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Abstract 

In this thesis, systematic investigations on divergence property of the divergence 

preserved alternatively-direction-implicit finite-difference time-domain (ADI-FDTD) 

method and the meshless method are carried out. 

It is found that divergence preserved ADI-FDTD method maintains the unconditional 

stability and the same numerical dispersion as that of the traditional ADI-FDTD method, 

while preserving electromagnetic divergence properties. To further improve its efficiency, 

an efficiency improved version is proposed. Theoretical proof of both the unconditional 

stability and the divergence property is provided. Almost 41.7% less count of floating-

point operations than the original one is obtained. 

Investigations on the meshless method lead to the following results.  

(1) A meshless method for the wave equation is proposed to improve the efficiency based 

on the mathematical equivalence of the Maxwell’s equations and wave equation. Since the 

proposed method only requires to solve electrical field, computational efficiency of the 

proposed method is largely improved. 

(2) A divergence preserved meshless method based on the vector radial basis function 

(RBF) is proposed to solve the Maxwell’s equations. The conventional meshless method 

using Gaussian RBF cannot preserve the divergence property of electric and magnetic 

fields. The proposed method is theoretically proven to be divergence free and will not 

introduce the artificial charges in its numerical solutions. Numerical results show that the 

proposed method can accurately model the charge distribution in the simulations. 

(3) A stable meshless method based on QR-decomposition method is proposed to 

overcome the spatial stability issue of the conventional meshless method. The source of 

the spatial instability is removed from the Gaussian RBF through the QR-decomposition 

method. A new stable basis function, which share the same function space as that of the 

Gaussian RBF, is obtained.  

(4) The relationship between the meshless method and the FDTD method is theoretically 

investigated in terms of numerical dispersion. When node distribution and field component 

location is the same as that of the FDTD method, numerical dispersion of the meshless 

method can become the same as that of the FDTD method. It implies that the meshless 

method is a general method which includes the FDTD method as its special case. 
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Chapter 1  Introduction 

1.1 Preface 

This thesis mainly focuses on investigation of the properties of the divergence-preserved 

alternatively-direction-implicit finite-difference time-domain (ADI-FDTD) method and 

development of the meshless method for the computational electromagnetics (CEM). This 

chapter introduces the research background of the thesis, and then reviews the state-of-art 

of the FDTD methods and meshless methods. Research objectives, contributions, and 

organization of this thesis are also presented.  

1.2 Research Background 

There are two possible ways to seek solutions of mathematical models. One is the 

analytical approach, which is the most preferred if it is applicable and can be easily derived. 

We can then obtain analytical solutions which can be easily computed. However, they are 

only obtainable for problems of certain regular shapes with simple boundaries. In many 

situations, most of the analytical solutions are found with certain assumptions and 

simplifications of the practical problems [1] [2]. Therefore, analytical approach is limited 

to solving a few problems such as a dipole, a circular cavity and an infinite ground plane 

[3]. Another way to solve mathematic models is to resort to numerical methods with 

modern computer technologies to obtain approximate solutions. In a numerical method, an 

original continuous model is first discretized in space and/or time and then transformed 

into a discrete model of a finite matrix system. By solving the discrete system, numerical 

approximate solutions are then obtained. The most common seen numerical methods are 

finite-difference (FD) method, finite element method (FEM), and method of moment 

(MOM). There are at least two conditions required to ensure that the numerical results 

obtained are valid: (1) when all discretized parameters in both space and time domain 

approach to zero, approximate solutions converge; and (2) the conservation laws, which 

are governed by the original continuous models, are satisfied in the discrete model.  

Nowadays, numerical methods have been widely developed in engineering, leading to 

different branches such as computational electromagnetics, computational chemistry and 

computational physics. Many numerical methods have been commercialized, resulting in 
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many software packages. Equipped with modern Graphical User Interface (GUI), they are 

used to solve many problems that were not solved before or to design engineering 

components and systems that are difficult to do before. 

In computational electromagnetics (which is the scope of this thesis), the finite-

difference time-domain (FDTD) method is very popular due to its simplicity, easy 

implementation and strong capability of handling complex materials. A newly developed 

method, named split-step Fourier method, become more and more popular in solving the 

nonlinear optics[4, 5]. It can keep the carrier frequency and is faster than the finite 

difference method. However, it is less accurate than the FD methods. In this thesis, the 

FDTD method is considered for the computational electromagnetics. For the FDTD 

method, maximum time step is constrained by the Courant-Friedrichs-Lewy (CFL) 

condition [6], which is related to the smallest cell size in a discretized spatial domain. As a 

result, when multi-scale structures or geometry fine devices are presented in a solution 

domain, discretized cell sizes are inevitable small to capture the geometry details, which in 

turn make time step very small. As a result, computational time may become prohibitively 

long. To overcome the problem, the unconditionally stable alternatively-direction-implicit 

(ADI) FDTD method was developed [7-10]. With implicit method, the time step can be 

independent of cell sizes. Therefore, an arbitrarily large time step can be used; the only 

constraint is modeling accuracy. With a relatively large time step, the simulation time can 

be greatly reduced and computational efficiency is significantly improved. Other forms of 

the unconditionally stable FDTD methods have also been developed in the past decades; 

they include the locally-one-dimensional (LOD) FDTD methods [11-13], the multi-stage 

split FDTD (SFDTD) [14, 15], the one-step leapfrog ADI-FDTD method [16] and Crank 

Nicolson (CN) FDTD methods [17-20].  

In recent years, however, it was found that the most traditional unconditionally stable 

FDTD methods have divergence issues [21-23]. That means the conservation laws for 

electrical charges and magnetic fields are not satisfied. Artificial charges or non-existent 

magnetic charges may be present in computational solutions and even leads to failures of 

simulations [24]. For the applications like particle-in-cell (PIC) simulations, those 

unconditionally stable methods cannot obtain valid results [25]. To address the issue, in 

[25], a divergence preserved ADI-FDTD method is proposed. Besides its unconditional 
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stability, the divergence properties of the Maxwell’s equations are also satisfied. In [26], 

another divergence preserved LOD-FDTD method is proposed based on the fundamental 

formulations of the unconditionally implicit FDTD methods.  

The above-mentioned FDTD methods are mesh- or grid-based because certain types of 

geometry elements, such as triangles in two dimension domains, tetrahedrons in three 

dimensions, are used to discretize original continuous problem domains. For these mesh-

based methods, re-mesh has to be applied when structures or devices are partially modified 

or changed; connection information among elements, such as edge length, face area and 

volume of elements, is required to solve these problems. It needs to be updated during the 

re-meshing process. Such a process is quite time-consuming and may even take more time 

than that of a solution process.  

To mitigate the above problem, meshless methods are introduced. In the conventional 

non-meshless grid-based method, in a discrete element, edges of spatial elements intersect 

and the intersection becomes a spatial node. When the edges, which connect two spatial 

nodes in an element, are removed, the nodes are left, forming a discrete space of nodes 

representing the solution domain. If the fields are solved in respect to those nodes, we 

obtain the so-called meshless methods. Since they are node based meshless methods can 

easily be self-adapted and geometrically conformal, only node location information is 

required. Various meshless methods have been proposed in recent years [27-32]. However, 

most of them use Gaussian radial basis function (RBF) and their solutions are found not 

meeting the conservation law and not divergence free in charge free regions [33]. In 

frequency domain, it is presented as several zero eigenvalues. To resolve the issue, in [34], 

a matrix-valued, or named as the vector-valued, RBF, which is theoretical divergence free, 

is proposed. It has been extensively investigated in [35]. In addition, as meshless methods 

are based on interpolation methods, inversion of interpolation matrix is inevitable. Various 

reports show that such inversion is problematic because the interpolation matrix may be 

severely ill-conditioned [33, 36-38]. Based on the interpolation theory, we can obtain 

accurate results when we choose extremely small shape parameters or employ more nodes 

in the support domain [38]. However, when the shape parameter, which controls the decay 

rate of Gaussian RBF, becomes extremely small or the number of scattering nodes in the 

support domain is large, the condition number of the interpolation matrix may become 
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extremely large, which leads to failure of matrix inversion. Therefore, we have to make a 

tradeoff between accuracy and the conditional number of the interpolation matrix or to find 

the optimal value for the shape parameter. There are several methods proposed to search 

such an optimal trade-off value [39]. Unfortunately, those optimal values are usually case 

dependent and we have to repeat such process even when we modify or change models or 

structures partially. In [38], a stable meshless method based on the QR decomposition 

method is proposed. When the shape parameter is extremely small, it is still able to get 

accurate results. Therefore, highly accurate solutions at the machine precision can be 

obtained.  

1.3 Objectives 

The goal of this thesis is to solve the above-mentioned problems present in the 

divergence preserved ADI-FDTD method and the meshless method. More specifically, the 

objectives are  

1) to analytically verify the stability, numerical dispersion, and divergence properties 

of the divergence preserved ADI-FDTD method and to develop a technique to improve 

its computational efficiency; 

2) to improve the computational efficiency by developing a new meshless method 

for solving electromagnetic vector wave equation; 

3) to develop a new meshless method for the electromagnetic problems, which 

preserves the divergence properties of the electrical and magnetic fields; 

4) to solve the ill-conditioning problems and the stability problems in the meshless 

method when the shape parameter is extremely small; 

5) to study the relationship of the meshless method and the FDTD method. 

1.4 Contributions of this Thesis 

This thesis explores the divergence properties and computational efficiency of the 

unconditionally stable ADI-FDTD method and the meshless methods. The detailed 

implementation of the divergence-preserved ADI-FDTD method and its efficiency 

improved counterpart is systematically investigated. Theoretical proofs of its divergence 

properties are also provided. To improve the efficiency of the meshless for the Maxwell’s 
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equations, a meshless method for the wave equation is proposed and applied to solving the 

resonant problems. Detailed studies is made to assess the improvement of the efficiency 

compared with that of the conventional meshless method for Maxwell’s equations. A 

vector-based meshless method based on the vector RBF is then proposed to resolve the 

divergence issue. Detailed properties of the vector RBF is also addressed. Then, a stable 

meshless method based on the QR-decomposition method is proposed to solve the ill-

condition problem in the meshless method. Finally, the relationship between the meshless 

method and the FDTD method is theoretically investigated. 

In summary, the original contributions of this thesis are as follows: 

1) Theoretical study on the divergence-preserved ADI-FDTD method is performed 

and it shows that the method is unconditionally stable and shares the same numerical 

dispersion of the ADI-FDTD method, the LOD-FDTD method, and the leapfrog ADI-

FDTD method. Based on the fundamental formulations, an efficiency-improved 

divergence preserved ADI-FDTD method is proposed to enhance the performance in terms 

of the computational efficiency. Analytical and numerical results demonstrate that the 

proposed method preserves the divergence properties. 

2) A new meshless method for the wave equation based on the local RBF is proposed 

to improve the efficiency of the meshless method for solving Maxwell’s equations. With 

the proposed method, only one set of unknowns, either electrical fields or magnetic fields, 

is required. Therefore, compared with the conventional meshless method, which needs to 

solve the electrical and magnetic fields, simultaneously, this method can improve 

computational efficiency and reduce memory consumption.  

3) Since the conventional meshless method based on the local Gaussian RBF is not 

divergence free, a new vector-based meshless method, which is theoretically divergence 

free, is proposed to solve Maxwell’s equations and the wave equation. Detailed properties 

of the proposed method are investigated. 

4) The reason for the ill-conditioning problem in the meshless method is studied. It 

is found that all the elements of the interpolation matrix approach one when the shape 

parameter is extremely small. It implies that all columns or rows become linearly 

dependent on each other. The QR-decomposition method is applied in this thesis and the 

terms of the shape parameter are analytically separated from the Gaussian RBF and a new 
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stable basis function is formed. Its stability is also verified by the numerical results. 

5) The study on the relationship between the meshless method and the conventional 

FDTD method is conducted. It is found that when the node distribution and field 

component location of the meshless method is the same as that of the FDTD method, 

meshless method becomes the FDTD method. In other words, the FDTD method is a 

specific case of the meshless method. This means that the meshless method is a general 

method which contains the traditional FDTD method. 

We have published our above original work in [40-47]. 

1.5 Organization of this Thesis 

Since most of our original work has been published in the recent years, remaining part 

of this thesis will be mainly composed of the papers we published. This is in accordance 

with the Dalhousie Ph. D. thesis requirements. 

Chapter 2 is basically our paper [40, 41]. There, a divergence preserved ADI-FDTD 

method is introduced to solve the Maxwell’s equations. Its detailed implementation, 

theoretical proof of stability and dispersion properties is presented. In addition, an 

efficiency improved counterpart is also shown and its divergence properties are 

theoretically proved.  

Chapter 3 is based on our paper [42]. There, a new meshless method for the wave 

equation is proposed. Its stability condition is also shown. The conformal ability and 

capability of handling multi-scale structures and efficiency are validated through numerical 

examples.  

Chapter 4 is based on our paper [44]. There, the properties of a vector RBF are 

systematically analyzed. Based on this vector RBF, the meshless method is then applied to 

solving the Maxwell’s equations and wave equation in the time domain. The divergence 

properties and accuracy are verified through numerical examples. 

Chapter 5 is based on our paper [47]. There, in order to mitigate the ill-condition problem 

upon the interpolation matrix in the meshless method, QR decomposition method is 

proposed to separate the shape parameter from the Gaussian function and a stable meshless 

method is developed.  

Chapter 6 is based on our paper [45]. There, the relationship between the meshless 
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method based on local Gaussian RBF and the FDTD method is explored in terms of their 

numerical dispersions. Theoretical analysis is performed on the numerical relationship of 

the two methods and conclusions are made about the two methods. 

In chapter 7, conclusions are drawn and future work is presented. 
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Chapter 2  The Divergence-Preserved ADI-FDTD Method  

This chapter is mainly based on our two published paper [40, 41]. One is Shunchuan 

Yang, Zhizhang (David) Chen, Yiqiang Yu, and Sergey Ponomarenko, "Efficient 

implementation of the divergence-preserved ADI-FDTD method," published in IEEE 

Antennas and Wireless Propagation Letters, vol. 11, pp. 1560-1563, 2012. Another is 

Shunchuan Yang, Zhizhang (David) Chen, Yiqiang Yu, and Sergey Ponomarenko, "On the 

divergence properties of the new efficiency-improved divergence preserved ADI-FDTD 

method," published in IEEE International Microwave Symposium, 2013, pp. 1-3.   

2.1 Study on the Divergence-preserved ADI-FDTD Method 

2.1.1 Abstract 

The conventional ADI-FDTD method, although unconditionally stable, may not be 

divergence-free in a source-free region. In this section, a divergence-preserved ADI-FDTD 

method is presented. Its time-marching formulations are derived and analytical analysis of 

the stability is shown. It is found that the proposed ADI-FDTD method still retains the 

unconditional stability and its numerical dispersion is the same as the conventional ADI-

FDTD method and the LOD-FDTD developed so far. However, like the conventional 

FDTD method, it is divergence-free in a source-free region; and unlike other 

unconditionally stable methods which do not preserve the divergence properties, it has no 

spurious charges introduced into numerical grids. Numerical results are presented to verify 

the claims and compared with the conventional FDTD method and the conventional ADI-

FDTD methods. 

2.1.2 Introduction 

The FDTD method is widely applied in electromagnetic modeling due to its easy 

implementation and strong handling capability of complex materials [6]. However, to 

achieve convergence and obtain accurate results, the CFL stability condition that limits 

time step must be satisfied in practical simulations. As a result, computational time can be 

prohibitively high for modeling electrically fine and multi-scale structures. Fortunately, 

unconditionally stable FDTD methods, such as the ADI-FDTD method [10], the LOD-

FDTD method [48] and the one-step leapfrog ADI-FDTD method [16], have been 
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developed to overcome the CFL condition; thus a large time step may be taken, leaving the 

only constraint of the numerical methods to be just modeling accuracy. However, recent 

research indicated that these unconditionally stable methods are not divergence-free in a 

source-free region [22]. That is, nonphysical spurious charges are introduced by these 

numerical methods, leading to nonphysical divergence accumulation that may cause 

eventual simulation failures [49]. Specifically, divergence property of the conventional 

ADI-FDTD method was investigated in [21] and it was found not divergence-free like the 

FDTD method. The newly proposed one-step leapfrog ADI-FDTD method was also 

studied and found not to be divergence-free either [22]. 

To overcome the above problem, a new divergence preserved ADI-FDTD method was 

proposed and the related theoretical work was presented in [25]. In addition, the perfectly 

matched layer (PML) was introduced into the newly developed two-dimensional 

divergence preserved ADI-FDTD method in [50].  

In this section, detailed formulations for advancing fields, rigorous proof of the stability, 

and analysis of numerical dispersion are presented. First, the generalized formulations of 

the divergence preserved ADI-FDTD method are derived. Then, proof of stability and 

analysis of numerical dispersion are presented. Finally, the divergence-free property and 

unconditional stability with numerical examples are verified.  

2.1.3 Detailed Formulations 

In this section, formulations of the divergence preserved ADI-FDTD method are 

developed in detail. 

For simplicity without losing generality, consider a linear, lossless, isotropic and non-

dispersive medium with permittivity ε and permeability μ. The time-dependent Maxwell’s 

curl equations can then be rewritten in the following form [25]: 

 

1
( )oZ

c t


 


E

H ,                           (2.1a) 

( )oZ
c

t


  


H

E,                           (2.1b) 

 

where   E
T

x y zE E E   ,   
T

x y zH H H  H , 0 /Z   . 
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Two matrices of partial differential operators, P and M, are introduced to define the curl 

operation so that the Maxwell equations can be simply written as: 

 

 c
t


 


V

P +M V ,                           (2.2) 

 

where 0 0 0, , , , ,
T

x y z x y zE E E H H H     V ,
 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

y

z

x

z

x

y

 
  

 
 
 

 
    

 
 
 

 
 
  

P
                    (2.3a) 

and 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

z

x

y

y

z

x

   
 

 
  

 
   

 
  

 
 

 
 

Μ
.               (2.3b) 

Note that PT = P, MT = M and PM ≠ MP. 

The exact solution to (2.2) can be obtained as  

 

 1 c tn ne   P+MV V .                        (2.4) 

 

Here the superscript n is added; it denotes the field value at t = n∆t. ∆t is the time step 

selected by a user.  

The following approximation is now applied to the matrix exponential: 
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  2 2 2 2

c t c t c t c t
c te e e e e

   
 

M P P MP+M .                  (2.5) 

 

By applying Taylor series to the first and third factors and Padé approximation [51] to the 

second and fourth factors, (2.5) can be rewritten as 

 
1 1

2 2 2 2
c t c t c t c t c t

e
 

                  
     

P+M I M I P I P I M .          (2.6) 

 

With (2.6), the approximate solution to (2.2) can be obtained as 

 
1 1

1

2 2 2 2
n nc t c t c t c t

 
                 

     
I P I M V I P I M V .           (2.7) 

 

Eq. (2.7) is the divergence preserved ADI-FDTD method which turns out to be exactly 

the same as that presented in [25]. Its divergence-preserved property has been proven 

analytically in [25]. Note that in deriving the divergence preserved ADI-FDTD method, 

two approximations of (2.5) and (2.6) are taken; this is not explicitly indicated in [25].  

By replacing the differential operators, ∂ζ in (2.7) (ζ=x, y, or z), with their corresponding 

central finite difference counterparts, the time marching divergence-preserved ADI-FDTD 

formulation is obtained as described below.  

With Strang splitting, (2.7) can be broken up into two updating equations and each of 

them can be solved separately. The resulting time-marching equations are obtained with 

the introduction of intermediate term Vn+1/2: 

 
1

1/ 2

2 2
n nc t c t


        

   
V I P I M V ,                 (2.8a) 

1
1 1/ 2

2 2
n nc t c t


          

   
V I M I P V .                (2.8b) 

 

To facilitate operation of the inverse of the partial differential operators in (2.8), we 

introduce another intermediate term Q, where , , , , ,
T

ex ey ez hx hy hzQ Q Q Q Q Q   Q . exQ , eyQ  and ezQ  
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are related to electrical components and hxQ , hyQ  and hzQ  are related to magnetic fields. 

The field location of Q is defined on the Yee’s cell and have the same field distribution of 

V. It leads to the divergence-preserved ADI-FDTD formulations: 

For the first sub-step: 

 

1 / 2

2
n nc t    

 
I M Q V                        (2.9a) 

1/ 2 1/ 2

2
n nc t    

 
V I P Q .                     (2.9b) 

 

For the second sub-step: 

  

1 1 / 2

2
n nc t     

 
I P Q V                        (2.10a) 

1 1

2
n nc t    

 
V I M Q                       (2.10b) 

 

More specifically, let’s take the x-directed field components as an example.  

For the first sub-step, from (2.9a), we have: 

1/2 1/2

2
n n n
ex x hy

c t
Q E zQ 

   ,                       (2.11a) 

1/2 1/2
0 .

2
n n n
hx x ez

c t
Q H yQ 

                         (2.11b) 

On substitute (2.3) into (2.9b), we have the following updating equations: 

1/2 1/2 1/2

2
n n n
x ex hz

c t
E Q yQ  

   ,                    (2.12a) 

1/ 2 1/ 2 1/2

0 0

1
.

2
n n n
x hx ey

c t
H Q zQ  

  
 

                 (2.12b) 

Similarly, for the second sub-step, 

1 1/2 1

2
n n n
ex x hz

c t
Q E yQ  

   ,                        (2.13a) 

1 1/2 1
0 2

n n n
hx x ey

c t
Q H zQ  

    ,                      (2.13b) 
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and 

1 1 1

2
n n n
x ex hy

c t
E Q zQ  

   ,                        (2.14a) 

1 1 1

0 0

1
.

2
n n n
x hx ez

c t
H Q yQ  

  
 

                      (2.14b) 

 

Equations for other field components can be found in a similar manner or by cyclic 

permutation of the indices in the subscripts in (2.11)-(2.14). Detailed formulations can be 

found in Appendix A. 

Next, finite-difference approximations are used to replace the differential operators in 

the above equations. The finite differences used can be of a chosen order; the expression 

can be written as follows [52] 

 
L/ 2 1

1 1

2 20

1
,  ( , ,  or )

n n n

m i m i mi
m

a x y z
 

  

     
 



    


             (2.15) 

 

where L is the pre-defined order of the central finite-difference and   is any of the electric 

or magnetic field component; αm are the coefficients associated with the user-selected order 

and they can be found in Table I of [52]. 

Eqs. (2.11) and (2.13) are implicit equations with different field quantities to be solved 

on the two sides of the equations. They can be further manipulated for easy computation 

by combining it with the equations for other field components. After some tedious 

derivations (which can be found in Appendix A), we can obtain: 

 

 

2 2 2
1/2 1/2 1/2

( 1/2, , ) ( 1/2, , 1) ( 1/2, , 1) ( 1/2, , )2 2 2

( 1/2, , 1/2) ( 1/2, , 1/2)

1
2 4 4

2

n n n n
ex i j k ex i j k ex i j k x i j k

n n
y i j k y i j k

t t t
Q Q Q E

z z z

t
H H

z

  



  
     

   

   
       


 


,           (2.16a) 

 1/2 1/2 1/2
( , 1/2, 1/2) 0 ( , 1/2, 1/2) ( , 1, 1/2) ( , , 1/2)2

n n n n
hx i j k x i j k ez i j k ez i j k

c t
Q H Q Q

y
  

      


  


,              (2.16b) 

and 

 1/2 1/2 1/2 1/2
( 1/2, , ) ( 1/2, , ) ( 1/2, 1/2, ) ( 1/2, 1/2, )2

n n n n
x i j k ex i j k hz i j k hz i j k

c t
E Q Q Q

y
   
     


  


,            (2.17a) 
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 1/2 1/2 1/2 1/2
( , 1/2, 1/2) ( , 1/2, 1/2) ( , 1/2, 1) ( , 1/2, )

0

1

2
n n n n
x i j k hx i j k ey i j k ey i j k

t
H Q Q Q

z
   

      


  
 

,            (2.17b) 

 

and  

 

 

2 2 2
1 1 1 1/2

( 1/2, , ) ( 1/ 2, 1, ) ( 1/2, 1, ) ( 1/2, , )2 2 2

1/ 2 1/2
( 1/2, 1/2, ) ( 1/2, 1/2, )

1
2 4 4

2

n n n n
ex i j k ex i j k ex i j k x i j k

n n
z i j k z i j k

t t t
Q Q Q E

y y y

t
H H

y

  



   
     

 
   

   
       


 


,          (2.18a) 

 1 1/2 1 1
( , 1/2, 1/2) 0 ( , 1/2, 1/2) ( , 1/2, 1) ( , 1/2, )2

n n n n
hx i j k x i j k ey i j k ey i j k

c t
Q H Q Q

z
   

      


  


,              (2.18b) 

 

and 

 1 1 1 1
( 1/2, , ) ( 1/2, , ) ( 1/2, , 1/2) ( 1/2, , 1/2)2

n n n n
x i j k ex i j k hy i j k hy i j k

c t
E Q Q Q

z
   
     


  


,            (2.19a) 

 1 1 1 1
( , 1/2, 1/2) ( , 1/2, 1/2) ( , 1, 1/2) ( , , 1/2)

0

1
.

2
n n n n
x i j k hx i j k ez i j k ez i j k

t
H Q Q Q

y
   

      


  
 

           (2.19b) 

(2.16a) and (2.18a) are the linear systems of equations with the diagonally banded 

coefficient matrix; they can be solved efficiently for each field component with special 

mathematical solvers such as Thomas algorithm [53]. 

It is worth mentioning that in developing the above divergence-preserved ADI-FDTD 

method, three approximations have been applied: i) matrix exponential expansion (2.5), ii) 

Taylor’s series and Padé approximation (2.6), and iii) finite-difference replacement of the 

spatial differential operators (2.15).  

2.1.4 Stability Analysis 

The von Neumann method [54] is used to analyze the stability property of the presented 

divergence preserved ADI-FDTD method in this chapter. After projection of each field 

component into the spectral domain, the amplification matrix of the presented method is 

obtained. The magnitudes of all the eigenvalues of the amplification matrix are then 

examined analytically: if all of them are not larger than unity in magnitude in any situation, 

the method is considered unconditionally stable. 

Suppose that kx, ky and kz are the spatial frequencies along the x, y and z directions, 

respectively. Then, any field component in the spectral domain can be described as: 
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( )

, ,
x x y y z z

x y z

n j k i x k i y k i zn

x i x y i y z i z
e       

     
  ,             (2.20) 

where n is the amplitude at the nth time step. 

The central finite-difference (2.20) of order M in the spectral domain can be written as: 

 

| |
2 2

jk in n n
i i

c t c t
R e  

 


         
   

 
   ,         (2.21) 

where ,  or  x y z  , and 

 

/2 1

0

(2 1)
sin

2
.

M

m
m

m
c t a k

R j












     



           (2.22) 

 

Substitution of (2.21) into each field component leads to: 

 

1U Un n  ,                           (2.23) 

where , , , , ,
Tn n n n n n n

x y z x y zE E E H H H  U  and Λ is the amplification matrix defined as: 

 

  1 1 1
2 2 1 1L R L R

  Λ = T M M M M T                 (2.24) 

with 

 

0

0

0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Z

Z

Z

 
 
 
 

  
 
 
 
  

T ,                  (2.25) 
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1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

z

x

y
R

y

z

x

R

R

R

R

R

R

 
 
 
 

  
 
 
 
 

M ,               (2.26a) 

 

1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

y

z

x

L
z

x

y

R

R

R

R

R

R

 
 
 
 

  
 
 
 
  

M ,                (2.26b) 

2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

y

z

x

R
z

x

y

R

R

R

R

R

R

 
  
 

   
 
 
  

M ,          (2.26c) 

and 

2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

z

x

y
L

y

z

x

R

R

R

R

R

R

 
  
 

   
 
 

 

M .          (2.26d) 

 

The eigenvalues of Λ can be obtained, with the help of MAPLE, as 

     1 2 1   ,                              (2.27a) 

     3 4

2B j D

A
  

   ,                      (2.27b) 

    5 6

2B j D

A
  
  ,                        (2.27c) 

where 1 3 2 1A A A A    , 3 2 11B A A A    , and 2 3 3 1 1 2D A A A A AA    with 2 2 2
1 x y zA R R R , 

2 2 2 2 2 2
2 x y x z y zA R R R R R R   and 2 2 2

3 x y zA R R R   . 

Obviously, the magnitudes of the first two eigenvalues are unity. For the rest of 
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eigenvalues, 3 4 5 6| | | | | | | | 1.0         can be easily found by substitution of Rζ into (2.27). 

Consequently, all the eigenvalues are not larger than unity in their magnitudes. Thus, the 

divergence preserved ADI-FDTD method is considered unconditionally stable. Numerical 

verification of the unconditional stability will be presented in the later section. 

2.1.5 Numerical Dispersion  

To obtain the numerical dispersion formulation, the time harmonic fields are considered 

in (2.23); it reads 

1 .n j t ne  U U                       (2.28) 

By substitution of the above equation into (2.23), we can obtain: 

  0.j t ne    I U                       (2.29) 

For (2.29) to have a non-trivial solution, the determinant of the coefficient matrix of 

(2.29) should be zero. The zero-valued determinant forms the dispersion relationship of the 

presented divergence preserved ADI-FDTD method: 

det{ } 0.j te   I                         (2.30) 

After some mathematical manipulations, (2.30) can be simplified and rewritten as:  

2
2

4
sin ( ) .

D
t

A
                            (2.31) 

Based on the work presented in [16, 55], we can easily find that (2.31) is the same as that 

of the conventional ADI-FDTD, the one-step leapfrog ADI-FDTD and the LOD-FDTD 

methods. In other words, the numerical dispersion of the method presented in this section 

is the same as the ones previously proposed in [16]. However, the method proposed here 

is divergence-preserved while other methods are not.  

2.1.6 Current Source Implementation  

This section shows the current source implementation of the divergence preserved ADI-

FDTD method. 

The time-marching formulations along with the current sources can be written as follows: 

 
1

1/ 2 1/ 2

2 2
n n nc t c t

c t


          
   

V I P I M V S ,        (2.32) 
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where 
1/21/2 1/2

1/2 1/2 1/2 1/2
0 0 0

0 0 0

Tnn n
n n n n mymx mz

x y z

JJ JZ J Z J Z J Z Z Z

 
    

 
 

S , 1/ 2n
xJ  , 1/ 2n

yJ  and 1/ 2n
zJ  are 

the electric current densities in the x, y, and z directions at the n+1/2 time step, respectively, 

and 1/ 2n
mxJ  , 1/ 2n

myJ  and 1/ 2n
mzJ  are the equivalent magnetic current densities in the x, y, and z 

directions at the n+1/2 time step, respectively. 

With Strang splitting, we can obtain the final updating equations for (2.32) that include 

the current source: 

 

1/2

2
n nc t    

 
I M Q V ,                   (2.33a) 

1/2 1/2 1/2

2
n n nc t

c t       
 

V I P Q S .          (2.33b) 

 

In [56], we can find that the source terms of the conventional ADI-FDTD method are 

applied in two sub-steps. However, in the presented ADI-FDTD method, the current source 

only needs to be applied at the first sub-time step; that is to say that a compact and simple 

approach is adopted with the presented method here.  

2.1.7 Numerical Examples and Discussion  

In this section, accuracy and unconditional stability of the proposed ADI-FDTD method 

are first verified numerically. Then, divergence preservation is shown numerically 

compared with that of the conventional ADI-FDTD method. 

A. Accuracy verification 

To verify the accuracy and unconditional stability of the proposed ADI-FDTD method, 

an air cavity with dimensions of 50 × 50 × 50 cells was considered like the one used in 

[16]. The uniform cell size (Δx = Δy = Δz = 2 mm) was chosen. A current line source Jmz 

was located at the center of the cavity from the bottom to the top. The observation point 

was also placed at the center.  
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Figure 2.1 shows the normalized Ex obtained with the conventional FDTD method, the 

conventional ADI-FDTD method and the presented divergence-preserved ADI-FDTD 

method with CFLN = 1 and CFLN = 4, where CFLN is defined as the ratio of the time step 

used to the CFL limit. It can be easily found that Ex obtained with the conventional ADI-

FDTD method has a larger difference from that that obtained the FDTD method than the 

present method especially when CFLN = 4. In other words, the result obtained with the 

presented method agrees better with that of the conventional FDTD method than the 

conventional ADI-FDTD with large CFLN. 

  

 

  

Table 2.1 shows the computational time and memory used by the conventional FDTD, 

the conventional ADI-FDTD method and the divergence preserved ADI-FDTD method. It 

is found that the divergence preserved ADI-FDTD method consumes slightly more time 

 
Figure 2.1 Normalized Ex computed with the second order explicit FDTD method, the 
conventional ADI-FDTD method and the proposed divergence preserved ADI-FDTD method, 
which are presented as FDTD, ADI and DP, respectively, of CFLN = 1 and CFLN = 4. 

Table 2-1 Comparison of computational expenditures 
used by the FDTD method, the conventional ADI-
FDTD method and the divergence preserved ADI-
FDTD method. 

 FDTD
Conventional 

ADI 
Presented method 

CFLN 1 1 4 1 4 
Overall cells 125000 125000 125000 

Number of iterations 259 259 64 259 64 
Time(s) 8.20 25.47 6.34 27.42 6.76 

Memory(Mb) 6.52 9.56 9.56 12.52 12.52 
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and about 31% more memory in comparison with the conventional ADI-FDTD method. 

This is because the method has 24 For-loops for one time step. That is, the computational 

efficiency of the presented method is decreased by a larger count of For-loops operations. 

In addition, since additional intermediate variables are used, the memory consumption is 

higher. On the other hand, the presented method used 18% less CPU time with CFLN = 4 

than the conventional FDTD. 

  

B. Divergence verification 

To examine divergence property of the presented method, an air-filled PEC cavity is 

considered with dimension of uniform 20 × 20 × 20 cells and spatial step is Δx = Δy = Δz 

= λ/20. A sinusoidal modulated Gaussian pulse excitation is placed at (10, 10, 10) with:  

 
(a)                         (b) 

 
                       (c)                         (d) 

 
                        (e)                         (f) 
Figure 2.2 Charge distribution computed with the presented method, the conventional ADI-FDTD 
method with CFLN = 1; Figures on the left are the electric charges with the presented method at t
= 0.23 ns, 1 ns, and 10 ns, respectively; Figures on the right are the electric charges with the
conventional ADI-FDTD method at t = 0.23 ns, 1 ns, and 10 ns, respectively. 
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 
20( )

0 0sin 2
t t

mzJ f t t e 



    ,                (2.34)  

with 0 015 , 60  and 2f GHz ps t     [22]. 

Electric charges were numerically computed with 
0

S

q
d


  E s , in which the integral 

surface S is each Yee’s cell. Figure 2.2 shows the distribution of the computed electric 

charge 
0

q


 in the xy-plane at z = 10 for CFLN = 1 at time instant t = 0.23 ns, 1 ns, and 10 

ns, obtained with the presented ADI-FDTD method and the conventional ADI-FDTD 

method. The results obtained with the leapfrog Yee’s FDTD method are not shown because 

they are divergence-preserved and are zeros at any time.  

As shown in Figure 2.2, electric charges with the conventional ADI-FDTD method reach 

the order of 10-14. However, electric charges computed with the presented method are in 

the order of 10-25. It implies that the divergence preserved ADI-FDTD method has great 

improvement in terms of charge accumulation. This verifies that the divergence preserved 

ADI-FDTD method is basically divergence free.  

2.2 Efficiency Improved Divergence Preserved ADI-FDTD Method 

2.2.1 Abstract 

In this section, a newly formulated divergence preserved ADI-FDTD method is proposed 

and its divergence property is theoretically and numerically analyzed. It takes about 41.7% 

less count of floating-point operations than the original divergence-preserved ADI-FDTD 

method without sacrificing accuracy. Detailed analysis of computational efficiency and 

divergence property are shown. Numerical experiments, which illustrates the divergence 

property, efficiency and memory cost, are presented to verify the improvement of 

computational efficiency. 

2.2.2 Formulations of the Proposed Efficiency Improved Divergence Preserved ADI-
FDTD Method 

Eqns. (2.9) and (2.10) form the original divergence-preserved ADI-FDTD method. 

Now we substitute (2.9b) into (2.10a): 
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1 1/2 1/2 1/22 .
2 2 2

n n n nc t c t c t                    
     
I P Q I P Q Q I P Q      (2.35) 

 

Then, 

 

 1 1/2 1/2

2 4
n n nc t       

 

I
P Q Q Q                   (2.36) 

 

Eqn. (2.36) can be reformulated with the introduction of intermediate U such that 

  

1/2 1/2

2 4
n nc t     

 

I
P U Q ,                     (2.37a) 

1 1/2 1/2n n n   Q U Q ,                       (2.37b) 

 

where 1/2 1/2 1/2 1/2 1/2 1/2 1/2, , , , , .
Tn n n n n n n

ex ey ez hx hy hzU U U U U U         U  

For the second sub time step, we advance (2.9a) by one time step and have: 

  

3/2 1

2
n nc t     

 
I M Q V .                    (2.38) 

 

By substituting (2.38) into (2.10b), we obtain: 

  

3/2 1 1 12 ,
2 2 2

I M Q I M Q Q I M Qn n n nc t c t c t                    
     

     (2.39a) 

 3/2 1 1.
2 4

I
M Q Q Qn n nc t       

 
                  (2.39b) 

  

Then, (2.39b) can be rewritten as 

  

1 1

2 4
n nc t     

 

I
M U Q ,                         (2.40a) 

3/2 1 1n n n   Q U Q .                           (2.40b) 
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Eqns. (2.37) and (2.40) forms the basic field updating equations of the proposed 

efficiency-improved divergence-preserved ADI-FDTD methods. Unlike (2.9b) and (2.10b) 

of the original divergence-preserved ADI-FDTD method, (2.37b) and (2.37b) of the 

proposed method involve only simple matrix subtractions and do not require matrix 

multiplications, the proposed divergence-preserved method is more computationally 

efficiency as will be shown in more detail in next section.  

Moreover, when expanded into component fields, (2.37) and (2.40) of the proposed 

method can be further simplified. Take the components in the x direction of U and Q for 

example; for field march from the nth time step to the (n+1/2)th time step, after some 

mathematic manipulations, we have: 

  

2 2
1/2 2 1/2 1/2 1/21

2 8 2
n n n n
ex y ex ex hz

c t c t
U U Q yQ    

     ,               (2.41a) 

1 1/2 1/2n n n
ex ex exQ U Q    ,                            (2.41b) 

1 1/ 2 1/ 2

2
n n n
hx hx ey

c t
Q Q zU  

    .                       (2.41c) 

  

For field march from the (n+1/2)th time step to the (n+1)th sub-time step, we have 

  

2 2
1 2 1 1 11

2 8 2
n n n n
ex z ex ex hy

c t c t
U U Q zQ    

    
 
,           

 
(2.42a) 

3/2 1 1n n n
ex ex exQ U Q    ,                            (2.42b) 

3/2 1 1

2
n n n
hx hx ez

c t
Q Q yU  

   .                        (2.42c) 

  

As seen from the above equations, Uhx, Uhy, and Uhz are not required to be computed. In 

other words, for U vector, only Uex, Uey, Uez components needs to be updated in each time 

step; as a result, memory consumption and CPU time of the proposed method is further 

saved.  

In the above field updating equations of (2.37), (2.40), (2.41) and (2.42), field 

components are not computed directly. Rather, they are related to Q through the following 
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equation: 

  

 1 1

2
n nc t    

 
V I M Q   ,                      (2.43) 

  

with the initial condition 

1/2 0

2

c t   
 
I M Q V .                         (2.44) 

The computing process for the proposed method is shown as follows: 

 

Calculate the coefficients based on (2.37a) and (2.40a) 

Intial updating Q1/2 based on intial condition (2.44) 

 

for i = 0 to the n+1th timestep 

   updating Uex, Qex in one loop based on (2.41a) and (2.41b) at n+1/2 time step; 

  updating Uey, Qey in one loop at n+1/2 time step; 

  updating Uez, Qez in one loop at n+1/2 time step; 

 

  updating Qhx at n+1/2 time step based on (2.41c); 

  updating Qhy at n+1/2 time step; 

  updating Qhz at n+1/2 time step; 

 

 

  updating Uex, Qex in one loop based on (2.42a) and (2.42b) at n+1 time step; 

  updating Uey, Qey in one loop at n+1 time step; 

  updating Uez, Qez in one loop at n+1 time step; 

 

  updating Qhx at n+1 time step based on (2.42c); 

  updating Qhy at n+1 time step; 

  updating Qhz at n+1 time step; 

 

end 
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Extract electrical and magnetic fields based on (2.43)  

 

The efficiency of the proposed method is further discussed in next section. 

2.2.3 Efficiency Comparison between the Proposed Method and the Other ADI-

FDTD Methods 

In this section, the floating-point operation counts of the proposed divergence-preserved 

ADI-FDTD method are compared with those of other ADI-FDTD methods. Table 2-2 

shows the counts of floating-point operations of the conventional non-divergence-

preserved ADI-FDTD method and its improved variation, the original divergence-

preserved ADI-FDTD method and the proposed efficiency-improved divergence-

preserved method. In Table 2-2, “M/D” means multiplication/division and A/S 

addition/subtraction operations on the right hand sides of the field updating equations used 

in each method for field to advance for a complete full time step. “Implicit” refers to 

implicit updating equations. “Explicit” refers to explicit updating equations. The numbers 

of For-loops are for updating of all components in the x, y, and z directions.  

 

 

  

As can be seen from Table 2.2, the count of total floating-point operations of the 

proposed method is about 58.8% less than that of the conventional non-divergence-

preserved ADI-FDTD method and is same as that of its improved variation [57]; however, 

the proposed method preserves the correct divergence property. Therefore, the proposed 

Table 2-2 Floating-point operation counts of different 
implicit schemes with second-order central difference 

Scheme 
Non-divergence-
preserved ADI 

Divergence 
preservation ADI 

Algorithm Convent. Improved Original Proposed 

Implicit 
M/D 18 6 6 6 
A/S 48 18 12 12 

Explicit 
M/D 12 6 18 6 
A/S 24 12 36 18 

Total 102 42 72 42 
For-loops 12 12 24 12 



26 
 

method should be more accurate than the original ADI-FDTD method in applications such 

as electromagnetic PIC simulations [49] where charges are involved. In comparison with 

the original divergence-preserved ADI-FDTD method [25], the count is 41.7% less. It 

should be mentioned that in comparison with the most recently developed efficient one-

step leapfrog ADI-FDTD method [16], the proposed method has a higher count of floating-

point operations, but the one-step method is not divergence preserved [22]. 

In terms of the memory consumption, the proposed method is similar to the conventional 

non-divergence-preserved ADI-FDTD method. As presented in (2.37) and (2.40), U and Q 

which store the intermediate field values are needed to be computed. More specifically, 

only Uex, Uey, and Uez need to be computed in every full time step. In comparison with the 

one-step leap-frog ADI-FDTD method [58], the proposed method uses more memory since 

the one-step method does not require the computation of intermediate values. However, 

the proposed method is divergence-preserved while the other methods are not. 

For the numbers of For-loops, with careful arrangements of the position of the field 

components, (2.41a) and (2.41b) can be combined into one For-loop so that increasing the 

number of For-loops is avoided. This is, only half number of the For-loops of the original 

divergence-preserved ADI-FDTD method [25] (i.e., half of the 24 For-loops) is computed 

in the proposed method. 

2.2.4 Analytical Proof of Divergence-free Properties of the Improved ADI-FDTD 

Method 

In this part, the theoretical study of divergence properties of (2.37) and (2.40) is presented. 

In order to test their divergence, charge accumulation is evaluated analytically with the 

Gaussian law at every time step of the new efficiency-improved method of (2.37) and 

(2.40). If increase of the charge is zero, the method can be considered to be divergence free 

in a source free region. 

For the first sub time step, from (2.37a), we have: 

 
1

1/ 2 1/ 2

2 4
n nc t


    

 

I
U P Q ,                    (2.45) 
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Substitution of (2.45) into (2.37b) reads: 

 

1
1 1/2

2 4
n nc t


 

         

I
Q P I Q .                  (2.46) 

 

For the second sub-time step, the updating equation can be obtained in a similar manner 

by taking one time step backward.  

 

1/2

2 2
n nc t c t          

   
I M Q I M Q .                (2.47) 

 

The increase of the fields at every time step is then:  

 

1
1 1/2

1
1/2

2 2 4 2

              
2 2 4 2 2

              =2
2 2

n n n

n

c t c t c t

c t c t c t c t

c t c t


 



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                               

    
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I
V V I M P I I M Q

I
I M P I M I M Q

I M I P
1

1/2n



     

I Q

     (2.48) 

 

Since 

 

 

1

1

1

2 2

2 2 2 2

2 2

c t c t

c t c t c t c t

c t c t







      
  

           
  

      
 
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I P M I P

,           (2.49) 

 

We then have: 

 
1

1 1/2

2
n n nc t

c t


       
 

V V P M I P Q   .           (2.50) 
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P+M represents the curl operator in Maxwell equations [25]. Based on the fact that the 

divergence of curl operation of any fields is always zero, we have: 

 

  0f   P M X                           (2.51) 

where f  is the Delta operator. 

As a result, 

   
1

1 1/2 0
2

n n n
f f

c t
c t


           

 
V V P M I P Q         (2.52) 

 

In other words, no charges accumulate in advance of time steps if initial charges are zero. 

That is to say the new efficiency-improved divergence-preserved ADI-FDTD method 

remains divergence free in a source free region. 

2.2.5 Numerical Examples and Discussion 

A cavity filled with air was selected [58] to verify the accuracy and efficiency of the 

proposed method. A grid of 250 × 150 × 45 ( = 1.6875 millions) cells with a uniform cell 

size of Δx = Δy = Δz = 0.4 mm was employed. The source function is 
2 2( ) / wt te   with tw = 

150 ps and τ = 450 ps. A current plane source Jz was placed at y = 75 and the observation 

point was located at (125, 80, 23).  

 

 

 
Figure 2.3 Ez computed with the second order explicit FDTD method with CFLN = 1, and the 
proposed divergence preservation ADI-FDTD method with CFLN = 1 and 4 and with uniform 
mesh. 
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The results were obtained with the conventional FDTD method with CFLN=1 and the 

proposed method with CFLN = 1 and 4, respectively. Figure 2.3 shows the Ez obtained with 

the two methods and Figure 2.4 presents the relative absolute error of Ez computed with 

the proposed method in reference to the results obtained with the conventional FDTD 

method. The reason for the large relative error in the time domain when CFLN = 4 is time 

delay of Ez from two methods which leads to large absolute error at each time instant. 

However, we can observe that the wave form almost the same but with some time delay. 

The results obtained with the two methods are visibly indistinguishable. That is, that the 

proposed efficiency-improved divergence-preserved FDTD method has good modeling 

accuracy.  

 

                    

 

Table 2.3 presents resonance frequencies obtained from analytical method, the 

conventional FDTD method and the proposed efficiency-improved divergence-preserved 

ADI-FDTD methods with CFLN = 1 and 4. It is easy to find that the errors of the proposed 

method are slightly larger than the conventional FDTD method and they increase with 

CFLN. 

 
Figure 2.4 Absolute relative error of Ez computed with the proposed divergence preservation ADI-
FDTD method of CFLN = 1, 4. 

Table 2-3 Comparison of results with conventional FDTD 
method and the proposed method 
Analytical

(GHz)
FDTD  

CFLN=1(GHz)
Proposed 

CFLN=1(GHz)
Proposed 

CFLN=4(GHz) 
2.915 2.914 2.911 2.912 
5.220 5.213 5.212 5.210 
6.727 6.720 6.722 6.716 
7.648 7.642 7.640 7.630 
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Table 2.4 shows the usages of time and memory by the FDTD method, the original 

divergence-preserved ADI-FDTD method, and the proposed method. Compared with the 

original divergence preserved ADI-FDTD method, the proposed method took about 14% 

less CPU time with CFLN=4 and 25% less memory at the same accuracy. In comparison 

with the conventional FDTD method, the proposed method used 49% more memory due 

to the introduction of the intermediate values of Uex, Uey, Uez but 73% less CPU time with 

CFLN=4. 

 

          

 

To numerically evaluate the divergence properties of the improved ADI-FDTD method, 

charge distribution was calculated through a numerical example. The charge computed was 

normalized to an electron e:  

D dQ
Q

e e



   s



.                       (2.53) 

 

An example is an air-filled PEC cavity with dimension of uniform 50 × 50 × 50 cells and 

each is with Δx = Δy = Δz = λ/20 [22]. A simusoidal modulated Gaussian pulse excitation 

was placed at the centre of the cavity: 

 
20( )

0 0sin 2
t t

zJ f t t e 



                       (2.59) 

with 0 015 , 60 , 2 .f GHz ps t     

Figure 2.5 shows the normalized charge distribution in the xy-plane at z = 25 and at time 

instant t = 0.13ns with the original ADI-FDTD method, the original divergence preserved 

ADI-FDTD method, and the efficiency-improved ADI-FDTD method. We can easily see 

Table 2-4 Comparison of the time and memory used by the Yee’s FDTD method,
the original divergence preserved ADI-FDTD method and the proposed method

 
Yee’s 
FDTD 

Original Divergence-Preserved 
ADI-FDTD Method 

Proposed Method

CFLN 1 1 4 1 4 
Number of cells 1687500 1687500 1687500 

Number of 
iterations 

10385 10385 2596 10385 2596

Time(s) 2206 2735 689 2396 592 
Memory(Mb) 80.5 159.4 159.4 119.9 119.9
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from Figure 2.5(a) and Figure 2.5(b) that amount of the normalized charge, which is 

normalized to the unit charge, can reach 1.5 with CFLN =1 and 4 with the original ADI-

FDTD method. It implies that the normalized charge will increase with increase of the time 

steps. However, for the divergence preserved ADI-FDTD method and the new efficiency-

improved method, values of the normalized charges are around the order of 10-14, which 

are basically negligible numerical noises (see Figure 2.5(c) – Figure 2.5(f)). This means 

that the new efficiency-improved method behaves like the conventional explicit FDTD 

method as well as the original divergence preserved ADI-FDTD method and produces no 

charge-accumulating divergent fields.  

 

 

 
                                  (a)  CFLN=1                   (b) CFLN=4 

  
                              (c)  CFLN=1                      (d)  CFLN=4 

  
                               (e)  CFLN=1                     (f) CFLN=4 
 

Figure 2.5 Normalized charge distributions computed (a) and (b) with the original ADI-FDTD 
method, (c) and (d) with the original divergence preserved ADI-FDTD method and, (e) and (f) 
with the efficiency-improved divergence preserved ADI-FDTD method. 
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2.3 Conclusion 

In this chapter, a divergence preserved ADI-FDTD method is presented and formulated. 

The method is analytically proven and numerically verified to be unconditionally stable. 

Compared with other unconditionally implicit methods, such as the conventional ADI-

FDTD method, the one-step leapfrog ADI-FDTD method and the LOD-FDTD method, the 

divergence preserved ADI-FDTD method has the same numerical dispersion 

characteristics but preserve divergence property like the explicit FDTD method. In other 

words, the presented ADI-FDTD method is the most accurate among the unconditionally 

stable implicit methods when charge particles have to be included in simulations. The 

improvement in accuracy comes at the cost of higher computational expenditures. 

In addition, a new efficiency-improved divergence-preserved ADI-FDTD formulation 

has been proposed and its efficiency comparisons with other FDTD methods are presented. 

The divergence property of the new method has been investigated. Analytical proof shows 

that the efficiency-improved method retains the divergence-free property in source free 

regions like the original divergence-preserved method but with higher computational 

efficiency. It is found that the proposed method is more efficient than the original 

divergence-preserved ADI-FDTD method in both memory and CPU time. In comparison 

with the FDTD, it uses about 50% more memory but less CPU time if time step is chosen 

to be adequately large. Therefore, due to its divergence property and high efficiency, the 

proposed divergence preserved ADI-FDTD method is recommended as an FDTD based 

alternative technique if unconditional stability is required for modeling (e.g. highly 

resolved fields). 
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Chapter 3  The Time Domain Meshless Method for Solving 
Electromagnetics Problems 

This chapter is mainly based on our published paper [42], which is Shunchuan Yang, 

Yiqiang Yu, Zhizhang (David) Chen, and Sergey Ponomarenko, "A Time-Domain 

Collocation Meshless Method with Local Radial Basis Functions for Transient Analysis," 

published in IEEE Transactions on Antennas and Propagation, vol. 62, pp. 5334 - 5338, 

2014. 

3.1 Abstract 

A meshless method with local radial basis functions is proposed for solving the 

electromagnetic wave equations. In comparison with the conventional RPIM method that 

employs and positions dual sets of nodes of both electric and magnetic field nodes, the 

proposed method uses only one set of the nodes, where electric fields are collocated at 

those nodes in space. With this feature, implementation complexity of the RPIM method 

is significantly reduced, and conformal modeling and muti-scale capabilities of the RPIM 

method can now be further explored with higher efficiency. The time-marching 

formulations of the proposed method are derived and stability analysis of the method is 

presented. Comparisons of the proposed method with the conventional meshless method 

are also presented. The accuracy and efficiency of the proposed method are demonstrated 

through simulation of an H-shaped cavity and a quarter ring resonator.  

3.2 Introduction  

Conventional numerical methods, such as the FDTD method [6], the FEM [59] and the 

MOM [60] are grid or mesh-based techniques. In those methods, a solution domain is 

discretized with finite cells or elements such as cuboids, tetrahedra, rectangles, or triangles. 

Edges of the cells or elements lead to grid or mesh lines and intersections of the grid or 

mesh lines form grid points or nodes. As a result, connection relationships among the nodes 

are pre-defined due to placements of the cells or elements. And adaptive gridding or mesh 

refining in a sub-region of the solution can become difficult and time-consuming since the 

relationship among the nodes has to be addressed or redefined through rearrangement of 

the cells or elements. 
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To mitigate the above problem, meshless methods, such as the element-free Galerkin 

method [61], the moving least square reproducing kernel method [62], the smoothed 

particle electromagnetic method [29] and the RPIM method [28] were successfully 

developed to solve electromagnetic problems. In particular, a three dimensional RPIM 

method for transient electromagnetics was recently developed in [31] and an 

unconditionally stable version of RPIM method was proposed in [32]. However, in these 

methods, dual sets of nodes (E-nodes for electric fields and H-nodes for magnetic fields) 

are needed and which are spatially interlaced due to coupling nature of the electric and 

magnetic fields. Such an interlaced placement of the E- and H-nodes poses a challenge in 

implementation of the meshless methods. This is because they have to be properly 

positioned to correctly reflect the coupling relationship between electric and magnetic 

fields. Usually, the E-nodes are first placed in a structure to be modeled and then the H-

nodes are generated through Voronoi tessellation [63]. For large and complex structures, 

this node generation process can become quite time-consuming. 

In this chapter, a node collocating time-domain three-dimensional RPIM method for 

transient analysis of EM problems is proposed. Here, instead of solving coupled Maxwell’s 

equations directly, the wave equations are solved with only the E-nodes at which all three 

electric fields can be collocated. The point interpolation based on the local RBF is 

employed. As only one set of nodes is dealt with for solutions of the wave equations, the 

proposed collocated time-domain RPIM method not only reduces implementation 

complexity but also improves modeling efficiency, in comparison to other meshless 

methods [28, 29, 31, 32, 61, 62]. Several aspects of the proposed method are then discussed 

in this chapter.  

3.3 The Proposed Meshless Method for the Wave Equation 

A linear, non-dispersive and isotropic media with permittivity ε and permeability μ, in a 

homogenous source free region is considered. The time-domain vector wave equation for 

the electrical field is 

 

2
2 2

2
0c

t


  


E

E ,                        (3.1) 
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where 2 1
c


 . They may be expanded into three scalar wave equations with respect to 

each electric field component. Take Ex field as an example, we have 

 

2 2 2 2
2

2 2 2 2
.x x x xE E E E

c
t x y z

    
       

              (3.2) 

 

Since only Ex component is the quantity to be solved in (3.2), one set of the electric field 

nodes (E-nodes) is required to be spatially defined in the solution domain. In this work, the 

E-nodes are defined in the way similar to that used in the point-matched time-domain 

finite-element method [64].  

To obtain the numerical solutions of equation (3.2), the electric fields are approximated 

in terms of the shape functions, 

 

E  sΦE ,                           (3.3) 

 

where ξ=x, y and z, and Φ  is the shape function vector associated with the nodes in a 

local support domain with the dimension of 1×N (where N is the number of E-nodes in a 

local support domain). sE  are the unknown field value vector at each scattering nodes to 

be found with dimension N×1. The shape function vector can be expressed as 

 1 2 n  Φ  , where 1Φ BA  with 
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  


       (3.4) 

 

and B is the vector of radial basis functions, where    1 n nB B    1B R R R R . 

Gaussian function is selected as the radial basis function  i R R  since it is claimed 
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to have better performance than other types of functions, such as multiquadric (MQ) 

function, for derivative involved interpolation [65].  i R R  is expressed in general 

as 

 

  2pr
i e  R R ,                        (3.5) 

 

where      2 2 2

i i i ir x x y y z z       R R  is the Euclidean distance between point 

R(x,y,z)  and Ri is the center of the ith node position and p is the shape parameter that 

controls the decaying rate of Gaussian function. 

Figure 3.1 shows the normalized interpolation error through MQ and Gaussian function 

to interpolate the first order of  2 5/ 8f x x  . For MQ, q equal to 0.5. It is found that 

for the Gaussian indeed have better accuracy than MQ function. 

 

Once the shape function is defined, the second order partial derivatives can be 

analytically found as  

 

2 2
1

2 2
.

 
 


 
Φ B

A                         (3.6) 

 

With the time derivatives approximated by its second-order central finite-difference 

counterpart, the wave equation (3.2) can then be reformulated and solved for Ex with the 

following node-based time-marching meshless formulation:  

 
Figure 3.1Normalized error for MQ and Gaussian function. 
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By applying the similar procedure to the other two electric field components, we can 

obtain: 

 
1 1

2 2 2
2 2
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2
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         .
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The above equations form the time-marching formulations of the proposed meshless 

method. t  is the time step. Note that the three electric field components, 1n
xE  , 1n

yE  and 

1n
zE  , can be collocated at every node.  

3.4 Implementation of Source and Boundary Conditions 

The time-marching formulations (3.8) are for the source-free regions. For a region with 

current sources, additional terms will be present on the right-hand side of (3.8) as described 

below. After that, we will indicate how boundary conditions are implemented. 

A. Sources Implementation 

When current sources or excitations are present, the vector wave equations can be found 

as:  

 

 
2

2
02 2 tc t




      

E

E E J ,                 (3.9) 

 

where J is the current density.  
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It can be seen that (3.9) cannot be expanded into a decoupled wave equation like (3.2) 

due to the nonzero divergence of the electric field on the right hand side of (3.9). There are 

two additional terms on the right hand side of (3.9) in comparison with (3.2) (this is for a 

source-free region). Fortunately, if we apply the central finite-difference scheme to the left 

hand side of (3.9) at the nth time step, these two additional terms are of the nth time step 

which are known. In fact, all the terms on the right hand side of (3.9) are of the nth time 

step which are known. Take the Ex as an example. Application of the finite difference to 

(3.9) leads to:  

 

 
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  
.         (3.10) 

 

As seen, all the terms on the right hand side of (3.10) are the known values of the nth and 

(n-1)th time steps and they can be computed and used to predict the new Ex of the (n+1)th 

time step. In other words, the proposed method can be simply applied to either a source 

region or a source-free region with or without the known additional terms, respectively.  

B. Boundary Conditions Implementations 

Since three electric components are co-located at every node, boundary conditions need 

to be carefully handled. In this chapter, the application of boundary conditions is simplified 

by only considering 3D cavity and resonator structures of regular geometry. In addition, 

only the Ez component is excited with the current source. For more general applications of 

the boundary conditions, the approach presented in [66] for the treatment of dielectric 

interfaces may be adapted. 

3.5 Stability Analysis 

Since the proposed meshless method is an explicit time-marching scheme, it is 

conditionally stable. To derive its stability condition, the Z transform technique [67] is 

applied to (3.7), and the marching equation in the Z-domain is obtained:  
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 22 2 1 1c t z z   T E E ,                   (3.11) 

 

where 2

ijij ET     and E is the unknown coefficient vector of interest in the z-domain. 

Suppose   is the eigenvalue of matrix 2 2
0c t T  which embodies node location 

information and material properties. Then from (3.11), we have 

 

 2
1 0z z   ,                          (3.12) 

 

where (3.12) is the characteristic equation [67]. To ensure the stability of the proposed 

meshless method, all the root of (3.12) should be located on or within the unit circle. In 

other words, the absolute upper bound of   (denoted as max ), will lead to a relation 

between the spatial discretization and maximum time step that has to be satisfied to ensure 

the stability. 

Mathematically, the following condition can be derived from (3.11):  

 

 
max

t
c




 

T
,                          (3.13) 

 

where   T  is the spectral radius of T.  

For homogeneous media, max = 4 can be found from (3.12). Therefore, all temporal 

steps in the proposed meshless method should satisfy the following condition: 

 

 
2

.t
c 

 
T

                             (3.14) 

3.6 Numerical Examples and Discussion 

In this section, two numerical experiments are presented to evaluate the accuracy and 

efficiency of the proposed meshless method. The conformal and multi-scale modeling 
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capabilities of method are also demonstrated. 

 

A. H-Shaped Cavity 

The first numerical example is an air-filled H-shaped cavity with perfect electric 

conducting walls. The computational domain is of 1 λ × 1 λ × 0.3 λ (scaled at 3 GHz) as 

shown in Figure 3.2. The cavity was discretized with non-uniformly distributed E-nodes as 

depicted in Figure 3.3. The node density in the central region is 1.5 times of that of the 

remaining region where the smallest distance between the nodes is λ/20. The shape 

parameter p was chosen as 10. The cavity was excited with a modulated differential 

Gaussian pulse with function of        
2

sin 2c wt t t

c w ct t t e f t t      where tc = 0.33 ns, tw 

= 1.33 ns and f = 3.5 GHz. It is placed at one end of the cavity. Thus, the bandwidth of the 

excitation (or source) is 6 GHz. The observation point is placed at the other end as shown 

Figure 3.3 (a). Only Ez component was excited and the modes having the Ez component 

were simulated. 

  

 

 

 
Figure 3.2 Geometry of the H-shaped cavity 

 

 
                                  (a)                                                     (b)  

Figure 3.3 Non-uniform nodal distribution within the H-shaped cavity resonator with the smallest 
distance between two nodes being λ/20 
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The simulated electric fields recorded at the observation point in the time and frequency 

domain with a time step equal to the maximum FDTD time step of 7.18 ps are plotted in 

Figure 3.4 and Figure 3.5. The results obtained from the conventional RPIM method 

(solving Maxwell’s equations and using the same E-node distribution) and the results 

obtained with the conventional FDTD method (using a grid size of λ/40) are also shown 

for comparisons. It can be seen that the results obtained with the proposed meshless method 

agree well with the conventional FDTD method with some small differences in the late 

time of the simulation. For the conventional RPIM method, it has larger differences from 

the FDTD results than the proposed method. In the frequency domain, the resonant 

frequencies obtained from the conventional RPIM method show a small frequency shift 

towards higher frequency regions. However, the results from the proposed method are not 

visibly distinguishable from those of the FDTD method (as shown Figure 3.5). In other 

words, the above-mentioned differences of the time-domain results between the proposed 

method and the FDTD method are those of high-frequency components that fall outside 

the frequency range of interest. The reason for this differences is that modelling accuracy 

of three methods are different. At high frequency region the current discretization is not 

accurate enough to capture electromagnetic behaviors and they shows different level of 

errors. The proposed meshless method has a similar level of accuracy to the FDTD method 

but uses coarser grids.  

 
Figure 3.4 The Ez component in the time domain obtained with the proposed meshless method for 
the wave equation and the conventional RPIM method for the first order Maxwell’s equation with 
non-uniform nodal distribution and the FDTD method with the uniform fine grid size of λ/40. 
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Table 3.1 lists the total number of unknowns and computational time with the proposed 

meshless method, the FDTD method and the conventional RPIM method. Note that the 

computational time for the meshless method includes that for constructing the shape 

functions. We find that number of unknowns with the proposed method is only 1/4.6 that 

of the conventional RPIM method. The computation time is only 1/8.3 that of the 

conventional RPIM method. We can also see that the proposed method can achieve the 

same accuracy with higher efficiency compared with the conventional RPIM method. 

  

 

  

 
Figure 3.5 The Ez component in the frequency domain obtained with the proposed meshless method
and the FDTD method with the uniform fine grid size of λ/40. 

Table 3-1 Comparison of the time and memory used by the proposed meshless
method, the FDTD method and the conventional RPIM method 

Method Discretization unknowns Preprocessing time (s) Total time (s) 
Proposed 
Meshless 
Method 

Nodal spacing 
of  
λ/20 (min) 
λ/30 (max) 

3722 0.79 0.90 

RPIM Nodal spacing 
of  
λ/20 (min) 
λ/30 (max) 

17211 6.31 7.50 

FDTD Uniform Grid 
size: λ/20 

14996 1.19 1.59 

Uniform Grid 
size: λ/40 

111712 35.64 38.79 

Ratio To FDTD Grid 
size λ/20 

4 1.5 1.8 

To FDTD Grid 
size λ/40 

30 45 43 

To RPIM 4.6 8 8.3 
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In reference to the FDTD simulations with λ/40 and λ/20, respectively, the number of 

unknowns required with the proposed method is about 1/30 and 1/4 of that of the FDTD 

method, respectively. There are two reasons for it: (a) E-field nodes are collocated at the 

same point in the proposed method due to the decoupled nature of the wave equations, and 

(b) the conformal modeling and multi-scale capabilities of the meshless method allow easy 

or adaptive discretization refinement of a structure. Due to the smallest number of 

unknowns of the proposed method compared with the FDTD method and the RPIM method, 

the efficiency of the proposed method is the highest among the three methods.  

  

           

  

Table 3.2 shows the errors of the first resonant frequency calculated by the FDTD method 

with /20, /40 and /80 and the proposed meshless method with non-uniform node 

distribution. In the Table, the result from the FDTD method with /80 is selected as the 

reference solution. It is found that all errors are quite small for both the FDTD method with 

different discretization and the proposed method. However, the errors of both the proposed 

method and the FDTD method /40 are around 0.2%. In other words, the proposed method 

can achieve the same accuracy level as the FDTD method with /40 but with less dense 

node distribution. That is the main reason that we have chosen the FDTD method with /40 

for comparisons with the proposed method. 

Table 3-2 Comparison of the computational error of the FDTD method
with different discretization and the proposed method 

Method Discretization First resonance frequency (GHz) Error (%) 
FDTD /20 2.960 0.78 

/40 2.943 0.20 
/80 2.937 0.00 (ref.) 

Proposed 
Meshless 
Method 

Nodal spacing 
of /20, 
/30 

2.945 0.27 

 

 
Figure 3.6 Geometry of the quarter ring resonator 



44 
 

B. Quarter Ring Resonator 

An air-filled quarter ring resonator was simulated to further demonstrate the conformal 

and multiscale modeling capabilities of the proposed meshless method. The inner and outer 

radii are 0.6 λ and 1.2 λ and the height of the resonator is 0.3 λ (scaled at 3 GHz). Figure 

3.6 shows the geometry of the quarter ring resonator. The nodal distribution is depicted in 

Figure 3.7. As can be seen, a radial node distribution pattern is applied here: the nodes are 

denser close to the inner conducting wall and coarser towards the outer conducting wall. 

The cavity is excited with a Gaussian pulse of Ez = 
    

2

sin 2c wt t t

ce f t t      where tc = 

0.33 ns, tw = 1.33 ns and f = 3 GHz. The excitation is located at the center of the cavity with 

the band width of 6 GHz. 

  

 

 
 

Figure 3.7 Node distribution of the quarter ring resonator cavity  

 
Figure 3.8 Ez component in the time domain obtained with the proposed meshless method and the
FDTD method with the fine grid size of λ/40.
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The electric fields obtained from the proposed meshless method and the FDTD method 

in both time and frequency domains at the observation point are plotted in Figure 3.8 and 

Figure 3.9. The number of the unknowns and the computational time for both methods are 

shown in Table 3.3. Again, good agreements between the results obtained with the 

proposed method and the FDTD method are observed. 

 

      

3.7 Conclusion 

In this chapter, a time-domain meshless collocation-RPIM method based on the local 

radial basis function is formulated and presented for solutions of time-domain 

electromagnetic wave equations. As all the electric (and magnetic) field can be collocated 

at every node, the proposed method is easy to implement and has high computational 

 
Figure 3.9 Ez component in the frequency domain obtained with the proposed meshless method
and the FDTD method with the fine grid size of λ/40. 

Table 3-3 Comparison of the time and memory used by the proposed meshless
method and the FDTD method 

Method Discretization Unknowns Preprocessing time (s) Total time(s)
Proposed 
Meshless 
Method 

Nodal spacing of 
λ/40 in the radial 
direction 

13325 9.64 10.09 

FDTD Uniform Grid 
size: λ/40 

128067 45.97 48.80 

Ratio to FDTD Grid size 
λ/40 

9.6 4.8 4.8 
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efficiency. The stability analysis shows the proposed method is computationally stable 

under the same criterion of the conventional RPIM method. With the ease of nodal 

distribution, the conformal and multi-scale modeling capabilities of meshless methods can 

now be further exploited.  
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Chapter 4  The Divergence Free Meshless Methods for Electromagnetics 
Analysis 

This chapter is mainly based on our published paper [44], which is Shunchuan Yang, 

Zhizhang (David) Chen, Yiqiang Yu, and Sergey Ponomarenko, "A divergence-free 

meshless method based on the vector basis function for transient electromagnetic analysis," 

published in IEEE Transactions on Microwave Theory and Techniques, vol. 62, pp. 1409 

- 1416, 2014.  

4.1 A Divergence Free Meshless Method for the Maxwell’s Equations 

4.1.1 Abstract 

Although meshless methods, in particularly those with scalar RBFs, have been applied 

effectively to solve electromagnetic problems, their solutions may not be always 

divergence free in source-free regions, resulting in possibly large errors. In this section, a 

new vector RBF based meshless method, which is divergence free, is proposed for solving 

transient electromagnetic problems. Its divergence properties are investigated and 

compared with those of scalar RBFs; and they are further verified with numerical examples 

that present good accuracy.  

4.1.2 Introduction 

Many meshless methods are proposed to solve the electromagnetic problems due to their 

multi-scale and conformal modelling capability. They include the scalar RBF method [27], 

the RPIM [28], the smoothed particle meshless method [29], and the edge-based smoothed 

PIM [30]. Especially, a three dimensional RPIM was proposed in [31] and an 

unconditionally stable RPIM was presented in [32]. For most of these meshless methods, 

only spatial node information is needed to formulate electromagnetic problems. No 

connection information or grid lines among nodes are required. As a result, no re-

arrangements of grid lines are required when a structure is modified partially. However, 

[33] demonstrates the existence of spurious modes in the traditional RPIM. 

In a continuous domain, electromagnetic fields observe the divergence property: 

magnetic fields are always divergence free and so are electrical fields in charge free regions. 

When numerical methods are developed for solving electromagnetic problems, this 
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divergence property may not be preserved numerically and spurious numerical solutions 

may emerge [24]. Indeed, it has been found that the original meshless method does not 

always have this divergence-free property; spurious solutions exist in the solutions 

obtained. 

On the other hand, divergence-free RBFs were developed for non-electromagnetic 

applications. A matrix-valued RBF, which is termed as the vector RBF in difference from 

the scalar RBF, was proposed and proven theoretically divergence free [68]. More work 

along this line was presented in [34, 35, 68]. In particular, the divergence-free vector RBF 

was successfully applied to Navier-Stokes equation [68] and astrophysical magneto-

hydrodynamics (MHD) [69]. However, to the best knowledge of the authors, no reports 

were seen to apply the vector RBFs to computational electromagnetics and little has been 

addressed on divergence properties of numerical methods that solve electromagnetic 

problems. 

In this section, we propose a meshless method incorporated with the above vector RBF 

for transient electromagnetic analysis. The proposed meshless method is theoretically 

proven to be divergence free in a source free region. Therefore, no artificial charges or 

spurious solutions will be present in the solutions of the meshless methods, making them 

more accurate.  

4.1.3 The Original Scalar RBF Meshless Method 

In order to better understand the vector RBFs, we first give a brief introduction to the 

conventional scalar RBF meshless method in this section. 

The scalar RBF method was introduced to solve partial differential equations by Ed 

Kansa [70, 71]. Consider an unknown function f(R) that is interpolated with the function 

values at the discretized scattering points of jR  in a solution domain. f(R) can then be 

approximated by the RBF as follows: 

 

 
1

( )
N

j j
j

f a


 x R R                       (4.1) 

 

where  j R R is the radial basis function,  , ,x y zR  is the location of the point of 
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interest,  , ,j j j jx y zR  is the location of node j, N is the number of nodes in a local 

support domain and ja  are the unknown expansion coefficients. Several different types of 

RBFs can be used in (4.1). We select Gaussian function as the scalar RBF in this section. 

Its formulation can be expressed as 

 

  2pr
j j e    R R                        (4.2) 

 

where jr  R R  is the Euclidean distance between the point of interest and node j, and 

p is the shape parameter that controls the decaying rate of the basis function.  

To find the unknown expansion coefficients, (4.1) is enforced to pass through all the 

nodes within a local support domain. Then, a set of linear equations corresponding to the 

nodes is obtained and it can be rewritten in the compact matrix form below: 

 

 A a f                             (4.3) 

 

where  1 2

T

s Nf f f f  with if  being the value of function f at node i. 

 1 2

T

Na a a a   and 
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A
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



  
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        (4.4) 

 

Since A is always invertible (as (4.2) is selected as the RBF [72]), expansion coefficients 

iacan be obtained by inverting A. Substitution of ia  into (4.1) leads to  

 

1
s sf  BA f Φf                          (4.5) 
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where  j B B R R  contains the RBFs,   1
1 2 N

    Φ BA  and 

 i i j   R R  is the shape function associated with spatial node i (i= 1,2,…,N). 

Since the shape function is a continuous function, its first order partial derivatives can be 

analytically obtained as  

 

  1.i

 
 


 

B R RΦ
A                      (4.6) 

 

4.1.4 The Proposed Vector RBF Meshless Method 

In this section, we propose the divergence-preserved meshless method with the vector 

RBFs presented in [34, 68] and then analytically prove the divergence properties of the 

method. We also examine other properties of the method.  

A. The Proposed Vector-based RBF 

Mathematically, a divergence free field, denoted as u, can always be expressed as the 

curl of another vector field, say w, as follows: 

 

u w                                (4.7) 

 

where , , 
T

x y z

   
     

.  

w is not unique in (4.7). Therefore, additional conditions are needed. One common 

choice is Coulomb gauge, 0 w , which means that we can let w be the curl of a third 

vector function. In our case, we select the following form:  

 

   
1

N

j
j




   jw x R R A                    (4.8) 

 

where   is a preselected scalar basis function and  , ,
T

j jx jy jzA A AA  is the unknown 

vector expansion coefficient to be determined. (4.8) forms the basis function expansion of 

the vector field u, and consequently, vector field u can be expressed as 
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                     (4.9) 

 

where I is the 3×3 identity matrix, and   is the Laplace operator which can be expressed 

as 
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2 2 2
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    

       (4.10) 

 

Based on (4.9), we can then define the vector RBF jΨ  related to node j and shape 

function Φ  as: 

 

 T
j j   Ψ I ,                         (4.11a) 

 1
v v s

Φ B A u                               (4.11b) 

and 
1

N

j j
j
u = Φ u                                                      (4.11c) 

where vB  contains the vector RBFs, ....   
T

s jx jy jzu u u   u  , 
T

j jx jy jzu u u  u
 

and  
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
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

 

The dimension of vA  is 3N × 3N, where N is the number of the scattering nodes in a local 

support domain. Since the number of the nodes, N, in a local support domain is small, 

inversion of vA  can be done without much difficulty with modern computers.  



52 
 

Several observations can be made on the vector basis function of (4.11):  

(a) The vector basis function can be constructed from the scalar RBF, j , with a 3×3 matrix 

transform for each node j through (4.11a), 

(b) j  can be any kind of basis function including RBF or Gaussian function;  

(c) The shape function jΦ  satisfies Kronecker’s delta property; that is: 

 

 ,               

,    
j

j at other nodes


 


I R R
Φ

0
                      (4.12) 

 

(d) Each row of jΨ  is a vectorized basis function: the first row of jΨ , or the first 

vector in the vector RBF, represents the x component, the second vector (row) the y 

component and the third vector the z component, respectively. 

Expansion of (4.11) for each node reads:  

2 2

2 2

2 2

- -

- - .

- -

y z x y x z

j y x x z y z j

z x z y x y


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        
       

Ψ                 (4.13) 

The curl of jΨ  can be found as: 
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Ψ         (4.14) 

For a two dimensional problem, fields are assumed constant in the z direction; therefore

0z  . The vector RBFs and their curl operation are much simplified. More specifically, 

we have: 
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y x


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Ψ                        (4.15) 

and  
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Ψ            (4.16) 

Here the scalar radial basis function is chosen to be
2 2[( ) ( ) ]1

2
j jp x x y y

j e
p

     , which results in 

     2 2
2

11 2 1
j jp x x y y

j jp x x e
                               (4.17a) 

      2 2

12 2
j jp x x y y

j j jp x x y y e
                           (4.17b) 

21 12j j                                        (4.17c) 

     2 2
2

22 2 1
j jp x x y y

j jp y y e
                              (4.17d) 

 
(a) The first vector 

 
(b) The second vector 

 

Figure 4.1 Plots of the vector RBF modes with p = 5. 
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       2 2
2 2

33 2 2 2
j jp x x y y

j j jp x x p y y e
                      (4.17e) 

To better understand the vector basis function, we plot a two dimensional vector RBF at 

Rj= [0 0]T using (4.2) as the scalar basis function with p = 5 [16]. Figure 4.1 shows the 

vector RBF in the two dimensions. The first vector is the first row of (4.15) and the second 

vector is the second row of (4.15). It is easy to see that the two rows of the vector radial 

basis function present two mutually orthogonal dipole modes: Figure 4.1 (a) is the 

horizontal dipole mode and Figure 4.1(b) is the vertical dipole mode; rotation of one dipole 

leads to another. Obviously, both dipole modes are divergence free. Thus, the field 

expanded by them should be divergence free. 

B. Divergence of the Proposed Vector RBF 

Because Ψ  is constructed from (4.7) and (4.8), its divergence should be zero as implied 

by (4.8). We can verify it by directly taking the divergence of the mth row of Ψ : 
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       (4.18) 

 

where k and l stand for the other two directions in a Cartesian coordinate system rather than 

p, and m and n represents the mth row and nth column of jΨ . 

C. Divergence Properties of the Scalar RBF 

In this section, we examine the divergence properties of the original meshless method 

that uses the scalar RBF. The field in the conventional meshless method is approximated 

as 

 
1 1

N N

j j j
j j

u    
 

    jR R                      (4.19) 

 

at each node. Assume that Gaussian function of (4.2) is used as the basis function  . Then 

the divergence of the approximated field (4.19) can be found as 
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j j j j
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pe x y z x y z a



        u .         (4.20) 

 

It is seen from (4.20) that the divergence of u is dependent on the position of the point 

of interest, the nodes, and the expansion coefficients. There is no guarantee that it will 

always be zero except for the certain point of interest and node distributions that make 

(4.20) zero. In other words, the divergence-free property is not warranted for the scalar 

RBF meshless method. This is not the case for the proposed vector RBFs since they 

constructed through (4.8) that ensures the divergence property. 

4.1.5 The Proposed Meshless Formulations with the Vector RBF for Solving 
Electromagnetic Problems 

With the definition of the vector basis function and vector shape function, electrical and 

magnetic vector field can be approximated as  

 

NA

i i
i

E Φ E                               (4.21a) 

.
NB

i i
i

 H Φ H                              (4.21b) 

 

Consider Maxwell’s equations in a linear, isotropic, non-dispersive, and lossless media 

of permittivity ε and permeability μ without sources, 
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By substitution of (4.21) into (4.22), we have the following equations: 
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Now we choose the collocation method and apply it to the above equation; that is, we 

choose Dirac Delta function for the error testing or minimization [73]: test (4.23a) with 

Delta functions at magnetic field nodes and (4.23b) with Delta functions at electric field 

nodes. Because the Kronecker’s Delta property of the vector shape function, we can then 

obtain the following equations:  
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j
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Φ E                     (4.24a) 
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j
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j

E
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When the central finite difference scheme is applied to (4.24) in time, the time-marching 

equation can be obtained: 
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1 1/ 2
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i i j j

j
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
 
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Note that the shape functions in the above equations are naturally divergence-free. 

4.1.6 Numerical Examples and Discussion 

In this section, a few numerical examples are presented to verify the divergence 

properties and accuracy of the proposed vector RBFs based divergence-free meshless 

method. They are elaborated below. 

A. One Dimensional Resonator 

One dimensional resonator with the perfect electrical conductor (PEC) walls at both ends 

was constructed. The length of the one dimensional cavity is 1 meter. The current source 

is located at the center and is specified as: 
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                  (4.26) 

 

where f = 1.5 GHz, tw = 40 ns and tc = 120 ns. 

 

 

Figure 4.2 shows the resonator frequencies obtained with the proposed meshless method 

and FDTD method. Both the uniform grid size for the FDTD method and the uniform node 

distance for the meshless method are 0.01 meter; it amounts to 10 cells or 10 spatial 

sampling points per wavelength at 3 GHz across the whole computation domain. The 

theoretical resonance frequencies are represented with the vertical lines in the figure. It can 

 
Figure 4.2 Resonance frequencies obtained with the proposed meshless method and the FDTD 
method. The vertical grey lines represent the analytical resonant frequencies. 

 
Figure 4.3 Resonance frequencies obtained with the proposed meshless method and the 
conventional RPIM. The vertical grey lines represent the analytical resonant frequencies.  
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be seen that the results obtained with the FDTD method have frequency shift towards 

higher frequency region even when 10 cells per wavelength is used at 3 GHz. However, 

the frequencies obtained with the proposed meshless method agree well with the theoretical 

results. In other words, the proposed meshless method has better accuracy than the FDTD 

method under the same discretization conditions. This may be attributed to the fact that the 

meshless method is essentially a high order method while the FDTD method expands the 

field quantity with the roof-top function [73].  

B. The Cavity Without and With a Fin 

A two dimensional cavity with dimensions of 100 cm by 100 cm is considered. A 

uniform node distance is taken to be 5 cm. Figure 4.3 shows the resonance frequencies 

obtained from the conventional RPIM and the proposed meshless method. The vertical dot 

lines indicate the theoretical results. Although the same node distribution was employed 

with the RPIM and the proposed meshless method, a small frequency difference from the 

theoretical results is observed at 0.45 GHz with the results obtained with the conventional 

RPIM. For the proposed meshless method, the results agree well with the theoretical results. 

 

 

To verify the divergence properties of the proposed meshless method based on the vector 

RBFs, we considered an air-filled finned cavity with the dimensions of 100 cm by 100 cm 

as shown in Figure 4.4. It was then discretized with a uniform grid of 20 cells by 20 cells 

with the cell size of 5cm. Such a discretization arrangement amounts to 15 sampling points 

per wavelength at 0.4 GHz. The reason we chose the finned structure is that there should 

be strong charge accumulation at the edges of the fins and no charges are accumulated 

elsewhere. We can then evaluate the divergence property of the numerical methods in an 

effective way.  

 
Figure 4.4 The geometry of the cavity with PEC screen located at the middle.  
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A point source of Gaussian pulse below was excited inside the cavity:  

 
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                 (4.27) 

 

where f = 0.4 GHz, tw = 4 ns and tc = 12 ns. The divergence of electric flux density, i.e, the 

charge density, was computed with the following formulas:  
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(a) 

 
(b) 

 
                                                   (c)  
Figure 4.5 Charge density distribution obtained with the conventional FDTD method (a), the 
proposed meshless method based on vector RBFs (b) and the conventional meshless method based 
on the scalar RBFs (c) at time t = 50 ns.  
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Figure 4.5 shows the charge densities computed with the FDTD method, the proposed 

vector RBF based meshless method and the conventional (or original) scalar RBF meshless 

method. We can find that the conventional RPIM does not retain the divergence-free 

condition. In the source free region, numerical spurious charges are introduced as shown 

Figure 4.5 (c) and they inevitably lead to inaccurate or even totally wrong simulation results. 

However, the charge distribution computed with the proposed RBF meshless method is 

similar to that computed with the FDTD method: at the PEC fins only, we can see the 

charge distribution which is expected due to the fin structure. 

To further examine the divergence properties of the proposed method and the 

conventional RPIM, we also ran the simulations when the node distribution is not placed 

regularly for the finned structure (equivalent to a non-uniform situation): we slightly move 

the H-nodes off their original centers on the left side of the fin while the right side remains 

unchanged. The off-central displacement distance is 0.01 meter and the off-central 

direction can be randomly chosen in the positive or negative x axis. The node distributions 

are shown in Figure 4.6. 

  

 

The charge density obtained with the conventional RPIM and the proposed method is 

presented in Figure 4.7. It is easy to find that the charge density obtained from the 

conventional RPIM does not maintain the divergence-free property in the source free 

region while the proposed method does. Another interesting observation is that in the left 

region, numerical spurious charge density is larger than that in the right region with the 

conventional RPIM. This is due to the fact that the nonuniform node distribution induces 

larger spurious charges as implied by (4.20). However, with the proposed method, spurious 

 
Figure 4.6 The node distribution: the left side of the central axis is nonuniform and the right side is
uniform. 
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charges are not present. It shows that the proposed method indeed guarantees divergence 

properties. In other words, numerical examples verify the theoretical analysis presented 

before. 

It should be mentioned that the above results appear not in agreement with the numerical 

results presented in [33] on the stability issue. In our simulations, no monomial basis 

functions were used and p was chosen to be 10. They correspond to small values of 

2( )c cp d    which caused unstable solutions in the cases studied in [33]. However, we did 

run the simulations up to 1 million iterations and no instability of our solutions was 

observed. We can attribute the disagreement to the fact that the Gaussian RBF, in our cases, 

is not directly applied to interpolate or expand the field components but through the curl 

operation of (4.9) in order to achieve the divergence-free property. As a result, the 

numerical findings of [33] may not be the same as those presented in this section as they 

tend to be problem-dependent. Nevertheless, [33] does present valid and useful results in 

their cases, and we are currently investigating the stability issue and finding its solutions 

in an analytical way for meshless methods in general.  

 

 
(a) 

 
(b) 

Figure 4.7 Charge density distribution obtained with the conventional RPIM (a) and the proposed 
method (b). 
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4.2. Divergence Free Meshless Method for the Wave Equation 

4.2.1 Abstract 

With the implementation of the vector RBF which is theoretically divergence free, we 

propose a meshless method for solving the transient vector wave equation. Unlike the 

conventional RPIM method that solves the electric field and magnetic field components 

separately with scalar wave equations, the proposed method solves the vector wave 

equation directly. Therefore, the long-existing technical challenge of the source and 

boundary implementation in the traditional RPIM method is alleviated due to the direct 

solution of the vector wave equation. In addition, the stability condition of the proposed 

method is also presented. At last, several numerical experiments are conducted to validate 

the accuracy and effectiveness of the proposed solver. 

4.2.2 The Proposed Meshless Method for the Vector Wave Equations 

Without losing the generality, we consider the general second-order vector wave equation 

for the electrical field in a lossless medium: 
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t t t
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 
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      E r E r J r            (4.29) 

 

where E(r,t) is the electrical field, J(r,t) is the current density,  is permittivity of the 

medium, 0  is the permeability of the medium, r  is the relative permeability of the 

medium.  

To obtain the numerical solution of (4.29), a solution domain is first discretized with 

spatial nodes pre-defined by users. Then, electric field E(r,t) is approximated in expansion 

with (4.21a). 

Because of the vector nature of the proposed shape function (4.11), the curl operation 

upon the expanded fields can easily be obtained analytically after applying the curl operator 

to the vector shape function. The double curl of the electrical field in the wave equation is 

easy to be modelled through the vector radial basis function. Then, we have the following 

results 
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Ψ               (4.30) 

  

where jΨ   is the vector RBF and j   is the scalar RBF, like Gaussian RBF. 

When the variables in the z direction remain constant, (4.30) reduces to two dimensional 

cases and it is significantly simplified. The formulations can be read as 
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Ψ                (4.31) 

With the appropriate definition of the vector shape function and spatial placement of the 

nodes in the solution domain, we can solve the vector wave equation (4.29) with the 

proposed vector-based meshless method. By substituting (4.21a) into (4.29), we get the 

discretized vector wave equation  
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To make (4.32) practical for computation, the collocation approach is applied to (4.32), 

which means that we test (4.32) with Dirac Delta function at node i. Due to the Kroneckor’s 

delta property of the shape function, we obtain the semi-discretized formulation 
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By applying the central finite difference in the time domain to (4.34), we reach the final 

time-marching formulation: 
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To make (4.34) more efficient for computation, we split and compute (4.34) in two steps 
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where Q is the intermediate vector introduced to speed up the computation.  

(4.35) is a vector form that can be directly solved without the need to expand the 

Maxwell’s equations into six scalar partial derivative equations for six field components as 

done with the conventional methods. In other words, with the conventional RPIM method 

based on the scalar RBFs and the FDTD method, the vector field equations need to be 

expanded into separate scalar wave equations and then numerical methods are adapted and 

applied to solve each of the scalar equations. This poses a technical challenge when the 

current source or charges are encountered; there, field components may be coupled at 

source points or charge locations. However, with the proposed meshless method based on 

the divergence-free vector RBFs, the issue will no longer exist since a source term is 

incorporated into the formulations and the wave equations are solved in a coupled vector 

manner. 

Compared with the conventional time-domain FEM, the proposed meshless method is a 

node-based solver where only the spatial location of the nodes that discretize the solution 

domain is needed; in other words, the node-based property of the meshless methods is 

preserved including its capability of conforming and multi-scale modeling. 

4.2.3 Stability Condition 

Since the proposed meshless method employs explicit time-marching scheme, it is 

conditionally stable. We can obtain its stability condition based on the result presented in 

[67] for the proposed vector meshless method: 
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where   is the eigenvalue of matrix 
2

0

t
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 T ,   T  is the spectral radius of T whose 

element is 1
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

 
   
 

Φ . The node location and material information are 

embodied into T. For homogeneous media, max
 = 4 can be obtained. Therefore, all 

temporal steps in the proposed meshless method should satisfy the following condition: 
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4.2.4 Numerical Examples and Discussion 

In this section, we choose several numerical experiments to validate the accuracy and 

convergence properties of the proposed meshless method for the vector wave equations. 

A. One dimensional Structure 

Due to the existence of the analytical solutions of the one dimension cavity with PEC, 

we select it for the initial verification of the proposed method. The length of the cavity is 

1 meter. The initial condition of the electric field is given as  sin /zE k x L  and the 

region is source free. The theoretical field distribution is given as:  

   cos / sin /zE k ct L k x L                     (4.38) 

where k is the mode number and L is the length of the cavity.     

 

The nodes are selected uniformly distributed in the cavity with the distance between two 

neighboring nodes being 1 mm. The shape parameter p is selected as 10 and the average 

node number in each local support domain is 7. For comparison, the cavity was also 

 
Figure 4.8 The Ez field value at 10 ns. 
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simulated with the FDTD with the uniform cell size of 1 mm. To reduce the effect of the 

time step on the accuracy, the time steps for the proposed meshless method and the FDTD 

method are selected small such that CFLN = 0.1, where CFLN is the ratio of the time step 

to the maximum time step allowable with the FDTD method. 

 

 

Figure 4.8 shows the field value obtained with the FDTD method and the proposed solver 

at 10 ns. Visible good agreements between the results obtained with the proposed method, 

the FDTD method and the analytical solution are observed. However, we can find that at 

the peak the proposed method achieves more accurate solution than that of the FDTD 

method. Figure 4.9 presents the absolute error between the numerical solutions and the 

analytical results. It confirms that the proposed method can obtain more accurate results 

than the FDTD method. At the peak the error of the proposed method is three times smaller 

than that of the FDTD method. Figure 4.10 illustrates the relative L2 error; the L2 error is 

computed with the equation below: 

 
Figure 4.9 The absolute solution difference between the proposed method and the FDTD method.

 
Figure 4.10 The relative L2 error of the proposed solver and the FDTD method. 
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where NE  is the numerical electrical field obtained with the FDTD method or the 

proposed method and AE  is the analytical field solution. The error of the two methods 

goes up as k increases. This is because the dispersion errors increase with mode number k 

when the spatial discretization remains unchanged. However, the accuracy of the proposed 

method is about two order higher than that of the FDTD method. The reason is that the 

meshless method is essentially a high order method and more nodes are involved in the 

support domain than that of the FDTD method for field-updating at each time step. 

B. Two dimensional structure 

We also considered an air-filled perfect electric conducting cavity with PEC boundary 

conditions. The cavity is a good structure for numerical validation since it embodies 

multiple incidences and reflections of electromagnetic waves that can really test 

effectiveness of a numerical method. The dimensions of the cavity under consideration are 

1 m × 1 m with uniform discretization of cell size of 2 cm. The initial condition is given as  

 

   sin sinzE m x n y                        (4.40) 

 

where m, n are the mode number in the x and y direction, respectively. The theoretical 

electric field inside the cavity can be expressed as:  

 

 
Figure 4.11 The node distribution of the proposed method for the two dimensional cavity. 
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     sin sin coszE m x n y t                       (4.41) 

 

where 2 2
0c m n   . 

 

 

 

A small time step, CFLN = 0.1 again, is selected for the FDTD method and the proposed 

method to decrease the numerical error. The average number of the nodes considered in 

the local support domain is 9 and the shape parameter is selected to be 5 for Gaussian RBF. 

Figure 4.11 shows the node distribution of the proposed method. The distance between two 

nearest nodes is 0.02 m. The cell size is also 0.02 m for the FDTD method. 

  

  

Figure 4.12 shows Ez field obtained with the proposed method at 10 ns with m = 2, and 

n = 2 for TM22. Figure 4.13 presents the absolute error of the results obtained with the two 

 
(a)                                             (b) 

Figure 4.12 The analytical field (a) and numerical value obtained from the method (b) at 10 ns.

 
                 (a)                                  (b) 
Figure 4.13 The absolute error for the proposed method (a) and the FDTD method (b) at 10 ns.
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methods at 10 ns. The error distribution pattern of the proposed method is the same as that 

of the FDTD method. However, the magnitude is smaller than that of the FDTD method. 

It means that the proposed method can obtain more accurate results than the FDTD method. 

Again, this is because the proposed meshless method is essentially a higher-order method. 

Figure 4.14 illustrates the relative L2 error verse m with specific n. It can be found that 

the error of the proposed method is smaller than that of the FDTD method for all the m 

modes with n = 1 and n = 3. Another interesting observation is that as m increases, the L2 

errors of the two methods level off to the same value. This is because the spatial sampling 

density of the numerical methods is not sufficient to capture highly-varied field 

distributions of the higher modes any more with large m and n. The resonant frequency 

obtained from the FDTD method and the meshless method is 445.2 MHz for TM22. It 

implies that both the methods can get the same accurate resonant frequency. 

 

 
 

C. Three dimensional structure 

In a three dimensional case, an air-filled PEC cavity with PEC boundary condition and 

dimensions of 1 m × 1 m × 1 m is considered. The cavity is discretized with the uniform 

cell size of 10 cm. The same initial condition for the two dimensional case is chosen. Again, 

we choose a quite small time step (CFLN = 0.1) for the FDTD method and the proposed 

method in order to decrease the numerical error. Average number of the nodes in the local 

support domain is 16 and the shape parameter is 0.5. 

Figure 4.15 presents Ez field obtained from the proposed solver at 10.5 ns with m = 2, 

 
Figure 4.14 The L2 error of the proposed method and the FDTD method verse m with n = 1 and 
n = 3 at 10 ns. 
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and n = 2. The field distribution is TM22 mode. As shown in Figure 4.16, the error pattern 

of the proposed method is exactly the same as that of the FDTD method. However, its 

magnitude is smaller than that of the FDTD method, which means that the proposed method 

can obtain more accurate results than the FDTD method. This is because the proposed 

meshless method is a high order method.  

 

 

Figure 4.17 presents the relative L2 error verse m. It can be found that the error of the 

proposed method is smaller than that of the FDTD method for all the m modes with n = 1 

 
Figure 4.15 The field value obtained from the proposed method at 10.5 ns. 
 

 
                 (a)                         (b) 

Figure 4.16 The absolute error for the proposed method (a) and the FDTD method (b) at 10.5 ns.

 
Figure 4.17 The L2 error of the proposed solver and the FDTD method verse m with n = 1 and n =
2 at 10.5 ns. 
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and n = 2. The relative L2 errors of the two methods increase as m goes up. To obtain more 

accurate results for higher-order modes, denser nodes are required for the two methods. 

Another interesting observation is that for the FDTD method, the error of TM11 is larger 

than that of TM12 at 10. 5 ns; so is for the proposed method. 

Figure 4.18 shows the charge density in dB, at z = 0.4 m, obtained from the proposed 

method with m = 2 and n = 2 at 10.5 ns. The charge density level is about -15 dB which is 

at the level of numerical noise. In other words, we can safely consider the proposed method 

produces no artificial charge accumulation like other divergence-free methods, such as the 

FDTD method. 

 

4.3 Conclusion 

A new vector RBF based meshless method, which is theoretically proven to be 

divergence free, is proposed for the transient electromagnetic analysis. Its divergence 

properties are investigated and compared with those of the original scalar RBF meshless 

method. It is found that the scalar RBFs cannot always retain divergence free in source free 

regions while the proposed vector RBF based meshless method does. Numerical examples 

are presented to verify the accuracy and divergence properties of the proposed method for 

the Maxwell’s equations and wave equation.  

  

 
Figure 4.18 The charge density at z = 0.4 m plane of the proposed solver with n = 2 and m = 2 
at 10.5 ns. 
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Chapter 5  Stable Meshless Method Based on the RBF-QR Method 

This chapter is mainly based on our published paper [47], which is Shunchuan Yang, 

Zhizhang (David) Chen, Yiqiang Yu, and Sergey Ponomarenko, "A Robust Meshless 

Method with QR-Decomposed Radial Basis Functions," published in IEEE International 

Microwave Symposium, 2015, pp. 1-3. 

5.1 Abstract 

Ill-condition of the interpolation matrix has presented a hurdle in applying a node-based 

meshless method to practical modeling and simulation of electromagnetic structures. In 

this chapter, a robust meshless method is proposed that does not have the problem. It 

employs the QR method to decompose the Gaussian RBF; as a result, the matrix ill-

condition that persists with a meshless method having a small shape parameter is 

theoretically removed. In other words, unlike the conventional meshless method, the 

proposed method is insensitive to the shape parameters and can work well even when the 

RBF becomes extremely flat. 

5.2 Introduction 

Recently, meshless methods have attracted attention for solving electromagnetic 

problems due to their intrinsic properties such as conformal and multi-scale modelling 

capability [28, 61, 62]. For most of these meshless methods, only spatial node information 

is needed to formulate electromagnetic problems. No connection information among nodes 

is required. Consequently, no re-arrangements of grid lines are required when a structure 

is modified partially. 

In general, meshless methods are based on the point interpolation process. Inversion of 

the associated interpolation matrix is required. However, this inversion becomes 

problematic when the shape parameter becomes very small and the matrix becomes 

seriously ill-conditioned; it leads to failure of practical simulations. On the other hand, the 

smaller the shape parameter is, the more accurate results can be obtained [37, 38]. 

Therefore, tradeoff between the accuracy and the matrix condition needs to be made for 

the meshless methods. Special care needs to be taken to choose reasonable values of the 
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shape parameters. Several strategies such as those described in [39] have been proposed to 

search for the optimal shape parameters. Unfortunately, these so-called optimal values are 

often problem-dependent and we have to perform a search for every different problem 

structure or partial change of a structure. Even worse, such an optimal value may not exist 

in a problem.  

To resolve the issue of the ill-conditioning matrix associated with expansion basis 

functions, a method to modify radial basis function is proposed in computational 

mathematical community for non-electrical applications [37, 38]; in it, Gaussian RBF, 

which is more preferred when partial differential is involved [65], is expanded with the QR 

decomposition method and the shape parameter can be theoretically factored out from the 

original basis functions. In this chapter, we propose to extend the same technique to the 

meshless method for solving electromagnetic problems; as a result, a robust meshless 

method without the ill-condition issue is developed for solving Maxwell’s equations. To 

the best of our knowledge, there have been no reports of such a robust method before in 

computational electromagnetics.  

5.3 The Proposed Stable Meshless Method 

Consider Maxwell’s equations in a linear, lossless, isotropic and non-dispersive medium 

without sources, which are expressed as 
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where   
T

x y zE E E  E  ,.   
T

x y zH H H  H , ε and μ are permittivity and permeability of the 

medium, respectively. 

The above vector equations can be expanded into six scalar component formulations. 

Spatially, the field quantities to be solved are expanded in terms of the shape functions that 

are derived from the RBF. Temporally, the derivative in time is approximated with its 

central finite-difference correspondence. The result is the following march-in-time 
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recursive equations of a meshless method [28]: 
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However, when implemented with the traditional RBFs, (5.2) can become ill-conditioned 

and unstable when the shape parameter of RBFs is small. In the following paragraphs, we 

will find another set of basis functions that circumvent this problem and make the method 

stable when the shape parameter is small and even approaches to zero. 

Consider Gaussian RBF    2, ip x x
ix x e   . We now expand it first with another two basis 

functions, say,   and  . We can have: 
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where n  is the expansion coefficient which is associated with the shape parameter p. 

When   , n  is the eigenvalue and   is the eigenfunction of the associated compact 

integral operator [38]. More specifically, n  and n  can be expressed as  

 

 
12 2

2 2 2 2 2 2
,     1,2,...

n

n

p
n

p p


   


 

      
           (5.4a) 

 2 2

1 ,       1, 2,...x
n n ne H x n  

                     (5.4b) 
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 and Hn−1 is the classical Hermite 

polynomials of degree n - 1. 

Suppose that we only retain the first M order of both   and  . Then (5.3) can be 

rewritten in the compact matrix form as 
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Here we can choose M > N, where N is the number of the nodes in a support domain.  

Now the QR decomposition method is applied to find the optimal basis function  for 

the expansion. After applying the QR method to matrix Tυ , we obtain the following 

equation 
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where the R1 block is a square matrix of size N and R2 is N×(M-N).  

Substituting (5.6) into (5.5), we can find that  

 

T T A Φ R Q                             (5.7) 

 

By decomposing the same block structure of   which was imposed on R, we obtain the 

full system in blocks as 

 

1 11
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In (5.8), the two terms, 1
2 2 1 1

T T  R R  and 1 1
T TR Q , are associated to the expansion 

coefficients. By further mathematical manipulations, the new basis function is found to be: 
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           (5.9) 

 

where 1 1
T TX R Q .  

Notice now that expansion coefficient 0n   as n  which means that the 

expansion coefficient in 2  is smaller than those in 1 . Therefore, the entries of 2 1
T TR R  

will not be magnified when the term 1
2 2 1 1

T T  R R  is formed and it can be regarded as the 

correction terms on the basis of Φ . 

5.4 Numerical Results and Discussion 

One dimensional resonator with the perfect electrical conductor (PEC) walls at both ends 

was used for our numerical verification of the proposed method. The length of the one 

dimensional cavity is 1 meter. It is discretized with 50 nodes and the average number of 

nodes in a local support domain is 8. The equispaced node distribution is considered. The 

current source is located at the center and is specified as  

 

 
2

cos 2 exp c
z

w

t t
J ft

t


        
                 (5.10) 

 

where f = 0.5 GHz, tw = 2.0 ns and tc = 6.0 ns. For comparison purpose, the results obtained 

from the conventional meshless method based on Gaussian function are also presented. 

Figure 5.1 shows the recorded electrical field verse time with different shape parameters. 

For the conventional method, when shape parameter p= 10-3, the solution becomes 

divergent. However, for the proposed method, even when p = 10-15, the solution is still 

stable and agree well with each other. 

Figure 5.2 shows the condition number of interpolation matrix of the proposed method 

and the conventional meshless method at location z = 0.81. It is easy to see that the 

condition number of the conventional method increases dramatically as the shape 
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parameter decreases. When p < 0.001, the condition number exceeds 1017 and direct 

inversion of the interpolation matrix cannot give stable and accurate results; instability and 

simulation failure occurs. In other words, the shape parameter cannot be too small with the 

conventional meshless method. However, with the proposed method, the condition number 

is almost independent of the shape parameter. Although the condition number of the 

proposed method is larger than that of the conventional method when p > 0.008, it remains 

almost constant and presents good results.  

 

 

5.5 Conclusion 

The ill-condition of the interpolation matrix has presented a challenge for a meshless 

method to be used for practical modeling and simulation of electromagnetic structures. In 

this chapter, a robust meshless method is proposed to address the issue. By applying the 

QR decomposition to expand the radial basis functions, dependence of the shape 

              (a)                                     (b) 

Figure 5.1 The field solution obtained with the proposed method (a) and the conventional 
meshless method (b) with different shape parameters. 

 

 
Figure 5.2 Condition number of the proposed method and the conventional method. 
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parameters that cause the ill-condition of the interpolation matrix has been removed. 

Numerical example verifies the effectiveness of the proposed method. The preliminary 

results show that the root source of the ill-condition has been removed.  
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Chapter 6  On the Numerical Dispersion of the Radial Point 
Interpolation Meshless Method 

This chapter is based on our published paper [45], which is Shunchuan Yang, Zhizhang 

(David) Chen, Yiqiang Yu, and Sergey Ponomarenko, "On the Numerical Dispersion of the 

Radial Point Interpolation Meshless Method," published in IEEE Microwave and Wireless 

Components Letters, vol. 24, pp. 653 - 655, 2014.. 

6.1 Abstract 

The numerical dispersion of the time-domain RPIM method is investigated in this 

chapter. It is found that numerical dispersion relationship of the RPIM method shares the 

same form as that of a second-order center FDTD method but with the additional factors 

introduced by the RBFs, when the two methods deploy the same nodal distribution for 

problem-domain discretization and the local support domain of the RPIM method encloses 

only four adjacent nodes. Such an observation indicates that the RPIM method is a more 

general method and can be reduced to the conventional FDTD method under certain 

conditions. In addition, comparisons between the meshless method and the FDTD method 

are shown under different conditions. 

6.2 Introduction 

Unlike the conventional grid-based methods such as the FDTD method [6], the FEM [74] 

and the MOM [75], meshless methods interpolate fields to be solved with the field values 

at predefined nodes that scatter around in a support domain. A set of algebraic equations 

based on positions of the scattering nodes in a solution domain is then established and 

solved by linear solvers. That means that unlike grid-based methods, connection 

information between nodes is not required, which leads to easy implementation and high 

flexibility in modeling complex structures. As a result, the number of the published reports 

on the meshless methods for solving electromagnetic problems has increased dramatically. 

In particular, the smoothed particle electromagnetic method [29] and the RPIM method [27] 

have been proposed. Other forms of the meshless methods including the leapfrog and 

alternatively-direction-implicit RPIM methods in the time-domain are summarized in [32]. 

However, to the best of authors’ knowledge, no numerical dispersion of the meshless 
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methods has been reported so far. In addition, no direct relationship between the FDTD 

method and RPIM method have been shown although it is mentioned in [28] that the RPIM 

method may reduce to the FDTD method under certain condition (but no theoretical proof 

was given there).  

In this chapter, we will fill in the void by investigating the numerical dispersion of the 

RPIM method and the relationship between the RPIM method and the FDTD method in 

terms of the numerical dispersion relationship. In addition, we will discuss the relationship 

between the shape parameter and the numerical dispersion of RPIM method. Due to limit 

of space, we restrict our studies to the leapfrog time-domain meshless method. 

6.3 Dispersion Analysis 

To obtain analytical expressions of the numerical dispersion of the RPIM method, the 

spectral Fourier transform is applied, similar to that for the FDTD method presented in [16]. 

For arbitrary numbers and positioning of nodes, numerical dispersion formulations of the 

RPIM method may not be practically meaningful due to their varieties used by different 

users, in addition to the difficulty in finding the associated formulations. Therefore, in this 

chapter, we consider the case where the nodes are positioned in the same grid placement 

as that in the Yee’s grid for the conventional FDTD method. In other words, in a support 

domain of a node, we consider one field component at one node, four H-nodes associated 

with one E-node and four E-nodes associated with one H-node, in a three dimensional 

setting. For the time domain discretization, we consider a second-order central finite-

difference scheme for RPIM method. That means we can obtain the so-called leap-frog 

scheme for the time-marching equations [31]. 

By applying the spatial Fourier transformation to the meshless time domain formulations 

[31], we can obtain the time-marching equations in the spectral domain. For example, take 

Ez component for the illustration purpose. The time-marching equation for Ez in the spectral 

domain is then 

 

 1/2 1/2 1/2 1/2
z, z, y, x,
n n n n

i i j x j j y j

t
E E H H


   

                   (6.1) 
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where j  is the shape function corresponding to node j in the local support domain. We 

can express the shape function in the vector form for all nodes as  1 2 N   Φ  , where 

1Φ BG  with the RBF vector B and interpolation matrix G. G can be expressed as 

 

 
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2
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2
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/

1

1

p r r

p r r

e

e





 
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G                       (6.2) 

 

rmax is the maximum radius of the local support domain, which is taken in such a way that 

only four nodes are located in the support domain [31]; r is the distance between the two 

nodes in the local support domain. Thus, the first order partial derivative of the RBF vector 

B can be stated as 

 

 
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max2

2
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1 1
r

p
r p

e
r


 

   
  

  B                          (6.3) 

 

where ,  and x y z   and p is named as the shape parameter which can be found in [31]. 

Thus, the partial derivative of the shape function with respect to   can be obtained as: 

 

 

 
 

2
max

2
max

/2

2 /
max

1 1 .
1

p r r

p r r

p e

r e
 

 




    

 
-1Φ BG                    (6.4) 

 

By substituting (6.4) into (6.1) the following equation is obtained in the spectral domain: 

 

1/2 1/2 2 2
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2 2z z x
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k y k xt t
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Here 
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 and kξ is the spatial frequency in the ξ direction. Other field 

components can also be obtained in the similar manner.  

With the similar process as described in [13, 76], the final dispersion relationship can be 

obtained as 
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       (6.6) 

 

with M M  . (6.6) looks like the numerical dispersion relation of the conventional 

FDTD method with the addition of factors M  on the right hand side.  

Noticeably, we can see that when   and p approaches zeros, respectively,  
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and 
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The above results means that the final numerical dispersion (6.6) becomes the analytic 

dispersion, 2 2 2 2
x y zk k k     , when shape parameter p, time step t  and spatial step 

  approach to zero. When shape parameter p goes to zero, (6.6) becomes identical to 

the dispersion of FDTD [6]. As a result, the FDTD method can be considered as a special 

case of RPIM method. This can also be easily seen from (6.1): when p goes to zero, (6.4) 

becomes 1/    and by substituting it into (6.1), we can obtain the updating formulation 

for the FDTD. 

6.4 Numerical Results and Discussion 

The shape parameter p plays an important role in RPIM method. In [33], the relationship 

between stability of the time-iteration of RPIM method and the shape parameter has been 

shown. In this section, we discuss how the shape parameter affects the numerical dispersion. 

To measure the numerical dispersion error, the numerical phase error (NPE) per unit 

length is defined and used [16]:  



83 
 

  

0

0

num num

num

k k c c
NPE

k c

 
                       (6.9) 

  

where k0 is the theoretical wave number, knum is numerical wave number, c =ω/ko is the 

speed of light in the continuous medium and cnum=ω/knum is the speed of numerical waves 

with the RPIM method. ω is the angular frequency. 

In the calculations, 
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Here θ and φ are the propagation angles in vertical and the horizontal planes, respectively. 

  

 

Figure 6.1, 6.2, 6.3 and 6.4 show NPE of the meshless method with different values of 

shape parameter p and that of the FDTD method. The spatial step is 1/20 of the wavelength, 

i.e., the spatial sampling is 20 points per wavelength (PPW). rmax equals to the spatial step. 

The time step was selected to be the same for both methods in order to make a fair 

comparison: it is the maximum time limit of the FDTD method, or the CFL number is one 

(CFLN = 1).  

 
Figure 6.1 NPE of the meshless method with p = 0.1 and the FDTD method; PPW = 20 and CFLN
= 1. 
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It is easily seen from the figures that when p = 0.1, NPE of the meshless method reaches 

its maximum at θ = 45o and its minimum at θ = 0o. However, for the FDTD method, the 

numerical dispersion arrives at its minimum when θ = 45o and maximum when θ = 0o. 

Therefore, numerical dispersions of the two methods show totally different properties but 

this difference become smaller when shape controlling parameter p becomes smaller. 

When p = 0.1, the maximum numerical dispersion errors of the meshless method is 

about as 7 times of that of the FDTD method. However, when p = 0.01, the situation 

reverses: the maximum numerical dispersion errors are smaller than that of the FDTD 

method. When p = 0.001, the numerical dispersion errors of the two methods becomes 

similar. When p = 0.0001, they become indistinguishable. This confirms our previous 

analysis that when p approaches to zero, the numerical dispersion of the meshless method 

and the FDTD method becomes exactly the same. This indicates that the shape parameter 

p plays an important role on the numerical dispersion and the convergence of the meshless 

 
Figure 6.2 NPE of the meshless method with p = 0.01 and the FDTD method; PPW = 20 and CFLN
= 1. 

 
Figure 6.3 NPE of the meshless method with p = 0.001 and the FDTD method with PPW = 20 and 
CFLN = 1. 
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method to the FDTD method with better accuracy. Therefore, a reasonable value should be 

selected in the practical simulations. It should be also noted that although better 

convergence is achieved with small sharp parameter, it also comes with smaller stable time 

iterations [33]. The balance should be taken between the stability condition and the 

accuracy. In our study case, we chose p = 0.018 where the maximum numerical dispersion 

errors of RPM method equals to that of FDTD method. However, the optimized shape 

parameters are on a case-by-case basis; in [39], the authors proposed an automatic approach 

to search for the reasonable value with respect to a specific case.  

 

 

6.5 Conclusion 

In this chapter, numerical dispersion of the RPIM method is shown and its comparisons 

with that of the FDTD method are presented. Analytical derivations show that the 

numerical dispersion of the RPIM method is exactly the same as that of the FDTD method 

when the shape parameter p approaches zero. It indicates that the method is a general 

method which can include the conventional FDTD method as its special case. Different 

numerical dispersion results based on various shape parameters are illustrated. The analysis 

shows that shape parameter should be selected carefully in the practical simulations to 

obtain small numerical dispersion errors and good stability. 

   

 
Figure 6.4 NPE of the meshless method with p = 0.0001 and the FDTD method with PPW = 20 



86 
 

Chapter 7  Conclusion Remarks and Recommendations 

7.1 Conclusion Remarks 

This thesis have studied several properties of the newly developed divergence preserved 

ADI-FDTD method and the meshless method. Especially, emphasis is placed on the 

divergence issue and efficiency of both methods.  

Although the traditional ADI-FDTD methods are unconditionally stable, they are not 

divergence preserved, as stated in [22, 23]. That means that artificial charges would be 

introduced into the simulations and make solutions inaccurate when charges are considered 

which may lead to failure of simulations. In this thesis, attention is paid to studying the 

newly developed divergence preserved ADI-FDTD method, which can preserve the 

divergence property of the electrical and magnetic field. Proof of stability and numerical 

dispersion are systematically presented using von Neumann method and efficiency are 

carefully studied in terms of floating-point count. In addition, based on the fundamental 

formulations, a new efficiency-improved version is proposed. Its divergence property and 

efficiency are then studied. 

For the meshless method, the traditional implementation based on the local Gaussian 

function requires two coupled fields (E- and H-field). Based on the mathematical 

equivalence of the Maxwell’s equations and wave equations, efficiency can be improved 

through solving wave equations due to decoupling nature of E- and H-field. Besides 

efficiency issue, the divergence problem also exists in the meshless method. To overcome 

this problem, a new vector-based RBF is proposed for the meshless method, which is 

theoretically divergence free. In addition, the notorious ill-condition problem in the 

meshless method is addressed through the QR decomposition method. At last, the 

relationship between the FDTD method and the meshless method is theoretically 

investigated in terms of their numerical dispersion relationship. 

A summary of each study and its main findings is given in following.  

(1) Studying the unconditionally stable divergence preserved ADI-FDTD method and its 

efficiency improved version. 

The detailed implementations of the divergence preserved ADI-FDTD method are 

investigated in this thesis. Based on von Neumann analysis, the magnitudes of all the 
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eigenvalues of the magnification matrix are found to equal to one, which means that this 

method is unconditionally stable. Further investigation shows that the numerical dispersion 

relationship of the divergence preserved ADI-FDTD method is the same as that of the ADI-

FDTD method, the LOD-FDTD method and the leapfrog ADI-FDTD method. However, 

the last three methods are not divergence free and artificial charges will be introduced into 

the simulations.  

To improve the efficiency of the divergence preserved ADI-FDTD method, an efficient 

updating method is proposed based on its fundamental formulations. With the proposed 

method, the right hand side of time-marching equations are matrix free. Almost 41.7% less 

count of floating-point operations than the original divergence-preserved ADI-FDTD 

method is obtained without scarifying accuracy. At the same time, the proposed method 

preserve the divergence property of the electrical and magnetic fields like the original 

divergence preserved ADI-FDTD method. 

(2) Developing the meshless method based on the local Gaussian RBF for the wave 

equation 

It is well-known that the Maxwell’s equations and the wave equations are mathematically 

equivalent. Therefore, numerical methods for the wave equations can get the same 

numerical results as those for the Maxwell’s equations. Since usually only one set of field 

(either E or H field) is involved with the wave equation, we can expect higher 

computational efficiency of numerical methods for the wave equations than those for the 

Maxwell’s equations. A meshless method based on local RBF is applied to solving the 

wave equations. Two numerical examples computing the resonant frequencies of an H-

shaped cavity and ring resonator verify the efficiency improvement and the conformal and 

multi-scale capability of the proposed method. The results show that the proposed method 

can indeed largely improve the efficiency without loss any accuracy. 

(3) Exploring the divergence issue of the meshless method 

The traditional meshless methods based on the local Gaussian RBF for Maxwell’s 

equations are not always divergence free since the divergence condition is not explicitly 

applied and the Gaussian RBF is not divergence free. In this thesis, a vector-based RBF is 

proposed to overcome this problem. Systematical investigation finds that this vector-based 

RBF is theoretically divergence free. Then, it is applied to solve Maxwell’s equations and 
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the wave equation. As expected, the resultant meshless methods are divergence free. On 

the contrary, the conventional meshless methods based on the scalar RBF are found not 

divergence free because the divergence of the scalar RBF is location dependent. As a result, 

for random node distribution, the divergence of the scalar RBF cannot be guaranteed to be 

zero. However, for the vector RBF, it is always true.  

(4) Investigating the meshless method based on QR method 

Another issue for the meshless method is the ill-condition of the interpolation matrix. 

Since inversion of the interpolation matrix is inevitable, the ill-condition problem may lead 

to failure of the simulations. In this thesis, a new meshless method based on the QR 

decomposition is proposed to address the issue. By applying the QR decomposition to 

expand the Gaussian RBF, the shape parameter which causes the ill-condition of the 

interpolation matrix is separated from the Gaussian RBF and a new stable RBF is obtained 

for the meshless method. Numerical example shows that the condition number of the 

interpolation matrix is independent of the shape parameter and the new RBF always works 

even when the shape parameter is extremely small. 

(5) Studying the relationship between the meshless method and the FDTD method. 

Relationship between the meshless method and the FDTD method is investigated in 

terms of numerical dispersion. Based on the same node distribution and field component 

distribution, a numerical dispersion formulation is derived for the meshless method. It is 

found that the numerical dispersion of the meshless method becomes exactly the same as 

that of the FDTD method when the shape parameter goes to zero. That means that the 

meshless method is a general method which can include the conventional FDTD method 

as its special case.  

7.2 Recommendations for Future Work 

Recommendations for future work mainly focus on applying the meshless method based 

on QR method and divergence-free meshless method to solving electromagnetic problems 

in the two and three dimensional cases and development of the PML techniques to solve 

the practical engineering structures. 

The first recommendation is that investigation of the meshless method based on QR 

method for the two- and three-dimensional cases in the time domain and frequency domain. 
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For these cases, the RBF can be easily obtained using the tensor product form of the 

Gaussian kernel. For the d (d = 2, 3) dimensional Gausses function, we have  
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and  1, ,
T

dx xx  . Further work along the line need to be explored numerically. 

The second recommendation is applying the QR method to the vector RBF. Although the 

vector RBF is divergence free, it still suffer from the ill-condition problem. When small 

shape parameter is selected or the count of the scattering node in the support domain is 

large, simulation may break down due to the extremely ill-conditioned interpolation matrix. 

Therefore, applying the QR method to vector RBF is an efficient way to avoid the ill-

condition problem.  

The third recommendation is development of the PML for the meshless method based on 

the vector RBF to solve the open structures. Since the PML is required to truncate the 

infinite computational domain to model the open radiation problems, to make the meshless 

method applicable for the practical engineering problems, future work will focus on 

applying the PML to the meshless method. 
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Appendix A: Derivation and Full Formulations for the Divergence 
Preserved ADI-FDTD Method 

For the nth to n+1/2th time step for the divergence preserved ADI-FDTD method, we 

can have the following fomulations. 

Extension of (2.9a) and (2.9b) reads as 
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By replacing the spatial partial operators in (A1) – (A2) with the second order central finite-
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difference, we can get the final time-marching formulations as 
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For the n+1/2th to n+1 time step, with similar manner above we can have the following 

updating formulations for (2.10a) and (2.10b). 
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Then, the final updating equations for the second sub-time step can be achieved as 
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Then, with replacement the second-order spatial finite-difference, the final marching 

formulations can be read as 
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