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ABSTRACT 

The soil bacterium Streptomyces venezuelae ISP5230 has been studied extensively for its 

ability to produce the jadomycin family of natural products. This family of angucyclines 

is distinguished by a characteristic benz[a]anthracene scaffold, the 2,6-dideoxysugar L-

digitoxose, and an amino acid that is usually fused directly into the polyaromatic 

backbone as an oxazolone ring. The incorporation of the amino acid proceeds through a 

spontaneous process, which can be exploited through precursor-directed biosynthesis by 

altering the nitrogen source in Streptomyces venezuelae ISP5230 fermentations.  

Precursor-directed biosynthesis using diamino acids L-ornithine and L-lysine are 

described. This resulted in the successful isolation and characterization of a structurally 

unique eight-membered L-ornithine ring-containing jadomycin, expanding on the 

structural diversity permissible from this spontaneous process. This compound was 

further derivatized, via semi-synthetic methods, to furnish a small library of jadomycin 

amides containing a unique eight-membered heterocycle. The isolation and 

characterization of the jadomycin-like analogue L-digitoxosyl-phenanthroviridin is also 

discussed. Bioactivities of these structurally novel jadomycins were established and the 

structure activity relationship was explored between these compounds and the typical 

oxazolone-ring containing jadomycins. 

 In addition, the characterization of JadX, a protein of undetermined function 

coded for in the jadomycin biosynthetic gene cluster is reported. The ability of JadX to 

bind both chloramphenicol and jadomycins and affect production of these natural 

products is demonstrated, suggesting a role in regulation. This work suggests JadX is a 

new class of ñatypicalò response regulator involved in the cross-regulation of disparate 

natural products via an end-product-mediated control mechanism. This is the first 

example of characterization of these ñJadX-likeò proteins and could shed light onto a 

previously unknown group of important regulatory proteins.   
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CHAPTER 1: INTRODUCTION  

1.1. Natural Products Discovery 

Many of todayôs clinically relevant drugs used for treatment of diseases have been 

isolated from or have been inspired by natural sources.
1
 The use of ñnatural productsò for 

treatment of disease and ailments dates back thousands of years, primarily with the use of 

plant extracts as medicines.2  As science and chemical techniques advanced, interest 

turned to isolation and characterization of the active compounds from these traditional 

medicines, with some of the earliest examples including salicylic acid and morphine, both 

of which are still used today.2, 3 The identification of new bioactive natural products 

gained interest from the pharmaceutical industry after the discovery of penicillin.4 

Isolated from Penicillium fungi, penicillin was found to have potent antibiotic activity 

and low toxicity.5, 6 As such, pharmaceutical companies and academic laboratories began 

compiling large libraries of microorganisms in an effort to identify new bioactive 

metabolites.5 This sudden interest in microorganisms ultimately led to the discovery of 

several important antibiotics including: streptomycin (1),7 chlortetracycline (2),8 

chloramphenicol (3)9, 10  and vancomycin (4)11 (Figure 1). These compounds were of such 

clinical and societal importance, Nobel Prizes in Physiology and Medicine were awarded 

for these discoveries, first to Fleming, Chain and Florey for penicillin in 1945, and later 

to Waksman for streptomycin in 1952.   

Unfortunately, as time passed, problems arose associated with the re-discovery of 

compounds, slowing isolation and characterization of new natural products, increasing 

the cost for their discovery. With increasing costs and lower rate of discovery of novel 

molecules, interest in natural products from the pharmaceutical industry waned.12 Despite 

this reduced enthusiasm for natural products as a source of new bioactive compounds, 

their continued importance in the medical field cannot be overstated. A 2012 review by 

Newman and Cragg identified that approximately 50% of all approved drugs between 

1981 and 2010 were natural products, natural product derived, or synthetic compounds 

with a natural product pharmacophore. Furthermore, when examining anticancer 

therapeutic agents approved for clinical use between 1940 and 2010, this number 
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increases to 64%.13 Even today, many natural products and their derivatives continue to 

be evaluated for their potential as therapeutic medicines.14 With an estimated >99% of 

natural bacteria yet to be cultured, nature still represents a relatively untouched reservoir 

of potential compounds.15  

 

 

Figure 1. Structures of the natural products streptomycin (1), chlortetracycline (2), 

chloramphenicol (3), and vancomycin (4). 

 

Of the major natural products producing organisms, the Gram-positive 

actinomycetes group of bacteria are among the best. Specifically, the Actinobacteria 

genus Streptomyces is one of the largest sources of bioactive natural products.16 

Streptomyces species are estimated to account for the production of upwards of 32% of 
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all identified bioactive metabolites.17, 18 Many of these microbial natural products are 

classified as secondary metabolites. These compounds are not essential for cell 

proliferation, but, rather, are produced by the host organism often in response to 

physiological or environmental stress, in contrast to primary metabolites which are 

essential for survival and proliferation of an organism.19 Biosynthesis of these molecules 

is accomplished via a cascade of enzymes and proteins cooperatively working together to 

furnish complex structures. Genes coding for these biosynthetic enzymes and proteins are 

often physically situated in close proximity to one another in biosynthetic gene clusters.20, 

21 Many of these biosynthetic clusters remain silent under standard culturing conditions. 

Only under very specific conditions will the organism activate production of these 

pathways, making discovery of the natural products they produce often difficult.18 One 

such ñcrypticò family of natural products are the jadomycins. 

1.2. Jadomycin History: Initial Isolation and Structural Elucidation  

The jadomycins were serendipitously discovered by Vining and coworkers while 

studying biosynthesis of 3 from the soil bacterium Streptomyces venezuelae ISP5230.22, 23 

While incubating S. venezuelae, an incubator malfunction resulted in overheating. 

Fermentations were exposed to a temperature of 37 °C overnight, effectively heat 

shocking the bacteria. After 24 h, cultures which were typically colourless were instead 

dark red. From these cultures, the first example of the jadomycin family of natural 

products, jadomycin A (5), was isolated and characterized (Figure 2).23 Conditions for 

production of 5 were refined by substituting galactose (used for production of 3) with 

glucose, and increasing the incubation temperature from 28 °C to 37 °C. Under these 

conditions, major natural product production was switched to 5. The polyaromatic 

backbone of 5 suggested biosynthesis via a polyketide synthase (PKS) pathway. In 

addition, an L-isoleucine moiety was identified fused directly into the B-ring of the 

jadomycin backbone, forming a 5-membered oxazolone ring system.23 Soon after, the 

glycosylated analogue jadomycin B (6) was isolated (Figure 2).24 This molecule was 

found to contain the rare dideoxysugar L-digitoxose bound to the aglycone via an O-

glycosidic linkage on the D-ring (Figure 2). Continued work towards the optimization of 

growth conditions for production of 6, led to the discovery that in addition to heat shock, 
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S. venezuelae switched production from 3 to 6 upon phage infection or ethanol shock 

during fermentations.25 Of these stressing conditions, ethanol treatment resulted in the 

highest production of 6.25  

 

 

Figure 2. Structures of jadomycin A (5) including ring labeling and jadomycin B (6). 

1.3. Type-II Polyketide Synthases (PKS) and the Angucyclines 

As previously mentioned, the actinomycetes are a large source of structurally diverse 

secondary metabolite natural products. Many of the compounds produced fall under the 

classification of polyketide natural products. Polyketides are a large family of structurally 

diverse compounds found throughout nature with production occurring in bacteria, fungi 

and plants.
26

 Interest in the polyketides is mainly associated with their exceptional 

biological activity and potential for drug discovery, with many exhibiting antibiotic, 

anticancer, antifungal, anti-parasitic and even immunosuppressive activity.26 The 

biosynthesis of these molecules is accomplished by a family of enzymes known as the 

polyketide synthases (PKSs). These enzymes act in a similar fashion to fatty acid 

synthases (FASs) in that they proceed via the covalent binding of a starter unit (acetyl-

CoA, propionyl-CoA etc.) to an acyl carrier protein (ACP) followed by a series of 

elongation steps fusing units together, ultimately forming an extended chain.27 

Differential reduction, dehydration and cyclization leads to a structurally diverse group of 

compounds that are further derivatized, often by glycosylation or oxidation, via post-PKS 

tailoring enzymes.28  

The PKSs are categorized into three groups: type I, type II and type III.26 The type 

I PKSs are large multifunctional enzymes that act in a non-iterative fashion and are 

responsible for the biosynthesis of macrolides, a group of compounds containing large 
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lactone rings, examples include the clinically important erythromycin (7)29, and the first 

isolated macrolide pikromycin (8)30 (Figure 3A). 

Type-II PKSs are usually complexes of multiple mono-functional proteins. The 

type II PKSs are only found in actinomycetes and are responsible for the production of 

highly cyclized, often polyaromatic natural products.31 This is accomplished through a 

series of iterative condensations guided by the heterodimer ketosynthase-chain length 

factor (KSŬ-KSɓ) and an acyl carrier protein (ACP), producing a non-reduced, enzyme 

tethered polyketide chain (Figure 3B).31 Chain extension/length of these polyketide 

intermediates is regulated by the KSŬ-KSɓ system.31, 32 This is followed by the appropriate 

folding of the polyketide intermediate, again dictated by the KSŬ-KSɓ system, to ensure 

specific cyclization.31 Finally, a series of ketoreductases, and aromatase/cyclases catalyze 

the ring closing, producing a fully cyclized intermediate which can then be decorated by a 

host of post-PKS modifying enzymes (Figure 3B). Some examples of type II PKS derived 

natural products include the clinically important doxorubicin (9) and daunorubicin (10), 

both currently in use as clinical chemotherapeutic agents (Figure 3A).33 
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Figure 3. (A) Structures of typical type I, II and III PKS derived natural products, 

erythromycin (7), pikromycin (8), doxorubicin (9), daunorubicin (10), 

tetrahydroxynaphthalene (11) and flaviolin (12); (B) simplified biosynthetic mechanism 

for the formation of the type II PKS derived doxorubicin (9). Figure adapted from Shen.
26

 

 

The third example of the PKSs are the type III PKSs. These are single enzymes 

that exist as homodimers. These dimeric systems are responsible for catalyzing initiation, 

elongation, and cyclization, yielding polyketide products.34 Because of the simplicity of 

the homodimeric system, the type III PKS derived natural products are often not as 

structurally complex as those produced by the type I or type II PKSs. Examples include 

tetrahydroxynaphthalene (11) and flaviolin (12) (Figure 3A).35 

In the case of type II PKSs, the folding of the intermediate polyketide-chain plays 

a large role in dictating the structure of the backbone of the final natural product. 

Compounds 5 and 6 structurally resemble the angucyclines, a unique group of 

glycosylated type II PKS derived natural products, named for the ñangledò tetracyclic 

benz[a]anthracene scaffold from which they are derived (Figure 4).36, 37 This large group 
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of secondary metabolites was identified in the mid-1960s with the discoveries of non-

glycosylated tetrangomycin (13)38 and tetrangulol (14)39, and today constitutes the largest 

group of type II PKS derived natural products (Figure 4).37  The structural diversity of 

this group arises from the configurations of polyaromatic backbone and the decoration of 

these scaffolds by a wide array of post-PKS tailoring enzymes, giving these compounds a 

wide range of bioactivities.37 The structural similarities of 5 and 6 to the angucyclines, 

and 
13

C-labeling experiments (Vining unpublished data) putatively identified the 

jadomycins as a group of type II PKS derived natural products.  

 

 

Figure 4. Structures of benz[a]anthracene (left), and the benz[a]anthracene derived 

tetrangomycin (7) and tetrangulol (8). 

1.4. Polyketide Elongation and Cyclization 

With structural similarities identified between the jadomycins and the type-II PKS 

derived angucyclines, Vining and coworkers began work to locate and identify the S. 

venezuelae PKS genes responsible for biosynthesis. In 1994 a gene cluster consisting of 

five open reading frames (ORFs) was identified.40 Predicted amino acid sequence 

comparisons of the ORFs identified strong similarities to subunits of a type-II PKS 

system.40 ORF1 and ORF2 (jadA and jadB respectively) were shown to likely code for 

the keto-synthase (KS) units, KSŬ and KSɓ, responsible for polyketide chain elongation 

and chain length determination. ORF3 (jadC) was identified as coding for an ACP. ORF4 

(jadD) was putatively characterized to code for a bifunctional cyclase/dehydratase, and 

ORF5 (jadE) likely coded for a ketoreductase.40 The discovery of jadI was reported soon 

after, and was found to be essential for cyclization of the proposed decaketide 

intermediate (Scheme 1). In 2000 and 2001, three more genes were identified (jadJ, 

jadM, and jadN) for their roles in initial polyketide synthesis.41, 42 jadJ was identified by 
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sequence comparison to code for as an acyl-coenzyme A carboxylase, responsible for the 

carboxylation of acetyl-CoA to readily form malonyl-CoA for polyketide elongation.41 

jadM showed homology with a phosphopantetheinyl transferase, while jadN was 

identified as a potential acyl-CoA decarboxylase enzyme; all of which play vital roles in 

polyketide synthesis and chain elongation.41 The six genes jadABCJMN code for the core 

PKS enzymes responsible for the formation of a decapolyketide intermediate, likely from 

one acetyl-CoA and 9 malonyl-CoA units (Scheme 1). Heterologous expression of 

jadABCDEI in S. lividans 1326 by Hutchinson and co-workers resulted in the isolation of 

the angucyclinone UWM6 (15) leading to belief at the time that 15 was a key 

intermediate in jadomycin biosynthesis.43, 44  It was discovered later that 15 was likely not 

the true biosynthetic intermediate, and formed spontaneously from another jadomycin 

precursor in the absence of the enzymes JadFGH.45 

    

 

Scheme 1. Biosynthetic formation of the decapolyketide intermediate by JadABCJMN, 

followed by cyclization to UWM6 (15) by JadDEI. 

 

1.5. JadFGH:  Divergent Biosynthetic Pathways and Dead Ends 

ORF6 (jadF), ORF7 (jadG) and ORF8 (jadH) were first reported by Vining in the late-

1990s and were hypothesized to code for oxygenases, important in catalyzing post-PKS 

reactions to produce 5.46, 47 Understanding the biosynthetic mechanisms of these enzymes, 

and how they pertain to amino acid incorporation has been a large focus of the 

angucycline academic community. Initial studies identified that upon disruption of jadF 

with an apramycin-resistance gene, biosynthesis of 6 was abolished, and was 

accompanied by the accumulation of the previously characterized antibiotic rabelomycin 

(16) (Scheme 2).46, 48 Compound 16 was later identified as a shunt product likely formed 

from a spontaneous oxidation of 15 (Scheme 2). Despite discovery of this biosynthetic 
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dead end, loss of jadomycin production in the absence of JadF was the first example 

illustrating the importance of the oxygenase enzymes for production of 5 and 6. 

Following this study, Yang and Rohr published two comprehensive studies looking at the 

natural products profiles of jadG, and jadH disruption mutants. Disruption of jadH led to 

the production of 2,3-dehydro-UWM6 (17),45 while the jadG disruption mutant led to the 

production of 16, dehydrorabelomycin (18), and the glycosylated shunt product L-

digitoxosyl-dehydrorabelomycin (19), glycosylated by the glycosyltransferase JadS 

(Scheme 2).49 

 

Scheme 2.   Secondary metabolite production by Streptomyces venezuelae ISP5230 upon 

disruption of oxygenase coding genes jadF, jadG and jadH. Scheme adapted from Rix et 

al.
49

 

 

To initiate amino acid incorporation and subsequent oxazolone ring formation, C-

C bond cleavage of the B-ring of the benz[a]anthracene frame must first be 

accomplished. All products isolated from the single jadFGH disruption mutants 

contained intact B-rings, lacking amino acid incorporation, illustrating the importance of 

the enzymes coded for by these genes for facilitating B-ring C-C bond cleavage. The 

roles of these enzymes were further probed by in vivo and in vitro evaluation of 

compounds 15, 16 and 17 as substrates for a series of Streptomyces strains and the 

purified enzyme JadH.45 When 17 was incubated with a jadA deletion mutant of S. 

venezuelae ISP5230 lacking the ability to produce the decaketide intermediate, 
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production of 5 and 6 was observed (Scheme 3). This illustrated 17 was a post-PKS 

substrate in the jadomycin biosynthetic pathway. More interestingly, when 17 was 

incubated with an engineered strain of S. lividans expressing jadFGH, in the presence of 

L-isoleucine, conversion to 5 was observed, unequivocally demonstrating the oxygenase 

enzymes were responsible for the B-ring cleavage (Scheme 3). Overexpressed and 

purified JadH also successfully utilized 17 as a substrate, producing 18 (Scheme 3).45  

 

Scheme 3. Natural products produced upon incubation of 17 with fermentations of 

Streptomyces venezuelae ISP5230 jadA deletion mutant (top), S. lividans expressing 

jadFGH (middle), and incubation with JadH (bottom).45  

 

A more recent re-examination of the function of JadH by Yang and coworkers identified 

that the enzyme was not responsible for the direct conversion of 17 to 18, but rather, 

conversion of 17 to the hydroquinone intermediate CR1 (20) (Scheme 4). Compound 20 

then undergoes spontaneous oxidation to form 18 (Scheme 4). This proved JadH was a 

bifunctional oxygenase-dehydrase enzyme.45, 50 
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Scheme 4. Enzymatic conversion of 17 to the hydroquinone CR1 (20) catalyzed by JadH, 

followed by spontaneous oxidation to form 18. 

 

With JadH not directly involved in the oxidative B-ring cleavage, the potential 

enzymes responsible were limited to JadF or JadG. While studying the divergence of the 

jadomycin and the closely related gilvocarcin M (21) biosynthetic pathways (Scheme 5) 

using combinatorial biosynthetic methodologies, Rohr and coworkers showed that JadF 

was likely the link between the PKS and post-PKS tailoring pathways in jadomycin 

biosynthesis, acting as a 2,3-dehydratase responsible for hydrolysis and decarboxylation 

of the ACP-tethered analogue of 15 to form 17 (Scheme 5).51, 52 This implicated the only 

remaining oxygenase JadG as the enzyme responsible for the C-C cleavage of the B-

ring.52, 53 Soon after the JadF finding by Rohr, two separate articles were published by 

Yang53 and Rohr54 successfully identifying JadG as the oxygenase responsible for the C-C 

bond cleavage. Inspired by the work of Rohr52 illustrating the requirement of the 

cofactors nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine 

dinucleotide (FAD) and S-adenosylmethionine (SAM) to catalyze the full formation of 

21, Yang and coworkers identified jadY, an ORF in the jadomycin cluster, as responsible 

for coding of a flavin-mononucleotide/FAD (FMN/FAD) reductase they postulated was 

responsible for cofactor production for the jadomycin oxygenases. Yang went on to show 

upon incubation of JadY and JadG in the presence of 18, FMN, NADH and L-isoleucine, 

conversion to 5 was observed (Scheme 5).53 Although demonstrating that JadG was 

responsible for the B-ring cleavage, the exact mechanism of this conversion had yet to be 

identified. Past work by Vining and Rohr had proposed a mechanism implicating a 

Baeyer-Villiger-like reaction to produce a 7-membered oxepinone ring containing 

intermediate.49, 55 This mechanism was confirmed upon the incubation of GilOII, the JadG 

homolog in the biosynthetic pathway of 21, in the presence of 18, together with a series 

of cofactors, and observing the production of the oxepinone intermediate (22) by high 
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performance liquid chromatography (HPLC) analysis (Scheme 5). The structure was 

confirmed by purification and subsequent nuclear magnetic resonance (NMR) 

spectroscopy and high-resolution mass spectrometry (HRMS) analysis.54 It is proposed 

that this intermediate is cleaved by the hydrolase JadK,47, 49 accompanied by 

decarboxylation, to form a reactive aldehyde intermediate (23). It is at this point that 

divergence between biosynthetic pathways producing 6, 21 and the kinamycins is 

proposed (Scheme 5).51, 54, 56 In the case of 21 and the kinamycins, a series of enzymes act 

on this aldehyde intermediate facilitating a structural rearrangement to furnish these 

atypical angucyclinones (Scheme 5). In the case of jadomycin biosynthesis, it is believed 

that incorporation of the amino acid proceeds spontaneously via direct interaction 

between the amino group and this reactive aldehyde (Scheme 5).57 Glycosylation is then 

accomplished by the glycosyltransferase JadS giving the fully decorated 6 (Scheme 5). 
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Scheme 5. Jadomycin PKS and post-PKS biosynthetic pathway illustrating the function 

of all identified structural enzymes responsible for production of 5 and divergence of the 

precursor related kinamycin and gilvocarcin biosynthetic pathways. Adapted and updated 

from Fan et al.53 
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1.6. Dideoxy Sugar Tailoring Gene Cluster 

Glycosylation of natural products is widespread, and is often extremely important for the 

biological activity of these molecules.58-60 As previously described, compound 6 is 

glycosylated with the rare 2,6-dideoxysugar L-digitoxose (24) at the D-ring via an O-

glycosidic linkage (Figure 5). The 2,6-dideoxy sugars are often found within natural 

product steroidal glycosides, antibiotics, and antitumor compounds.61 L-digitoxose 

(Figure 5) has only been reported in natural products isolated from actinomycetes62 

including the type-I PKS derived tetrocarcin A (25) produced by Micromonospora 

chalcea NRRL 1128963-65 and the structurally related kijanimicin (26) from Actinomadura 

kijaniata, both decorated with multiple L-digitoxosyl moieties (Figure 5).66 In the case of 

6, the JadS glycosyltransferase facilitates addition of 24, but several enzymatic steps are 

required for the biosynthesis of an activated NDP-L-digitoxose substrate before this can 

occur. 

 

Figure 5. Structures of the 2,6-dideoxysugar L-digitoxose (24), and the natural products 

tetrocarcin A (25) and kijanimicin (26) glycosylated with L-digitoxose. 

 

Work by Wang, White and Vining in 2004 successfully identified 8 genes 

(jadXOPQSTUV), which by sequence comparisons were found to code for a series of 

dideoxysugar tailoring enzymes.67 Putative functions were assigned by sequence 

homology studies. A series of S. venezuelae ISP5230 single gene disruption mutants 

lacking the ability to express each of the eight enzymes were created to probe their 

importance for jadomycin glycosylation. The mutants were grown in the presence of L-

isoleucine and the culture media was monitored for the production of both 5 and 6. All 

disruption-mutants, with the exception of the jadX disruption-mutant, produced only 5 as 

the major natural product. The jadX disruption-mutant appeared to produce both 
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compounds, but at a reduced capacity compared to the wild type S. venezuelae ISP5230. 

This suggested JadX may be important for glycosylation but was not essential (vide 

infra).67 The proposed L-digitoxose biosynthetic pathway begins with the coupling of Ŭ-

D-glucose 1-phosphate (27) with a nucleotide triphosphate (NTP), catalyzed by 

nucleotidylyltransferase JadQ, to produce Ŭ-D-NDP-glucose (28) (Scheme 6). JadT then 

likely acts as a 4,6-dehydratase, removing the 6-OH and oxidizing the 4-OH position, 

forming the corresponding NDP-4-keto-6-deoxy-D-glucose (29) (Scheme 6).  The 

dehydratase, JadO, then removes the 2-OH to form the corresponding NDP-3,4-diketo-

2,6-dideoxyglucose intermediate (30). Compound 30 then undergoes a reduction by the 

ketoreductase, JadP, to form the NDP-4-keto-2,6-dideoxy-D-glucose (31). JadU, an 

epimerase, inverts the stereochemistry at C-5 to form 32. The ketoreductase, JadV, 

finishes the pathway by reducing the carbonyl at C-4, forming NDP-L-digitoxose (33). 

Compound 33 is transfered to the jadomycin aglycone via the glycosyltransferase, JadS, 

forming the fully glycosylated compound 6 (Scheme 6).67 

 

Scheme 6. Proposed dideoxysugar biosynthetic pathways of S. venezuelae ISP5230 wild 

type (WT) and S. venezuelae ISP5230 VS1080 (jadO disruption-mutant) producing 

jadomycin B (6) and ILEVS1080 (34) respectively.  

  

In 2006, a study by Jakeman and coworkers68 re-examined natural product profile of the 

jadO disruption mutant S. venezuelae ISP5230 VS108067 previously described by Vining. 

Using optimized conditions for improved jadomycin production,69 S. venezuelae ISP5230 

VS1080 was grown in the presence of L-isoleucine as the sole nitrogen source. Analysis 

and fractionation of the fermentation yielded the unique natural product ILEVS1080 (34) 
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glycosylated with a 6-deoxy-Ŭ-L-altropyranose moiety (Scheme 6).69 The presence of the 

2-OH group on the sugar illustrated that JadO was involved removing this hydroxyl 

group. Furthermore, because glycosylation of the natural product was still observed in 

vivo with the non-physiological substrate NDP-6-deoxyaltropyranose, this suggested that 

JadS is a promiscuous glycosyltransferase capable of accepting non-physiological 

substrates and incorporating them into the structure of jadomycins. Exploiting the 

substrate specificity of natural product glycosyltransferases is an alluring approach to 

structural diversification.70 

1.7. Amino Acid Incorporation: Exploiting  a Spontaneous Process 

Spontaneous processes in natural product biosynthetic pathways are rare, but have been 

reported.71  As previously mentioned, in the jadomycin cluster, jadG had been identified 

to code for the enzyme responsible for the B-ring opening.51, 53 This C-C bond cleavage 

proceeds via a Baeyer-Villiger oxidation producing the oxepinone intermediate 22, which 

is then cleaved  to yield the reactive aldehyde 23 (Scheme 5).54 Traditionally, S. 

venezuelae chloramphenicol-producing fermentations had been performed in minimal 

media containing a single amino acid as the sole nitrogen source.22, 72 At the time of 

discovery of 5 and 6, media was supplemented with L-isoleucine (60 mM). Isolation of 6 

as the major natural product with the presence of the intact amino acid suggested the 

possibility of a non-enzymatic incorporation of the amino acid leading to the hypothesis 

that fermentations in the presence of different amino acids could lead to derivatization of 

the oxazolone ring.46 The first reported use of amino acids other than L-isoleucine in 

jadomycin productions was by Doull, who observed differences in colour in 

fermentations supplemented with different amino acids, suggesting that modified 

derivatives of 6 may have been produced.25 Several years later, the first isolated examples 

of these derivatives were characterized.57, 73-75 

 The proposed mechanism for amino acid insertion involves the spontaneous 

reaction of an amino acid with 23 to form an imine intermediate (Scheme 7). It is 

proposed that this intermediate then quickly undergoes a series of intramolecular 

cyclizations initiated by a Michael addition from the imine nitrogen to the quinone ring, 

ultimately yielding the oxazolone ring containing 5 (Scheme 7).57 
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Scheme 7. Proposed mechanism for spontaneous amino acid incorporation forming the 

oxazolone ring. Incorporation of L-isoleucine is used as an example. 

 

Exploitation of this unique biosynthetic step has led to the isolation and characterization 

of over 25 distinct jadomycin variants, containing the 5-membered oxazolone ring (35-

40), and some analogues containing atypical cyclized rings of various sizes (41-44) 

(Scheme 8). Several of these compounds and their structures are outlined in Scheme 8.57, 

73-78 Compelling evidence for the cyclization process has also been demonstrated through 

the chemical synthesis of 5 by OôDoherty and later by Yu in the total syntheses of 6 and a 

key series of fully glycosylated jadomycins.79, 80 Work has also been conducted on 

structural diversification by semi-synthetic methodologies. Jakeman and coworkers 

successfully produced jadomycin OPS (45) containing a terminal alkyne through 

precursor directed biosynthesis using the non-proteogenic amino acid O-propargyl-L-

serine (Scheme 8). The alkyne functionality was then used as a chemical handle, and 

reacted with a series of azides to furnish a small library of jadomycin triazoles (46-53) 

(Scheme 8).81 




































































































































































































































































































































































































































