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ABSTRACT 

While critical to the Simultaneous Localization and Mapping (SLAM), process data 

association is often unreliable, especially so in a noisy, dynamic, underwater environment. 

This thesis presents a novel approach for data association that enhances underwater SLAM 

on autonomous underwater vehicles (AUV) using side-scan sonars. It does this by jointly 

associating the relative position of a landmark to the AUV with the seafloor elevation 

gradients surrounding the landmark. The local elevation gradients are extracted from the 

same side-scan sonar images as the landmarks. Seafloor gradients are relatively stable 

environmental features compared to the much smaller landmarks which can be subject to 

movement and positional changes over time due to currents and shifting bottom cover. This 

concept was found to yield correct associations when implemented and validated in post-

processing of data using a hardware-in-the-loop AUV simulator and side-scan sonar data 

from earlier trials. The algorithm has been installed on an IVER3 AUV and in-water trials 

are validating this concept in a real world setting. 
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CHAPTER 1. INTRODUCTION 

Robotics are being used in an ever increasing number of roles where they offer 

distinct advantages over human workers. Robots are not subject to human error, do not 

become tired or vary their quality of work, and, key for many applications, they can 

complete tasks that are dangerous without putting humans at risk. 

For many applications it is desirable to have robots that require minimal operator 

input to maximise their efficiency. Often these robots must be able to interpret their current 

situation and “make a decision” on how to proceed. These situations can range from simple 

cases requiring a standard logic gate, if false proceed one way if true proceed another, all 

the way to fully autonomous missions with robots capable of carrying  out complex tasks 

and responding to the dynamic environments they operate in  based on in-situ 

measurements they make (self-driving cars). Autonomy in robotic systems requires the 

machine to view, and to some extent, understand its environment. Under circumstances 

where a robot does not have prior knowledge of its environment it can operate by creating 

a map of its surroundings while simultaneously establishing its own position within that 

map and its path of travel. This process is termed Simultaneous Localization and Mapping 

(SLAM) and is considered a fundamental component of true robot autonomy in any 

environment. Recognition of landmarks is a critical component of SLAM, and is used for 

obstacle avoidance, as well as determining if the landmark in question is a  new object or 

has been viewed at some previous time during  a mission. This matching of landmarks is 

known as data association. While much of the current SLAM research makes the 

assumption that data association results will be valid [1] this is not always the case, 

especially in underwater environments which often have landmarks that are particularly 

challenging to identify or re-identify if the environment has changed the landmark’s 

appearance.   

1.1. MOTIVATION 

SLAM can be a component of an autonomous underwater mission whether it be 

scientific research, search and rescue, marine salvage or military applications. One 

potential application, Navel Mine Countermeasure Missions (NMCM), is to survey for 
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underwater mines that pose serious risks to high value assets as well as human lives. 

Current NMCM practice often utilizes tethered and/or towed vehicles equipped with side-

scan sonar to survey for Mine-Like Objects (MLO). The sonar images are processed and 

manually reviewed by trained operators who determine if the surveyed area is cleared to a 

sufficient level or has potential MLO’s requiring further action. It can be a lengthy and 

labour intensive process before an area is verified to be clear to an acceptable degree of 

certainty using tethered or towed vehicles. However, this is slowly changing to using 

autonomous underwater vehicles (AUV) integrated with side scan sonars and to perform 

the initial detection of MLOs in the sonar imagery using on-board the AUV. 

In contrast the use of AUVs for NMCM potentially offers increased speed, reliability 

and consistency. To perform these or other missions it would be useful if AUVs could 

perform accurate SLAM. AUVs have onboard sensors that estimate the vehicle’s dead–

reckoned position [2], however over time their position can become increasingly 

inaccurate. The error in a dead reckoned position is directly relative to the duration since 

the vehicle’s last exact known position (GPS at the surface). While the vehicle’s position 

can only be estimated by dead-reckoning, its’ position relative to landmarks it sees can be 

as accurate as the available sensors allow. Landmarks viewed earlier in a mission have a 

more reliable position within the mapped environment due to the lower cumulated error in 

the dead-reckoned position. By recognising a landmark as being previously observed, at a 

time when its location was more certain, the vehicle can update and improve its current 

estimated position. 

Data association becomes important for carrying out autonomous missions in an 

always challenging underwater environment where SLAM has been chosen as the mapping 

methodology. Battery life limits the length of time a mission can last and dead-reckoning 

under water can be complex with the ability to move in six degrees-of-freedom. Further, 

the high attenuation, low bandwidth, and multi-path response for water to RF or optical 

energy means that only acoustics can be used for communications. Given that, acoustical 

communication still has relatively low bandwidth and can be unreliable due to high 

attenuation, multi-path, and scattering. Side-scan sonar is one of the most common sensors 

used in underwater survey missions. Its wide swath covers an area and allows the vehicle 
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to view the same area multiple times in quick succession, if neighboring scans in a lawn 

mower survey are spaced closer than the sonar swath area. The multiple views of the same 

area from different perspectives provide opportunities for data association, however 

features of landmarks viewed with side-scan sonar are aspect dependent. As well, the 

quality of sonar scaling and resolution is much less than that of visible wavelength camera 

images above water.  

The seafloor can be sparse and largely devoid of unique detail making conventional 

landmark associations difficult. However, it is rarely perfectly flat, there are usually peaks 

and valleys that change gradually or rapidly. It is these very environmental features this 

thesis uses to augment the strength of an association. By matching the direction and 

magnitude of the seafloor from an identified landmark to another area a unique profile for 

each target can be created, improving the accuracy and dependability of the data 

association process.  

Since this process does not take into account features specific to the target itself it is 

meant as a complementary component to a larger data association algorithm, not a 

replacement. The thesis uses multiple scenarios that are tested for comparison, with targets 

matched based on both parallel and orthogonal views. Profiles for each target must be 

unique enough to be differentiated when attempting to associate to other multiple targets 

located in a near-by area. The in-water testing of this paper’s algorithm was completed 

over an area which offers a fairly sparse environment with distinct landmarks deliberately 

deployed for this purpose. 

1.2. THESIS CONTRIBUTIONS 

This thesis examines and validates a hypothesis for a novel method to augment the 

SLAM data association for an autonomous underwater vehicle (AUV) using side scan 

sonar to perform naval mine counter-measures survey missions. Potential targets are 

additionally classified by the gradient of the seafloor around them. Such environmental 

feature sets do not take details of the landmarks themselves into consideration and can 

therefore avoid ambiguity issues, like aspect dependence, associated with how landmarks 

are observed/sensed with side-scan sonar. Contributions of this thesis include: 
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i. Extracting detailed elevation profiles of the seafloor from the side scan sonar 

data files normally discarded after the landmarks are extracted. These maps are 

produced using already available sensor data logged by the AUVs and do not 

require additional sensors. 

ii. Software tools that robustly orients and filters the sonar images currently being 

generated so that the landmark extraction software does not need to be accessed. 

The developed software tools also approximates the seafloor’s bathymetry, geo-

references all identified MLOs and stores a unique feature set of elevation 

changes for each landmark for potential  associations  with the others. 

iii. A validation of the data association algorithm with in-depth testing of the 

procedure using the elevation feature sets with a direct comparison against 

actual sonar data, concluding with a clear algorithm and its validation.  

1.3. THESIS ORGANIZATION 

This thesis is organized in the following manner:  

 Chapter 2: The literature review provides a background of the basic 

functionality of AUVs and how they navigate pre-planned missions. This is 

followed by a review of the history of SLAM and its use on AUVs. Then, a 

more in-depth description of data association and its challenges is provided, 

including how this thesis intends to improve the data association process. 

Details on the SLAM algorithm used in this document are also reviewed. 

 Chapter 3: Provides a description of the hardware used in these experiments 

and the setup of how this new process will be integrated into the previous 

AUV framework. 

 Chapter 4: Covers the theory of elevation data creation used in this thesis as 

a tool for environmental features in data association, as well as the initial 

results from a simplified version of this process. 
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 Chapter 5: Develops an algorithm validation to determine the process’s 

idealized evaluation method using only the data outputs already produced by 

the AUV.  

 Chapter 6: Discusses the major conclusions from the thesis and a direction 

for future research to further develop the concepts.  
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CHAPTER 2. LITERATURE REVIEW 

This review begins by providing a history of the development of SLAM and how it 

reached its current state. There is a focus on data association and the current challenges 

with this process before a more in-depth breakdown of the SLAM algorithm used in the 

research. 

2.1. AUTONOMOUS UNDERWATER VEHICLES (AUVS) 

Autonomous Underwater Vehicles (AUVs) are used in a variety of applications for 

research and exploration. Their ability to operate without tethers or communicating with 

the surface allows them to collect data in areas manned vehicles cannot easily access. The 

SLAM process would be useful to their operation as positioning through GPS is not an 

option underwater and SLAM offers a less resource intensive option for these applications. 

For the purpose of this document we focus on AUVs similar to the IVER 2 and 3 by Ocean 

Server.  

2.1.1. DESIGN 

Many AUVs take on the profile of a torpedo for hydrodynamic-efficient movement 

through water and the IVER 3 (OceanServer, MA) is an example. The AUV has a rear 

propeller to provide thrust to move it forward and four fins to control its attitudes and 

altitude/depth [3]. AUVs are normally equipped with acoustic modems for underwater 

communications and ranging towards positioning and have a wide array of sensor payloads 

that can be integrated [4], [5]. Additional details on sensor types and functions are 

discussed in the next section. Figure 1 below shows an IVER2 AUV with a payload sonar. 

 

Figure 1 – OceanServer™ IVER2 [4] 
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2.1.2. COMMUNICATION 

Effective autonomous vehicle communications are critical to abort a mission, 

provide information on the state of the vehicle, and/or to allow multi-vehicle coordination 

[6]. Typical communications between autonomous vehicles and their operators tend to 

require significant bandwidth to achieve the required levels of vehicle control. As 

previously mentioned the high attenuation rate of signals in water mean wireless RF 

communications, which can provide large data transfers, are not a viable option. An 

example of this is electromagnetic (EM) waves which operate at high frequencies (in the 

MHz). Their absorption rate in the ocean is even higher than in fresh water because of 

increased electrical conductivity due to the dissolved salts in the water [5]. 

Anguita et al. [7] explored the concept of using optical communications underwater 

but found the range limited to less than 100 metres by the large attenuation of light in water. 

There were additional negative results caused by ambient noise and the need for a clear 

line of site from transmitter to receiver which cannot be assured underwater given 

refraction and scattering at optical frequencies. 

Acoustical communications are the most commonly used and reliable underwater 

technology available, although they also have limitations. While acoustics offer an 

effective range orders of magnitude greater than that possible with optics, their reach is 

still limited to approximately 5 kilometres, and increasing distance reduces the success rate 

of data being received. Acoustical communications must also operate at a relatively low 

frequency, 9 – 13 kHz, to obtain this range [8], [9]. Lower frequency transducers have a 

disadvantage in that they are physically larger than their high frequency counterparts and 

have correspondingly lower bandwidth. 

Underwater acoustics are often described as having rapidly fading channels with 

complex sound propagation [10]. One option that has been explored to improve reliability 

and data transfer rates is to create networks of acoustic modems throughout an environment 

where AUV’s will operate. Unfortunately this is not a realistic option for missions in 

unknown or unfamiliar areas or missions that require stealth [11]. 
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2.1.3. UNDERWATER NAVIGATION 

Remote underwater navigation and positioning are uniquely challenging tasks. 

Although AUV’s are typically equipped with GPS they do not receive updates while 

submerged underwater as the penetration for RF into water is very small. All wireless 

underwater communication is complicated by the high attenuation and low bandwidth 

inherent in underwater acoustics. 

2.1.3.1. UNDERWATER DEAD-RECKONING AND POSE 

After diving, the vehicle uses dead-reckoning to provide an estimate of its pose and 

location. It does this by taking a Bayesian approach assuming its current state is affected 

by its previous state and current motor commands, the Markov assumption [5], [12]. A 

standard approach to this is to take into consideration the AUVs heading, speed and the 

time elapsed from one state to the next [13].  

The dead reckoning approach for AUVs will always incur error in the estimation 

made about their position, and this error will compound if not checked or corrected. The 

longer a mission operates in these conditions the greater the position error becomes [5], 

[14]. 

One approach to zero the accumulated position error is to periodically surface the 

AUV to verify its GPS position. This can be successful [13] but is not ideal in many 

situations. Surfacing is an inefficient use of time and battery power during a mission 

(especially, one in deep water) and AUVs may not be able to easily surface if they are 

underneath ice, performing stealth missions, or missions at very low depths [5].  

Sensors can be integrated with the AUVs as payloads and many of these can aid in 

the vehicle’s localization and provide increased accuracy in dead-reckoning [4]. The most 

common sensors for assisted dead-reckoning are Doppler velocity logs (DVL) which 

reflect sound waves directly beneath the vehicle to the seafloor to determine the vehicle 

altitude and speed over ground, and inertial measurement units (IMU), which can record 

the vehicles unintended movements in six degrees-of-freedom (yaw, pitch, roll, surge, 

sway, heave). These give the vehicle more precise calculations of velocity and heading. A 
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more in-depth description of these and other common underwater sensors can be found in 

Table 1.  

2.1.3.2. RANGE EXTRACTION FROM SONAR DATA 

Accurately calculating the distance from an AUV to some target, object or feature in 

its path is useful to navigation [12]. One method to complete this task is through the use of 

Mechanically Scanned Imaging Sonar (MSIS) [15]. MSIS sensors emit ultra-sonic pulses 

and in response an echo intensity profile is received. This is not direct range data but the 

information can be used to calculate distances to specific objects. The highest echo 

intensity typically corresponds to the distance to the largest object in the beams’ path, 

although basic image filtering techniques such as thresholding the range of pixel intensity 

fluctuation can help reduce noise from the environment [15].  

Information on obstacle size and distance is used in obstacle avoidance as well as 

localization and mapping functions but MSIS acoustic processing is only one option for 

providing such information. The DRDC IVER AUVs are equipped with on-board 

automatic target recognition software (ATR) discussed in more detail in Chapter 3.2. The 

distance from the AUV to targets is calculated and stored as part of the ATR analysis. 

2.1.3.3. STATE ESTIMATION 

Knowing that error is present even with assisted dead-reckoning, state estimation is 

also used as a process to reduce the uncertainty in the current state of a system using known 

motor commands and sensory inputs. The systems’ state is then filtered to improve the 

state estimation. There are three commonly used versions of state estimation to improve 

approximations of an AUV’s position: the standard Bayes filter, the Kalman filter and the 

extended Kalman filter (EKF). 

2.1.3.4. THE BAYES FILTER 

A Bayes filter is a probabilistic method of state estimation where the believed 

distribution of the vehicle’s state is represented by a Probability Density Function (PDF) 

[12], [16]. Each time sensor data is collected the PDF of the AUV’s pose is also updated 

[5], [17]. The algorithm for a Bayes filter is as in Equation. (1) [5]:  
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𝑏𝑒𝑙′(𝑥𝑡) =  ∫ 𝑝(𝑥𝑡 | 𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 

 𝒃𝒆𝒍(𝒙𝒕)  =  𝒗𝒑(𝒛𝒕 | 𝒙𝒕) 𝒃𝒆𝒍′(𝒙𝒕)  (1) 

Where the prediction model p is a function of xt, the estimated vehicle state. This 

algorithm uses the previously believed state 𝑏𝑒𝑙(𝑥𝑡−1), the current sensor inputs 𝑧𝑡 and the 

measurement input 𝑢𝑡  and the normalization constant v to calculate the new belief 

distribution 𝑏𝑒𝑙(𝑥𝑡) . 

2.1.3.5. THE KALMAN FILTER 

The Kalman filter is an optimised Bayesian system that makes two key assumptions 

about the system: that the system is linear and that any noise in the state or measurement 

is Gaussian. Since AUV navigation does not meet these criteria the Kalman filter is not a 

practical tool in these circumstances, however it leads to the extended Kalman filter, 

discussed in the section below, which is a more useful estimation technique.  

The Kalman filter uses the mean and covariance of the PDF for the previous state, 

measurement input, and sensor input for its algorithm (𝜇𝑡−1, ∑𝑡−1, 𝑢𝑡𝑎𝑛𝑑 𝑧𝑡 respectively) 

[5]: 

           𝜇̅𝑡 = 𝐴𝑡𝜇𝑡−1 +  𝐵𝑡𝑢𝑡  

          Σ̅t = 𝐴𝑡Σt−1𝐴𝑡
𝑇 + 𝑄𝑡  

           𝐾𝑡 =  Σ̅t𝐶𝑡
𝑇(𝐶𝑡Σ′𝐶𝑡

𝑇
+ 𝑅𝑡)

−1
 

Returned values: 

            𝝁𝒕 =  𝝁̅𝒕 +  𝑲𝒕(𝐲𝐭 − 𝑪𝒕(𝝁̅𝒕));                  𝚺𝐭 = (𝐈 − 𝑲𝒕𝑪𝒕)𝚺𝐭 

2.1.3.6. THE EXTENDED KALMAN FILTER 

As introduced in the previous section, the extended Kalman filter is used to linearize 

non-linear systems around a 1st order Taylor series approximation. This technique has 

proven to have some success as a state estimation tool for underwater vehicles [5]. The 

EKF uses the same inputs as the Kalman filter, (𝜇𝑡−1, ∑𝑡−1, 𝑢𝑡𝑎𝑛𝑑 𝑧𝑡), while also including 

𝑄𝑡  and 𝑅𝑡 , the normal process and measurement noise distributions, respectively. The 
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primary noise contributor in an underwater dead-reckoning environment is drift due to 

currents. This and other noise factors are included in the EKF and the resulting estimations 

are weighted to the least uncertain values giving the estimation a higher accuracy [5], [17]. 

The algorithm for an extended Kalman filter is [5]: 

           𝜇̅𝑡 = 𝑓(𝜇𝑡−1, ut, 0) 

          Σ̅t = 𝐴𝑡Σt−1𝐴𝑡
𝑇 +  𝑊𝑡𝑄𝑡−1𝑊𝑡

𝑇 

           𝐾𝑡 =  Σ̅t𝐻𝑡
𝑇(𝐻𝑡Σ̅t𝐻𝑡

𝑇 + 𝑉𝑡𝑅𝑡𝑉𝑡
𝑇)

−1
 

Returned values: 

            𝝁𝒕 =  𝝁̅𝒕 +  𝑲𝒕(𝐳𝐭 − 𝐡(𝝁̅𝒕, 𝟎));               𝚺𝐭 = (𝐈 − 𝑲𝒕𝑯𝒕)𝚺𝐭 

2.1.4. COMMON AUV SENSORS 

Table 1 – Underwater non-acoustic sensors commonly integrated into AUVs [15] 

Type Name Information returned Successful applications Weakness 

Non-

acoustic 

magnetic compass heading path planning 

susceptible to 

environmental 

error (ships) 

mechanical 

gyroscope 
angular heading IMUs - 

Inertial 

Measurement Unit 

(IMU) 

acceleration/ rotation 

in three directions 

within an internal 

reference frame 

determining pose and 

heading, dead 

reckoning 

compounding 

error grows 

with mission 

duration 

Global Positioning 

System (GPS) 

accurate location, 

longitude and latitude 
localization 

not functional 

underwater 

pressure Sensor depth depth keeping - 

  



 

12 

 

Table 2 – Underwater acoustic sensors commonly fixed to AUVs [15] 

Type Name 
Information 

returned 

Successful 

applications 
Weakness 

Acoustic 

Doppler Velocity Log 

(DVL) 

velocity over 

seabed and 

altitude 

navigation - 

multi-beam/bathymetric depth profile 
seabed feature 

profile 

resolution α 

1/frequency 

acoustic Doppler 

current profiler 
current profile 

increased navigation 

accuracy 

resolution α 

1/frequency 

sub-bottom profiler 

determine 

contents of the 

seabed 

finding buried 

targets 
- 

forward-looking sonar 
forward looking 

feature profile 

obstacle avoidance, 

range finding 
- 

side scan sonar 

2D image from 

side viewed 

intensity 

profiles 

feature and target 

detection within a 

wide array 

resolution α 

1/frequency 

 

2.2. SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) 

To consider vehicles truly autonomous they must accurately determine their location 

without external assists. This usually entails identifying significant features and structures 

in their surrounding environment in order to add them to the internal map they are building, 

and being able to localize themselves within that map. In some vehicles this is achieved 

directly using the GPS to determine location, but there are a number of situations where 
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this may not be possible. The GPS receiver can only retrieve information on its own 

position and not obstacles, terrain, or moving objects within   the vehicle’s environment. 

In situations where communications are poor because of being indoors, underwater, in 

inclement weather, or in areas where signals are purposely blocked, the GPS may not be 

accessible [11]. Simultaneous Localization and Mapping (SLAM), also referred to as 

Concurrent Mapping and Localization (CML) is a one approach to vehicle autonomous 

navigation. 

2.2.1. BACKGROUND 

Localization and mapping for robotic vehicles was originally approached as two 

separate tasks. However in the late 1980s and early 1990’s it was determined that each 

information set could aid the other in reducing their overall effort and error [2].  

All robots navigate their environment through data they collect from attached 

sensors. SLAM is a technique used by vehicles to build a map of their environment through 

processing the data (into information) provided by these sensors and to track their own 

locations within that map. The most basic premise is the ability to extract feature 

information about landmarks from the surrounding environment. Landmarks that can be 

successfully incorporated into the SLAM process include, but are not limited to, corners, 

rocks, terrain features, anchor scars, elevation changes etc. [2], [18]. Objects identified as 

landmarks are recorded based on their unique structure, and their position is incorporated 

into the vehicle’s map of its environment.  

A Doppler velocity log (DVL) and inertial measurement unit (IMU) are standard 

sensors that allow the vehicle to estimate its change in pose over time as a consequence of 

navigating with these sensors. While this more advanced form of dead-reckoning yields a 

reasonable approximation of the vehicle’s location, placement errors caused by uneven 

winds/currents, terrain, motor slipping, operating within a moving fluid, and calibration 

error are unavoidable. These errors if unchecked will grow the longer the vehicle operates, 

leading to potentially large position errors. To correct these errors periodic “closing the 

loop” for the map becomes a necessary part of the navigation process [5], [17]. Ideally 

when a vehicle views a set of features that it recognizes as a previously observed landmark, 
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as opposed to a new unknown one, it updates its estimated pose to its known pose from its 

position relative to this landmark. Its path from the last viewed known landmark is then 

corrected to account for this estimation error. 

2.2.2. EVOLUTION OF SLAM 

As SLAM research continues to evolve each new approach yielded improved results 

in some areas, but invariably shortcomings remained, which inspired the next algorithm 

dynamic SLAM. This section briefly outlines the primary components that contribute to 

the current SLAM algorithm. 

2.2.2.1. PROBABILISTIC SLAM 

A major advance in SLAM arrived with the concept of using probabilistic reasoning 

to determine the vehicle posterior given the prior knowledge of landmarks [17]. This is 

represented as in Equation.(2): 

 𝑝(𝑥1:𝑘 , 𝑚|𝑧1:𝑘 , 𝑢1:𝑘).  (2) 

Where x is the vehicle`s pose, m is the map, z is the measurements, and u represents 

the vehicle’s controls, all at time, t. Equation 1 provides the PDF of x and m given that the 

information of z and t are known. This approach is a form of Bayesian probability where 

the current state is assumed to be only affected by the previous state, and current control 

inputs and measurements [12], [17]. The vehicle’s pose is never definitively known, but 

the formed probability density function over all possible positions shows where it is most 

likely to be located, with this position becoming more likely the more often landmarks are 

correctly recognized and associated. Figure 2 shows a series of several iterative steps 

performing probabilistic Bayesian SLAM. [2]  
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Figure 2 – Vehicle pose at several stages with links to landmarks [2] 

2.2.2.2. EKF – SLAM 

The use of a state estimator, such as a Kalman filter, reduces the uncertainty 

associated with each measurement in the SLAM process. In practice these systems are not 

linear and therefore an extended Kalman filter is required [19]. A more in depth discussion 

on EKFs is found in Chapter 2.1.3.6. 

 𝑝(𝑥𝑘|𝑥𝑘−1 , 𝑢𝑘) ⬌  𝑥𝑘  = 𝑓(𝑥𝑘−1 , 𝑢𝑘) + 𝑤𝑘  (3) 

In this Equation (3), f(·) represents the vehicle’s motion model and 𝑤𝑘 represents the 

environmental noise. The primary complication in this process was computational time. 

The first successful case of underwater EKF -SLAM was achieved by Paul Newman in 

1999 [2]. Many real world environments contain dozens (sometimes hundreds or more) of 

usable geographic features and this number can grow rapidly with increased environment 

size. Simple EKF-SLAM updates the covariance matrix for each new landmark observed, 

which has a significant effect on the computational complexity of the system. In fact there 

is a quadratic relationship between required processing time and the number of landmarks 

observed [2], [17], [20] which prevents real time SLAM in most situations. While there are 
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a number of ideas on how best to mitigate this problem, the most researched options are 

map segmentation, the Rao-Blackwellized Particle Filter (RBPF), Sparse Extended 

Information Filter (SEIF), and Bathymetric profile SLAM. 

2.2.2.3. MAP SEGMENTATION 

A conceptually basic approach to reducing map complexity is to break the global 

map into a series of smaller sub maps, each with a more manageable number of features to 

process [2], [20]. These sub maps are fixed to a global coordinate system, while relative 

transforms must be tracked that relate each sub map to the others. This can be done using 

partially overlapping sub maps that can be merged by recognizing overlapping features in 

adjacent maps [21]. Another approach uses a hierarchical system that focuses on updating 

one small section at a time for incorporation into a global map [22]. An example of this is 

the Constrained Local Sub map Filter (CLSF) [23], [24]. 

While these methods produce more robust results than standard EKF-SLAM, they 

still do not solve the fundamental problem with this method since map complexity and 

process time quickly becomes unwieldy [2]. 

2.2.2.4. FASTSLAM 

FastSLAM is also an attempt to improve efficiency of the SLAM process. FastSLAM 

was originally introduced by Montemerlo et al. [25] in 2002 and was the first time the 

SLAM problem was approached without the simplifying assumption the system was linear 

and Gaussian. Particle filters are inherently too computationally complex to be robust for 

large areas. The Rao-Blackwellization algorithm is used to reduce this complexity to a 

more manageable state [2]. 

This is done by determining the probability distribution of the vehicle’s total 

trajectory 𝑿𝑘 instead of for each individual state 𝑥𝑘. This gives linear complexity to the 

system for each additional node rather than the quadratic complexity of the EKF-SLAM 

algorithms. The EKF-SLAM complexity is shown in Equation 3 as ~𝑂(𝐾2) and becomes 

~𝑂(𝑀𝑙𝑜𝑔(𝐾)), where K is the number of landmarks observed. 
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The PDF is then determined by: 

 𝑃(𝑿0:𝑘 , 𝒎|𝒁0:𝑘 , 𝑼0:𝑘 , 𝒙0) = 𝑃(𝒎|𝑿0:𝑘 , 𝒁0:𝑘)𝑃(𝑿0:𝐾|𝑼0:𝐾 , 𝒙0)   (4) 

This SLAM algorithm has shown bounded error results in missions with up to 50, 

000 distinct landmarks [17]. 

2.2.2.5. SPARSE EXTENDED INFORMATION FILTERS 

Sparse extended information refers to an unstructured storing of landmark data as it 

is observed [20], [26]. The SEIF improves computational efficiency by only focussing on 

landmarks that are directly adjacent to the vehicle or “active” as shown in the far right of 

Figure 3 [17]. 

 

Figure 3 – Covariance matrix EKF-SLAM vs SEIF [17] 

The far left image shows a covariance matrix from a standard EKF-SLAM algorithm 

where the darker nodes indicates a strong correlation between the landmarks. The right 

section of the image shows the matrix sparsely maintained by the SEIF algorithm avoiding 

recalculating the unchanging aspects of the matrix. This allows for a much less complex, 

more robust process. 

 

Figure 4 – Sparsification, passive lanmarks removed from covariance matrix [17] 
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Figure 4 from [17] shows the “sparsification” process zoomed in, where the vehicle’s 

connection to landmark “y1” is dropped as superfluous, so that when the vehicle updates 

its pose it only updates the currently “active” landmarks. This algorithm has proven to be 

successful at producing SLAM results with bounded error even in environments containing 

a large number of landmarks [17], [26]. 

2.2.2.6. BATHYMETRIC SLAM 

SLAM can be unreliable in environments 

where distinguishable landmarks are scarce. This 

is a common issue in underwater SLAM where 

the seabed can be primarily covered with 

sediment and landmarks can be difficult to 

distinguish. The depth profile of the seabed 

however can vary significantly and it has been 

suggested that building a bathymetric map using 

elevation changes as features may be more 

reliable in certain situations [27]. This technique 

is referred to as Bathymetric distributed Particle 

SLAM (BPSLAM) and it has produced 

successful results profiling the seabed using tow 

dimensional depth maps. Figure 5 shows a multi-beam bathymetric profile of Halifax’s 

Bedford Basin. This image shows an example of the resolution achievable with this type 

of sensor. 

2.2.2.7. GRAPH SLAM 

 A graphical representation of the SLAM problem, Graph SLAM, has 2 types of 

values represented; motions, that show the vehicles changes in pose from one point to the 

next and measurements (edges between the poses), that show Euclidean distance from each 

pose to features within the environment  observed from that point. The edges can show 

measurements between the vehicle poses and to landmarks, and each edge can be thought 

of as a negative log likelihood of the motion model [28]. These measurement and motion 

constraints are organized in a sparse information matrix and the graph SLAM function, 

Figure 5 – Bathymetric sonar data, 

Bedford Basin [65] 
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which when minimized indicates the most likely path the vehicle travelled and most likely 

map of the environment. 

2.2.2.8. OTHER AREAS OF RESEARCH IN SLAM 

There is on-going research on numerous aspects of SLAM aimed at improving both 

aerial and underwater vehicle performance. Samples of these studies include: 

Dissanayake et al. [29] provided an overview of algorithms associated with 

successful SLAM results (ie. EKF SLAM, FastSLAM), and described some of the most 

mainstream areas of current research including Smoothing and Mapping (SAM).  

Casarrubias-Vargas et al. [30] used machine learning techniques to train a vehicle to 

find specific landmark types using an EKF-SLAM based system.  

Other research focused on improved EKF systems that include robocentric map 

joining [31]; the use of scale-invariant feature transforms (SIFT) for landmark positioning 

[32]; and using MSIS data to store state vector information on the vehicle’s movements. 

The key difference with this work is the body centered reference frame which was internal 

to the vehicle instead of a world reference frame [33]. 

2.2.2.9. MULTI – VEHICLE SLAM 

Up to this point only single vehicle SLAM missions have been discussed. This makes 

sense as the purpose of SLAM is to allow an autonomous vehicle to operate without 

external assists. However, there can be significant improvements to SLAM and the abilities 

of autonomous vehicles through multiple autonomous systems collaborating towards a 

common goal. Research on numerous aspects of improving collaborative multi-agent 

systems (MAS) both in air and underwater is being conducted to improve the overall 

success of autonomous missions. 

Operations completed by autonomous vehicles are often limited in difficulty because 

of the size and intricacy of the environment they manoeuvre though and the resource 

demands of the computational tasks required. This constraint is often directly linked to 

limitations associated with the vehicle’s battery life, an AUV can only map an area of a 

certain size before it needs to recharge. This leads to a constant search in vehicle 
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development for the largest energy density source available to increase the vehicle’s 

endurance and thus the scope of tasks it can perform.   

Ideally, the use of cooperative autonomous systems is a tactical way of extending the 

abilities of an autonomous vehicle. Many researchers, including Sathyanath et al. [34], 

modelled their systems to replicate the behaviour of biological systems that already 

accomplish the collaborative tasks vehicles want to emulate. Larger areas can be mapped 

when multiple vehicles cover different sections of the environment [35], [36]. For small 

scale missions there are still benefits in time sensitive situations where a single vehicle 

could complete the job, but not within the time available. As well, another vehicle may 

have a different resolute or range on its payload sensors which are appropriate for other 

reasons. There are many examples of multiple vehicles performing the same tasks within 

a mission, but that is not the only potential advantage to MAS. Each vehicle can be 

programmed to carry out specific functions while equipped with unique sensors and tasks. 

Unmanned surface vehicles (USV) could potentially act as communications and 

navigations points between AUVs, using acoustic modems, and other vehicles operating 

above the water, using wireless RF signals. USV’s can act as platforms for docking and 

recharging UAV’s allowing them to extend their range away from operators. In mine 

counter measure (MCM) missions selected AUV’s can be programmed to perform SLAM 

and target recognition of mine-like objects (MLO) using side scan sonar with a wide swath, 

while other AUV’s gain higher resolution sensor data of the potential MLO’s to increase 

the certainty of their identification [37].  

Another significant potential advantage to MAS is based on landmark locations and 

features being passed between vehicles, allowing them to locate themselves in areas they 

had not mapped themselves. This would be a major step forward over single vehicle SLAM 

where a vehicle must map its environment before it can locate itself [38]. 

While the potential benefits of MAS are significant to advancing autonomous vehicle 

SLAM and other areas of research it is an extremely challenging field. The more vehicles 

that you add to an operation the more you increase the support ship overhead and 

operational costs, as well as the risk of vehicle loss if recovery is not possible. Unrecovered 

vehicles are a necessary consideration with any UAV or AUV operation since they are 
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typically used in situations where manned recovery is not an option or is not feasible for 

other reasons (extreme weather, mission has changed, threats in the area, etc.).  

Communications are critical for any successful multi-vehicle operation. This is 

particularly difficult for underwater vehicles for the reasons discussed previously. While 

simulations of underwater SLAM with multiple collaborative vehicles have been 

successful, their performance under real world conditions has been problematic. This is 

largely due to the high data transfer rates used, while possible for the modem to output, 

have a high failure rate under real world conditions [39]. 

In multi-vehicle SLAM operations, identifying the overlapping areas within each 

vehicle’s map is critical to being able to merge the parts into a global map of the 

environment [37]. The vehicles’ individual maps must be oriented and scaled so that they 

can be properly merged and georeferenced. This is done by the recognition of identifiable 

features within the recorded landmarks. There is potential in these situations to have false 

positives for overlapping map spaces. An example of this is discussed by Thrun et al. [17] 

using a building with several floors each having the same layout. For this reason it is not 

just important to recognize matching features within an environment, but also which 

features are distinct. This variation could include extra or missing landmarks, or landmarks 

oriented in different ways. Only overlapping sections containing matching features, 

without significant missing landmarks, are determined to be the same space. Once the maps 

have been oriented and scaled and overlapping sections identified, the online location of 

each vehicle and its position relative to the others, can be accurately estimated [17]. 

As research in underwater vehicle SLAM grows MAS operations are the logical 

progression towards more efficient and reliable missions. However, substantial 

improvements in underwater communications will be necessary to make significant 

advancements in this field. MAS research can be expected to continue to progress as the 

cost of autonomous vehicles and energy storage systems decrease.  

2.2.3. POSE GRAPH SLAM 

Unlike the filtering methods of SLAM (Kalman and particle filters) Pose Graph 

SLAM is a smoothing approach that attempts to estimate the total trajectory of the vehicle 
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using all available measurements. The vehicle trajectory is represented graphically by a 

series of nodes and edges, as seen in Figure 6. Each node represents the pose of the vehicle 

or a landmark while the edges represent the constraints between the two nodes as viewed 

by the sensors. As with most smoothing algorithms, PG-SLAM uses a least means square 

(LMS) approach to minimise the error of the vehicle trajectory over the entire trajectory. 

2.3. DATA ASSOCIATION 

Data association is a primary component of the SLAM process. It refers to situations 

where new landmark features are compared and associated with landmarks already existing 

within the SLAM produced map [5], [40]. While this is critical for localization in 

autonomous robotics, it is currently an unreliable process needing significant improvement 

to achieve more reliable SLAM missions. A primary focus of improving data association 

is how to best deal with environmental noise. Noise within the environment can distort a 

landmark’s feature data, but may not be present while viewing the same landmark at a 

different time or from a different aspect. This can lead to a feature not being recognized as 

the same previously observed landmark in that same location.  

The vehicle constantly calculates its path using dead-reckoning. This information is 

logged while sensory data, and its processing, is used to define landmarks and their 

locations by means of various associated features. Connections are created that link the 

pose of the vehicle to the viewed landmark locations. If a specific landmark is observed 

again the vehicle’s position can be updated from its current calculated state to a truer 

position. Several feature identification algorithms have been developed to assist removing 

errors associating landmarks based on orientation and scale. The two most common 

processes are Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features 

(SURF) and these products have led to improved robotic performance in some cases [41].  

The most commonly used data association algorithms are nearest neighbour (NN), 

individual compatibility nearest neighbour (ICNN) and joint compatibility branch and 

bound (JCBB). 
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NN requires fairly low computational expenditure but can be susceptible to incorrect 

associations, matching a set of landmarks using the minimal statistical distance between 

two targets whose positions are represented by PDFs [42]. 

ICNN offers a slight improvement on this, taking the Mahalanobis distance (the 

distance from a point to a distribution) between the two landmarks which, as the name 

suggests, are evaluated for compatibility separately. These two methods are most likely to 

incur false associations in an area that contains a cluster of closely placed targets where 

small inaccuracies in the dead-reckoning estimations can have a larger impact.  

JCBB is more computationally intensive but offers increased reliability to NN or 

ICNN. Taking into account not only the distances of each landmark being compared to 

each other but also the neighboring landmarks (and their groupings), a branch and bound 

series determines the best cumulative fit [43]. This allows for the filtering out of false 

associations which may have yielded close associations without being the correct match. 

A comparison of these data association methods are shown in Figure 6 [44]. 

 

Figure 6 – Comparison of the three most common data association algorithms [44] 
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Chen et al. [45] have shown improved results using a hybrid form of ICNN and 

JCBB. Gil et al. [46], used a sparse SIFT with a rejection protocol that only considered 

features that appeared stable from varying views, to reduce the likelihood of noise 

distortion. Also using SIFT Xiao-hua et al. [47] examined the minimum Connected 

Dominating Set (CDS) between the current sensor view and previous sensor views, 

considering the smallest set of matching features between two landmarks during the 

comparison. Kosuru et al. [48] compiled feature sets into polygonal shapes to properly 

associate one set from another.   
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CHAPTER 3. SYSTEM DESCRIPTION 

 This section outlines the features of the IVER vehicles used in testing this thesis, 

including their hardware, SLAM algorithm, data association methods, and how elevation 

maps are incorporated into the hierarchy. 

3.1. HARDWARE OVERVIEW 

The IVER 3 (Figure 7) autonomous underwater vehicle is integrated with a 

MarineSonics HDS (900/1800 kHz) side-scan sonar as the payload sensor as well as a T16 

Kearfott INS [49].  

 

Figure 7 – MarineSonics IVER3 AUV [4]  

The AUV has two on-board computers (Intel 1.6 GHz processors). The computers 

referred to as the front seat, or Original Equipment Manfacturer (OEM), and the back seat, 

or payload computer. The backseat, runs as the vehicle’s “autonomous brain” while the 

front seat controls the misson’s navigation and onboard sensors (including DVL, range 

sensor, depth sensor and compass) [49]. Communications between the OEM and payload 

computers are shown in Figure 8. 
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Figure 8 – IVER3 AUV front seat and back seat information flow. IVER3 set up is 

similar, but with the two computers networked together [44] 

Figure 8 shows the OEM manages mission waypoint following, and the collection of 

side scan sensor and navigation data. Sonar data and dead–reckoned position estimates are 

passed to the payload computer and are first processed through the ATR (of which the 

Automated Target Detection ATD is one component). The ATR outputs the targets’ 

estimated locations and covariances (which includes correlating the targets’ positions to 

one another and to the vehicle’s) to the SLAM engine [44]. The SLAM algorithm 

incremental Smoothing and Mapping (iSAM) and ATR are discussed further in sections 

3.3.1. and 3.2. respectively. Running as part of SLAM the data association attempts to 

match landmarks as it observes them in the side scan sonar imagery. It then returns this 

information to the main SLAM system which then updates its current and prior positions. 

In the case of NMCM a change to the mission path could be implemented to survey an area 
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where an MLO was previously observed to re-acquire and confirm the existence and 

location of the landmark and decide on further prosecution. 

3.2. AUTOMATED TARGET RECOGNITION 

DRDC IVERs are equipped with a DRDC proprietary target detection software, 

Automated Target Recognition (ATR) which can identify MLOs from side-scan sonar data 

[50]. While specifics on the ATR functionality are outside the scope of this thesis, it 

operates using two major filters speckle, matched. The speckle filter, a simplified approach, 

operates by scanning the sonar images for clusters of drastic changes in light intensity that 

could indicate a target sitting above the seafloor and casting a shadow. The speckle filter 

has a likelihood to have false detections and is more dependent on the quality of sonar data, 

the sparsity of the environment, and the threshold settings applied at the start of the mission. 

The matched filter attempts to match the distinct size and geometry of viewed objects based 

on a comprehensive stored database of MLOs at given ranges and aspects. The matched 

filter is more resistant to false positives than the speckle filter but still has the potential for 

false negatives. Other forms of target detection for side scan sonar SLAM used on IVER 3 

Vehicles at DRDC similar to the match filter are described in [50]-[53].  

Most SLAM algorithms discussed to this point have focused on Bayesian filter 

SLAM methodologies. Another, more efficient, option is smoothing algorithms such as 

incremental smoothing and mapping (iSAM) [54]. This algorithm was developed by MITs 

CSAIL with the underwater environment in mind and is the SLAM algorithm used by 

DRDC Atlantic. 

3.2.1. INCREMENTAL SMOOTHING AND MAPPING (ISAM) 

 Similar to Graph SLAM [28], [55], iSAM tracks the vehicle’s trajectory over the 

entire mission and maintains a sparse QR information matrix. The structure of this matrix, 

being an orthogonal matrix Q and a upper triangular matrix R, allows it to be back-solved 

efficiently providing substantial savings in computational effort. Searching for the 

maximum likelihood, or minimum error, of the total AUV trajectory results in a smoothing 

(improved) estimation at each time step making it possible to implement on-line. A 

smoothing SLAM method such as this can remove previously false estimations. iSAM runs 
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on the basis of a pose graph model, with the most up to date versions also taking into 

account the possibility of environmental features not being stationary over time (Dynamic 

PG-SLAM). Pose Graph SLAM and Dynamic Pose Graph SLAM are described in more 

detail in the next section.  

3.2.2. DYNAMIC POSE GRAPH SLAM AND INCREMENTAL SMOOTHING AND 

MAPPING 

Dynamic Pose Graph SLAM (DPG-SLAM) utilizes an incremental Smoothing And 

Mapping iSAM algorithm (developed by CSAIL of MIT) for the vehicle’s state estimation 

[56]. The information that relates each pose, landmark and measurement is stored in an 

information matrix. This square root matrix is spare and triangular so it can be back solved, 

reducing the computational cost that occurs in filtering based SLAM algorithms. One of 

the primary advantages of the iSAM process is that it can evaluate the vehicle’s entire path 

at each new time step searching, allowing for correction of previously incorrect vehicle or 

landmark positions. 

Real world environments are subject to change over time. In NMCM missions it is 

common for the same area to be surveyed multiple times over a long period. The ability to 

track changes that can occur in a dynamic underwater environment, or when a target may 

have been added to an area, while still maintaining an accurate global map is crucial and 

DGP-SALM is a leading method to handle dynamic environments. 
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CHAPTER 4. ELEVATION DATA AS ENVIRONMENTAL FEATURES 

FOR DATA ASSOCIATION 

This chapter describes the theory used to extract environmental elevation data from 

side scan sonar imagery and evaluate it as part of the data association process. The 

procedure’s initial results are discussed to verify the process’s potential and future research. 

4.1. THEORY 

This section reviews the background theory upon which this thesis is based 

describing why this data was used, how it was calculated, and how it was applied in the 

data association.  

4.1.1. ENVIRONMENTAL FEATURE SETS 

While data association has become reasonably reliable above water where cameras 

and other available sensors can create detailed imagery of the environment and its 

landmarks, it remains a significant challenge underwater. There, landmarks can be sparse 

and ill defined. Many standard target recognition processes such as Scale Invariant Feature 

Transform (SIFT) [57], [58] and Speeded Up Robust Features (SURF) [59] do not perform 

well on with aspect dependent sonar data like SSS images. Similar underwater targets can 

appear non-uniformly varied in size and structure depending on the vehicle’s relative 

position and dynamics at the time they were observed. The subsea environment has great 

potential for shifting and changing over time from the natural flow of currents. It was 

decided that one method to improve data association in this setting could be to use the more 

enduring aspects of the environment around the target. The hypothesis behind this thesis is 

that topographical aspects of the seafloor may provide enough detail to identify a target 

using only minimal details of the target itself, outside of its relative position to the AUV. 

Extracting an estimated bathymetry of the sea floor from SSS has been examined in [2], 

[60]-[63].This is intended for use in parallel with the JCBB algorithm (discussed earlier), 

as an additional item to jointly associate a target against, in addition to associations already 

made through a traditional analysis of the side scan sonar data. 
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4.1.2. ESTIMATED BATHYMETRY OF THE SEAFLOOR 

In order to incorporate the seafloor profile into the SLAM data association the AUV 

must collect a data on this data during the mission. This can be done in several different 

ways. One option is to use a bathymetric sonar in addition to the AUV’s side-scan sonar. 

However the added complexity, cost and additional power consumption this would require 

makes this option less appealing. Alternatively, data already generated by the side-scan 

sonar can be used to produce an estimated bathymetric representation of the seafloor. This 

can be done by combining the intensity values in the TIFF images generated for each 

mission leg and information from the log data files already stored as part of a standard 

mission. 

The values in the generated intensity map (inverse bathymetry) represent the vertical 

distance (altitude) from the AUV to the seabed at each pixel location and therefore show 

an inverted profile of the seafloor relative to the AUV. This information can be combined 

with the recorded depth of the vehicle, also stored in the standard log files, to create a 

reasonable estimate of each location’s true depth. 

The altitude at each pixel is calculated by first assuming a Lambertian reflectance 

model for the seafloor that assumes all locations scatter energy uniformly. The TIFF 

images are a series of intensity values at each pixel location. This model defines the 

intensity of values I, as being represented by a relationship of the sonar’s beam intensity 

profile 𝛷, the location’s reflectivity R, and altitude Z as shown in Equation 5. 

𝐼(𝑥, 𝑦) =  −𝐾𝛷(𝑥, 𝑦)𝑅(𝑥, 𝑦) ∙        (5) 

𝑍(𝑥, 𝑦) − 𝑥 ∙
𝜕𝑍
𝜕𝑥

(𝑥, 𝑦)

√𝑥2 + 𝑍2(𝑥, 𝑦)  ∙  √(
𝜕𝑍
𝜕𝑥

(𝑥, 𝑦))2 + (
𝜕𝑍
𝜕𝑦

(𝑥, 𝑦))2 + 1

 

The K value is a normalization constant, y represents the distance in the direction of 

the vehicle heading, and x the distance orthogonal to that heading either on the port or 

starboard side of the vehicle. The Z map (altitude) was initialized to the altitude of the 

vehicle at the time of each ping for all pixels along the row of x values. The reflectance 

map was initialized to values of 0.9 as per [61] and 𝛷 was given the same initial values as 

I averaged over each angle , where  is the beam angle to the point of reflection from the 
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normal x as shown in Figure 9. Using a Least Mean Square (LMS) regression a local 

minimum error for the intensity map was calculated with gradient descent. The most 

updated version of the Z map was then used to represent the inverse bathymetry of the 

seafloor. 

 

Figure 9 – AUV reference frame for bathymetric estimation [64] 

4.1.3. TIFF IMAGE PREPARATION AND NADIR IDENTIFICATION 

Generating an accurate view of the bathymetry is limited by the quality of available 

sensor data, primarily the accuracy of the TIFF image, which must realistically represent 

the scanned environment. Currently, DRDC IVER AUV’s use ATR software to generate 

the log data files and unscaled images, as well as a scaled (brightened) version of the 

images. The unscaled images are so dark that that it is difficult to extract useful information 

from them, or even view landmarks within them. Scaled images offer more detail but can 

be over brightened, causing many areas to be washed out hiding critical information. Figure 

10a and b show unscaled and scaled versions of the same image respectively. 
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                                                         a.                                           b. 

Figure 10 – (a) shows the unscaled original image and (b) shows the scaled. Neither 

are useful for accurate bathymetric estimation 

Some scaling issues arise in the image’s transition from the area directly below the 

AUV to the first return from the sonar, which shows a drastic jump in intensity. Side-scan 

sonar offers wide area coverage but cannot view the ground directly below the AUV (the 

blind spot). This unseen area appears in the sonar images as a black band known as the 

nadir, seen in Figure 11. 

 

Figure 11 – Standard side-scan sonar image (ATR scaling, from IVER3) 
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The nadir is misinterpreted by the inverse bathymetry calculations. It views the 

transition from the dark nadir to the bright first returned sonar value as a large jump in 

altitude. To compensate for this error a separate set of scaled images were generated by an 

additional software using the unscaled images from the ATR. The data logs were first used 

to identify and remove the nadir’s dark band before scaling the image brightness to produce 

a more representative distribution. The nadir was identified using the geometry of the sonar 

beam shown below from [64] and in Figure 14. 

 

Figure 12 – Port and starboard SSS image 

  

Figure 13 – Same SSS image from Figure 12 with the nadir removed 

The nadir’s size and shape fluctuates, within the SSS image, with changes in the 

AUV’s altitude, roll, and pitch. Since the geometry of the sonar’s coverage is known, the 
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location of the last pixel of the nadir, or first sonar return from the seafloor can be 

identified. Figure 14 shows the outline of the vehicle geometry where (𝜃 +  
∝

2
) is the angle 

from the AUV’s horizontal axis to the end of the nadir. 

 

Figure 14 – AUV reference frame for nadir identification [64] 

The initial returns of the side-scan sonar can therefore be determined from Equation 

(6). 

𝑟𝐹𝐵𝑅 =  
ℎ

cos(𝜃+ 
∝

2
)
     (6) 

Where h is the AUV altitude corrected for roll and pitch, 𝜃 is 20 degrees and ∝ is 30 

degrees. 

Using the distance, 𝒓𝑭𝑩𝑹, in metres, and the scale of metres/pixel orthogonal to the 

vehicles’ travel across the TIFF image, the number of pixel values can be identified and 

removed from consideration in the inverse bathymetry calculations shown in Equation 4.  

The nadir is not the only distortion in the side scan sonar images, there is also uneven 

insonification from the sonar. Values close to the nadir are over saturated and estimated to 
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be too high. This is seen in an example from an intensity profile return from [64] in Figure 

15. 

 

Figure 15 – Intensity values, showing the over brightened initial returns [64] 

To obtain a more representative distribution of intensity values for the inverse 

bathymetry equation the images were scaled to intensity ranges from 0-1. It was important 

to understand the complexity of the sonar image to scale the image correctly. The IVER2 

vehicles’ SSS produce 8-bit images on a 0-255 scale, while IVER3 vehicles’ SSS create 

16-bit, 0-65536, unscaled images. The corrected scaling uses the unscaled TIFFs (16 bit) 

to produce (8 bit) scaled versions of the image. These accurately scaled images, from the 

IVER3 AUV, were then used in the elevation calculations, Figure 16a shows the original 

unscaled image and Figure 16b shows an 8-bit scaled version of the same image produced 

by the ATR. 

 

                                                 a.                                                          b.  

Figure 16 – Unscaled port and starboard SSS images, unscaled (a) and scaled (b). 
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To correctly adjust the images, the nadir was not incorporated into the scaling, 

instead it was replaced in the final image for visual purposes with values of .5 on the 0-1 

greyscale (exactly in the middle) as shown in Figure 17. 

 

Figure 17 – SSS images for port and starboard mission leg, with intensity scaled and 

nadir removed 

Not all scaling changes to the side-scan images were included in the initial 

calculations covered in section 4.2, where a convolution filter was used to smooth the 

image. This process was added after it became clear the generated bathymetry was affected 

by the scaling and nadir effects. The resulting bathymetries were far more consistent with 

what was expected, and allowed for improvements to the final association matches 

discussed in Chapter 5. 

The altitude values, logged by the AUV, also had to be adjusted for the motion of the 

AUV as it traveled. The on-board INS sensed the vehicle’s pitch and roll, and was used to 

adjust the AUV’s altitude. While in many instances the pitch/roll values were minor (< 2 

degrees) and not a factor in the sensor results there were instances of turbulent motion (>10 

degrees) where this correction was critical to provide a sufficiently constant vehicle 
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position relative to each pixel value. This can be seen in the evaluation of the nadir from 

Figure 13 correctly identifying the first returned sonar value. 

Another unexpected issue was the way the images were oriented coming out of the 

ATR. The port side images were rotated 180 degrees, while the starboard images were 

inverted along the orthogonal axis (perpendicular to the AUV’s direction of travel). While 

this may be correctable by adjusting the ATR settings, accessing its source code was 

beyond the scope of this thesis. Instead the images were corrected after the ATR, but prior 

to the scaling and elevation extraction. Figures 18a and b show the before, while Figure 

19a and b show the corrected versions of the port and starboard images for comparison.  

 

a. Port SSS image from ATR          b. Starboard SSS image from ATR 

Figure 18 – Unadjusted SSS images. Port (a) and starboard (b) 

 

a. Port SSS image after adjustment          b. Starboard SSS image after adjustment 
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Figure 19 – Adjusted SSS images, port (a) and starboard (b) 

The corrected orientation of each image was individually validated by viewing the 

original raw side-scan sonar data using the MarineSonics SeaScanSurvey™ viewer. This 

issue appears to be caused by how Ubuntu creates the image files. In a Linux based OS the 

images are oriented as intended, while viewed in Windows OS for Matlab™ the images 

are rotated and inverted as shown in Figure 18. 

4.1.4. ELEVATION GRADIENT PROFILES 

A set of feature data for each landmark can be created with the estimated bathymetry 

data from each generated TIFF image (referred to as the elevation map). The location of 

each target (landmark) within the TIFF image was calculated and stored as a single pixel. 

The row (y value) and column (x value) were found using data generated by the ATR. A 

data file was generated for each target and included the series of sonar pings it was observed 

in. The row of the TIFF image can be determined using the ping number (an ID tag for 

each ping value within a mission) of the target centre and the ping numbers at the beginning 

and end of the image the target was observed in. The distance to each target was also stored 

in the target data file as minimum and maximum distances in metres, as well as a scale 

across the image in metres/pixel. Finding the mid-point of these distances and converting 

to pixel distance yielded the column values. 

The pixel value at the centre of the target allows the landmark’s depth to be estimated 

within the elevation map. Depths at multiple other locations (also referred to, here, as 

zones) around the target were also sampled. A profile was made for each landmark for 

comparison against other landmarks by examining the change in elevation between the 

landmark and its surrounding zones. Figure 25 shows a basic conceptualization of this 

process.  

With TIFF images, for this data set, ranging between 1300 × 1024 pixels and 3500 × 

1024 pixels a singular pixel value provided a poor representation of the depth in each zone. 

Instead, a group of pixels, with the zone location as their centre, were used to determine an 

average altitude at each location. The TIFF image’s scale (number of pixels per metre) was 

important to include when defining the number of pixels needed to average each zone’s 
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depth as well as the number of pixels needed to ensure the zones were the correct distance 

from the landmark. The along-track (direction of vehicle travel) used a different scale 

[metres/pixel] than the across-track (distance out, normal to the vehicle travel direction). 

While the exact values change slightly for each leg of the mission depending on AUV 

speed, the along track scale was roughly 4 times as high as the across-track scale. Specific 

values for evaluation are further discussed in Chapter 5. 

4.2.  INITIAL TESTING AND RESULTS 

Initial testing was performed using Matlab™, the scripts were then converted to C++ 

so that it could run on the IVER2 hardware-in-the-loop simulator installed on the back seat 

computer. This computer uses Ubuntu as its operating system. This testing performed a 

post-processing analysis on previously logged sonar data. 

4.2.1. MATLAB TESTING 

Side scan sonar data collected by DRDC based off the DRDC’s Acoustic Calibration 

Barge in the Bedford Basin was evaluated in Matlab™ to determine if any data association 

trends could be gained. Figure 20 shows the AUV’s path following a typical “lawnmower 

pattern”. Each transect of the path (also referred to as a mission leg) creates both port and 

starboard side images. 

 

Figure 20 – AUV path for a NMCM survey with three mission legs highlighted  

Three side-scan TIFF images were selected that contained landmarks within the 

sonar image intensity’s optimal range to extract elevations. These images were taken from 

mission legs highlighted in Figure 20 (5, 7, and 10) and are shown in Figure 21. The 
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mission legs were approximately 450 metres in length and 12.5 metres apart. The 

landmarks from Figure 21 a (leg 10) and b (leg 7) were determined to be the same by 

comparing their latitude, longitude, and ranges from the AUV.  Figure 21c was within an 

overlapping area but the landmark was found to differ from those in Figures 21a and b. In 

this figure, red boxes highlight correctly associated landmarks while a blue box shows an 

unassociated landmark. 

 

Figure 21 – Starboard SSS TIFF images matching the highlighted legs in Figure 20 

 

Figure 22 – Altitude approximation (Z map) of the seafloor for Figure 21 b, with the 

potential MLO highlighted 

(a) leg 10 (b) leg 7 (c) leg 5 

450 

m 
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Elevation gradients centred around landmarks were calculated in the 4 cardinal 

(north, south, east, and west) directions. These 4 gradients, or slopes, were combined to 

form the landmark’s elevation gradient profile. Evaluations were then done to compare 

profiles across landmarks. All landmark-to-zone distances and zone sizes were kept 

consistent across landmarks to ensure the results were directly comparable.  

Several methods were tested to match elevation trends. The direction and magnitude 

of each gradient was independently examined, as well as the cumulative error – sum of the 

differences (errors) between each gradient. 

Table 3 – Gradients between landmarks and N, E, S and W zones with error 

comparisons 

 Zones 

Landmark est. Location North South East West 

N-S leg 5 1.600e-04 1.052e-03 3.384e-04 5.686e-04 

N-S leg 7 6.204e-04 1.160e-04 -4.002e-04 7.742e-04 

Error leg 5 – leg 7 4.605e-04 9.357e-04 7.386e-04 2.057e-04 

N-S leg 5 1.600e-04 1.052e-03 3.384e-04 5.686e-04 

S-N leg 10 2.636e-04 5.071e-04 -2.411e-04 7.461e-04 

Error leg 5 – leg 10 1.036e-04 5.446e-04 5.795e-04 1.775e-04 

N-S leg 7 6.205e-04 1.160e-04 -4.002e-04 7.742e-04 

S-N leg 10 2.636e-04 5.071e-04 -2.411e-04 7.461e-04 

Error leg 7 – leg 10 3.569e-04 3.911e-04 1.591e-04 2.819e-05 

 

At this point, the bathymetry that was calculated was of poor quality and a reflection 

of the lack of an on board INS as well as the bathymetry estimation algorithm implemented 

at that time. The highlighted data in Table 3 shows the calculated error between each slope 
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for landmarks in legs 7 and 10 (representing the correctly associated target). While not 

conclusively determining the targets in legs 7 and 10 represent a correct association and 

landmark 5 does not, there are two positive indications of a match. First the direction of 

the eastern slope for landmarks 5, 7 and 5, 10 is not consistent, while all directions for 7 

and 10 are. Second the magnitude of the error for matching 7 and 10 was the lowest of all 

three for the eastern, southern and western slopes, while the northern slope error for 7 and 

10 was less than that of 5 and 7. So only the northern slope of 5 and 10 suggested a better 

match than the known correct match. It is important to note that a certain portion of similar 

slopes are likely and can be expected when comparing targets within the same area even if 

the targets are not a correct match. 

It was decided there were enough indications of positive association to continue 

examining this process as a viable method of improving the data association in underwater 

SLAM.  

4.2.2. SIMULATOR TESTING 

It is not only important that the process be theoretically sound, it must also be feasible 

within the processing limits of the AUV’s on-board processor. Many factors (power, heat, 

cost) affect the backseat computer’s on-board processing power, so prior to in-water trials 

the software was re-developed for testing on an AUV simulator. A hardware-in-the-loop 

simulator is, essentially, the processing core of the AUV. Since the test data was collected 

using the IVER2 AUV the simulator consisted of identical components to the AUV to 

ensure its ability to run in real-time.  

In the simulator, near-raw sonar files and AUV state data (latitude, longitude, depth, 

speed, and heading) from previous missions were set up to load from the front seat to the 

back seat processors in, virtual, real–time. The back seat computer’s performance in the 

simulator was directly comparable to its expected performance in a real mission. The 

simulations allowed us to determine if the code will be functional while other parallel 

mission processes are running, and if the software is robust enough to evaluate and return 

expected results within a timely mission interval.  
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A mission was reproduced on the simulator using another data set from the Bedford 

Basin experiments. The AUV path, shown in Figure 23 shows the first leg in red, with two 

subsequent legs highlighted in green and blue. The port and starboard SSS images from 

these legs, overlap roughly 75 % of the scanned area, as shown in Figure 24. 

 

Figure 23 – AUV path for mission data used in simulator testing 

 

Figure 24 – Targets identified using ATR determined to be a match using seafloor 

elevations from the IVER2 
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While the identified targets in Figure 24 probably do not represent underwater mines, 

they were none-the-less matched to each other using the same process used for the initial 

Matlab™ testing. At this stage the elevation maps, target locations, and feature profiles 

were generated on the simulator and saved. The comparison of these profiles and the related 

image development (TIFF images, AUV path) were done using Matlab™ due to time 

restrictions and its simplicity of use. The final version of the algorithm will need to be 

coded in C++ for use by the AUV’s back seat computer. The matching process, while not 

complete, functioned well within the limited time available during the mission. The exact 

time available for matching targets is directly related to the length and number of mission 

legs. The creation of bathymetry approximations uses the most processing time. This will 

cause a lag in time between target identification and development of a feature profile, but 

that is not expected to negatively impact its potential usefulness in SLAM. 
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CHAPTER 5. ALGORITHM VALIDATION 

In order to optimize the functionality of the elevation extraction and application for 

matching specific seafloor locations a study was conducted on a data set using 5 separate 

parameters to determine a final association. Each parameter was adjusted individually to 

determine its unique impact on association outcomes. In this way we determined an 

idealized equation for evaluation. The parameters included: 

 The number of zones surrounding the landmark, 

 Whether or not the depth of the landmark was used (standard – Figure 25 or 

simplified – Figure 26),  

 The number of pixels at each zone used to calculate an average depth for the 

area (resolution size), 

 The distance from the landmark to each zone, and 

 The threshold value below which an association is deemed correct. 

The test set for this validation was acquired using the DRDC IVER3 in the Bedford 

Basin area with deployed targets. Two lawnmower patterns were performed orthogonal to 

each other and several months apart.  

5.1. METHODOLOGY 

Each landmark was identified by the ATR and given an identification label before 

any elevation testing. Landmarks, matched manually from the raw sonar data as observed 

in the SeaScanSurvey™ viewer, were used as a ground truth to determine the success of 

the elevation association.  

The ideal algorithm was evaluated using the following criteria:  

 Which test yields the most correct matches, 

 Which test yields the fewest incorrect matches, and 
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 Which test operated in the least amount of time (reducing the loading on the 

embedded processor). 

Trials were split into two primary categories, across-track (four zones, in front, 

behind, to the port and to the starboard of the landmark, Figure 25) and along-track (two 

zones, only in front of and behind the landmark, Figure 26). Trials were further split into 

two more categories, standard and simplified. The standard version looked at the elevation 

changes between the landmark and corresponding zones, while the simplified method 

removed landmark depth from consideration to simplify the computational time as well as 

removing potential error in situations where landmarks cast a large shadow. In each case 

elevation changes between zones were compared (for example, from the port zone to the 

starboard zone).  

 

Figure 25 – Across-track method layout, assuming a  north-bound AUV heading 
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Figure 26 – Along-track method layout, assuming a  north-bound AUV heading 

The series of gradients (slopes) stored for each landmark make up its elevation 

profile. Two landmarks were compared for an association using a root mean square method 

as shown in Equation (7): 

√∑ 𝑍𝑛
2𝑛=# 𝑜𝑓 𝑧𝑜𝑛𝑒𝑠

𝑛=1

𝑛
< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒.   (7) 

Where, 𝑍𝑛 is the difference between the gradient from the landmark to zone n (for 

the first landmark being associated) and the gradient from the landmark to zone n (for the 

second landmark being associated). Where n can be the integer values of 1, 2, 3 or 4 

corresponding to the zones in front of, behind, to the starboard or port sides of the 

landmark, respectively.  

𝑍𝑛 =  𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑡𝑜 𝑧𝑜𝑛𝑒 𝑛
𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 1 −  𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑡𝑜 𝑧𝑜𝑛𝑒 𝑛

𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 2   (8) 

An example of an across-track, standard equation would appear as shown in Equation 

(9): 

√(𝑍1
2+ 𝑍2

2+ 𝑍3
2+ 𝑍4

2)

4
< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   (9) 
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As mentioned above, many tests used only data from zones 1 and 2. The threshold 

value was determined through a series of tests with ranges between 0.03 – 0.005 yielding 

the best, most consistent results depending on the data set being used. These threshold 

values were determined using trial and error adjustments until positive trends were 

established. Thresholds set too high allowed for too many association matches, while too 

low allowed for none. 

The distance from the landmark to the evaluation zones was varied from 5 to 25 

metres and the number of pixels used to average the depth (resolution) at each zone was 

varied between 4 and 576. These values were set by the minimum and maximum allowable 

sizes based on the size of the SSS images. The distance and resolution values were changed 

independently and associations were evaluated for each combination. 24 landmarks, within 

mission 1, allowed for 1,190 different associations that were theoretically possible.  

After searching for a singular distance and resolution value it was determined that a 

more reliable method would be to record all associations for a range of distances and 

resolutions and search for the matched sets which appeared most often. The more often a 

match was achieved the more likely it was considered to be correct. The initial results 

contained a large number of associated pairs that were incorrectly matched. This indicated 

that in some situations the elevation profiles could not act as the data association on their 

own. In these instances landmarks that were beyond a nearest neighbour threshold (a 

distance based on the dead-reckoned position of the AUV when each landmark was 

observed) were not considered. The distance threshold was based on the reach of the SSS 

itself (~40 metres) and the distance between each mission leg (also ~ 40 metres). Targets 

that were farther then 80 metres (2 mission legs) would not be able to associate. This is 

made possible due to the high quality INS on the IVER3 AUVs used so that the dead-

reckoned position of the AUV is fairly accurate even through a mission of several hours in 

duration. 
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5.2. TESTING 

The IVER3 UUV mission used for algorithm validation was conducted in the 

Bedford Basin area with deployed targets on two separate occasions using lawn mower 

patterns orthogonal to each other. Mission 1 (Figure 27) was a North West – South East  

run with the DRDC ATR identifying 20 potential mine like objects. Mission 2 (Figure 27), 

was conducted 2 months later (when landmarks may have shifted or become partly covered 

with sediment) with only 8 potential MLOs identified.  

Searching two data sets for both position based and gradient associations yielded 

landmark matches with significantly increased reliability. The data set covered an area of 

approximately 50, 000 m2, in a relatively flat harbour. The ATR detected 24 landmarks 

(MLO) within mission 1 and 8 within mission 2. This low number of landmarks returns in 

each mission is due to the relatively sparse operating area and the high quality of the sonar 

(900 kHz).   

 

Figure 27 – AUV lawnmower path for two missions with the starting points in red 

and ending points in blue 

The results for Cases 1 – 5, discussed in Chapters 5.2.1. – 5.2.5, all use data from 

only mission 1. This is because to find an association the ATR must identify the same target 

within two separate SSS images. This only happens within the mission 2 data set once. 

Mission 1, on the other hand, has 7 landmarks identified by the ATR and that appear in 

multiple images. These landmarks were independently confirmed by manual inspection of 
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the near-raw sonar data. This makes mission 1 data a much larger sample size to draw 

conclusions from. 

Figure 28a shows a SSS TIFF after smoothing with the nadir filled in as a grey bar. 

Figure 28b shows a 3 dimensional representation of the same image as determined by 

Equation (1). The blue boxes show an example of an easily observed feature within both 

images. The red boxes show the location of a series of rocks that the ATR classified as a 

potential MLO (landmark) in both images.   
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a.    b.  

Figure 28 – An example of a side-scan sonar image 3501×1024 pixels (a) and alongside 

its estimated bathymetry map (b) 
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A close up of these rocks (the red box) from the sonar image is shown in Figure 29. 

Within this SSS image the ATR identified 2 separate potential MLOs, while in the next 

view of the same cluster of rocks only 1 MLO was identified. 

 

Figure 29 – ATR landmarks, WP 33 – starboard 

Figure 30 shows the same cluster of rocks (only 1 ATR MLO) viewed from the next 

leg of the mission. 

 

Figure 30 – ATR landmark, WP 37 – starboard 

Mission leg numbering as shown in Table 3 increased in increments of 4, starting 

with a value of Waypoint #5 for the first leg of each mission. 
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Table 4 – Labelling the actual leg number of a mission compared to the values labelled 

on the raw sonar data files 

Actual Leg Number Mission 1 WP Numbers Mission 2 WP Numbers 

1 5 5 

2 9 9 

3 13 13 

4 17 17 

5 21 21 

6 25 25 

7 29 29 

8 33 33 

9 37 37 

10 41 41 

11 - 45 

12 - 49 

13 - 53 

14 - 57 

15 - 61 

16 - 65 

17 - 69 

18 - 73 
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Matched landmarks were labelled by the mission waypoint number (leg number) and 

target ID number. For example a combination of starboard WP17, target #2 and starboard 

WP21, target #1 was labelled s172s211.  

5.2.1. CASE 1: ALONG-TRACK, SIMPLIFIED METHOD 

The along-track method allows for evaluation of more landmarks and at larger 

distances around the landmark. Some landmarks can appear differently from one SSS 

image to the next even if they are the same target (typical of SSS imagery). A common 

change in appearance is a fluctuation in the brightness of the target (indicating its height) 

and the size of its shadow. The resolution of pixels used to average landmark depth is 

highly affected by its position within the TIFF as identified by the ATR. Even a small shift 

in these values can result in incorporating too much of the landmark’s shadow in the 

evaluation, altering its perceived depth. It was purposed that not including the landmark 

depth could remove this issues. 

The correctly associated landmark pairs were manually verified and are highlighted 

by the green bars as shown in Figure 31. This left a number of blue bars that were 

incorrectly associated multiple times. Figure 31 shows these results for the along track, 

simplified data for mission 1 without considering landmark depth while Figure 32 includes 

landmark depth.  
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Figure 31 - Pairs of landmarks matched using the along–track elevation profile 

component, simplified approach and an association threshold of 0.005 

5.2.2. CASE 2: ALONG-TRACK, STANDARD METHOD 

The standard method, as previous outlined, was the initial testing process for creating 

elevation profiles. This method, including the extended range available with the along track 

method (Figure 26), resulted in the mission 1 results set is shown in Figure 32. 

 

Figure 32 – Pairs of landmarks matched using the along track, standard approach 

and an association threshold of 0.005. Incorrect associations (blue) have been greatly 

reduced compared to Case 1 
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There are fewer pairs that match at the same threshold value used in Case 1. However 

many more of the correctly associated pairs persisted and the remaining blue bars have 

been substantially reduced. Of the largest three remaining blue bars all can be discarded 

because they represent matching landmarks from a single SSS image (associations require 

at least 2 views of a landmark from separate SSS images). They appear in the results only 

because all possible combinations of the 24 landmarks were allowed to attempt a match. 

Some of these instances (such as s331s332) offer close matches because of their small 

relative distance to each other while others (e.g. p251p252) also from a single image are 

farther apart and associated less frequently. As a set the along-track results using the 

standard method of evaluation were a clear improvement over the simplified method. 

5.2.3. CASE 3: ACROSS-TRACK, SIMPLIFIED METHOD 

The primary reason for using the across-track method for analysis is that it opens up 

the possibility of matching landmarks that were viewed from orthogonal runs. The primary 

disadvantage, as previously stated, is the maximum distance for an evaluation zone is a 

function of the swath length of the SSS. If the zones in the direction of AUV travel (along- 

track) are of different lengths, the zones in the across-track can no longer be used for 

orthogonal matching.  

As part of the evaluation we first tested the across-track method using only the data 

from mission 1 instead of combining both mission data sets. This was done to compare the 

values from the across-track method to the results from the along-track method.  

The MarineSonics SSS on the IVER3 swath is approximately 40 metres, however 

after removing the nadir only targets well centred within the SSS image can be used and at 

a maximum distance of 9 metres. Therefore, the simplified version of the across-track 

method reaches distances up to 18 metres. The Across-Track, Simplified Method results 

using a 0.005 threshold are shown in Figure 33. 
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Figure 33 – Pairs of landmarks matched using the across-track, simplified approach 

and an association threshold of 0.005. Improved number of correct associations, with 

many incorrect associations coming from a single SSS image 

These results were found to be fairly good. While not as many correct associations 

are observed 4 were still found and p211p251, which was almost completely missed by the 

along track method, has a strong association here. In addition many of the blue columns 

were found to be landmark pairs from a single image. Also of note, the incorrect matching 

of the pair of landmarks from WP 25 and 29 have become more frequent then the correct 

combination, which is consistent with the results at this stage for not including target depth. 

5.2.4. CASE 4: ACROSS-TRACK, STANDARD METHOD 

After including the target depth it was found that the 0.005 threshold was too high to 

allow for associations. The threshold value was increased to 0.015 and 0.01 and the results 

are shown in Figures 34 and 35 respectively. 
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Figure 34 – Pairs of landmarks matched using the across track, standard approach 

and an association threshold of 0.015. Some correct matches, but many incorrect 

matches as well 

 

Figure 35 – Pairs of landmarks matched using the across track, standard approach 

and an association threshold of 0.01. Threshold is too low for correct matches, but 

still has incorrect ones 

The change in threshold between 0.015 and 0.01 has a significant effect on 

association results. Both sets show some positive information with many of the incorrect 

associations being the same expected values as before. The threshold of 0.01 was found to 

be too high, and removed too many of the correct associations. The concern with this 

method, is that inclusion of landmark depth increases the number of incorrect as well as 
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the correct associations for landmarks grouped together. The simplified version of the 

across-track method yielded the best results using this data set. 

5.2.5. CASE 5: ASSOCIATIONS FROM ORTHOGONAL HEADINGS 

After combining across-track values from missions 1 and 2 the best results were 

determined to be a product of the standard method. Combining the two data sets created an 

overlap in the naming convention of several MLO and association pairs listed in the bar 

graph results. To separate these landmarks MLOs from mission 2 were appended with “90” 

to keep in line with the original SSS data naming convention, as mission 2 was rotated 90 

degrees in heading from mission 1. For example the green column in Figure 36 labelled 

s211s29290 shows the correct association from mission 1 starboard – WP21, target #1 and 

mission 2 starboard – WP29, target #2. These results at thresholds of 0.03 and 0.06 are 

shown in Figures 36 and 37 respectively. 

 

Figure 36 – Orthogonal pairs of Landmarks matched using the across track, standard 

approach and an association threshold of 0.03. Incorrect associations appeared in 

higher numbers than correct ones 
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Figure 37 – Orthogonal pairs of Landmarks matched using the across track, standard 

approach and an association threshold of 0.06. The increased threshold did not 

produce more correct associations 

The orthogonal matches have not been a success to date. While correct orthogonal 

associations were more consistently measured when the threshold was raised to 0.06, so 

were the associations of most possible matches. Figure 37 shows an association cut-off so 

high that almost all possible matches were found.  

These figures also show mission 2 landmarks being matched to each other. With 

threshold values this high the associations using mission 2 data were not valid or useful. 

The mission 2 data when evaluated on its own with a 0.005 threshold yielded the results in 

Figure 38. With only 8 ATR landmarks within a large area this data set was sparse enough 

that no estimated position was required to achieve successful associations. Most possible 

landmark combinations had 0 associations and the one correct pair (s251s292) matched 

more frequently than any other. 
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Figure 38 – Pairs of landmarks matched using the along track, standard approach 

and an association threshold of 0.005 for mission 2 data. This dataset also has its best 

results when using the method in Case 2 

5.3. DISCUSSION 

Each of the 5 testing methods outlined to this point have associated landmark pairs, 

showing matches we know to be incorrect, in blue. Some of these are expected and are 

explained in this section. 

When the landmarks are positioned close together on the seafloor they will often 

have similar elevation profiles. This can cause matches when two landmarks are viewed 

within only one image. A good example of this s331s332 in Figure 32, and the rocks shown 

in Figure 29. Furthermore, two landmarks from the same image can be expected to match 

closely based on local gradients, but logically can be removed from further consideration.  

Within the starboard images of leg 25 and 29 (concurrent legs) two landmarks each 

were identified and correctly associated as s251s292 and s252s291. Figure 32 shows the 

reverse of these associations (s251s291 and s252s292), which were also matched in several 

cases. As mentioned whenever landmarks are closely grouped on the seafloor as shown in 

Figures 29 and 30, this is to be expected. It is important to note that association matches 
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including  landmark depth produced  much better results (Figure 32) compared to those 

where depth was excluded (Figure 31). 

 

Figure 39 – ATR landmarks 1 and 2, WP 25 – starboard 

 

Figure 40 – ATR landmarks 1 and 2, WP 29 – starboard 

The most consistent correct association pair for both data sets was WP 17 – starboard, 

target #2 and WP 21 – starboard target #1. These targets are shown from both views in 

Figures 41 and 42. It is believed the success of these matches was a result of the sparsity 

of the immediate environment and their clear representation within the TIFF. 
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Figure 41 – ATR landmark, WP 17 – starboard 

 

Figure 42 – ATR landmark, WP 21 – starboard 

Errors discussed so far have focused on failing to avoid incorrect associations while 

none of the evaluation methods were able to make all correct associations. In Chapter 5.2.1. 

it was suggested this might be caused by landmarks with larger shadows (and consequently 

more oblique aspects). For example WP41 – port, target #1 and WP37 – port, target #1 are 

ATR results for a car on the seafloor, which are shown in Figure 43 and 44 respectively. 

 

Figure 43 – ATR landmark (car), WP41 – port 
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Figure 44 – ATR landmark (car), WP37 – port 

Of the all of the testing combinations examined in this thesis the most useful results 

came from the Along-Track – Standard Method. Figure 45 shows the same bar graph from 

Figure 32 with the matched pairs from a single mission leg colored orange since they can 

be safely disregarded. The figure shows 5 out of 7 landmarks were correctly associated. 

While some blue columns remain they are on average smaller than the correct associations 

and can be accounted for due to the circumstances such as proximity to other landmarks.  

 

Figure 45 – Pairs of landmarks matched using the along track, standard approach 

and an association threshold of 0.005 and removing associations from the single 

images  
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CHAPTER 6. DIRECTION OF FUTURE RESEARCH AND CONCLUSIONS  

This thesis has developed and tested a novel method to augment data association with 

the aim to strengthen the association. While a landmark’s orientation may change or be in 

various stages of burial/uncovering from the seabed over days or months, it is unlikely the 

surrounding seabed gradient will change as quickly. Combining distinctive and enduring 

features like the local seabed gradient, jointly associated with the NN estimated position, 

was found to facilitate the SLAM process leading to more consistent and accurate results. 

In this way, the persistence (over longer time interval) is seriously addressed in the data 

association. As well, if a new landmark is introduced to the environment the local seabed 

gradient association will reinforce and highlight the change.  

The data association scheme proposed is computationally efficient, it adds little 

processing to what is already being implemented on an embedded processor using JCBB. 

Additionally, it exploits unused parts of the same SSS image that landmarks are extracted 

from, with no additional runs or sensors required. 

There are a number of avenues of future research that could be examined to further 

develop the thesis’ theories and accomplishments. 

1. MLOs can be large enough to cast a substantial shadow, reducing the 

effectiveness of the association process. Using the simplified method reduces 

this problem but has its own short comings separating landmarks within a 

cluster. To address this moving forward the landmark’s resolution could be 

set independently of the remaining evaluation zones. This is expected to 

reduce noise caused by the shadow around the landmark while maintaining 

the improved depth estimation associated with a higher resolution for the 

non-landmark zones. 

2. The accuracy of associations using seafloor gradients is a function of the 

quality of available SSS data. More detailed bathymetry would improve the 

accuracy of elevation profiles, and overall association outcomes. The DRDC 

IVER3 AUVs are already equipped with high quality SSS, DVL and INS so 

the input data is reliable. To improve the estimated bathymetry, future 
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research should focus on accurate TIFF scaling to more consistently reduce 

the uneven insonification. Another method to improve the bathymetry would 

be to use an interferometric SSS. These sonars can create bathymetry profiles 

on their own and this would remove the most computationally intensive 

aspect of elevation profiling for data association. DRDC is in the process of 

securing an IVER3 UUV with interferometric bathymetric sonar and a SSS. 

3. Improving the orthogonal matching functionality will be critical for 

successful use of this algorithm in real world applications. Mission surveys 

will not always be able to maintain the constant headings required for Along-

Track associations. Surveys incorporating multiple AUVs traveling at 

different headings will also not be possible without this development. For this 

to progress SSS with wider swaths, greater than the current 40 metres, must 

be used to increase the number of sampling points around a landmark. This 

can be achieved using the current sonars by fusing two estimated bathymetry 

maps from the port and starboard sides of a single mission leg. This would 

double the width of the map with only the nadir unusable for creating 

elevation profiles. 

As of September 2015 the most up to date version of the elevation gradient data 

association algorithm is installed on the backseat payload computer of DRDC’s IVER3 

AUV. As sonar files are generated the ATR software locates potential MLOs before 

passing this information to the elevation profile software. Initial in-water trials are 

complete and the analysis is ongoing.  The work from this thesis proves the hypothesis that 

there is a great deal of merit in using the seabed elevation profiles to augment the data 

association for underwater SLAM.   
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