued to the PSAT 

(27.5 cm length, 2.5 cm diameter at narrowest point, 4 cm in diameter at widest 
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point, 145 g in air) prior to deployment (Figure 6.2) The PSATs recorded temperature 

(±0.1°C), depth (±2.15m) and ambient light (75 microLux resolution) at 1 Hz. The 

accelerometers recorded tri-axial acceleration at 50 Hz (10-bit resolution) at ± 6 go. 

The combined package is hereafter referred to as the ‘tag’ (167.4 g in air, 1.15 to 3.6 % 

fish body weight). 

 

Figure 6.1 Map of study area (adapted from Metcalfe et al., 1976). The solid rectangle A 
indicates study area in the Kennebecasis River in New Brunswick, Canada; the red 
marker indicates the release point.  
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Table 6.1 Data associated with shortnose sturgeon that were caught and tagged in the 
Kennebacais River, New Brunswick in October 2012. Data includes total length (TL, m), 
fork length (FL, m) and mass (kg). 
 

TL 
(m) 

FL 
(m) 

mass 
(kg) 

Date tagged Pop-up date 

PSAT 
recording 
duration 
(hh:mm) 

Accelerometer 
recording 
duration 
(hh:mm) 

1.21 1.09 12.8 10/02/2012 10/04/2012 36:22 44:54 

1.12 0.96 6.89 10/02/2012 10/04/2012 35:46 22:26 

1.05 0.92 4.04 10/02/2012 10/04/2012 45:46 46:30 

0.98 0.90 4.00 10/08/2012 10/10/2012 00:00 09:18 

0.94 0.83 5.07 10/08/2012 10/10/2012 00:00 20:42 

 

 

 

 

Figure 6.2 Illustration of tag attachment. Pop-up satellite attached to shortnose sturgeon 
with two dorsal attachment points. Black cylinder represents V9, grey cylinder MBLog 
PT-1. 
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6.2.2 Tag Attachment And Release 

Rigid tag attachment (Figure 6.2) was achieved by a lock and slide mechanism and 

two dorsal attachment points: one anterior (toward to the head) and on posterior 

(toward the dorsal fin). The tag release section, located at the tip of the PSAT, was 

attached to latex surgical tubing (0. 16 cm ID, 0.32 cm OD, 0.08 cm wall) passed 

through a single bony scute to the right lateral side of the fish and attached to a 

Petersen disc (Figure 6.2). The surgical tubing provided sufficient tension to hold the 

tag in place on the dorsum. The posterior attachment, anterior to the dorsal fin and 

located ~25 cm from the anterior attachment, consisted of a one-way female slide-

lock plate attached to two scutes on the left-lateral side and to a Petersen disc on the 

right lateral side and connected using surgical tubing. The male slide plate attached 

to the tag was then slid into the slide-lock plate where it was held in place by the 

tension created by the surgical tubing anchored anterior to the tag. The PSAT was 

equipped with an exploding charge release mechanism so it could release in 

freshwater. Once released from the anterior anchor, the tag slid out of the slide-lock 

plate, facilitated by the posterior tag buoyancy-package and drag. Since all 

attachments to the fish were made using dissolvable suture material, the slide-lock 

plate and Petersen discs were expected to eventually release from the animal.  

 

Once tagged, the fish were released into the river with tags set to pop up after 48 

hours. Following their release, the fish were actively tracked from a small vessel using 

a VEMCO directional hydrophone (VH110) connected to a receiver-decoder (VH100) 

following the Taylor and Litvak (2015) protocol. This allowed me to determine the 

location of the tagged fish prior to the scheduled PSAT release time.  This proved to 

be essential given that although all tags did pop-up, no ARGOS transmission for 

locating the tags were received due to a defect in PSAT manufacture. 

 

Fish care and protocols for fish holding, surgery, and tagging were approved by 

Mount Allison University (sturgeon, Permit 10-16) in accordance with the Canadian 

Council for Animal Care standards. 
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6.3 Methods 

A total of 144 hours of acceleration data were obtained from the five tag deployments 

(Table 6.1). Two PSATs failed to record environmental data and thus only three 

datasets of temperature, depth and light were available spanning periods of 35 to 45 

hours. Several analytical techniques were used to explore post-release behaviour and 

locomotion, and activity in relation to the ambient environment. To ensure that the 

rigid attachment did provide reliable accelerometer data, acceleration noise was 

compared to data obtained from mescocosm studies with the same species (Chapter 

4) wherein the tags were firmly attached to the fish.   

 

Swimming activity 

Steady swimming (dominant tail beat frequency, TBF (Hz)) was extracted using the 

steady-swimming extraction algorithm (Chapter 4) based on invariant zero-crossing 

segments (Kedem 1986; Stein, 2000). Absolute swimming speed during steady 

swimming, u (ms-1) was estimated based on TBF and the empirical relation provided 

by Long (1995) where u = l (0.005 + 0.138 TBF). The relationships between TBF, 

speed and length were then quantified based on prediction models proposed by Hill 

(1950) and Sato et al. (2007) and in relation to a data collected in a mesocosm study 

with the same species (Chapter 4). 

 

Orientation 

Animal orientation (roll angle - xz, θR  pitch angle - yz, θP) was calculated using the 

rotational algorithm outlined in Chapter 5 where the angles were calculated as 

follows: 

 

 
 Eq 6.1 

 
Eq 6.2 

 

where θ is the angle of orientation of the tag in the xz and yz plane (see Chapter 5), x 

is the static lateral acceleration, y the static forward acceleration and z the static 
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vertical acceleration. Static acceleration was calculated by applying a 2-s moving 

average to the time series (see Chapter 5).  

 

Post-release activity 

Post-release activity was assessed as a function of TBF and high-energy burst 

acceleration movement, which is a proxy for escape response or abnormal behaviour 

(Chapter 3). Burst acceleration movement was extracted using the algorithm outlined 

in Chapter 3, and a proxy for energy expenditure based on VeDBA (Wright et al., 

2014; Chapter 5, Eq 5.5), was estimated for burst acceleration and for steady-

swimming movement.  

 

Behavioural Routine 

Behaviour spectra were calculated using the method outlined in Sakamoto et al. 

(2009) by applying a wavelet analysis (minimum cycle = 0.04 s, maximum cycle = 80 

s) with a morlet mother wavelet function (order 10) applied to the lateral acceleration 

time series at 1 s intervals. The resulting spectra were clustered using a k-means 

algorithm to generate ethograms, which correspond to the percentage of time spent 

within a distinct behavioural cluster over time (e.g., Whitney et al., 2010; Nakamura 

et al., 2011; Watanabe et al., 2012; and others). 

 

Relation to environmental variables 

Animal behavioural clusters and locomotory activity were assessed in relation to river 

temperature, depth of fish and ambient light recorded by the PSAT for three fish, and 

if the length of deployment permitted (>12 hours) to tidal elevation recorded at 1 min 

intervals at Saint John station 65, 45.251W 66.063N (Environment Canada). Since 

the time series of dominant TBF was unevenly spaced, data were subsampled such 

that sampling frequency corresponded to 1/60 Hz and the environmental variables 

were sub-sampled to correspond to the same sampling frequency. A wavelet 

transformation was used on the dominant TBF time series for three individuals 

(0.83, 0.96, 1.09 m FL) to examine lower frequency patterns of activity in relation to 

behaviour.  
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Algorithm computations and statistical analyses were performed using R Studio 

Statistical Computing Software (version 0.98.977, R Foundation for Statistical 

Computing, Vienna, Austria), MATLAB R2014b (The MathWorks, Natick, MA, USA) 

and IgorPRO 6.3 (WaveMetrics Inc., USA, Ethographer Package). All estimates are 

provided as the average estimate plus or minus one standard deviation unless 

otherwise noted. Details on the various algorithms are found in Chapter 3, 4, and 5.  

 

6.4 Results 

Noise levels in the acceleration data were ± 0.01 g0, and no apparent tag movement 

(e.g., complete or partial detachment) was observed. These noise levels were similar 

to data from previous studies on free-swimming sturgeon (Chapter 4).  

 

6.4.1 Tail Beat Frequency And Swimming Speed 

Tail beat frequency 

Weighted distributions for TBF (Figure 6.3) were near log-normal with little 

variation among sizes and had an average of 1.1 Hz ± 0.47. Size did not have an effect 

on dominant TBF (weighted ordinary least squares, OLS, p > 0.5) though the 

suggestion of a slight increase with size for the larger fish (Figure 6.4) requires 

interpretative caution given the small sample size. When data were integrated with 

the mesocosm data for free swimming sturgeon (Chapter 4), TBF was a function of 

length (weighted log-log OLS, p  < 0.01, TBF = 1.1 l -1.1, r2 = 0.74, n = 27, Figure 6.5) 

with the wild fish falling within the prediction intervals of the mesocosm fish, though 

significantly lower than predicted for all but the largest two individuals (0.96 and 

1.09 m). On average, there were no differences in activity level (dominant TBF) 

between day and night (Figure 6.6) except for the two smallest individuals (Figure 

6.6a,b) where day activity was higher and lower than night activity respectively.  
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Figure 6.3 Normalized tail beat frequency (TBF, Hz) distributions from accelerometer 
records of shortnose sturgeon (n=5) based on weighted histograms of TBF extracted 
using the zero-crossing algorithm.  
 

 
Figure 6.4 Weighted boxplots of (a) dominant tail beat frequency (TBF, Hz) and (b) 
swimming speed as a function of fish size (n = 5) for shortnose sturgeon. Dominant TBF 
was extracted using the zero-crossing algorithm and swim speed was estimated using 
dominant tail beat frequency and functional relationships in Long (1995). 
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Figure 6.5 Log-log relations between dominant tail beat frequency (TBF, Hz) and length 
(m) for shortnose sturgeon from mesocosm experimental (solid circles, n=22) and field 
trials (open circles, n = 5) during active swimming. Weighted ordinary least square 
regressions (solid lines) are bracketed by the 95% confidence intervals (CIs) around the 
regression (dashed line). 
 

 
Figure 6.6 Normalized tail beat frequency (TBF, Hz) distributions from accelerometer 
records of shortnose sturgeon (n=5) based on weighted histograms of TBF extracted 
using the zero-crossing algorithm for day (blue) and night (black) for fish of size (a) 0.83 
m, (b) 0.90 m, (c) 0.92 m, (d) 0.96 m, (e) 1.09 m and, (f) all fish combined. 
 



 109

Swimming Speed 

Average estimated swimming speed for individuals was 0.14 ms-1 ± 0.025 (Figure 

6.4b). Contrary to predictions (Sato et al., 2007; Chapter 4) size did have a significant 

effect on average swimming speed during active swimming (weighted OLS, u = -0.04 

+ 0.18l, p = 0.1, r2 = 0.48, n = 5), but again, due to the small sample size this 

relationship should be interpreted with caution. If only the last two hours of data are 

considered, speed was independent of length (OLS, p = 0.7). When combined with 

data from the mesocosm studies (Chapter 4) there was no significant relationship 

between size and speed (log-log weighted OLS, p = 0.2, n = 27). 

 

Animal Orientation 

On average, most fish spent a significant proportion of their time (10 - 45%) tilted at 

pitch (y-z plane) angles greater than 20°, compared to lesser pitch angles (< 10°, 

~30% of the time) associated with steady-swimming (Figure 6.7). The body 

orientation in the x-z plane (roll) was between 5 and 10°, though the smallest 

individual spent a significant proportion of time (30%) with roll angles exceeding 45° 

(Figure 6.7a). 
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Figure 6.7 Normalized histogram for pitch angle (°) in the y-z plane (left panel) and for 
roll angle (°) in the x-z plane for fish of size (a) 0.83 m, (b) 0.90 m, (c) 0.92 m, (d) 0.96 
m, (e) 1.09 m. Angles were calculated using rotation algorithm outlined in Eq 6.1 and 6.2. 
 

6.4.2 Post Catch-And-Release Effect 
Revisiting all fish, average TBF over short intervals following release was highly 

variable (Figure 6.8). Median TBF was low (<1 Hz) during the first few hours (Figure 

6.8) for most fish. However, it was apparent that after 7 to 20 hours post release 

average TBF tended to stabilize between 0.5 and 1.5 Hz (Figure 6.8) except for the 

smallest fish where the average was zero (virtually no swimming) from 12 h post-

release to the time of tag release (Figure 6.8a).  



 111 

 
 

Figure 6.8 Post-tagging dominant tail beat frequency (TBF, Hz) for sturgeon of size (a) 
0.83 m, (b) 0.90 m, (c) 0.92 m, (d) 0.96 m, (e) 1.09 m 
 

The average TBF can however be misleading as demonstrated by examination of the 

behaviour spectra for each fish (Figure 6.9) where extended resting or recovery 

periods were apparent for all individuals after deployment and ranged from ~2 

(Figure 6.9a, d) to ~4 hours (Figure 6.9b). For each fish the dominant TBF was ~1 Hz 

and interspersed with high-frequency burst acceleration for some. There was no 

measurable effect of size on recovery period.  
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Figure 6.9 Behaviour spectrum calculated using a morelet wavelet transformation based 
on Sakamoto et al. (2009) approach. (a) 0.83 m, (b) 0.90 m, (c) 0.92 m, (d) 0.96 m, (e) 
1.09 m. The tail beat frequency cycles are in seconds and the colour shows the amplitude 
of the frequency for every second for each fish. 
 

The percent time spent engaged in burst acceleration, which is a proxy for abnormal 

behaviour and escape response, decreased with deployment time (Figure 6.10). 

Overall, burst acceleration was low (< 5% per hour) and varied little among 

individuals, and one fish exhibited higher rates ~6 hours post-release (Figure 6.10b). 
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While the occurrence of burst acceleration was generally low, VeDBA during such 

events was significantly greater than during steady-swimming (TBF) movements (p < 

0.01) with 2 to 5 fold increases on average (Figure 6.11). For example, for the largest 

fish (1.09 m) average VeDBA during burst acceleration was five times higher than 

during steady swimming. Although the fish engaged in this behaviour 3% of the total 

time, this increase represented a 15% increase in its total VeDBA and potentially the 

associated energy budget.  

 

 
Figure 6.10 Per cent time (per hour) engaging in burst acceleration movements over the 
deployment period for the 5 sturgeon, (a) 0.83 m, (b) 0.90 m, (c) 0.92 m, (d) 0.96 m, (e) 
1.09 m. 
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Figure 6.11 Proxy for energy expenditure, VeDBA (g) as a function of size (m). Grey 
boxplots indicate during routine behaviour, white boxplots during burst acceleration 
movement. VeDBA was calculated from burst acceleration movements (Chapter 5, 
Wright et al., 2014) 
 

The behavioural clustering for the five fish (Figure 6.12) based on the behaviour 

spectrum in Figure 6.9, shows that the different fish exhibited different behaviours 

over the deployment period. The smallest (0.83 m) fish (Figure 6.12a) showed a 

resting period of ~1.5 h followed by 6 h of unsteady-swimming bouts at 1 to 1.5 Hz 

and low-frequency swaying movements (clusters 1, 2, 3) followed by a 2 h rest period. 

The 6-h period of unsteady-swimming bouts also coincided with a high roll angle 

(Figure 6.7) suggesting tag-load removal (‘scouring’) behaviour. The 0.92 m fish 

(Figure 6.12c) exhibited three distinct steady-swimming clusters (2, 0, 1) 

corresponding to 1 to 3 Hz, 1 Hz, and 0.7 Hz “gaits” respectively with activity 

decreasing over time. Cluster 3 was characterized by high frequency burst 

acceleration and unsteady swimming, which was dispersed throughout the 

deployment time when behaviour switched between gaits (Figure 6.12c). The 

remaining 3 fish (0.90, 0.96, and 1.09 m) exhibited similar behaviour characterized 

by varying steady-swimming gaits and high frequency burst acceleration, mostly 

observed shortly after they were released and after the resting and recovery period 

(Figure 6.12b,d,e). For these fish higher-frequency steady swimming dominated the 

first 15 hours followed by lower-frequency steady swimming. The two larger fish 

oscillated between high- and low-frequency gaits with cycle durations of 5-6 hours 

(Figure 6.12d,e) during their active post-recovery phase.  
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Figure 6.12 Behavioural clustering for the five sturgeon (a to e; smallest to largest 
respectively) illustrating (i) the four elements of the acceleration ethogram based on the 
behaviour spectra in Figure 6.9 where the vertical axis represents the amplitude of 
acceleration, the horizontal axis represents the cycle length of the acceleration, (ii) the 
percent of time spent in each cluster, (iii) the time series of % time assigned to each 
cluster over deployment time. Colour coding corresponds to behavioural clusters in (i). 
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6.4.3 Response To Environmental Variables 

There was no clear relation between swimming activity (TBF) and depth of the fish 

and light levels over the deployment period (Figure 6.13). Depth was nearly constant 

across individuals at ~8 m for the 0.92 and 0.96 m fish, 3 to 5 m for the largest (1.09 

m) fish and maximum depth did not exceed 10 m. The two smaller individuals spent 

their recovery period in shallower waters relative to their active phase (Figure 6.13a, 

b). Similar to depth, ambient light levels were largely constant around 0.4 V and 

there was no pattern between daytime and ambient light level, except for one 

individual (Figure 6.13a), when light level increased markedly around noon though 

there was no change in the depth of the fish.  Water temperatures experienced by the 

fish were relatively constant at around 15 to 16 °C with some elevation in the 

afternoon (Figure 6.14)  

 

Figure 6.13 Tail beat frequency (TBF, Hz) as a function of time and depth (m) and 
ambient light level (solar V) for three sturgeon (a) 0.92 m, (b) 0.96 m and (c) 1.09 m.  
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Figure 6.14 Time series of ambient temperature (°C) during deployment for three 
sturgeon a) 0.92 m, b) 0.96 m and c) 1.09 m. 
 

The response to changes in sea level (i.e., tidal height) are similar amongst 

individuals: Fish 0.92 m (Figure 6.15b) decreased its activity levels (TBF) with high 

tide, however, the decrease in activity was small (1.2 to 0.9 Hz, and 0.9 to 0.8 Hz). 

The smallest individual (Figure 6.15a) exhibited higher activity during low tide 

(20:00 – 02:00), and decreased activity during high tide (02:00 – 08:00). Similar to 

the clustering analysis, for fish 0.96 m and 1.09 m, a wavelet analysis of TBF reveals a 

significant oscillation pattern in the activity (TBF) series corresponding to 4.4 to 5 

hours (0.96 m) and 6.1 hours (1.09 m) (Figure 6.16b,c), however, it was not possible 

to determine if these oscillations relate to changes in sea level (Figure 6.15).   
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Figure 6.15 Time series of dominant tail beat frequency (TBF, Hz) as a function of sea 
level (m) for four sturgeon, (a) 0.83 m, (b) 0.92 m, (c) 0.96 m, and (d) 1.09 m  

 

Figure 6.16 Wavelet transformation of dominant TBF extracted from the zero-crossing 
algorithm represented as cycle length (s) as a function of time of day for 3 sturgeon a) 83 
cm, b) 96 cm, and c) 109 cm where the colour coding corresponds to the amplitude of the 
wavelet transform. 
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6.5 Discussion 

I have developed a secure, two-point attachment method for a single-point release 

PSAT and acceleration tag. I was able to retrieve the tags in the wild using acoustic 

telemetry and recovered high-frequency (50 Hz) acceleration data for quantifying 

swimming activity and speed, post-tagging behavioural responses and responses to 

the ambient environment. Furthermore, I was able to test the biomechanical 

prediction model between TBF, speed and length as proposed by Hill (1950).  

 

Tag attachment 

Given that accelerometer noise levels were similar to data collected in a mesocosm 

study (Chapter 4), I am confident the tag mount was secure. While the tag 

attachment was specifically designed for sturgeon, it could be easily adjusted for use 

with other species since Petersen discs have been successfully used for decades 

(Petersen, 1896, McFarlane et al., 1990). For longer-term studies, this method will 

likely require modifications since dissolvable sutures were used and the multiple 

components may be prone to biofouling. One solution could be a cradle that houses 

the tag and contains a built-in release mechanism. This would provide the secure 

attachment needed by the acceleration sensor and could reduce tag drag relative to 

conventional single-point PSAT attachments (Methling et al., 2011).   

 

6.5.1 Post-Release Behaviour 
All the tagged sturgeon exhibited extended post-release resting periods (2 - 4 h) 

characterized by a low TBF. This suggests that the fish were holding station on the 

river bed; perhaps an energy saving strategy (Deslaurier and Kieffer, 2012). Holding 

station against downstream current can be achieved by flow-refuging (Geist et al., 

2005) or by taking advantage of the flattened body morphology by pressing the body 

and pectoral fins against the substrate as has been observed in flume studies and for 

various sturgeon species (Adams et al., 1997; Geist et al., 2005; Kieffer and Cooke, 

2009). While this has been attributed to be a mechanism for refuge from high flow, it 

may also function as a compensatory mechanism for recovery from post-release 

stress. During the recovery phase, fish exhibited short time-scale burst acceleration 

events characterized by high maximum accelerations of up to 5 g0. Since sturgeon are 



 120 

not ambush predators that exhibit typically high-acceleration when feeding (Chapter 

3) but feed on molluscs on the river substrate, and have no predators themselves, 

these movements are likely unrelated to predator-prey interactions. Since these 

events occur most frequently just post-release, they most likely relate to tagging 

stress or tag-load reducing behaviour and given the high VeDBA and associated 

energy expenditure, they significantly affect the total energy budget. Increased 

VeDBA during these movements indicated by high roll angles in the smallest 

individual, likely contributes to additional tag-related energy expenditure. The 

extended recovery period and increased energy expenditure due to post-release stress 

likely contributes to increased vulnerability to other stressors, recapture, or death. 

Given that the fish deployed in the study area were exposed to a very active catch-

and-release fishery, as well as recreational boating, the result may reflect a significant 

decrease in feeding and (or) survival.  

 

Following the recovery period, the activity levels of the sturgeon, measured as TBF, 

remained fairly constant across fish in the 0.5 to 1.5 Hz range suggesting a ‘normal’ 

behaviour. Yet, the smallest individual exhibited unsteady swimming activity and 

station-holding throughout the deployment period. Additionally, this individual 

displayed movement associated with rolling behaviour during the first 10 hours of 

deployment (time series of roll angle, not presented here). This suggests a tag-load 

reducing behaviour similar to the scouring movement in Atlantic Cod (Chapter 5), 

which has also been observed in shortnose sturgeon in response to tag load (Collins 

et al., 2002). This too suggests a significant impact of tagging, handling and tag load 

(> 2%) stresses and questions the health status and long-term survival of the 

individual and suggests size may be a factor in post-release stress behaviours.  

 

Swimming Speed and Behavioural clusters 

The free-swimming wild sturgeon exhibited significantly lower average TBF (~ 1 Hz) 

and associated swimming speeds (< 0.2 ms-1 or < 0.2 BLs-1) than are observed in 

laboratory studies (Webb, 1986; Peake et al., 1997; Wilga and Lauder, 1999; Cheong 

et al., 2006). The high pitch angles (> 10°) that were observed > 50 % of the time in 

all fish, may be related to low river-flow speeds of < 1BLs-1 when the negatively 

buoyant fish swim at unsteady rates or to achieve a force-balance when swimming in 
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the low river current (Wilga and Lauder, 1999). Given that the low swimming speeds 

were relatively constant over the 2-day deployment, they are likely unrelated to post-

release stress behaviour and suggest that in the wild the sturgeon do not typically 

exhibit high swimming speeds > 1BLs-1. For example, adult lake sturgeon, Acipenser 

fulvescens (1.20 to 1.34 m total length), were observed to swim at 0.3 BLs-1 during 

steady swimming in a still water tank (Long, 1995) and displayed two distinct gaits of 

locomotion; a ‘slow’ mode of 0.1 BLs-1 and a ‘fast’ mode of 0.25 BLs-1. I also found 

evidence of a gait-switching mechanism: for example, the largest individual (1.09 m) 

spent close to 100% of the time at two gaits, one at 0.83 Hz (0.12 BLs-1) and one at 1.1 

Hz (0.16 BLs-1). Chinese sturgeon (Acipenser sinensis) equipped with accelerometer 

tags in a river exhibited low dominant TBF and associated swimming speeds (< 1 

BLs-1, Watanabe et al., 2008) that are similar to the estimates reported here, and 

further suggest a discrepancy between free-swimming wild-fish estimates relative to 

laboratory estimates (e.g., Webb, 1986; Wilga and Lauder, 1999). Most kinematic 

studies are conducted in flume tanks to simulate dam passage and rarely include 

swimming at low speeds (e.g., Webb, 1986; Peake et al., 1997; Wilga and Lauder, 

1999; Cheong et al., 2006). One potential explanation is that endurance during lower 

swimming speeds is elevated as suggested by studies on juvenile sturgeon (Delauries 

and Kieffer, 2012). Recent observations for swordfish also indicate significantly lower 

swimming speeds in the wild than hypothesized (Marras et al., 2015). I therefore 

suggest a re-examination of swimming efficiencies in relation to lower speeds in 

kinematic and energetic studies, since fish in the wild may be adopting speeds much 

lower than those predicted from flume studies. 

 

6.5.2 Predicting Length With TBF 
Given the observations from mesocosm studies (Chapter 4), in the wild from Sato et 

al. (2007) and as predicted from the biomechanical theory proposed by Hill (1950), I 

predicted that length and swimming speed are independent and that TBF is 

proportional to length-1 (Chapter 4). Contrary to the model predictions, observations 

in this study suggest that dominant TBF may be independent of size and that speed 

may increase with size. This discrepancy could be related to post-release stress due to 

handling (capture, held in holding tank for >1 day) and tagging, or stress response 

mechanisms such as station holding on the river substrate or other non-routine 
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swimming activity. I hypothesize this to be the most likely cause for the discrepancy, 

since, when I re-assessed the relationships using last two hours of data only (i.e., 

assumed to be the most ‘normal’ post-recovery behaviour), TBF was closer to the 

prediction. Further, TBF observations from other sturgeon species in the wild 

(Watanabe et al., 2008) are also close to the predictions. Incidentally, the two fish 

(0.96 m and 1.09 m) that did exhibit a predicted TBF were the largest individuals and 

they exhibited the least variable TBF and highest levels of activity; perhaps indicating 

better stress-coping ability.  

 

6.5.3 Behavioural Routines  
Overall, sturgeon did not exhibit any clear diurnal (i.e., TBF) activity pattern likely 

because they modulated their swimming activity in relation to river flow as suggested 

for other sturgeon (Geist et al., 2005). On average, all fish exhibited a combination of 

two or more steady-swimming gaits and for two fish (0.96 m and 1.09 m), these gaits 

appeared to change every 4-6 h, though the time series is short (~48 h). These 

behavioural oscillations may be due to a tidally influenced current related to tidal 

phase, that only has a measurable effect on the Kennebecasis river during the spring 

tide (Hughes Clark and Parrott, 2001) which coincided with the fish deployment 

period in the study and was noticeable at the study site (personal observation). 

Using the St John weather buoy to extrapolate timing of high and low tide, however, 

is difficult, since the lag between the locations (~40 km up river) is unknown and 

may be significant (> hours). I initially predicted a relationship between activity and 

tidal flow for sturgeon similar to what has been described for other species (Hunter et 

al. 2004; Gröger et al., 2007) and therefore expected that fish activity during station 

holding or upstream movement would be related to some phase of tide. It is possible 

that the gait change observed for the two largest fish may correspond to an activity 

response in relation to tidal flow, especially the variation in activity with a near semi-

diurnal oscillation (~6 h) as illustrated in Figure 6.15c,d and Figure 6.16b,c. Given 

the small variability in depth and temperature, these individuals may have been 

station holding at depth throughout most of the deployment and therefore may have 

modulated their TBF with the tidal flow, however, due to the lag between the time 

series, it is difficult to relate these observations to the timing of the tide.   
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All individuals likely spent most of the study period in the upper shallower ranges of 

the Kennebecasis river, since they all inhabited depth levels < 10 m and Kennebecasis 

Bay is a fiord-like environment with median depths of ~20 m. This also implies that 

the individuals did not move far from the release site, confirmed by the tag pop-up 

locations that were between 2 and 5 km from the release site; similar to observations 

for other sturgeon (Geist et al., 2005). Differences in depth and light levels among 

individuals indicate difference in the habitat used or different recovery strategies 

(relocation from release site vs. recovery by station holding at constant depth close to 

release site). The two individuals that spent most of their time at constant ambient 

(low) light likely used habitats closer to the river banks in the upper parts of the river 

that is dominated by river grasses and marsh banks. Similar observations suggest 

that sturgeon stay in habitats where velocities would remain relatively low (Geist et 

al., 2005). Variability in ambient light was only observed in one individual (0.92 m). 

This fish may have inhabited the streambed where the water is clearer or areas along 

the riverbanks downstream where marsh-land density is lower. 

 

6.5.4 Summary  
Most of the behavioural routines exhibited by the tagged sturgeon were related to 

post-tagging effects and activities largely characterized by modulations in the 

swimming gait. While the ethogram analysis was able to allocate the acceleration 

signal to distinct behavioural clusters, without visual validation of acceleration data, 

it remains challenging to directly qualify these clusters in relation to behaviour. For 

example, these gaits may correspond to swimming vs. feeding or searching for food, 

or different environments such as lower vs. higher river flow. 

 

This study further exemplifies that relating movement and activity to environmental 

patterns or habitat use is challenging with short duration deployments (days), and 

this is further exacerbated by the apparent tagging and handling effect on behaviour. 

Given the short deployment period, it is difficult to quantify the total extent of the 

recovery (resting + post-release behaviour modification) period for these fish because 

there are no baseline measurements of high-resolution movement and activity. The 

post-release resting phase is likely comparable to a ‘shock’ state and it is very likely 

that it takes more time (hours to days) before behaviour and movement returns to a 
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‘normal’ state. If I assume that TBF and swimming speed from the mesocosm studies 

(Chapter 4) as the baseline for this species, then only the two largest individual 

exhibited TBF and swimming speeds similar or close to predictions and therefore 

could be considered as ‘normal’ movement and activity. Therefore, making 

predictions about swimming speed and general activity based on a short tag 

deployment period (e.g., Marras et al., 2015) can lead to compromised estimates that 

are affected by post-release stresses. 

 

I expect that behavioural modifications in response to tagging and handling are likely 

related to the tagging surgery, which was long (~ 15 min), invasive, and without 

anaesthetics as well as the long holding time (> 1 day). Additionally, tag load may 

have an effect on animal behaviour (3% for the smallest individual) as indicated by 

significant scouring movements similar to observations in Atlantic Cod (Chapter 5). 

It is now commonly acknowledged that devices attached to animals may have adverse 

effects on their behaviour, as well as individual fitness, and directly or indirectly 

affect performance (Chapter 5; Ropert-Coudert and Wilson, 2004). While tag 

attachment delivered nearly noise-free acceleration signals, the significant impact on 

post-release stress suggests that the surgery and attachment protocols require 

modification. 

 

For future studies, longer time series of activity (acceleration) using a less invasive 

attachment method suitable for longer duration studies should allow for the 

identification of routine behaviours that are not affected by post-tagging stress. 

Initially, this will require a longer-term tagging trial in a controlled environment. The 

above results clearly indicate that it is challenging to infer animal behaviour and 

movement based on a short time series that is exacerbated by post-release stress. In 

relation to the shortnose sturgeon catch-and-release recreational fishery, the results 

presented here clearly demonstrate that there are significant short-term (acute) 

affects on behaviour and potential on longer-term (chronic) effects on survival. 
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Chapter 7 CONCLUSION 
 

7.1 Summary 

Quantifying the spatial-temporal distribution of free-ranging animals in the marine 

environment has been historically challenging due to the paucity of direct 

observation (Cooke et al., 2004; Preston et al., 2010) and can be overcome by using a 

variety of tags ranging from simple physical tags to more advanced electronic tags. 

Within the suite of biologging techniques, tri-axial accelerometers are especially 

promising in providing data that can link physiological and ecological processes in 

the movement context (Nathan et al., 2012). The goal of my research was to 

determine how this technology can be used to measure a variety of fish behaviours in 

the framework of locomotion and to monitor species-specific size-at-age in the wild. I 

also set out to determine the effect of tag load and handling stress and how 

accelerometers may be able to measure associated behavioural stress response in the 

lab and in the wild. To achieve this goal, I developed a re-useable micro-

accelerometer data logger relevant for fish applications that records and stores tri-

axial acceleration data at high (up to 550Hz) sampling frequencies. Based on 

controlled-environment experiments I then developed a library of automated signal-

processing algorithms that relate acceleration signals to rates of activity, locomotion, 

swimming speed, size and behavioural states in a variety of fish species. Specifically, I 

was able to extract behavioural states (feeding, escape) relevant to energy budgets as 

well as states associated with spawning, courtship and parasite dislodging to a high 

accuracy with a method that is independent of animal size or tag placement, both of 

which are very difficult to achieve reliably in the field.  

 

Given my objectives,  

 

• I have shown that it is possible to measure fast-start movements that are 

relevant to energy budgets (feeding, escape) in fish using relative simple 

species-specific classification techniques.  
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• I have also shown that it is possible to predict size-at-time in fish with species-

specific models that are required given species-specific differences in 

hydromechanics that affect fish swimming. The large predictive uncertainties 

of this model may not yet provide a suitable alternative to traditional 

methods; yet, it shows promise in providing more detailed (in situ) 

information for estimating size-at-time.  

 

• Further, I have demonstrated that technological limitations of the current 

accelerometer technology with respect to sampling frequency affect 

classification of behaviours given the time scale of the movement of interest. 

Low (< 50 Hz) sampling frequency can distort the acceleration signal and can 

result in important behaviour to be missed or misidentified. Based on these 

results, high accelerometer sampling frequency (> 50 Hz) is recommended.  

 

• I have shown how accelerometer data can provide a useful method to reveal 

behavioural modifications in response to external tag load. Fish behaviour can 

be affected by tagging effects and tag load, which can not be mitigated by 

decreased tag load and the effect of tag burden is likely attributable to 

irritation. 

 

• I have also determined how the developed accelerometer analysis techniques 

can be used to determine how fish change their behaviour and activity in 

response to tagging and handling and the variation in their surrounding 

environment. Yet, short-term time series do not allow for the interpretation of 

behavioural patterns.  

 

The most novel contribution undoubtedly is the development of a scaling 

relationship between tail beat frequency, speed and length in free-swimming fish, 

based on accelerometer signal-processing techniques and the theoretical predictions 

of Hill (1950) and others. These results subsequently can be used to predict size-at-

time with prediction uncertainties as low as 18%, thus providing a novel method for 

estimating length-at-age in the wild that is largely independent of behaviour, 

unsteady swimming and surrounding current flow. While this may not yet provide a 
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suitable alternative to the more conventional means of estimating growth rate, the 

model could be further advanced by incorporating additional parameters or 

predictors of length (such as temperature; e.g., Neuheimer and Taggart, 2007), and 

(or) by combining the knowledge of fish size at the time of capture along with the 

theoretical characteristics of the growth potential with the indirect observations of 

length from the scaling relationship to construct a model of fish length-at-time. Such 

a model may provide a more reliable time series of length-at-age and growth than 

what can be achieved with conventional techniques.  

 

One pattern that emerged throughout my research is that free-swimming fish exhibit 

much lower swimming speeds (< 0.5 BLs-1) than theorized, which was confirmed by 

observations from the wild. The most likely explanation is the discrepancy between 

(theoretical) swimming speeds given the swimming modes considered (e.g., critical, 

maximum, sustained, etc.; Bainbridge, 1958; Videler and Wardle, 1991) and how 

poorly those modes correspond to the observed dominant swimming mode, which 

may in fact be the preferred mode adapted to by a given fish/species. While 

theoretical swimming modes are efficient from a biomechanical and dynamic theory 

perspective (i.e., maximizing output), fish may adapt to modes that are efficient from 

an endurance perspective (i.e., minimizing input) and other less known physiological 

properties, thereby reducing energy waste. I propose that fish only exhibit swimming 

speeds predicted by biomechanical efficiency in behaviour-specific instances (e.g., 

predation on highly mobile prey). If this pattern is confirmed in other species and 

different environments, it will likely have an impact on ecosystem and fisheries 

modelling where ~5 BLs-1 is a frequently used approximation (Williams et al., 1989; 

Lucas and Batley, 1996; Krause et al., 1998) that will affect estimates of energy 

budgets and survival. In the context of scale-effects in animal locomotion (e.g., 

Pedley, 1977; Peters, 1983), the decoupling between swimming speed and size puts 

forward a catalogue of research questions concerning size-dependent biomechanical 

efficiency (at low speeds) and mechanisms that allow fish to school at similar speeds 

and potentially different sizes (e.g., Krause et al., 1998). Such questions are testable 

and may help advance the science of fish swimming that has been undergoing 

refinement for more than six decades. 
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Throughout this research I was forced to challenge the assumption that movement 

data collected by accelerometer tags represent the normal behavioural repertoire of 

the tagged animal given low rates of tag sampling frequency currently deployed as 

well as the significant behavioural modification caused by tagging and handling 

stress.  

 

I have demonstrated how sampling frequency constraints of the current technology 

may lead to aliasing of the acceleration signal and thus compromised estimates of 

energy expenditure and the classification of behaviour. This leads not only to missing 

and misidentifying routine behaviours (e.g., feeding) but may also lead to missing 

tagging and handling related behaviours that occur over short time scales. This will 

directly result in underestimating tag effect and tag load, and a failure to challenge 

the assumption that the effect of the tag on behaviour and survival of the fish is 

minimal.  

 

I have further demonstrated that it is necessary to adjust the sampling frequency 

based on the time-scale of the movement of interest. Apart from the generally 

descriptive, and cautionary work of Ropert-Coudert and Wilson (2004) and the 

metabolic studies of Halsey et al. (2009), this is the first quantitative estimate how 

measuring behaviour and locomotion in fish (and likely other fast moving animals) is 

a function of the accelerometer sampling frequency; and that decreased sampling 

frequency results in decreased event detection and identification probability and thus 

compromises the ability to detect activities or movements that occur over short time 

scales. This is predominately relevant in biologging studies where typically, data from 

a few (<10) individuals are captured to make inferences about entire populations 

(Cooke et al., 2004).  

 

This and other cases exemplify how technological feasibility and availability can 

affect scientific results and that, prior to broad-scale application, scientific enquiry 

requires rigorous testing. One further example where available technology has 

affected scientific enquiry is the estimation of swimming speed in the wild based on 

average values of acceleration (Wilson et al., 2013b, 2014). In the search of producing 

‘fail-proof’ methods of estimating swimming speed in salmon in the wild, swimming 
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velocity was calibrated to average acceleration signals in a flume study (Wilson et al., 

2013b) prior to field deployments. This method has significant limitations and only 

applies if fish exhibit little vertical movement and little vertical acceleration (same 

depth level), exhibit no movements other than steady-swimming, no sheltering, or 

flow refuging mechanisms (Liao, 2007 which is common is salmon), schooling, burst 

acceleration, no instances that require the control of stability (Wilson et al., 2013a; 

Webb and Weihs, 2015) and tag attachment location and animal size, both of which 

affect absolute acceleration values, are constant across individuals. At least one or 

more of these assumptions is unlikely to be valid at all times, and therefore, 

swimming speeds collected from such calibrations are likely compromised. Further, 

crucial aspects of low swimming speeds (<1 ms-1) are ignored due to nonlinearities in 

the prediction model (s) (Wilson et al., 2013a). This is especially problematic since 

these calibrations are now used in various other studies to explain ecological and 

physiological processes (e.g., Eliason et al., 2013; Burnett et al., 2014a,b). In this 

case, the motivation for the calibration was the tag technology itself, which was set to 

automatically calculate average values of acceleration, instead of the raw acceleration 

time series. Instead of the technology driving scientific inquiry as exemplified here, 

new hypotheses should prompt the development of increasingly sophisticated 

tagging technology. I propose that this is best achieved by a collaborative effort 

between engineers and researchers as exemplified by rapid advancements in sensor 

design here and in the past (e.g., Sea Mammal Marine Research Unit, UK; Little 

Leonardo, Japan and many others).  

 

7.2 Future Of Acceleration Biologging 

7.2.1 Data Processing 
Increasingly sophisticated tagging technology and continued miniaturization of tags 

will require new battery technologies, increased memory capacity, signal processing 

capabilities and advancements in data retrieval. The accumulation of high-volume, 

complex datasets will advance the development of post-processing analytical 

techniques, similar to those employed in bioinformatics and computational biology. 

Data collected from such systems will likely see more integration into applied science 

and management of stocks, habitats and species. 
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As demonstrated by my research and that of several others, accelerometer 

measurements can be calibrated and validated by visual observations of tagged 

animals in the field or laboratory. Such observations can then be used to train 

classification or machine-learning algorithms that are then used to classify 

unobserved behaviours from non-validated data (Nathan et al., 2012) as outlined in 

Chapters 2, 3 and 5. Processing techniques include a variety of machine-learning 

algorithms (Nathan et al., 2012) such as linear discriminant analysis, support vector 

machines, classification and regression trees, random forest and artificial neural 

networks, many of which are most frequently used for various pattern recognition 

and classification tasks. This approach uses validated observations that are some 

fraction of the size of the test dataset to determine cross-validated parameters and 

help ensure robustness in the algorithm performance. These methods often result in 

very similar accuracies (80 – 90%, Nathan et al., 2012) and each have specific 

advantages (theoretical foundation, ease of implementation, results, interpretability 

etc.) and disadvantages (assumptions, computational effort, interpretability, 

subjectivity etc.).  

 

One of the main disadvantages with this approach is that outcomes are typically 

species-specific algorithms that rarely apply across species. For example, the 

algorithm developed in Chapter 3 to differentiate between feeding and escape in an 

ambush predator would likely fail to classify similar behaviour in species with 

different prey and predation strategies (e.g., tuna, sturgeon). Another disadvantage 

with some of these techniques (e.g., regression trees, random forest) is that in real-

data applications, classifiers are often based on absolute, maximum or mean values 

of acceleration (e.g., Nathan et al. 2012). Such values are significantly affected by tag 

position on the animal and can be affected by animal size. Therefore, these classifiers 

and associated algorithms may only provide a limited solution to data across 

individuals and attachment procedures. 

 

Accelerometer validation steps are not always taken and sometimes behaviour is 

discerned via visual inspection of the acceleration data without developing a 

classification system based on validation steps (Nathan et al., 2012). In contrast, such 
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methods are often based on clustering of acceleration segments (e.g., k-means 

clustering, Bidder et al., 2014) or its frequency content for sinusoidal locomotion 

patterns (e.g., Sakamoto et al., 2009). Clustering methods can classify behaviour and 

locomotion in very simple datasets that exhibit large differences in acceleration 

signature. However, when I applied this type of clustering (e.g., k-means clustering of 

acceleration segments) to behavioural data in fish (Chapter 3) the method did not 

achieve significant classification accuracy, and most recent studies (e.g., Noda et al., 

2013; Noda et al., 2014) reject clustering in favour of classification trees. I 

hypothesize that this is mainly caused by a high similarity between different 

behaviour clusters (e.g., feeding vs. escape) concurrent with high variability within 

behavioural signals (e.g., feeding). Furthermore, the results in Chapter 6 

demonstrate that while clustering the frequency content in acceleration segments 

(Sakamoto et al., 2009) may differentiate between basic locomotion-related 

behavioural clusters and routines, not all behaviours can be differentiated by 

inference (e.g., feeding behaviour) and much is left to speculation. 

 

Accumulating open source accelerometer data-processing libraries and data 

repositories such as ‘Movebank’ (movebank.org) may allow researchers to share 

methods and algorithms that apply within species and outline common features of 

species-specific algorithms to help in determining which analytical methods are most 

suited across-species. For example, the burst acceleration extraction algorithm 

developed to extract fast-start events in sculpin (Chapter 3) has multiple applications 

and can be used to extract various behavioral routines across fish species.  

 

7.2.2 Technological Advancements 

Continuing advances in micro-technology and microcontroller signal processing 

capabilities will likely result in decreased size and more efficient accelerometer units 

(battery, storage, micro-processors) that will allow for increasing sampling 

frequencies, onboard processing, greater storage and longer duration. On-board 

micro-processing, such as already used in some accelerometer tags, decreases the 

amount of storage of high-resolution data to be archived or transmitted and could be 

advanced to the point where algorithms determined a priori (e.g., activity detection 

and identification) constantly calculate key parameters, allocate event IDs as they 
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occur, and store or transmit the data (see Chapter 2, 3; Føre et al., 2011); thus the in 

situ delivery of activities and behaviour over time. A great advantage of on-board 

processing is that data-compression would allow for relevant information to be 

transmitted via satellite or acoustic telemetry and directly provide a solution to 

challenges in high-volume data retrieval. To advance these systems, tags could 

further be designed to function as storage and acoustic transmitters that constantly 

collect, process and store data and transmit all stored information when receivers are 

nearby. Given technological advancements in miniaturization, tags could further be 

transformed into mobile listening stations where tags function as data storage, 

transmitters and receivers simultaneously and such technology is already available 

(e.g., Hayes et al., 2013; Baker et al., 2014; Lidgard et al., 2014). This would greatly 

advance data recovery since data could be collected across various individuals that 

may never pass a receiver. 

  

Especially relevant for fisheries research, management of sustainable fishing 

pressure and determining effects of size-selective fishing, is the development of a 

‘smart tag’ measuring size-at-age and growth rate. Such a tag could also provide the 

means to establish the validity of measuring growth in fishes with high-resolution 

temperature records as suggested by Neuheimer and Taggart (2007). Assuming my 

prediction models can be further validated in nature, and that micro-processing 

technology of archival accelerometer sensors can employ an a priori determined 

algorithm that continuously (or duty-cycled) calculates size-at-time, then in situ 

estimation of size-at-time and growth rate could be achieved.  

 

Given that microcontroller capabilities with a small footprint (< 1 cm2) do not yet 

allow for advanced signal processing, such smart tags are not yet available. To solve 

the problem surrounding recovery of high-resolution data in fisheries research in the 

next few years, I propose another solution: the deployment of high-volume, low-cost 

(disposable) data loggers in fish populations given an active fishery and considerable 

tag return rates. For example, in the Pacific Halibut fishery across the US and 

Canada, there is a 10-15% 3-year tag-return rate (Tim Loher, Research Biologist, 

International Pacific Halibut Commission, personal communication), i.e., 10-15% of 

the tags that are deployed on halibut are recaptured within three years. For a tag 
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budget of US$150,000, 200 biologging tags could be deployed ($750/tag from 

Maritime bioLoggers). Given a 15% return rate and a 20% tag failure rate (i.e., similar 

to PSAT failure rate, Musyl et al., 2011), 24 tags would be recovered within three 

years. In contrast, assuming similar tag deployment costs, the same budget would be 

equivalent to deploying 34 PSAT tags (US$4000/tag Wildlife Computers; $400 

ARGOS transmission costs). At a reporting rate of ~80% (Musyl et al., 2011), of 

which of 90% report prematurely (< 100 days), 24 partial and 3 full PSAT datasets 

would be recovered. Given that data from PSATs are binned and therefore of limited 

use (esp., the acceleration data) and data-loggers allow for tagging of much smaller 

fish species, the advantage of deploying data loggers compared to PSATs in fisheries 

research should be clear.  

 

Hardware advances will likely revolve around further miniaturization of circuitry and 

improvements in battery durations. Progress in small-scale energy harvesting may 

also lead to developments of energy generation sources via harvesting kinetic energy 

created by the animal itself (e.g., Aktakka et al., 2011; Shafer et al., 2015a) or by the 

surrounding environment (e.g., Shafer et al., 2015b; Shafer and Morgan, 2015) and 

may lead to further increases in logging duration of the technology given size 

constrains. This could also allow the development of longer-term studies without the 

limitation of battery size and tag size. 

 

I predict that the development and commercialization of rechargeable tags will be 

crucial in further advancing the field of accelerometry. Such tags would not only 

enable laboratory studies that are crucial for validating behavioural states with many 

(> 10) individuals and replicas this would also open the possibility to quantifying 

tagging and tag attachment effects and how to optimize the use of this technology 

(e.g., duty cycling, sampling frequency, etc.) given size and battery constraints.  
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7.3 Potential Applications For Accelerometer 
Biologging 

Data integration into Ocean models 
Biologging data such as acceleration, temperature or depth provide a great 

opportunity for ocean model data assimilation. Especially the integration of 

acceleration data into ocean models has potential. For example, ocean modeling and 

assimilation of tag data could be used to determine the most likely fish trajectory by 

assimilation of tag data time, temperature, depth and acceleration (size-at-time, i.e., 

growth) plus constraints on swimming velocity using tail beat frequency and size 

from acceleration records. The ocean model would provide the temperature and flow 

fields that can be used to determine the ‘most likely’ trajectories and growth rates 

based on thermal time through minimizing a cost function over all possible paths 

based on time and size-varying constraints. These are measures that can be used to 

determine temperature-dependent growth over time, activity and energy budgets, 

migration potential and likely spawning migrations. The results could directly impact 

fishery regulations and management policies that hinge on credible science relevant 

to sustainable management where there are challenges in obtaining reliable data on 

stock metrics (number, size, biomass, age, growth, maturity, fecundity, spawning, 

distribution etc.) and growth is a key as it influences virtually all of these states and 

rates and with number of individuals it determines not only biomass, but sustainable 

biomass; i.e., 100 kg biomass of 10 immature fish at 10 cm is not sustainably 

equivalent to 100 kg biomass of 5 mature fish at 30 cm.  

 

Kinematic and biomechanics research 
Fish locomotion is highly complex and even the most simple case during steady-

swimming (e.g., Lighthill, 1960; Lighthill, 1971; Triantafyllou et al., 1993) requires 

highly sophisticated understanding of flow dynamics and fish biomechanics. 

Accelerometers not only allow remote observations of behaviour but also could be 

used to provide insights into biomechanics and hydrodynamics of fish swimming that 

are typically achieved in the laboratory with video observations. For example, such 

tags could be used in laboratory or field studies to investigate mechanisms of size-

dependent schooling and the hydromechanical efficiency of schools (Weihs, 1973; 
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Breder, 1976; Partridge and Pitcher, 1979; Fish, 1999; Hemelrijk et al., 2015), 

swimming efficiency at lower speeds, flow refuging (Liao, 2007) or size-dependent 

kinematics (Domenici and Blake, 1997). Biomechanics and locomotion studies 

therefore would not be constrained to enclosed study areas and free-swimming fish 

may then provide insights into realistic locomotion, which is challenging using video 

cameras and other techniques (e.g., flow visualisation, Liao, 2007). If this is 

combined with advanced flow visualization techniques it may serve to advance 

insights into swimming efficiency and associated energy expenditure. The 

development of re-usable tags with high sampling frequencies (> 500 Hz) will be 

crucial for such applications.  

 

Tool for Aquaculture  

A smart tag could be a useful tool in the offshore monitoring of aquaculture 

operations and significantly advance sustainable aquaculture. Offshore aquaculture 

operations require the constant and remote monitoring of growth rate (Chapter 4), 

disease infection (Chapter 5), and food consumption by the farmed animals (e.g., 

Chapter 4; Føre et al., 2011), all of which could be achieved through smart 

acceleration tags.  These devices could also be pertinent in establishing new species, 

different use of established species, and how to rear them (feeding, etc.). For 

example, my research could lead to the development of a tag capable of determining 

parasitic infection in demersal fish such as Atlantic cod. Cataloging the functional 

significance of scouring in relation to parasite reduction is particularly important for 

cod given their economic value in commercial fisheries and aquaculture production 

(Lysne et al., 1994). Beyond diagnosing parasitic infections in species such as cod, 

this would prove especially useful given most fish species loose equilibrium in 

advanced stages of disease, which is exhibited by lateral-vertical rotations due to loss 

of balance (e.g., whirling disease).  In an aquaculture setting this could help with the 

in situ diagnosis of infected fish by monitoring parameters studied here such as % 

time spent scouring or loss of equilibrium, and when an individual exceeds a 

predetermined threshold it could then be removed to help contain the infection or 

administer treatment. This would especially be useful given continuous advancement 

in miniaturization and low-cost sensor and telemetry applications that would allow 

for large-scale direct observations and in situ diagnostic of infection.  
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APPENDIX A 
 

Zero-Crossing Algorithm Evaluation 

To verify that the parameter input for the algorithm affect on the estimated TBF 

distribution and associated moments was minimal, I tested the low-pass filter cut-off 

threshold, the input window length (lW), the window variability threshold for steady 

swimming segments (ThS*) for any effect on the estimated dominant TBF.  

 

The effect of the low-pass filter cut-off threshold should be minimal if all frequencies 

of the range of interest are included and this may be different across species, e.g., 0.5 

to 7 Hz for saithe (Hess and Videler, 1984; Steinhaussen et al., 2005). However, the 

use of the low-pass filter is important and if the cut-off threshold was increased (e.g., 

30 Hz) then high-frequency noise would be included in the time series and the 

extracted dominant TBF would be biased. Therefore, the use of a low-pass filter set at 

the lowest threshold possible to a) ensure that maximum observed steady-swimming 

frequencies were included and b) high-frequency noise was removed.  

 

Figure A.1 shows the weighted distribution of dominant TBF for window length from 

1 to 60 s given a constant threshold parameter (ThS* = 0.05) and a low-pass filter 

cut-off of 15 Hz. Since estimated median TBF was largely independent of window 

length, input window length did not have a significant effect on the distribution of 

dominant TBF given a constant window variability threshold ThS*. Further, input 

window length did not have a measurable effect on the extracted median TBF (Figure 

A.2). However, given the need to resolve low-frequency swimming for large fish (e.g., 

in saithe ~ 0.5 Hz; Steinhaussen et al., 2005) a species-specific window length that 

exceeded and resolved the lowest observed frequency (e.g., for saithe, lW ≥ 2 s) is 

recommended. Therefore, I chose a window length of 5 seconds. 
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Figure A.1 Normalized tail beat frequency distributions function for input windows, lW of 
different lengths from 1 second to 60 seconds.  
 

Figure A.2 shows the estimated median TBF as a function of the input threshold 

value, ThS*. While TBF estimates were all within one standard deviation of each 

other, estimates of median TBF decreased with increasing values of ThS* to a point 

where they stabilized at ThS* = 0.05. Low values of ThS* impose a very strict rule to 

the variability within the differenced Δt’s, i.e., most (Δtj – Δtj+1)max - (Δtj – Δtj+1)min) 

variations were considered too high and therefore discarded resulting in the 

extraction of very short windows. Therefore, I chose a threshold of ThS* ≥ 0.05. 

 

 

Figure A.2 Estimated median dominant TBF (Hz) as a function of window length, lW and 
threshold parameter input for window variability to the zero-crossing algorithm for one 
fish.  
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Comparison to other peak frequency extraction techniques 

Additionally, when the dataset was re-analyzed using other methods (e.g., traditional 

wavelet analysis, cf. Chapter 6), extracted TBF estimates were similar to dominant 

TBF estimates based on the zero-crossing method, and the scaling relationship 

between TBF and length was confirmed. Yet, for a traditional wavelet analysis, the 

extraction of peak frequencies can be a non-trivial issue (e.g., Iatsenko et al., 2013) 

and can be dependent on the chosen mother wavelet and associated scale, the signal 

amplitude threshold or chosen spectrum entropy all of which can vary across spectra. 

In comparison to zero-crossing computations, the wavelet approach additionally 

required greater computational power. Given the robustness of the zero-crossing 

approach to input parameters and the difference in computational effort between the 

methods, the zero-crossing provides more potential for incorporation into a on-board 

processing environment and was therefore used here.  
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