
INVESTIGATING CHURN DETECTION IN DYNAMIC
NETWORKS

by

Serdar Baran Tatar

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

June 2015

© Copyright by Serdar Baran Tatar, 2015

To my Mom and Dad for their unwavering support throughout my

education.

ii

Table of Contents

List of Figures . v

List of Tables . viii

Abstract . x

List of Abbreviations and Symbols Used xi

Acknowledgements . xiii

Chapter 1 Introduction . 1

Chapter 2 Literature Survey . 3

Chapter 3 Methodology . 6

3.1 CluStream . 9

3.1.1 Online Phase . 13

3.1.2 O✏ine Phase . 14

3.2 DenStream . 15

3.2.1 Core-micro-cluster . 16

3.2.2 Potential core-micro-cluster 16

3.2.3 Outlier-micro-cluster . 17

3.3 ClusTree . 18

3.4 Flockstream . 23

3.4.1 MSF Rules . 25

3.4.2 Initialization . 29

3.4.3 Maintenance and Clustering 29

iii

Chapter 4 Evaluation . 33

4.1 Parameterization . 33

4.2 Evaluation Metrics . 34

4.3 Parameter Sensitivity Analysis for Flockstream 36

4.3.1 Electricity Data Set . 37

4.3.2 Forest Covertype Data Set . 39

4.3.3 Commercial-Small Data Set 40

4.3.4 KDD 2009 Churn Data Set 44

4.4 Discussion on the Performances of Algorithms Employed 45

Chapter 5 Conclusions and the Future Work 49

Bibliography . 51

Appendix A MOA Result Figures . 55

A.1 Electricity . 55

A.2 Covertype . 60

A.3 KDD 2009 Churn . 64

A.4 Commercial-Small . 69

A.5 Commercial-Big . 73

iv

List of Figures

Figure 3.1 Class Distribution of Data Sets 9

Figure 3.2 ClusTree Flowchart . 22

Figure 3.3 Visibility and Defense Range of an Agent 24

Figure 3.4 3D Representation of Toroidal Virtual Space 24

Figure 3.5 Alignment . 26

Figure 3.6 Separation . 27

Figure 3.7 Cohesion . 28

Figure A.1 MOA Results of DenStream on Electricity Data Set: F1-P . . 55

Figure A.2 MOA Results of DenStream on Electricity Data Set: F1-R . . 56

Figure A.3 MOA Results of DenStream on Electricity Data Set: Purity . 56

Figure A.4 MOA Results of CluStream on Electricity Data Set: F1-P . . 57

Figure A.5 MOA Results of CluStream on Electricity Data Set: F1-R . . 57

Figure A.6 MOA Results of CluStream on Electricity Data Set: Purity . . 58

Figure A.7 MOA Results of ClusTree on Electricity Data Set: F1-P . . . 58

Figure A.8 MOA Results of ClusTree on Electricity Data Set: F1-R . . . 59

Figure A.9 MOA Results of ClusTree on Electricity Data Set: Purity . . . 59

Figure A.10 MOA Results of DenStream on Covertype Data Set: F1-P . . 60

Figure A.11 MOA Results of DenStream on Covertype Data Set: F1-R . . 60

Figure A.12 MOA Results of DenStream on Covertype Data Set: Purity . 61

v

Figure A.13 MOA Results of CluStream on Covertype Data Set: F1-P . . . 61

Figure A.14 MOA Results of CluStream on Covertype Data Set: F1-R . . 61

Figure A.15 MOA Results of CluStream on Covertype Data Set: Purity . . 62

Figure A.16 MOA Results of ClusTree on Covertype Data Set: F1-P 62

Figure A.17 MOA Results of ClusTree on Covertype Data Set: F1-R . . . 62

Figure A.18 MOA Results of ClusTree on Covertype Data Set: Purity . . . 63

Figure A.19 MOA Results of DenStream on KDD2009 Data Set: F1-P . . 64

Figure A.20 MOA Results of DenStream on KDD2009 Data Set: F1-R . . 65

Figure A.21 MOA Results of DenStream on KDD2009 Data Set: Purity . . 65

Figure A.22 MOA Results of CluStream on KDD2009 Data Set: F1-P . . . 66

Figure A.23 MOA Results of CluStream on KDD2009 Data Set: F1-R . . . 66

Figure A.24 MOA Results of CluStream on KDD2009 Data Set: Purity . . 67

Figure A.25 MOA Results of ClusTree on KDD2009 Data Set: F1-P 67

Figure A.26 MOA Results of ClusTree on KDD2009 Data Set: F1-R 68

Figure A.27 MOA Results of ClusTree on KDD2009 Data Set: Purity . . . 68

Figure A.28 MOA Results of DenStream on Commercial-Small Data Set:

F1-P . 69

Figure A.29 MOA Results of DenStream on Commercial-Small Data Set:

F1-R . 69

Figure A.30 MOA Results of DenStream on Commercial-Small Data Set:

Purity . 70

Figure A.31 MOA Results of CluStream on Commercial-Small Data Set: F1-P 70

Figure A.32 MOA Results of CluStream on Commercial-Small Data Set: F1-R 70

vi

Figure A.33 MOA Results of CluStream on Commercial-Small Data Set:

Purity . 71

Figure A.34 MOA Results of ClusTree on Commercial-Small Data Set: F1-P 71

Figure A.35 MOA Results of ClusTree on Commercial-Small Data Set: F1-R 71

Figure A.36 MOA Results of ClusTree on Commercial-Small Data Set: Purity 72

Figure A.37 MOA Results of DenStream on Commercial-Big Data Set: F1-P 73

Figure A.38 MOA Results of DenStream on Commercial-Big Data Set: F1-R 73

Figure A.39 MOA Results of DenStream on Commercial-Big Data Set: Purity 74

Figure A.40 MOA Results of CluStream on Commercial-Big Data Set: F1-P 74

Figure A.41 MOA Results of CluStream on Commercial-Big Data Set: F1-R 74

Figure A.42 MOA Results of CluStream on Commercial-Big Data Set: Purity 75

Figure A.43 MOA Results of ClusTree on Commercial-Big Data Set: F1-P 75

Figure A.44 MOA Results of ClusTree on Commercial-Big Data Set: F1-R 75

Figure A.45 MOA Results of ClusTree on Commercial-Big Data Set: Purity 76

vii

List of Tables

Table 2.1 Information on the data sets used in the previous works. 5

Table 3.1 Information on the Electricity data set. 7

Table 3.2 Information on the Forest Covertype data set. 8

Table 3.3 Summary of all the data sets used in this thesis. 8

Table 3.4 An example of stored snapshots for ↵ = 2, l = 1 and T = 22 . . 13

Table 4.1 Descriptions of parameters of each algorithm. 34

Table 4.2 An Example of a Confusion Matrix 36

Table 4.3 Results of Flockstream on Electricity data set: Change in Epsilon. 37

Table 4.4 Results of Flockstream on Electricity data set: Change in Stream

Speed. 38

Table 4.5 Results of Flockstream on Electricity data set: Change in Initial

Agents. 38

Table 4.6 Results of Flockstream on Covertype data set: Change in Epsilon. 39

Table 4.7 Results of Flockstream on Covertype data set: Change in Stream

Speed. 40

Table 4.8 Results of Flockstream on Covertype data set: Change in Initial

Agents. 40

Table 4.9 Results of Flockstream on Commercial-Small data set: Change

in Epsilon. 41

Table 4.10 Results of Flockstream on Commercial-Small data set: Change

in Stream Speed. 42

viii

Table 4.11 Results of Flockstream on Commercial-Small data set: Change

in Initial Agents. 42

Table 4.12 Results of Flockstream on First Inner Cluster of Commercial-

Small data set: Change in Epsilon. 43

Table 4.13 Results of Flockstream on First Inner Cluster of Commercial-

Small data set: Change in Stream Speed. 43

Table 4.14 Results of Flockstream on Second Inner Cluster of Commercial-

Small data set: Change in Epsilon. 44

Table 4.15 Results of Flockstream on Second Inner Cluster of Commercial-

Small data set: Change in Stream Speed. 45

Table 4.16 Results of Flockstream on KDD 2009 Churn data set: Change

in Epsilon. 46

Table 4.17 Results of Flockstream on KDD 2009 Churn data set: Change

in Stream Speed . 46

Table 4.18 Performances of Algorithms on Electricity Data Set 47

Table 4.19 Performances of Algorithms on Covertype Data Set 47

Table 4.20 Performances of Algorithms on Commercial-Small Data Set . . 48

Table 4.21 Performances of Algorithms on Commercial-Big Churn Data Set 48

Table 4.22 Performances of Algorithms on KDD 2009 Churn Data Set . . 48

ix

Abstract

Retaining users and customers is one of the most important challenges for the service

industry from mobile communications to online gaming. As the users of these services

form dynamic networks that grow in size, predicting churners becomes harder and

harder. The changing behavior of users and type of services changing day by day

make it di�cult to monitor the mobility of customers. However, from the service

providers point of view, convincing a customer to keep using their services is more

e�cient way than the gaining a new customer.

In this thesis, I explore the use of anomaly detection for churn prediction. Due

to the reason that users generate a huge amount of data during the use of services,

I approach to the problem in terms of stream clustering methods. To this end, I

evaluate bio-inspired and massive online data analysis techniques on public data sets,

which are well known for clustering and classification tasks, as well as real world cell

phone and online gaming data sets. I discuss the results of each technique from the

perspective of usage of e�cient features, sensitivity analysis on the parameters of the

respective techniques as well as their performance.

x

List of Abbreviations and Symbols Used

ANFIS Adaptive Neuro-Fuzzy Inference System.

ANN Artificial Neural Network.

CF Clustering Feature.

CRM Customer Relationship Management.

ET Execution Time.

GA Genetic Algorithms.

GSM Global System for Mobile.

k-NN k-Nearest Neighbor.

KDD Knowledge Discovery and Data Mining.

LS Linear Sum.

MOA Massive Online Analysis.

MSF Multiple Species Flocking.

NN Neural Networks.

NoC Number of Clusters.

NSW New South Wales.

ROC Receiver Operating Characteristic.

SS Squared Sum.

SSQ Sum of Squared Distance.

xi

SVM Support Vector Machines.

TV Television.

UCI University of California, Irvine.

VIP Very Important Person.

xii

Acknowledgements

I consider myself the luckiest man in the world for having the love of my life, Ecenaz

Ruscuklu. From the beginning to the end, she was always there for me with her love,

kindness and encouragement. I owe my deepest gratitude to her. Also, I would like

to thank my parents, Dursun and Çelik Tatar, and my sister Dilan Tatar for their

never-ending love and support.

I am grateful to my second family, my friends, Egemen Tamcı, İpek Pakkaner,

Kamer Aydın, Duygu Akbaş, Gökşen and Cansu Akbaş Demirel, Güneş Altay, and

Burcu Kaya. Despite more than seven thousand kilometers, I felt them always beside

me. Additionally, I am thankful to Gürcan and Bilge Gerçek, and Eray Balkanlı

for their kindly friendship during my stay in Canada. On the other hand, I would

like to thank two professors, Dr. İrem Özgören Kınlı and Dr. Mustafa Sakallı for

encouraging me to apply master’s degree, and being great mentors to me during my

undergraduate years.

Finally, this thesis would not have been possible without my supervisor, Dr. Nur

Zincir-Heywood. With her enthusiasm and knowledge, she guided me perfectly during

all steps of my study. It was pleasure to me to work with such an amazing person,

and I am grateful for everything. Also, I am indebted to all professors and colleagues

in Network Information Management and Security (NIMS) Lab to support me.

This research is supported by the Mitacs Accelerate Internship award, and is

conducted as part of the Dalhousie NIMS Lab at: https://projects.cs.dal.ca/projectx/

“Try not to resist the changes, which come

your way. Instead let life live through you. And

do not worry that your life is turning upside

down. How do you know that the side you are

used to is better than the one to come?”
— Shams Tabrizi

xiii

Chapter 1

Introduction

Day by day, customers are o↵ered to better products and services from various

providers apart from their own. It becomes di�cult for companies to retain cus-

tomers for a long period of time. From the company side, the threat of low brand

loyalty may cause a decrease in usage of services or may even end up with a loss of

customers. Those customers, who terminate their subscription of a service, are called

churners and the rate of churn in a certain period of time is referred to a churn rate.

Companies endeavour to keep churn rate as low as possible.

In today’s competitive world, the importance of churn detection is indisputable,

especially for the service sector. The literature on churn detection reveals a variety

of approaches applied to di↵erent kinds of industries such as telecommunication,

insurance, finance, Internet service providers, online services, TV providers and so

on. Notably, studies on telecommunication [21], [34], [35], [18], [28], [17], [32], [22]

and finance [36], [20],[40], [30], [7] sectors attract great attention from researchers.

In general, the common characteristic of the data sets being studied is the behav-

iors of customers who are taking the particular service. Additionally, the perceptions

and demographics of customers, as well as their interactions with the company can

be used to predict churn [4]. One of the problems of churn data sets is their unbal-

anced nature; generally, only small portion of the data consists of churning customers

[38]. Nevertheless, predicting that small amount of churn can be a valuable source for

companies to retain their customers who are about to quit the service [34]. Moreover,

small precautionary measures to retain customers help companies to increase their

profit considerably [30] as this is much cheaper than finding a new customer [24].

Although the data sets being studied by researchers are relatively small, in the

real world, they are much larger and being generated continuously. Through the

developing technologies, it becomes easy to store large amounts of data. However,

processing it and revealing meaningful inferences from it, are the major challenges

1

2

because of the infinite nature and evolving characteristics of the data streams [2].

In other words, we can assume that data flow will never stop and its features may

change over time. For these reasons, it is expected that a stream clustering algorithm

will form clusters of arbitrary shape with no prior information about the number of

clusters, as well as handle outliers [8]. In recent years, there has been considerable

interest in literature on this subject [8], [2], [19], [13], [39], [25].

In this research, I concentrate on the Flockstream [13] algorithm, as well as three

state-of-the-art algorithms; ClusTree, CluStream, and DenStream. The aim of this

research is to give a comprehensive analysis of these algorithms in terms of clustering

performance for churn detection on continuously streaming and evolving data. Algo-

rithms are evaluated by experiments on three data sets; KDD 2009 churn data set

which is publicly available, and two commercial data sets. In the evaluation phase, I

present parameter sensitivity analysis of Flockstream and then discuss the results of

all algorithms based on well-known performance metrics.

The thesis is organized as follows. In Chapter 2, a literature review takes place on

churn detection and stream clustering techniques. Chapter 3 presents the algorithms

employed. Chapter 4 details the experimental evaluations on the real life data sets

employed. Finally, conclusions are drawn and the future work is discussed in Chapter

5.

Chapter 2

Literature Survey

A variety of classification techniques such as decision trees [9], neural networks (NN),

k-Nearest Neighbor (k-NN), support vector machines (SVM), logistic regression, ge-

netic algorithms (GA) have been applied to churn detection (prediction). According

to the results of the churn-modeling tournament presented by Neslin et al. in [26],

logistic regression and decision trees are the two most popular methods with a usage

ratio of 68% in total. Moreover, a high percentage of the participants used more

than one technique which is very common in most of the studies. In the literature,

there have been numerous publications presented using either one or a combination

of these methods. Lee et al. argue that k-NN based classification using time se-

ries performs better than the other classification techniques which use transformed

version of time-series attributes into one or more non-time-series attributes using sta-

tistical methods [21]. In their research, they used the data gathered from one of the

largest telecommunication companies in Taiwan over a four-month period. As a neu-

ral network approach, Mozer et al. [24] studied a wireless telecommunication data set

containing approximately 47, 000 subscribers. The experimental tests are performed

on two randomly selected groups of subscribers. The results show that the churn rate

in treatment group in which potential subscribers were contacted by the company is

40% less than the control group where no action was taken by the company for the

subscribers.

Huang et al. [17] compared decision tree, neural network and SVM methods for

churn modelling. They used the telecommunication data set where roughly 23% of the

data consisted of churners and results indicate that neural networks and multi-class

SVMs performed better. Another comparison is made by Zhao and Dang [38] using

artificial neural network (ANN), decision tree (C4.5), logistic regression and naive

Bayesian classifiers on financial data sets containing information about one of the

commercial banks’ VIP customers. In the evaluation of the techniques, they consider

3

4

the accuracy, hit, and covering rate, as well as the lift coe�cient which is calculated as

a ratio between accuracy rate and customer churn rate. According to the results, SVM

shows the best performance compared to other techniques. GA is another technique

used by Pendharkar [29] with a combination of neural networks. The data set involves

nearly 200, 000 records from a wireless company and evaluations are made in terms of

ROC performance metric. A comparative study between GA-based ANN algorithm

developed by researcher and statistical z-score classification model indicates that the

GA-based model performs better than the statistical one. Instead of classification

techniques, the e↵ect of fuzzy c-means clustering for separating churning customers

is studied by Karahoca and Karahoca in [18]. As in many studies, they ran the

algorithm on telecommunication data which includes randomly selected loyal and

churner subscribers. In the comparison with the data mining approaches (Ridor,

ANFIS and decision trees) it is observed that the proposed clustering technique is

better than the other algorithms with respect to sensitivity, specificity, precision,

and correctness performance metrics. The information about the data sets used in

literature are summarized in Table 2.1.

Working on churn prediction itself is impractical for long term analysis when the

changing behavior of the subscribers is considered. For that reason, I have decided

to consider churn detection problem with the challenges of streaming data. The

literature on stream clustering shows a variety of approaches. CLARANS [27] al-

gorithm is used to measure performance of DenStream. Both algorithms were run

on some synthetic and real world (SEQUOIA 2000 benchmarking) data sets. The

results show that DenStream performs much better and also finds clusters in arbi-

trary shapes. Analogously to DenStream, the D-Stream algorithm, proposed by Tu

and Chen in [33], is another density-based method by mapping data points to grid

space. Its two versions, DS0 and DS1, are compared with the CluStream and SSQ on

the KDD Cup 1999 Network Intrusion Detection data set. Authors state that both

versions of the D-Stream outperforms CluStream in terms of the evaluation measures

used. StreamKM++ is another approach to stream clustering proposed by Acker-

mann et al. [1]. It takes advantage of k-means++ algorithm to determine first values

of the clusters. In the further step, it computes samples using the corset tree data

structure, introduced by the same authors. They compare their algorithm with the

5

two algorithms, StreamLS and BIRCH. Five di↵erent data sets were used from the

UCI Machine Learning Repository, which are Spambase, Intrusion, Covertype, The

Tower, and Census 1990. The algorithms are evaluated with respect to their execution

times and average SSQ. The results reveal that while BIRCH performs faster than

the other techniques used, StreamKM++ and StreamLS are better than BIRCH in

terms of SSQ. However, performances of the StreamKM++ and StreamLS are very

similar in terms of the average cost (SSQ). However, StreamKM++ works faster than

StreamLS.

In this work, I have focused on three well known stream clustering algorithms

(CluStream [2], DenStream [8], ClusTree [19], and Flockstream [13]), which are dis-

cussed in detail in the next chapter.

Table 2.1: Information on the data sets used in the previous works.
Gathered from Access Type Year

Neslin et al. The Teradata Center for CRM Public Batch 2001
Lee et al. Taiwan Telecommunication Company Commercial Batch -
Mozer et al. Anonymous Telecommunication Company Commercial Batch 1998
Huang et al. Eircom Telecom Company Commercial Batch 2008
Zhao et al. China Construction Bank VIP Customers Commercial Batch 2007
Pendharkar et al. The Teradata Center for CRM Public Batch 2001
Karahoca et al. GSM Operator from Turkey Commercial Batch -

Chapter 3

Methodology

This thesis focuses on investigating churn detection using the state-of-the-art cluster-

ing techniques. In this context, I conducted my research on five data sets gathered

from both commercial and public sources. First three data sets are Forest Cover-

type [6], Electricity [16] and KDD Cup 2009 [15], which are publicly available and

used in many studies related to classification and clustering tasks. On the other hand,

I employed two more data sets from one of the leading gaming companies. Because

of the privacy concerns, they are mentioned as commercial throughout the following

sections.

Electricity data set was gathered from the Australian New South Wales Electricity

Market. It contains 45, 312 instances showing electricity price changes between May

7, 1996 and December 5, 1998. This data set contains 8 features in which first three

features are specified as the date (i.e. 980331 refers to March 31, 1998), the day

of the week (i.e. 1 refers to Monday and 7 refers to Sunday), and the time period

(i.e. the time period 37 refers to the 37th portion of 48 half hours in a day). Data

instances are sorted with respect to these three features. Next four features represent

the electricity price and demand in two states, NSW and Victoria. The final feature

denotes the scheduled power transfer between these states. Table 3.1 presents the

summary of features and their types. The last attribute of Electricity data is the

class value which is a binary label indicating whether the current price is upper or

lower than the daily average price.

Another public data set that I used for measuring clustering performance of al-

gorithms is Forest Covertype data set. Data is especially published for classification

task to predict type of cover in 30 ⇤ 30 meters patches of forest. It contains 581, 012

number of instances with 54 attributes. In fact, 44 attributes are represented by only

two features, Wilderness Area and Soil Type. That’s why, we may assume 12 features

in total. The last attribute takes a value from 1 to 7 which specifies the categories of

6

7

Table 3.1: Information on the Electricity data set.
Feature Name Type Description
date numeric Date
day [1-7] Day of week
period [1-48] Time
nswprice numeric NSW electricity price
nswdemand numeric NSW electricity demand
vicprice numeric Victorian electricity price
vicdemand numeric Victorian electricity demand
transfer numeric Scheduled electricity transfer between states
class [Up, Down] Class Value

the cover types. Data is sorted ascending by the Elevation feature. Table 3.2 outlines

the summary information for this data set.

In addition to Electricity and Covertype data sets, three more data sets were

chosen specifically for the churn detection task. The first of these is KDD Cup

2009, explained in detail by Guyon et al. [15], which was presented by the French

Telecommunication company, Orange, for the KDD Cup 2009 challenge. The aim

of the challenge was to predict propensity of the customers to change their provider.

Two data sets were presented as churn data, including one large and one small. In this

thesis, I picked the small data set which consists of 50, 000 instances and 230 attributes

because the large one consists of 15, 000 attributes, which may cause a significant load

on the system resources. The data includes a large amount of missing values (⇠60%).

Additionally, the first 190 variables are numerical, whereas the last 40 variables are

categorical. Due to the privacy concerns, this data set is not fully documented.

Furthermore, categorical variables were replaced with meaningless codes. For that

reason, the data is preprocessed before being used in the experiments such that the

categorical attributes and features containing no value for all instances are identified

and deleted. Additionally, the mean of each feature is calculated column-wise and

missing values are filled with the mean of the corresponding feature. Before running

experiments on the data sets, they are normalized such that the range of the values

is limited between 0 and 1. At the end of this process, I had a normalized churn data

set with 175 numerical attributes.

The other two churn data sets is gathered from the commercial sources. Particu-

larly, the two commercial data sets used are named according to their sizes as big and

8

small. They are composed of a set of activities by customers during the game. The

main purpose is to detect churners within the upcoming 24� 48 hour time window.

The data sets are quite unbalanced with only about 9% and 8% churn rates for small

and big data sets, respectively. The small data set consists of 1, 669, 593 number

of instances, whereas the big one has 9, 618, 868 instances (records). There are 16

numerical features for both sets. At the request of the company, I can not share

the meaning of these features but basically, each instance represents one play with

a collection of player behavior during the game. It should be noted here that more

than one play might be played by only one player. The identification number of each

player is used to group the players and preprocess them to extract their behaviours

throughout the game. Similar to the KDD 2009 data set, values are normalized before

being processed. Information about data sets is summarized in Table 3.3.

Table 3.2: Information on the Forest Covertype data set.
Feature Name Type Description
Elevation numeric Elevation in meters
Aspect numeric Aspect in degrees azimuth
Slope numeric Slope in degrees
Horizontal Distance To Hydrology numeric Horz. dist. to nearest surface water feature
Vertical Distance To Hydrology numeric Vert Dist to nearest surface water feature
Horizontal Distance To Roadways numeric Horz Dist to nearest roadway
Hillshade 9am [0-255] Hillshade index at 9am, summer solstice
Hillshade Noon [0-255] Hillshade index at noon, summer soltice
Hillshade 3pm [0-255] Hillshade index at 3pm, summer solstice
Horizontal Distance To Fire Points numeric Horz. dist. to nearest wildfire ignition points
Wilderness Area (4 columns) binary Wilderness area designation
Soil Type (40 columns) binary Soil Type designation
Cover Type (7 types) [1-7] Forest Cover Type designation

Table 3.3: Summary of all the data sets used in this thesis.
Data Sets # Instances # Features # Classes Size (MB)
Electricity 45,312 8 2 3.1
KDD Cup 2009 50,000 175 2 122.1
Forest Covertype 581,012 54 7 103.4
Commercial 1,669,593 16 2 118.8
Commercial 9,618,868 16 2 809.1

In this thesis, the analysis was performed with four stream clustering techniques;

CluStream [2], DenStream [8], ClusTree [19], and Flockstream [13]. The first three

9

Figure 3.1: Class distribution of data sets. (a) Covertype, (b) Electricity, (c) KDD
Cup 2009, (d) Commercial-Big, (e) Commercial-Small

algorithms are implemented via the Massive Online Analysis (MOA) [5], which is a

free open source software to perform clustering and classification techniques for data

stream mining. On the other hand, I implemented the Flockstream algorithm using

the Java programming language.

3.1 CluStream

CluStream clustering process is divided into two separate phases to reduce the density

caused by a fast-flowing data, as well as comparing the present results with those of

the past [2]. First phase is called online micro-clustering where summary statistics

of data points are gathered and stored in an e�cient manner. Subsequently, the

obtained statistics can be used to analyze clusters in accordance with the user demand,

which is known as the o✏ine phase. One of the most important features of this

approach is to give more relevant results on evolving data for a long time when

analyzed retrospectively. A deeper understanding of the process can be achieved by

10

clarifying the core concepts. Eventually, these concepts will be mentioned or applied

in the analysis of other algorithms. After that, online and o✏ine phases will be

examined in detail.

Clustering Feature Vector

The clustering process can be problematic for big data sets, not only due to

the computational cost, but also the space. In order to minimize memory re-

quirements, it has been suggested by Zhang et al. [37] that features of data

points can be represented as a vector. This vector, namely Clustering Feature

(CF), has three components and is defined as CF = (N,LS, SS). Here, N , LS,

and SS represent the total number, linear sum (
P

N

i = 1
~

X

i

) , and squared sum

(
P

N

i = 1
~

X

i

2
) of the data points (X

i

) in the cluster, respectively.

• N: Total number of data points in a cluster. When we assume ~

X

i

as

a d-dimensional data points in a cluster, than its range can be shown as

i = 1, 2, 3, ..., N .

• LS: Linear sum of the all data points in a cluster such that
P

N

i = 1
~

X

i

.

• SS: Squared sum of the all data points in a cluster such that
P

N

i = 1
~

X

i

2
.

When a new data point ~x

i

arrives to the cluster, total number of points N is

incremented by 1, ~x

i

and ~x

i

2 are added to ~

LS and SS, respectively. If two

CFs are need to be merged, then a new CF vector is comprised of sum of their

components respectively such that, CF1 + CF2 = (N1 +N2, LS1 + LS2, SS1 +

SS1).

2

664

N1 + N2

LS1 + LS2

SS1 + SS2

3

775

2

664

N1

LS1

SS1

3

775 +

2

664

N2

LS2

SS2

3

775

These vector components allow us to measure three fundamental features of

clusters such as centroid, radius, and diameter. Centroid is defined as a mean

of the linear sum of a cluster. Radius is the distance between centroid and the

11

farthest data point, whereas diameter is the distance between the most distant

data points. Mathematical representation of these definitions are given in the

following equations 3.1, 3.2, and 3.3.

C
c

=

P
N

i=1 xi

N

(3.1)

R

c

=

sP
N

i=1 (xi

� Cc)2

N

(3.2)

D

c

=

sP
N

i=1

P
N

j=1 (xi

� x

j

)2

N · (N � 1)
(3.3)

In the equations, C
c

, R
c

, and D

c

denote the center, radius, and diameter of a

cluster. Additionally, N represents the total number of data points, while x

represents the data point itself.

Micro-Clustering

In CluStream, data points are processed in a time interval and each of them

has a timestamp. Based on the CF structure explained above, authors of CluS-

tream have introduced a broader concept called micro-cluster. Two additional

time dependent components, CF1t and CF2t distinguish a micro-cluster from a

clustering feature. CF1t contains sum of all time stamps belonging to the data

points in a cluster. On the other hand, CF2t stands for the squared sum of the

all data points in a cluster. In terms of computation, CF1t and CF2t are the

same with LS and SS except for the time variable.

A micro-cluster [2] can be represented with the (2 ⇤ d + 3) tuple for a set of

d-dimensional data points X
i1 , . . . , Xi

N

and time stamps T
i1 , . . . , Ti

N

as (CF2x,

CF1x, CF1t, CF2t, N). The benefit of this extension is to facilitate the access

of saved micro-clusters at di↵erent time intervals. In this respect, users are

able to extract old clusters from the history and examine them on demand. In

addition to the additive property, discussed for the clustering feature, micro

clustering satisfies the subtractive property. This property gives the user an

12

opportunity to get clusters in a specified time period or horizon. Assuming

that t
c

represents the current time and h represents the time period backwards

from the current time that the user wants to obtain clusters. In such a situation,

the higher level clusters stored in the time horizon {(t
c

� h), t
c

} is derived by

using the macro-clustering algorithm discussed below. As a result, the micro-

clustering technique allows the user to reach older clusters and compare them

with the current results.

Although the micro-clustering technique allows users to reach older clusters and

compare them with the current results, it is not feasible to store every micro-

cluster in the memory. That is why researchers have suggested an e�cient way

to store micro-clusters which is called pyramidal time frame.

Pyramidal Time Frame

This technique [2] o↵ers a solution to space requirements arising from the saving

every micro-cluster in the system. In order to achieve that, it stores snapshots

hierarchically with respect to specific rules. Assume that T indicates the clock

time which is elapsed since the beginning of the process. Then, the snapshots

can be sorted in an order i, where i can be a value between 0 to log T . Following

definitions show how maintenance of snapshots is satisfied.

• Orders of snapshots are determined according to ↵

i, where ↵ is an integer

and ↵ � 1. The snapshot S is saved to every order i simultaneously unless

it is divisible by ↵

i.

• For each order i, maximum ↵

l + 1 snapshots can be stored, where l is a

user defined parameter. If an order reaches its maximum capacity, then

oldest snapshot inside is deleted.

Consider a case when ↵ = 2, l = 1 and the clock time t

c

= 16. Then, t
c

can

be divisible by 20, 21, 22, 23, and 24. So, there are five di↵erent orders from

zero to four to place the snapshot. Moreover, each order may contain at most

21 + 1 = 3 snapshots. Even though capacity of one of the orders is full, the

13

oldest snapshot can be deleted before storing the new one. In accordance with

these cases, authors [2] have made the following observations.

1. The maximum number of order for T in a streaming process is log
↵

T .

2. The maximum number of snapshots stored at time T throughout the pro-

cess is (↵l + 1) · log
↵

T

3. It is ensured that at least one stored snapshot can be reachable by user

within 2 · h units, where h is user specified time horizon. It is formally

proved in [2].

Table 3.4 illustrates the stored snapshots for ↵ = 2, l = 1 and T = 22. As

its name indicates, a pyramidal shape emerges when snapshots ordered from

top to bottom. It is obvious that while the order i increases, distance between

the snapshots in the same order decreases, or vice versa. That’s why, better

granularity can be seen between recently added snapshots. As an instance, at

clock time 22, micro-clusters at times of 8, 12, 16, 18, 20, 21, and 22 are stored

in the system.

Table 3.4: An example of stored snapshots for ↵ = 2, l = 1 and T = 22
Order of Snapshots Clock Times

0 22 - 21 - 20
1 22 - 20 - 18
2 20 - 16 - 12
3 16 - 8
4 16

3.1.1 Online Phase

As mentioned earlier, generation and maintenance of micro-clusters are handled in two

phases. The online phase begins with a su�cient amount of micro-clusters generated

by using standard k-means algorithm. After that the system starts to accept new

data points. When a new point arrives to the system, there are two cases in order

to achieve maintenance: (i) Either the new point joins a micro-cluster, in which it

fits most; or (ii) a new micro-cluster is initiated by including the new point. In the

first scenario, a convenient micro-cluster can be found by calculating the distance

14

between the new point and the centroid of the micro-clusters. However, the closest

micro-cluster is not always suitable because the new point may be an outlier or a first

instance of evolving data where a new micro-cluster should be initiated. Hence it is

hard to predict how the data will evolve, authors [2] have suggested to look at whether

the new point is within the maximum boundary of the micro-cluster or not. If it is

not, then a new micro-cluster should be created. However, because of the memory

constraints, old micro-clusters are maintained by either deleting an old cluster (if it

is safe) or merging two old clusters.

The decision of which cluster will be deleted is made according to the recency of

micro-clusters. So that, the micro-clusters, which have recently accepted data points,

are not considered to be deleted. In order to make a decision, authors have proposed

a way to approximate for finding recency level of a micro-clusters by using the mean

and the standard deviation of time stamps, which is called the relevance stamp. In

order to determine whether a micro-clusters will be deleted or not, its relevance stamp

is compared to a user-defined threshold value �. If it is below �, then the micro-cluster

is remained in the system. Otherwise, it is picked to be removed from the system.

It is also possible that relevance stamp of every micro-cluster currently being in the

system is above the threshold. In that case, two closest micro-clusters are merged

together and a new unique id is assigned to the new micro-cluster. In order to identify

the merged micro-clusters, new id is assigned as a combination of their ids.

Meanwhile, at every clock time divisible by ↵

i, micro-clusters that are in the sys-

tem at that time are saved with their id list and time of storage for macro-clustering.

As mentioned earlier, if order i is full of snapshots and if the current snapshot can

not be divisible by ↵

i+1, then the least recent snapshot is deleted from the order i.

3.1.2 O✏ine Phase

The purpose of this phase [2] is to provide in depth analysis of micro-clusters for

the user in a given time horizon h. Hence, the summary statistics are prepared in

online phase, it is easy to extract relevant micro-clusters by using its additive and

subtractive properties described before. It is also mentioned in the explanation of

pyramidal time frame that there is always a snapshot between the current time t

c

and the time horizon h

0, which is an admissible horizon within the interval (t
c

, h).

15

In the first step, relevant clusters are extracted from the user-specified time in-

terval. Assume that S(t
c

) represents the set of micro-clusters at current time, and

S(t
c

� h

0) represents the set of micro-clusters in the time interval (t
c

, h

0). Hence the

list of micro-cluster ids in S(t
c

), can be reached and the micro-clusters in S(t
c

� h

0)

can be eliminated by subtracting their cluster feature vectors. So that, summary

statistics gathered before the time horizon h will not dominate over the results. At

the end of this step, a set of micro-clusters N(t
c

, h

0) that are the output of the sub-

traction process are obtained. For the next step, the modified version of k-means

explained in [2], is run over N(t
c

, h

0) to find high level of clusters. A more detailed

description of CluStream can be found in [2].

3.2 DenStream

Cao et. al. [8] proposed a density-based clustering algorithm for streaming data. It

extends the core point concept introduced with DBSCAN [12], by using the micro-

clustering technique from CluStream explained in the previous section. While Den-

Stream adapts several concepts of CluStream, it also originates new ones. A core

point is defined as an object in the " neighbourhood where the weight of the points

is at least an integer µ. Instead of a binary decision of data point inclusion to the

cluster, a damped window model is preferred to determine the importance of histori-

cal data. In this model, each data point has a weight depending on time t. During

the existence of data points in the system, importance of them gradually decreases

according to the fading function f(t) = 2��·t, where � > 0. In addition to the weight

of data points, the data stream has its own weight, which is specified as a constant

W = v/1� 2��, where v is the speed of the stream, i.e. the number of points arrive

to the system in a one time unit.

Generally, it is di�cult to separate streaming data points into dense regions. In

order to achieve that, the authors [8] have introduced three concepts, namely core-

micro-cluster, potential core-micro-cluster, and outlier-micro-cluster.

16

3.2.1 Core-micro-cluster

A core-micro-cluster (abbr. c-micro-cluster) [8] is defined as CMC(w, c, r) at time

t for a group of close points p

i1 , . . . , pin with time stamps T

i1 , . . . , Ti

n

. The compo-

nents in CMC(w, c, r) denote the weight, center, and radius of the c-micro-cluster,

respectively. Mathematical representations of are provided in Eq. 3.4, 3.5, and 3.6.

w =
nX

j = 1

f

�
t � T

i

j

�
, where w � µ (3.4)

c =

P
n

j = 1 f
�
t � T

i

j

�
p

i

j

w

(3.5)

r =

P
n

j = 1 f
�
t � T

i

j

�
dist

�
p

i

j

, c

�

w

, where r  " (3.6)

In equation 3.6, dist(p
i

j

, c) denotes the Euclidean distance between the point p
i

j

and the center of the c-micro-cluster, c. It is explicitly stated that the weight of

the c-micro-clusters must be greater than or equal to µ. The authors [8] consider

that the set of micro clusters can be used to represent the clusters with an arbitrary

shape. However, the clusters need to be distinguished from outliers. Therefore, they

introduced potential core-micro-cluster, and outlier-micro-cluster, similar to those in

[3].

3.2.2 Potential core-micro-cluster

A potential c-micro-cluster (abbr. p-micro-cluster) [8] at time t is defined as CF

1,

CF

2, w for a group of close points p

i1 , . . . , pin with time stamps T

i1 , . . . , Ti

n

. It is

possible that the set of points representing p-micro-cluster become a micro-cluster;

however, it may be demoted if no new data point joins into it because its weight tends

to decrease by fading function. The weight function is the same as the one used in

the c-micro-cluster except that it must be greater than or equal to �µ. � is defined

as an outlier threshold and takes a value between 0 and 1. In the following equations,

c and r represent the center and radius of a p-micro-cluster (Eq. 3.7 and Eq. 3.8),

respectively. Whereas CF

1 is the weighted linear sum of the points (Eq. 3.9), CF

2

is the wighted square sum of the points (Eq. 3.10).

17

c =
CF

1

w

(3.7)

r =

vuutCF

2

w

�

CF

1

w

!2

, where r  " (3.8)

CF

1 =
nX

j = 1

f

�
t � T

i

j

�
p

i

j

(3.9)

CF

2 =
nX

j = 1

f

�
t � T

i

j

�
p

2
i

j

(3.10)

3.2.3 Outlier-micro-cluster

An outlier micro-cluster (abbr. o-micro-cluster) [8] at time t is defined as CF

1, CF

2,

w, t
o

for a group of close points p
i1 , . . . , pin with time stamps T

i1 , . . . , Ti

n

. Except for

t

o

, all definitions are the same as the ones used in the p-micro-clustering and t

o

= T

i1

denotes the creation time of the o-micro-cluster. Contrary to p-micro-clustering, the

weight is below the threshold �µ, i.e w < �µ. However, o-micro-cluster can be

promoted to p-micro-cluster, if its weight exceeds the threshold while accepting new

data points.

Analogous to CluStream, there are two phases; the online phase where the micro-

clusters are updated and maintained, and the o✏ine phase where the clusters are

extracted on user demand. In the first phase, assume that the data point p is one of

the streaming data coming into the system. There are three scenarios:

i. Merging the data point p into the nearest p-micro cluster c

p

such that, if it

satisfies the condition that the new radius r
p

of c
p

is less than or equal to ", i.e.

r

p

 ", then the merging occurs. Otherwise, it is passed to the second scenario.

ii. Merging the data point p into the nearest o-micro cluster c

o

such that, if it

satisfies the condition that the new radius r

o

of c
o

is less than or equal to ",

i.e. r
o

 ", then the merging occurs. If the weight of c
o

is greater than �µ, i.e.

w � �µ, then it is promoted to p-micro-clustering.

18

iii. If the conditions above are not satisfied, then a new o-micro-cluster is generated

by p.

In the o✏ine phase, the DenStream algorithm makes use of the variant of DB-

SCAN to find the final clusters. The p-micro-clusters are examined as virtual points

in this section. The variant of DBSCAN includes two parameters, " and µ, which are

used to determine the density area by using concepts density-reachable and density-

connected. As a result, final clusters are specified by density-connected p-micro-

clusters. The definitions of these concepts are given below. In addition, Algorithm 1

shows the control flow of the DenStream.

• Directly density-reachable : A p-micro-cluster c
p

is directly density-reachable

from a p-micro-cluster c
q

, if w
c

q

> µ and dist(c
p

, c

q

)  2 · ", wrt. " and µ. Two

p-micro-clusters are considered as density-reachable, if the distance between

their centers is less than or equal to 2 ·", and r

p

+ r

q

, where r
p

and r

q

represents

the radiuses of c
p

and c

q

, respectively.

• Density-reachable : A p-micro-cluster c
p

is density-reachable from a p-micro-

cluster c

q

wrt. " and µ, if there is a chain of p-micro-clusters c

p1 , . . . , cpn ,

c

p1 = c

q

, c
p

n

= c

p

such that c
p

i+1 is directly density-reachable from c

p

i

.

• Density-connected : A p-micro-cluster c

p

is density-connected to a p-micro-

cluster c
q

wrt. " and µ, if there is a p-micro-cluster c
m

such that both c

p

and

c

q

are density-reachable from c

m

wrt. " and µ.

3.3 ClusTree

Kranen et al. [19] have introduced a self-adaptive clustering algorithm, ClusTree,

for mining data streams. They proposed a parameter-free solution, which is able to

adapt for di↵erent stream speeds. Micro-clustering and R-Tree structure [14] form the

basis of the ClusTree algorithm. As noted at the beginning of this section, clustering

feature (CF) tuple stores the summary of information related to the data stream.

Tree structure makes it possible to maintain micro-clusters into di↵erent levels of the

19

Algorithm 1 Denstream Algorithm

T

p

=
l
1
�

log
⇣

�µ

�µ � 1

⌘m
;

Get the next point p at current time t from data stream DS

Merging(p)

if (t mod T

p

) = 0 then

for each p-micro-cluster c
p

do

if !

p

(the weight of c
p

)< �µ then

Delete c

p

;

end if

end for

for each o-micro-cluster c
o

do

⇠ = 2��(t�t

o

+T

p

)�1
2��T

p�1
;

if !

o

(the weight of c
o

)< ⇠ then

Delete c

o

;

end if

end for

end if

if a clustering request arrives then

Generating clusters;

end if

hierarchy. The main idea is to place an arriving object to the optimal micro-cluster,

searching the tree from the root to leaf node. However, there might not be enough

time for the point insertion process, therefore, authors have suggested to keep those

points in a local aggregate, a bu↵er to keep the points, which have not yet completed

and can be processed at a later time. ClusTree is explained with the parameters m,

M , l, and L as follows.

• While inner nodes have the entries from m to M , leaf nodes have the entries

from l to L.

• An inner node contains the summary information of the objects both it stores

and bu↵ers. In addition to that, it keeps a pointer, which points to the child

20

node.

• A leaf node stores the CF of the data points it represents.

• The tree is balanced, which means that any path from the root to the leaf nodes

has always the same length.

Insertion of an object is a continuous process, every data point travels from the

root through the leaf nodes by choosing the subtree with the closest mean. In the

case that an object can not reach the leaf nodes, the process is interrupted and the

current CF is saved to the bu↵er of the subtree. Whenever that subtree is accessed

by another object, then the saved entry is taken as a “hitchhiker”. Unless their paths

di↵er from each other, they descend together. If their paths need to be separated,

then the hitchhiker is saved again to the bu↵er and the current insertion continues

on its path. When an object reaches the leaf node, then it causes a split if there is

still time. Otherwise, the closest entries are merged and their ids are saved to a list

as a pair.

In the maintenance of clusters, an exponential decay function is chosen similar to

DenStream, i.e. !(�t) = �

���t, where � = 2. This method put emphasis on new

data, rather than the old. On the other hand, summary information of the subtrees

should be accurately stored by using weighted CF components (see Eq 3.11, Eq 3.12,

and Eq 3.13).

n

(t) =
nX

i = 1

! (t � ts
i

) (3.11)

LS

(t) =
nX

i = 1

! (t � t

s

i

) · x

i

(3.12)

SS

(t) =
nX

i = 1

! (t � t

s

i

) · x

2
i

(3.13)

where t

s

i

is the timestamp of the object x
i

which denotes the insertion time of it to

the CF. Also, n represents the number of objects in the CF.

In the updating process, all entries in the node are updated considering their CF,

bu↵er and last update time. If a leaf node needs to be split, then the least significant

entry in the system can be discarded. In that situation, the related entry is subtracted

21

from the path through the root. This ensures that no entry or CF is discarded if an

object is added to it before the last snapshot. Moreover, it guarantees that each entry

is stored in at least one snapshot.

In general, the definitions and concepts explained so far form the base of the Clus-

Tree algorithm. Additionally, authors [19] analyzed the performance of the algorithm

according to di↵erent stream speeds. Firstly, they examine the case when the data

stream flows faster than algorithm can handle. This causes short-term interruptions

at the very beginning of the process. Consequently, objects that can not descend

to leaf nodes start to aggregate on the top level of the tree. This leads to a global

aggregate which is problematic because completely dissimilar objects may come to-

gether in the same aggregate. Instead of global aggregates, the authors [19] proposed

to create various aggregates for dissimilar objects and insert interrupted objects into

their closest aggregate. The closeness decision is made by considering the distance of

objects to the mean of the aggregate. If it is lower than the threshold value max

radius

,

then it is inserted into that aggregate. Otherwise, a new aggregate is initiated with

that object. Whenever the algorithm finds time to process aggregated objects, it first

picks the outnumbering aggregate. If there is more than one aggregate, it chooses

the oldest one. Pleasantly, max

radius

need not to be defined by the user. Instead, it

is set with respect to the average variance of the leaves. As a summary, Figure 3.2

illustrates the general working mechanism of the ClusTree with a flow chart.

Whereas fast data streams come with several problems, slow data streams lets

authors to try di↵erent descent strategies on the algorithm. Normally, ClusTree tries

to reach leaf level by choosing the closest child node, which is mentioned as single-try

depth first search. However, computation time of this strategy is relatively low, which

causes a lot of idle time for the algorithm. Alternative descent strategies examined

in the scope of this research are as follows.

• Priority breadth first traversal

• Best first traversal

• Iterative depth first descent

22

Figure 3.2: ClusTree Flowchart [19]

23

3.4 Flockstream

Forestiero et al. [13] have introduced a new, bio-inspired, agent-based approach for

single pass stream clustering. They adapt the micro-clustering approach from Den-

Stream to the Flockstream algorithm and unlike the algorithms discussed previously,

single-pass paradigm is adopted instead of a two phase approach. Analogous to Den-

Stream, a damped window model is chosen to fade the importance of the data points

throughout the process. According to this model, the importance, or weight, of data

points is determined according to the time variable, t. In this model, as the duration

of agents in the system increases, the importance of the represented data points de-

crease with respect to the fading function, f(t) = 2��·t, where � > 0. By using this

fading function, the weight of a group of data points in a cluster can be calculated as

w =
P

n

j=1 f(t� T

i

j

), at time t for time stamps T
i1 , . . . , Ti

n

.

The flocking model, first proposed by [31] and developed as a computational model

by [11], forms the basis of this algorithm. According to this model, boids or agents

interact with each other in an environment without sharing any information. Agents

can interact with only their neighbour agents in their visibility range. Additionally,

they keep some distance between them to avoid collisions. Their movements in the

environment are coordinated based on three steering rules: alignment, separation,

and cohesion.

• Alignment : Steering toward so that the direction and velocity would be the

same with neighbors

• Separation : Steering away from neighbors to avoid collision.

• Cohesion : Steering toward the midpoint of neighbors

In addition to these rules, theMultiple Species Flocking (MSF) model [10] presents

an additional rule, feature similarity. However, the authors [13] have modified the

MSF by considering the flocking rules with similarity or dissimilarity of an agent

with its neighbors. In order to define these rules, the concept of velocity vector ~v is

presented in the MSF model.

The algorithm works on two spaces; d-dimensional feature space represented as

Rd, and two dimensional Cartesian space named virtual space represented as R2
v

.

24

Figure 3.3: Visibility and Defense
Range of an Agent

Figure 3.4: 3D Representation of
Toroidal Virtual Space

The feature space is the data space in which each data point is stored. On the other

hand, the virtual space is a toroidal grid system, as illustrated in Fig. 3.4, for agents

to move on and interact with each other. It is designed to be discrete instead of

continuous. Each cell contains only one agent at a time. Every agent deployed to

the virtual space represents a data point from the feature space. In Flockstream, an

Agent A is defined as A = (P,~v), such that P is the position of the agent A in R2
v

,

i.e. P = (x, y) and ~v is the velocity vector of the agent A, i.e. ~v = (m, ✓). In addition

to this, I add two more features to the agent; id
A

to identify the agent A, and id

C

to

keep the id of a conductor agent which conduce the agent A to join or form a flock.

An agent can observe the environment over a limited range, which is mentioned

as a visibility range. Since I work on a grid environment, I assumed that an agent

can observe only v number of cells ahead. Also, an agent needs to specify its defense

range, which is d the number of cells ahead of the agent. As an instance, visibility

and defense ranges for v = 3 and d = 1 are illustrated in Fig. 3.3. Blue and red cells

represent the visibility range, and red cells represent the defense range for the yellow

agent located in the white cell. It is useful to note that, every agent in the R2
v

can

move only one cell at a time. The velocity component m denotes the magnitude of

the vector, which is fixed to 1, and ✓ denotes the angle between ~v and the positive x

axis.

Before describing the formal definitions of the flocking rules, let us consider the

following variables and functions. Let p

c

be a data point in feature space, which

is represented by the agent A

c

in the virtual space. Each agent can interact with

only the neighbor agents in a range with radius R1 and defend itself from collision

25

with other agents within the range of R2. Assume that the neighbor agents in A

c

’s

visibility range are denoted as F1, . . . , Fn

. The distance between two agents, i.e.

d

v

(A
i

, F

i

), is the Euclidean distance between positions of the agents in the virtual

space, i.e. P
F

i

= (x
F

i

, y

F

i

), P
A

i

= (x
A

i

, y

A

i

). On the other hand, dist(p
c

, p

i

) specifies

the Euclidean distance between the data points p
c

and p

i

, where p
i

is the data point of

the neighbor agent F
i

. It is used to determine the similarity between two agents such

that, if dist(p
c

, p

i

)  ", then two points are assumed to be similar. The maximum

threshold value " mentioned in Eq. 3.6 specifies the radius of a micro-cluster.

Basically, the flocking behavior is the combination of velocity vectors of ~v
ar

, ~v
sr

,

~v

cr

that are related to the rules of alignment, separation and cohesion, respectively.

Before each movement of the agent A

c

, these velocities are combined together to

find the target velocity, i.e. ~v

ar

+ ~v

sr

+ ~v

cr

, and normalized to obtain a unit vector.

It is worth noting that to steer the agent A towards a target point, it is needed to

subtract target velocity from the current velocity. The final velocity vector determines

the movement of the agent A

c

. Please note that flocking rules can be applied with

neighbor agents within agents’ visibility range for each individual agent. The formal

definitions and conditions of the flocking rules are described below.

3.4.1 MSF Rules

In the following sections, MSF rules are explained in detail. In which conditions are

these rules applied and how they e↵ect to the movement of an agent are described in

this section.

3.4.1.1 Alignment

In order to satisfy the alignment rule, an agent changes its direction towards the

same direction of its neighbor agents that are similar. Typically, it tries to adjust its

velocity vector to the average velocity vector of the others. This rule is applied as

Eq.3.14, if the following condition is satisfied:

“dist(p
i

, p

c

)  " ^ d

v

(A
c

, F

i

)  R1 ^ d

v

(A
c

, F

i

) � R2 , for i 2 {i, . . . , n}”

~v

ar

=

P
n

i = 1 ~vi

n

(3.14)

26

Briefly, the condition that p
i

is within the neighbourhood of p
c

for neighbor agents

F

i

that are located between the visibility and defense range of the agent A
c

, then ~v

ar

is

considered for determining the new velocity of A
c

. Fig. 3.5 shows a sample case where

the agent A
c

(yellow triangle) adjusts its velocity according to the alignment rule. The

figure is composed of two snapshots of the agent A
c

; the left one represents the state

where A

c

calculates its velocity considering the neighbor agents (blue triangles), and

the right one represents the state right after it applies the force to satisfy new velocity.

While green dotted circle represents the limit of the visibility range of A
c

, the red

dotted one stands for defense range. The black dot at the top corner of the triangles

(agents) indicate the direction to where agents are heading. Assume the horizontal

axis as 0°, then A

c

is heading to 135°, and neighbour agents are heading to 90°. In

order A
c

to move in the same direction with other agents, it must rotate by an angle

of 45°. In order to achieve that, a force of 45°is needed to be applied. This is shown

as a purple vector. Thus, A
c

now points in direction the same direction with the

neighbor agents as shown in the right snapshot.

Figure 3.5: Graphical representation of the alignment rule.

3.4.1.2 Separation

The separation rule is applied to agent A
c

not only to protect itself from any collision

but also move away from those agents, which are not similar in the feature space.

The new velocity vector is determined as a vector from the centroid of the neighbor

27

agents C
db

, which are dissimilar and violates the defense range of the agent A
c

, to the

current position P

c

of A
c

in the virtual space. The midpoint or centroid of a set of

agents can be calculated such that C =
�
1
n

P
n

i = 1 Pi

�
. This rule is applied as

���!
C

db

P

c

,

if the following condition is satisfied:

“dist(p
i

, p

c

) > " _ d

v

(A
c

, F

i

)  R2 , for i 2 {i, . . . , n}”
Consider Fig. 3.6, which plots an example case for the separation rule. In the

first snapshot, you will see four agents, one yellow and three blue agents. Similar

to the case in Fig. 3.5, the yellow agent represents the current agent A

c

, and blue

agents represent the neighbor agents. It is obvious that all blue agents violate the

defense range of the yellow agent. In this case, the yellow agent tries to move in the

opposite direction of the middle point of neighbor agents. This is indicated as a black

star in the figure. In that point, the yellow agent moves to the right by one cell.

The final position of A
c

is illustrated in the second snapshot. Unfortunately, two of

the neighbor agents are still in the defense range and as described before, agents can

move only one cell at a time. However, in every timestamp, agents calculate their

new velocity and take actions accordingly.

Figure 3.6: Graphical representation of the separation rule.

3.4.1.3 Cohesion

In this rule, an agent tends to move toward the centroid of neighboring agents which

are similar, in the neighborhood of ", and in the visibility range of agent A
c

. Consider

28

that moving toward the centroid must not cause a violation for the agents in the

neighborhood. The direction of the vector is specified as a vector from the current

position P

c

of an agent A

c

to the centroid of the neighbor agents C

nb

. It can be

denoted as
���!
P

c

C

nb

, if the following condition is satisfied:

“dist(p
i

, p

c

)  " ^ d

v

(A
c

, F

i

)  R1 ^ d

v

(A
c

, F

i

) � R2 , for i 2 {i, . . . , n}”

Fig. 3.7 shows an example of an agent behavior to satisfy the cohesion rule. Similar

to previous representations, teh yellow agent is the current agent A

c

, and the blue

agents are the neighbor agents within the visibility range of A
c

. Again, Fig. 3.7 shows

the previous and the next state of the current agent from left to right, respectively.

The black star denotes the middle point of three blue agents. In this situation, A
c

,

the yellow agent, needs to change its location in the direction of the purple vector, so

that it is located in the middle of the flock. This provides better solidarity between

similar agents. As you can see in the second snapshot, the final position of the yellow

agent ensures the cohesion rule.

Figure 3.7: Graphical representation of the cohesion rule.

As mentioned, Flockstream is an agent-based algorithm and there are three types

of agents used in the clustering process. These are: (i) basic agents, which repre-

sent the new data points arriving to the system; (ii) p-representative agents, which

represent the p-micro-clusters; and (iii) o-representative agents, which represent the

o-micro-clusters. The algorithm is composed of two phases, which are the initializa-

tion phase, and the maintenance and clustering phase. In the initialization phase,

29

the first bulk of basic agents are deployed to the system. After initialization, micro-

cluster maintenance and clustering phase takes place for the all three types of agents

present in the virtual space.

3.4.2 Initialization

At the initialization phase, the predetermined number of basic agents are created

and deployed to random positions in the virtual space. Initially, the velocity vectors

of basic agents ~v = (m, ✓) are assigned such that the magnitude m equals to 1 and

the angle ✓ is a random value within the range [0, 360]. Agent ids are incrementally

assigned from 1 to n, where n is the total number of data points.

For a predefined number of iterations, the agents move and interact with each

other on the virtual space simultaneously according to the MSF rules described above.

Each basic agent is influenced by the neighbor agents in its visibility range. In every

iteration, the velocity vector of each basic agent is calculated and assigned for the next

move. During this process, similar agents (based on a Euclidean distance between

the data points from the feature space) are apt to move together as a flock, whereas

dissimilar agents move away from the flocks. Although an agent can be involved in a

flock, it may disjoin due to the change in flocking behavior or e↵ect of the MSF rules.

At the end of this phase, two kind of basic agents remain; those that belong to one

of the flocks in the system and those that do not.

At the end of the initialization phase, formed flocks turn into representative

agents and the corresponding basic agents in the flocks will be represented by those

agents. Representative agents can be divided into two types, p-representative and

o-representative agents. The definitions of these concepts are explained in detail in

the DenStream section such that, p-micro-cluster c
p

= {CF

1
, CF

2
, w} and o-micro-

cluster c
o

= {CF

1
, CF

2
, w, t

o

}, respectively. In the mean time, the summary statis-

tics of the basic agents in the flocks are computed and stored by the corresponding

representative agent. Finally, these basic agents are discarded from the system.

3.4.3 Maintenance and Clustering

When initialization has finished, there are three types of agents remaining in the

system; p-representative, o-representative, and basic agents that were not involved in

30

a flock at the initialization process. The purpose of this phase is both to maintain the

p and o representative agents associated with the p and o micro-clusters in the feature

space, and to perform online clustering. In the next iteration, a new bulk of basic

agents is accepted to the system. Note that, the stream speed and the maximum

number of iterations are specified by the user at the beginning of the process. Similar

to the initialization phase, agents move around the environment with respect to the

MSF rules. However, because the types of the agents are not the same, similarities

between those agents are calculated as follows.

• Basic ! Basic : In the case that a basic agent A, associated with a data point

p

A

2 Rd meets basic agent B, associated with a data point p
B

2 Rd, then they

are considered similar if dist (p
A

, p

B

)  ".

• Basic ! Representative : In the case that a basic agent A meets either a

p-representative B, i.e. p-micro-cluster c

B

p

, or an o-representative B, i.e. o-

micro-cluster c

B

o

, then p

A

is added to the copy of micro-cluster c

B

p

or c

B

o

to

obtain a new radius. If the new radius r

p

or r
o

 ", then they are considered

similar.

• Representative ! Basic : In the case that a p- or o-representative agent A,

meets a basic agent B associated with a data point p
B

, then they are considered

similar if Euclidean distance between the center of the micro-cluster and p

B

 ".

• Representative ! Representative : In the case that a p-representative A, i.e.,

p-micro-cluster c

A

p

, or an o-representative A, i.e., o-micro-cluster c

A

o

, meets

another representative agent, then they are considered to be similar if Euclidean

distance between the centers of the micro-clusters less than or equal to ".

Unlike the original Flockstream, agents can move on the virtual space by using

the similarity functions described above. When the number of maximum iterations

achieved, flocks are formed containing similar agents from all types. In that case,

the maintenance is performed using the following algorithm. So that, basic agents

can interact with not only each other, but also with the representative agents. Ad-

ditionally, the representative agents can be compared with each other with respect

to the centers of their micro-clusters. Moreover, I added one more feature to the

31

agents. This is called flock-by, which di↵ers from the original paper. In this case, let

us assume A

c

as the current agent. If A
c

encounters with another similar agent from

a flock during its movement in the virtual space, then the A

c

may join to the flock if

the conditions below are satisfied. When it is joined to the flock, that similar agent’s

ID will be stored by the A

c

. In the further iterations, if A
c

encounters with another

agent, and its flock-by agent is not present in its visibility range, then it may change

its flock with the new similar agent’s flock, if the conditions below are satisfied.

i. If flock consist of only basic agents, then a new o-representative agent is created

representing the basic agents in the flock. After that, those basic agents are

removed from the virtual space.

ii. If flock contains only one representative agent and others are basic agents, then

all basic agents are added to the representative agent. Once this is done, its

weight is calculated to compare with the value �µ, which is a threshold for

promoting representatives mentioned in DenStream. If representative agent is

a p-representative, corresponding to p-microcluster and its weight w below �µ,

then its type demoted to o-representative. On the other hand, if the weight of

an o-representative w is above �µ, it is promoted to to the p-representative.

iii. If there are more than one representatives in a flock, then they become a swarm

agent by merging the micro-clusters of representative agents. Later in the pro-

cess, it acts as a representative agent for the calculations.

32

Algorithm 2 Interaction of agents after the initialization phase.

for each flock F in the Virtual Space do

check the type of each agent in F

if the type of all agents is basic then

if number of agents � µ then

create a new p-representative agent

else if number of agents  µ then

create a new o-representative agent

end if

end if

if there is only one representative agent A
r

in F then

insert all other basic agents to A

r

if A

r

is p-representative ^ its weight !  �µ then

diminish A

r

to o-representative

else if A

r

is o-representative ^ its weight ! � �µ then

promote A

r

to p-representative

end if

end if

if there is more than one representative agent in F then

merge representative agents and insert basic agents into it

label new representative agent as a swarm

end if

end for

Chapter 4

Evaluation

In this section, I present the evaluation metrics, which are used to compare the

algorithms, and the experiments that are performed on all of the data sets employed

in this thesis. In the following experiments, the criteria of “best” can be stated as

generating the purest possible clusters with a reasonable precision in lowest possible

execution time.

4.1 Parameterization

The DenStream parameters are a subset of those used for Flockstream; hence, a

common process for parameterization is assumed. In the case of CluStream and

ClusTree, the recommendations from the MOA distribution are assumed. Table 4.1

summarizes the resulting parameterization for the three MOA sourced algorithms.

Flockstream assumes the parameters of DenStream, plus: 1) MaxIterations defining

the maximum number of iterations; and, 2) d defining the size of the virtual space.

The authors of Flockstream suggest that if the stream speed is v (aka size of the

non-overlapping window interface to the data stream), then the size of the virtual

space parameterized such that d ⇥ d � 4 ⇥ v. The maximum stream speed used in

my experiments is 1000. Therefore, the minimum size of the virtual space would

be 64 ⇥ 64. A virtual space value of 100 ⇥ 100 was adopted in order to reduce the

congestion resulting from agent the immobility.

Flockstream includes two additional parameters, which are MaxIterations for

the maximum number of iterations and d for the dimensions of the virtual space.

They are fixed to 800 and 100, respectively. The authors [13] of Flockstream suggest

that if the stream speed is v, then dimensions of the virtual space can be specified

such that d ⇥ d � 4 ⇥ v. The maximum stream speed used in my experiments is

1000. Therefore, dimensions of thevirtual space should be roughly more than 64⇥64.

However, I picked a 100 ⇥ 100 virtual space to reduce teh congestion resulting from

33

34

immobility. Another di↵erence between parameters is the o✏ine multiplier used in

DenStream to calculate the final value of epsilon. In Flockstream, I only use epsilon.

The following sections cover the topics of evaluation metrics.

Table 4.1: Descriptions of parameters of each algorithm.
Algorithms Parameters Descriptions
CluStream -h (d: 1000) Range of the window.

-k (d: 100) Maximum number of micro kernels to use.
-t (d: 2) Multiplier for the kernel radius.

-M
Evaluate the underlying micro-clustering
instead of the macro-clustering.

DenStream -h (d: 1000) Range of the window.
-e (d: 0.02) Defines the epsilon neighbourhood.
-b (d: 0.2) Beta (�) constant.
-m (d: 1) Mu (µ) constant.
-i (d: 1000) Number of points to use for initialization.
-o (d: 2) O✏ine multiplier for epsilon.
-l (d: 0.25) Lambda (�) constant.
-s (d: 100) Number of incoming points per time unit.

-M
Evaluate the underlying micro-clustering
instead of the macro-clustering.

ClusTree -h (d: 1000) Range of the window.
-H (d: 8) The maximal height of the tree

-M
Evaluate the underlying micro-clustering
instead of the macro-clustering.

FlockStream -d (d: 100) Dimensions of Virtual Space.
-e (d: 0.1) Defines the epsilon neighbourhood.
-b (d: 0.2) Beta (�) constant.
-m (d: 10) Mu (µ) constant.
-i (d: 300) Number of points to use for initialization.
-x (d: 800) Maximum number of iterations.
-l (d: 0.25) Lambda (�) constant.
-s (d: 300) Number of incoming points per time unit.

4.2 Evaluation Metrics

All algorithms used in this thesis are evaluated according to three performance met-

rics, which are macro-purity, micro-precision, and recall. In MOA, these metrics are

defined as Purity, F1-P, and F1-R respectively [23]. Additionally, I used micro-purity

and macro-precision in the parameter sensitivity analysis. In fact, Purity and F1-P

from MOA correspond to macro-purity and micro-precision, respectively.

Micro and macro measures are calculated in the same manner except with respect

to the confusion matrices they use. Whereas micro confusion matrix is used for

micro metrics, macro confusion matrix is used for macro metrics. The only di↵erence

35

between matrices is that the macro confusion matrix groups all the clusters that

share the same majority label in the micro confusion matrix. Before defining each of

these metrics, let us consider the confusion matrix in Table 4.2. In this table, CR

i

represents the found cluster, whereas CS

j

represents the class value. In every found

cluster, the number of data points in each class is represented with v

i

j

. The precision,

recall and F1 � Score of the found cluster CR

i

can be calculated with the equations

Eq.4.1, Eq.4.2, and Eq.4.3, respectively.

precision

CR

i

=
max (v

i1, . . . , vim)P
m

j = 1 vij
(4.1)

recall

CR

i

=
max (v

i1, . . . , vim)P
n

i = 1 vij
(4.2)

F1 � Score

CR

i

= 2 · precision

CR

i

· recall

CR

i

precision

CR

i

+ recall

CR

i

(4.3)

In the recall equation, j is the index of the maximum class value for the cluster CR

i

.

The arithmetic means of the precision

CR

i

and F1 � Score

CR

i

give us the Purity and

F1-P metrics (Eq. 4.4 and Eq. 4.5), respectively. In the equations, n denotes the total

number of found clusters.

Purity =

P
n

i

precision

CR

i

n

(4.4)

F1� P =

P
n

i = 1 F1 � Score

CR

i

n

(4.5)

The final performance measure of the MOA used in the experiments is the F1-R. In

order to calculate it, first the maximum F1�Score (see Eq. 4.6 and Eq. 4.7) need to

be calculated for each value v
i

j

in the class CS

j

such that the arithmetic mean of the

sum of maximum F1�Scores with respect to the total number of classes m gives the

final result for F1-R as shown in Eq. 4.8.

36

F1� Score

v

ij

= 2 ·
precision

v

ij

· recall

v

ij

precision

v

ij

+ recall

v

ij

(4.6)

Max F1� Score

CS

j

= max
�
F1� Score

v1j , F1� Score

v2j , . . . , F1� Score

v

nj

�

(4.7)

Table 4.2: An Example of a Confusion Matrix
CS1 . . . CS

m

Sum of Cluster V alues

CR1 v11 . . . v1
m

v11 + . . .+ v1
m

...
... . . .

...
...

CR

n

v

n1 . . . v

n

m

v

n1 + . . .+ v

n

m

Sum of Class V alues v11 + . . .+ v

n1 . . . v1
m

+ . . .+ v

n

m

Total

F1�R =

P
m

j = 1 Max F1� Score

CS

j

m

(4.8)

4.3 Parameter Sensitivity Analysis for Flockstream

In this section, I present the preliminary results of modified Flockstream algorithm

on each data set. I have excluded Commercial-Big because it shares similar features

with the Commercial-Small data set. The results are evaluated according to the

metrics discussed in the previous section. Additionally, two metrics, specifically, the

number of clusters obtained and the total execution time in minutes, are added for

comparison.

It is important to note that the parameter epsilon plays a vital role in the experi-

ments and it di↵ers from data to data. For that reason, I have chosen di↵erent epsilon

values for data sets as a default value. Default values of other parameters are sum-

marized in Table 4.1. Based on those parameters, I performed several experiments

by tuning epsilon, stream speed and the initial number of agents.

In the analysis of commercial data sets, I realized that most of the time, a high

percentage of the data is represented by only one cluster. In order to obtain purer

clusters, I made an inner cluster analysis so that the data points of the most populated

37

cluster is processed one more time with Flockstream. I used this technique only for

commercial data sets because clusters generated by public data sets contain relatively

less number of data points and there were no need to make any further analysis for

the most populated cluster. As a result of this recursive technique, the clusters

formed seem to be purer. The results are presented below for both the public and the

commercial data sets, as well as the inner cluster analysis of the small commercial

data set.

4.3.1 Electricity Data Set

Initially, I begin with Electricity data set. As can be seen from Fig. 3.1, it is the most

balanced data set compared to others with a ratio of 1 : 1.38. Besides, it contains

the minimum number of instances with only 8 features that provide significantly low

execution times in the experiments.

While the parameters stream speed and initial agents are set to 300, epsilon is

increased from 0.1 to 1.0 by 0.1. Table 4.3 presents the results with each evaluation

metrics. The first of these metrics is macro-purity. It starts with 78% and gradually

decreases till to 59%. As you notice even from this result, epsilon has a great impact

on the performance. On the other hand, micro-purity shows almost the same trend

with macro-purity. Simply, micro-purity is always less than macro-purity with a

2%� 10% di↵erence.

Table 4.3: Results of Flockstream on Electricity data set: Change in Epsilon.
-e Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
0.1 0.7845 0.7390 0.7274 0.0022 1301 106
0.2 0.7281 0.6672 0.6566 0.0066 389 26
0.3 0.7051 0.6266 0.5913 0.0102 225 13
0.4 0.6640 0.5966 0.5288 0.0141 147 9
0.5 0.6829 0.5815 0.4292 0.0196 95 7
0.6 0.6492 0.5798 0.4002 0.0257 67 7
0.7 0.6345 0.5773 0.3856 0.0261 66 7
0.8 0.6149 0.5805 0.4505 0.0357 49 6
0.9 0.6268 0.5778 0.3918 0.0352 43 6
1.0 0.5958 0.5762 0.3760 0.0368 44 6

Moreover, Table 4.4 shows the results of stream speed experiments. The rate of

micro purity is likely to remain steady, although it oscillates between 58� 62%. This

experiment reveals that there has been a gradual increase in macro-precision, and also

38

a slight decrease in micro-precision with respect to the raise in stream speed. Also, it

does not make a major impact on the execution time. The number of clusters found

shows an increasing trend from top to bottom. This is because of the larger amount

of data points deployed all over the virtual space causing more interaction between

the agents. Thus, the higher numbers of clusters are created throughout the process.

Table 4.4: Results of Flockstream on Electricity data set: Change in Stream Speed.
-s Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.6189 0.5756 0.3682 0.0503 18 5
200 0.5927 0.5757 0.3715 0.0548 24 6
300 0.5958 0.5762 0.3760 0.0368 44 6
400 0.5938 0.5770 0.3817 0.0313 53 6
500 0.6134 0.5770 0.3874 0.0338 50 7
600 0.5992 0.5765 0.3831 0.0301 59 7
700 0.5994 0.5781 0.3967 0.0231 79 8
800 0.5919 0.5794 0.3920 0.0244 76 8
900 0.5833 0.5772 0.4290 0.0274 68 9
1000 0.5873 0.5766 0.4087 0.0267 70 9

In Table 4.5, the results of experiments on change in initial agents are presented.

It is not easy to say that there is a pattern on the obtained macro-purity values.

Similar to stream speed experiments, micro-purity is fixed to 57%. Trend in purity

values is almost valid for precision values as well. In terms of macro perspective, I

obtain precision values within 37� 41% without an order. Also, micro-precision has

almost never changed. Naturally, there is no change in the execution time and the

numbers of clusters are almost the same for all experiments.

Table 4.5: Results of Flockstream on Electricity data set: Change in Initial Agents.
-i Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.6204 0.5771 0.3848 0.0322 44 6
200 0.6148 0.5771 0.3814 0.0315 45 6
300 0.5958 0.5762 0.3760 0.0368 44 6
400 0.6219 0.5787 0.4071 0.0325 49 6
500 0.6151 0.5773 0.4018 0.0338 45 6
600 0.6204 0.5777 0.3850 0.0422 39 6
700 0.6048 0.5769 0.3771 0.0389 41 6
800 0.6178 0.5780 0.3956 0.0318 49 6
900 0.6186 0.5769 0.3760 0.0385 39 6
1000 0.6331 0.5780 0.4032 0.0295 54 6

39

4.3.2 Forest Covertype Data Set

In the experiments on Covertype data set, the default epsilon value has been deter-

mined as 0.8. As you can see in Table 4.6, the results for epsilon = 0.1 can not be

generated. This value is so low that most of the similarity comparisons returns false.

Thus, the number of agents remain in the system gradually increases and at one point

virtual space becomes fully loaded to take another agent. That is why, the process

can not be completed for that experiment.

In the epsilon experiments, approximately 10% change in macro-purity can be ob-

served. Although the maximum macro-purity is achieved when epsilon = 0.2, execu-

tion time of that experiment is infeasible. Instead, the experiment with epsilon = 1.0

provides a reasonable purity with much lower execution time and less number of

clusters. The same situation for purity is valid for micro perspective as well. On the

other hand, macro-precision decreases from 51% to 23%, while epsilon value increases.

However, micro-precision shows an increasing trend for a similar change in epsilon.

Table 4.6: Results of Flockstream on Covertype data set: Change in Epsilon.
-e Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
0.1 - - - - - -
0.2 0.8564 0.7115 0.5116 0.0066 988 1217
0.3 0.8310 0.6786 0.4527 0.0127 443 594
0.4 0.8099 0.6488 0.4364 0.0191 276 375
0.5 0.8028 0.6283 0.4298 0.0200 246 267
0.6 0.8201 0.6499 0.4244 0.0233 207 215
0.7 0.8108 0.6386 0.4015 0.0250 178 179
0.8 0.7913 0.6459 0.3558 0.0267 133 153
0.9 0.7766 0.6079 0.3036 0.0315 84 123
1.0 0.7646 0.5739 0.2319 0.0327 57 115

It is hard to estimate what may be the next purity value in the stream speed

experiments on Covertype. In Table 4.7, it can be seen that macro-purity increases

until streamspeed = 600, and then becomes steady around 77%. Likewise, micro-

purity has variable values between 53 � 61%. Increase in stream speed e↵ects the

precision in the opposite direction of the way it e↵ects the epsilon. Whereas as the

macro-precision increases, the micro-precision decreases. Additionally, the execution

time and the number of clusters increase as the stream speed increases.

As observed in experiments of Electricity data set, change in the number of initial

agents does not have that much impact on the results, as shown in Table 4.8. There

40

Table 4.7: Results of Flockstream on Covertype data set: Change in Stream Speed.
-s Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.7467 0.5043 0.1284 0.0363 25 89
200 0.7797 0.5432 0.2294 0.0432 42 100
300 0.7646 0.5739 0.2319 0.0327 56 115
400 0.7788 0.6069 0.3201 0.0295 97 143
500 0.7815 0.6217 0.2812 0.0211 144 158
600 0.7932 0.6077 0.3173 0.0178 163 171
700 0.7772 0.6372 0.3384 0.0179 179 184
800 0.7777 0.6343 0.3527 0.0174 212 197
900 0.7703 0.6241 0.3300 0.0168 216 205
1000 0.7689 0.6270 0.3413 0.0156 236 218

are some changes, but it is not easy to make a definite decision on trends.

Table 4.8: Results of Flockstream on Covertype data set: Change in Initial Agents.
-i Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.7275 0.5794 0.2266 0.0299 60 127
200 0.7649 0.5914 0.2400 0.0328 63 122
300 0.7646 0.5739 0.2319 0.0327 56 115
400 0.7852 0.6065 0.2471 0.0304 64 123
500 0.7541 0.5308 0.1838 0.0238 60 122
600 0.7520 0.5840 0.2550 0.0297 72 124
700 0.7424 0.5817 0.2636 0.0345 65 122
800 0.7440 0.5976 0.2556 0.0359 60 122
900 0.7453 0.5713 0.2373 0.0326 58 124
1000 0.7625 0.5694 0.2471 0.0322 62 122

4.3.3 Commercial-Small Data Set

In this section, I discussed the results of the Flockstream on the small commercial data

set both as a whole and two level of inner clusters. In this case, the epsilon parameter

is fixed to 0.2. I observed the distribution of the results according to change in

the parameters of epsilon, stream speed and initial number of agents. First, I will

cover the results of the data set as a whole, and then continue with the inner cluster

analysis.

4.3.3.1 Overall Data Set Analysis

In the experiments on Commercial-Small data set, I have specified epsilon value as

0.2. The results are examined according to the change in epsilon and stream speed.

41

Table 4.9, 4.10, and 4.11 summarize the results. The parameters are mostly chosen to

examine the wide range of values. However, given the memory and time limitations,

I was compelled to restrict the range of values in some of the experiments.

Table 4.9 shows the results of the Flockstream based on the epsilon values 0.05,

0.1, 0.2, and 0.3. The decrease in epsilon value shows a tendency to increase in

macro-purity and micro-purity measures. Lower epsilon values decrease the similarity

threshold, more similar data points are thus aggregated and more pure clusters are

formed. However, one of the disadvantages of this approach is that the execution time

gradually increases. The number of agents retained in the virtual space during the

maintenance process causes more comparison and significantly increase the execution

time. As an example, the experiment with 0.1 epsilon is three times faster than the

one with 0.05 epsilon. Nevertheless, it is obvious that the lower epsilon values provide

lots of pure clusters, compared to the higher values of epsilon.

In the stream speed experiments, provided in Table 4.10, I tried a large scale of

values from 200 to 1000. The change in stream speed does not impact the execution

time as much as epsilon experiments. Similarly, there is no pattern in macro F-Score,

but a slight change can be observed the micro one. Micro purity, meanwhile, remains

almost the same. However, there is approximately 5% change in macro purity from

the stream speed 200 to 1000. Although I obtain fewer number of clusters in lower

stream speed, they are more pure than the ones in higher speeds.

The change in the number of initial agents does not make a significant e↵ect to

the results, as you can see in Table 4.11. There are some slight changes in macro

measures but it is hard to say that there is a pattern. For that reason, I did not

pursue the sensitivity analysis of the number of initial agents for the inner cluster

analysis.

Table 4.9: Results of Flockstream on Commercial-Small data set: Change in Epsilon.
-e Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
0.05 0.9705 0.9231 0.6043 0.0025 840 1097
0.1 0.9552 0.9199 0.6052 0.0078 228 371
0.2 0.9365 0.9132 0.5051 0.0158 90 297
0.3 0.9456 0.9175 0.5699 0.0061 269 524

42

Table 4.10: Results of Flockstream on Commercial-Small data set: Change in Stream
Speed.

-s Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
200 0.9454 0.9135 0.5130 0.0192 75 252
300 0.9365 0.9132 0.5051 0.0158 90 297
400 0.9244 0.9153 0.5444 0.0149 109 302
500 0.9299 0.9165 0.5593 0.0109 144 381
600 0.9221 0.9149 0.5219 0.0103 137 345
700 0.9033 0.9166 0.5651 0.0091 178 364
800 0.8886 0.9157 0.5488 0.0080 192 391
900 0.8938 0.9162 0.5815 0.0075 220 413
1000 0.8999 0.9198 0.6240 0.0083 220 439

Table 4.11: Results of Flockstream on Commercial-Small data set: Change in Initial
Agents.

-i Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.9462 0.9135 0.4980 0.0171 92 279
200 0.9305 0.9142 0.5119 0.0163 86 277
300 0.9365 0.9132 0.5051 0.0158 90 297
400 0.9441 0.9142 0.5402 0.0143 100 274
500 0.9353 0.9135 0.4936 0.0152 89 274
600 0.9333 0.9133 0.5024 0.0161 95 274
700 0.9354 0.9130 0.4907 0.0138 98 276
800 0.9312 0.9129 0.4961 0.0141 97 275
900 0.9361 0.9144 0.5787 0.0201 90 274
1000 0.9331 0.9171 0.5735 0.0165 95 274

4.3.3.2 Inner Cluster Set Analysis

As mentioned earlier, the purpose of the inner cluster analysis is to split highly

populated clusters obtained from the Flockstream process into well-grained and pure

clusters. In order to achieve this, I examined two level of inner clusters because the

first layer analysis did not provide us the expected granularity.

4.3.3.2.1 First Layer

In the first layer, I have chosen the epsilon value as 0.2 because it is observed that

it outputs relatively small number of clusters and less execution time. Although it

results in less purity in the epsilon experiments, this still provides more than 90%

percent purity. In that experiment, almost 58% of the data points (almost 1M points)

were represented by one cluster. That’s why, I ran the Flockstream for that cluster

by using its data points as the input. The benefit of analyzing inner clusters is that

43

it allows us to work with lower epsilon values in less amount of time. As a result, the

better granularity is achieved on those data points.

Table 4.12 and Table 4.13 refer to the results of epsilon and stream speed exper-

iments. The range of the epsilon values is determined between the interval of 0.025

and 0.2. It is clear that the execution time of the first layer analysis is almost three

times faster than the whole data set analysis, when I compared the experiments with

the same epsilon value. Additionally, the purity of the experiments tend to increase,

similar to the previous experiments. The e↵ect of the stream speed is even less, only

2% change on macro purity between stream speeds. Apart from that, other metrics

show similar characteristics with the analysis of stream speed on the whole data set.

By means of first layer analysis, I achieved approximately 60% decrease on the most

populated data set with less than half a million data points. However, it was still

insu�cient to interpret the data correctly. That is why I analyzed one more level.

Similarly, the cluster with the highest number of data points is selected from the

related experiment and its data points were processed in the second layer.

Table 4.12: Results of Flockstream on First Inner Cluster of Commercial-Small data
set: Change in Epsilon.

-e Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
0.025 0.9880 0.9588 0.6411 0.0019 1144 1146
0.05 0.9762 0.9532 0.5307 0.0048 358 381
0.075 0.9795 0.9523 0.5134 0.0086 170 205
0.1 0.9627 0.9517 0.5053 0.0127 97 182
0.2 0.92512 0.9518 0.5098 0.0282 37 185

Table 4.13: Results of Flockstream on First Inner Cluster of Commercial-Small data
set: Change in Stream Speed.

-s Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.9606 0.9515 0.5081 0.0199 60 170
200 0.9528 0.9515 0.4980 0.0123 91 175
300 0.9627 0.9517 0.5053 0.0127 97 182
400 0.9399 0.9521 0.5162 0.0101 120 201
500 0.9426 0.9518 0.5089 0.0096 144 218
600 0.9691 0.9518 0.5041 0.0087 150 237
700 0.9564 0.9520 0.5074 0.0083 181 257
800 0.9534 0.9527 0.5216 0.0061 219 276
900 0.9574 0.9524 0.5183 0.0059 247 286
1000 0.9446 0.9528 0.5281 0.0062 254 296

44

4.3.3.2.2 Second Layer For the second layer, I selected the experiment where

epsilon is 0.05. It is the lowest epsilon value before the execution time jumps to

⇠ 19h. In the output of that experiment, 358 clusters are formed and the most

populated one has almost half a million data points. In order to provide better a

separation, I analyzed it with lower epsilon values, Table 4.14. At this time, I was

able to apply epsilon 0.025 and it took one third of the total execution time in first

layer analysis respectively. I have observed that the second layer is more‘e↵ective

with 76.3% decrease in number of points aggregated in one cluster.

There is an inverse proportion between macro and micro precision according to

change in epsilon value. Since the decrease in epsilon causes more but pure clusters,

the precision also increases for the macro, i.e 63%. The micro purity is almost never

a↵ected by the di↵erent epsilon or stream speed values. However, it achieves pretty

good macro purity when I consider the combination of the clusters with the same

label. As discussed in the other stream speed experiments, its e↵ect on the number

of clusters and the execution time is limited as shown in Table 4.15. Hence the layers

bring more similar data points together, it is easy to notice that the response to the

change is little. In summary, even though this recursive technique causes additional

processing, it improves the distribution of the data points for the clusters of the overall

data set.

Table 4.14: Results of Flockstream on Second Inner Cluster of Commercial-Small
data set: Change in Epsilon.

-e Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
0.025 0.9846 0.9575 0.6304 0.0034 621 397
0.05 0.9779 0.9530 0.5361 0.0127 129 104
0.075 0.9854 0.9520 0.4877 0.0209 53 96
0.1 0.9838 0.9520 0.4877 0.0331 33 95

4.3.4 KDD 2009 Churn Data Set

In the evaluation of the public data set, the parameters are tuned to the values shown

in the Table 4.1 except the epsilon parameter. Since every data set shows di↵erent

characteristics from each other, the parameters should be tuned accordingly.

In the evaluation of the public data, the default value for epsilon is chosen as 0.8.

Table 4.16 contains ten experiments for various epsilon values from 0.4 to 4.0. The

45

Table 4.15: Results of Flockstream on Second Inner Cluster of Commercial-Small
data set: Change in Stream Speed.

-s Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.9756 0.9527 0.5118 0.0219 68 98
200 0.9786 0.9526 0.5028 0.0127 102 95
300 0.9779 0.9530 0.5361 0.0127 129 104
400 0.9720 0.9528 0.5088 0.0115 134 115
500 0.9687 0.9529 0.5365 0.0097 164 128
600 0.9710 0.9542 0.5718 0.0092 195 151
700 0.9692 0.9543 0.5810 0.0080 241 166
800 0.9721 0.9541 0.5518 0.0066 274 181
900 0.9675 0.9542 0.5612 0.0056 332 197
1000 0.9674 0.9532 0.5436 0.0050 364 201

time needed to execute these experiments is not as much as Commercial-Small data

set. Although KDD 2009 Churn data set includes much larger number of attributes

(more than 10 times), it only adds more load to the distance calculations. However,

the main problem is to handle continuously streaming data, which means continuously

adding agents to the system in conjunction with both virtual and feature space.

Since this data set consist of only 50, 000 instances, the longest experiment does

not exceed an hour, see Table 4.16. The evaluation metrics micro purity and macro F-

Score remained relatively stable for every epsilon value. In contrast to the commercial

data analysis, it is not clear that the macro purity values follow a particular pattern.

On the micro F-score, I observe a gradual increase until epsilon = 2.0. Nevertheless,

with a rate of 93% purity, Flockstream performed well for epsilon = 0.8. Therefore,

I used this epsilon in the stream speed experiments.

Similar to the other experiments, increasing the stream speed has an impact on

number of clusters and execution time with a rising trend. The best purity achieved

in these experiments is 93% for stream speed 300, which is in line with the best

result from the epsilon experiments. From the macro perspective, precision values

are around 48%. Micro precision values gradually decrease while the stream speed

increases.

4.4 Discussion on the Performances of Algorithms Employed

In this section, I present experimental results of the selected stream clustering algo-

rithms on both public and commercial data sets. All related experiments are done

46

Table 4.16: Results of Flockstream on KDD 2009 Churn data set: Change in Epsilon.
-e Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
0.4 0.9112 0.9306 0.4868 0.0134 133 59
0.5 0.9036 0.9284 0.4825 0.0178 103 26
0.6 0.9125 0.9273 0.4811 0.0231 71 16
0.7 0.8956 0.9267 0.4823 0.0257 61 12
0.8 0.9302 0.9265 0.4809 0.0328 40 11
0.9 0.9256 0.9264 0.4809 0.0378 31 11
1.0 0.9226 0.9264 0.4809 0.0484 27 11
2.0 0.9225 0.9265 0.4809 0.1071 10 8
3.0 0.9332 0.9265 0.4809 0.0917 13 8
4.0 0.9184 0.9266 0.4809 0.0953 12 8

Table 4.17: Results of Flockstream on KDD 2009 Churn data set: Change in Stream
Speed

-s Macro Purity Micro Purity Macro F-Score Micro F-Score NoC ET (min)
100 0.8781 0.9265 0.4809 0.0661 16 8
200 0.9024 0.9265 0.4814 0.0467 31 10
300 0.9302 0.9265 0.4809 0.0328 40 11
400 0.9144 0.9267 0.4815 0.0273 51 14
500 0.9315 0.9266 0.4809 0.0280 52 15
600 0.9145 0.9267 0.4815 0.0248 67 17
700 0.9205 0.9265 0.4815 0.0249 71 19
800 0.9287 0.9267 0.4809 0.0236 75 21
900 0.9202 0.9266 0.4809 0.0219 80 20
1000 0.9133 0.9268 0.4821 0.0187 94 22

with the MOA Release 2014.04. For the sake of simplicity, parameters of the MOA

algorithms are kept as default except DenStream. Instead of default values of the pa-

rameters used in DenStream, I specified them according to the original Flockstream

algorithm and my experiments discussed in the previous section. The parameters are

set to values as discussed at the beginning of this chapter except the epsilon value.

Table 4.18 and Table 4.19 show the performances of algorithms employed on Elec-

tricity and Covertype data sets, respectively. I have chosen the experiments where

epsilon parameter is 0.3 and 0.6 on parameter sensitivity analysis of Electricity and

Covertype data sets, respevtively. On the other hand, Table 4.20, 4.21 and 4.22 sum-

marize the performances of algorithms on Commercial-Big, Commercial-Small, and

KDD 2009 churn data sets and epsilon values are set as 0.1, 0.1, and 0.8, respectively.

In order to prevent confusion, the names of evaluation metrics are given as the same

names mentioned in MOA, such that F1-P, F1-R, and Purity.

As seen in Table 4.18, the algorithms perform almost the same on Electricity

47

Table 4.18: Performances of Algorithms on Electricity Data Set
Algorithms F1-P F1-R Purity
Flockstream 0.0102 0.0880 0.7051
DenStream 0.1460 0.1564 0.7601
CluStream 0.0831 0.0972 0.7431
ClusTree 0.0832 0.1009 0.7456

data set. The best precision is achieved by DenStream with 14%. CluStream and

ClusTree follow with 8% and Flockstream clusters with 1% precision. On the other

hand, the found recall measures increase starting from 8% one by one for Flockstream,

CluStream, and ClusTree respectively. The purity values of CluStream and ClusTree

are pretty much same with 74%. Whereas the purity of Flockstream clusters is 70%

and the purity of DenStream clusters is 76%.

Table 4.19: Performances of Algorithms on Covertype Data Set
Algorithms F1-P F1-R Purity
Flockstream 0.0233 0.2939 0.8201
DenStream 0.0264 0.0381 0.8102
CluStream 0.0310 0.0393 0.7938
ClusTree 0.0306 0.0387 0.7934

On the Covertype data set, Table 4.19, Flockstream achieves a purity measure of

82%. While both CluStream and ClusTree performs 79%, DenStream exceeds them

by 2%. Recall values are around 3% for the all algorithms with only slight di↵erences.

In the precision side, Flockstream and DenStream performs 2%, following behind the

CluStream and ClusTree with 3% precision.

The first churn data set chosen for performance comparison is Commercial-Small,

where Table 4.20 presents the performances. Flockstream generally provides lower

precision and higher recall than the MOA algorithms. From the purity point of view,

it exhibited an outstanding performance with 25% better purity than DenStream.

The CluStream and ClusTree results are almost the same. The biggest di↵erence

between them is revealed in purity level where CluStream results are 1% better than

the ClusTree.

Table 4.21 presents the results on the bigger commercial data set. Similar to the

results on the small one, Flockstream achieves 98% purity. DenStream also slightly

48

Table 4.20: Performances of Algorithms on Commercial-Small Data Set
Algorithms F1-P F1-R Purity
Flockstream 0.0078 0.4014 0.96
DenStream 0.3197 0.2467 0.83
CluStream 0.0384 0.0281 0.54
ClusTree 0.0369 0.0270 0.53

increases its purity but the big increase comes from the Clustree and CluStream with

20% and 18%, respectively. Best precision value is achieved by DenStream, around

14%. Again, Flockstream returns the highest recall value of all the tested algorithms.

Table 4.21: Performances of Algorithms on Commercial-Big Churn Data Set
Algorithms F1-P F1-R Purity
Flockstream 0.0093 0.4431 0.98
DenStream 0.1359 0.1060 0.85
CluStream 0.0824 0.0629 0.72
ClusTree 0.0859 0.0654 0.73

The results of public data set shows that the performance of Flockstream is even

more pronounced over MOA algorithms. As in the case with the commercial data

sets experiments, the purity of the Flockstream on public data set is the highest. The

other three algorithms produced much lower purity rates with an average of 20%.

Although the values in the F1-P and F1-R columns are low in general, the results of

the Flockstream are still better on the basis of precision and recall. From the recall

point of view, MAO algorithms results are almost the same. On the other hand, recall

for the Flockstream is much higher, around 48%.

Table 4.22: Performances of Algorithms on KDD 2009 Churn Data Set
Algorithms F1-P F1-R Purity
Flockstream 3.28E-2 4.75E-1 0.93
DenStream 4.67E-4 2.33E-4 0.21
CluStream 2.15E-4 1.07E-4 0.20
ClusTree 6.82E-4 3.41E-4 0.19

Chapter 5

Conclusions and the Future Work

The objective of this thesis was to investigate the performance of stream clustering

techniques on dynamic networks. To this end, the performance of the Flockstream,

bio-inspired stream clustering algorithm, and three other state-of-the-art stream clus-

tering algorithms; namely CluStream, DenStream, and ClusTree are designed, built

and evaluated on the churn detection task. I have performed my experiments on five

data sets and discussed the results using the evaluation metrics; precision, recall and

purity values of the found clusters. In my experiments, I observed that the epsilon

value plays a vital role in the performance of Flockstream. Larger epsilon values cause

irrelevant data points to aggregate in the same cluster. In contrast, only substantially

similar data points became a swarm and large number of data points remain in the

system for the lower epsilon values. Thus, the data points that can not become or join

a flock continue to occupy a place in the virtual space. Due to the limited number

of cells in the virtual space, it becomes full after a certain period of time and the

system can not accept incoming data. Therefore, the choice of epsilon value is very

important for Flockstream functionality.

Based on the performances of the algorithms employed in this research on both

the commercial and the public data sets, it is clear that Flockstream presents re-

markable results, especially on purity. While DenStream is the closest follower on

the commercial data sets, there is still a considerable di↵erence between them. In

the experiments on the public data sets, superiority of Flockstream on the purity is

incontestable. When I examine the results from the precision point of view, both Den-

Stream and Flockstream produce the best results for the commercial and the public

data sets. Due to the reason that the precision values are evaluated from the micro

perspective, resulting values are rather low for all the analyzed algorithms. Finally,

when I consider recall values for the algorithms, Flockstream has the highest recall

49

50

values on all data sets. The average of the maximum F-Scores of each class deter-

mines the final value of the recall metric. Because Flockstream produces relatively a

large number of clusters, the probability of achieving better F-Scores is higher than

the other algorithms. For that reason, I would expect high recall values compared to

the other algorithms.

In conclusion, the e↵ect of stream clustering techniques on churn detection re-

search is notable. This approach can be applied to various service industries in addi-

tion to the gaming and the telecommunication sectors. Future work will investigate

how to speed up the Flockstream algorithm as well as how to improve the precision

measurements.

Bibliography

[1] Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C.,
Sohler, C.: Streamkm++: A clustering algorithm for data streams. Journal of
Experimental Algorithmics (JEA) 17, 2–4 (2012)

[2] Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proceedings of the 29th international conference on Very large
data bases-Volume 29. pp. 81–92. VLDB Endowment (2003)

[3] Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clus-
tering of high dimensional data streams. In: Proceedings of the Thirtieth in-
ternational conference on Very large data bases-Volume 30. pp. 852–863. VLDB
Endowment (2004)

[4] Ali, Ö.G., Arıtürk, U.: Dynamic churn prediction framework with more e↵ec-
tive use of rare event data: The case of private banking. Expert Systems with
Applications 41(17), 7889–7903 (2014)

[5] Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis,
a framework for stream classification and clustering. Journal of Machine Learning
Research 10, 1601–1604 (2010)

[6] Blackard, J.A.: Comparison of neural networks and discriminant analysis in
predicting forest cover types. Colorado State University (1998)

[7] Burez, J., Van den Poel, D.: Separating financial from commercial customer
churn: A modeling step towards resolving the conflict between the sales and
credit department. Expert Systems with Applications 35(1), 497–514 (2008)

[8] Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM. vol. 6, pp. 328–339. SIAM (2006)

[9] Chu, B.H., Tsai, M.S., Ho, C.S.: Toward a hybrid data mining model for cus-
tomer retention. Knowledge-Based Systems 20(8), 703–718 (2007)

[10] Cui, X., Potok, T.E.: A distributed agent implementation of multiple species
flocking model for document partitioning clustering. In: Cooperative Information
Agents X, pp. 124–137. Springer (2006)

[11] Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm intelligence. Elsevier (2001)

[12] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings of the
KDD Conference (AAAI). pp. 226–231 (1996)

51

52

[13] Forestiero, A., Pizzuti, C., Spezzano, G.: Flockstream: a bio-inspired algorithm
for clustering evolving data streams. In: Tools with Artificial Intelligence, 2009.
ICTAI’09. 21st International Conference on. pp. 1–8. IEEE (2009)

[14] Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: ACM
SIGMOD. pp. 47–57 (1984)

[15] Guyon, I., Lemaire, V., Boullé, M., Dror, G., Vogel, D.: Analysis of the kdd cup
2009: Fast scoring on a large orange customer database. JMRL Workshop and
Conference Proceedings 7, 1–22 (2009)

[16] Harries, M., Wales, N.S.: Splice-2 comparative evaluation: Electricity pricing
(1999)

[17] Huang, B.Q., Kechadi, T.M., Buckley, B., Kiernan, G., Keogh, E., Rashid, T.:
A new feature set with new window techniques for customer churn prediction
in land-line telecommunications. Expert Systems with Applications 37(5), 3657–
3665 (2010)

[18] Karahoca, A., Karahoca, D.: Gsm churn management by using fuzzy c-means
clustering and adaptive neuro fuzzy inference system. Expert Systems with Ap-
plications 38(3), 1814–1822 (2011)

[19] Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The clustree: indexing micro-
clusters for anytime stream mining. Knowledge and information systems 29(2),
249–272 (2011)

[20] Larivière, B., Van den Poel, D.: Investigating the role of product features in pre-
venting customer churn, by using survival analysis and choice modeling: The case
of financial services. Expert Systems with Applications 27(2), 277–285 (2004)

[21] Lee, Y.H., Wei, C.P., Cheng, T.H., Yang, C.T.: Nearest-neighbor-based ap-
proach to time-series classification. Decision Support Systems 53(1), 207–217
(2012)

[22] Lemmens, A., Croux, C.: Bagging and boosting classification trees to predict
churn. Journal of Marketing Research 43(2), 276–286 (2006)

[23] Moise, G., Sander, J., Ester, M.: P3c: A robust projected clustering algorithm.
In: Data Mining, 2006. ICDM’06. Sixth International Conference on. pp. 414–
425. IEEE (2006)

[24] Mozer, M.C., Wolniewicz, R., Grimes, D.B., Johnson, E., Kaushansky, H.: Pre-
dicting subscriber dissatisfaction and improving retention in the wireless telecom-
munications industry. Neural Networks, IEEE Transactions on 11(3), 690–696
(2000)

53

[25] Nasraoui, O., Uribe, C.C., Coronel, C.R., Gonzalez, F.: Tecno-streams: Tracking
evolving clusters in noisy data streams with a scalable immune system learning
model. In: Data Mining, 2003. ICDM 2003. Third IEEE International Conference
on. pp. 235–242. IEEE (2003)

[26] Neslin, S.A., Gupta, S., Kamakura, W., Lu, J., Mason, C.H.: Defection detec-
tion: Measuring and understanding the predictive accuracy of customer churn
models. Journal of marketing research 43(2), 204–211 (2006)

[27] Ng, R.T., Han, J.: Clarans: A method for clustering objects for spatial data
mining. Knowledge and Data Engineering, IEEE Transactions on 14(5), 1003–
1016 (2002)

[28] Owczarczuk, M.: Churn models for prepaid customers in the cellular telecom-
munication industry using large data marts. Expert Systems with Applications
37(6), 4710–4712 (2010)

[29] Pendharkar, P.C.: Genetic algorithm based neural network approaches for pre-
dicting churn in cellular wireless network services. Expert Systems with Appli-
cations 36(3), 6714–6720 (2009)

[30] Van den Poel, D., Lariviere, B.: Customer attrition analysis for financial ser-
vices using proportional hazard models. European journal of operational research
157(1), 196–217 (2004)

[31] Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model.
ACM Siggraph Computer Graphics 21(4), 25–34 (1987)

[32] Tsai, C.F., Chen, M.Y.: Variable selection by association rules for customer
churn prediction of multimedia on demand. Expert Systems with Applications
37(3), 2006–2015 (2010)

[33] Tu, L., Chen, Y.: Stream data clustering based on grid density and attraction.
ACM Transactions on Knowledge Discovery from Data (TKDD) 3(3), 12 (2009)

[34] Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B.: New insights into
churn prediction in the telecommunication sector: A profit driven data mining
approach. European Journal of Operational Research 218(1), 211–229 (2012)

[35] Xiao, J., Xie, L., He, C., Jiang, X.: Dynamic classifier ensemble model for
customer classification with imbalanced class distribution. Expert Systems with
Applications 39(3), 3668–3675 (2012)

[36] Xie, Y., Li, X., Ngai, E., Ying, W.: Customer churn prediction using improved
balanced random forests. Expert Systems with Applications 36(3), 5445–5449
(2009)

[37] Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an e�cient data clustering
method for very large databases. In: ACM SIGMOD. pp. 103–114 (1996)

54

[38] Zhao, J., Dang, X.H.: Bank customer churn prediction based on support vec-
tor machine: taking a commercial bank’s vip customer churn as the exam-
ple. In: Wireless Communications, Networking and Mobile Computing, 2008.
WiCOM’08. 4th International Conference on. pp. 1–4. IEEE (2008)

[39] Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams
over sliding windows. Knowledge and Information Systems 15(2), 181–214 (2008)

[40] Zopounidis, C., Mavri, M., Ioannou, G.: Customer switching behaviour in greek
banking services using survival analysis. Managerial Finance 34(3), 186–197
(2008)

Appendix A

MOA Result Figures

A.1 Electricity

Figure A.1: MOA Results of DenStream on Electricity Data Set: F1-P

55

56

Figure A.2: MOA Results of DenStream on Electricity Data Set: F1-R

Figure A.3: MOA Results of DenStream on Electricity Data Set: Purity

57

Figure A.4: MOA Results of CluStream on Electricity Data Set: F1-P

Figure A.5: MOA Results of CluStream on Electricity Data Set: F1-R

58

Figure A.6: MOA Results of CluStream on Electricity Data Set: Purity

Figure A.7: MOA Results of ClusTree on Electricity Data Set: F1-P

59

Figure A.8: MOA Results of ClusTree on Electricity Data Set: F1-R

Figure A.9: MOA Results of ClusTree on Electricity Data Set: Purity

60

A.2 Covertype

Figure A.10: MOA Results of DenStream on Covertype Data Set: F1-P

Figure A.11: MOA Results of DenStream on Covertype Data Set: F1-R

61

Figure A.12: MOA Results of DenStream on Covertype Data Set: Purity

Figure A.13: MOA Results of CluStream on Covertype Data Set: F1-P

Figure A.14: MOA Results of CluStream on Covertype Data Set: F1-R

62

Figure A.15: MOA Results of CluStream on Covertype Data Set: Purity

Figure A.16: MOA Results of ClusTree on Covertype Data Set: F1-P

Figure A.17: MOA Results of ClusTree on Covertype Data Set: F1-R

63

Figure A.18: MOA Results of ClusTree on Covertype Data Set: Purity

64

A.3 KDD 2009 Churn

Figure A.19: MOA Results of DenStream on KDD2009 Data Set: F1-P

65

Figure A.20: MOA Results of DenStream on KDD2009 Data Set: F1-R

Figure A.21: MOA Results of DenStream on KDD2009 Data Set: Purity

66

Figure A.22: MOA Results of CluStream on KDD2009 Data Set: F1-P

Figure A.23: MOA Results of CluStream on KDD2009 Data Set: F1-R

67

Figure A.24: MOA Results of CluStream on KDD2009 Data Set: Purity

Figure A.25: MOA Results of ClusTree on KDD2009 Data Set: F1-P

68

Figure A.26: MOA Results of ClusTree on KDD2009 Data Set: F1-R

Figure A.27: MOA Results of ClusTree on KDD2009 Data Set: Purity

69

A.4 Commercial-Small

Figure A.28: MOA Results of DenStream on Commercial-Small Data Set: F1-P

Figure A.29: MOA Results of DenStream on Commercial-Small Data Set: F1-R

70

Figure A.30: MOA Results of DenStream on Commercial-Small Data Set: Purity

Figure A.31: MOA Results of CluStream on Commercial-Small Data Set: F1-P

Figure A.32: MOA Results of CluStream on Commercial-Small Data Set: F1-R

71

Figure A.33: MOA Results of CluStream on Commercial-Small Data Set: Purity

Figure A.34: MOA Results of ClusTree on Commercial-Small Data Set: F1-P

Figure A.35: MOA Results of ClusTree on Commercial-Small Data Set: F1-R

72

Figure A.36: MOA Results of ClusTree on Commercial-Small Data Set: Purity

73

A.5 Commercial-Big

Figure A.37: MOA Results of DenStream on Commercial-Big Data Set: F1-P

Figure A.38: MOA Results of DenStream on Commercial-Big Data Set: F1-R

74

Figure A.39: MOA Results of DenStream on Commercial-Big Data Set: Purity

Figure A.40: MOA Results of CluStream on Commercial-Big Data Set: F1-P

Figure A.41: MOA Results of CluStream on Commercial-Big Data Set: F1-R

75

Figure A.42: MOA Results of CluStream on Commercial-Big Data Set: Purity

Figure A.43: MOA Results of ClusTree on Commercial-Big Data Set: F1-P

Figure A.44: MOA Results of ClusTree on Commercial-Big Data Set: F1-R

76

Figure A.45: MOA Results of ClusTree on Commercial-Big Data Set: Purity

