
OFDM Transmission for Doubly Dispersive Underwater

Acoustic Channels

by

Ali M. Bassam

Submitted in partial fulfillment of the

requirements for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

March 2015

c© Copyright by Ali M. Bassam, 2015



Dedication

To my beloved mother and father

ii



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Abbreviations and Symbols Used . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 OFDM and Multipath Channels: An Overview . . . . . 4

2.1 OFDM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Multipath Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Statistical Description . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3 UWA Channel Modelling . . . . . . . . . . . . . . . . . . 16

3.1 The UWA Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The SOS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4 OFDM on UWA Channels . . . . . . . . . . . . . . . . . . 28

4.1 UWA Channels and Doppler Effects . . . . . . . . . . . . . . . . . . . 28

4.2 ICI Analysis and Parametrization . . . . . . . . . . . . . . . . . . . . 32

iii



4.3 Doppler Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 5 OFDM Simulations and Results . . . . . . . . . . . . . . 38

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix The ’MATLAB Function’ MATLAB Code . . . . . . . . 52

iv



List of Figures

Figure 3.1 Multipath propagation in underwater environments. . . . . . . 18

Figure 3.2 The SOS channel simulation model, shown for two taps. . . . 25

Figure 3.3 Tapped delay line model of f(mTs, `Ts) = f [m, `]. . . . . . . . 27

Figure 5.1 “CarrierTest” Simulink model, run with Eb/N0 = 9 dB. . . . . 39

Figure 5.2 “CarrierTest” BER curves for the AWGN channel and three

“two-impulse” models. . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.3 “DQSKTurbo” Simulink model, which contains turbo encoding

and decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 5.4 Magnitude response of the channel with a discrete-time multi-

path spread of 1 (left) and 12 (right). A higher spread results

in more rapid oscillations. . . . . . . . . . . . . . . . . . . . . 42

Figure 5.5 The “OFDMfull” model, shown in detail, which includes rate-

1/2 turbo coding with soft-decision demodulation added to the

“CarrierTest” model. . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.6 Magnitude of the impulse response of the Ultra Electronics’

water tank channel. The channel has a multipath spread of

about 160 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 5.7 Magnitude response of the Ultra Electronics’ water tank chan-

nel with a signal bandwidth W = 300 Hz . . . . . . . . . . . . 45

Figure 5.8 “DQSKTurbo” and “OFDMfull” BER curves for the channels

described above. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.9 The “OFDM SOS” model, designed by including the SOS chan-

nel model in the “OFDMFfull” model. . . . . . . . . . . . . . 47

v



Abstract

In this thesis, an OFDM simulator is designed based on the theory presented, and

tested with a real underwater acoustic (UWA) channel. The UWA channel is analyzed

and a simplified model is presented that holds under achievable conditions. The SOS

model is developed for the UWA channel, and uses the stretched exponential function

to model the Doppler power spectrum. The result is an SOS simulator which is then

added to the OFDM simulator. The OFDM simulators are shown to have a very

good performance under real, quasi-stationary UWA channels.

OFDM theory is presented and then applied to the UWA channel to combat

frequency-selectivity. OFDM transmission on UWA channels is analyzed in great

detail, with special emphasis on how the Doppler effect distorts the signal. A complete

model which shows the channel effects on the received signal is developed. This is

followed by ICI parametrization and two methods of Doppler compensation.
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Chapter 1

Introduction

1.1 Background and Motivation

Underwater channels are one of the most complicated channels to work with in a

communications system, and for various reasons. One reason is the severe frequency-

selective fading present in the channel, that is, the dispersion (spread) in the channel

exceeds the duration of the transmitted signal. This translates into rapid oscilla-

tions in the frequency response of the channel within the range of frequencies of the

transmitted signal.

Though the channel is generally frequency-selective, certain assumptions about

the channel can be made which allow modelling the channel as a flat fading (or nar-

rowband) channel, i.e. the duration of the transmitted signal exceeds the dispersion

in the channel, though this is not always the case. The OFDM modulation scheme

however offers a solution to this problem, and provides reliable transmission over

such channels. This is because the signal is transmitted over many subcarriers, which

would result in subdividing the channel’s frequency response into smaller subchan-

nels. With enough subcarriers, the subchannels can be made small enough until the

frequency response is nearly flat within the region of the subchannel.

Another reason for the complicated nature of underwater channels is that, not

only does the attenuation factor vary with time, but it varies with frequency as well

on each path. This is different from most other channels, where the attenuation factor

either varies with time only or approximately constant.

Finally, one of the main reasons that make underwater channels complex when

compared to other channels is the severe Doppler effect in the channel, which makes

the channel a fast fading channel. Doppler shift is caused due to the relative motion

of the transmitter and the receiver; Doppler shift can also be caused by wave motion,

specifically gravity waves, which are waves generated in fluids or on an air-fluid in-

terface due to the change in medium density along the propagation path. Because of
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these gravity waves, different Doppler shifts occur on each channel path.

The Doppler broadening, or spread, is the maximum difference in the Doppler

shifts of channel paths. Since the acoustic wave (or sound) propagation velocity is

slow compared to the speed of light, Doppler spread (and shift) is a much more

significant limitation than other communications channels, such as radio channels.

1.2 contributions

This thesis contributes to the area of underwater communications in both theory

and practice. Specifically, it presents models and simulations based on well-known

assumptions and theories in the field. The main contribution of the thesis is the

OFDM simulators it presents, which took a significant amount of time to build, and

is based on the treatment presented. The turbo-coded OFDM simulator was tested

under two-path test channels and a real underwater channel, and the tests show that

it has a good performance under harsh channel conditions.

The other contribution it makes is modifying the SOS model to take into account

the distribution of Doppler frequencies, i.e. the Doppler power spectrum, in under-

water channels. This in turn allows the use of the sum-of-sinusoids (SOS) model in

OFDM simulations of underwater channels, which ultimately results in a turbo-coded

OFDM simulator that runs under a randomly-generated underwater channel.

The simulators are based on the theory presented in the thesis, except for Chapter

4, due to the absence of a Doppler estimator. However Doppler estimation and

compensation will be part of future work in this research.

1.3 Outline of the Thesis

This paper aims to investigate these points and more in detail and with a reasonable

level of rigour. Chapter 2 provides an overview of OFDM and multipath channels and

their statistical characterization. The wide-sense stationary uncorrelated scattering

(WSSUS) assumption is used for the channel which allows statistical characterization

of the channel with scattering functions, delay power profiles and Doppler power

spectral density functions. The treatment given in the overview is general more or

less and can be found in various sources such as [1, 2, 3].
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Chapter 3 then discusses underwater acoustic (UWA) channel modelling. The

UWA channel model is developed from first principles, with an approach similar to

that in [4, 5, 6]. Thanks to the WSSUS assumption, the sum-of-sinusoids (SOS)

method is used to randomly generate the time-varying taps of an equivalent discrete-

time UWA channel model, which is useful for simulating UWA channels with Doppler

effects [7, 8]. It shows correlated complex Gaussian channel tap statistics with

Rayleigh or Ricean amplitude distributions. Unlike channels such as radio channels,

where the Doppler power spectrum is modelled by the Jakes’ model, the Doppler

power spectrum in underwater channels is modelled with a stretched exponential

model [9], from which the Doppler spread can be estimated.

Chapter 4 provides a rigorous analysis of OFDM on UWA channels, with special

focus on the Doppler effect in the channel [7, 10, 11, 12]. This is followed by ICI

analysis and parametrization [11, 12]. Doppler compensation will then be discussed,

and two methods will be presented [10, 12].

Chapter 5 will put the theoretical analysis from the previous chapters into practice

by presenting the OFDM simulators designed over the course of the research. This

work culminated in two main simulation models that were tested and proved to be a

success. However due to absence of Doppler estimation, Doppler compensation was

not included in the models. Chapter 6 will present the conclusions drawn by the

author of the paper.

This research is very significant in the fields of digital communications and electri-

cal engineering, and can have various applications in the fields of oceanography and

physics. Throughout the research period, by collaborating with Ultra Electronics

Maritime Systems Inc., experiments were performed and data were collected to test

the models and simulations presented in this paper.



Chapter 2

OFDM and Multipath Channels: An Overview

2.1 OFDM Theory

Orthogonal Frequency-Division Multiplexing (OFDM) is frequency-division signal-

ing with narrowly-spaced, but mutually orthogonal multiple carriers. It is a specific

implementation of multi-carrier (MC) modulation. Even though the OFDM subcar-

riers overlap in frequency, they are orthogonal, and their required spectrum is hence

smaller compared to conventional FDM.

OFDM does not require the use of expensive bandpass filters required in conven-

tional FDM systems to isolate the carriers, but is sensitive to crosstalk, the unwanted

coupling of one carrier into others, if timing errors occur or the channel undergoes

rapid time variations [1, p. 696]. A decisive advantage of OFDM is that it can be

modulated and demodulated with the low-complexity fast Fourier transform (FFT)

algorithm. Also, the capability to equalize a frequency-selective channel by simple

matrix multiplication in the frequency domain was a decisive factor in the adoption

of OFDM in several new signaling standards for radio systems.

The main disadvantage of OFDM, its high peak-to-average power ratio due to the

noise-like statistics of the time-domain signal, was not considered as disqualifying,

since advances in linear amplifier technology have made this problem less of an obsta-

cle. In fact, in the latest 4-th generation cellular standard, the uplink signaling for-

mat uses modified OFDM signals, specifically designed to reduce the peak-to-average

power ratio and to enable cheaper amplifiers in the handsets for these systems.

OFDM works as follows: in baseband, the total channel of bandwidth W is divided

into N subcarriers at frequency fk, and the frequency spacing between subcarriers,

∆f = fk+1 − fk (2.1)

4
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is related to the signal bandwidth W and number of subcarriers N as

fk = k(W/N) (2.2)

where k ∈ [0, N − 1]. The symbol rate is

r = 1/T = ∆f = W/N (2.3)

where T is the symbol duration. Here W = 1/Ts where Ts is the single-carrier symbol

time, which by the sampling theorem is equal to the sample time. Thus T = NTs,

and fk = k/T .

The inner product of two modulated waveforms with different subcarriers vanishes,

verifying orthogonality:∫ T

0

ej2πflte−2πfmtdt = 0 where l 6= m

The orthogonality of the modulated subcarriers means that N symbols can be sent

separately and decoded independently of each other under ideal transmission condi-

tions. That is, instead of sending N symbols over the channel at rate rs = 1/Ts =

N/T = W as in a time-domain system, each symbol is sent over its corresponding sub-

carrier frequencyfk, and N symbols can be transmitted in parallel over the channel,

each at rate of r = rs/N .

The complex baseband signal to be transmitted at the output of an analog OFDM

transmitter is thus given by

x(t) =
1√
N

N−1∑
k=0

X[k]ej2πfkt =
1√
N

N−1∑
k=0

X[k]ej2πkt/T , 0 ≤ t ≤ T (2.4)

where X[k] is the kth complex constellation point, for example a QPSK or 16-QAM

signal point, and the constant 1/
√
N normalizes the expression. Generally, the con-

stellation points, and hence the OFDM blocks, vary with time, i.e. they are given

by Xk(t) instead of X[k], but the notation X[k] was chosen for simplicity, with no

substantial loss of generality in this and later analysis. Although the OFDM signal is

time-limited, it is also approximately band-limited, since X[k] is approximately zero
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outside k ∈ [0, N − 1]. Using the fact that fk = k/T = k(W/N) and sampling x(t)

at times t→ nTs yields the discrete samples

x[n] =
1√
N

N−1∑
k=0

X[k]ej2πk(W/N)nTs

Since Ts = 1/W , x[n] becomes

x[n] =
1√
N

N−1∑
k=0

X[k]ej2πkn/N , 0 ≤ n ≤ N − 1 (2.5)

which is a complex baseband time sequence.

One can observe that x[n] is related to the complex sequence X[k] via the inverse

discrete Fourier transform, i.e., x[n] = IDFT{X[k]}. Therefore, rather than working

with an analog transceiver, a digital transceiver can be used where, after mapping the

discrete-time sequence, the transmitter performs an IDFT on the sequence, followed

by an interpolation filter. This makes for a more efficient design of an OFDM system,

both computationally and economically.

The interpolation filter is used to convert the discrete-time sequence into a continuous-

time signal. A strictly bandlimiting interpolation function would use the function

sinc(x) = sin(πx)/(πx), as known from the sampling theorem:

x(t) =
N−1∑
n=0

x[n]sinc((t− nTs)/Ts)

However, the sinc(x) interpolation pulse has significant pre-, and post-cursors and

can easily generate intersymbol interference unless a large guard band is used. It

is also difficult to generate with limited effort. Practically, a filter g(t) like a root-

raised-cosine filter with an appropriately small roll-off factor α, or other appropriate

low-pass transmission filter, is used to avoid excessive temporal sidelobes. Thus

x(t) =
N−1∑
n=0

x[n]g(t− nTs) =
N−1∑
n=0

x[n]g(t− nT/N) (2.6)
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After interpolation the baseband signal can be upconverted to a real, passband

signal. The passband OFDM signal s(t) is generated from the equivalent complex

baseband signal x(t) as

s(t) = Re{x(t)ej2πfct} = xi(t) cos 2πfct− xq(t) sin 2πfct (2.7)

where the real and imaginary components, xi(t) and xq(t), are the in-phase and

quadrature components of x(t) respectively. fc is a carrier frequency offset, or also

the first frequency in the OFDM band. If the signal is transmitted on the passband

through the channel, the received signal is downconverted first before passing through

the root-raised-cosine filter at the receiver.

Assume that signal transmission is on the baseband. Let the received signal be

y(t) and the AWGN be n(t). y(t) is sampled at the output of the receive filter g∗(−t)
to convert the continuous signal back to discrete samples at the receiver. Due to the

matched filtering process, for an AWGN channel, y(t) is related to the input symbols

through

y(t) =
N−1∑
n=0

x[n]q(t− nT/N) + z(t) (2.8)

where q(t) = g(t)∗ g∗(−t) and z(t) = n(t)∗ g∗(−t). Because q(t) satisfies the Nyquist

criterion for no inter-symbol interference (ISI) – or inter-sample interference in this

case – that is,

q(nT ) =

1, if n = 0,

0, if n 6= 0

there will be no ISI at the receiver. Therefore y(t) = x(t)+z(t) and the sample values

y[n] obtained at the receiver are given as

y[n] = x[n] + z[n]

These values can be directly applied to the FFT to retrieve the data X[k].
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For a multipath channel, however, inter-carrier interference, or ICI, also needs to

be eliminated. In slow fading channels ICI can be eliminated with a cyclic prefix

(CP). The CP is inserted prior to interpolation and transmission, which is a prefix

copy of a portion of the transmitted sequence x[n]. However the main advantage

of the CP is that it allows the linear convolution to be implemented as a circular

convolution, but the CP length needs to satisfy a certain condition first.

Let the length of the discrete-time multipath channel h[n] be M , and let the

length of the CP be Ncp. To implement the linear convolution operation as a circular

convolution, the CP length must satisfy the condition Ncp ≥M−1, before the samples

of the CP are removed after filtering and decimation at the receiver. If N � Ncp as

in the usual case, the rate loss due to CP addition is minimal.

After CP removal, the length of the received sequence is N . Now by the circular

convolution theorem, the circular convolution in the n domain is translated to a

product in the k domain. The output of the FFT processor is now influenced by the

tapped delay line equivalent channel that results from the sampling process, and each

frequency is multiplied by a complex gain factor, i.e.,

Y [k] = H[k]X[k] + Z[k] where 0 ≤ k ≤ N − 1

The output samples in the time domain, after adding the CP, are given in vector form

as

y = Hx + z (2.9)

where

H =



h0 hM−1 · · · h1
... h0

. . .
...

...
...

. . . hM−1

hM−1
...

. . . h0

hM−1
. . .

... h0
. . .

...
...

. . .

hM−1 hM−2 · · · h0


(2.10)
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Due to CP addition, H is an N × N circulant matrix. In the frequency domain,

the Fourier transform diagonalizes a circulant matrix and the frequency-domain ex-

pression is obtained as

Y = H(f)X + Z (2.11)

where

H(f) =


H[0]

. . .

H[N − 1]

 (2.12)

The vector y = [y[0] · · · y[N − 1]]T thus has components

y[n] =
1√
N

N−1∑
k=0

H[k]X[k]ej2πkn/N + z[n] (2.13)

and this discrete sequence of samples is demodulated by the FFT into

Y [k] =
1√
N

N−1∑
n=0

y[n]e−j2πkn/N = H[k]X[k] + Z[k] (2.14)

To compensate for the channel distortion and recover X[k], in general, a filter Hf (e
jω)

(the discrete-time Fourier transform of h[n]) is required whose frequency response is

the reciprocal of the channel’s frequency response, that is, a filter with Hf (e
jω) =

1/H(ejω). Instead of introducing this filter before the FFT, more typically one equal-

izes in the digital domain by scaling the values Y [k] as Y [k]/H[k] = X[k] + Z[k].

Therefore the output of the filter, disregarding noise, equals X[k] and is free of chan-

nel frequency gain distortion. With noise, the filter outputs will actually be the

least-square estimates of X[k], designated by X̃[k]. After finding the DFT values

X̃[k], which are the received constellation points of the input data, the data signal is

demapped into the information-bit sequence. This allows retrieving the data.
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2.2 Multipath Channels

A multipath channel is in general a linear time-varying filter channel. For an upcon-

verted input s(t), the channel’s output in the passband is given by

r(t) = s(t) ∗ h(t, τ) + n(t) (2.15)

where n(t) is additive noise and h(t, τ) is the bandpass impulse response of the chan-

nel.

If an impulse is transmitted through a time-varying multipath channel, the re-

ceived signal may appear as a train of impulses, which shows that time-dispersion (or

time-spreading) is one of the characteristics of a multipath channel. Another charac-

teristic is due to the time variations occurring within the channel, which means that

the multipath channel varies with time, causing the train of impulses received to be

different every time an impulse is transmitted [2, p. 831]. It follows that there can be

different path delays and a different number of impulses received each time, and the

impulses can also be attenuated differently each time.

Assuming a time-varying attenuation factor (or path gain) hp(t) and a time-variant

propagation delay τp(t), the passband channel output signal r(t) can then generally

be given by

r(t) =
∑
p

hp(t)s[t− τp(t)] + n(t) (2.16)

where p represents the pth path (for the case of acoustic channels however, the at-

tenuation factor is also frequency-dependent; see section 3.1). The bandpass impulse

response of the channel is therefore given by

h(t, τ) =
∑
p

hp(t)δ[τ − τp(t)] (2.17)

Using the fact that a passband signal s(t) = Re{x(t)ej2πfct} where x(t) is its baseband

equivalent, r(t) can be written as

r(t) = Re

{∑
p

hp(t)x[t− τp(t)]ej2πfc[t−τp(t)]
}

+ n(t)
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Now the baseband equivalent of the channel output r(t) is given by

y(t) =
∑
p

hp(t)e
jθp(t)x[t− τp(t)] + ñ(t) (2.18)

where θp(t) = −2πfcτp(t) and ñ(t) is the noise signal in the baseband. Therefore the

lowpass impulse response of the channel is

c(t, τ) =
∑
p

hp(t)e
jθp(t)δ[τ − τp(t)] (2.19)

It should be noted that hp(t) changes significantly with time only if there are large

dynamic changes in the channel. However from the definition of θp(t) it is seen that

θp(t) can change by 2π rad as τp(t) changes by 1/fc. Since fc is usually large, 1/fc

is small, and so θp(t) changes rapidly. Changes in τp(t) are independent for different

paths. c(t, τ) is often modelled as a random process, and for a large number of paths,

using the central limit theorem, c(t, τ) can be approximated as a complex-valued

Gaussian random process (it follows that y(t) can also be modelled as such). The

random variable of the envelope |cp(t)|, which is equivalent to |hp(t)|, can be Rayleigh,

Rician, Nakagami, etc.

Let the R.V. representing |hp(t)| be |Hp|. Assuming that no LOS (line-of-sight) is

present, a Rayleigh distribution for |Hp| can be assumed. The Rayleigh PDF of |Hp|
is given by

p(|hp|) =
|hp|
σ2

e−
|hp|2

2σ2 (2.20)

with mean and variance given by

E[|Hp|] = σ

√
π

2
(2.21)

VAR[|Hp|] =
(

2− π

2

)
σ2 (2.22)

Throughout the research period, |Hp| and |Cp| (the R.V. of |cp(t)|) were assumed

to be Rayleigh-distributed, and the R.V. of the phase θp(t) was assumed to be uni-

formly distributed in [0, 2π) or [−π, π). The SOS (sum-of-sinusoids) model, which is

discussed in section 3.2, is based on these assumptions.
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Fading is a result of time variation in θp(t), the phase of each path. This random

time variation in the phases can cause constructive or destructive interference of the

vectors hp(t)e
jθp(t). Constructive interference causes the received signal to appear

amplified while destructive interference causes it to ”fade” out [2, p. 833]. Thus

signal fading (the variations in hp(t)e
jθp(t)) is due to time-variant multipath effects of

the channel.

2.3 Statistical Description

Assume that c(t, τ) is wide-sense stationary, that is, the second-order moments of the

channel are stationary. Mathematically, this is written as

E[c(t, τ)] = mc(τ) (2.23)

Rc(t1, t2, τ1, τ2) = Rc(t2 − t1, τ1, τ2) = Rc(∆t, τ1, τ2) (2.24)

where mc(τ) is the mean value of the channel’s impulse response and Rc(t1, t2, τ1, τ2)

is the autocorrelation function of the channel’s impulse response. The time difference

is ∆t = t2 − t1. Hence the autocorrelation function under the WSS assumption can

be defined as

Rc(∆t, τ1, τ2) = E[c(t, τ1)c
∗(t+ ∆t, τ2)] (2.25)

Assume also uncorrelated scattering in the channel, that is, the channel’s atten-

uation and phase shift at path delay τ1 are uncorrelated with those at τ2. Therefore

under uncorrelated scattering, Rc(∆t, τ1, τ2) = Rc(∆t, τ)δ(τ2− τ1) where τ can either

be τ1 or τ2 [2, p. 834].. This is the WSSUS (wide-sense stationary uncorrelated scat-

tering) assumption, and throughout the research period, the WSSUS assumption was

applied to the channel. This allows the use of the SOS model, which is discussed in

section 3.2.

Letting ∆t = 0, Rc(∆t, τ) = Rc(τ), which gives the average power output of the

channel as a function of path delay, and is known as the channel’s multipath intensity

profile, or the delay power spectrum. The range of values of τ for which Rc(τ) 6= 0 is

known as the channel’s multipath (or delay) spread, Tm. Thus Tm can be defined as
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the maximum difference in the path delay of each path:

Tm = max{|τp − τq|}, ∀p, q (2.26)

where τp is the pth path delay and τq is the qth path delay.

Alternatively, the channel characterization can also be done in the frequency do-

main. Let C(t, f) be the Fourier transform of c(t, τ) in the τ variable. If c(t, τ) is

assumed to be a complex-valued Gaussian random process, then C(t, f) will also be

Gaussian. Since a wide-sense stationary channel is assumed, the channel’s autocor-

relation function is

RC(∆t, f1, f2) = E[C∗(t, f1)C(t+ ∆t, f2)] (2.27)

For uncorrelated scattering, using the relation betweenRC(∆t, f1, f2) andRc(∆t, τ1, τ2),

and Fourier transform properties, one of the transforms collapes, and RC(∆t, f1, f2) =

RC(∆t,∆f), where ∆f = f2 − f1 is the frequency spacing. RC(∆t,∆f) is known as

the channel’s spaced-frequency, spaced-time correlation function. Letting ∆t = 0,

RC(∆t,∆f) becomes the spaced-frequency correlation function RC(∆f), which is

wide-sense stationary in the frequency variable f .

The channel’s coherence bandwidth Bcoh can be approximated as the inverse of the

delay spread 1/Tm, meaning that two signals with a frequency separation greater than

Bcoh will be affected independently by the channel. A channel is frequency-selective

(or wideband) if Tm > T or Bcoh < W (T is the signal’s duration and W is the signal’s

bandwidth); this means that the transmitted signal will be perceptibly distorted by

the channel. If Tm � T or Bcoh � W then the channel is frequency-nonselective, or

flat (also called narrowband).

In underwater acoustic communications, or UWA communications for short, large

channel multipath spreads occur due to the relatively small speed of sound waves

(around 1500 m/s in water) and the presence of multipath in the channel; this leads

to severe ISI due to the dispersion (or spreading) of the waveform in time. In shal-

low water, the multipath spread is usually in the order of tens of milliseconds, but

sometimes it can be as large as 100 ms. In deep water, the multipath spread is in the

order of seconds [10, p. 8]. A large multipath spread also results in a small coherence
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bandwidth. Thus the UWA channel is a frequency-selective, or wideband, channel.

The next focus will now be on the channel’s time variations which are due to

Doppler broadening (or Doppler spread) and also possibly to Doppler shift. The

Doppler effects are characterised by the scattering function SC(ν,∆f), which is the

Fourier transform of RC(∆t,∆f).

If ∆f = 0, then SC(ν) is the channel’s Doppler power spectrum, which gives the

average power output of the channel per unit Doppler frequency. The range of values

of ν for which SC(ν) 6= 0 is the channel’s Doppler spread, which measures Doppler

broadening, and is given by Bd. Thus Bd is defined as the maximum difference in the

Doppler frequency of each path:

Bd = max{|νp − νq|}, ∀p, q (2.28)

where νp is the Doppler frequency of the pth path and νq is the Doppler frequency

of the qth path. Doppler spread may also be defined as the 3-dB bandwidth of each

path’s Doppler power spectrum [2, p. 837]. Doppler spread typically varies with the

path time delay.

Making use of the relationship between Rc(∆t) and SC(ν), the channel’s coherence

time Tcoh can be approximated by 1/Bd. Here the following classification can be made:

if Tcoh � T or Bd � W then the channel is slowly changing and the channel is called

a slow fading channel. If Tcoh < T or Bd > W then the channel is a fast fading (or

time-selective) channel.

In UWA communications, large channel Doppler shifts and spreads occur due to

the relatively small speed of sound. In MC modulation, this leads to severe ICI due

to the dispersion (or spreading) of the waveform in frequency [10, p. 9]. A large

Doppler spread also results in a small coherence time. Thus the UWA channel is a

fast fading, or time-selective, channel.

The properties of the autocorrelation function discussed in this section can be

used to yield alternative definitions for the WSSUS model. Using the relation be-

tween SC(ν1, ν2, f1, f2) and Rc(t1, t2τ1, τ2), and Fourier transform properties, the WSS

assumption yields

SC(ν1, ν2, f1, f2) = SC(ν, f1, f2)δ(ν2 − ν1) (2.29)
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(where ν can either be ν1 or ν2). Therefore, the WSS assumption is the assumption

of uncorrelated scattering of Doppler frequencies. Alternatively, using the relation

between Rc(t1, t2, τ1, τ2) and SC(ν1, ν2, τ1, τ2), using Fourier transform properties, and

finally invoking the WSSUS assumption yields the statements

SC(ν1, ν2, τ1, τ2) = SC(ν, f)δ(ν2 − ν1)δ(τ2 − τ1) (2.30)

SC(ν, τ) is the scattering function of the channel, which gives the average power

output of the channel as a function of ν and τ .



Chapter 3

UWA Channel Modelling

3.1 The UWA Channel

One of the main factors that characterize acoustic propagation is frequency-dependent

attenuation. The channel’s impulse response can be sparse, and it is modelled as a

linear time-variant (low-pass) filter. In UWA channels, signals are transmitted at

low frequencies, mainly due to the frequency dependence of the channel’s attenuation

factor. UWA channels are also frequency-selective fading (wideband) channels, and

sparse channel estimation is used to improve performance in such a channel. The

analysis and modelling of the UWA channel, and the formulation of the channel’s

impulse response h(t, τ) presented in this section are widely used by researchers today.

The discussion presented here is closely related to the work done by Stojanovic in

[4, 5, 6].

The attenuation factor of the channel is frequency-dependent due to absorption,

i.e. the transfer of acoustic (sound) energy into heat. As known from physics, the

average power transferred by sound travelling through a constant cross-section is

1
2
ρvω2As2max where smax is the maximum displacement amplitude of the wave, ρ is

the density of the propagation medium, v is the wave speed, A is the cross-sectional

area through which the wave propagates and ω is the angular frequency of the wave.

Therefore, since the path loss (and hence the attenuation factor) is related to the

power transferred, it is frequency-dependent.

Furthermore, there is spreading loss which increases with distance, which is the

energy loss due to the scattering of the waves in a specific geometry. Thus the path

(propagation) loss is also distance-dependent. The path loss is given by the equation

[4]

A(l, f) = (l/lr)
κ[a(f)]l−lr (3.1)

where l is the distance between the transmitter and receiver (transmission distance),

16
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lr is the reference distance, and a(f) is the absorption coefficient. κ is the path loss

exponent that models the spreading loss, and usually 1 ≤ κ ≤ 2 (1 is for cylindrical

spreading and 2 is for spherical spreading). For frequencies up to about 50 kHz, the

logarithm of the absorption coefficient has a second-order approximation [4]:

10 log a(f) ≈ α0 + α1f + α2f
2 (3.2)

(the transceiver design, which is discussed in a later section, operates around the

frequency of 2 kHz).

Effects of path loss can also be seen on the signal-to-noise ratio. Due to path

loss, the transmitted signal power is degraded to Sl(f)/A(l, f) where Sl(f) is the

power spectrum of the signal at the transmitter (the subscript l shows that the signal

power can be modified with distance). Noise in acoustic channels is made of ambient

noise and noise from other surrounding sources (like turbulence and ships), however

the ambient noise is not white, although it is still modelled as a Gaussian random

process. The noise power (or its power spectrum) is given by N(f).

The distance and frequency-dependent SNR under path loss is thus given by

SNR(l, f) =
Sl(f)

A(l, f)N(f)
(3.3)

Since Sl(f) is usually user-specified prior to transmission, the distance and frequency

dependence of the SNR comes from the factor [A(l, f)N(f)]−1. This means that the

bandwidth will depend on transmission distance, since as distance increases, the SNR

decreases, causing a decrease in the channel bandwidth. Conversely, transmitting at

shorter distances will give a higher SNR, and hence, a larger channel bandwidth

(however transducer limitations will result in a maximum possible bandwidth that

can be reached). Therefore bandwidth-efficient modulation schemes are important to

achieve spectral efficiency greater than 1 bps/Hz [4].

To achieve a certain SNR, the bandwidth and power required as a function of

distance can, respectively, be modelled by [5]:

W (l) = wl−β where β = 0, 1 (3.4)

P (l) = plψ where ψ ≥ 1 (3.5)
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(β=0forthecaseofnopathloss).Itisimportanttonotethatsincethechannel’s

bandwidthisontheorderofitscarrierorcenterfrequency,whichisusuallysmall,

UWAchannelsareintrinsicallyfrequency-selective.

Multipathpropagationunderwaterisduetothereflectionandrefractionofthe

acousticwaves.Refractionisduetothechangeinsoundspeedwithdepth,whichis

significantmainlyindeepwater,whilereflectioncanbeatthesurfaceandbottomof

thewater,andatobjectsinthewater.Figure3.1belowshowsanillustrationofthis

[7,p.2].Inshallowwater,thespeedofsoundv
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isalmostconstant,andsothepath

Figure3.1: Multipathpropagationinunderwaterenvironments.

delayscanbecomputedaslp/v,wherepdenotesthepthpath,andthepropagation

pathlengthscanbegeometricallycalculated.Therelativepathdelaysτp=lp/v−t0

canbedefined,wheret0isthearrivaltimeofthepathwiththehighestenergy,which

isthenusedasthereceiver’sreferencetime.UndermotionorDopplereffects,lp,and

henceτp,willvarywithtime.

Thepath’stotalreflectioncoefficientisdenotedbyΓp. Underidealconditions

thereflectioncoefficientatthetop(water)surfaceis-1,butthereflectioncoefficient

atthebottomsurfacedependsonthesurfaceitselfandthewave’sincidentangleon

thatsurface.Thereflectioncoefficientyieldsthechannel’sattenuationfactor,butthe

pathlossshouldalsobeaccountedfor.Thefrequency-dependentattenuationfactor

(orthefrequencyresponseofthepthpath)isthereforegivenby[4]:

Hp(t,f)=
Γp

A(lp,f)
(3.6)
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(path loss is a coefficient of power loss; since the attenuation factor is a factor of

energy loss, the attenuation factor would hence be reduced by
√
A(lp, f) ). The

above model shows that dispersion occurs at each path, and each path behaves like

a low-pass filter.

The Fourier transform of such a channel, H(t, f), is thus given by

H(t, f) =
∑
p

Hp(t, f)e−j2πfτp(t) (3.7)

Hence when inverted back to the time domain, the bandpass impulse response of the

channel now becomes h(t, τ), and is given by

h(t, τ) =
∑
p

hp[t, τ − τp(t)] (3.8)

where hp(t, τ) is the inverse Fourier transform of Hp(t, f). The transmitted passband

signal is given by s(t) = Re{x(t)ej2πfct}. The received passband signal is given by

r(t) = s(t) ∗ h(t, τ) + n(t). The received baseband signal can then be written as

y(t) = x(t) ∗ c(t, τ) + ñ(t), where

C(t, f) =
∑
p

Hp(t, f)ejθp(t)e−j2πfτp(t) (3.9)

and θp(t) = −2πfcτp(t). Letting Cp(t, f) = Hp(t, f)ejθp(t), the equivalent lowpass

response can thus be written as

c(t, τ) =
∑
p

cp[t, τ − τp(t)] (3.10)

where cp(t, τ) = hp(t, τ)ejθp(t).

A simpler model of a multipath channel’s impulse response is discussed in section

2.2:

h(t, τ) =
∑
p

hp(t)δ[τ − τp(t)]

c(t, τ) =
∑
p

hp(t)e
jθp(t)δ[τ − τp(t)]
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It is of interest sometimes to simplify the acoustic model to the form shown above.

This is possible if it is assumed that the pulses of the path’s delay response are narrow

enough to be considered impulses. This assumption is valid if the signal’s duration

is significantly larger than the channel’s multipath spread, i.e. the OFDM signal’s

bandwidth is significantly smaller than the channel’s coherence bandwidth.

In other words, it is necessary to assume a flat fading channel in order to use

the simplified model. But as previously discussed, the UWA channel is a frequency-

selective fading channel. In OFDM however, this assumption can be valid and can

often easily occur.

If the subcarrier signal’s bandwidth is small enough such that the channel’s fre-

quency response is almost flat or constant in the domain of that bandwidth (which is

equivalent to a coherence bandwidth much larger than the subcarrier signal’s band-

width), then the flat fading model for each signal, or symbol, in the OFDM block can

be assumed, and serves as a good approximation to the UWA channel. The number of

subcarriers should be large enough for this condition to be satisfied. For this reason,

throughout the research period, this simplified form of the UWA channel model was

assumed.

However, as seen in section 4.1, when Doppler effects are taken into account,

the assumption of a narrowband problem will not hold anymore due to the Doppler

shift present, which will effectively make the signal’s bandwidth comparable to the

coherence bandwidth and the channel will go back to being a wideband problem.

Doppler compensation though will convert the problem back to a narrowband problem

(see section 4.3).

The channel model for UWA systems can, in case scattering occurs along paths,

also take into account path bundles, which are a spreading and scattering of the

original multipath signal around the main path, due to reflection off of a rough surface.

Each path bundle p is made of closely-spaced micropaths which together cause the

fading effect on the path bundle. To account for the path bundles, a time-varying

small-scale scattering coefficient γp(t, f) should be included in the channel model for

each path bundle [6].
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γp(t, f) is defined as the normalized sum of each micro-path response in a path

bundle. Based on this definition γp(t, f) can be mathematically represented as shown

in [6]:

γp(t, f) =
1

hp
[hp,0 +

Sp−1∑
ι=1

hp,ιe
−j2πfδι(t)] (3.11)

ι denotes the ιth micropath in a path bundle, hp,ι denotes the micropath response

amplitude and δι(t) denotes the micropath delay, i.e., the delay from the main path.

hp,0 is the response amplitude of the main path, and so δ0(t) = 0.

For time durations that are much larger than the symbol duration, γp(t, f) ≈ 1

and the previous channel model is used. However on the small-scale the effect of

the micropaths becomes significant, and a path’s bandpass frequency response in

this model is represented by H ′p(t, f) = Hp(f)γp(t, f) [6]. The channel’s bandpass

frequency response is therefore refined to

H(t, f) =
∑
p

Hp(f)γp(t, f)e−j2πfτp(t) (3.12)

and the lowpass frequency response is given by

C(t, f) =
∑
p

Cp(f)γp(t, f)e−j2πfτp(t) (3.13)

3.2 The SOS Model

The UWA channel can be simulated using the sum-of-sinusoids (SOS) model. As

shown before, the lowpass impulse response of the UWA channel can be modelled as

c(t, τ) =
∑
p

cp(t)δ[τ − τp(t)]

where c(t, τ) is the lowpass time-varying impulse response and cp(t) = hp(t)e
jθp(t).

Given that the coherence bandwidth is less than the OFDM signal’s bandwidth, such

a channel is frequency-selective. The time-varying channel tap cp(t) however, which is

also interpreted as the impulse response of each path as seen in section 3.1, is assumed
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to follow a flat-fading channel model, and so the R.V. of |cp(t)|, |Cp|, is assumed to

be Rayleigh-distributed.

The SOS model states that, under 2-D isotropic (or uniform) scattering, the flat-

fading channel c(t) whose envelope is Rayleigh-distributed is given by [7]

c(t) =
1√
P

P∑
p=1

ej(2πνpt+θp) (3.14)

where P is the number of propagation paths that the channel is composed of and

θp is the uniformly-distributed random phase of the pth path in [0, 2π) or [−π, π).

νp = νd cosαp is the Doppler frequency, where νd is the maximum Doppler frequency

and αp is the angle of arrival of the pth path, uniformly distributed in [0, 2π) or

[−π, π); thus νp is uniformly (cosine) distributed in [−νd, νd).

The scaling factor 1√
P

ensures that |c(t)|2 is normalized, i.e. max{|c(t)|2} = 1, and

ensures convergence as P → ∞ by the central limit theorem. It can be shown that

as P →∞, |C| is Rayleigh-distributed and the R.V. of the phase arg{C} is uniformly

distributed on [0, 2π) or [−π, π). In practice P is finite, which means that the model

in a strict sense is non-stationary. However, in practice the value of P is enough

for the model to be an accurate representation, and even moderate values of P can

produce channels close to the WSSUS channel. In discrete time, the SOS model is

given by

c[n] =
1√
P

P∑
p=1

ej(2πνpnTs+θp) (3.15)

The frequency-selective UWA channel can also be modelled with the SOS model.

Comparing c(t) with c(t, τ), it follows that c(t, τ) can be modelled as [8]

c(t, τ) =
1√
P

P∑
p=1

ej(2πνpt+θp)δ[τ − τp(t)] (3.16)

where

cp(t) =
1√
P
ej(2πνpt+θp) (3.17)

However, as mentioned in section 3.1, in small-scale analysis when the time durations

of transmission are on the order of the symbol duration of the signal, the effect of the
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micropaths in a single path bundle needs to be accounted for. Hence in this case, the

SOS model for cp(t) becomes

cp(t) =
1√
SpP

Sp∑
ι=1

ej(2πνp,ιt+θp,ι) (3.18)

and thus

c(t, τ) =
1√
SpP

P∑
p=1

Sp∑
ι=1

ej(2πνp,ιt+θp,ι)δ[τ − τp(t)] (3.19)

The factor 1√
SpP

ensures that |c(t, τ)| is normalized, and ensures convergence as

P →∞ (by the central limit theorem). Analogous to the no-micropath case, θp,ι is the

uniformly-distributed random phase for the ιth micropath of the pth path bundle in

[0, 2π) or [−π, π). νp,ι = νd cosαp,ι is the Doppler frequency, where νd is the maximum

Doppler frequency and αp,ι is the angle of arrival for the ιth micropath of the pth

path bundle, uniformly distributed in [0, 2π) or [−π, π); thus νp,ι is uniformly (cosine)

distributed in [−νd, νd).

So far the model as it is assumes uniform distribution on νp without any regard to

its relationship with the UWA channel’s Doppler power spectrum. The model thus

needs to be modified in order to account for that. Various experiments and measure-

ments, such as those shown in [9], have shown that the Doppler power spectrum in

underwater environments is modelled by a stretched exponential function defined as

SC(ν) = Ae−(|ν|/υ)
λ

+ η (3.20)

where υ and A are scaling factors, λ is the stretching exponent, and η is the noise

floor; it should also be noted that SH(ν) = SC(ν) since there is no dependence on

τ or f . The method of least squares is used to curve-fit the stretched exponential

model to the measured data.

The Doppler power spectrum can be viewed as the PDF of the R.V. C from which

the Doppler frequencies νp are drawn. The Doppler frequencies can be randomly

generated from the Doppler power spectrum via the method of inverse transform

sampling [7]. The inverse transform sampling method states that if Y has a uniform

distribution in [0, 1], and if X has a CDF FX , then the CDF of the R.V. F−1X (Y )
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is FX . In other words, this method states that to generate values of the R.V. of

ν, which are distributed according to the CDF of the Doppler power spectrum, a

uniformly-distributed random number u in [0, 1] is generated first, and then the value

ν is obtained from u = FC(ν). Therefore the random value ν can now be obtained

from the CDF FC. The CDF is obtained by integrating the stretched exponential

model, i.e. FC(ν) =
∫ ν
−∞ SC(µ)dµ.

As an example, consider the special case when λ = 1, i.e. the case when the

Doppler power spectrum is an exponential distribution. Since the Doppler power

spectrum SC(ν) is thought of as a PDF, the scaling factor A is chosen such that∫∞
−∞ SC(ν)dν = 1. A straightforward calculation shows that A = 1

2υ
. Thus for λ = 1,

and ignoring noise floor η,

SC(ν) =
1

2υ
e−|ν|/υ (3.21)

The CDF FC(ν) can now be calculated as follows:

FC(ν) =
1

2υ

∫ ν

−∞
e−|µ|/υdµ

=


1
2υ

∫ ν
−∞ e

µ/υdµ, if ν < 0,

1
2υ

∫ 0

−∞ e
µ/υdµ+ 1

2υ

∫ ν
0
e−µ/υdµ, if ν > 0

=


1
2
eν/υ, if ν < 0,

1− 1
2
e−ν/υ, if ν > 0

Therefore,

FC(ν) =
1

2
+

sgn(ν)

2
(1− e−|ν|/υ) (3.22)

Setting u = FC(ν) and inverting the function yields

ν =

υ ln 2u, if 0 < u ≤ 1
2
,

−υ ln (2− 2u), if 1
2
< u < 1

(3.23)

The bandpass channel taps can now be generated using the SOS model. The

SOS channel representation in (3.18) has been modelled for use in Simulink, and

then subsequently used in the OFDM system simulations discussed in chapter 5. The

Simulink model is shown in Figure 3.2 below for a 2-tap channel, which can represent
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the impulse response of a standard “two-impulse” model for multipath channels.

The “MATLAB Function” and “MATLAB Function1” blocks shown model the time-

varying gain cp(t) with a fixed programmable τp. Both blocks have the same code;

the appendix includes the MATLAB code, written for an exponential Doppler power

spectrum.

Figure 3.2: The SOS channel simulation model, shown for two taps.

The SOS model can also be constructed for the equivalent channel which includes

filtering. Let the equivalent lowpass impulse response in this case be f(t, τ). If the

impulse response of the transmit filter is given by g(t), then the impulse response of

the receive filter should be given by g∗(−t). Therefore, f(t, τ) is related to c(t, τ) by

f(t, τ) = g(t) ∗ c(t, τ) ∗ g∗(−t) = c(t, τ) ∗ q(t) (3.24)

where q(t) = g(t) ∗ g∗(−t). In large-scale analysis, where micropath effects are negli-

gible, the SOS model for c(t, τ) is given by (3.16). It follows that the SOS model for

f(t, τ) is given by [8]

f(t, τ) =
1√
P

P∑
p=1

ej(2πνpt+θp)q[τ − τp(t)] (3.25)
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Recall that the output of the interpolation filter g(t) is given by (2.6):

x(t) =
N−1∑
n=0

x[n]g(t− nTs)

The output of the receive filter is therefore

y(t) =
N−1∑
n=0

x[n]f(t, t− nTs) + z(t) (3.26)

where z(t) = ñ(t) ∗ g∗(−t), and

f(t, t− nTs) =
1√
P

P∑
p=1

ej(2πνpt+θp)q[t− nTs − τp(t)]

Now, by sampling at t→ mTs, the equivalent channel is discretized to f(mTs,mTs−
nTs), and the discrete-time filter output after CP removal is then given by

y[m] =
N−1∑
n=0

x[n]f [m,m− n] + z[m] =
L−1∑
`=0

x[m− `]f [m, `] + z[m] (3.27)

where ` = m− n, which represents the delay dispersion (spread) in each path of the

channel, and ` ∈ [0, L − 1]. This expression shows that f [m, `] can be thought of

as the time-varying tap of an FIR filter; in other words the channel is an FIR filter

in discrete time, or equivalently a tapped delay line. Figure 3.3 below provides an

illustration of this representation [7].

The SOS model of f [m, `], assuming no time variations in τp, is given by

f [m, `] =
1√
P

P∑
p=1

ej(2πνpmTs+θp)q(`Ts − τp) (3.28)

In small-scale analysis, the SOS model becomes

f(t, τ) =
1√
SpP

P∑
p=1

Sp∑
ι=1

ej(2πνp,ιt+θp,ι)q[τ − τp(t)] (3.29)

and its discrete-time representation is analogous to (3.28). Just like the model given
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for the taps cp(t), θp is uniformly distributed in [−π, π) or [0, 2π) and νp is distributed

according to SC(ν). However, this model is also a function of path delay; thus the

multipath intensity profile is necessary in order to generate the values of τp.

. . . . .

. . . . .

xn

fm,0 fm,1 fm,2 fm,L−1
zm

ym

Ts Ts Ts

Figure 3.3: Tapped delay line model of f(mTs, `Ts) = f [m, `].

Using properties of autocorrelation functions, the expression for the multipath

intensity profile Rc(τ) can be derived:

Rc(τ) = E[c(t, τ)c∗(t, τ)]

= E

[∑
p

cp(t)δ[τ − τp(t)]
∑
q

c∗q(t)δ[τ − τq(t)]

]

=


∑

p E [|cp(t)|2] δ[τ − τp(t)] if p = q

0 if p 6= q

Therefore,

Rc(τ) =
∑
p

E
[
|cp(t)|2

]
δ[τ − τp(t)] (3.30)

Thus the average power of each path is E [|cp(t)|2] or E [|hp(t)|2] (since Rc(τ) = Rh(τ)).

Unfortunately, unlike the Doppler power spectrum above, and unlike channels such

as radio channels where the multipath intensity profile is modelled by an exponential

function, the multipath intensity profile in UWA channels does not have a convenient

model to generate the values of τp (using the impulse transform sampling method).



Chapter 4

OFDM on UWA Channels

4.1 UWA Channels and Doppler Effects

This section explores the Doppler effects present in the UWA channel. The effects of

the Doppler scaling factor and Doppler shift on the OFDM signal will be shown in

detail, and will be investigated for the lowpass impulse response c(t, τ) and then the

equivalent lowpass impulse response f(t, τ).

From physics principles, the change in frequency due to moving platforms, or

the Doppler shift, is given by ∆f = f0(∆vp/c) where f0 is the frequency of the

transmitted sound wave and ∆vp is the speed difference between the time of reception

and transmission; since the gravity waves (waves generated in fluids or on an air-fluid

interface due to the change in medium density along the propagation path) in water

can also introduce relativistic effects, the speed difference generally varies with the

path that the signal follows in the underwater environment. The factor ∆vp/c is

referred to as the Doppler scaling factor, and is commonly denoted by ap.

Let the UWA channel be given by the time-variant channel model in (2.17). Since

the UWA channel is analyzed for OFDM transmission, the channel tap hp(t), which

was defined for a generic transmission scheme, is now replaced by hp,i(t), where i rep-

resents the ith OFDM block. Similarly, τp(t) is replaced by τp,i(t). The ith baseband

OFDM block received is denoted by yi(t), which means that y(t) =
∑

i yi(t).

Assume that the amplitude is constant within one OFDM block, i.e. hp,i(t) = hp,i.

Also assume that the delay variation of each path τp,i(t) can be approximated by the

first-order linear relation τp,i(t) ≈ τp,i − ap,it, where ap,i is the Doppler scaling factor

of the pth path. These assumptions are appropriate as long as T < Tcoh, which is on

the order of few hundred ms at most [10, p. 12].

Also assume, and without substantial loss of generality, that the Doppler shifts

are equal for all paths p, i.e., there exists one common Doppler scaling factor ai for

the ith OFDM block. This assumption is valid when the Doppler distortion due to

28
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platform motion (transmitter and receiver) is dominant, with small variation in the

angles of arrival for the paths [11]. At the transmitter each OFDM block occupies an

interval t ∈ [iT ′, (i+ 1)T ′] where T ′ is defined as T + Tcp.

Now the impulse response of the UWA channel for the ith OFDM block can be

written as

hi(t, τ) =
P∑
p=1

hp,iδ[τ − (τp,i − ait)] (4.1)

The frequency response of the channel is then given by

Hi(t, f) = ej2πaift
P∑
p=1

hp,ie
−j2πfτp,i = ej2πaiftHi(f) (4.2)

which shows time- and frequency-dependent phase shifts for the different OFDM

blocks. According to (2.19), the lowpass equivatent of the channel is now given by

ci(t, τ) = ej2πaifct
P∑
p=1

hp,ie
−j2πfcτp,iδ[τ − (τp,i − ait)] (4.3)

where aifc is the Doppler shift present in the channel. Hence the frequency response

is

Ci(t, f) = ej2πai(f+fc)t
P∑
p=1

hp,ie
−j2π(f+fc)τp,i = ej2πai(f+fc)tCi(f) (4.4)

but it can also be given in other forms like

Ci(t, f) = Hi(t, f + fc) = ej2πai(f+fc)tHi(f + fc) (4.5)

The passband signal received is given by

ri(t) = si(t) ∗ hi(t, τ) + ni(t) (4.6)

which yields

ri(t) =
P∑
p=1

hp,isi[(1 + ai)t− τp,i] + ni(t) (4.7)

Thus each OFDM block at the receiver occupies an interval t ∈ [
iT ′+τp,i
1+ai

,
(i+1)T ′+τp,i

1+ai
].
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It should be noted that since |ai| < 1, 1 + ai > 0. Similarly, the baseband signal

received can be written as

yi(t) = ej2πaifct
P∑
p=1

hp,ie
−j2πfcτp,ixi[(1 + ai)t− τp,i] + ñi(t) (4.8)

where t ∈ [
iT ′+τp,i
1+ai

,
(i+1)T ′+τp,i

1+ai
]. The Fourier transform of yi(t) (given in (4.8)) is given

by

Yi(f) =
1

1 + ai
Xi

(
f − aifc
1 + ai

) P∑
p=1

hp,ie
−j2π

(
fc+

f
1+ai

)
τp,i + Ñi(f) (4.9)

Therefore,

Yi(f) =
1

1 + ai
Ci

(
f

1 + ai

)
Xi

(
f − aifc
1 + ai

)
(4.10)

Substituting (2.4) into (4.8) gives a more useful representation of yi(t):

yi(t) =
1√
N
ej2πaifct

N−1∑
k=0

X[k]ej2πfk(1+ai)t
P∑
p=1

hp,ie
−j2π(fc+fk)τp,i + ñi(t)

This can be simplified to

yi(t) =
1√
N
ej2πaifct

N−1∑
k=0

C(fk)X[k]ej2πfk(1+ai)t + ñi(t) (4.11)

A similar expression can be found in [12]. This expression is very useful for the next

two sections.

From the analysis so far two effects have persisted, which are more clearly seen

in equations (4.8) and (4.11). First, the signal duration from each path is scaled to

T/(1 + ai) (including the CP, it is scaled by (T + Tcp)/(1 + ai)). Typically, ai is on

the order of 10−3 or 10−2 for UWA channels, and so the stretching/compression of

the block duration is small. However in the frequency domain, since a large number

of subcarriers is usually chosen, the ICI introduced is in most cases substantial, and

needs to be compensated for (section 4.3).

Second, the frequency components in the signals experience a subcarrier-dependent

Doppler shift of ai(fc + fk), which effectively causes the bandwidth of each subcar-

rier signal (or the subchannel bandwidth) to increase; consequently the narrowband
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assumption breaks down, because now the channel’s frequency response is no longer

flat in the domain of the transmitted signal’s bandwidth. Therefore, the problem at

this stage goes back to being a wideband problem. Doppler compensation in section

4.3 resolves these issues.

It is also useful to express the received OFDM block in a matrix form that models

yi(t) completely and more concisely than the approach above. One way to do this is

the following. Substituting (2.6) and convolving with g∗(−t) yields

yi(t) = ej2πaifct
N−1∑
n=0

xi[n]
P∑
p=1

hp,ie
−j2πfcτp,iq[(1 + ai)t− nTs − τp,i] + zi(t) (4.12)

Under no Doppler compensation, yi(t) is sampled at t → mTs at the receiver This

yields:

yi[m] = ej2πaifcmTs
N−1∑
n=0

xi[n]
P∑
p=1

hp,ie
−j2πfcτp,iq[(m− n)Ts − τp,m,i] + zi[m] (4.13)

where τp,m,i = τp,i−aimTs. Using the equivalent channel f(t, τ) (see section 3.2), this

expression is equivalent to

yi[m] = ej2πaifcmTs
N−1∑
n=0

xi[n]f [m,m− n] + zi[m] (4.14)

Substituting (2.4) into (4.14) will result in the expression

yi[m] =
1√
N
V m
i

L−1∑
`=0

f [m, `]
N−1∑
k=0

Xi[k]W−kn
N + zi[m] (4.15)

where ` = m− n, Vi = ej2πaifcTs and WN = e−j2π/N .

In vector form this can be written as [7, p. 34]

yi = ViCfxi = ViCfF
−1Xi (4.16)

where F−1 = 1√
N

F∗ which is the N × N unitary IDFT matrix with components

1√
N

{
W−kn
N

}
, Cf is the equivalent channel matrix which is circulant due to the CP

(defined in (2.10)) with matrix elements {fm,`}, xi = [xi[0] · · · xi[N − 1]]T , Xi =
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[Xi[0] · · ·Xi[N − 1]]T , and Vi = diag
(
1, Vi, · · · , V N−1

i

)
.

Now the DFT of (4.16) can be calculated:

Yi = FViCfF
−1Xi

= FViF
−1FCfF

−1Xi

F is the N ×N unitary DFT matrix with components 1√
N

{
W kn
N

}
. Defining C

(f)
f =

FCfF
−1, the DFT is therefore given by

Yi = FViF
−1C

(f)
f Xi (4.17)

where Yi = [y0 · · · yi[N − 1]].

The frequency-selective fading component is modelled by the diagonal matrix C
(f)
f ,

while the fast fading, or time-selective component (which is the ICI components due

to Doppler shift) is modelled by the matrix FViF
−1, which is actually a circulant

matrix. Therefore ICI interferes with the ith received OFDM block in a circulant

manner (modulo N). This expression provides a full insight on how UWA channels

affect OFDM signals.

4.2 ICI Analysis and Parametrization

There are many ways to analyze inter-carrier interference, or ICI. One way is the

following. As was seen in the previous section, the received baseband signal can be

represented by many forms. Let yi(t) be given by (4.11):

yi(t) =
1√
N
ej2πaifct

N−1∑
k=0

C(fk)X[k]ej2πfk(1+ai)t + ñi(t)

where t ∈
[
iT ′+τp,i
1+ai

,
(i+1)T ′+τp,i

1+ai

]
and, as before, fk = k/T = k∆f . As explained in the

previous section, the OFDM block duration is scaled by 1/(1 + ai), and the Doppler

scaling factor is assumed to be constant within the block, but can vary from one block

to another.
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The Fourier transform at the k′th subcarrier Yi(fk′) of yi(t) after receive filtering,

which corresponds to the demodulator output in the k′th subchannel, is given by

Yi(fk′) =

∫ ∞
−∞

yi(t)e
−j2πfk′ tdt+ Zi(f) =

∫ (i+1)T ′+τp,i
1+ai

iT ′+τp,i
1+ai

yi(t)e
−j2πfk′ tdt+ Zi(fk′) (4.18)

where 0 ≤ k′ ≤ N − 1. After rearranging, simplifying and CP removal, Yi(fk′) is

found to be

Yi(fk′) =
1√
N

1

1 + ai
Ci

(
fk′

1 + ai

)N−1∑
k=0

Xi[k]ρk′,k,i + Zi(fk′) (4.19)

where

ρk′,k,i = ejπαk′,k,i(2i+1)sinc(αk′,k,i) (4.20)

αk′,k,i =
k − k′ + ai(fc + fk)T

1 + ai
(4.21)

A similar expression can be found in [12].

Expression (4.19) is the frequency response of the received signal with interference

taken into consideration. Observing this expression, the frequency response can be

reinterpreted in the form

Yi(fk′) =
N−1∑
k=0

Yk,i(fk′) + Zi(fk′) (4.22)

This shows that the received signal is the sum of the interference signals from the

different subcarriers and the received signal at the correct subcarrier. Based on this

interpretation, Yk,i(fk′) is given by

Yk,i(fk′) =
1√
N

1

1 + ai
Ci

(
fk′

1 + ai

)
Xi[k]ρk′,k,i (4.23)
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The ICI components can be separated from the desired subcarrier k′ in (4.19):

Yi(fk′) =
1√
N

1

1 + ai

[
Ci

(
fk′

1 + ai

)
X[k′]ρk′,k′,i +

∑
k 6=k′

Yk,i(fk′)

]
+ Zi(fk′) (4.24)

For the special case ai � 1, Yk,i(fk′) simplifies to

Yi,k(fk′) ≈
1√
N
Ci(fk′)Xi[k]ρk′,k,i (4.25)

where

αk′,k,i ≈ k − k′ + ai(fc + fk)T (4.26)

Since ∆f/(fc + fk) ≤ 1 it follows that the above approximations are also valid when

ai(fc + fk)� ∆f , in which case ρk′,k′,i ≈ 1.

Based on ai(fc + fk)� ∆f (or ai � 1) the expression for Yi(fk′) can therefore be

written as

Yi(fk′) ≈
1√
N
Ci(fk′)Xi[k

′] +
T√
N

∑
k 6=k′

Yk,i(fk′) + Zi(fk′)

≈ 1√
N
Ci(fk′)Xi[k

′] + Z ′i(fk′) (4.27)

where Z ′i(fk′) = 1√
N

∑
k 6=k′ Yk,i(fk′) + Zi(fk′) includes both the noise and the in-

terference components. Since the condition ai(fc + fk) � ∆f also implies that

|ρk′,k,i| � |ρk′,k′,i| (which can be seen from the above expressions for ρk′,k,i), the

interference term
∑

k 6=k′ Yk,i(fk′) would be very small and thus Z ′i(fk′) ≈ Zi(fk′).

Therefore the ICI in the channel under the assumption of a small Doppler shift is

approximately just additional noise [11].

4.3 Doppler Compensation

After synchronization and Doppler estimation, the receiver performs Doppler com-

pensation. Let the estimated Doppler scaling factor be â. The main Doppler effect is

the one responsible for scaling the OFDM signal duration, which manifests itself in

the factor 1+ai. The main Doppler effect can be compensated for via resampling [10,

p. 74].
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From section 4.1, one important expression for yi(t) (after receive filtering) is given

by

yi(t) =
1√
N
ej2πaifct

N−1∑
k=0

C(fk)X[k]ej2πfk(1+ai)t + zi(t)

where t ∈
[
iT ′+τp,i
1+ai

,
(i+1)T ′+τp,i

1+ai

]
. After the Doppler scale estimation, the value of

âi is used to perform the resampling operation. The resampling operation should

result in the conversion ri(t)→ ri

(
t

1+âi

)
. Let y′i(t) be the baseband equivalent after

resampling. Now, after passband-to-baseband downconversion, y′i(t) will be given by

y′i(t) =
1√
N
ej2πε̂it

N−1∑
k=0

C(fk)X[k]e
j2πfk

1+ai
1+âi

t
+ zi

(
t

1 + âi

)
e
−j2π âi

1+âi
fct (4.28)

where ε̂i = ai−âi
1+âi

fc, which is the carrier frequency offset (CFO) due to Doppler shift.

A similar expression can be found in [12]. Due to resampling, the domain of y′i(t) is

t ∈
[
1+âi
1+ai

(iT ′ + τp,i),
1+âi
1+ai

((i+ 1)T ′ + τp,i)
]
.

The following relationship should be observed in (4.28):

y′i(t) = yi

(
t

1 + ai

)
e
−j2π âi

1+âi
fct (4.29)

It should also be noted that the scaling of the subcarriers has been compensated for

at this stage, which reduces (and with enough estimator iterations eliminates) the

subcarrier-dependent Doppler shift. Therefore at this stage the narrowband assump-

tion will hold again.

Now the receiver compensates for the residual Doppler shift. The residual Doppler

shift is approximately due to the CFO term ej2πε̂it , and can be compensated for by

multiplying y′i(t) by e−j2πε̂it [12, p. 74]. This yields

ui(t) =
1√
N

N−1∑
k=0

C(fk)X[k]e
j2πfk

1+ai
1+âi

t
+ zi

(
t

1 + âi

)
e
−j2π

(
ε̂i+

âi
1+âi

fc
)
t

(4.30)

where ui(t) = y′i(t)e
−j2πε̂it, which is the compensated received signal. Now the ICI

effects are reduced. With enough iterations of the Doppler scale estimator, the ICI

effects will be further minimized, and the received signal will be recovered with no
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ICI. The Fourier transform ui(t) at the k′th subcarrier is given by

Ui(fk′) = (1 + âi)Yi

[
(1 + âi)

(
fk′ + ε̂i +

âi
1 + âi

fc

)]
(4.31)

Doppler compensation can be digitally implemented, which is more practical for

OFDM design and implementation. One method is via interpolation and FFT [10,

p. 75]. Let g′(t) = g∗(−t), which is the receive filter. By the sampling theorem the

expression for y′i(t) can then be given by

y′i(t) =
N−1∑
n=0

y[n]e−j2πâifcnTsg′
(

t

1 + âi
− nTs

)
(4.32)

Sampling at t→ mTs yields the discrete-time sequence

y′i[m] =
N−1∑
n=0

y[n]e−j2πâifcnTsg′(mT ′s − nTs) (4.33)

where T ′s = Ts/(1 + âi) as expected, which is the resampling operation. Thus at the

receiver, the signal needs to be sampled at the sampling rate f ′s = 1/T ′s via sample-

rate conversion for the main Doppler scale compensation. Now the residual Doppler

shift can be compensated:

ui[m] = y′i[m]e−j2πε̂imTs (4.34)

The received signal is now fully recovered, free of any ICI components. The frequency

samples Ui[k
′] can now be obtained via an N -point FFT.

A more complete representation for ui[m] that is relevant in this method can be

obtained by using (4.12) instead, which includes the matched filter:

ui[m] =
N−1∑
n=0

xi[n]
P∑
p=1

hp,ie
−j2πfcτp,iq(mT ′s − nTs − τp,m,i) + zi(mT

′
s)e
−j2πaimT ′

s (4.35)

where τp,m,i = τp,i − aimT ′s. Synchronization at the receiver should reduce τp,m,i.
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Another digital implementation method for Doppler compensation is via the chirp

z-transform (CZT) [10, p. 77]. This method performs the compensation in the

frequency domain rather than the two-step approach (main Doppler compensation

followed by residual Doppler compensation) taken so far in the time domain. The

method works as follows. The Fourier transform of (4.32) is given by

Ui(fk) = Ts(1 + âi)
N−1∑
n=0

y[n]e−j2πâifcnTse−j2π(1+âi)ε̂inTse−j2π(1+âi)fknTs

Recalling that fk = k/T , the above expression can be rewritten in the simplified form

Ui[k] =
T√
N

(1 + âi)
N−1∑
n=0

yi[n]AniW
(1+âi)kn
N

where

WN = e−j2π/N (4.36)

Ai = e−j2π[(1+âi)ε̂i+âifc]Ts (4.37)

where Ui[k] = T√
N
Ui(fk) by digital signal processing properties. Thus themth received

sample has a DFT Ui[k
′].

The CZT can be evaluated via an N -point FFT. Unlike interpolation and FFT,

the CZT method computes the DFT directly from the discrete-time sequence y[n]

rather than relying on sample-rate conversion prior to Fourier transformation. This

makes the CZT method more efficient and more accurate, since errors can occur in the

sample-rate conversion process (especially for large values of ai) which could distort

the received signal.
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OFDM Simulations and Results

This chapter presents simulations of an OFDM system with differential modulation.

The simulation models apply the ideas discussed so far, and tests the validity of

the various solutions proposed for UWA transmission, namely, OFDM transmission

to deal with frequency-selectivity, and the SOS model to randomly generate UWA

channels. Doppler compensation is not present in the simulations due to the absence

of Doppler estimation in the research; however Doppler estimation will be part of the

future work in this research.

The following stages were chronologically followed to arrive at two main models,

“OFDMfull” and “OFDM SOS”:

1. A standard uncoded OFDM transmission simulation model was designed first,

dubbed “CarrierTest”

2. A turbo coding simulation model was then desgined, dubbed “DQSKTurbo”

[7].

3. “CarrierTest” and “DQSKTurbo” were combined to form the coded OFDM

simulation model, dubbed “OFDMfull”

4. The SOS simulation model (Figure 3.2), dubbed “SOS,” was designed. The

code of the SOS model is given in the appendix

5. “SOS” and “OFDMfull” were combined to form the coded OFDM model capa-

ble of simulating UWA channels with Doppler effects, dubbed “OFDM SOS”

The OFDM system model “CarrierTest” is based on the formulation outlined in

section 2.1. The “CarrierTest” model is shown in Figure 5.1 below. The transmit-

ter creates a message of symbols to be transmitted and prepares it via modulation,

upsampling, filtering and upconversion. The receiver downconverts, filters, downsam-

ples and demodulates the received signal. The figure shows the AWGN block as the

38



39

communication channel model through which the signal is sent. To model multipath

channels, an FIR filter block is inserted before the AWGN block. The Error Rate Cal-

culation block is used to compare the transmitted message with the received message,

and calculates the BER.

LO
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FFT

Append CP Product

Product

Conj
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Raised Cosine

BER Counter

Error Rate
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Figure 5.1: “CarrierTest” Simulink model, run with Eb/N0 = 9 dB.

BER curves from simulations are shown in Figure 5.2. The blue curve is the BER

from a standard AWGN channel, while the red curve is the BER of a “two-impulse”

model that represents a multipath channel. As noted above, an FIR filter models the

multipath channel for these simulations.

The multipath channel in the figure has an impulse at the discrete time n = 0

carrying 75% of the energy, followed by a second impulse carrying the remaining 25%

of the energy at n = 1. A low number of carriers was sufficient to simulate this

channel, in this case 128. A higher number of carriers would not have improved the

performance significantly, since the channel is flat.

Figure 5.2 shows that uncoded OFDM has poor performance. A powerful FEC

(Forward Error Correction) code is required, like turbo or LDPC, in order to rectify

this and reduce the BER degradation as much as possible. Figure 5.3 shows a rate-

1/2 turbo code designed by another member of the research group, and is dubbed
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Figure 5.2: “CarrierTest” BER curves for the AWGN channel and three “two-
impulse” models.

“DQSKTurbo.” This model will be explained in detail to show how it improves “Car-

rierTest.” It is similar in structure to “CarrierTest,” but the equivalent channel is

modelled semi-analytically by the “Channel Gain” block.

The model uses soft-decision rather than hard-decision demodulation. Soft deci-

sion is based on the amplitude of the received symbol in the decision-making process,

which takes into account noise effects (bits are anywhere between 0 and 1), unlike

hard decision which is only based on the quadrant of the symbol in the constellation

diagram (bits are 0’s and 1’s). Differential demodulation blocks in Simulink can only

perform hard decision. On the other hand coherent demodulation blocks can perform

hard or soft decisions. Thus the QPSK demodulator block (which uses soft decision)

was used with an input of the form Y [k]Y ∗[k − 1]; this is equivalent to a DQPSK

demodulator with soft-decision demodulation.

The soft-decision demodulator uses approximate LLRs (Log-Likelihood Ratios).

Approximate LLR yields reliable results, while avoiding NaN (Not-a-Number) errors,

which appear at high SNRs if exact LLRs are used. This is because exact LLRs involve
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Figure 5.3: “DQSKTurbo” Simulink model, which contains turbo encoding and de-
coding.

computing exponentials of very large or very small numbers using finite-precision

arithmetic, which ultimately results in high BERs [13]. Thus approximate LLRs

perform better than exact LLRs at high SNRs since they do not use exponentials;

however at low SNRs there is a small difference, which was found to be less than 1%.

The turbo code provided by Simulink is a rate-1/3 code. Also, the turbo in-

terleaving (and deinterleaving) vector provided by Simulink is a linear interleaving

(deinterleaving) vector. The coderate was changed to rate-1/2 to improve the effective

throughput of the system, and a series of puncture and zero insertion Simulink blocks

are used (see Figure 5.3) for this purpose. The linear interleaving vector was changed

to a quadrature permutation polynomial (QPP) vector, which provides a higher BER

performance due to the higher entropy that the QPP interleaver provides as opposed

to a linear interleaver.

The QPP interleaver (and deinterleaver) is an LTE QPP interleaver, and its code

is shown below, where k is the message length and p.indices is the interleaving

vector [14]. The scheme is adaptable to any input sequence of length k=2m in the

range [64:4096]:
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[f1 , f2] = getf1f2(k);

ldx = [0:k-1].’;

p.indices = mod(f1*ldx + f2*ldx.^2, k) + 1;

After the successful testing of “DQSKTurbo,” it was added to “CarrierTest,”

resulting in the coded OFDM simulation model dubbed “OFDMfull.” The model is

shown in Figure 5.5. Both “DQSKTurbo” and “OFDMfull” were tested with various

two-impulse channels to confirm that “OFDMfull” gives nearly the same performance

as that of “DQSKTurbo,” since “DQSKTurbo” gives the ideal results of turbo coding.

The models were tested under three two-impulse models of the form h[n, `] =

0.866δ[n] + 0.5δ[n − `] where ` = 1, 6, 12. Figure 5.4 shows h[n, `] for ` = 1 and

` = 12. The multipath spread can be made more severe with larger values of `, which

effectively worsens the frequency selectivity in the channel.

Figure 5.4: Magnitude response of the channel with a discrete-time multipath spread
of 1 (left) and 12 (right). A higher spread results in more rapid oscillations.
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Figure 5.5: The “OFDMfull” model, shown in detail, which includes rate-1/2 turbo
coding with soft-decision demodulation added to the “CarrierTest” model.
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Figure 5.6: Magnitude of the impulse response of the Ultra Electronics’ water tank
channel. The channel has a multipath spread of about 160 ms.

The model was also tested with Ultra Electronics Maritime Systems Inc.’s tank

channel. The magnitdue of the impulse response of the channel is shown in Figure 5.6

and its magnitude response is shown in Figure 5.7. The impulse response shows a

multipath spread of about 160 ms (the values between 160 and 300 ms are very

small and thus ignored). The channel, just like the received signal, is sampled at

300 Hz. Thus the multipath spread in discrete time is ` = 48. It should be noted

that the channel response is quasi-stationary in this setting (i.e. nearly slow fading),

presenting primarily frequency-selective fading.

Both models were found to have nearly the same performance. Figure 5.8 shows

the BER performance of “DQSKTurbo” and “OFDMfull” under the channels de-

scribed above. It is observed that the tank channel requires a higher SNR to have low

BER as opposed to the other channels. A 10−5 BER for the tank channel is achievd

for SNR=14 dB, as opposed to the channel shown with the worst spread (` = 12)

which required an SNR of about 11 dB.
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Figure 5.7: Magnitude response of the Ultra Electronics’ water tank channel with a
signal bandwidth W = 300 Hz

Yet, as can be seen from the curves, the error control code effectively avoids the

error floor effect. In case of frequency-selective channels, a high number of subcarriers

improves performance, which is why 1024 subcarriers were used in the simulations.

This is because, for a sufficiently high number of subcarriers, most subchannels will

be approximately flat. However, some subchannels would still suffer from fading due

to the “holes” present in the channel. Thus at some point, no matter how large the

number of subcarriers are, or how large the SNR is, the performance will not change.

As a result, this manifests itself as an error floor in the BER performance. These

effects are typical for frequency-selective channels, and one of the reasons why error

control coding is required for reliable communications.

Finally, the sum-of-sinusoids (SOS) model representation of the channel was added

to the simulation environment “OFDMfull” to arrive at another simulation model.

The SOS model, explained in section 3.2, is used to model the time-variant UWA

channel and its associated Doppler distortion. Thus, the OFDM model with the SOS
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Figure 5.8: “DQSKTurbo” and “OFDMfull” BER curves for the channels described
above.

model can be used to obtain results for different multipath channels and doppler

spreads. The OFDM model that includes the SOS model for two paths is shown in

Figure 5.9, and is dubbed “OFDMSOS.” Again, the model yielded the same BER

curves as shown above for the corresponding channels.

All the simulations, tests and results obtained in this section were for a static

frequency-selective channel setting, where the model (2.11) is applicable. Future

work will be directed towards designing Doppler estimators in order to simulate and

test the model under Doppler effects. These doppler effects are particularly relevant

for the analysis and successful design of OFDM models in UWA channels, as discussed

in Chapter 3.
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in the “OFDMFfull” model.



Chapter 6

Conclusion

The OFDM modulation scheme has been proposed to deal with the frequency selec-

tivity of the UWA channel. The UWA channel has been analyzed and investigated

from first principles, and a simplified model of the channel has been proposed, which

relies on the narrowband assumption. That is, with the OFDM transmission scheme,

the duration of the transmitted OFDM block can be made large enough such that

the path’s attenuation factor is approximately constant. In other words, the path’s

impulse response is approximately just an impulse. The narrowband assumption is

found to be valid for a large enough number of OFDM subcarriers in the absence of

Doppler effects.

The UWA channel has been assumed to be WSSUS, which allows the channel to

be characterized with the Doppler spectrum and multipath delay profile, and allows

the use of the SOS model to simulate UWA channels under Doppler effects. The

Doppler spectrum has been modelled with the stretched exponential function. An

SOS simulator has then been proposed that is able to randomly generate time-varying

channel taps and Doppler frequencies based on the exponential model, which is a

special case of the stretched exponential model.

OFDM transmission on UWA channels was then investigated in detail, with special

emphasis on the Doppler effects in the channel. It has been found that the Doppler

effects stretch/compress the signal in time; in the frequency domain, it has been

found that each subcarrier experiences a different Doppler shift, which also results in

shifting/compressing the spectrum. The spectrum has also been found to suffer from

Doppler shift in the carrier frequency. Thus the Doppler effect is so severe that the

narrowband assumption does not hold anymore if the signal is left with no Doppelr

compensation.

48
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A complete and concise model for the received signal has been derived in matrix

form which shows the fast fading effects and frequency-selective effects in the channel.

The fast fading effects appear as ICI components in the expression, and the frequency-

selective effects appear as frequency response components of the equivalent UWA

channel. The ICI has also been parametrized, and it has been found that for small

Doppler scaling factors, ICI components appear as additional noise in the received

signal.

Two digital implementation methods of Doppler compensation have been pre-

sented. The first method is via interpolation and FFT. This method relies on resam-

pling the received signal first, and the residual Doppler shift that remains after the

resampling process is then compensated for. The second method is via the CZT. The

CZT method performs Doppler compensation in the frequency domain and does not

rely on resampling. Thus the method is more efficient and accurate, since resampling

requires sample-rate conversion at the receiver which may introduce sampling errors

that distort the signal. In either case, Doppler compensation eliminates the Doppler

effects in the signal, and the narrowband assumption therefore is valid again.

The OFDM simulators designed have been shown to agree with the theoretical re-

sults. Since the uncoded OFDM simulator has been found to have poor performance

in multipath channels (as expected), the simulator has been upgraded to a coded

OFDM simulator via a rate-1/2 turbo coding simulator with soft-decision demodu-

lation. However, due to the absence of a Doppler estimator, Doppler compensation

has not been performed at the receiver.

Nonetheless the coded OFDM simulator has been found to have a much better

performance under multipath channels, even with a severe multipath spread. The

simulator has also been tested with the impulse response of a real UWA channel, and

it has again provided a good performance (a BER of 10−5 at 14-dB SNR). Finally,

another simulator has been desgined by combining the coded OFDM model with the

SOS model. This gives a full OFDM simulator capable of modelling OFDM signals

on UWA channels with randomly-generated Doppler frequencies.
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Appendix

The ’MATLAB Function’ MATLAB Code

function y = fcn

% #codegen

% uses Tmax : time from 0 to Tmax

% uses Tdelta : time interval

% uses M : number of micro -paths

% creates v : array of M Doppler frequencies

% generated via INVERSE TRANSFORM SAMPLING

% creates phi : array of M phase offsets

% a is the exponent in the stretched exponential

M=1; Tdelta =1/300; Tmax =1000;

a = 1.207 % Exponential parameter from Ultra measurements ,

u=rand(M,1);

% below are the Doppler frequencies for the stretched exponential

% spectrum

if u<=0.5

v = a*log(2*u);

else

v = a*log(2-2*u);

phi = rand(M,1);

time = [0: Tdelta:Tmax];

Ns = Tmax/Tdelta +1;

Samples = sum(exp (2*pi*j*(phi*ones(1,Ns)+v*time ))/ sqrt(size(phi ,1)) ,1);

c_p = Samples ’;

% Use to plot distribution of Doppler frequencies: hist(v,20)
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