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 ABSTRACT 

 

Despite an increasing body of research, there exists a lack of understanding about the 

alloying behaviour of PM titanium alloys.  Specifically, Ti6Al4V, which is the most 

common alloy, has not been investigated sufficiently to understand the behavior of alloying 

additions in the various forms that exist.  The objective of this research was to investigate 

the role of alloying additions via in-situ analysis with differential scanning calorimetry 

(DSC).  Mixtures of Ti6Al4V were prepared using master alloy (MA) and blended 

elemental (BE) additions, and analyzed during sintering profiles where the specimens were 

heated to 1200°C and held for various amounts of time.  Of particular interest was the 

allotropic phase transformation that occurs during sintering, transforming from α-Ti to β-

Ti on heating and then reversing on cooling.  The reverse transformation was analyzed in 

detail using DSC in hopes of understanding how the nature of the alloying additions and 

the sintering profile affected various characterisitics of this transformation.  Measurements 

of the onset, end, and peak temperature of the transformation were taken, along with the 

specific enthalpy and temperature span.  A full compositional and microstructural analysis 

was performed on these DSC specimens as well in order to corroborate the findings of the 

DSC.  Analysis of the binary BE mixtures of Ti6Al and Ti4V gave significant insight to 

the role of each alloying addition in the Ti matrix.  Aluminum was found to reach a 

homogeneous state within a 1hr, but significant porosity formed as a result of highly 

dissimilar diffusion rates between Ti and Al, creating titanium aluminides.  The binary 

Ti4V mixture required significantly more thermal exposure in order to reach homogeneity, 

but produced a denser product.  The ternary BE Ti6Al4V mixture exhibited many of the 

characterisitics of the two binary systems.  The measured enthalpy of transformation of the 

BE Ti6Al4V mixture was considerably lower than both MA mixtures, due to the porosity 

formed by the melting and spreading of the elemental Al additions.  Results from the DSC 

suggested that the use of coarse and fine MA additions led to relatively homogeneous 

specimens after more that 2hrs at 1200°C.  The smaller particle size of the fine MA led to 

faster homogenization than the coarse, however, in both cases the homogeneity of V in the 

matrix was the limiting factor.  Unlike the BE mixutres, the addition of Al in MA particle 

did not result in the formation of porosity because it was introduced as an intermetallic.  

All DSC results were supported by both XRD and SEM/EDS analysis.  Overall, a more 

complete understanding of the alloying behavior of PM Ti6Al4V has been developed along 

with a methodology for the use of DSC to analyze the sintering behavior in-situ. 
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1.0. INTRODUCTION 

1.1. Background 

For decades engineers have seen the potential that titanium has for applications where a 

high strength-to-weight metal is required.  Since the 1950s, the use of titanium has seen 

few applications outside of aerospace and defence applications.  Titanium's inherent 

strength-to-weight advantage, corrosion resistance, and biocompatibility have not been 

fully exploited, due to the high cost of producing wrought titanium. 

Powder metallurgy (PM) offers a processing route that could potentially open up the use 

of titanium to many new markets, such as massive-production industries.  PM has been 

applied to other metals, particularly ferrous alloys, to reduce the cost of producing parts.  

PM offers near-net shaping production which will reduce waste and post-processing 

machining.  Due to the processing of the mineral forms of titanium, PM offers additional 

savings because titanium powder is an intermediary when producing wrought titanium 

and therefore could represent a low cost feedstock for PM manufacturing.  Further cost 

savings are possible with the higher material utilization that is possible with PM. 

Before titanium PM alloys can achieve widespread use they must have mechanical 

properties which are comparable to those of wrought alloys.  To date, certain properties 

such as yield strength and ultimate tensile strength of PM alloys are comparable to their 

wrought counter parts.  However, other properties such as ductility and creep strength are 

inferior.  The properties can be improved by reducing porosity, developing a 

homogeneous composition and minimizing contamination.  Investigating the sintering 

behaviour of titanium can lead to significant gains in the previously mentioned properties 

by maximizing the effect of the diffusion mechanisms that occur during sintering.  This 

can be accomplished by using thermal analysis techniques to investigate sintering of 

titanium. 
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1.2. Sintering 

The consolidation of powders is a critical step in PM.  Typically this occurs in a two-step 

process that first involves mechanical compaction.  This compresses the powder particles 

both plastically and elastically into a form that should be very similar to the final shape.  

Compaction can achieve a very high level of consolidation and density.  However, the 

bonds between the powder particles are very weak and are not sufficiently strong enough 

for most applications.  Therefore, further densification is required to achieve the desired 

properties.   

Sintering is a thermally activated bonding process that allows powders to bond at points 

of contact and lower their surface area.  This results in a more coherent and mechanically 

suitable material.  There are several mechanisms for bonding that occur during sintering, 

but primarily it is a result of solid and/or liquid state diffusion [1]. 

 Following mechanical compaction powder particles form a semi-coherent structure that 

is held together by mechanical bonds resulting from compaction.  Sintering can then be 

initiated at this stage.  As temperature is increased, the system acts to reduce its overall 

surface energy.  Typically this is achieved through a reduction in surface area. Smaller 

particles have a larger surface and thus, a higher surface energy.  A reduction in surface 

energy results in mass transportation at points of contact between the particles to 

surrounding areas.  This is known as “neck” growth, and is shown in Figure 1.2.1 in the 

classical example of two spherical powder particles. Ultimately neck growth reduces 

surface area and therefore lowers energy. 
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Figure 1.2.1: Neck growth between two spherical powder particles [2] 

 

Neck growth reduces porosity and causes a change in pore shape, i.e. pores take on a 

more rounded structure. As a result, the discrete shapes of the original powder particles 

become less evident.  While the rounding of the pore structure proceeds, the length of 

contact between particles grows and a more coherent structure is produced.  As the pores 

continue to spheroidize, they become closed-off and are no longer connected to the 

surface.  This causes pressure within these pores to increase.  Eventually the external 

pressure that has caused these shaped pores equals the internal gas pressure.  At this point 

the kinetics of sintering slow considerably and further increases in density are negligible. 

These changes that occur during sintering are commonly categorized in to three stages: 

initial, intermediate and final and are shown schematically and described in Figure 1.2.2.  
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Figure 1.2.2: Discrete stages of sintering with relative changes in microstructure [1]. 

Mass transport is necessary for neck growth to occur.  Mass transport occurs through 

surface transport and bulk transport; where surface transport involves the movement of 

atoms from one surface to another, and bulk transport involves the movement of atoms 

from within a particle to the surface.  Both forms of transport involve several atomistic 

mechanisms [1].  These mechanisms are summarized in Table 1.2.1.  The transport of 
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mass can be visualised as the movement of vacancies, where the movement of mass 

creates a counter flow of vacancies.  Vacancy concentration is lowered by thermally 

activated mass transport mechanisms causing either their accumulation or annihilation.  

This causes particles to coalesce creating neck growth and/or particle densification 

depending on the mechanism that is occurring. 

Table 1.2.1: Summary of atomistic mass transport mechanisms 

Atomistic Mechanism Type of Transport 

Evaporation-Condensation Surface Transport 

Surface Diffusion Surface Transport 

Volume Diffusion Bulk and Surface Transport 

Grain Boundary Diffusion Bulk Transport 

 

1.2.1. Evaporation-Condensation 

During evaporation-condensation, vapour from the surface of a particle condenses on a 

nearby surface.  The site where condensation occurs is determined by slight variations in 

pressure.  As this is a surface transport mechanism there is no net increase in density.  

Instead, evaporation-condensation leads to a significant decrease in surface area as 

particles become rounded and particle necks grow.  At the neck regions there is a 

continual deposition of atoms at these sites creating layers of growth.  This reduces the 

amount of surface atoms neighboring the particle neck where the evaporation occurred.  

Evaporation-condensation is a temperature controlled mechanism following an Arrhenius 



 

 

6 

 

dependence.  Increasing temperature leads to a higher vapour pressure at the surface of a 

particle, which increases the rate of evaporation.  Evaporation occurs preferentially at flat 

or convex surfaces, while condensation occurs at concave surfaces where the vapour 

pressure is slightly lower than equilibrium, such as particle necks.  Neck growth due to 

evaporation-condensation will continue until an equilibrium dictated by the solid-vapour 

dihedral angle is reached [1].  This equilibrium is expressed by Equation 1.2.1. 

Equation 1.2.1 

𝛾𝑆𝑆 = 2𝛾𝑆𝑉𝑐𝑜𝑠
𝜙

2
 

where:  

γSS = the grain boundary energy  

γSV = the solid-vapour surface energy 

ϕ = the dihedral angle 

1.2.2. Surface Diffusion 

Surface diffusion involves the motion of atoms across the surface of a particle to sites 

where a type of imperfection exists.  Surface imperfections can include: ledges, kinks, 

atoms or vacancies.  In order for surface diffusion to occur the current bond holding an 

atom must be broken.  Once freed, the atom then must diffuse to the site of the 

imperfection across the surface.  Finally, the atom must reattach to the crystal lattice at 

the site of the imperfection.  The rate of these three steps is primarily controlled by 

temperature.  In addition, the quantity of sites where imperfections exist and the ease of 

motion greatly affects surface diffusion [1].  The activation energy for surface diffusion, 

which is the activation energy for the slowest of the three steps, is lower than other forms 
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of mass transport.  As a result, surface diffusion is the first of the different mass transport 

mechanisms to initiate.  The effect of surface diffusion slows at higher temperature as the 

quantity of surface imperfections decreases.  Similar to evaporation-condensation, 

surface diffusion increases particle rounding without any shrinkage. 

1.2.3. Volume Diffusion 

Volume diffusion is a mass transport mechanism that is controlled by temperature, 

composition, and pressure.  Volume diffusion involves the movement of atoms through 

the bulk of the material, and can also be termed lattice diffusion.  Vacancy concentration 

is an important variable for volume diffusion, and its dependence on temperature, 

composition, and pressure determine the driving force for volume diffusion.    Volume 

diffusion is active at higher temperatures due to the temperature effect on vacancy 

concentration.  Temperature determines the equilibrium concentration of vacancies, with 

increasing vacancy concentration at higher temperatures.  Pressure also affects vacancy 

concentration; however this is due to local variations in pressure caused by differences in 

curvature of particles.  More highly curved surfaces experience a change in vacancy 

concentration away from equilibrium, such as the neck region [1].  Concave regions have 

a vacancy concentration lower than equilibrium, and convex regions have a vacancy 

concentration above equilibrium. This creates diffusion paths between concave and 

convex regions of the material.  The combined effect of temperature and pressure on 

vacancy concentration leads to volume diffusion sintering, with a sintering rate that can 

be quantified by Fick’s first law as shown in Equation 1.2.2. 

Equation 1.2.2 

𝐽 =  −𝐷𝑉

𝑑𝐶

𝑑𝑥
 

where: 
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J = atomic flux 

DV = diffusivity 

dC/dx = vacancy concentration change over distance 

Compositional effects on volume diffusion are due to a loss of stoichiometry.  Off-

stoichiometric compounds contain excess vacancies to neutralize charge [1].  This creates 

an increased atomic flux from phases that are off-stoichiometric.  

1.2.4. Grain Boundary Diffusion 

Grain boundary diffusion involves mass transport along grain boundaries, and is 

prominent in most alloys.  Grain boundaries form in the neck region at the sinter bond 

between two particles.  There is a misalignment between the crystal lattice of the two 

particles.  This region then acts as a pathway for atomic movement.  Additional grain 

boundaries exist within the powder particles, and also act as diffusion pathways.  

Movement occurs simultaneously with vacancy annihilation along the grain boundary.  

Mass is deposited at the neck region for diffusion along the sinter bond grain boundary.  

Transport along interparticle grain boundaries is usually between pores, causing them to 

coarsen. 

Several different sintering processes have been developed to address the requirements for 

different applications.  All of these processes are intended to progress sintering to the 

desired stage while satisfying any other requirements.  Pressureless solid-state sintering is 

a very common sintering process and will be the focus of this report.  With this form of 

sintering, the material is under no external load to enhance densification and no persistent 

liquid phases evolve during the process.  Both external pressure and liquid phase 

evolution are commonly used to enhance densification and sintering kinetics, but are not 

a requirement to achieve high density.       
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1.3. Titanium/Titanium Alloys 

Titanium is relatively exotic and expensive engineering metal that has found applications 

since the 1950s.  The Soviet Union pioneered the use of titanium alloys for military 

applications such as aircraft and submarines [2].  These applications benefitted from 

titanium’s relatively high strength-to-weight ratio, high temperature properties and 

corrosion resistance.  The use of titanium remained limited to military applications 

throughout the cold war and was classified as a Strategic Material by the US government 

[3]. 

The expansion of titanium to other areas outside of military and aerospace applications 

has been limited by the cost of producing wrought titanium.  Several sophisticated and 

energy intensive steps are required to produce titanium.  This is primarily due to the 

metal’s high reactivity and affinity for interstitial elements such as oxygen, nitrogen, 

hydrogen, and carbon [4].  Compared to the production of steel, a great deal more care 

and control is required to produce titanium that is low in impurities.  In spite of the cost 

of producing titanium, there is a large body of work that is focusing on using titanium for 

novel applications due to its superior properties.  These areas include: the automotive 

industry, food and chemical facilities, and biomedical applications.  As a result, new 

methods for producing titanium are also being developed that hope to reduce both the 

cost and time [5]. 

Titanium is abundant in nature, and is the seventh most abundant metal.  It is commonly 

found bonded with oxygen in the mineral forms rutile and ilmenite.  Titanium is extracted 

from these two minerals almost exclusively by the Kroll process.  This multi-step batch 

process begins with the conversion of titanium oxide to titanium tetrachloride (TiCl4).  

The TiCl4 is then purified using fractional distillation in order to remove any other 

chlorides.  Following this step, the TiCl4 is then reacted with liquid magnesium between 

773 to 873°C [4], as shown below. 



 

 

10 

 

𝑻𝒊𝑪𝒍𝟒𝒈
+  𝟐𝑴𝒈𝒍  →  𝑻𝒊𝒔 + 𝟐𝑴𝒈𝑪𝒍𝟐𝒍

 

The reduced titanium is a “sponge” form which is then physically removed from the 

reactor.  The titanium sponge is then formed into long electrodes in preparation for 

vacuum arc melting.  Melting under vacuum is necessary because the reactivity of 

titanium to oxygen and nitrogen.  At this step alloying elements are mixed with the 

sponge to produce the electrodes.  The sponge electrode acts as the anode and is lowered 

towards a water cooled copper crucible which acts as the cathode.  The melt then collects 

in the copper crucible after the arc is struck.  Double melting of the titanium ingots is 

common to ensure homogeneity of the alloying elements throughout.  

1.3.1. Physical Properties 

Titanium is uniquely situated between aluminum and iron alloys for many of its physical 

properties.  Table 1.3.1 summarizes some of these properties. 

Table 1.3.1: Summary of physical properties of titanium, aluminum and iron 

 Titanium Aluminum Iron 

Density (g/cm3) 4.54 2.70 7.87 

Modulus of 

elasticity (GPa) 
115 72 215 

Melting Point (°C) 1668 660 1536 

Crystal Structure 

at RT 
HCP FCC BCC 

Hardness (Brinell) 120 23 86 
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Pure titanium exists in two crystal forms depending on temperature; below 883°C the α 

form of titanium is a hexagonal close-packed (HCP) structure.  Above this temperature, 

termed the beta transus temperature, the structure changes to a body-centered cubic 

(BCC) known as the β phase.  These alpha and beta phases of titanium form the basis for 

classifying different titanium alloys.  Despite being an HCP structure, alpha titanium 

possesses a relatively high ductility due to numerous slip systems and twinning planes.  

This ductility is greatly affected by the concentration of interstitial impurities such as 

oxygen and nitrogen. 

Titanium alloys are classified by the predominant stabilized phase of titanium that exists 

in the microstructure, these include: commercially pure (CP), alpha-alloys, beta-alloys, 

and alpha-beta alloys.  In alpha-stabilized alloys, the alloying elements are added to help 

stabilize the α phase and increase the beta transus temperature.  For beta-stabilized alloys, 

the alloying additions are intended to both lower the beta transus temperature and prevent 

the decomposition of the beta phase upon cooling.  Alpha-beta alloys are a mixed-

microstructure where all alpha is transformed to beta during heating.  During cooling, 

transformation back to alpha occurs for most of the beta titanium, but some remains 

retained in the alpha microstructure. Figure 1.3.1 summarizes many of the common 

titanium alloys including composition and beta transus temperature. 
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Figure 1.3.1: Summary of titanium alloys classified by stabilized phase of Ti [7] 

Besides the general properties for all titanium alloys, there are desired properties in either 

alpha, beta or alpha-beta alloys that make them suitable for any particular application.  In 

most cases it is necessary to differentiate between commercially pure (CP) titanium and 

alpha titanium alloys due to the desired properties that each possess. 
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1.3.2. CP Titanium 

The lack of alloying elements in CP titanium means it is the lowest strength alloy.  

Consequently, CP titanium is not usually used in applications where excellent mechanical 

properties are required.  Instead, the corrosion resistance of oxidized CP titanium is its 

most beneficial quality.  Most grades of CP titanium require impurities (usually iron) to 

not exceed 0.3 at% [6].  In addition to iron, interstitial impurities such as nitrogen, 

oxygen, and carbon are usually present in CP titanium.  As mentioned earlier, titanium 

has a very high affinity for these interstitial impurities, and as a result, it is very difficult 

to eliminate them.  While the concentrations of these interstitial elements must be kept 

very low, they can still have a significant effect of the strength of CP titanium due to 

interstitial strengthening.  Yield strength of CP titanium can range from 175MPa to 

480MPa depending on the concentration of interstitial elements.  This increase in 

strength, however, comes at the expense of ductility. 

1.3.3. Alpha Titanium 

As a general definition alpha titanium alloys contain significant quantities of alpha-

stabilizing elements, and minute quantities of beta-stabilizing elements.  Aluminum and 

tin are the primary alpha-stabilizing elements, with aluminum being the most common.  

Due to the higher temperature limits of the alpha-beta transition, alpha alloys are the most 

suited to higher temperature applications, and are generally insensitive to heat treatment 

[7].  Weldability of alpha alloys is the best of all titanium alloys due to the higher alpha-

beta transus temperature.  Microstructure refinement of alpha alloys can be accomplished 

by inducing recrystallization through cold work and annealing [6].  The most important 

characteristic of alpha alloys is their excellent creep resistance, even at high temperatures.  

This can be further improved if very small amounts of retained beta is allowed to form. 
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1.3.4. Beta Titanium 

Beta alloys are metastable alloys that contain significant quantities of beta-stabilizing 

elements.  Beta-stabilizing elements include: vanadium, chromium, and molybdenum.  

Retainment of the beta phase is accomplished by quenching from temperatures above the 

alpha-beta transus temperature.  The BCC structure of beta alloys makes them excellent 

for forging.  Additionally, beta alloys possess high ductility, hardenability, and 

toughness.  The metastable nature of beta alloys means that any elevated temperature 

expose can cause partial transformation to the equilibrium alpha phase.  This is 

undesirable during any sort of forming process, but can be advantageous afterwards to 

form a finely dispersed alpha phase within the retained beta. 

1.3.5. Alpha-Beta Titanium 

Alpha-beta alloys are more complex systems, and are intended to be a compromise 

between the somewhat opposing properties of alpha and beta alloys.  These alloys require 

a combination of alpha and beta-stabilizing alloying elements, with exact chemistries 

depending on what quantity of each phase is desired.  The transformation to beta, above 

the beta-transus temperature, is intended to be a complete transformation, or nearly 

complete.  As a result, the transformation back to alpha upon cooling can be carefully 

controlled in order to produce a refined microstructure.  The nucleation and growth of 

alpha is controlled by cooling rates, and by subsequent heat treatment if desired.  With 

rapid cooling rates, retained beta can experience a martensitic transformation [7].  This 

shear transformation, designated α’, usually forms an acicular structure that is very 

similar in appearance to the plate-like structure of the alpha phase.  This martensite phase 

is non-equilibrium, and is supersaturated in beta-stabilizing elements.  During heat 

treatment the α’ phase will decompose to form α+β by precipitation of the incoherent β 

[7].  Figure 1.3.2 summarizes the effect of beta-stabilizing element concentration, 

showing the relative range for each of the different classes of titanium alloys.  
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Figure 1.3.2: Pseudo-binary section of a β isomorphous phase diagram [7] 

1.4. Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is a thermal analysis technique that is used to 

analyze and quantify thermal events.  These thermal events can include: phase transitions, 

melting events, thermal decomposition, and glass transition [8].  Thermal events are 

measured relative to an inert reference sample during a temperature profile.  The two 

samples are contained in crucibles that sit in a carrier inside a furnace.  Due to the high 

sensitivity, small sample specimens are preferred for this analysis (~50mg).  DSC also 

allows for the use of powders samples, either as loose powders or compacted. 
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Figure 1.4.1: Schematic of DSC with sample (S) and reference (R) crucibles [9] 

The crucibles used for both the sample and reference side of the DSC must be made of 

the same material so that the thermal conductivity is identical.  It is important that the 

crucible material chosen does not experience any thermal events during the temperature 

program, and that there is not a significant chemical interaction with the sample or the 

sample carrier, which holds the two crucibles in the heating zone of the furnace.  The 

crucibles and carrier should be of minimal mass so that they have little effect on the 

recorded measurements [8]. 

Measurements for DSC are taken from thermocouples bonded to the sample carrier.  This 

induces some thermal resistance from the carrier, but eliminates any problem caused by 

thermocouple interaction with the sample.  Temperature and sensitivity calibration runs 

are necessary with both crucibles empty prior to adding a sample. 

Typically, DSC measures heat flow in and out of the sample throughout the temperature 

program.  The measurement of heat flow is calculated from the instantaneous difference 

in temperature between the sample and the reference.  This differs from traditional 

differential thermal analysis (DTA), where only the difference in temperature is 

measured.  This differential in temperature is measured using Equation 1.4.1. 
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Equation 1.4.1 

∆𝑇 = 𝑇𝑅 −  𝑇𝑆 

Thermal events that are measured by the DSC are either endothermic, where the 

measured temperature of the sample lags behind the measured temperature of the 

reference (∆T is positive), or exothermic, where the measured temperature of the sample 

is higher than the reference (∆T is negative). 

 

Figure 1.4.2: DTA curve showing endothermic peak [10] 

Figure 1.4.2 shows a characteristic endothermic peak, typical of a melting event.  

Determination of heat flow (dq/ds) for DSC can be determined by understanding the 

relative heat flow on both the sample and reference side of the carrier.  Equation 1.4.2 

gives the heat flow for the sample crucible: 
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Equation 1.4.2 

𝑑𝑞𝑠

𝑑𝑡
=

1

𝑅
(𝑇𝐻 − 𝑇𝑆𝑀) 

where: 

dqs/dt= heat flow into the sample crucible 

R= thermal resistance 

TH= temperature of the heat source 

TSM= temperature of sample 

 

This equation can also be used for the reference side: 

Equation 1.4.3 

𝑑𝑞𝑠

𝑑𝑡
=

1

𝑅
(𝑇𝐻 − 𝑇𝑅𝑀) 

where: 

TRM= temperature of reference 

Heat flow to the sample side will heat the sample and crucible in relation to the specific 

heat capacity of both the sample and the sample crucible, Cs and Csm respectively.  This is 

expressed in Equation 1.4.4. 
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Equation 1.4.4 

𝑑𝑞𝑠

𝑑𝑡
= 𝐶𝑆𝑀

𝑑𝑇𝑆𝑀

𝑑𝑡
+ 𝐶𝑆

𝑑𝑇𝑆

𝑑𝑡
 

where: 

TS = sample temperature 

This equation can also be used for the reference side: 

Equation 1.4.5 

𝑑𝑞𝑠

𝑑𝑡
= 𝐶𝑆𝑀

𝑑𝑇𝑅𝑀

𝑑𝑡
+ 𝐶𝑆

𝑑𝑇𝑅

𝑑𝑡
 

where: 

TR = reference temperature 

Subtracting Equation 1.4.4 from Equation 1.4.3 will give the differential temperature, ∆T, 

similar to Equation 1.4.1, except that it is now in terms of differential heat flow and 

thermal resistance.  This is shown in Equation 1.4.6. 

Equation 1.4.6 

∆𝑇 = 𝑇𝑅𝑀 − 𝑇𝑆𝑀 = 𝑅 (
𝑑𝑞𝑆

𝑑𝑡
−

𝑑𝑞𝑅

𝑑𝑡
) 

If the carrier holding the crucibles is the same structure, and both sample and reference 

crucibles are made of the same material and have the same conductivity, then the 

assumption that CSM = CRM is valid.  In addition, the heating rate for both sides will also 
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be the same, such that dTR/dt =dTS/dt.  By substituting Equation 1.4.4 and Equation 1.4.5 

into Equation 1.4.6, we can express ∆T as a function of heat capacity of the sample and 

reference.  This is shown in Equation 1.4.7.   

Equation 1.4.7 

∆𝑇 = 𝑇𝑅𝑀 − 𝑇𝑆𝑀 = 𝑅
𝑑𝑇

𝑑𝑡
(𝐶𝑆 − 𝐶𝑅) 

The temperature differential is now expressed as a function of thermal resistance, heating 

rate and the specific heat of both the sample and reference crucibles.  By running a 

correction, where both crucibles are empty, the effect of CR is removed and changes CS 

are due to the actual sample [10].  The thermal resistance, R, is value based on several 

thermal resistances within the machine, and in DTA, includes the thermal resistance of 

the sample because the thermocouples are in contact with the sample.  Due to the 

placement of the thermocouples on the carrier thermal resistance in DSC is independent 

of the sample.  In order to determine R, and its dependence on temperature, calibration 

runs are performed using pure metallic standards.  These standards are chosen based on 

their melting points, falling within the desired temperature range.  Once thermal 

resistance is determined the DSC can measure heat flow (dqS/dt) using Equation 1.4.6. 

In addition to heat flow measurements, DSC can also provide information about the 

enthalpy of different thermal events.  As the DSC trace deviates from the baseline, 

forming peaks (Figure 1.4.2), the enthalpy of this transformation can be calculated, 

whether it is endothermic or exothermic.  This is accomplished by measuring the area 

underneath the curve, with an approximation for the continuation of the baseline (the 

dotted line in Figure 1.4.2).  This integrated area is proportional to the enthalpy of that 

particular thermal event [10]: 
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Equation 1.4.8 

∆𝐻 = 𝐴 (
𝐾

𝑚
) 

where:  

∆H = enthalpy change 

A = area under curve 

K = enthalpy calibration constant 

m = mass of sample 

The proportionality of enthalpy to the area under the curve from Equation 1.4.8 is 

calculated with the known mass of the sample and the enthalpy calibration constant.  This 

constant is also determined from the prior calibration runs; during melting and freezing, 

the enthalpy of these changes is compared to reference data.  The approximation for the 

continuation of the baseline is taken from the correction file, which is constantly 

compared to the sample run to determine any deviations. 

1.4.1. DSC for Blended Elemental (BE) and Master Alloy (MA) Sintering 

The application of DSC to study sintering mechanisms is a relatively new area of study 

for most metallic systems [11].  In the particular case of BE or MA sintering, the BE and 

MA powder additions, alloy with the parent or base metal powder during heating. This 

“in-situ” alloying has the potential to introduce new thermal events or phase 

transformations (e.g. liquid phase formation) in the powder mixture. It can also alter the 

phase transformation behaviour inherent in the base metal powder.  These evolving phase 

transformations can be identified and quantitatively measured by DSC. Both the 
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temperatures of the and enthalpy of a the specific transformation can then be determined 

and used to analyze the nature of in-situ alloying during BE and MA sintering.   

1.5. BE and MA Sintering of Titanium alloys 

Titanium PM has been identified as an effective method for reducing the cost of 

producing titanium alloys [12].  Titanium produced by PM is classified into two groups 

based on the type of processing: blended elemental (BE), or master alloy (MA), and 

prealloyed (PA).  BE alloys are comprised of a mixture of elemental powders with the 

alloying of these elements occurring during sintering.  MA mixtures are similar to BE 

mixtures except that they alloy addition is added as a pre-alloyed powder. For example, 

the composition of Ti6Al4V could achieved through the blending of elemental Ti, Al and 

V powderes (i.e. BE) or through the blending of elemental Ti powder with a pre-alloyed 

MA powder of 60% Al and 40 % V.  PA powders have the desired quantity of alloying 

elements contained in the individual particles. In the case of BE and MA mixtures the 

alloying process occurs during sintering. In the cae of PA the powder is alloyed during 

the powder production stage.  PA powders are reported to be advantageous due to a 

increased homogeneity of the alloying elements.  However, PA alloyed powders are 

significantly more expensive to produce than the elemental powders which make up the 

majority of the powder content in a BE or MA mixture [13].  As such, a considerable 

effort has been put into developing titanium alloys following the BE or MA approach.  

This avenue is seen as the most promising for producing lost-cost titanium alloys for high 

volume markets such as the automotive industry. 

For industrial applications it is necessary for PM titanium to match the properties of IM 

titanium, outlined in standards such as ASTM B348.  In several areas BE or MA titanium 

alloys can match IM alloys, such as Ti-6Al-4V, by far the most common IM alloy [14].  

Historically, the fatigue strength of PM Ti6Al4V has been inferior to that of IM Ti6Al4V.  

This inferior fatigue strength was likely due to residual contaminants, and open porosity.  
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Both of these have been found to be detrimental to fatigue strength [15].  But with 

improvements to powder production, which have resulted in lower contaminant levels, 

this effect has been reversed [16]. 

Of the different steps in the titanium PM process, sintering is both the most complex and 

the least understood.  As such, a comprehensive study to understand the sintering 

mechanisms of BE titanium is required.  Significant gains in contaminant levels and 

porosity reduction can be achieved by properly investigating the sintering process along 

with other gains in yield strength and ductility.  There are several variables that can 

influence the sintering process including: alloying elements, powder processing route, 

and sintering thermal program. 

1.5.1. Alloying Elements 

In addition to alloying elements controlling phase structure in PM alloys, they can also be 

added to alter the sinterability.  By improving the sinterability of titanium it is possible to 

achieve higher sintered density.  This is accomplished by adding alloying elements which 

increase diffusion rates, either in solid state or liquid state.  Alloying elements that are 

added to improve the sinterability of titanium include: nickel, iron, and niobium.  Nickel 

and iron in particular are commonly used to increase the rate of densification during 

sintering [17,18].  These elements have significantly higher diffusion rates in titanium 

than that of titanium self-diffusion, some as high as 100x faster [19].  It is expected that 

these elements will homogenize within the matrix of titanium very rapidly.  This 

increases the rate at which sinter bonds are created, and increases the rate of neck growth.   
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Table 1.5.1: Iron content of specimens quenched from various temperatures in Ti-5Fe 

[19] 

  Iron content of different positions, wt% 

Quenched 

Temperature 

°C 

1 2 3 4 5 

950 83.3 11.8 X X X 

1020 56.4 28.6 14.4 X X 

1080 4.5 5.3 X X X 

1120 4.9 4.9 5.1 5.0 4.9 

1250 5.0 5.1 5.2 4.9 4.9 

 

Table 1.5.1 indicates the effective diffusion rates and the extent of homogenization of 

iron in titanium.  A deleterious effect can occur when the relative inter-diffusion rates 

between two elements differs by a significant amount.   This disproportionate rate of 

diffusion between two constituents can impede densification [18,20–24].  This is due to 

the Kirkendall effect which can cause swelling as a result of highly disproportionate 

diffusion rates between a couple.  One element will rapidly diffuse into the other, but due 

to the slower diffusion in the opposite direction, a void space will be created. 

Additional increases in densification can be achieved through liquid-phase and transient 

liquid-phase sintering.  The existence of a liquid phase greatly increases diffusion rates 



 

 

25 

 

between powder particles [1].  However, in some instances the existence of a liquid 

phase, especially a persistent liquid phase, can limit the sinterability of an alloy.  

Aluminum, nickel and silicon have been identified as elements that can form a eutectic 

liquid phase within the normal sintering temperature profile of titanium alloys that 

contain these elements [17,18,25].  In these cases, the liquid phase formed during 

sintering leads to “swelling”, caused by a low solubility of solid in the liquid phase, and 

high solubility of liquid in the solid phase.  This scenario causes little densification when 

the liquid phase forms, as the liquid rapidly diffuses into the surrounding matrix.  The 

area occupied by the liquid phase creates large pores that are very difficult to remove.  

Because aluminum is used in nearly all structural titanium alloys, its tendency to form a 

liquid phase and swelling during sintering is of great concern [26].  Analysis completed 

by dilatometry has shown that in alloys contain 5wt% aluminum there is a significant 

expansion at the melting temperature of aluminum [25].  The magnitude of this expansion 

was found to increase with increasing weight content of aluminum.  The porosity created 

by aluminum is also partly due to the highly exothermic reaction that occurs when the 

liquid aluminum reacts with titanium to produce various intermetallics. 

Tin has been identified as an alloying element that can improve sinterability, both directly 

and indirectly .  The addition of tin helps to improve compaction, increasing the green 

density of titanium compacts.  Increased green density improves the sinterability of alloys 

by bringing particles in closer contact with each other, allowing diffusion to occur 

sooner.  Tin may also cause transient liquid phase sintering in titanium, with a liquid 

phase forming above 231°C [27].  This liquid phase is then absorbed into solid solution at 

higher temperatures. 

1.5.2. Powder Processing Route 

The processing route for titanium powders has many effects on the final product such as: 

sintering kinetics, porosity, and mechanical properties.  Typically, titanium PM is 
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produced using hydride-dehydride powders.  The powders start with the sponge produced 

by the reduction with magnesium discussed earlier.  In this form the titanium particles are 

far too large to be useful for PM.  In order to facilitate size reduction, the powders are 

heated in the presence of hydrogen to form TiH2.  In this state the sponge is much more 

brittle and can easily be milled down to the desired size.  Following this, the powder is 

then dehydrided under vacuum. 

 

Figure 1.5.1: Titanium HDH powder a) commercial b) planetary milled c) roller milled 

[28] 

Figure 1.5.1 shows three examples of titanium HDH powder.  From these micrographs it 

is apparent that HDH powder has an angular morphology.  This is a result of cleavage 

fracture due to milling.  HDH powders are relatively inexpensive to produce, with 
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smaller particle size increasing the cost (<100 μm).  Contaminants, such as chlorine, 

hydrogen and oxygen, are the most significant limitation of HDH powders.  The content 

of these contaminants increases as the powder is milled to a finer size, which must then 

be reduced.  As a result, it becomes cost prohibitive to produce HDH powder below 

45µm. 

There are several novel powder processes that have been proposed in the last 10 years 

[13].  Of these, the Armstrong process has matured the furthest towards large-scale 

commercial production [13].  The Armstrong process is essentially a continuous process 

based on the Hunter/Kroll process discussed earlier.  Gaseous TiCl4 is injected into a 

liquid stream of sodium.  The sodium reduces the TiCl4 to titanium and sodium chloride.  

Filtration and distillation are used to remove the sodium, leaving the titanium powder.  

Prealloyed powders can be produced with the Armstrong process by adding the alloying 

elements in chloride form to the sodium stream with the TiCl4. 

 

Figure 1.5.2: As-received CP titanium Armstrong powder [14] 

Armstrong powder displays a coral-like dendritic morphology.  These particles are quite 

large, up to 1mm, but are composed of smaller dendrites, less than 25µm in size.  This 
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coral-like structure is very advantageous for compaction.  Higher green density and green 

strength are achieved with Armstrong powders over HDH powder.  Green strength in 

particular can see marked increases with Armstrong powders due to interlocking of the 

powder dendrites during compaction [16]. 

Atomization processes are a group of powder processes that can be divided into three 

main groups: plasma rotating electrode process (PREP), plasma atomization (PA), and 

gas atomization (GA).  All three of these processes have been adapted to produce 

titanium powders.  While there are distinct differences between them, all three of these 

processes produce highly spherical powders with very low amounts of contaminants [29].  

The spherical morphology is a result of the rapid cooling rates that the powder 

experiences during the process, up to 1000°C/s for plasma atomization.  The PREP 

process involves the melting of a high purity stock bar under inert atmosphere as it 

rotates at very high speed.  The melting is accomplished by a plasma arc from a tungsten 

cathode to the bar which is the anode.  As the bar melts, the droplets experience 

centrifugal acceleration, and form spheres to minimize their surface area.  The main 

advantage to this process is that the powders are produced in a completely inert 

atmosphere and make no contact with any other material as they melt and solidify.  This 

creates powders of extremely high purity.  Due to the fact that it is a batch process and 

the need for a high-purity wrought bar as the feed material, PREP production is 

significantly more expensive than other processes.  Gas and plasma atomization 

incorporate melting with rapid cooling steps.  During PA, a wire is feed into an argon 

plasma which melts the wire.  As the droplets fall, they experience aerodynamic drag 

which rapidly cools them, and causes them to form spheres to minimize their surface 

area.  Similarly for the GA process, a liquid stream is blasted with an argon jet stream 

that disrupts the stream liquid.  The droplets formed by the gas rapidly solidify as they 

fall.  PA can achieve purity levels that are very similar to PREP, and as a result, PA is 

also cost prohibitive for the majority of titanium PM applications.  GA powder is more 
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widely available and is also less cost prohibitive.  It is possible to produce powders by 

GA that have a particle size distribution suitable for metal injection molding (<45µm).  

1.5.3. Thermal Program 

The thermal program, which is the temperature, heating rate and time that a specimen is 

exposed to thermal energy, has a significant role during sintering.  Temperature is the 

most significant variable, as it directly affects sintering kinetics.  Typically, sintering 

temperatures are chosen to maximize kinetics, without any undesirable reactions 

occurring.  Studying the equilibrium phase diagram for the desired system will provide 

useful information about what temperature is appropriate for sintering.  This typically 

ranges from 0.5 to 0.8 of the melting temperature for pure metals. 

Isothermal holds are commonly used during sintering when it is necessary increase 

homogeneity within a specimen before changing the temperature.  Isothermal holds are 

used frequently at the maximum temperature of a thermal program to provide additional 

time for diffusion to occur before cooling.  Isothermal holds can also be used at various 

points during heating to ensure that certain reactions do not occur.  Dissolution of a phase 

into solid solution may prevent it from reacting unfavorably.  By holding at a certain 

temperature below the reaction temperature can ensure that the phase has been dissolved 

and can not react. 

1.6. Current PM Ti6Al4V Literature 

 Current research of PM Ti64AlV has diversified significantly, encompassing a wide 

range of research efforts to improve the basic properties of this alloy.  This research 

usually focuses on improving the sinterability of the Ti6Al4V system, and focuses on 

three primary areas: powder chemistry/production method, compaction methods, and 

thermal conditions. 
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Powder morphology and chemistry are key aspects of Ti6Al4V research.  Powder 

morphology is a result of the production process which itself is a result of the main 

driving factors for PM Ti6Al4V.  These are primarily enhancement of mechanical 

properties and cost reduction.  Many researchers are looking the use of either elemental 

powders [15,18,30–32] or pre-alloyed powders [34–36] made by a variety of production 

processes.  Many of these investigations used a variety of BE and PA powders in 

different combinations to achieve the desired chemistry.  Additionally, many use master 

alloy additions, which are powders containing two or more of the desired elements.  The 

use of MA additions is growing area of research for Ti6Al4V.  MA additions strike a 

balance between BE and PA powders.  They offer the improved homogeneity in the 

green state compared with BE compacts, with lower material cost and improved 

compaction characteristics compare to PA powders.  MA alloy powders are added for 

greater flexibility when dividing the bulk chemistry amongst the powder constituents.  

The is particularly useful for the addition of Al, which as an elemental addition has been 

found to causing significant swelling above its melting point in a Ti matrix [22].  The 

addition of Al in the form of a Ti-Al MA powder can eliminate this problem by 

preventing the formation of any liquid phase. 

Another important area of research is concerned with use of TiH2 as the base powder 

instead of the elemental powder [23].  Despite the brittle nature of this type of powder, 

high green densities are achieved.  A network of very fine pores exists after compaction 

which then heals during sintering.  It is this finely dispersed porosity and high crystal 

lattice defect concentration that accelerates mass transfer through interparticle 

boundaries.  The TiH2 is reduced under high vacuum during heating, while also reducing 

other surface oxides.  The remaining active Ti surfaces then rapidly sinter, and results in 

lower concentrations of O.  The sintering of TiH2 powders can result in near fully density 

(99%), however, this does result in significant shrinkage due to the hydride reduction. 
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Figure 1.6.1: Sintering profile for vacuum sintering (a) and HSPT (b) [36] 

A second process utilizing TiH2 is shown schematically in Figure 1.6.1.  The process is 

called hydrogen sintering phase and phase transformation (HSPT).  This process differs 

from the sintering of TiH2 by maintaining a concentration of hydrogen in solution 

throughout the sintering phase.  Hydrogen concentration sustained because it has the 

following beneficial effects on Ti6Al4V: it acts as a β stabilizer, lowering the transition 

temperature, allows the formation of δTi(H) phase, and induces a eutectoid phase 

transformation when cooling from the βTi(H) phase.  A hydrogen/argon atmosphere is 

used to maintain sintering in the βTi(H) phase [37].  By maintaining a certain 

concentration of hydrogen in solution, the process is able to control the allotropic phase 

transformation.  Sintering in the beta-stabilized phase reduces the required sintering 

temperature while also increasing the self-diffusion of Ti, Al and V.  Upon cooling from 

the βTi(H) region, a eutectoid decomposition occurs creating αTi(H) and δTi(H), which 

nucleate in the interior of the βTi(H) grains.  The final step is to vacuum anneal the 

material, removing hydrogen from solution.  The resulting microstructure is highly 

refined, and oxygen and hydrogen levels are lower than ASTM B348 standards [38]. 

Powder compaction is great area of research for all PM materials.  As the first step in the 

densification of powdered materials, compaction plays a significant role in determining 
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the final product.  Most current research utilizes uniaxial die compaction as the method 

for consolidation.  Many researchers have looked outside the scope of traditional uniaxial 

compaction in order to improve compaction performance.  This includes the use of 

isostatic compaction [39,40],  powder forging [41], and equal channel angular pressing 

(ECAP) [42–44].  ECAP subjects the powder to severe plastic deformation resulting in 

green compacts that are approach full density (99%). 

Optimization of the sintering atmosphere and thermal profile is an area that shows the 

most variability between researchers, particularly time and temperature.  Because of the 

difficulties of producing a fully homogenized material, especially with elemental 

powders, many researchers choose temperatures that will maximize the kinetics and 

improve diffusion rates.  Typically, sintering temperatures range from 1100°C to 1400°C 

[18,34,35,45,46].  This considerable range in sintering temperature is partially due to 

variability in the processing route that different groups choose, but also shows the 

relatively nascent state of PM Ti6Al4V research compared to more established alloys.  

Lower sintering temperatures are usually favored in order to limit effects of grain growth 

while ensuring sufficient bonding and homogenization has occurred.  Another benefit is 

the reduced process cost of sintering at lower temperatures.  Sintering atmosphere is 

almost exclusively high-vacuum [36].  The considerations for this choice are primarily 

concerned with the reactivity of titanium with C,N,O, and H.  Sintering under high 

vacuum ensures that contamination from these elements is minimal, and that any of these 

contaminants contained in the powders are reduced.   

The difficulties with optimizing the homogenization of aluminum and vanadium in 

Ti6Al4V have noted by several researchers [30,47,48].  The challenges with 

homogenization both beta and alpha-phase stabilizing elements within titanium is not 

unique to Ti6Al4V, but a larger body of work exists because it is very common system.  

Typically this problem has been approached by looking for suitable substitutes for either 

vanadium, aluminum, or both.   
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Improving the mechanical properties of Ti6Al4V has focused several key process 

parameters.  There is a general agreement that the goal is to develop a process that results 

in a near full density material with a homogenized fine-grained microstructure.  Because 

titanium’s allotropic phase transformation is a critical factor for all the desired properties, 

ensuring that a uniform transformation occurs, particularly on cooling, has been an area 

of focused research [22,45,49–51].  Characterization of this transformation is not unique 

to PM, but is given greater importance because the additional difficulties of 

homogenizing alloying elements that are introduced as powder particles.  There is an 

opportunity to provide great insight into the sintering behaviour of Ti6Al4V with the use 

of an insitu measurement technique.  There has been some work utilizing thermal 

analysis techniques such as DSC [35], DTA [41,44,45,50], and dilatometry 

[21,25,30,46,49,52].  However, an opportunity exists to further investigate the alloying 

characteristics of PM Ti6Al4V with thermal analysis techniques. 
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2.0. RESEARCH OBJECTIVES 

The objective of this research is to develop to a methodology for analyzing the sintering 

behaviour of PM Ti6Al4V with thermal analysis techniques, specifically DSC.  With this 

methodology it is expected that the alloying behaviour of different powder additions can 

be characterized and compared in order to determine the optimum parameters.  The 

differences between MA and BE blends will be analyzed by DSC with a focus on the β to 

α phase transformation on cooling.  Additional characterization will be performed with 

microstructural analysis and phase/chemical analysis. 
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3.0. IN-SITU ALLOYING AND HOMOGENIZATION OF 

BLENDED ELEMENTAL Ti6Al4V POWDER 

MIXTURES 

3.1. Introduction 

A significant challenge to the adoption of Ti in high volume automobiles is its cost, as 

outlined by Froes et al and others [5,34,53,54]. Powder metallurgy (PM) has been 

identified as a cost effective route for producing Ti components [5,34,36,53–55]. The α/β 

alloy Ti6Al4V has the potential for wide application in the automotive industry [53]. 

There have been numerous studies on the PM processing of Ti6Al4V using both blended 

element (BE) or master alloy (MA) sintering [22,23,31,34,51,55,56]. The BE (or MA) 

approach compared to the sintering of pre-alloyed (PA) powders can offer further cost 

reductions within the PM process. In this method, the alloying elements (e.g. Al and V) 

are introduced through the mixing of elemental powders or master alloy powders (e.g. 

60Al:40V) with pure Ti powder. In-situ alloying then occurs during high temperature 

sintering with the intent of achieving a uniform distribution of the added Al and V and a 

homogeneous final microstructure similar to that present in an ingot or wrought material. 

The main focus of previous work on BE and MA sintering of Ti PM alloys has been on 

the final sintered density, microstructure and mechanical properties achieved in the final 

material. This work has demonstrated that the BE or MA powder metallurgy route can 

produce components with mechanical properties similar to those achieved in wrought 

Ti6Al4V, particularly if a hot isostatic pressing (HIP) operation is performed to increase 

the final density. 

It is widely recognized that diffusion of the BE and MA alloy elements throughout the 

pure Ti powder compact matrix is critical to creating a homogeneous alloy composition 

[36]. This required homogeneity insures the formation of a uniform microstructure during 
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cooling through the β to α transformation which is important in developing mechanical 

properties similar to those achieved through traditional ingot metallurgy (IM). As 

recently pointed out in [48] chemical homogenization in most Ti alloys which contain 

both alpha and beta stabilizers, can be a complex process which is sensitive to the relative 

diffusion rates of the elements involved and the method in which they are introduced (i.e. 

BE versus MA). Therefore a detailed understanding of chemical homogenization is 

needed to further advance the BE or MA sintering routes. 

Despite the importance of homogenization during BE and MA in-situ alloying, studies 

which have investigated the phenomena in detail have been limited [57]. A summary of 

some of these studies has been outline by Robertson and Schaffer [46]. More recent 

studies of microstructural development and homogeneity have also been completed 

[34,51,56,57]. These works evaluated homogeneity through observation of the localized 

microstructural development and x-ray diffraction pattern as a function of sintering 

temperature. While these results offer valuable insight, a more quantitative method of 

measuring the extent and rate of homogeneity is needed. 

The objective of the current work is to develop a method using differential scanning 

calorimetry (DSC) capable of providing a more quantitative measurement of the extent of 

diffusion and homogenization during BE and MA sintering, as well as the rate at which it 

occurs. The principle behind the approach can be explained through an examination of 

the pseudo-binary phase diagram for the Ti6Al4V alloy system (see Figure 3.1.1). The β 

to α phase transformation behaviour of a Ti-Al-V ternary alloy is a strong function of the 

alloy content. In one extreme, a Ti-6Al binary alloy would exhibit a relatively high β 

Transus temperature (i.e. >1000° C) and a narrow temperature range over which the 

complete transformation would take place (i.e. cooling path B). On the other hand an 

alloy with a high V content (eg. Ti-6Al-12V) would have a low β-transus temperature 

and a wider temperature range of transformation (i.e. cooling path C). The alloy Ti-6Al-
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4V would exhibit a moderate β-transus temperature and phase transformation temperature 

range.  

 

Figure 3.1.1: Schematic of the transformation paths during cooling in a Ti 6 wt% Al 

mixture with different Vanadium contents 

In the case of a BE mixture containing elemental Al and V powder additions, it can be 

assumed that, if little homogeneity has been achieved, the microstructure would consist 

of Al and V rich regions. Upon cooling from the Beta region (e.g. 1200 °C), the Al rich 

regions would follow cooling path B and begin to transform at high temperatures, while 

V rich regions would follow cooling path C and transform at low temperatures. The net 

result would be an overall phase transformation that would occur over a very wide 

temperature range. As homogenization proceeded, the transformation temperature range 
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would narrow and become closer to that of the Ti-6Al-4V composition (i.e. cooling path 

A). 

As will be demonstrated below, the DSC instrument is capable of measuring the 

temperature range over which the β to α phase transformation occurs in an alloy as a 

function of sintering time and temperature. This has the potential of providing direct 

evidence of the extent of homogenization. 

3.2. Experimental Methods 

The blended elemental mixtures used for this investigation were prepared using a 

hydride-dehydride (HDH) CP Ti (ASTM Grade 3) powder obtained from Reading 

Alloys, a pure Al powder obtained from Ecka and a pure V powder purchased from Alfa 

Aeasar. For comparison purposes a prealloyed T6Al4V powder obtained from Reading 

Alloys and an ingot metallurgy (IM) pre-alloyed Ti6Al4V rod was obtained from 

McMaster Carr. The chemical composition of all received powders and the IM rod was 

verified by an independent third party laboratory to ensure purity, including the 

concentration of C, O, N, and H.  Additionally, the received size fraction of all powders 

was verified by laser particle size analysis. The d50 from these laser measurements are 

given in Table 3.2.1. 
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Table 3.2.1: As-received powder composition (wt%) and characteristics 

Powder 

Size 

Fraction 

(mesh) 

d50 

(μm) 
Ti Al V C O N H 

CP-Ti 
-100/ 

+325 
106 balance 

<50 

ppm 

<50 

ppm 
0.008 0.161 0.018 0.013 

Al 
-100/ 

+325 
110 0.008 balance n/a 0.011 0.310 0.004 0.008 

V -325 25m 
<100 

ppm 
n/a balance 0.029 0.530 0.120 0.012 

PA 

Ti6Al4V 

-100/ 

+325 
98 balance 6.11 4.06 0.024 0.163 0.018 0.008 

IM 

Ti6Al4V  
N/A N/A Balance 6.01 3.98 0.023 0.153 0.013 0.007 

 

Three BE mixtures with compositions of Ti-6wt% Al, Ti-4 wt% V and Ti-6 wt% Al -4 

wt% V using the appropriate powders of Table 3.2.1 were blended with the CP Ti in a 

Turbula mixer for approximately 1 hour.  Consolidation of all the powders was 

performed using manual uniaxial die compaction with a Carver press to 850MPa.  

Licowax lubrication was applied to the die walls to reduce wear.  Sample weight and 

dimensions were recorded in both the green and sintered state.  The samples were 4.8mm 
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in diameter and approximately 1mm in thickness. Discs were cut from the purchased 

Ti6Al4V rod to a nominal thickness of 1 mm. 

Thermal analysis of the sintering behaviour of the different PM alloys was performed 

using a Netzsch 404 F1 DSC.  Samples were sintered in a yttria crucible to limit reaction 

between the crucible and Ti samples. Heating was performed under a high purity flowing 

argon atmosphere (99.999%) with a titanium “getter” ring placed below the hot zone to 

ensure minimal contamination of the samples by impurities in the gas stream. The DSC 

was temperature and sensitivity calibrated using 6 standards (i.e. In, Bi, Sn, Al, Ag and 

Au). Each thermal profile involved heating to 1200°C at 20°C/min with either an 

immediate cooling or increasing isothermal hold times from 30 minutes to 2 hours.  The 

samples were then cooled to room temperature at a controlled rate. 

Microstructural examination on post DSC treated samples was performed using both a 

Hitachi S-4700 FEG SEM with an Oxford INCA EDS analysis system for phase 

composition, and a Zeiss optical microscope.  Samples were mounted in a conductive 

resin and polished to a mirror-like finish using SiC papers, diamond suspension and 

colloidal silica (Struers).  A Bruker D8 Advance XRD with a Cu Kα source was used for 

phase identification of as pressed and DSC heated powder compact samples. 

3.3. Preliminary Results and Experimental Development 

Differential Scanning Calorimetry (DSC) has been used by Malinov et al. [50]  to study 

the β to α transformation for IM Ti6Al4V. The work by Malinov et. al. focused on the 

effects of different cooling rates for the β to α transformation.  Their work validated the 

use of DSC as a technique for measuring the β to α transformation for Ti6Al4V.  In 

particular, it determined the influence of cooling rate on the start (Beta Transus) and 

finish (alpha Transus) temperatures and therefore transformation peak width. 
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In order to validate the current DSC procedure, the β to α phase transformation of the IM 

Ti6Al4V sample described in Table 3.2.1 was determined for 4 separate samples. The 

transformation peaks for these samples are shown in Figure 3.3.1.  Table 3.3.1 illustrates 

the various measurements performed on these peaks. A cooling rate of 40 °C/minute was 

used for these experiments. This cooling rate was chosen because it allowed the DSC 

instrument to establish a constant cooling rate from approximately 1075 to 675 °C which 

encompassed the temperature of interest with respect to the β to α transformation. This 

constant cooling rate was important in establishing a stable baseline in the DSC signal 

before and after the transformation peak. Cooling rates lower than 40 °C/minute 

produced transformation peaks that were not as visible with respect to the baseline level. 

A cooling rate of 40 °C/minute was also included in the study of Malinov et al. so direct 

comparison could be made. 

Figure 3.3.1: Illustration of the β to α transformation for four IM Ti6Al4Vsamples cooled 

at 40°C/min from 1200 °C. 
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Included in Figure 3.3.1 is an example of the baseline construction used to determine the 

area under the peak (i.e. the enthalpy of transformation), the temperature at the maximum 

peak height (i.e. peak temperature) and the peak width. Peak width was determined by 

the Netzsch software through a construction of a second baseline parallel to the first, but 

offset a magnitude of 1% of the maximum peak height in the heat flow direction. The 

lower and upper temperatures at which this 1% offset construction intersects the DSC 

trace was used to determine the peak width. The beta transus temperature was determined 

by the point at which the DSC trace and baseline construction coincide as indicated in 

Figure 3.3.1. The alpha transus was determined by subtracting the peak width calculation 

from the beta transus temperature. 

The DSC traces of Figure 3.3.1 indicate that the β to α phase transformation behaviour in 

the Ti6Al4V ingot is very reproducible.  The first row of Table 3.3.1 presents the 

averaged values for the enthalpy and temperature measurements determined from the 

transformation peaks of Figure 3.3.1. The standard deviation of all measurements were 

less than 1.5%. The enthalpy of transformation, beta transus, peak temperature and peak 

width measurements made on Ti6Al4V by Malinov et al are also given in Table 3.3.1 for 

a 40 °C/minute cooling rate. Agreement with the current study is very good considering 

the different measurement conditions. The Ti6Al4V alloy of Malinov’s study contained a 

higher Al and O content than the alloy studied in Figure 3.3.1 (i.e. 6.59 and 0.19 wt% 

respectively) which increases the beta transus temperature. Reports on the β transus of 

low oxygen containing Ti6Al4V are 945 °C [6], which is in better agreement with the 

current value. Peak width is partially determined by the thermal lag of the DSC system. 

Helium was used as the process gas in the DSC experiments of Malinov, while Argon 

was used in the current study. Helium is known to decrease transformation peak widths, 

thus explaining the small difference in peak width between Malinov and this study.  The 

most significant discrepancy between reference Malinov et al and the current study is the 

enthalpy of transformation measurements.  
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Table 3.3.1: Average values for DSC Measurements made for the β to α Phase 

Transformation in a Ti6Al4V ingot and 100% CP-Ti pressed powder. 

Sample Enthalpy 

(J/g) 

Peak 

Temperature 

(°C) 

β Transus 

Temperature 

(°C) 

α Transus 

Temperature 

(°C) 

Peak 

Width 

(°C) 

Ti6Al4V IM 51.0 870.5 926.5 768.9 157.6 

Ti6Al4V 

[50] 
27 873 970 830 140 

100% CP-Ti 75.15 870.1 928.5 828.6 99.9 

 

The Ti6Al4V BE powder mixtures initially contain 90 wt% of CP-Ti powder. For this 

reason it was considered important to characterise the transformation behaviour of 100% 

CP-Ti powder compacts as a baseline comparison. Figure 3.3.2 illustrates the cooling 

curves for four 100% CP-Ti samples while row 3 of Table 3.3.1 presents the average 

values measurement from the transformation peaks of Figure 3.3.2. The phase 

transformation behaviour of the CP-Ti is also very reproducible, with standard deviations 

on temperature measurements of less than 0.5% and variations of 4% on the enthalpy and 

peak width measurements. The beta and alpha transus temperatures agree well with that 

reported by Kim and Park for a CP-Ti ingot material for a similar cooling rate (i.e. 925 

°C and 850°C respectively) made using resistivity measurements [58].    
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Figure 3.3.2: Repeatability of Cp-Ti cooled from 1200°C at 40°C/min 

3.4. Blended Elemental Experimental Results 

3.4.1. Initial Heating to 1200 °C 

Figure 3.4.1 illustrates the heating traces for the Ti4V, Ti6Al and Ti6Al4V blended 

elemental mixtures in comparison to the 100% CP-Ti powder compact. The 100% CP-Ti 

and Ti4V have similar DSC traces with no thermal events evident until the alpha to beta 

phase transformation, which onsets at approximately 879 °C.  This is close to the 

published theoretical onset temperature of 882 °C for high purity Titanium. The slightly 

lower temperature measured in this study is due to the small amount of impurities in the 

powders as reported in Table 3.2.1. 
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The Ti6Al and Ti6Al4V BE samples exhibit an exothermic reaction which onsets at 565 

°C. This exothermic peak is associated with the reaction of Ti and Al to form Ti 

aluminide intermetallics. A doublet exothermic peak in the Ti6Al4V BE mixture 

indicates that there may also be reactions between Al and V to form Al-V intermetallic 

phases.  At higher temperatures, the Al containing mixtures also exhibit the alpha to beta 

phase transformation over a similar temperature range to that observed in the 100% CP-

Ti and Ti4V mixtures. One notable measurement made from the DSC traces of Figure 

3.4.1 is the enthalpy of transformation of the alpha to beta phase transformation for the 

different mixtures (i.e. 68.8 J/g, 46.7 J/g and 42.9 J/g for the Ti4Al, Ti6Al and Ti6Al4V 

respectively). Based on the measured enthalpy of transformation for the 100% CP-Ti, if 

all of the pure Ti powder transformed in such a way that it was unaffected by the 

presence of the BE powder additions, the theoretical enthalpies for the mixtures, 

accounting for the weight fraction of pure Ti powder, would be 64, 62.7 and 60.0 J/g for 

the Ti4Al, Ti6Al and Ti6Al4V respectively. The measured enthalpy for the Ti4Al sample 

is within the standard deviation of it’s theoretical enthalpy. However, the enthalpy values 

for the Ti6Al and Ti6Al4V samples are significantly below the theoretical value, 

indicating that metallurgical interaction between the Ti and Al powder addition begins 

during heating. More specifically, the lower enthalpy for the Ti6Al and Ti6Al4V 

mixtures, is an indication that the exothermic reaction at lower temperatures consumes a 

measureable amount of Ti in the formation of intermetallic compounds prior to the alpha 

to beta phase transformation. 
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Figure 3.4.1: Comparison of heating traces including α to β transformation for blended 

elemental mixtures 

3.4.2. Cooling Transformations and Microstructural Development  

Ti6Al 

The DSC traces shown in Figure 3.4.2 includes the cooling traces for Ti6Al following 

increased sintering time. The cooling trace for a 100% CP-Ti sample is also included. In 

comparison to the 100% CP-Ti it is evident that the presence of Al shifts the β to α phase 

transformation to higher temperatures even after zero hold time at 1200 °C. This is 

consistent with the fact that Al is an alpha stabilizing element. The sample with no hold 

time at 1200 °C, exhibits a relatively broad phase transformation with a high onset 

temperature and low end temperature.  With increasing hold time, peak width reduces 

due to a lower onset temperature and higher end temperature. The majority of change in 

the phase transformation behaviour occurs within the first 30 minutes of sintering. 



 

 

47 

 

 

Figure 3.4.2: Comparison of the β to α transformation for Ti6Al resulting from increasing 

isothermal holds: No Hold, 30min, 1 hour, 2 hours, compared to pure Ti 

Optical micrographs of Kroll’s reagent etched samples for zero and 2 hour holds at 1200 

°C are illustrated in Figure 3.4.3. Both samples exhibit large scale irregularly shaped 

porosity which was introduced at lower temperatures due to the melting of the Al powder 

and its exothermic reaction with the Ti powder. Both samples also indicate a similar grain 

structure with a relatively coarse platelike microstructure which arises from the beta to 

alpha phase transformation in these alloys during cooling. The scale of the platelike 

features are more variable in the zero hold sample, which is indicative of a variable Al 

content. Figure 3.4.4 presents an SEM image and EDS spot analysis in a region of a large 

pore in the no hold sample. These results confirm a higher Al content near the pore and a 

lower Al content further away from the pore location for the zero hold sample. Mixtures 

sintered for 0.5 and 1 hour exhibited microstructures similar to the 2 hour sample.  
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Figure 3.4.3: Optical micrograph of Ti6Al sintered with a) no hold and b) 2 hours 

 

 

 

 

a)

b)
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Figure 3.4.4: SEM/EDS chemical analysis at designated points for a Ti6Al sample heated 

to 1200 °C with no hold. 

Figure 3.4.5 presents XRD results for an unheated, green sample and samples after 

sintering at 1200 °C for various hold times.  The presence of the elemental Al powder 

addition is clearly visible in the green sample as is the α-Ti phase of the 100% CP-Ti 

powder. The primary change in phase evolution as a result of sintering is the 

disappearance of the Al phase and, in some cases (i.e.  30 minute hold at 1200 °C) some 

minor peaks which may be associated with oxide phases. These minor peaks were not 

characterisitic of any singular oxide phase, and would need further investigation.  Alpha-

Ti is the predominant phase present in all samples, indicating a complete transformation 

of the β-Ti phase during cooling. The relative peak intensities fluctuate from sample to 

sample. This is expected to be due to the preferred orientation developed in the platelike 

structure during the β to α transformation upon cooling. Note that the α-Ti peak positions 

shift slightly to higher angles in the sintered samples compare to the green sample. This is 

due to the solid solution alloying of Al in the Ti crystal lattice. 

Spectrum Al Ti 

1 6.94 93.06 

2 7.14 92.86 

3 7.31 92.69 

4 5.88 94.12 

5 4.01 95.99 

6 3.06 96.94 

Mean 5.72 94.28 
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Figure 3.4.5: Measured spectra by XRD for Ti6Al mixture with corresponding phase 

composition 

Ti4V 

Figure 3.4.6 includes the cooling DSC traces for Ti4V with increasing hold time and a 

100 % CP-Ti sample. Compared with 100% CP-Ti, the presence of V in the binary 

mixture shifts the β to α phase transformation to lower temperatures even after zero hold 

time at 1200 °C. This is consistent with the fact that V is a beta stabilizing element.  The 

0 hold trace for Ti4V shows the broadest peak on cooling with a low peak height.  With 

increased sintering time, this transformation peak shifts to lower temperatures up to 1 

hour.  After 1 hour and up to 2 hours, the most significant changes occur.  Firstly, the 
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peak shifts back to higher temperatures.  And secondly, the start and end temperatures of 

this peak narrow.  

 

Figure 3.4.6: Comparison of the β to α transformation for Ti4V resulting from increasing 

isothermal holds: No Hold, 30min, 1 hour, 2 hours, compared to pure Ti  

Optical micrographs of the Ti4V BE mixture with a zero and 2 hour hold time at 1200 °C 

are shown in Figure 3.4.7.  Undissolved V particles (light grey) are clearly visible 

throughout the microstructure for the zero hold sample.  The matrix surrounding these 

particles is fairly uniform and the equiaxed grain structure is similar to that observed in 

the 100 % CP-Ti samples.  Figure 3.4.8 a) presents an SEM image and EDS elemental 

map for the Ti4Al no hold, 1200 °C sample in the region of an undissolved V particle. 

The image indicates and extensive interdiffusion and solid solution zone which is 

penetrating to the core of the original V BE particle.Figure 3.4.8 b) illustrates that the 
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diffusion of V into the surrounding CP-Ti matrix extends less than 100 µm at this stage. 

Samples sintered for 0.5, 1 and 2 hours exhibited similar microstructures exemplified by 

Figure 3.4.7 b). At these sintering times no V particles remained in the structure and a 

uniform equiaxed microstructure was produced.  Figure 3.4.7 illustrates the absence of 

the large scale irregular pores in the Ti4Al samples compared to the Ti6Al samples. 

 

Figure 3.4.7: Optical micrograph of Ti4V sintered at 1200 °C with a) no hold and b) 2 

hour hold 

a) 

b

) 

Vanadium particle 
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a)  

 

b) 

Figure 3.4.8: SEM/EDS analysis of Ti4V sintered at 1200 °C with no hold; a) EDS map 

and b) compositional profile in the vicinity of a V particle. 

Spectrum Ti V Total

1 1.43 98.57 100.00

2 97.32 2.68 100.00

3 99.04 0.96 100.00

4 99.74 0.26 100.00

5 100.00 0.00 100.00
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Phase composition and evolution of sintered Ti4V measured using XRD was very similar 

to that determined for Ti6Al (see Figure 3.4.9). The pressed green sample consists of α-Ti 

and V. In the sintered samples the predominant phase is α-Ti, however there is a small 

peak approximately at 38° which has been reported by many researchers to correspond to 

retained beta phase [18,32,59]. This peak is most obvious at intermediate sintering times 

and nearly disappears at 2 hours. Some degree of retained beta is consistent with the 

presence of the beta stabilizing V alloy addition. No intermetallic phase formation 

occurred but a similar peak shift to higher angles occurred due to the solid solution 

alloying of V in Ti.  

Figure 3.4.9: Measured spectra by XRD for Ti4V mixture with corresponding phase 

composition 
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Ti6Al4V 

The DSC traces for the BE mixture of Ti6Al4V with increasing hold times compared to 

the 100 % CP-Ti sample are shown in Figure 3.4.10.  The observed peaks for the β to α 

transformation for all the BE samples have a significantly reduced intensity and a wider 

peak width compared to the CP-Ti sample. The onset temperature of the cooling 

transformation is lower than the Ti6Al mixture while the end temperature is higher than 

the Ti4Al mixture. This makes sense since the Ti6Al4V mixture experiences the 

influence of both V and Al. In general the change in the cooling transformation peak in 

the Ti6Al4V mixture is less influenced by the sintering time and the temperature range 

over which it occurs remains relatively broad in comparison to the binary mixtures.  

 

Figure 3.4.10: Comparison of the β to α for Ti6Al4V BE transformation resulting from 

increasing isothermal holds: No Hold, 30min, 1 hour, 2 hours, compared to pure Ti 
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Optical micrographs of the Ti6Al4V BE mixture with zero, 0.5, 1 and 2 hour hold times 

at 1200 °C are shown in Figure 3.4.11. Undissolved V particles (light grey) are clearly 

visible throughout the microstructure of the zero hold sample, similar to that seen in the 

Ti4Al binary mixture.  However, unlike the Ti4Al, the surrounding matrix exhibits a 

more noticeable acicular microstructure. In addition, the scale of the acicular 

microstructure varies from very fine near the V particles (i.e. darkly etched regions) to 

coarsely spaced platelets.  

Figure 3.4.12 presents an SEM image and EDS elemental map for the Ti6Al4V no hold 

sample in the region of a partially dissolved V particle. The very core of the particle has 

retained a pure V content. However, extensive diffusion of both Ti and Al through the 

outer surface of the original V particle has occurred. Surrounding the original V particle 

surface is a fine, acicular microstructure noted in the optical micrograph.  

Like the Ti4V mixture, the dissolution of V particles was completed after sintering for 30 

minutes. However regions of darkly etched, fine acicular structure and lightly etched 

platelike structures remain. These regions are expected to have different alloy content, 

indicating that inhomogeneity still exists at 30 minutes. Some non-uniformity in the 

acicular spacing exists after 1 hour, but this is not as extensive as that observed at 0.5 

hours. After 2 hours the microstructure is very uniform indicating a homogeneous 

distribution of the alloy elements has been achieved. 
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Figure 3.4.11: Optical micrograph of Ti6Al4V BE sintered at 1200 °C; a) with no hold, 

b) 0.5, c) 1, d) 2 hours  
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Figure 3.4.12: SEM/EDS analysis of Ti6Al4V BE sintered at 1200 °C with no hold 

It should be noted that the irregularly shaped, large scale porosity created by the presence 

of the elemental Al particles is present in the Ti6Al4V BE mixture and is similar to that 

observed in the binary Ti6Al sample. 

The measured phase composition for BE Ti6Al4V in both the green and sintered states is 

shown in Figure 3.4.13.  In the green state, the majority of the measured peaks 

corresponded to α-Ti with evidence of the added elemental V and Al particles.  A 

significant feature of the XRD pattern for the sintered materials is the development of a 

pronounced retained beta peak. This peak appears in the no hold sample, grows in 

intensity at 30 minutes and 1 hours and then greatly reduces after 2 hours. Extensive 
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retained beta would be expected if regions of the microstructure contained elevated V 

content. Such a region is clearly noted in the SEM-EDS results of Figure 3.4.12. 

Therefore the XRD results indicate significant levels of inhomogeneity in the Ti6Al4V 

up to at least 1 hour of sintering time. It is worth noting that the retained beta XRD peak 

in the Ti4V sample was present over a shorter sintering time and at a lower magnitude 

compared the Ti6Al4V BE samples. This suggests that the combination of Al and V 

added through elemental particle additions has a detrimental effect on V dissolution and 

homogenization.  

Figure 3.4.13: Measured spectra by XRD for Ti6Al4V mixture with corresponding phase 

composition  
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Prealloyed (PA) Ti6Al4V powder 

The results shown in Figure 3.4.14 are a comparison of the DSC cooling traces for 

increasing hold time at 1200°C for the PA Ti6Al4V powder. Unlike the blended 

elemental binary and ternary mixtures described above, the β to α phase transformation 

peak is relatively unaffected by the sintering time at 1200 °C. There does appear to be an 

increase in the enthalpy of the transformation with increasing hold time, but unlike the 

BE mixtures, there is no appreciable change in the shape of the measured peaks.  

The microstructure of the PA Ti6Al4V after heating to 1200 °C but with no hold and 

after 2 hours is shown in Figure 3.4.15.  There are two main distinctions between the PA 

powder and the BE mixtures.  Firstly, the formation of the Widmanstätten microstructure 

typical in Ti6Al4V is uniform throughout the sample. The subsequent samples sintered 

for 0.5, 1 and 2 hours exhibited identical microstructures. The second distinction is the 

substantially higher porosity in these samples. The porosity is well distributed and 

appears to be open and continuously connected throughout the structure. 
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Figure 3.4.14: Comparison of the β to α with PA transformation resulting from increasing 

isothermal holds: No Hold, 30min, 1 hour, 2 hours, compared to pure Ti 
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Figure 3.4.15: Optical micrograph of sintered Ti6Al4V Prealloyed powder sintered at 

1200 °C; a) with no hold and b) for 2 hours. 

SEM/EDS analysis to the sintered PA Ti6Al4V samples confirmed a uniform distribution 

of the alloy elements. XRD results for the PA samples as a function of sintering time are 

presented in Figure 3.4.16. As with the BE mixtures above, the predominant phase 

present at room temperature is (α-Ti). There is some evidence that a small about of 

retained beta and perhaps some intermetallic compounds or oxides exist in the 

microstructure. Similar results were reported by Malinov for an ingot metallurgy 

Ti6Al4V. Therefore, the formation of small amounts of these phases, is a result of the 

complex phase transformation that occurs during cooling in Ti6Al4V. For example, the 

a)

b)
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presence of a certain level of retained beta results from microsegregation on the scale of 

the Widmanstätten structure, and does not reflect larger scale bulk inhomogeneity that 

would be expected from the incomplete diffusion of alloying elements in a BE sintering 

process.  

Figure 3.4.16: Measured spectra by XRD for the PA powder with corresponding phase 

composition 

3.5. Analysis and Discussion 

Overall the above DSC, microstructural and XRD results indicate homogenization of BE 

powder additions occurs to a significant extent over a 2 hour sintering period at 1200 °C. 

However, there are some trends within the individual alloys studied, which can be further 
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understood from the summarized DSC measurements presented in Figure 3.5.1-Figure 

3.5.4. As would be expected, the Ti6Al mixture consistently exhibits a high beta transus 

temperature, both in terms of onset and end temperature.  Conversely, the Ti4V mixture 

exhibits the lowest onset and end temperature for the beta to alpha transformation.  The 

measured behaviour of the ternary systems fell in the region between the two binary in 

terms of start and end temperature for the transformation.  The IM Ti6Al4V maintained 

the most stable results in all the metrics, while all the PM systems had larger degree of 

variability after different periods of sintering.  Peak width was greater for all PM than the 

IM, but this did not correlate into a higher enthalpy of transformation. 

 

Figure 3.5.1: Onset temperature measurements made from the DSC cooling traces of the 

materials of this study 
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Figure 3.5.2: End temperature measurements made from the DSC cooling traces of the 

materials of this study

 

Figure 3.5.3: Peak width measurements made from the DSC cooling traces of the 

materials of this study 
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Figure 3.5.4: Enthalpy of transformation measurements made from the DSC cooling 

traces of the materials of this study. 

 

3.5.1. Ti6Al 

In order to elucidate the results gathered from DSC and other sources, a conceptual 

diffusion model was developed for the progression of alloying for the Ti6Al system, and 

is shown in Figure 3.5.5. 
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Figure 3.5.5: Diffusion model for Ti6Al at A) Green state, B) No hold state, and C) 2hr 

state 

The behaviour of the DSC traces for the different sintered states shown in Figure 3.4.2 

provide insight into the alloying behaviour of the Ti6Al system.  In the no hold state, the 

DSC trace for the β to α transformation has changed significantly in comparison to the 

CpTi trace.  The two most notable features of this measured transformation are its 

extremely broad shape and the considerable shift to higher temperatures for both the start 

and end of the transformation.  The broad shape of the transformation suggests a non-

uniform phase transformation.  This is due to incomplete diffusion of Al at this early 

period.  As mentioned previously, Al increases the stability of α-Ti phase at higher 

temperatures.  The measured onset for the transformation in this state is 1065.7°C, 

indicating that regions in the microstructure exist with high Al concentration. This 

variation in Al concentration was confirmed by SEM/EDS in Figure 3.4.4 where a 

marked change in concentration of Al corresponds with the transition from the plate-like 
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region (Points 2-4) and the equiaxed region (Points 5,6).  The broad shape of the DSC 

peak suggests that these variations in Al concentration result in a large temperature span 

for the β to α transformation.  Both SEM/EDS and XRD were unable to locate the 

existence of pure Al in this state.  Therefore, despite the variation in microstructure, at 

this relatively premature state of sintering there is significant homogenization of Al. This 

is due to the melting of Al which helps distribute the element throughout the 

microstructure. The phase composition changes that occurred from the green state to the 

no hold state are primarily due to the elimination of pure Al, resulting in an α-Ti solid 

solution. 

There was less observed variation in the measured DSC peaks with increased sintering 

after the no hold state.  From the no hold state there is a significant increase in measured 

enthalpy for the β to α transformation peak, increasing by 32% at the 0.5Hr state.  Peak 

heatflow also increased significantly, with both characteristics pointing to a more 

homogeneous transformation SEM/EDS analysis confirmed that small variations in Al 

concentration lead to visibly distinct variations in microstructure.  Additionally, EDS 

analysis showed that increased Al concentration was found segregated in the regions 

between the plate formations. XRD analysis of the 0.5Hr state produced a similar spectra 

to the no hold state, however, variations in peak intensity were observed.  This intensity 

variation is caused by high α-Ti stabilized plate growth along preferred crystal planes. 

The DSC traces for the latter two states showed little variation, with no observable 

changes due to the increased sintering time.  This suggests that in both the 1Hr and 2Hr 

states changes to the β to α transformation due to Al concentration had homogenized.  

Measured enthalpy for the transformation had little variation between 1 and 2Hrs, as well 

as peak heatflow and peak width. The microstructure seen in Figure 3.4.3 has a coarse 

plate-like formation, similar to that found in the 0.5Hr state.  This suggests that some 

degree of grain growth has occurred up to this period, causing the individual plates to 

widen with increasing sintering.  SEM/EDS chemical analysis of the microstructure of 
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both states showed that bulk homogenization of Al was complete, with the less variation 

in Al composition at the 2Hr state. Variation in peak intensity of the α-Ti phase was also 

noted in the 1Hr and 2Hr states, which was due to preferred orientations of the alpha Ti 

transformation.  

3.5.2 Ti4V 

A conceptual model for alloying and diffusion for the binary Ti4V mixture is shown in 

Figure 3.5.6. 

 

Figure 3.5.6: Diffusion model for Ti4V at A) Green state, B) No hold state, and C) 2hr 

state 

Similar to the Ti6Al system, significant insight into the alloying behaviour of the Ti4V 

system can be inferred from the DSC traces shown in Figure 3.4.6.  In the 0Hr state the 
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DSC trace for the β to α transformation was significantly altered compared to the CpTi 

trace.  The measured peak had broadened significantly, with a temperature span of 

244.7°C compared to 101°C for the transformation of the pure Ti powder.  This 

broadening occurred with a corresponding marked reduction in peak heatflow.  Another 

observation made for the Ti4V system was the apparent shift of the phase transformation 

to lower temperatures.  This is due to the isomorphous β-phase stabilizing effects of V, 

and that diffusion of V in to the Ti matrix would shift the transformation temperature 

below the beta transus for pure Ti.  The measured onset for the 0Hr state is close to the 

onset for the CpTi trace, suggesting that the effect of V to lower the transformation 

temperature has not affected some regions of the sample.  Additionally, retained V 

particles were visible in this state.  This contrasts the Ti6Al system where there was no 

visible remaining Al particles in the microstructure.  Another visual difference from the 

Ti6Al system was the lack of large voids in this state.  SEM/EDS analysis in  

Figure 3.4.8 confirmed the existence of retained V particles at the 0Hr state, however, 

there was significant concentration of Ti in the peripheral areas of these V sites.  XRD 

analysis of this state did not detect elemental V that was found in the green state, 

suggesting that the concentration was too low to resolve the peak using the scanning 

parameters for this investigation.  Therefore, at this state, the site of the elemental V 

particles exists with Ti diffusion into the center of these particles without any appreciable 

counter diffusion of V. 

In the 0.5Hr state, further changes to the DSC trace occur.  The onset temperature of the β 

to α transformation occurs at a lower temperature (902.8°C vs 923.4°C) than the 0Hr 

state.  This suggests that the β-stabilizing effects of V have been enhanced with increased 

thermal exposure by allowing further diffusion.  Peak temperature has also shifted to a 

lower temperature (819.3°C vs 848.1°C) than the 0Hr state, with a higher heatflow at the 

peak temperature.  The higher heatflow at the peak temperature is due a greater portion of 

the material transforming at this temperature, whereas in the 0Hr, the shorter 
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transformation peak is the result of a more inhomogeneous transformation.  An increased 

enthalpy of transformation was also measured for the 0.5Hr state (53.65J/g vs 64.69J/g).  

In the 0.5Hr state the V sites seen in the 0Hr state were no longer present.  The equiaxed 

grain structure of the 0Hr state appeared to have changed little with additional thermal 

exposure, however, upon closer examination a plate-like structure had formed.  This 

likely occurred in the regions that had previously been occupied by the V particles.  

Additionally, there was evidence of pore shrinkage and rounding, a result of densification 

due to increased sintering.  The dissolution of the V sites suggested increased diffusion of 

V throughout the Ti matrix.  Analysis with SEM/EDS confirmed that longer range 

diffusion of V had occurred.  Due to the smaller particle size of the V powder, there is an 

inherent increase in the homogeneity of the V once in is in solution.  However, the long 

range diffusion of V at this state had not progressed to the same extent as Al in the Ti6Al 

system despite the smaller particle size.  This is likely due to the slow self-diffusion rate 

of V which would have increased the amount of thermal exposure necessary to create a 

Ti-V solid solution [48].  Identification of phase composition by XRD revealed a similar 

composition to the 0Hr state.  As the characteristic peaks for V were no longer present in 

the previous state, there was only changes to the two remaining phases, α-Ti, and β-Ti.  

There was only minute changes to β-Ti, with a broader peak occurring at 39.7°. 

In the final two states of sintering the observed variations in the DSC traces suggest 

improved alloying due to the increased thermal exposure.  The observed transformation 

peak in the 1Hr state had the largest temperature span, increasing from the 0.5Hr state by 

nearly 50°C.  It should be noted that both at the onset and end of the transformation of the 

1Hr state, the measured deviations from baseline were very subtle.  This small increase in 

heat flow at both ends of the transformation means that there is little thermodynamic 

activity and that this represents a very small portion of the total transformation.  This is 

evidence of the slow diffusion of V in the Ti matrix.  The observed microstructure of the 

1Hr state by optical microscopy reveals a large volume fraction of plate-like structure 

relative to the 0.5Hr state, and the equiaxed grain structure is no longer present.  Regions 
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of a lighter coloured phase that have persisted in all states now have a plate-like structure 

within these regions.  SEM/EDS analysis of these regions found a higher V 

concentration, close to the desired bulk concentration, and the surrounding regions to be 

lower in V concentration.  The transition from 0.5Hr to 1Hr appears to represent a 

significant transition for the sintering of the Ti4V system.  SEM/EDS and DSC support 

the transition in the 0.5Hr of a relatively inhomogeneous microstructure with some 

regions of high-V concentration to a much more homogeneous microstructure at the 1Hr 

state.  Variations in V concentration in the 1Hr state have less variation and appear to be 

the result of two distinct regions, with the previously mentioned lighter-coloured phase 

having a V concentration of approximately 4wt% and the surrounding darker region 

having an average V concentration on 2.2wt%.  Further changes occur for the measured 

transformation peak in the 2Hr state.  The DSC trace for the β to α transformation had the 

highest end temperature of all the sintered states.  The measured end temperature of 

692°C was nearly 70°C higher than the 1Hr state (625.6°C).  The onset temperature for 

the transformation was similar to the 1Hr state (898.5°C for the 1Hr state vs 893.5°C for 

the 2Hr state), resulting in the shortest temperature span for the measured transformation 

of the Ti4V sintered states (272.9°C for the 1Hr state vs 201.1°C for the 2Hr state).  This 

decrease in the temperature span of the phase transformation suggests the degree of 

alloying of V is more homogeneous.  In Figure 3.4.7, the optical micrograph of this 

sintered state, shows a nearly complete plate-like structure throughout.  This structure is 

apparent in both of the two light and dark coloured regions described earlier.  

Additionally, on inspection there does not appear to be any reduction in volume fraction 

of the lighter V-rich regions when compared to the 1Hr state.  This is surprising because 

with increased sintering it was expected that volume fraction of these regions would be 

reduced as diffusion of V continued.  SEM/EDS analysis of the microstructure reveals 

many regions that are still below the desired bulk composition.  Area scans of specific 

regions of the microstructure found the composition of V to vary between 1.8wt% to 

2.3wt%.  Interestingly, this includes some of the lighter V-rich regions, meaning that the 

V concentration in these specific regions has decreased but there is still more diffusion 
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required before a homogeneous composition is obtained.  XRD analysis of both the 1Hr 

and 2Hr sintered states is shown in Figure 3.4.9.  In both cases, α-Ti constitutes the bulk 

of the phase composition.  In the 1Hr state a small peak corresponding with β-Ti is 

observed.  This is expected due to the incomplete diffusion of V resulting in V-rich 

regions in the microstructure that are able to stabilize β-Ti.  This peak is not observed in 

the 2Hr state, further supporting the improved homogenization of V that was found with 

SEM/EDS. 

3.5.3 Ti6Al4V BE 

With an analysis of the alloying behaviour of both Al and V completed to determine the 

behaviour of each in the Ti matrix, the ternary mixture was then analyzed.  A conceptual 

model for alloying and diffusion for the ternary Ti6Al4V BE mixture is shown in Figure 

3.5.7. 
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Figure 3.5.7: Diffusion model for Ti6Al4V BE at A) Green state, B) No hold state, and 

C) 2hr state 

The observed behaviour of the ternary mixture was expected to show many of the 

characteristics of the two binary systems.  But the interaction between both elemental 

additions as alloying progresses was important to understand.  As Al and V alter the 

transformation behaviour of β-Ti to α-Ti, this interaction is particularly important.  From 

the green state to the no hold state the observed changes to the microstructure were 

primarily due to the melting and dissolution of Al.  A similar behaviour occurred where 

there was rapid melting and alloying with the surrounding Ti to form Ti aluminide 

intermetallics.  The resulting microstructure seen in Figure 3.4.11 contained the same 

large voids caused by the melting of Al that was seen in the binary mixture with the 

majority of the microstructure consisting of plate-like α-Ti.  Visible V particles were also 

seen in this state, with the same microstructural features that were seen in the Ti-V binary 

mixture.  In this state it appears that both alloying additions are acting largely 
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independent of each other and that the interactions between the Al and V had not 

occurred yet.  The DSC trace of the no hold state is seen in Figure 3.4.10.  The measured 

transformation in this state qualitatively appears to be very broad with a very low peak 

heatflow.  Further analysis of the transformation confirmed these observations.  The 

temperature span was the largest of all the measured transformations for this 

investigation, while the enthalpy of transformation was the lowest.  Additionally, the 

measured onset temperature for the β to α transformation was approximately 20°C less 

than the measured onset temperature for the binary Ti6Al mixture in the same state 

(1044.8°C vs. 1065.7°C). This lower beta transus temperature is due to the influence of 

the added V.  The measured end temperature for the ternary mixture was markedly higher 

than the binary Ti4V mixture (780.2°C vs. 678.7°C), indicating that the presence of Al in 

the ternary BE has an alpha stabilizing influence to the mixture.  These variations in 

transformation characteristics suggests that the earlier predictions that there was little to 

no interaction between the alloying elements is not correct.  SEM/EDS analysis, in Figure 

3.4.12 shows a V particle in the Ti matrix at the no hold state.  Elemental maps of this 

region show that in addition to the uniform Ti concentration surrounding the V particle, 

the concentration of Al has reached a relatively homogeneous concentration considering 

the amount of thermal exposure.  Some diffusion of Ti into the V particle region is 

observed in these SEM/EDS micrographs, however like the Ti4V system, the extent of 

this diffusion is limited at this state.  The extent of V diffusion out into the surrounding 

matrix also closely resembles the Ti4V binary mixture, where relatively limited 

movement of V along the grain boundaries of the plate-like structure is observed.  Phase 

composition of this state by XRD is shown in Figure 3.4.13.  The key change in phase 

composition from the green state to the no hold state is the disappearance of V and Al 

spectra and the appearance of β-Ti phase.  This change in phase composition supports the 

SEM/EDS results discussed earlier, suggesting that little pure V exists and instead a V-

rich Ti,V solid solution has formed. 
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In the 0.5Hr state the measured DSC transformation trace shifted to lower temperatures 

relative to the no hold trace.  The onset temperature of the β to α transformation in 

particular was recorded at a lower temperature (768.8°C vs 780.2°C).  Additionally, the 

measured enthalpy for the transformation increased significantly with the increased 

thermal exposure (38.34 J/g vs. 25.94J/g).  Optical micrographs of this state revealed that 

the equiaxed primary α-Ti grains were less prevalent and the lamellar α-Ti structure 

accounted for a much greater volume fraction of the total microstructure.  Close 

examination of the microstructure also revealed that the V sites seen in the no hold state 

were no longer present.  Both of these changes suggest that increased homogenization of 

both Al and V has occurred during this period.  Analysis with SEM/EDS also found no 

evidence of the V-rich regions found in the no hold state.  Instead much larger regions 

with uniformly distributed V were found likely near where the V-rich regions existed.  In 

this state the V was fully segregated along the grain boundaries of the lamellar α-Ti.  

Other areas observed by SEM/EDS, however, did not detect any appreciable 

concentration of V.  Instead, a uniform concentration of Al was measured.  Visually, 

these two different regions were easily distinguished because of the different scattering 

behaviour of the V-rich and Al-rich regions, with the V- rich regions appearing much 

brighter. 
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Figure 3.5.8: Sintered Ti6Al4V BE at 0.5Hr with a V-containing region (Left) and V-lean 

region (Right) 

This difference in composition for observed microstructure with SEM is shown in Figure 

3.5.8.  Phase composition analysis with XRD revealed a more intense peak for the β-Ti 

phase which is expected due to the elimination of the V-rich regions seen at the no hold 

state which would have only stabilized a small concentration of the Ti, whereas now the 

increased homogenization allows for a larger concentration to be stabilized to room 

temperature. 

With increased thermal exposure, the changes observed from the 0.5Hr state to the 1Hr 

state were less significant.  The measured onset temperature for the β to α transformation 

with DSC was significantly lower at this state, with the transformation starting over 20°C 

cooler than the 0.5Hr state.  The measured end temperature of the transformation and 

enthalpy not change appreciably.  Therefore, the temperature span of the transformation 

decreased by over 20°C as well.  Despite the narrowing of the transformation temperature 

span, the measured enthalpy of the transformation remained nearly unchanged (38.34J/g 

vs 38.13J/g).  Therefore, peak heatflow increased at this state suggesting a more uniform 

transformation.  SEM/EDS analysis revealed a similar distribution of alloying elements to 
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the 0.5Hr state, where a homogeneous distribution of Al was found with inhomogeneous 

distribution of V.  Again V was confined to regions throughout the microstructure with 

the same segregated distribution found in the 0.5Hr.  The key distinction is that in the 1Hr 

state these regions with distributed V occupied a larger volume fraction of the 

microstructure.  This behaviour is similar to the binary Ti4V mixture, where slow 

diffusion rates of V in Ti required in excess of 1Hr to achieve an acceptable level of 

homogeneity.  Increased intensity of the β-Ti phase was measured by XRD, which was 

the only observed change in phase composition.  In the final sintered state at 2Hrs, the 

DSC trace for the phase transformation produced the largest measured enthalpy, 

increasing to 56.63J/g.  This significant increase was due to an increased temperature 

span and the highest measured peak heatflow for the ternary mixture.  Both of these 

characteristics point to a larger bulk transformation, but not necessarily a more 

homogeneous transformation.  Observation of the optical micrographs reveal an expected 

progression in phase evolution, with a further reduction in equiaxed α-Ti, which was 

nearly absent in the 1Hr state.  Indeed, in this state, it is assumed that this phase is no 

longer present.  The plate-like α-Ti now accounts for the entirety of the phase 

composition with certain regions showing signs of coarsening from the 1Hr state.  In 

addition to phase composition, comparison of the optical micrographs of the 2Hr state, 

Figure 3.4.11, to the no hold state reveal a reduction in the large voids that had formed 

due to the melting of elemental Al.  Also, smaller voids are now significantly rounded.  

Therefore, there is a marked increase in the apparent sintered density after 2Hrs of 

thermal exposure.  This may explain the increase in measured enthalpy of transformation 

by DSC.  SEM/EDS analysis of the 2Hr state revealed that a marked increase in the long 

range diffusion of V had occurred as a result of the increased thermal exposure.  The 

different regions of the microstructure that were analyzed all detected concentrations of 

V, approximately 1.5wt%.  This suggests that the V inhomogeneity that persisted up to 

the 1Hr state is now somewhat alleviated, but further diffusion is still required.  This 

increase in homogeneity may explain the increase in the measured temperature span of 

the phase transformation by DSC.  Phase analysis by XRD also supports this increase in 
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V homogeneity with the measured changes to the β-Ti peak, whose intensity has 

decreased significantly from the 1Hr state. 

3.5.4 PA Powder 

Due to the inherent nature of the PA powder, the DSC traces for all sintered states 

exhibited a similar behaviour.  In general, the peaks for all sintered states in Figure 3.4.14 

could be characterized as broad, with low enthalpy.  There was no significant variation in 

peak temperature or onset temperature.  This indicates that the metallurgical effects that 

caused these variations in the BE mixtures were not occurring during the sintering of the 

PA powder.  The high degree of homogeneity of the PA powder in the green state 

eliminates many of the diffusion-based problems that occurred during the sintering of the 

BE mixtures.  End temperature was the only variable that showed any significant 

variation as a result of increased sintering.  This suggests that despite the excellent 

homogeneity in the green state a considerable amount of thermal exposure is necessary to 

achieve necessary V diffusion.  The low measured enthalpy for the phase transformation 

in all states is likely due to the poor observed density of the final sintered product.  In 

both the No Hold, Figure 3.4.15 and 2Hr state, there is considerable open porosity in 

these micrographs compared to the BE mixtures.  XRD results for each sintered state 

support the findings with DSC.  Phase composition in all states remains very constant, no 

distinguishable variation.  SEM/EDS analysis of the sintered states revealed a very 

homogeneous composition, with all measured regions within an acceptable margin of the 

desired bulk chemistry.  Therefore, the sintered PA powder can be characterized by a 

very high degree of chemical homogeneity.  However, the final product in all states was 

significantly less dense than either MA mixture. 
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3.6 Summary and Conclusions 

A methodology for the use of DSC to analyze the phase transformation from β to α-Ti of 

PM titanium alloys has been developed.  Additionally, the effect of elemental alloying 

additions of Al and V, both in binary and ternary mixtures, has been investigated using 

the DSC with varying sintering times at 1200°C.  The homogenization of these alloying 

additions was analyzed with DSC, with particular attention paid to the cooling trace after 

sintering with no hold, 30min, 1Hr and 2Hrs.  A comparison of these BE mixtures with a 

PA Ti6Al4V powder was also made to understand the characteristics of each type of 

system.  In addition to DSC, optical microscopy, XRD and SEM/EDS were also utilized 

in this investigation. 

DSC measurements of the phase transformation of the different powder mixtures 

provided invaluable insight in the behaviour of the specimens as a function of sintering 

time.  Further characterization with other analysis techniques corroborated the observed 

alloying behaviour seen with DSC.  Once a baseline was developed using IM CpTi, the 

different systems were investigated. 

As expected, the addition of Al and V resulted in a phase transformation that occurred at 

higher and lower temperatures respectively.   The behaviour of the Ti6Al system can be 

characterized as rapid homogenization resulting in the formation of large voids with an 

initial two phase structure.  The two phase region becomes a single plate-like structure as 

Al becomes fully homogenized after 1Hr of sintering time.  DSC analysis of the β to α 

transformation on cooling transformed from the early sintering stages where a very broad 

peak with higher onset and low end temperatures were recorded, to a more pronounced 

peak with an onset temperature of 1054.6°C and an enthalpy of 68.79J/g after 2Hrs. 

The Ti4V system can be characterized by much slower diffusion kinetics compared to the 

Ti6Al system.  In the no hold state SEM/EDS analysis found evidence of V-rich regions 
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which stabilized a small volume fraction of β-Ti.  With increased sintering time longer 

range V diffusion did occur with the transformation of acicular α-Ti into a plate-like α-Ti 

solid solution.  The volume fraction of this phase structure increased with increasing 

sinter time.  After 2Hrs complete diffusion of V had occurred however achieving the 

desired bulk composition would require additional sintering time.  DSC analysis of the β 

to α transformation on cooling showed continuing changes as the degree of homogeneity 

of the system improved with increasing sintering time.  As homogeneity improved the 

trace changed from a broad and short peak to a narrower and pronounced peak, with a 

decrease in onset temperature from 923.4°C to 893.5°C from the no hold state to the 2Hr 

state. 

The elemental Ti6Al4V mixture exhibited many of the alloying behaviour of the two 

binary systems.  There was rapid alloying of Al with the surrounding Ti to form 

intermetallics creating large open pores, and slow diffusion of V.  The measured 

transformations in the first three sintered states had very low enthalpies, with very large 

temperature spans.  The rate of alloying of Al and particularly V appeared to be slower 

for each elemental addition in the ternary mixture than in the respective binary mixtures.  

At the 2Hr state complete diffusion of both alloying elements had happened but the 

desired bulk composition had not been achieved, and therefore, additional sintering time 

would be required.  The measured enthalpy of transformation in the 2Hr state was 

56.63J/g. 

The PA exhibited excellent behaviour in terms of the measured transformation by DSC.  

No distinguishable changes in the transformation peak occurred as a result of increasing 

sintering time.  Complete homogeneity was verified by SEM/EDS and XRD.  However, a 

low enthalpy of transformation in all states and this is likely due to the high quantity of 

porosity that existed in all states.  Additionally there was not a significant observed 

reduction in the porosity of these sintered specimens. 
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In the pursuit of a fully homogenized PM Ti6Al4V by means of a BE powder mixture, a 

better understanding of the role of each alloying addition during the sintering of the 

specimen has been developed.  Key aspects of a BE system based on this investigation 

include: the dissolution and formation of titanium aluminides during heating, particle size 

of both alloying additions, particularly V, and a sintering time in excess of 2 hours at 

1200°C to ensure a fully homogenized specimen.  The use of DSC has been shown to 

greatly aid in the development of PM systems, and in this case Ti6Al4V, by allowing in-

situ analysis of the heatflow characteristics. 
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4.0. IN-SITU ALLOYING AND HOMOGENIZATION OF 

TI6AL4V USING AL:V MASTER ALLOY POWDER 

ADDITIONS 

4.1. Introduction and Experimental Methods 

This chapter contains a continuation of the previous study of Chapter 3 into the 

quantitative measurement of the extent of diffusion and homogenization during sintering 

of Ti6Al4V powder compacts. This investigation will focus on role of MA additions and 

the influence of MA particle size.  Using the same methodology of the previous chapter, 

differential scanning calorimetry will be used to provide quantitative measurements 

during sintering.  In particular, the β to α transformation during cooling will be analyzed 

in order to determine the extent of homogenization. Parallel microstructural and XRD 

examination will be used to validate the DSC results. 

The master alloy powder blends used for this investigation were prepared using a CP Ti 

(ASTM Grade 3) powder and a binary 60 wt% aluminum 40 wt% vanadium MA.  In 

addition to the MA blends an ingot metallurgy (IM) prealloyed Ti6Al4V rod was sourced 

for comparative experiments.  All powders used for this investigation were supplied by 

Reading Alloys as-sieved and packed under argon. Both commercially pure CP -Ti and 

Ti6Al4V pre-alloyed (PA) powders were produced using the hydride-dehydride process 

(HDH), while the Al:V master alloys were produced by a thermite process.  

The chemical composition of the IM rod was reported in the previous chapter.  The 

chemical composition of the CP-Ti and MA alloy powders was verified by an 

independent third party laboratory to ensure purity, including the concentration of C, O, 

N, and H.  Additionally, the received size fraction of all powders was verified by laser 

particle size analysis. The d50 from these laser measurements are given in Table 4.1.1. 
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Table 4.1.1: As-received powder composition (wt%) and characteristics 

Powder 

Size 

Fraction 

(mesh) 

d50 

(μm) 
Ti Al V C O N H 

CP-Ti 
-100/ 

+325 
106 balance 

<50 

ppm 

<50 

ppm 
0.008 0.161 0.018 .013 

60/40 

Al:V 

-100/ 

+325 
73 0.014 58.6 41.0 0.028 0.111 0.0044 0.004 

60/40 

Al:V 
-325 24 0.031 59.0 39.8 0.046 0.250 0.0044 0.010 

 

Two size fractions of the MA (d50 = 24 and 70 µm) were blended with the CP Ti in a 

Turbula mixer for approximately 1 hour to produce two Ti6Al4V composition blends.  

Consolidation of all the powders was performed using manual uniaxial die compaction 

with a Carver press to 850MPa.  Licowax lubrication was applied to the die walls to 

reduce wear.  Sample weight and dimensions were recorded in both the green and 

sintered state.  The samples were 4.8 mm in diameter and approximately 1mm in 

thickness. Thermal analysis of the sintering behaviour of the different PM alloys was 

performed using a Netzsch 404 F1 DSC.  Samples were sintered in a yttria crucible to 

limit reaction between the crucible and Ti samples. Heating was performed under a high 

purity flowing argon atmosphere (99.999%) with a titanium “getter” ring placed below 

the hot zone to ensure minimal contamination of the samples by impurities in the gas 

stream. Each thermal profile involved heating to 1200°C at 20°C/min with either an 

immediate cooling or increasing isothermal hold times from 15 minutes to 3 hours.  The 

samples were then cooled to room temperature at 40 °C/min. A selection of samples were 

also heated to temperatures between 850 °C and 1200 °C followed by rapid cooling.  
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Microstructural examination on post DSC treated samples was performed using both a 

Hitachi S-4700 FEG SEM with an Oxford INCA EDS analysis system for phase 

composition, and a Zeiss optical microscope.  Samples were mounted in a conductive 

resin and polished to a mirror-like finish using SiC papers, diamond suspension and 

colloidal silica (Struers).  A Bruker D8 Advance XRD with a Cu Kα source was used for 

phase identification of as pressed and DSC heated powder compact samples. 

The previous chapter presented the development of a DSC method, based on the analysis 

of the β to α phase transformation during cooling, which is capable of analyzing 

homogenization during BE sintering. The same technique will be also be used to analyze 

Ti6Al4V MA sintering in this study. 

4.2. Results 

4.2.1. Initial Heating 

It is postulated that in-situ alloying and interdiffusion between the Al:V MA and CP-Ti 

powders could begin during initial heating up to 1200°C. To investigate this possibility 

an examination of the initial DSC heating traces of the MA mixtures in comparison to the 

100% CP-Ti sample was completed. The α to β transformation of unalloyed CP-Ti 

compared to both MA mixtures is shown in Figure 4.2.1. Measurements of the onset 

temperature, peak width, end temperature and enthalpy of transformation obtained from 

the DSC peaks are given in Table 4.2.1.  It should be noted that the data of Table 4.2.1 is 

the average of up to 14 separate sample measurements. The standard deviation of the 

enthalpy, peak width and end temperature measurements was in the range of 5 to 10%, 

while onset and end temperature had a standard deviation of less than 1%. 

All powder compacts have very similar onset temperatures in the range of 877 to 879 °C 

which, given the variability of the measurement, is in agreement with the value of 882 °C 
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for pure Ti. The 100% CP-Ti represents only 90wt% of the MA mixtures and therefore 

the initial enthalpy of transformation of the Ti6Al4V blends should be reduced to 60 J/g.  

This is the case for the Ti6Al4V coarse MA mixture but not for the fine MA blend. In 

addition, the DSC trace for the fine MA mixture exhibits an exothermic shift in the 

baseline prior to the alpha to beta phase transformation while the coarse MA mixture 

exhibits an exothermic peak in the temperature range of 1050 to 1200°C. These 

differences compared to the pure CP-Ti trace are expected to be due to metallurgical 

reaction between the MA particles and Ti matrix. 

 

Figure 4.2.1: Change in transformation behaviour with the addition of 60/40 AlV MA to 

CP Ti during heating to 1200°C 

 

 

Exothermic shift

Exothermic peakCP-Ti

CP-Ti + coarse MA

CP-Ti + fine MA

α to β transformation 
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Table 4.2.1: DSC Measurements for the α to β Phase Transformation during initial 

heating for CP-Ti and master alloy blended Ti6Al4V mixtures. 

Sample 
Enthalpy 

(J/g) 

Peak 

Temperature 

(°C) 

Onset 

Temperature 

(°C) 

End 

Temperature 

(°C) 

Peak 

Width 

(°C) 

100 % CP-Ti 73 904 879 930 77 

Ti64 with 72 µm MA 59 902 878 926 75 

Ti64 with 24 µm MA 54 890 877 924 75 

 

The cause of these differences in the DSC traces was investigated by heating the blends 

to four different temperatures of significance, followed by rapid cooling (i.e. nominally 

100 °C/minute).  From the transformations observed in Figure 4.2.1, these temperatures 

were chosen to represent the onset, peak, and end temperature for each MA trace (i.e. 

850, 900, and 950 respectively). Following cooling, the samples were mounted and 

polished and their microstructure observed. 

Optical micrographs presented in Figure 4.2.2 a), b) and c) show the extent of diffusion 

between the Ti matrix and the coarse MA particles as a function of the peak interrupted 

temperature.  At 850°C (i.e. Figure 4.2.2 a) the microstructure exhibits isolated MA 

particles surrounded by an α-Ti matrix. At 900 and 950 °C an intermediate layer appears 

between the coarse MA particles and the Ti matrix 
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Figure 4.2.2: Optical micrographs of CP Ti + Coarse AlV MA heated to a) 850°C b) 

900°C c) 950°C and CP-Ti fine MA heated to  d) 850°C e) 900°C f) 950°C 
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The same regions depicted in Figure 4.2.2 were analyzed with SEM/EDS to determine 

the chemical composition of the different regions.  The SEM micrographs are shown in 

Figure 4.2.3.  The compositions measured by EDS at specific points noted on Figure 

4.2.3a) b) and c) for the coarse MA mixture, are listed in Table 4.2.2.  Figure 4.2.3 and 

Table 4.2.2 indicate that at 850°C the microstructure of the coarse MA mixture still 

consists of Al:V MA particles imbedded in a pure Ti matrix. However at 900 and 950 °C, 

the intermediate layer visible in the optical micrograph of Figure 4.2.2 has a mixed 

composition which includes Ti, Al and V. This indicates the development of a Ti 

containing intermetallic compound. The core of the coarse MA particle has a slightly 

higher Ti content compared to that measured in the as received powders, indicating that a 

minor amount of Ti has diffused into the coarse MA particle. 
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Figure 4.2.3: SEM micrographs of CP Ti + Coarse AlV MA heated to a) 850°C b) 900°C 

c) 950°C and CP-Ti fine MA heated to  d) 850°C e) 900°C f) 950°C indicating locations 

of EDS analysis 

a)

b)

c)

d)

e)

f)
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Table 4.2.2: EDS chemical analysis results for interrupted coarse MA samples (wt%) 

from images of Figure 4.2.3 a), b) and c). 

Quench 

Temperature 

Element Site 1 Site 2 Site 3 Site 4 

850 °C (a) Ti 0.51 0.96 100 - 

Al 60.05 58.53 0 - 

V 39.95 40.52 0.00 - 

900 °C (b) Ti 0.87 57.74 99.86 99.94 

Al 45.37 28.24 0.07 0.02 

V 53.75 14.01 0.07 0.04 

950 °C (c) Ti 0.54 94.00 99.97 99.96 

Al 58.58 5.36 0.03 0.04 

V 40.88 0.64 0.00 0.00 

 

The optical micrographs in Figure 4.2.2 d), e) and e) show the microstructure of 

interrupted fine MA Ti6Al4V blended samples.  These micrographs demonstrate the finer 

distribution of these MA particles, relative to the coarse MA.  Similar to the coarse MA, 

there is visual evidence of a boundary region forming in the 900°C sample.  The region is 

seen to expand significantly at 950°C.  
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Micrographs for the SEM/EDS chemical analysis for the fine MA interrupted samples are 

shown in Figure 4.2.3 d), e) and f).  The composition measured by EDS at the specific 

points is listed in Table 4.2.3.  Unlike the coarse MA blend, there is some evidence of an 

intermetallic layer forming at the fine MA/CP-Ti interface at 850 °C. (i.e. point 2 in 

Figure 4.2.3 d)). The thickness of this intermetallic layer increases at 900 and 950 °C, 

particularly compared to that observed for the coarse MA blend. Also compared to the 

coarse MA mixture, there is a higher Ti content at the core of the fine MA particles and a 

slightly higher Al and V content in the CP-Ti matrix surrounding the MA particles. 
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Table 4.2.3: EDS chemical analysis results for interrupted fine MA samples (wt%) from 

images of Figure 4.2.3 d), e) and f). 

Quench 

Temperature 

Element Site 1 Site 2 Site 3 Site 4 Site 5 

850 °C (d) Ti 1.21 82.34 100 100 100 

Al 56.57 15.10 0 0 0 

V 42.22 2.56 0 0 0 

900 °C (e) Ti 1.73 80.34 98.71 99.47 - 

Al 51.84 14.95 0.33 0.18 - 

V 46.43 4.71 0.97 0.36 - 

950 °C (f) Ti 0.89 88.09 99.52 99.77 - 

Al 57.72 11.20 0.26 0.08 - 

V 41.39 0.71 0.22 0.14 - 

 

All of the above data indicates that there is some level of metallurgical reaction between 

the MA and CP-Ti particles during heating in the temperature range of 850 to 950°C. The 

diffusion of Ti into the MA particles and the formation of Ti containing intermetallics, 

reduces the phase fraction of alpha-Ti available to undergo the α to β phase 

transformation during heating. This results in a lower enthalpy measurement determined 

from the DSC trace. This Ti consumption is greater in the fine MA blend, resulting in a 
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more significant reduction in enthalpy of transformation of 54 J/g compared to the 

expected 60 J/g.  

Figure 4.2.4 presents a comparison of the microstructure of a coarse and fine MA blend 

“quenched” from 1200 °C. The coarse MA sample exhibited many undissolved MA 

particles dispersed throughout an unalloyed alpha CP-Ti matrix. Each MA particle is 

surrounded by a diffuse boundary layer consisting of Widmanstatten structure. The 

presence of this type of microstructure demonstrates that heating to 1200 °C has caused 

the development of an alloy region in the matrix around the MA particles.  

Figure 4.2.5 presents SEM micrographs of the vicinity around the MA particle for both 

the coarse MA and fine MA mixture quenched from 1200 °C. The figure includes the 

locations of EDS spot analysis, the results of which are presented in Table 4.2.4. This 

data confirms that the Widmanstatten region contains a high Al content with some V 

present. Outside the Widmanstatten boundary layer, the composition reduces back to near 

pure Ti. The EDS analysis also shows that diffusion of Ti into the core of the coarse MA 

particles has increased, while diffusion of Al out into the matrix has increased. The core 

of the coarse MA particle remains vanadium rich. 
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Figure 4.2.4: Optical micrographs of a) CP Ti + Coarse AlV MA and b) CP Ti + fine AlV 

MA heated to 1200°C and quenched. 

a) 

b) 
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Figure 4.2.5: SEM micrographs of a) CP Ti + Coarse AlV MA and b) CP Ti + fine AlV 

MA heated to 1200°C and quenched. 

a) 

b) 
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Table 4.2.4: EDS analysis of selected sites surrounding a MA particle location for the 

MA mixtures heated to 1200 °C and quenched. Site locations are given in Fig. 4.2.5 

Mixture Element Site 1 Site 2 Site 3 Site 4 Site 5 

Coarse MA 

Ti6AL4V 

Ti 32.84 89.97 99.43 - - 

Al 13.51 8.98 1.06 - - 

V 53.65 1.06 0.03 - - 

Fine MA 

Ti6AL4V 

Ti 81.15 89.86 94.70 97.84 98.84 

Al 4.9 5.00 3.03 1.53 0.83 

V 13.95 5.13 2.27 0.63 0.33 

 

The microstructure of the fine MA sample heated to 1200 °C also consists of dispersed 

clusters of Widmanstatten structure within an alpha Ti matrix. SEM/EDS analysis of the 

core of these regions indicate that they have a slightly elevated V content but also a high 

percentage of Ti with some Al. This composition is very different than the original MA 

composition and, unlike the coarse MA mixture, is Ti rich rather than V rich. This 

indicates that the process of MA particle dissolution is more advanced in the fine MA 

mixture at this stage of heating compared to the coarse MA mixture. Both the etched 

microstructure of Figure 4.2.4 and the SEM/EDS analysis of Figure 4.2.5 and Table 4.2.4 

indicate that the diffusion of Al and V has extended further into the matrix in the fine MA 

mixture resulting in an increased area fraction of Widmanstatten microstructure. 
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4.2.2. Effect of Hold Time 

The above results indicate that there is interdiffusion between the CP-Ti matrix and MA 

powders in the Ti6Al4V MA blends during the heating stage of the sintering process. 

This is particularly true between 950 and 1200 °C, where the Ti matrix is in the beta 

phase. However the quenched samples from 1200 °C  also indicate that a significant 

amount of inhomogeneity still exist in both the coarse and fine MA blends at this point of 

sintering. The extent to which homogenization occurs as a function of the sintering time 

in these MA blends was investigated through an analysis of the β to α phase 

transformation on cooling. As described in more detail in the previous chapter, the 

enthalpy of this transformation and the temperature range over which it occurs, is a 

function of the extent to which the Al and V alloy elements have distributed throughout 

the material.  

The results shown in Figure 4.2.6 include the DSC cooling traces after increasing hold 

time at 1200°C for the Ti6Al4V MA blend made using coarse Al:V intermetallic 

particles. A cooling trace for pure CP-Ti is included for comparison.  The transformation 

peak for the no hold sample has a unique shape consisting of a very gradual 

transformation near the onset of the transformation to a sharp transformation near the end 

temperature. This results in a maximium peak height (a.k.a “peak temperature”) 

occurring at the lower end of the transformation temperature range (i.e. a peak 

temperature of 882°C). In comparison with the CP-Ti transformation peak, it is clear that 

the onset temperature in the no hold MA Ti6Al4V blend is shifted to higher temperatures, 

which would be expected for regions of the sample with a higher Al content. The 

transformation at lower temperatures near the peak maximium (i.e. 882 °C) is due to 

regions of the sample that have remained unalloyed, at 100% Ti.  



 

 

99 

 

The transformation behaviour of the samples held for longer times all exhibit a different 

shape from that of the no hold sample. In particular, the magnitude of the transformation, 

as indicated by the peak height, is evenly distributed around the peak temperature with a 

peak shape similar to a Gaussian distribution. However, a general trend of a narrowing 

peak width and an increased peak height occurs with an increase in sintering time. 

Cooling traces for sintering times of 2 and 3 hours are not shown, but were similar in 

shape to the 1 hour sample. 

Figure 4.2.7 presents the DSC cooling traces for the Ti6Al4V MA blends using fine Al:V 

intermetallic particles. The trends with sintering time are similar to that observed in the 

coarse MA blend. Notable exceptions include a non-skewed zero hold time peak and 

“sharper” transformation peaks at the longer hold times. These sharper peaks are 

characterized by higher peak heights and narrower peak widths. Peak shapes for samples 

sintered for 2 and 3 hours were also similar to the 1 hour hold samples. 
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Figure 4.2.6: Comparison of the β to α transformation resulting from increasing 

isothermal holds in the coarse MA blend: No Hold, 0.25, 0.5, 0.75 and 1 hour compared 

to pure Ti. 
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Figure 4.2.7: Comparison of the β to α transformation resulting from increasing 

isothermal holds in a fine MA blend: No Hold, 0.25, 0.5, 0.75 and 1 hour compared to 

pure Ti. 

A summary of key measurements obtained from the DSC traces of Figure 4.2.6 and 

Figure 4.2.7 as a function of hold time at 1200 °C are presented in Figure 4.2.8.  Included 

for comparison are the same measurements made from cooling DSC traces of an ingot 

metallurgy Ti6Al4V alloy, which was described in the previous chapter.  For both the 

coarse and fine MA mixtures the onset temperature (or Beta transus temperature) is high 

at short sintering times indicating the presence of high Al containing regions. As the 

sintering time increases, the onset temperature systematically decreases and starts to 

approximate the measurements obtained in the homogeneous ingot metallurgy sample. 

Most of the change occurs in the first hour of sintering.  

The end temperature behaves in a similar manner but reaches the level of the ingot 

sample more quickly. The coarse MA sample exhibits a lower end temperature at 
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intermediate sintering times. This indicates the development of more V rich regions at 

these sintering times. 

The overall shape of the transformation peak was described by measuring the full peak 

width at half the maximum height (FWHM) (see Figure 4.2.8 c)) which is a common way 

to describe a peak with a Gaussian distribution. A high value for FWHM indicates a wide 

peak with a low peak height.  The FWHM is high at short sintering times, but 

systematically decreases with sintering time. As with the onset and end temperatures, the 

FWHM value approaches that measured for the ingot measurements as the sintering times 

increases above 1 hour. Interestingly the FWHM value for the coarse MA at zero hold 

time is lower than at intermediate times, which is a reflection of the unusual shape of this 

transformation peak.  The FWHM, onset and end temperatures for the fine MA mixture 

approach the ingot values more closely than that of the coarse MA mixture.   
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Figure 4.2.8: DSC measurements of a) onset temperature, b) end temperature, c) full peak 

width at half maximium (FWHM) for the β to α phase transformation of the materials of 

this study, as a function of sintering time at 1200 °C 
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In order to correlate the changes in the β to α transformation documented in the DSC 

traces, with microstructural changes, metallographic analysis was performed on all of the 

samples from Figure 4.2.6 and Figure 4.2.7. Optical micrographs of selected DSC 

samples for the coarse MA mixture after sintering times of zero, 0.5, 2 and 3 hours are 

shown in Figure 4.2.9.  Samples sintered at 0.25 hours exhibited similar microstructural 

features to the zero hold time, while samples sintered at 1 hour had similar features to the 

0.5 hour samples. For sintering times of zero and 0.25, regions of unalloyed CP-Ti were 

still present as well as a significant fraction of undissolved MA particles. Relatively 

coarse Widmanstatten microstructure (or alloyed region) surrounds the MA particles. The 

extent of this alloyed region has increased compared to the quenched sample of Figure 

4.2.9a. After sintering for 0.5 and 1 hour, no unalloyed regions remain in the 

microstructure. Only a few large MA particles remain undissolved, while the 

Widmanstatten or alloyed region is well developed. The microstructural scale of the 

Widmanstatten structure is variable, which is due to different Al and V contents 

throughout the microstructure [57]. After 2 hours of sintering, all of the MA particles are 

dissolved and a fairly uniform Widmanstatten microstructure is developed. However 

there is still some variation in the scale of the Widmanstatten features. After 3 hours the 

microstructure appears very uniform, due to the establishment of a homogeneous 

distribution of the alloying elements. 

Optical micrographs of selected DSC samples for the fine MA mixture after sintering 

times of zero, 0.5, 2 and 3 hours are shown in Figure 4.2.10. Samples sintered for zero 

hours exhibited some isolated undissolved MA particles and unalloyed regions. However, 

the majority of the microstructure is alloyed with Widmanstatten structure with a range of 

scale. Samples sintered for 0.25, 0.5 and 1 hour exhibited similar microstructural features 

(as exemplified by the 0.5 hour sample of Figure 4.2.10 b)). No undissolved MA particles 

or unalloyed regions were visible. However, the character of the Windmanstatten 

structure varied from lightly etched to darkly etched regions. SEM/EDS analysis 

indicated that the darkly etched regions had a lower alloy content compared to the lightly 
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etched regions. After 2 hours of sintering, only isolated regions of darkly etched, low 

alloy regions were present while at 3 hours, a uniform, equally etched Widmanstatten 

structure developed. The relatively coarse distribution of low and high alloy regions 

which existed at sintering times of 0.25 to 2 hours was partly due to a non-uniform 

distribution of the fine MA particles in the green compact. This resulted in some 

inhomogeneity on a scale larger than the inhomogeneity caused by the dissolution of the 

MA particles. Despite this non-uniform MA particle distribution, the microstructure 

reached a high degree of homogeneity after 3 hours of sintering. 
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Figure 4.2.9: Optical micrographs of Ti6Al4V with Coarse MA sintered at 1200 °C for a) 

zero, b) 0.5 c) 2 and d) 3 hours  

100 µma)

b)

c)

d)
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Figure 4.2.10: Optical micrographs of Ti6Al4V with Fine MA sintered at 1200 °C for a) 

zero, b) 0.5 c) 2 and d) 3 hours 

a)

b)

c)

d)
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The phase composition for the coarse MA mixture in the green state and all the sintered 

states is shown in Figure 4.2.11.  From the measured spectra, the bulk composition of all 

samples appears to α-Ti, with this phase accounting for nearly all the peaks.  A shift in 

the measured peaks was noted for all the sintered samples.  The main peak for β-Ti was 

observed at a 2θ of 38°.  It appears that this peak becomes apparent after 30 minutes of 

sintering.  Several intermetallics were observed, with the most prominent being AlTi3.  

The spectra for these peaks is found between the two main peaks for α-Ti, and have the 

highest intensity in the 30 min sample.  These peaks then decrease with increased 

sintering and have a significantly reduced intensity after 2 hours.  The aluminum-

vanadium intermetallics were only observed in the green sample where the AlV MA 

existed. 
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Figure 4.2.11: Measured spectra by XRD for the coarse MA mixture with corresponding 

phase composition 

The phase composition for the fine MA mixture in the green state and all the sintered 

states is shown in Figure 4.2.12.  Similar to the coarse MA, α-Ti accounted for the 

majority of the measured spectra for all samples.  These peaks were also shifted from the 

reference angles.  Similarly, the formation of β-Ti appeared in the 30 minute sample and 

persisted with additional sintering time.  There was no evidence for the existence of Al3Ti 

in all the measured spectra, despite being found in the coarse MA samples.  In the green 

state both powders contained V5Al8 and Al3V, which constituted the bulk phase 

composition of this state. 
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Figure 4.2.12: Measured spectra by XRD for the fine MA mixture with corresponding 

phase composition 

4.3. Discussion 

4.3.1. Microstructural evolution from initial heating 

The results from DSC and microstructural analysis have been interpreted using the 

conceptual diffusion model in Figure 4.3.1.  The microstructure of the green material can 

be represented by a master alloy particle (60:40 AlV) sounded by a matrix of unalloyed 

α-Ti, depicted as “Primary α-Ti” in this model.  In this state the coarse and fine mixtures 



 

 

111 

 

differ only by the size of the master alloy particle relative to the matrix and the 

distribution of these particles. 

 

Figure 4.3.1: Conceptual diffusion model of phase evolution for fine master alloy (FMA) 

and coarse master alloy (CMA) at various stages of sintering 

Analysis of the MA and Ti particles during heating of both MA size fractions show that 

there is a varying degree of alloying occurring during heating.  An observed intermediate 

region forms for both size fractions of MA during heating, with a composition producing 

Ti-Al intermetallics.  The size of this region grows steadily with increasing heating up to 

1200°C.  In both cases there is significant mobility of both Ti and Al as they diffuse in 

opposite directions.  This contrasts the relatively slow diffusion of V from the MA core 
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out in to the surrounding matrix.  In Table 4.2.2, the concentration of Ti is over 30wt% 

within the site of a MA particle by 1200°C site 1.  The surrounding intermediate region 

has formed a lamellar structure, had has grown considerably from the boundary of the 

matrix and MA.  The fine MA has similar features, but the kinetics have been 

accelerated, most likely due to the finer particle size.  As a result, the MA cores that were 

visible at 950°C are nearly eliminated.  Ti diffusion into these regions reached over 

80wt%, and the intermediate region has a similar concentration of Al compared to 

original MA site.  Similar to the coarse MA, this intermediate region has formed a refined 

lamellar structure that resembles the Widmanstätten of fully developed Ti6Al4V. 

Comparison of the microstructure for both MA mixtures in the interrupted/quenched 

experiments heated to 1200°C to the No Hold samples of the effect of sintering time 

experiments shows significant changes.  This was unexpected considering both are heated 

to the same temperature and the only difference is the higher cooling rate for the 

interrupted heating samples (100°C/min instead of 40°C/min).  Thus, the observed 

reduction in volume fraction of primary α-Ti for both MA mixtures with the no hold 

heating profile occurred as a result of the longer time the sample was in the beta Ti state 

as a result of the slower cooling.  For example, choosing a nominal beta transus 

temperature of 1000 °C, the time in the beta phase during cooling would be 2 and 5 

minutes for the 100 °C/min. and 40 °C/min samples respectively. This points out how 

rapid diffusion and microstructural changes are occurring in this early stage of sintering. 

This change in microstructure is due to the long range diffusion of Al into the Ti matrix, 

creating a α-Ti solid solution. 

SEM/EDS analysis of both MA mixtures sintered up to 1200 °C and quenched shown in 

Figure 4.2.3 and Figure 4.2.5, exhibited low concentrations of Al diffused throughout the 

Ti matrix.  Due to the smaller particle size of the fine MA, the volume fraction of 

remaining primary α-Ti was significantly lower than the coarse MA.  The differences in 

extent of alloying of Al and V in this state is shown in Figure 4.3.1 at the “Heat to 
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1200°C” point.  A greater volume fraction of α-Ti solid solution (SS) for the fine MA 

(FMA) compared to the coarse MA (CMA) is the primary difference at this point.  As a 

result, Al concentration at the remaining MA site for the fine powder is decreased, with 

bulk Al content existing primarily in the intermediate region as α-Ti SS and Ti3Al, and Ti 

matrix as α-Ti SS.  The slower kinetics of the coarse MA result in higher Al 

concentration in the MA site, with more remaining primary α-Ti in the matrix and a 

smaller intermediate region. 

4.3.2. Phase Evolution of CMA Mixture 

DSC traces of the coarse MA mixture support this long range diffusion of Al in this state.  

The 0Hr trace in Figure 4.2.6 displays a unique exothermic peak for the β to α 

transformation.  In particular there is a very high onset temperature for this 

transformation, 1008°C, suggesting that regions exist with very high Al content that 

increase the transformation temperature due to the α-Ti stabilizing effect of Al.  As 

temperature decreases, the measured transformation maintains a relatively low slope.  

This slow increase in heatflow continues to a peak heatflow of 881.2°C, very close to the 

transformation temperature for pure Ti.  The behaviour of this peak suggests that long 

range diffusion of Al has occurred, but a significant concentration gradient exists, and the 

bulk transformation is similar to that of unalloyed Ti.  As cooling continues there is 

marked drop in heatflow.  This “shoulder” further supports the observed microstructural 

changes of the coarse MA at this stage that the extent of vanadium diffusion is very 

limited.  Phase evolution characterized by XRD in Figure 4.2.11 from the green state to 

the no hold state shows that the existence of two Al-V intermetallics that constituted the 

bulk phase composition of the MA particles no longer exists.  At the no hold state the 

measured peaks at 38.5° and 40.1° have broadened due to the formation of Ti3Al.  

Characteristic peaks for this phase closely match that of α-Ti, which constituted the bulk 

of the phase composition. 
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With increasing isothermal periods at 1200°C the measured β to α transformation peak 

shows evidence of improved homogenization of both Al and V.  The 0.5Hr trace in 

Figure 4.2.6 has a higher onset temperature than the 0Hr trace, but more importantly a 

much lower end temperature for the peak.  The observed shoulder of the 0Hr trace no 

longer exists suggesting that V diffusion has progressed, forming phases with high β-

phase stability.  As a result the transformation for 0.5Hr largest temperature span.  

Additionally, peak heatflow for this transformation shifts to 903.6°C, meaning the 

temperature for the bulk transformation is now being altered by the alloying additions.   

Additionally, the measured enthalpy of the transformation has increased as Al and V 

diffusion causes the dissolution of V5Al8 and Al3V.  This transformation is confirmed by 

XRD as the characteristic peaks for both phases are no longer present in this state.  

Instead, the appearance of peak at 40.1° begins in this state.  This peak has been 

confirmed by several authors to be β-Ti [18,30,32].  At 1200°C there is significant 

solubility of both Al and V in the bcc β-Ti phase.  The slower diffusion kinetics of V 

after this relatively short thermal exposure would likely result in high concentrations in 

solution in β-Ti.  During cooling some intermetallic precipitation would occur but a 

significant solubility remains allowing for stable β-Ti at room temperature.  SEM/EDS 

analysis at this state shown in Figure 4.3.2 found that this phase was occurring at the site 

of the MA.  After this amount of thermal exposure Al concentration at these sites had 

decreased significantly, with a relatively homogeneous concentration in the surrounding 

regions. 
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Figure 4.3.2: SEM/EDS analysis of coarse MA Ti6Al4V sintered for 0.5Hrs 

However, Ti and V have inverse concentration gradients with point (1) having sufficient 

V concentration to result in a stable β-Ti. 

Phase progression for the coarse MA transitioned to the stage shown in the model in 

Figure 4.3.1 during the 1 hour and 2 hour isothermal sintering profiles.  From this point 

the transformation peak maintained a uniform profile, showing that a combined effect of 

both alloying elements on the transformation behaviour instead of localized effects of 

each.  The onset temperature shows very little variation after 1 hour, which would mean 

the α-Ti stabilizing effects of Al are no longer varying.  This does not necessarily mean 

complete homogenization of Al at room temperature, instead, it results in a consistent 

transition at the onset temperature.  The most significant change in phase composition is 

the diminishing intensity of the β-Ti peak.  As sintering progresses, the high 

concentration sites of V are eliminated, resulting in a more homogeneous β-Ti solid 

solution.  Without localized regions of high V content, retained β-Ti concentration at 

room temperature decreases.  This correlates with the XRD spectra for both the 1 hour 
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and 2 hour profiles.  Optical microscopy of the 2 hour state reveals a uniform 

Widmanstätten lamellar structure.  Certain regions appeared much darker in contrast to 

surrounding regions due to a different response to the etchant. These different etched 

regions were analyzed further using SEM/EDS. It was found that the dark etched regions 

had a slightly lower alloy concentration compared to the bulk Ti6Al4V content. 

Therefore further sintering for 3 hours was necessary to remove these dark etched regions 

and achieve complete homogenization. 

4.3.3. Phase Evolution of FMA Mixture 

Evolution of the fine MA mixture, in general, had many similarities to the coarse 

mixture.  However, due the smaller particle, and thus larger surface area of the MA with 

the Ti matrix, exhibited faster kinetics.  The DSC trace for the 0Hr profile in Figure 4.2.7 

contrasts the coarse MA trace significantly.  The measured onset temperature for the 

transformation is slightly lower but similar to the coarse MA. However, the peak shape is 

more symmetric and broad, as evidence by a much higher FWHM value (i.e. 530 versus 

236 for the coarse MA blend).   This difference is due to the more extensive dissolution 

of the MA particles but also a broader range of Al diffusion into the matrix. As indicated 

in the FMA 0hr hold micrograph of Figure 4.2.10a), this has resulted a larger removal of 

any unalloyed CP-Ti.  Referring to the diffusion model in Figure 4.3.1, this can be 

conceptualized by a shrunken MA core with high diffusion of Al out of this region, and 

similarly high counter-diffusion of Ti into the core.  The intermediate region then 

becomes the area with the highest concentration of Al in the form of both α-Ti solid 

solution and Ti3Al.  Beyond this intermediate region, the Ti matrix has been transformed 

from primary α-Ti into an α-Ti solid solution.  Some regions of primary α-Ti remained, 

but the volume fraction was significantly lower than that of the coarse MA in the same 

state.  This phase progression correlates well with DSC measurements for the 0hr state.  

Both peak and end temperature for the transformation were very similar to the measured 

temperatures for the coarse MA in the same state, however the shape of the peak was 
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much different.   The peak behaviour was characteristic of a more homogeneous 

transformation, suggesting that the phase stabilizing effects of both alloying elements 

were contributing.  Optical microscopy revealed that the vast majority of the MA sites 

were no longer present and that a majority of the phase composition consisted of an α-Ti 

SS with the characteristic lamellar structure. As with the coarse MA blend, more darkly 

etched regions were evident in Figure 4.1.10 b and c. SEM/EDS analysis of these fine 

MA mixtures at 2 hours of sintering also indicated lower alloy content in darker etched 

regions. 

Less significant changes to the microstructure were observed in the transition from the 

0Hr state to the 0.5Hr state.  Phase analysis with XRD revealed that both sintered states 

consist of primarily α-Ti, in addition to Ti3Al.  The absence of β-Ti for the 0.5Hr is an 

important distinction between the coarse and fine MA after this amount thermal 

exposure.  As mentioned previously, the existence of a strong beta phase peak for the 

coarse mixture was due to the slow diffusion of V out from the MA site, coupled with 

high diffusion of Ti into this region.  Due to the smaller particle size, this phase was not 

detected at this state with the fine MA, and is due to two reasons.  Firstly, the nature of a 

smaller particle size increases the surface contact area between the MA particle and the 

surrounding matrix, increasing diffusion flux.  Secondly, the smaller particle size reduces 

the diffusion path length that both Ti and V must pass. 

The microstructures of Figure 4.2.9c) and Figure 4.2.10c) indicate incomplete alloying in 

the 2Hr state of both MA mixtures, additional specimens were sintered for 3Hrs.  

Quantitative measurements of the DSC data for these specimens are included in Figure 

4.2.8.  In all metrics there is a definite trend towards stable values that also converged 

toward the values measured for the IM material. Optical micrographs of both specimens’ 

revealed visual improvements in phase composition, with both having a fully developed 

and uniform Widmanstätten structure. 
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4.4. Summary and Conclusions 

A methodology for the use of DSC to analyze the phase transformation from β to α-Ti of 

PM titanium alloys has been developed.  Additionally, the effect of MA additions in two 

different size fractions has been investigated using DSC with varying sintering times at 

1200°C.  The homogenization of these additions was analyzed using DSC, with particular 

attention paid to the cooling trace after sintering with various sintering times.  

Additionally, an analysis of the α to β transformation during heating of both types of MA 

additions was performed.  Other analysis techniques such as XRD, SEM/EDS and optical 

microscopy were also utilized for this investigation 

Initial work to determine the suitability of DSC for the characterization of allotropic 

phase transformation with IM Ti6Al4V showed excellent repeatability and sensitivity.  

Following this, the variation in resolution of the cooling peak based on different cooling 

rates indicated an optimal cooling rate of 40°C/min.  Finally, repeatability of a powder 

compact was also proven with the use of commercially pure Ti powder. 

A comparison of the heating traces of the two different MA additions was performed to 

understand the extent of metallurgical interactions that occurred during heating.  As 

expected, the fine MA showed a greater extent of alloying during heating, on account of 

its smaller particle size and larger surface area for interaction.  In both cases, an 

intermediate region was observed after cooling from key temperatures based on the α to β 

transformation.  This proved that a considerable degree of metallurgical interaction 

occurred in both systems during the heating phase of sintering. 

The analysis of the CMA addition during cooling revealed in the early stages of sintering 

that there was a distinct difference in diffusion rates of Al and V from the MA core.  EDS 

mapping revealed much more rapid diffusion of Al into the Ti matrix, whereas V lagged 

significantly.  This lead to existence of V-rich regions which formed measurable 
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quantities of retained β-Ti.  In the 1 and 2Hr states, the measured intensity of β-Ti 

decreased due to the improved homogenization of V.  However, SEM/EDS analysis in 

the 2Hr state revealed that the desired uniform composition of both Al and V had not 

been achieved and thus further sintering would be required to produce a fully 

homogeneous specimen. 

As stated previously, the FMA addition exhibited a similar behaviour to the CMA but 

with markedly faster kinetics due to its smaller particle size.  Optical microscopy of the 

0Hr state revealed that the MA core was no longer distinguishable from the intermediate 

region that formed during heating.  The cooling trace of the FMA in the 0Hr state 

appeared qualitatively more uniform than the CMA trace in the same state, with a more 

uniform peak suggesting the effects of both alloying elements were altering the phase 

change.  The existence of retained β-Ti was only observed in the 1Hr state, and then was 

not present in the 2Hr state, which supports the DSC measurements that more rapid 

alloying was occurring with the FMA.  SEM/EDS analysis in the 2Hr state found 

improved homogenization compared to the CMA, however, there was still a degree of 

inhomogeneity that existed and as such, further sintering would be required. 

When both specimens were sintered for 3Hrs, improvements in homogenization were 

noted specifically by DSC and optical microscopy.  Quantitative data of the 

transformation behaviour by DSC revealed that the trends for these different metrics had 

settled at consistent values by this point.  The optical micrographs of both specimens 

revealed a fully developed Widmanstätten structure in both cases, and also improved 

densification. 

In the pursuit of a fully homogenized PM Ti6Al4V by means of a MA powder mixture, a 

better understanding of the role of the alloying elements and the effect of particle size 

during the sintering of the specimens has been developed.  Key aspects of a MA PM 

system based on this investigation include: the role of MA particle size, the effect of 



 

 

120 

 

cooling rate, and a sintering time in excess of 2 hours at 1200°C to ensure a fully 

homogenized specimen.  The use of DSC has been shown to greatly aid in the 

development of PM systems, and in this case Ti6Al4V, by allowing in-situ analysis of the 

heatflow characteristics. 
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5.0. SUMMARY AND CONCLUSIONS 

This research has focused on the ultiziation of BE and MA additions for the purpose of 

producing fully homogeneous PM Ti6Al4V, which is a processing route which may lead 

to wider adoption due to the cost-competitive advantages of PM.  The advantages of PM 

are well understood for many alloy systems, however, Ti-alloys are a relatively 

underdeveloped field.  This research has attempted to advance the understanding of the 

alloying behavior PM Ti6Al4V with the use of either BE or MA additions.  To 

accomplish this, a methodology employing DSC to analyze and characterize the heatflow 

characterisitics of this system has been developed.  DSC allows for insitu analysis of 

specimens in different sintering atmospheres and heating profiles, providing very 

sensitive and accurate analysis.  Additional analysis was performed using XRD, 

SEM/EDS and optical microscopy.  Results were compared to DSC measurements in 

order to substantiate them. 

5.1. Thermal analysis 

In order to validate the use of thermal analysis for the different PM Ti6Al4V systems, 

repeatability of the DSC using wrought Ti6Al4V to measure the β to α transformation 

was tested.  Excellent repeatability and sensitivity was found with these results.  Further 

validation was accomplished with PM CpTi measuring the same phase transformation.  

Again, excellent repeatability and sensitivity was found, proving that DSC was capable of 

measuring this transformation in both wrought and PM systems. 

5.1.1. BE Analysis 

The effects of each elemental addition to Ti was analyzed with the expected results.  The 

addition of V resulted in a lower onset and end temperature for the β to α transformation, 

with a lower recorded enthalpy than the CpTi.  Conversely, the transformation measured 
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with the addition Al resulted in higher onset and end temperatures for the β to α 

transformation.  The measured enthalphy of transformation was larger than that of the 

Ti4V, with a broader peak.  This leads to the conclusion that the kinetics of Al diffusion 

in Ti was more rapid than V, and that a homogeneous speciemen is produced after 

approximately 1Hr of sintering at 1200°C.  Additionaly, a large exothermic peak was 

observed during the heating of the Ti6Al mixture.  This observation was in agreement 

with other published work, where researchers observed a rapid alloying of Al 

immediately after heating past its melting point.    The elemental Ti6Al4V exhibited 

many of the characterisitics that were observed in each of the binary mixtures.  Bulk 

homogenization of the ternary mixture appears to progress at a slower rate than either 

binary mixture, particularly Ti4V.  Additionally, the measured enthalpy of transformation 

was lower than either binary mixture.  This suggests that additional thermal exposure is 

required to achieve the desired bulk composition. 

As a point of comparison, the DSC analysis of the Ti6Al4V PA powder provided 

important insight into the behavior of a fully homogeneous transformation.  The results of 

all the different thermal profiles were very similar, with no appreciable changes.  This 

showed that with even a short duration of sintering a fully homogeneous specimen can be 

produced using a PA powder. 

5.1.2. MA Analysis 

Analysis of the two MA additions during heating to specific points of α to β 

transformation revealed the extent of alloying that occurred during heating.  DSC 

analysis revealed small differences in the α to β transformation for both MA additions 

when compared to CpTi.  The fine MA displayed an exothermic shift leading to 

transformation, and the coarse MA displayed a small exothermic peak after the phase 

transformation.  Of particular importance was the lack of any significant exothermic peak 

relating to the metling of Al, showing that a MA addition avoids this issue. 
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DSC cooling traces of coarse MA revealed a shoulder in the transformation peak at the 

earliest sintering time.  This was believed to be due to the differences in diffusion rates of 

Al and V into the Ti matrix.  As expected, the transformation peak transitioned into a 

more uniform peak with increased thermal exposure.  In the later stages the measured 

peaks for thecoarse MA were noticeably more uniform than the BE Ti6Al4V mixture, 

with a higher enthalpy of transformation. 

The DSC traces for the fine MA addition did not show any evidence of slow diffusion 

that was seen with the coarse MA.  The earliest sintering traces show a more uniform 

transformation.  This suggested that due to the smaller particle size, alloying of both Al 

and V progressed much more rapidly.  At 2Hrs the DSC trace showed a very uniform 

peak with a higher enthalpy of transformation than the equivalent coarse MA trace.   

5.2. Microstructural and phase analysis 

5.2.1. BE Analysis 

Microstrural anaylsis confirmed many of the obersvations made with the DSC.  For the 

Ti6Al specimens, the existence of large voids confirmed the result of the rapid alloying 

of Al during heating.  These voids persisted throughout all the thermal profiles, and 

would no likely heal with additional sintering time.  SEM/EDS analysis showed that long 

range diffusion of Al in the earlier sintered states, and that a homogeneous speciemen 

was achieved between the 1Hr and 2Hr states.   

The slower diffusion of V was confirmed with XRD and SEM/EDS for the Ti4V system.  

The existence of elemental V sites in early sintered states with SEM/EDS showed that 

there was significantly slower kinetics, likely due to V self diffusion.    By the 2Hr state, 

the homogeneity had improved significantly.  There was no observed β-Ti peak in the 

XRD spectra at this state.  However, SEM/EDS maps revealed that certain regions were 
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still below the desired bulk composition and that additional sintering time would be 

needed. 

Analysis of the BE Ti6Al4V revealed the same large porosity seen in the Ti6Al 

specimens.  In the case of this ternary system these large voids seem to have additional 

detrimental affects.  XRD analysis revealed more intense peaks for the β-Ti phase than 

what was observed in the Ti4V specimens.  This suggested that the diffusion of V was 

further hindered in the ternary system, likely due in part to the greater porosity. 

Similar to the observations of PA powder made with DSC, microstrucral analysis 

revealed a fully homogeneous microstructure.  An important observation was the lower 

apparent sintered density of the PA specimens. 

5.2.2. MA Analysis 

Analysis of the both MA specimens during heating revealed the extent of metallurgical 

interaction that occurred up to the temperatures of interest.    In both cases there was a 

formation of an intermetallic phase between the MA and the Ti matrix.  The region was 

more developed in fine MA speciemens due to the smaller particle size. 

SEM/EDS analysis of the early sintered states of the coarse MA confirmed that the 

diffusion of V lagged behind Al significantly.  This was mostly alleviated with increasing 

sintering time.  XRD analysis showed a decreasing peak intensity of the β-Ti phase with 

increasing sintering time.  However, EDS mapping of the 2Hr state revealed that the 

desired bulk composition had not yet been achieved. 

The more rapid alloying kinetics of the fine MA were confirmed with the microstructural 

analysis techniques used for this investigation.  In all sintered states there was evidence 

of a more developed microstructure compared to the coarse MA.  However, in the 2Hr 
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state, the fine MA mixture was also found not be fully homogeneous, and would require 

additional sintering. 

5.3. Future Work 

Due to necessary constraints, the scope of this research leaves several areas for future 

investigation into the alloying behavior of PM Ti6Al4V.  The recommendation for areas 

of future work include: 

 Analysis of at least one sintered state between 1Hr and 2Hrs of sintering time for all 

powder mixtures. 

 A more comprehensive phase analysis of the two-phase Widmanstätten structure with 

XRD. 

 Experimentation with different alloying additions such as mix of elemental and MA 

additions 

 Determining the sintering time required to achieve a homogeneous microstructure for 

each powder mixture. 

  Experimentation with hydrogenated Ti powders. 

 Comprehensive analysis of sintered density, and the use of sintering aides to improve 

sintered density. 
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