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Abstract 

Introduction: The popularity of cognitive training has increased in recent years. 

Accumulating evidence shows that training can sometimes improve trained and non-

trained cognitive functions, and these improvements may be related to individual 

differences in initial capacity and performance on the training task. The current study 

assessed the effectiveness of a custom-designed n-back task (the N-IGMA) versus an 

active control task (Blockmaster) at improving various forms of working memory 

capacity, attention, and fluid intelligence. Three measures of working memory capacity 

were considered: verbal, visuospatial and observed action. Methods: Outcome measures 

were assessed pre- and post-training. Nineteen healthy young adults (19-30 years of age) 

trained at-home for 30 minutes per day, five days a week for three weeks with either the 

N-IGMA (n=9) or Blockmaster n=10) at-home games. Results: Pre-post changes were 

observed for some outcome measures and these were equal for the N-IGMA and active 

control group. Outcome improvements could be due to simple test/re-test benefits or 

alternatively the N-IGMA and Blockmaster tasks may produce equivalent training 

effects. Improvements in the training tasks did not correlate with the changes in the 

outcome measures, suggesting improvements in the outcome measures might not be 

attributable to transfer of learning. For verbal working memory only, participants with 

higher (versus lower) initial fluid intelligence demonstrated larger improvements on the 

outcome measures suggesting that in future research training tasks might need to be 

tailored to the individual participant. Pre-assessment but not change scores were related 

for observed action and visuospatial working memory, consistent with some overlap 

between content domains. Conclusion: Despite specifically targeting working memory, 

the N-IGMA was not better than a visuospatial control game at improving a variety of 

cognitive outcome measures in this small sample. Results suggest that the individual’s 

initial cognitive capacity might need to be considered in future training studies. Caution 

should be used in extrapolating the results of this study to other populations of interest 

(e.g., older adults or individuals with cognitive deficits) since the present investigation 

included relatively high functioning individuals.  
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Chapter 1: Introduction 

 Cognitive functions reflect our ability to learn, solve problems, and direct our 

attention to important information. Declines in cognitive function are common in older 

adults and individuals with acquired brain damage or disease such as stroke and 

Parkinson’s disease (Anguera et al., 2013; Westerberg, 2007). Cognitive declines are 

associated with a reduced capacity to care for oneself independently, reduced 

rehabilitation efficacy, and reduced capacity to carry out activities of daily life 

(Westerberg, 2007; Klingberg, 2010). Growing evidence suggests that computer games 

can be used to train cognitive functions and lead to improved working memory, 

attentional processes, processing speed and multi-tasking abilities in older adults as well 

as in stroke patients (Anguera et al., 2013; Nouchi, et al., 2012; Westerberg, 2007).  

 Specific cognitive functions such as short-term and long-term memory can be 

trained using strategies that individuals can utilize when they are required to remember 

information; these may include mnemonics, mental imagery, and rehearsal. Such 

strategies are commonly taught to school children, individuals with learning disabilities, 

and older adults experiencing declining memory capacities and have been shown to 

improve working memory and long-term memory (Dehn, 2008; Bailey, Dunlosky & 

Hertzog, 2014).  However these strategies do not lead to improvements in other tasks that 

are not explicitly practiced or trained (Dehn, 2008; Bailey, Dunlosky & Hertzog, 2014); 

in other words, there is little evidence of transfer of learning. Transfer of learning refers 

to the benefits realized in an untrained task as a function of another trained task. Within 

the field of cognitive training there is considerable controversy as to whether or not 

significant transfer of learning effects are possible.  
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A seminal study by Green and Bavelier (2003) had a significant impact on 

cognitive training and the development of computer and video cognitive training games. 

These authors reported that individuals who frequently play action video games (AVGs) 

with extensive graphics and fast-paced interaction (e.g., Grand Theft Auto, Halo, Call of 

Duty) show superior performance in many aspects of visual attention on other, untrained 

tasks of attention, suggesting the presence of transfer of learning effects. AVG players 

demonstrated increased attentional capacity, enhanced spatial attention to untrained 

locations, and greater task-switching abilities compared to non-AVG players.  

  To establish a causal connection between AVG playing time and attention 

capacity, Green and Bavelier (2003) took a group of non-action video game (NAVG) 

players and had them play either a first-person shooter AVG (Medal of Honour) or Tetris 

for 1 hour a day for 10 days. Tetris was used as a point of comparison because it requires 

interaction with a computer game, and thus activates visuomotor coordination as well as 

engaging visual attention. However, it differs from AVGs in the extent to which a variety 

of visual attention skills are engaged, and it does not involve a complex, dynamically 

updated environment that taxes spatial processing. Green and Bavelier found that the 

NAVG players who played Medal of Honour (in comparison to those who played Tetris) 

demonstrated improved performance on untrained visual attention tasks, and in locations 

within their spatial distribution not explicitly trained. The improvements seen in the 

NAVG players here established two important points: the first was that training-induced 

transfer of learning effects can occur, and the second was that although action video 

games might seem frivolous, playing these games results in transfer of learning effects to 

many components of visual attention that might prove useful in other contexts.  
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The transfer of learning effects seen by Green & Bavelier are speculated to occur 

because AVGs require players to simultaneously load multiple aspects of visual attention 

in order to complete several concurrent tasks such as scanning for enemies and allies, 

avoiding injury, and searching for health and ammunition markers (Green and Bavelier, 

2003). AVGs also have high graphic-rich virtual environments, which require more 

attentional skills to filter relevant and irrelevant features, which are not seen in games 

such as Tetris. Taking from these AVG findings, the optimal goal in developing cognitive 

training tools is to develop programs which load multiple cognitive processes to 

effectively facilitate transfer of learning effects.   

Currently there is a large range of cognitive training games available to the public. 

Many of these games market ‘brain training’ as a way to exercise your brain, improve 

processing speed, memory, and attention. A few examples of brain training games 

available to the public (determined by a simple Google search for “brain training”) 

include Lumosity (http://www.lumosity.com), Fit Brains by Rosetta Stone 

(http://www.fitbrains.com/) and Dynamic Brain (http://www.dynamicbrain.ca/). 

However, even with the prevalence of cognitive training games, questions remain about 

their capacity to improve general cognitive functions and ultimately lead to transfer of 

learning effects in untrained tasks.  

In a noteworthy study by Owen et al., (2010) 11,430 adults between the ages of 

18-60 completed an online cognitive training study.  The study included pre- and post-

training outcome measurements of reasoning, verbal and spatial working memory and 

paired-associates learning, tasks that were not explicitly part of the training game. There 

were 2 experimental groups. The first group played games that focused on reasoning, 

http://www.lumosity.com/
http://www.dynamicbrain.ca/
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planning, and problem-solving abilities. The second group played games that targeted 

short-term memory, attention, visuospatial processing and mathematics, A third group 

was a control group that simply answered questions but did not take part in any training. 

Participants were asked to practice for a minimum of 10 minutes a day 3 times per week 

for a 6 week period. 

Owens et al. found that all 3 groups improved performance on the given tasks but 

no gains were seen in the untrained tasks. While the two experimental groups improved 

on the pre- to post- outcome measurements, these improvements were no better than 

those seen in the control group, which suggested that improvements might simply be due 

to the repetition of the outcome measures rather than legitimate transfer of learning 

effects. This study had several flaws. All age ranges were analyzed together, potentially 

inflating error variance due to the cognitive declines associated with increasing age, and 

furthermore participants were included so long as they completed a minimum of two 

training sessions over the course of the 6 weeks, which is only an 11% completion rate. 

Nevertheless, this monumental study calls into question the assertion that cognitive 

training is effective and that training can transfer to other tasks.  

A recent study by Clouter (2013) investigated a cognitive training tool known as 

Brain Workshop (http://brainworkshop.sourceforge.net/), which is specifically designed 

to target working memory. The Brain Workshop utilizes an n-back working memory task, 

which requires participants to continually update information they are holding in mind 

and discard information that is no longer relevant. The task requires participants to 

monitor a stream of information and to detect items that match at varying levels of 

separation (the ‘n-back’ level).  Participants generally start at an N=1 level (i.e., detecting 
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matches for items that occur immediately after each other) and adaptively progress to 

more difficult levels as their mastery of the task increases.  

Clouter (2013) had 2 groups; one was an experimental group who progressed 

adaptively through Brain Workshop whereas the active control group stayed at a 1-back 

level for the duration of the study. Transfer of learning effects were determined by 

comparing pre- and post-training measurements of fluid intelligence (measured by 

Cattell’s Culture Fair Intelligence [CFIT] test which contains 4 subtests), reasoning, 

attention (measured by the Stroop task), and visuospatial and verbal working memory 

(measured by the symmetry span and operation span task, respectively). Participants in 

both groups were required to complete 15, 30 minute training sessions over the course of 

3 weeks.  

Over the course of the 3 week training intervention both groups demonstrated 

task-specific performance increases; the experimental group improved N-levels while the 

control group improved response times. Clouter’s (2013) primary question addressed 

whether the experimental group would show greater gains than the control group on the 

(untrained) outcome measures. It was found that both groups improved on the measures 

of fluid intelligence with the experimental group significantly outperforming the control 

group. Both groups improved visuospatial and verbal working memory. There were small 

but significant improvements in attention however these were similar for the two groups.  

To further investigate the gains in the outcome tasks for the two groups Clouter 

(2013) used the median score of the pre-training CFIT score to subdivide each group into 

high and low scorers. This split permitted an assessment of the potential modulating 
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effect of initial fluid intelligence level. The results indicated an association between 

initial CFIT score and improvement in CFIT scores (higher initial scores predicted higher 

change) in the experimental group but not the active control group. Furthermore, in the 

experimental group individuals with higher initial CFIT scores decreased their response 

times in the Stroop task.  These findings highlighted that initial intelligence may be an 

important variable to consider when investigating transfer of learning effects due to 

cognitive training. It is possible that certain variables such as fluid intelligence may 

predict the success or provide insight to limitations of cognitive training efficacy. 

Clouter (2013) attempted to discern whether individual performance on the 

training task predicted gains in the outcome measures, as would be expected if transfer of 

learning effects were occurring. Somewhat surprisingly, Clouter found that 

improvements over the training sessions, measured by the slope of average daily N-level 

achieved, did not predict improvements in the outcome measures. However, the 

individual difference in initial starting N-level (measured as the N-level intercept) was 

related to changes in the outcome tasks. Specifically, individuals who started at lower N-

levels demonstrated gains in fluid intelligence, verbal working memory, and fewer errors 

in the Stroop task. Individuals with higher starting N-level demonstrated reduced 

response times during the Stroop task, suggesting a change in attentional capabilities. 

Thus, it appears that the connection between training and transfer of learning effects is 

not straightforward, and might be dependent upon the individual’s initial cognitive 

capacity.   

In a study using a 3-week long n-back training task with children (mean = 9 years 

of age), Jaeggi et al., (2011) found that gains in the trained task were positively 
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associated with gains in fluid intelligence. The fluid intelligence scores of the children 

who showed low training gains were no different than a control group who trained on a 

knowledge and vocabulary task. In contrast to Clouter (2013), Jaeggi et al.’s findings 

suggest a clear linkage between training performance and transfer of learning. Given this 

discrepancy, there is a clear need for further research that considers the interaction 

between individual differences in initial cognitive capacity and performance on the 

training task and transfer of learning effects.  

The widely discrepant findings in the cognitive training and transfer literature 

suggest that there are many variables that influence the efficacy of cognitive training 

tools and the potential to see transfer of learning effects. Some of the complexity might 

be due to the uncertain degree of overlap between “distinct” cognitive functions such as 

working memory, attention, and fluid intelligence (Jaeggi et al., 2011) and because 

training tasks may overlap with outcome measures in some studies but not others (Jaeggi 

et al., 2008). For example, working memory is proposed to consist of relatively distinct 

verbal and visuospatial subsystems, but the OSPAN and the symmetry span task 

(SymSpan task), which allegedly measure the two different systems, share 70 -85% of 

their variance (Kane & Engle 2003). The OSPAN requires participants to remember a list 

of words while performing distracting mathematical equations, and the SymSpan requires 

participants to remember the position of a red square in a 4 x 4 matrix, while performing 

distracting judgments of visual symmetry.  

When exploring transfer of learning effects, it is likely important to consider the 

relative similarity of the training and transfer tasks (Nouchi et al. 2012; Karbach and 

Kray, 2009). Far transfer refers to outcome tasks that are not closely related to the trained 
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task (Nouchi et al. 2012; Karbach and Kray, 2009). For example, fluid intelligence likely 

depends upon working memory but also many other cognitive functions, so it is not 

obvious that n-back training, which emphasizes only working memory capacity, should 

transfer to fluid intelligence; this is an example of far transfer. Near transfer refers to 

outcome tasks that share many features with the trained task, such as evaluating the 

effects of n-back training on a different form of working memory capacity.  

Most studies of working memory and transfer of learning effects emphasize 

verbal and visuospatial modalities, consistent with the dominant model of working 

memory (Baddeley, 2007). There is no research, to the author’s knowledge, which 

explores the transfer of learning between verbal or visuospatial working memory training 

and working memory for observed action. Working memory theorists disagree about 

whether memory for action is merely a component of visuospatial working memory (e.g., 

Baddeley, 2007) or perhaps a distinct, third working memory slave system (e.g., Wood, 

2007). Memory for observed action plays a crucial cognitive role in our ability to attend 

to, process, and remember, observed actions, functions imperative to our ability to learn 

movements, influence social interaction and help understand the behaviours of those 

around us.  

Drawing on the concept of near versus far transfer, one might expect to find an 

association between gains in different working memory capacities if systems overlap. In 

other words, one might predict that gains in visuospatial working memory might be more 

closely related to gains in working memory for observed action compared to verbal 

working memory. Alternatively, if all three systems are distinct, there might be no 

correlation between the gains found in each capacity. The substantial role of working 
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memory for observed actions in our ability to interact with the world, and the current void 

of research investigating whether it is susceptible to the transfer of learning effects, 

warrants a further exploration.   

The current study has three goals. The first goal is to further explore the question 

of whether working memory training produces transfer of learning effects for fluid 

intelligence and attention. The second goal is to determine if a custom-designed working 

memory training game, known as the N-IGMA, produces greater transfer of learning 

compared than an active control game (Blockmaster, a modified version of Tetris). 

Finally, the third goal is to explore the properties of working memory for observed action 

in relation to other working memory domains, cognitive training, and transfer of learning 

effects.  

The experimental group in the study trained with a custom-designed n-back 

working memory game called the N-IGMA. The N-IGMA includes verbal and 

visuospatial working memory components and requires participants to update, store, and 

discard information on a continual basis. Furthermore, it is designed to be engaging to the 

participants with pleasing graphics, feedback, and adaptive characteristics intended to 

maintain an optimal level of difficulty. The active control group played a visuospatial 

interactive game called Blockmaster, a customized non-adaptive version of the popular 

block arranging game Tetris. Blockmaster does not appear to require significant working 

memory capacity, as it only requires focus on one object at a time. Nevertheless, 

Blockmaster does require visuospatial processing, attention, and interaction with a 

computer and therefore provides a control for the possible benefits of each of these 

factors on various cognitive outcome measures.  
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Participants completed a 3 week, 15 session intervention, modeled on a similar 

training protocol used by Clouter (2013). Twenty-four healthy young participants 

between the ages of 19 – 30 were recruited for the study. This age group was chosen to 

minimize any systematic decline of cognitive functions that has been shown to occur in 

healthy populations after the age of 20 (Park & Reuter-Lorenz, 2009). Although the N-

IGMA is intended as a tool to address cognitive decline in aging and after neurological 

injury, this initial exploratory study focused on a restricted range of age and cognitive 

status to minimize error variance and thereby maximize statistical power to detect 

training and transfer effects.  

Outcome measures included fluid intelligence, attention, visuospatial and verbal 

working memory capacity, and observed action working memory capacity and these were 

collected before and after the training intervention. The change in the transfer tasks from 

pre- and post-training was compared between the experimental and active control groups. 

To minimize tester bias, those administering the assessments were blinded to the 

participant group assignment.  

It was hypothesized that (1) compared to the active control group, the 

experimental group (N-IGMA group) would exhibit significantly higher improvements 

for all outcome measures including fluid intelligence measured by the CFIT, attentional 

control measured by the Stroop task, and working memory span measured by the 

Operation Span, SymSpan, and MoveSpan task; (2) gains in the outcome measures would 

be positively correlated with gains in the N-IGMA training game over the intervention 

period; (3) gains in the outcome measures would be greater for individuals with higher 

CFIT scores prior to beginning the intervention; (4) correlations between MoveSpan and 
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SymSpan tasks will be higher than correlations between the MoveSpan and OSPAN 

tasks. 
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Chapter 2: Literature Review 

A recent surge in marketing from international companies such as Lumosity 

(www.lumosity.com) has brought brain training to the forefront of attention within the 

general public. The selling feature of many brain training games is the importance of 

cognitive function and how improving ‘brain power or capacity’ will help individuals 

improve their memory, attention, and reasoning in day-to-day life.  

The concept of brain training has more to it than clever advertising and cellphone 

apps. Improving cognitive function, through the development of interactive computer 

tools/games, is a field of interest that may benefit populations that demonstrate lower or 

declining cognitive function such as children with learning disabilities, patients with an 

acquired brain injury (e.g. Stroke patients), and older adults.  

 Cognitive function is a broad term that encompasses functions such as working 

memory, control of attention, and fluid intelligence (Owen, et al., 2010; Baddeley 2000; 

Baddeley 2003). Working memory, which is the focal point of this review, is the ability 

to hold information for a brief period of time and the ability to manipulate this 

information. Working memory has significant and broad implications for our daily lives 

ranging from providing the link between perception, action and long-term memory, too 

influencing our ability to learn and think (Dehn, 2008; Baddeley 2003). Moreover, 

working memory capacity is a reliable predictor of academic achievement, career 

success, mathematic skills, problem solving, reading skills and a general indicator of an 

individual’s ability to care for themselves independently (Dehn, 2008; Jarrold & Towse, 

2006; Klingberg, 2010).  In this review, I will focus on the systems and the neural 

substrates of working memory. I will also review interventions for training working 
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memory and their implications for transfer of learning to other non-trained cognitive 

functions.  

Short-term, Long-term and Working Memory  

The human capacity for memory influences nearly every daily activity. The 

general term memory can be considered the ability of organisms to benefit from a 

previous experience that induces change (Magill, 2010). Throughout the last century, our 

understanding of memory has slowly been evolving. In 1949, Donald Hebb proposed a 

two-component system of memory with short term and long-term memory (Hebb, 1949). 

In this model, the short-term system was a temporary storage system, having temporary 

neural changes, while the long-term system resulted in permanent neural changes and 

storage of information (Baddeley, 2007). Though these components are still relevant to 

our current understanding of memory today, updated models now include an active 

working memory system in contrast to the more static short-term memory system 

proposed by Hebb. In newer models, working memory is considered a fluid system that is 

always changing, and information in this system decays quickly without being rehearsed.  

While working memory includes the concept of information storage (e.g. short 

term memory), it differs from short term memory as it further adds the notion of 

information manipulation and attentional control (Baddeley, 2007; Baddeley, 2003; 

Dehn, 2008; Jarrold & Towse, 2006). The term short term memory (STM) is still used to 

describe simple tasks that temporarily store a limited amount of information used for 

immediate recall (Kane, Conway, Mirua, Colflesh, 2007).The term long-term memory 

(LTM) is also still used, and is understood as a crystalized system in which neural 
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changes are permanent, leading to long-term shortage of knowledge (exploring LTM and 

crystalized systems are beyond the scope of this review; Baddeley 2007).  

A Working Memory Model 

 The present review emphasizes the four-component model proposed by Baddeley 

(2003) as a refinement to the broadly accepted three-component model of Baddeley and 

Hitch (1974). The four components of this system include the phonological loop, the 

visuospatial sketch pad (VSSP), the episodic buffer, and the central executive. The 

principal feature of this complex system is that each component has a limited capacity of 

information it can hold at one time (Zimmer, Munzer, & Umla-Runge, 2010). Below I 

will discuss each of the four components in the working memory model, and discuss a 

current limitation of the whole model as it does not include any specific consideration of 

working memory for observed actions. 

 The phonological loop. The phonological loop, the better understood component 

of the model, is thought to have evolved to support language acquisition in humans 

(Aboitiz, Aboitiz & Garcia, 2010), and it contains two subsystems. The first subsystem is 

responsible for short-term storage of auditory information, such as words and sounds, and 

it decays quickly without conscious rehearsal of the item to be remembered. The second 

subsystem is used for subvocal speech (thought of as our internal speech), and 

articulatory rehearsal. There are several findings that support the existence of the 

phonological loop. These include: limited capacity of verbal short term memory 

(Baddeley, 2003; Repovs & Baddeley, 2006); the phonological similarity effect in which 

dissimilar sounding letters are easy to remember and recall (Larsen, Baddeley, Andrade, 
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2000; Baddeley, 2003); irrelevant sound effect in which irrelevant speech presented 

during or between a to-be-remembered list (words, sounds, letters) affect serial recall 

(Larsen et al., 2000); and lastly articulatory suppression, that when used in a dual 

auditory task prevents participants from using articulatory rehearsal impairing the 

phonological loop’s ability to hold information (Baddeley 2003; Repovs & Baddeley, 

2006). In summary, the phonological loop is considered a domain-specific slave system 

responsible for auditory working memory and articulatory rehearsal. In the working 

memory model, the concept of a slave system is that the subcomponents of working 

memory exist to help serve the central executive. 

 The visuospatial sketch pad. The VSSP is also a domain-specific slave system 

used to hold and code visual and spatial information; however it is not as well understood 

as the phonological loop. This VSSP is thought to have evolved to assist with visual 

recognition of tools and objects, and for forming spatial representations used for 

orientation in our environments (Baddeley, 2003). Similar to the phonological loop the 

VSSP is separated into two distinct subsystems: the first being a visual system and the 

second being a spatial system. These subsystems can be considered the ‘what’ and 

‘where’ working memory systems (Passolungi & Mammarella, 2012; Baddeley, 2003). 

The visual system is responsible for holding shapes and colors or objects, while the 

spatial system holds spatial information such as location. Interestingly, limitations of the 

spatial system have been shown to predict decreased mathematics performance in 

children with mathematic learning disabilities, although there are generally corresponding 

limitations of attentional control as well (Passolungi & Mammarella, 2012). 
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 The central executive and episodic buffer. The central executive, unlike the 

phonological loop and the VSSP, is a domain-general system (Zimmer et al., 2010). The 

central executive is often also considered the supervisory attentional system, and is 

responsible for dividing, switching, and focusing attention, as well as linking working 

memory to long-term memory. The central executive is believed to integrate and 

manipulate information stored with in the phonological loop and VSSP. The central 

executive is one of the most important systems of working memory, as without the ability 

to filter and select information we would not be able to interact with our environments 

with such ease.  

 The central executive, unlike the phonological loop and the VSSP, does not hold 

information and as such does not have its own storage location. Instead, it is now 

believed it uses the episodic buffer as a workspace. Here in the episodic buffer, 

information held by the phonological loop and the VSSP can be integrated and is thought 

to be where information becomes available to conscious awareness (Baddeley, 2007). 

Thus providing some solutions to limitations of the older three component model which 

did not explain how different codes from the VSSP, the phonological loop and LTM were 

integrated. The episodic buffer is the newest addition to current working memory model 

proposed by Baddeley (2003) and it is still not fully understood.  

 Limitation of the current working memory model. As demonstrated above, the 

working memory model thoroughly describes how we code and store visual, spatial and 

verbal information, however there is little agreement on how we code and where we store 

information regarding observed actions (Wood, 2007). Our ability to hold and store 

information regarding observed actions is important for learning actions and performing 



17 

 

motor tasks (Baddeley, 2007). It is thought that as we observe action we break the 

movement into discrete units of action and then piece the action together after 

observation, therefore we need a place to store these discrete units and piece them 

together (Zacks & Tversky, 2001).  

 Within the current working memory model it is speculated that the VSSP is 

responsible for observed action. Available research however provides controversial 

evidence regarding where observed actions are held and coded. Baddeley himself 

acknowledges there is more research needed to explore working memory for observed 

action (Baddeley, 2007). Within the last 30 years evidence has suggested that observed 

actions may have its own system (Smyth & Pendleton, 1989), that it may be an aspect of 

the VSSP, or that some components of observed action may be verbal coded (Wood, 

2007); to date there has been no general agreement or consistent inclinations on which 

system is responsible. It is thought that such variability in evidence deciphering whether 

there is a kinaesthetic subsystem is due to the complex tasks needed to separate from 

visual, spatial and verbal working memory systems (Baddeley, 2007). 

Working memory capacity 

 Working memory is a limited capacity system, which can also be thought of as a 

limited ‘span’ as we are unable to attend to and remember all of the incoming 

information. Thus, we are only able to remember a certain span of important or relevant 

information. Capacity, therefore, represents the span of stimuli we are able to attend and 

remember at once (Baddeley, 2007). Originally Miller in 1956 determined that humans 

have the short term memory capacity for 7 +/- 2 pieces of information (Baddeley, 2007; 
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Cowan, 2010; Miller, 1956). Recently however, working memory capacity (WMC) has 

been considered more on an individual level, as it varies greatly from person to person 

(Cowan, 2010). It is this individual variation of working memory capacity that is most 

important to consider when investigating working memory and its relationship to other 

cognitive functions. 

 WMC is often measured using simple span and complex span tasks. In a simple 

span task, participants are required to remember and immediately recall a list of digits, 

objects, or locations. Most believe that simple span tasks, such as a digit span task, 

measures short-term memory.  Simple span tasks do not involve any distractor task, used 

to interfere or prevent the rehearsal of the information. Such distractor tasks are used for 

complex span tasks which require participants to retain a list of to-be-remembered 

information while completing additional tasks or distractor tasks. An example of a 

complex span task is the Operation Span (OSPAN) that requires participants to hold a list 

of to-be-remembered words while preforming mathematical operations (Dehn, 2008). 

 A different style of a complex span task is the n-back task which requires 

participants to continually update a list of running auditory and/or visual stimuli with the 

goal of detecting and identifying matching stimuli over a span of ‘n’ items (Jarrold & 

Towse, 2006). The n-back is considered a working memory task, as participants are 

required to continually discard information that is no longer required and update relevant 

new information simultaneously. This type of task focuses on active working memory 

process for retention and manipulation. The use of these and other types working memory 

span tasks provide information and can be used to assess individual differences of WM 

and associated capacity (Jarrold & Towse, 2006). 
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 Individual differences of WMC are highly predictive of other cognitive functions 

such as fluid intelligence, reasoning, attentional capacity, as previously detailed. For 

example, Conway and colleagues (2002) tested 120 young healthy adults on several 

measures of WMC (including the Operations span task; OSPAN, Reading span task, and 

Counting span task) and fluid intelligence (Raven’s Progressive Matrices, RAVENS and 

Cattell’s Culture Fair Test; CATTELL), and found positive correlations between the 

WMC test and the fluid intelligence test scores. They ventured from their results that the 

control of attention (governed by the central executive) could be an underlying neural 

link between working memory and fluid intelligence. The speculation that attentional 

control underlies WMC and fluid intelligence is a commonly shared theory (Unsworth 

and Engle, 2005). Findings linking these paradigms are often flawed by poor study 

design. This is demonstrated by Unsworth and Engle (2005), who were unable to link 

WMC and fluid intelligence; however they only used one WMC measure and one fluid 

intelligence test but none the less they still believe attention is the underlying neural link.  

While the evidence is still mounting there is reason to believe that working memory, fluid 

intelligence, and attentional control are all closely linked and this link by occur on a 

neural level as they may all share a common neural network. 

Cognitive Training 

Training tools to improve working memory have been an interest of research for 

many years and have recently surged in the marketing of complex interactive computer 

tools. The current surge of interactive computer tools or games used to try and target 

working memory and facilitate transfer of learning. Transfer of learning occurs when 

improvements are seen in the trained cognitive function as well as other untrained 
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cognitive functions (Jaeggi et al., 2010). The quest for the most effective cognitive 

training tool or ‘brain exercise’ with the ultimate range of transfer of learning is driven by 

the need for an effective intervention that has the greatest amount of benefits, and that 

can be applied to a range of target populations (Green & Bavelier, 2008). Similar quests 

for the best exercise with the broadest range of benefits can be seen in physical health 

research. For example, researchers are always searching for the best exercise with the 

largest range of health benefits to try and promote physical health and reduce disease.  

There are several training tools used to train working memory as well as other 

cognitive processes.  For example the Cogmed Working Memory Training (Cognitive 

Medical Systems) is a training tool which includes four tasks; a visuospatial WM task, a 

backwards digit span task, a letter span task, and a choice reaction time task (Klingberg, 

Forssberg &Westerberg, 2002) . The first three tasks target WM while the latter targets 

attention. The visuospatial WM task and the letter span task are forward span task 

requiring participants to recall items from the first to the last. Alternatively, the backward 

digit span task is backward span task requiring participants to recall items from the last to 

the first item given. This type of forward and backwards span task differ from other types 

of working memory training such as the n-back task, described in detail below, which 

targets working memory processes such as a recognition, updating, and inhibition (Kane 

et al., 2007). These different forms of training have led to various positive effects of 

transfer of learning to different cognitive function (Klingberg, 2010). Transfer of learning 

effects from various forms of training tools are detailed below (in the section title: 

cognitive training and evidence for transfer of learning). 
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The n-back task. The n-back task is another tool used to improve working 

memory which requires holding and manipulating information simultaneously. The n-

back task initially was used in the 1990’s as a tool for examining immediate working 

memory during fMRI studies (Kane et al., 2007). Since then the n-back task has moved to 

the forefront of working memory research as an assessment and training tool. The n-back 

task engages several processes simultaneously by requiring inhibition of irrelevant cues, 

updating visual and/or auditory representations, maintenance, and target selection 

(Jaeggi, Buschkuehl, Jonides, Perrig, 2008). 

The n-back task can include auditory stimuli (e.g. words or letters) and/or visual 

spatial stimuli (e.g. spatial locations of squares in a matrix), which are to-be remembered. 

Thus the n-back task can be in a single visual or single auditory task, or a dual task 

presenting visual and auditory cues simultaneously. The task requires participants to 

indicate matches of the stimuli that occur on ‘n’ trials.  For example, if a participant was 

on N=1 level (an 1-back) they would be required to indicate matches that occur back-to-

back (1-back); therefore if the participant was given an auditory string of 2, 3, 5, 5, 6, 3, 

they would acknowledge a match with a key press when they heard the 4
th

 auditory 

stimulus, which is a 5, as it is a back-to-back match (1-back)  to the 3
rd

 auditory stimulus, 

as it is also a 5. Likewise, if the participant was on N=3 level (3-back) they are required 

to indicate when a current stimulus matches to that which occur three stimuli before; for 

example if the participant was given an auditory string of 2, 3, 5, 6, 3, they would 

indicate a match on the 5
th

 auditory stimulus, which is a 3, as it is a match to the stimulus 

given 3-back which was also a 3. Participants generally start at an N=1 level and 

adaptively progress to more difficult levels as their mastery of the task increases. 
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The sensitivity of load, or difficulty, as participants progress through N-levels is 

often seen starting at N=3, and is generally measured by a decline in accuracy of 

responses (Jaeggi et al., 2010). There are two interesting findings that can be seen with 

load sensitivity in the n-back task. The first finding is that visuospatial stimuli are easier 

to recall than auditory stimuli for some individuals, and thus less sensitive to load. 

(Jaeggi et al., 2010; Jaeggi, Schmid, Buschkuehl, & Perrig, 2009). Secondly, sensitivity 

to load changes with age: young adults often out-perform older adults as load increases 

(Jaeggi et al., 2009). These findings demonstrate the importance of difficulty, and the 

differences between the capacities of the different working memory systems involved 

during the n-back task. 

Principles of Learning: What we can learn from Action Video Games 

As previously detailed, our current knowledge regarding the principles of learning 

which facilitate transfer of learning comes from the study of action videos games (AVG) 

and their beneficial effects on cognitive functions. AVG players play games for reasons 

such as: they find them engaging, they are motivated to succeed and attain better scores, 

and the graphics are appealing. In order to succeed AVG players must use short-term and 

long-term memory to recall virtual maps of the game layout including different terrains, 

task goals per level, and virtual locations of things such as health boosters or save zones. 

As well, AVG players are given feedback via scores and rewards, and the difficulty of the 

game is generally progressive, preventing players from becoming discouraged and giving 

up.  These attributes of AVGs target different aspects of principles of learning and 

different cognitive function. This leads to AVG players to demonstrate better attentional 

capacity, improved visual attention control, and spatial distribution of visual attention, as 
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well as enhanced task-switching abilities, when compared to aged-matched non-video 

game players (Green & Bavelier, 2003). Principles of learning such as repetition, task 

difficulty, motivation, and feedback, encompassed by AVG should be considered when 

constructing cognitive training tools to which transfer of learning is a primary outcome 

goal. 

Task difficulty. While playing AVG, progression of difficulty is based on how 

well an individual performs at a lower level. The manipulation of task difficulty allows 

participants the ability to learn new skills and techniques that will help them as they 

progress to more difficult levels (Green & Bavelier, 2008). As discussed previously, load 

during the n-back task has important implications on the success of identifying correct 

matches. Often seen in the construction of the n-back task, participants begin at n=1, and 

as they are able to master levels, progress to more difficult levels, similar to AVG. Also, 

some n-back tasks are built so that if a participant is unable to succeed at a higher level, 

they regress to the previous level. This helps the participant improve their skills, ensuring 

the difficulty does not hinder success or motivation of the task (Jaeggi et al., 2008). 

The adaptation of task difficulty is also sometimes done prior to the start of a task. 

Anguera et al., (2013) determined the best starting difficulty level for their cognitive 

multitasking computer game prior to the onset of training, and used adaptive algorithms 

for progression and regression during training. This was to ensure that participants played 

the game at an optimal challenge level. This also ensured that differences in outcomes 

measures did not reflect differences in skills and abilities, as well as ensuring maximal 

engagement in the task.  
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Often if a task is perceived as too difficult participants, will disengage from the 

task and negatively influence outcome measures. The negative influence of task difficulty 

on learning outcomes was seen by Jaeggi et al., (2011). They discovered that while 

training children (approximate average age of 9) on an adaptive dual n-back task, the 

children that reported the task was difficult and effortful were significantly less likely to 

demonstrate improvement.   In summary, there is an optimal threshold of difficulty that 

leads to maximal engagement, motivation, and learning. 

Motivation and wakefulness. Action video games are thought to target 

motivation and arousal because of their high graphic content and programming. 

Programming often engages the player by pretending they are a character in a story or in 

a mission. Additionally, motivation and arousal are captured by alertness and 

wakefulness. This is often done as a result of intensity. Intensity of a game often leads to 

increases of heart rate, breathing rate and can induce some level of anxiety. These 

increases in arousal help engage and maintain motivation and ultimately help improve 

learning outcomes (Green & Bavelier, 2008).  

While taking into consideration the importance of motivation and arousal, Jaeggi 

et al., (2011) constructed a custom dual n-back task for children using high graphic 

content and themes that were assumed engaging for children. For example, they used a 

lily pond with frogs for visual/spatial location cues, and constructed a story that 

accompanied each theme. These themes changed every five training sessions to ensure 

maximum arousal and engagement from the children. Self-reports from the children 

involved determined they did enjoy the game and found it fun. This highlights that 

motivation based on themes and graphics needs to be tailored to the target audience.  
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Feedback. While motivation provided from game presentation is important, a 

factor that engages motivation as well as promotes learning is feedback. The principle of 

feedback is important in all domains of learning, from perceptual, to motor, and to 

cognitive (Green & Bavelier, 2008; Klingberg, 2010). Performance feedback, when an 

individual has met a certain criteria, often occurs in the form of rewards. This reward 

feedback is common in AVGs (e.g., when a mission is complete, a player receives 

rewards in the form of coins or more tools they can use to succeed in higher levels).  

Again, Jaeggi et al. (2011) provides an example of implementing rewards for 

motivation. In their custom dual n-back task for children, they used a point collection 

system, such that when the children successfully completed a block of N-levels, they 

received a set amount of points. The children were able to use these points as cash to 

purchase stickers or pencils. Alternatively, Anguera et al., (2013) provided positive 

feedback in the form of fun facts. Therefore, when a participant completed a certain 

number of trials, they were rewarded with a fun fact about basic human physiology. This 

highlights the novel ways in which feedback can be integrated to maintain motivation and 

help facilitate learning. 

Cognitive Training and Evidence for Transfer of Learning 

 General working memory training interventions are easy to find online. These 

include, but are not limited to, Lumosity (http://www.lumosity.com) and PositScience 

(http://www.brainhq.com). These online training tools and the popularity of some of them 

highlight how accessible training tools need to be. The creation of a general interactive 

cognitive training tool that is beneficial for any population comes at a cost and it is often 
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seen as a reduction in the effectiveness of the training tool. This is demonstrated by Owen 

et al., (2010) who implemented a 6-week online cognitive training study. The study 

recruited 11,430 participants who were randomly assigned to either, a) a training group 

for reasoning, planning and problem-solving, b) a second training group for short-term 

memory, attention, visuospatial processing and mathematics, or c) a control group who 

answered random knowledge questions. Their goal was to assess transfer of learning to 

outcome measures, which included reasoning, verbal short-term memory, spatial working 

memory, and paired-associates learning. The outcome measures were taken at baseline 

prior to training, and at 6 weeks post training.  Owens and his colleagues (2010) found no 

transfer of learning between any group, and found similar improvements between their 

training groups and their control groups. This study highlights the many flaws of widely 

available cognitive training tools. One major flaw was no division of age groups in either 

training outcomes or outcome measures.  It is known that as we age, past our twenties, 

cognitive abilities including reasoning and working memory start to decline in normal 

populations (Park & Reuters-Lorenz, 2009).  It appears in their analysis Owens et al. 

(2010) did not account for the linear decline of cognitive function that occurs with age, 

which may have resulted in significant variance within their data. 

Also, as previously discussed, training tools should be tailored to specific target 

populations. For example, within the Owen et al. (2010) study, younger adults may have 

found the activities more or less motivating than an older adult who would be expected to 

influence attrition, and would ultimately influence outcomes (Anguera et al, 2013; Green 

& Bavelier, 2008).  Lastly, the participants in Owen et al.’s (2010) study only engaged in 

the training tasks for a minimum of ten minutes for 3 days a week, thus they may not 
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have been engaged for long enough to elicit neural plasticity required for transfer of 

learning. While Owen and colleagues (2010) study had good intentions, the design was 

not strong enough to generalize the findings that cognitive training does not lead to 

transfer of learning. 

 While it is important to see transfer of learning in older adults, individuals with 

acquired brain injury are also key target populations for working memory training. A 

pilot study by Westerberg et al, (2007) investigated the use of an online at-home 

cognitive training software program (RoboMemo © from Cogmed Cognitive Medical 

Systems AB, Stockholm, Sweden) on stroke patients 1 – 3 years post injury.  Their study 

provides insight to the benefits of properly constructed and managed online cognitive 

training program and how beneficial they can be, unlike the aforementioned Owens et al., 

(2010) study. The program used by Westerberg et al., was originally designed for 

children with ADHD, and included several adaptive visuospatial and auditory working 

memory tasks that required participants to hold and update information. The training 

required 40 minutes a day, 5 days/week, for 5 weeks.  

Participants recruited by Westerberg et al. (2007) were required to complete a 

battery of neuropsychological tests pre and post training to assess attentional capacity, 

reasoning, intelligence, and WMC. As well, participants completed a survey for cognitive 

failures in daily life that target attentional and memory difficulties. Results demonstrated 

that participants improved significantly on non-trained attentional control and working 

memory tasks. Also, there were significant improvements in daily reported cognitive 

failures. Other studies which have used the computerized Cogmed WM training tool have 
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similarly reported improvements in word span, complex WM span, attention (measured 

by the Stroop task and go/no go), and mathematical reasoning (Klingberg, 2010).  

A significant limitation to the pilot study by Westerberg et al. (2007) was the lack 

of an active control group. An active control group should engage participants in an 

activity that would require the same time and daily engagement as the training group, but 

does not require working memory processes.  Active control groups mirror the idea of 

placebo groups in drug trials, and can be used to measure other aspects such as computer 

use and compliance (Klingberg, 2010).  Lack of active control groups is a wide limitation 

of many cognitive and working memory training studies, as many use no-contact control 

groups instead (Klingberg, 2010).  Regardless, the results from Westerberg et al. (2007) 

provide promising implications for improving cognitive function and for the transfer of 

learning in individuals who have suffered an acquired brain injury, such as a stroke. The 

results from Westerberg et al. (2007) provide evidence that attentional control and 

working memory processes can be improved with interactive, engaging, and adaptive 

cognitive training.  

Specific working memory training and transfer of learning. The n-back task 

as previously discussed is a working memory task that requires the engagement of several 

processes such as irrelevant target inhibition, ongoing monitoring and updating, as well 

as task shifting (specifically when engaging in a dual n-back task).  Several of these 

processes are mediated by attentional control including irrelevant target inhibition, and 

the shifting of attention from old to new stimuli. Attentional control is an important 

underlying process that is postulated to link the transfer of learning working memory 

training to improvements in fluid intelligence (Jaeggi et al, 2008; Klingberg 2010). This 
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link is thought to occur through shared neural networks, specifically within the frontal 

and parietal cortex (Klingberg, 2010). Several studies have investigated the success and 

validity of the n-back task as a measure of WMC and as a plausible task to improve fluid 

intelligence (Gf).  

 Jaeggi et al. (2008) investigated the time-dependent training effects of an adaptive 

dual n-back task on transfer of learning to fluid intelligence on healthy university aged 

students (25.6 +/- 3.3 years of age). The task involved a simple matrix with 8 possible 

visual and spatial cues and simple letter auditory cues. Participants were randomly 

assigned either to one of four training groups or one of four control groups. The four 

training groups differed based on the length of training: 8, 12, 17, or 19 days. Each 

training group had a matched control group that came to the laboratory for pre and post- 

outcome measure testing that mirrored the training groups.  

The primary outcome measure used by Jaeggi et al (2008) was fluid intelligence, 

which was assessed using the Raven’s Advanced Progressive Matrices (RAPM). To 

measure for individual differences (during pre-training) and gains (post-training) in 

WMC both the digit span task, a simple WMC test, and the reading span task (RST), a 

complex WMC test, were also used. The results showed that improvements in fluid 

intelligence were dependent on the training dosage, and these gains were most significant 

after 12 days of training (F (3, 30) = 9.25; P< 0.001).  This is a significant finding, 

suggesting that the dual n-back task is capable of transferring to improvements of Gf. 

This finding was later supported by Jaeggi et al. (2011), who demonstrated that fluid 

intelligence score can be improved in children who train on a dual n-back task 

(previously discussed). 
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The results from Jaeggi et al (2008) further demonstrated that the gains on the 

dual n-back task were related to transfer to the digit span task, however did not 

significantly relate to transfer to the RST. This finding is significantly relevant to the 

validity of the dual n-back (to be discussed below). Additionally, the results from Jaeggi 

et al. (2008) demonstrate that gains in fluid intelligence are not dependent on the 

improvement of WMC. This was shown by a lack of interaction with the digit span and 

RST measures at pre and post-test. This finding highlights that there are additional 

processes, mainly attentional control, that have to link the working memory and Gf to 

assist with the transfer for learning.  Furthermore, Jaeggi et al. (2008) suggests that the n-

back task facilitation of attentional control may in fact be the reason for transfer of 

learning to fluid intelligence.  

Validity of the n-back task. Currently the n-back task is thought of as a complex 

WMC task, however the findings of Jaeggi et al (2008) which demonstrated transfer of 

learning to the simple WMC task, the digit span task, but not the reading span task, the 

complex WMC task, highlights an important question of validity for the n-back task, that 

is of considerable debate in current research. As the n-back task is considered a complex 

task, it should demonstrate transfer of learning to the reading span task; however these 

findings have also been reported in other studies investigating the validity of the n-back 

task as a measure of WMC (Jaeggi et al., 2010; Kane et al, 2007).  

Current research of the validity of the n-back task as a WMC measure often 

demonstrates conflicting evidence for and against its validity. For example, the n-back 

task has been demonstrated to highly correlate with the OSPAN task (Shelton, Metzger, 

& Elliott, 2007; Shelton et al., 2009), but has also been shown to have very little shared 
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variance with the OSPAN task (Kane et al., 2007). The differences and the wavering 

debate of the validity of the n-back task as a measure of complex WMC highlight that 

construction/styles of n-back tasks used by any one researcher seem to differ.  

For example, the aforementioned studies (Shelton et al., 2007 & 2009 and Kane et 

al., 2007) used different styles of n-back tasks, including different stimuli presentation, 

varying on type of auditory and/or visual stimuli, and load of stimuli from dual or single. 

These differences highlight that the presentation of the task may influence the validity of 

the results, and that comparing the validity from one study to another is quite difficult. 

Interesting, while the aforementioned studies found inconsistent relationships with the n-

back task as a WMC measure, it was consistently found to have a significant relationship 

with Gf.  

Summary 

The evidence provided here demonstrates that with consideration to important 

principles of learning that can be acquired from AVG, perceptual, and motor skill 

learning, along with knowledge of overlapping cognitive functions, effective cognitive 

training tools can be developed. Also, the evidence provided demonstrates that transfer of 

learning can occur during any life stage but there is room for a more thorough 

understanding of how to enhance the effectiveness of training programs (Jaeggi et al., 

2011). Instead, future research, while taking into consideration the all the evidence 

provided here, should focus on understanding the elements of cognitive training and 

working memory training that best correlates to transfer of learning, and how those 

elements can be applied for effective construction of training tools that can be used for 
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healthy individuals during any stage of life, and those with acquired brain injuries or 

diseases (Jaeggi et al., 2011).  
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Chapter 3: Methods and Procedures 

The study procedures were approved by the Dalhousie Research Ethics Board, project 

code #2011-2598. 

Participants 

Twenty-four young adults between the ages of 19 – 30 with no history of head 

injury, neurological or psychiatric disorders, or learning disabilities were recruited. All 

participants had normal or corrected-to-normal vision, played less than an hour of video 

games a day and owned a laptop with an external mouse. A total of three participants did 

not finish the study, two participants (one from each group) dropped out of the study for 

personal reasons, one participant (from the N-IGMA group) was withdrawn from 

participation by the researchers due to a failure to complete the minimum 10 out of 15 at-

home training sessions. Data from these three participants were excluded from all 

analyses. Data from two additional participants, both in the N-IGMA group, were 

excluded from the final analysis. One of these was excluded due to deliberately ignoring 

task instructions to inflate performance, and the second was due to software problems, 

which resulted in the completion of less than 10 at-home training sessions in which less 

than 80% of the blocks were completed. Data from 19 participants were retained for 

statistical analysis, 9 (22.1 +/- 2.85 years of age) were in the N-IGMA group and 10 (21.7 

+/-2.1 years of age) were in the Blockmaster group.   

The targeted sample size for this study was thirty participants, fifteen in each 

group. Similar sample sizes have been used and demonstrated significant effects in 

related outcome measures, including Clouter (2013), who had eighteen in an 
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experimental and eighteen in an active control group.  Likewise, Jaeggi et al., (2008), 

who had four different experimental groups, had an average group sample size of 18.25. 

The targeted sample size could not be achieved in the timeframe of this M.Sc. thesis 

project despite the best efforts of the investigator. 

During the initial screening, participants were asked to estimate the number of 

hours they spent per week during the last six months using a computer, and playing video 

games. Participants in the N-IGMA group reported spending significantly more (t(16) = 

2.18, p< 0.05) time using the computer (31.1 +/- 14.26 hours/week) than the Blockmaster 

group (19.0 +/- 6.58 hours/week). Both groups reported spending a similar amount of 

time per week playing video games; the N-IGMA group reported 1.56 +/- 2.15 hour/week 

and the Blockmaster group reported 1.28 +/-1.51 hours/week (for a list and count of the 

self-reported video games played see Appendix J). Participants were given a choice of 

course credits in combination with financial compensation or just financial compensation. 

Equipment 

Most outcome measures, including the Stroop, OSPAN task, SymSpan, and the 

MoveSpan task, were performed on a 27 inch iMac OS10.7, in the Cognitive Health and 

Recovery Research Lab at Dalhousie University.  Participants sat comfortably centered 

relative to the computer screen and used the keyboard to respond with ‘y’ for yes and ‘n’ 

for no during the OSPAN mathematical equations, and SymSpan judgments. Participants 

used the arrow keys, which had red, green, and blue stickers on them, to correspond with 

colour responses for the Stroop trials. The same computer was also used for the training 

tutorial for the N-IGMA participants.  The Stroop task, OSPAN, SymSpan and the 
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MoveSpan, were all programmed and run from the experiment builder program PsychoPy 

(version 1.71.01). 

 Participants used their own laptop and external mouse to access the website for 

the computer training activities. Once participants in the N-IGMA group finished the 

training tutorial they completed the rest of the initial training session on their own laptop, 

as well as the at-home training sessions. Participants in the Blockmaster group used their 

own laptops for all of the initial training session as well as all of the at-home training 

sessions. 

Procedure 

 The study included three phases: the pre-training phase, the training phase, and 

the post-training phase. In the pre-training phase, participants were randomly assigned to 

either the N-IGMA or Blockmaster group using a table of random numbers. Upon arrival 

to the laboratory the participants were greeted by their assessor, who was blinded to the 

participant group assignment. The assessors went through the informed consent (see 

Appendix H for a copy of the Informed Consent) with the participants and administered a 

self-reported screening questionnaire (see Appendix A for a copy of the self-reported 

screening form). Following the self-reported screening questionnaire the assessors 

administered the outcome measures in the same order for all participants, which was also 

used during the post-training phase: CFIT, the Stroop task, the OSPAN, the SymSpan, 

and lastly the MoveSpan.  

 Following the completion of the MoveSpan, the assessor left the room and the 

trainer entered. The trainer then guided the participants through tutorials for their 
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assigned computer activities. Participants in the N-IGMA group began their training 

session on the laboratory computer, and then once they completed the N-IGMA tutorial 

were instructed to setup their laptop and external mouse. Following this, participants 

were asked to sign into the website, and bookmark the website for ease of future access. 

Once on the website participants were given their log-in and password to access the N-

IGMA. Once they logged in they proceeded to complete two or three blocks of practice 

on their own laptop. The number of blocks the participant completed on their own laptop 

was a subjective decision made by the trainer depending on the amount of time remaining 

in the training session and the participants’ success with the program. Likewise, 

participants in the Blockmaster group were instructed by the trainer to set up their laptops 

with their external mouse. Next the participants were asked to sign into the website, and 

bookmark the website for ease of future access. Once logged into Blockmaster trainers 

lead a tutorial to introduce the participant to the game, and then the participants 

completed all five blocks. Participants in the Blockmaster group completed all five, five-

minute blocks of their activity. Participants in the Blockmaster group completed all five 

blocks of the activity during the training session as it takes a similar length of time to 

complete as it takes participants to learn the N-IGMA, thus minimizing any influence on 

the assessors ability to guess the activity assigned to the participant.  

In the training phase, participants trained on their assigned activity at-home for 

three weeks for a total of 15 sessions. For each training session participants in the N-

IGMA group completed 20 blocks of 20 +n trials of the N-IGMA, which took 

approximately 25-30 minutes. Likewise, for each training session participants in the 

Blockmaster group completed five, five-minute rounds of Blockmaster which took 
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approximately 25 minutes. Computerized feedback was provided to the participants as a 

function of each activity, described in the Computer Activity section below. 

During the three week training phase, the trainers provided emails of 

encouragement and reminders, in addition to responding to any questions the participants 

might have had. The emails served as a way to keep the participants motivated, and to 

remind the participants in the N-IGMA group of when the stimulus set was changing, 

described in the Computer Activity section below. After the pre-training session the 

participant returned to the laboratory for the post-training assessments. If participants 

were unable to complete a minimum of 10 out of 15 at-home training sessions, they were 

excused from the study by the researcher and not invited to return to the lab for the final 

post-training assessment. Participants who were excused from participation received 

compensation for all the phase 1 and any training sessions completed.  

During the post-training phase, the assessor greeted the participant, and stressed 

to the participant not to tell them which activity they completed, thereby ensuring 

assessor blinding. Next, the assessor administered the outcome measures in the same 

order as in the pre-training assessment. Once the outcome measures were completed, the 

trainer entered the testing room, provided the participant with appropriate compensation, 

and thanked them for their time. If participants were unable to attend their scheduled 

post-assessment date, they were able to reschedule, within one week of the originally set 

post-assessment date.  

The pre-training and post-training assessments were both administered at the 

same time of day and by the same assessor. The same trainer who gave the tutorial in the 
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pre-training session was responsible for maintaining contact with the participant. The 

trainers had standard email messages (see Appendix I for examples of the trainer email 

messages), which were used ensure that each participant received similar contact during 

their training. 

Outcome Measures 

 There were five outcome measures, four of which (the CFIT, the OSPAN, the 

SymSpan, and Stroop task) were used by Clouter (2013). The fifth outcome measure (the 

MoveSpan) was unique to the current study. 

CFIT. The CFIT Scale 3, a fluid intelligence test, took approximately 20 minutes 

to complete. The test was administered following the standardized testing protocol 

(Cattell, 1971; Cattell & Cattell, 1973). Psychometric testing has shown that the CFIT 

targets a general factor of intelligence similar to other fluid intelligence tests such as the 

Raven’s progressive matrices fluid intelligence test, attesting to the validity of the CFIT 

to measure fluid intelligence (Conway et al., 2002). Participants completed Form A 

during pre-training and Form B during post-training, which is standard protocol for the 

test.  

This test consisted of 4 timed subtests, each completed using pen and paper. Test 

one was a progressive series, which required participants to recognize the rule for a series 

of three images containing figures or shapes, and then choose one of six possible images 

that completes the series. Test two was a classification test, which required participants to 

determine the relationship among five figures or shapes and choose two which differed 

from the other three. Test three was a progressive matrices test, where participants were 
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required to find the rule which explains the relationship between the figures or shapes in 

the matrix, and choose one of six possible images that completes a matrix (the matrix 

may have contain four or nine boxes with one empty box). The fourth test was a 

topological conditions subtest, where participants were presented with an image that 

contains shapes (circles and squares), lines and a single dot, and they must choose one of 

five possible options in which the dot could be placed in the same relationship as it is 

seen in the initial image (see Appendix C for an example of the subtests). Each test 

measured the participant’s ability to think abstractly and solve novel problems. 

Each subtest has a pre-determined time cap. Test one is 3 minutes, test two is 4 

minutes, test three is 3 minutes and test four is 2.5 minutes. The assessor was responsible 

for monitoring time and ensuring that the participant did not exceed the time cap. 

Participants were instructed to stop and put their pencils down when the time cap had 

been reached. Participants were not allowed to make any additional answers once asked 

to stop. 

The Stroop task. The Stroop task, originally designed by Stroop in 1935, is used 

to investigate selective attention, as it requires maintenance of a goal and inhibition of 

competing stimuli (Kane & Engle, 2003). The task has since been deemed a valid and 

reliable measure of executive functions (Van der Elst, Van Boxtel, Van Breukelen & 

Jolles, 2006).  The proportion of congruent and incongruent trials used in the current 

study matches that used by Kane & Engle (2003). These authors found that performance 

under such conditions correlated well with working memory measures, and is thus 

appropriate for targeting executive functioning and task-goal maintenance. During the 

Stroop task, the participant was comfortably seated at the computer, with the lights 
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dimmed as low as possible. The Stroop task required the participant to indicate the colour 

of the font used to display words that were colour names. Three words were used: ‘red’, 

‘blue’, and ‘green’ (see Appendix F for an example of the Stroop task). The words were 

presented in congruent colours 80% of the time (48 trials for ‘blue’ and ‘green’ and 49 

trials for ‘red’) and incongruent colours 20% of the time (12 trials; 6 trials in each of the 

two incongruent colours), for a total of 181 trials. Participants were required to identify 

the colour by pressing the appropriately labeled arrow key (left, down, and right). The 

task began with 10 practice trials. The Stroop task took approximately 12 minutes. Data 

recorded for the Stroop task included response time and accuracy of response for each 

trial. 

The Operation Span (OSPAN) task. The OSPAN was originally designed by 

Turner and Engle in 1989 and is one of the more common measures of complex verbal 

working memory capacity. The OSPAN required participants to solve mathematical 

problems presented on the screen while remembering unrelated words. This test is 

reliable, with high internal consistency, test-retest reliability and test stability (Klein & 

Fiss, 1999). The goal of this task was to assess verbal working memory capacity in the 

presence of distracting or interfering verbal information. This task is argued to measure 

the capacity of the phonological loop of the working memory system. Each trial began by 

presenting the participants with a mathematical problem in the form of a question; for 

example, “is (7 * 2) – 1 = 14?” They were required to read the question out loud and 

respond with “yes” or “no” out loud and by pressing ‘y’ or ‘n’ buttons on the keyboard. 

Half of the equations were programmed to be correct. Following a single mathematic 

question, the participants were presented with a new screen image for 1 second that 
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contained a word, which they were asked in advance to read out loud and remember for 

later recall. There was a 0.5 second delay between the disappearance of the word and the 

appearance of a new mathematical question. When the trial was complete, participants 

were instructed to recall, in order and out loud, the words that had been presented (see 

Appendix D for an example of the OSPAN task).  There were 2, 3, 4, or 5 words given 

before the recall instruction, the blocks of words are referred to as set sizes; e.g., 2 words 

to be recalled is a set size of 2, while 3 words to be recalled is a set size of 3. There were 

a total of 42 trials in 12 blocks, which began with 2 additional blocks of practice trials. 

The set sizes were presented in pseudorandom order with 3 blocks for each set size 

(following the same protocol as Clouter, 2013). The test took approximately 12 minutes.  

 For recall and scoring procedures, participants were instructed to recall the words 

in order and out loud at the end of each block. The participants were instructed if they 

were unable to remember a word to respond with “I can’t remember or I don’t know” in 

place of the word they had forgotten. This protocol ensures they remember the words in 

the correct order and were able to receive full points for the set size. The assessor scored, 

on an answer key, whether the words recalled were correct and in order. The test was 

scored based on the total number of the words correctly recalled for each set size. 

Different word lists were presented at pre-training and post-training. 

The Symmetry Span (SymSpan) task. The SymSpan task is also a complex 

working memory task, which targets visual span capacity (Kane et al., 2004). The 

SymSpan has demonstrated high test-retest reliability as well as construct and criterion 

related validity (Redick et al., 2012). For this task, participants were required to 

remember for recall purposes the specific location of a red square on in a 4 X 4 matrix 
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while performing symmetry judgments. Each trial began by presented an 8 X 8 matrix in 

which participant were required to make a symmetry judgement about whether the right 

and left halves of the matrix were mirror images of each other. They respond by pressing 

“y” for yes or “n” for no on the keyboard. After their response there was a 0.5 second 

delay before they were presented with a new screen which showed a 4 X 4 matrix in 

which one of the 16 squares was red and the other 15 squares were white (see Appendix 

E for an example of the symmetry task). Participants were asked to remember the 

location of the red square for later recall. The to-be-remembered matrix is presented for 1 

second followed by a 0.5 second delay until the onset of the next judgement task. Similar 

to the OSPAN, there were two, three, four, or five matrices with red squares to-be-

remembered shown before the recall instruction, the blocks of red squares are again 

referred to as set sizes, e.g. two red squares to be recalled is a set size of two, while three 

red squares to be recalled is a set size of three. There were a total of 42 trials and 12 

blocks, which began with two blocks of practice trials. The set sizes were presented in 

pseudorandom order with three blocks for each set size (following the same protocol as 

Clouter, 2013). For recall, participants were given an answer sheet with 12 columns of 

five empty 4 X 4 matrices (the maximum set size is five). Participants were asked to fill 

in on the answer sheet the locations the red squares in the order they appeared. This test 

took approximately 12 minutes.  

Scores were calculated based on the correct number of remembered locations. 

When a participant was unable to remember a location, they were told they may skip the 

corresponding matrix on the answer sheet, to ensure they placed the red squares in the 

correct order.  
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The MoveSpan task. The MoveSpan task was used to assess the capacity of 

working memory for observed actions. This is a task designed for this study which has 

yet to be analyzed for validity and reliability. The task required participants to perform 

simple reaching movements while remembering a list of to-be-recalled actions. During 

the task participants were asked to stand with the palms of their hands facing their body, 

and informed this was their starting position. Participants were given instructions on the 

computer screen such as ‘touch your left shoulder with your right hand’ which they were 

to read out loud and then perform, subsequently returning to the starting position. 

Participants were told they were not required to remember the reaching movements. Next 

the assessor triggered the computer to display a to-be-remembered action, which was 

demonstrated by an animated avatar facing toward the participant on the screen (see 

Appendix G for example of the MoveSpan). The avatar appeared on the screen for 

approximately 1 second. Participants were instructed to remember the avatar’s action for 

later reproduction as though the avatar was representing their own body as seen in a 

mirror; i.e., if the avatar lifted the right arm to 90
0
 of abduction, the participant was 

required later to lift their left arm. After the avatar completed the action there was a 0.5 

second delay followed by another set of reaching movements to perform and so on until 

the participants were given recall instructions. Once they were given the recall 

instructions participants were required to physically replicate the avatar actions they have 

seen. There were two, three, four, or five avatar actions given before the recall instruction 

with a total of 42 trials and 12 blocks, with two additional blocks of practice at the 

beginning, the same as the OSPAN and the SymSpan. There were a total of 14 different 

avatar actions which were pseudo-randomly distributed between the 12 blocks; due to a 
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limited number of avatar action video clips, each movement is repeated three times 

within the experimental trials (Wood, 2007). There were no repeating reaching 

movement instructions. The assessor recorded on an answer sheet whether the participant 

performed the correct reaching movement as well as the whether the action performed 

was correct. To receive a point, the participant must have physically replicated the correct 

action on the correct side of the body.  The test took approximately 12 minutes to 

perform. 

Computer Training Activities 

The computer activities used for training were performed on the participant’s own 

laptop. The activities included a custom dual n-back working memory task called the N-

IGMA (experimental group), and a visuospatial task devoid of working memory 

requirements similar to the popular game Tetris, called Blockmaster (active control 

group). For both activities the participants could pause and take a break at any time, 

although they were encouraged to complete the activity unbroken start to finish. 

Participants were also encouraged to minimize any distractions in their surrounding 

environment by turning cell phone ringers off and by not watching TV or listening to 

music. Participants were required to use an external mouse to interact with the computer 

games, which eliminated any variability due to the different visuomotor demands of input 

devices such as keyboards or touchscreens.  

Experimental group task. The N-IGMA, the experimental task, is a custom 

designed dual n-back task that includes the principles of adaptive difficulty, motivation, 

feedback and repetition. It is a dual task because visual and auditory stimuli are presented 
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simultaneously. Participants were required to watch and listen to a sequence of stimuli, 

and respond when the current auditory or visual stimulus matched the stimulus presented 

“n” items previously within the same sensory modality. Participants were given a new set 

of visual stimuli and auditory stimuli at the beginning of each week, similar to Jaeggi et 

al. (2011), who also changed their stimuli weekly to encourage motivation. During week 

one, the visual cues were blue triangles with letters as auditory cues. The letter auditory 

stimuli consist of letters that were known to be phonologically distinct.  Letters that are 

phonologically different from each other were used as they demonstrate less error rate 

when recalling sequences of letters than letters that sound similar (Baddeley, 2003).  In 

week two participants saw images of a lighthouse in which the position of the lighthouse 

changed and they listened to numeric auditory cues. Week three consisted of landscape 

images as visual cues and words from the phonetic alphabet as auditory cues.  

Participants started at an N=1 level and could progress up to N=6 depending upon 

performance. Each day they began at the level they achieved during the previous session 

except when the stimuli were changed at the start of a new week, in which case the N-

level was returned to 1. Participants were informed by email from the trainer before the 

change in stimuli and reminded they would return to N=1 automatically by the program. 

As mentioned earlier, the purpose of changing the stimuli was to maintain interest and 

participant engagement. 

The N-IGMA consists of 20 blocks of 20 + N trials, where each individual block 

were performed at a specific N-level. Progression to a higher N-level or regression to a 

lower N-level occurred only after the completion of a block. An adaptive algorithm built 

into the program was set to advance participants to the next N-level if they achieved a 
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combined (auditory and visual) score of 80% after one block, and to regress participants 

to the previous N-level if they scored less than 50% (combined auditory and visual) per 

block on three consecutive blocks. Participants stayed at the same N-level if their 

performance ranged between 50% and 80%. At the end of each block the participant was 

shown their percentage score, thus receiving summary feedback for the entire block. 

During the initial training session participants were taught the purpose and meaning of 

the percentage score seen at the end of each block. Additionally, participants received 

immediate feedback on the accuracy of each response, through a visual change on the 

screen corresponding to the visual or auditory channel of the N-IGMA display.  

Participants were able to pause at any point but were encouraged to finish the activity 

without taking any breaks.  

The data recorded include correct matches, false alarms (responses when match is 

not present), response times for correct matches, and N-level achieved per session. Each 

N-IMGA session was expected to take 25 - 30 minutes to complete and could be 

completed at any time throughout the day the participant wished, although it was 

suggested they complete the activity at approximately the same time every day. Once 

participants completed their daily activity, the program prevented them from logging in 

again until the following day. This prevented participants from trying to complete several 

sessions of training all on the same day, helping to control the duration over which the 

training took place.  

The active control task. The active control activity known as Blockmaster is a 

spatial task that required participants to rotate and fit together, like puzzle pieces, four 

geometric shapes (blocks) as they ‘fell’ toward the bottom of the computer screen, with 
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the goal of aligning the bottom edges of the shapes to fill complete horizontal lines 

without gaps. Blockmaster was created to be a non-adaptive version of the popular game 

Tetris, in the sense that the speed of the game remained constant despite performance or 

elapsed time. Tetris has been used previously as an active control task because it requires 

visuospatial attention and visuomotor control, but not working memory or other more 

complex forms of attention; as such, this task controls for the interactive game-like 

characteristics of the N-IGMA training task minus the key features of working memory 

and adaptive progression (Green & Bavelier, 2003, Nouchi et al. 2012).  

The task included five blocks of 5 minutes, at the end of each block of 5 minutes 

the screen reset, cleared, and participants started the following block with no blocks or 

lines in the playing area. The scoring for Blockmaster was set so that for each horizontal 

line cleared the participant received a set amount of points: one line was 40 points, two 

simultaneous lines were 100, three simultaneous lines were 300 and four simultaneous 

lines were 1200 points. Like the N-IGMA, participants were able to pause at any point 

but were encouraged to finish the activity without taking any breaks. Feedback provided 

to each participant for each session included the number of lines cleared, round score (for 

the most recent block), total score (score across all blocks for that day), and the High 

Total score (highest scoring block ever completed), all of which were recorded by the 

program. At the end of each block the participants were shown a list with each round 

score completed during that session to that point, which was intended to serve as 

motivation for participants to beat their previous score. 
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Statistical Analyses 

This was a mixed design study with one between-subjects factor (training group: 

N-IGMA and blockmaster), and one within-subjects factor (time: pre-training and post-

training) for the primary outcome measures. Thus, these measures were analyzed using 

separate mixed ANOVAs (group by phase). Outcome measures included scores for each 

of the four individual CFIT subtests (series, classification, matrices, conditions) and the 

combined, overall score. For the Stroop test, outcome measures included response times 

and average error percentages for congruent and incongruent trials, in addition to the 

response time and error percentage interference effects (the difference between the 

response times or error percentages for incongruent and congruent trials). For the three 

WMC tests (OSPAN, SymSpan, and the MoveSpan), outcome measures included scores 

for set size (number of items to-be-remembered) two, three, four and five, as well as the 

total overall scores which included set sizes two-five.  

 To investigate the relationship between training effects (measured on the training 

activities over the course of the training sessions) and improvements on the various 

outcome measures, each individual’s performance on the training task was fit with a 

linear function relating training session (1-15) and average daily N-level for both the N-

IGMA and the Blockmaster group. From these linear fits, slope (rate of improvement) 

and y-intercept values (estimated starting ability) were extracted.  The slope and the y-

intercept values were then compared to the change scores for each outcome measures. 

Change scores were calculated as post-training scores minus pre-training scores for each 

outcome measure. 
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To determine if changes in outcome measures were related to the individual’s 

initial level of fluid intelligence, correlations were computed for each outcome measure 

change score versus each individual’s pre-assessment CFIT score for both the N-IGMA 

and Blockmaster groups.  

To investigate the relationship between the MoveSpan, SymSpan, and OSPAN 

tasks, three different sets of correlations were calculated. First, to determine the amount 

of variance shared between the three tests prior to the intervention, correlations between 

all pairs of tests were computed using pre-training scores (overall scores for spans two-

five). Second, to determine if improvements in the various types of working memory 

over the training sessions were related to each other, correlations were computed between 

all pairs of tests using post-pre difference scores (overall scores for spans two-five). 

Finally, to evaluate the variance shared between working memory tests after training was 

complete, correlations were computed for all pairs of tests using post-training scores.  

Data analysis was completed using the statistical program SPSS. The alpha for the 

current study was set at 0.10 for each of the four hypotheses. This liberal type I error 

criterion was selected because the study was slightly underpowered given that 

recruitment targets were not achieved. The critical p-value was then adjusted using 

Bonferroni adjustment to account for the multiple comparisons made within each 

hypothesis. After Bonferroni adjustment the critical p-value for the first hypothesis was 

p=0.004; the second hypothesis was 0.004; the third hypothesis was 0.002; and the fourth 

hypothesis was 0.01. Statistical tests with a p-value between the critical p and 0.05 were 

viewed as interesting and discussed as meaningful trends. Due to the small sample size, 

outlier participants were not removed.  
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Chapter 4: Results 

Computer Activity Training Performance 

 The participants in the N-IGMA group completed an average of 14.2(+/- 0.63) at-

home training sessions (min = 13, max = 15). The participants in the Blockmaster group 

completed an average of 14.6 (+/- 0.66) at-home training sessions (min = 13, max = 15). 

The results indicate that both training groups improved at the trained task across 

the at-home training sessions. Analysis of training performance changes over the course 

of the at-home training sessions were conducted by fitting a linear regression to the 

average daily N-level achieved in the N-IGMA, and the average daily score for the 

Blockmaster groups. The results of the regression analysis indicate improvements in 

performance in the N-IGMA group as b1=.114, p<0.001 (R
2
=.168, F(1, 126) = 25.44, 

p<0.001). The improvements in the average daily N-level achieved over the at-home 

training sessions can be seen in Figure 1. The regression analysis indicates improvements 

in performance in the blockmaster group as b1= 121.43, p<0.001 (R
2
=.314, F(1, 145) = 

15.71 p<0.001), the average daily score achieved over the at-home training sessions can 

be seen in Figure 2. 

Outcome Measures: Analyses of Group Differences Pre- and Post-training 

 The primary hypothesis for this study was that improvements in all outcome 

measures would be observed for the N-IGMA group (post-training minus pre-training), 

and that these improvements would exceed those in the Blockmaster group, manifesting 

as a significant group x time interaction. This hypothesis was evaluated using separate 

mixed 2 x 2 ANOVAs with one between-subjects factor (training group: N-IGMA and 
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Blockmaster), and one within-subjects factor (time: pre-training and post-training) for 

each of the outcome measures. Evidence in support of the hypothesis would come in the 

form of a significant Group x Time interaction matching the described pattern. 

Descriptive statistics and the results for each ANOVA, for all outcome measures, are 

shown in Table 1. In general, the results of these ANOVAs do not provide support for the 

interaction hypothesis.  Significant findings and meaningful trends are reported below. 

CFIT. There were five ANOVAs completed for the CFIT, one for each of the 

four subtests, and one for the overall combined scores from all the subtests. The 

ANOVAs revealed a significant main effect of time for CFIT “classification” subtest two, 

F(1,17) = 64.42, p <0.001, Figure 3. A significant main effect of time (post-training 

better than pre-training) was found for CFIT “conditions” subtest four, F(1,17) = 36.80, 

p<0.001, and a significant main effect of group (N-IGMA group showed overall higher 

scores than the Blockmaster group) was identified for subtest 4, F(1,17) = 9.50,  p<0.007, 

Figure 4. A significant main effect of time was found for the overall CFIT score, F(1,17) 

= 79.40, p<0.001, shown in Figure 5. 

The OSPAN Task. For the OSPAN, five ANOVAs were completed, one for each 

set size (2-5) and one for the overall score. The ANOVAs revealed trends for the main 

effect of time for the set size four, F(1, 17) = 7.70, p=0.01, and also for the overall 

OSPAN score, F(1, 17) = 8.33, p=0.01. As seen in Figures 6 and 7, both groups 

improved their scores on set size four and the overall measure from pre- to post- training. 

There were no significant main effects or interactions for set size five. 
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The SymSpan task. For the SymSpan, five ANOVAs were completed, one for 

each set size (2-5) and one for the overall score. There were no significant main effects or 

interactions for the SymSpan task. The overall SymSpan score suggested that both groups 

improved from pre- to post-training, however this did not reach significance F(1,17) = 

3.32, p=0.086.  

The MoveSpan task. For the MoveSpan, five ANOVAs were completed, one for 

each set size (2-5) and one for the overall score. There was a trend for a time main effect 

for set size four, F(1,17) = 4.56, p=0.048. Unexpectedly, this main effect indicated that 

participants in both groups decreased their scores at post-training, Figure 8. 

The Stroop task. For the Stroop task ANOVA’s were completed for the error rate 

interference and the error rates for congruent and the incongruent trials analyzed 

separately. There were no significant main effects or interactions for the error rate 

interference. A trend for a group by time interaction was revealed for error rate in the 

incongruent trials, F(1,16) = 4.80 p<0.043. As seen in Figure 9, participants in the N-

IGMA group increased their error rate post-training for incongruent trials, whereas the 

Blockmaster group decreased their errors.  No significant effects were found for error rate 

in the congruent trials. 

There were also ANOVA’s completed for the response time interference effects 

and the response times for the congruent and the incongruent trials analyzed separately. 

There were no significant main effects or interactions for either the response time 

interference effects or for congruent and incongruent response times. 
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Individual Differences: Association between Improvements on the Trained Task 

and Outcome Measures 

 The second hypothesis for the study stated that improvements in outcome 

measures would be correlated with improvements in the trained task (N-IGMA). 

However, since there was little evidence that outcome measures improved more for the 

N-IGMA than the Blockmaster group; the hypothesis was extended to both training 

groups. To test these hypotheses for the two groups, correlation coefficients were 

calculated for individual training performance changes over time (i.e., the slope for 

training task performance versus training session) versus outcome change scores (post-

training minus pre-training) for all measures. The descriptive statistics for the change 

scores of each group are shown in Table 6. The results of all the correlations regarding 

the slope of average daily scores are shown in Table 2 for N-IGMA and Table 3 for 

Blockmaster. 

Individual differences: Initial Fluid Intelligence as a Predictor of Outcome Measure 

Changes 

 The third hypothesis was that improvements in outcome measures would be 

greater for participants who demonstrate higher initial CFIT scores in the N-IGMA 

group. This hypothesis was tested by computing correlations between pre-training CFIT 

scores and change scores for each outcome measures separately for the N-IGMA (Table 

7). There were significant correlations seen in the N-IGMA group. 

 The pre-training CFIT scores correlated with the change in the overall OSPAN 

scores (r = .848 p=0.004) and response time interference effects (r = .749, p=0.02), in the 
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N-IGMA group, however both are only considered meaningful trends. When response 

time interference effects were separated into congruent and incongruent response times 

there were no additional significant findings or trends. 

To further explore the influence of individual differences of initial fluid 

intelligence on change in the outcome measures the Blockmaster group was also 

analyzed.  However, unlike the N-IGMA group, there were no significant correlations in 

the Blockmaster group (Table 8). 

Individual differences: Starting level on the training task as a predictor of changes 

in the outcome measures  

To further explore individual differences and how they may predict changes in the 

outcome measures, the starting N-level participants began their at-home training sessions 

on were correlated with the change scores of the outcome measures. The starting N-level 

was calculated as the y-intercept of the average daily N-level achieved per participant for 

the N-IGMA group, providing an estimate of the performance on the first day of training. 

There were no significant findings for the N-IGMA group as shown in Table 4.  

The starting level on Blockmaster was also correlated with the change scores of 

the outcome measure to determine if starting level in Blockmaster relates to any changes 

in the outcome measures. The starting level participant began their training sessions in 

Blockmaster was calculated as the y-intercept of the average daily high scores of the all 

the training sessions. Unlike the starting N-level of the N-IGMA, there was a strong 

positive correlation between the y-intercept and the overall change in the SymSpan task 
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(r = .846, p = .002, seen in Figure 10), and with a meaningful trend in the overall change 

in the MoveSpan task (r = .717, p= .019, seen in Figure 11), as shown in Table 5.  

Working Memory for Observed Actions 

 The last hypothesis was that the measures of the MoveSpan measures will be 

correlated to the SymSpan task measures but not to those of the OSPAN. The hypothesis 

was tested by performing correlations first to compare the pre-training overall scores for 

the MoveSpan to the SymSpan task and the OSPAN. Secondly, correlations were then 

used to compare the change scores for the MoveSpan to the SymSpan task and the 

OSPAN. 

 The pre-assessment scores for the MoveSpan task and the SymSpan task 

demonstrated a positively correlated trend r = .468, p = .043 as shown in Table 9. The 

MoveSpan and OSPAN were not significantly correlated. There were no significant 

results for the change scores seen in Table 10. The post-training scores for the MoveSpan 

and the SymSpan were significantly correlated r = .675 p = .002, the MoveSpan and the 

OSPAN were significantly correlated r = .695, p = .001. The post-training scores are 

shown in Table 11.  

 There were no additional significant results for either the pre-training, change, or 

post-training scores when set size four and five were analyzed separate from set size 2 

and 3, only the overall scores revealed any significant findings.  
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Chapter 5: Discussion  

 There were three goals for the current study: first, to provide further evidence for 

transfer of learning effects from working memory training; second, to determine if our 

custom-designed working memory training game, known as the N-IGMA has efficacy 

compared to an active control condition; third, to explore the properties of working 

memory for observed action in relation to other working memory domains. The 

hypotheses were (1) compared to the active control group, the experimental group (N-

IGMA group) will exhibit significantly higher improvements of scores on all outcome 

measures including fluid intelligence measured by the CFIT, attentional control measured 

by the Stroop task, and working memory span measured by the OSPAN, SymSpan, and 

MoveSpan task; (2) the improvement of scores on the outcome measures will be 

correlated with improvements on the training tasks in the N-IGMA group; (3) the 

increase of scores on the outcome measures will improve more with participants who 

demonstrate higher CFIT scores during pre-training than those with lower CFIT scores; 

(4) the change in scores of the MoveSpan between pre-training and post-training will be 

correlated with the change in scores of the SymSpan task but not with the scores of the 

OSPAN task. 

Both the N-IGMA and the Blockmaster groups improved at their respective 

training task over the course of the 15 training sessions, confirming engagement in the 

task and attention to instructions. However, there was little evidence to support the first 

and second hypothesis. In the outcome measures that showed significant change from 

pre-test to post-test, the differences were equivalent for the N-IGMA and Blockmaster 

groups, and furthermore the degree of improvement on the training task was unrelated to 
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changes in the outcome measures. There is little evidence to support the third hypothesis 

that individuals who exhibit higher initial fluid intelligence scores would improve their 

scores on the outcome measures more than those with lower initial fluid intelligences 

scores. There is some evidence to support the fourth hypothesis that the MoveSpan task 

overlaps to some extent with the SymSpan task.  

 The results from this study show little evidence that playing the N-IGMA is 

superior to an active control task (Blockmaster) at facilitating transfer of learning effects 

to fluid intelligence.  The CFIT scores used to measure fluid intelligence include four 

subtests, only two of which demonstrated meaningful trends and significant post-training 

effects (subtest two, classification, and subtest four, conditions) in addition to the overall 

CFIT score. As well, there was a meaningful trend for a group main effect seen for CFIT 

subtests four, showing that participants in the N-IGMA group had higher pre- and post- 

training scores than the Blockmaster group (Table 1) but there was no interaction.  

 The results of CFIT subtest four were similar to those of Clouter (2013), which is 

the only other study to have used the CFIT to measure the effects of working memory 

training. Clouter demonstrated that training on an n-back task for three weeks while 

staying at an N=1 level (active control group), or progressing to new N-levels based on 

performance (experimental group) both led to significant improvements on the CFIT 

subtest four. It was postulated by Clouter that these improvements may either be due to 

test-retest effects or an overlapping cognitive system may be used for both the N-back 

task and CFIT condition subtest four. This would suggest that the mere engagement of 

working memory is sufficient to produce gains on this CFIT subtest, and that continuous 

increases in difficulty are not necessary. Other research supports this idea, suggesting that 
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the dual adaptive n-back task may not be necessary to influence aspects of fluid 

intelligence (Jaeggi et al., 2010).  However, the significant time main effect found in the 

present study may suggest the test is also sensitive to test-retest effects.  

 The non-significant main effects and interaction for CFIT subtest three (matrices) 

is opposite to the findings of Clouter (2013), who demonstrated significant improvements 

in participants who played the adaptive dual n-back task but not a non-adaptive dual n-

back task. Furthermore, the present findings are inconsistent with other previous research 

which demonstrate that N-back training facilitated transfer of learning improvements in 

matrix-like fluid intelligence tasks (Raven’s Advanced Progression Matrices and the 

Bouchumer Matrices) – tasks thought to evoke the same inductive reasoning for spatial 

relationships as required for the CFIT subtest three (Jaeggi et al., 2008; Jaeggi et al., 

2010; Jaeggi et al., 2011). The reason for this difference is currently unknown.  

  The results for the OSPAN task also provide little evidence the N-IGMA was 

superior to Blockmaster at facilitating transfer of learning effects to verbal working 

memory since performance improved for both groups. It is speculated that the 

improvements seen in both groups might reflect simple test-retest effects and not transfer 

of learning from either task. Previous research investigating the reliability of the OSPAN 

by Klein & Fiss (1999) found significant improvements of the participants scores 

between testing time one and time two, separated by three weeks, but no difference from 

testing time two and time three which occurred six-seven week apart. Klein & Fiss 

(1999) attributed these improvements between time one and time two to have occurred to 

test-retest effects.  
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 An alternative possibility to the test/retest hypothesis is that verbal working 

memory benefits from equivalent transfer of learning effects from both Blockmaster and 

N-IGMA training. This possibility seems unlikely; however, given that the OSPAN is a 

test of verbal working memory and Blockmaster is a visuospatial task that involves little 

if any working memory. Thus, the current findings appear to indicate that the OSPAN is 

sensitive to test/retest effects, at least in this young population, and that N-back training 

does not facilitate transfer of learning effects to this particular test (Jaeggi et al., 2008; 

Jaeggi et al., 2010; Kane et al., 2007). 

  Jaeggi et al. (2010) found that university-aged participants trained using an N-

back task did not demonstrate transfer of learning to the OSPAN task despite 

improvements to measures of fluid intelligence. They speculated that although both N-

back task and the OSPAN are complex working memory tasks, the tasks have been 

shown to demonstrate little common variance (Jaeggi et al., 2010; Kane et al., 2007). 

This could be because N-back tasks require attention for relevant and irrelevant stimuli; 

recognition and familiarity based responding and processing, whereas the OSPAN 

requires more active recall, and attentional filtering and recognition (Jaeggi et al., 2010; 

Kane et al., 2007). Furthermore, the N-back task requires addition and deletion of 

information from working memory whereas the OSPAN task requires only maintenance 

of information in the face of distraction. This suggests that further research interested in 

improving verbal WMC should explore other methods of training, as well as other verbal 

WMC tests which may be less sensitive to test/retest effects. If the OSPAN is used, it 

may be advisable to perform two baseline assessments so that test/retest effects plateau 

prior to the training intervention (Klein & Fiss, 1999).  
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 The non-significant effects seen with the SymSpan task support the findings by 

Clouter (2013), who also did not see any significant transfer of learning effects from the 

N-back task to visuospatial working memory. This may suggest there is no overlap in the 

cognitive systems used in the N-back task and spatial working memory, although both the 

Brain Workshop used by Clouter, and the N-IGMA used here have visuospatial cues 

which are expected to require the visuospatial working memory system. Both the current 

and Clouter’s studies use the same visuospatial working memory test, the SymSpan task, 

thus it is possible that this task is not tapping into the same type of spatial working 

memory that is trained with N-back tasks.  

 It has been long postulated that attention is the underlying mechanism that 

connects working memory and fluid intelligence, acting as a portal for transfer of 

learning effects (Jaeggi et al 2011; Klingberg, 2010; Kane & Engle, 2003). Attention 

control is considered a role of the central executive (a component of working memory), 

and it is required during the Stroop task for task-goal maintenance, and filtering goal-

relevant (font colour) and irrelevant information (word) (Baddeley, 2003; Baddeley, 

2000; Conway et al., 2002; Kane & Engle, 2003). The results of the current study show 

no changes in the Stroop task reaction time interference effects and unexplainable 

changes for error interference effect for both groups after training. These findings occur 

despite the presence of meaningful trends and significant improvements for both groups 

in other cognitive tests like the CFIT and OSPAN.  This pattern is inconsistent with the 

idea that training on the N-IGMA or Blockmaster task is directly leading to changes in 

cognitive function, as one would expect that attention measures would change as well. 

These results provide some support for the earlier contention that the gains in the 
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cognitive measures seen in the current study might simply be due to test/retest effects 

rather than legitimate changes in cognitive capability.   

 The goal of transfer of learning is not limited to the cognitive training domains, 

and it has long been a topic of interest in motor skills learning. But unlike the cognitive 

training field, in which robust transfer of learning is a consistently stated goal, it is known 

there are limits for transfer of learning in sport (Magill, 2007). Positive transfer can occur 

for general domains such as general physiological adaptations (e.g. aerobic capacity) and 

general ability for decision making but movement or motor skills are often associated 

with negative transfer to other skills (Baker, Cote & Abernethy, 2003; Magill, 2007).  

Individuals experience negative transfer, when one motor skill hinders the initial 

performance of other new skills. For example if an individual who has played tennis for 

some time, then decided to switch to badminton, will initial experience negative transfer 

while trying to learn an forehand serve (Magill, 2007). These two motor skills might 

seem similar, given they are both forehand serves however they require a different action 

of the wrist which takes time adjust to when switching from one sport to another (Magill, 

2007).  

 Thus, in the motor learning fields there is an understanding of the spectrum of 

transfer of learning including negative and positive transfer. While in the cognitive 

research field there seems to be a certain level of expectancy that positive training should 

be occurring from the training of one cognitive function to another, even though it is not 

the case in other domains of human behaviours. Transfer of learning in cognitive training 

research may need to consider negative transfer, and zero transfer, and then devise a 

spectrum on which transfer of learning may or may not occur.  
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 To forge a transfer of learning spectrum for N-back training, a thorough 

understanding of the cognitive functions underlying complex task performance is 

required. The N-back task differs from other complex working memory tasks as it 

requires recognition, and rapid updating and inhibition of information. In contrast, 

complex span task such as the OSPAN and reading span task recruit active recall 

mechanics (Kane et al., 2007; Jaeggi et al., 2010). The difference in cognitive functions 

required to complete the N-back and other complex span task supports the accumulating 

evidence that the N-back task shares little variance with complex working memory test 

such as the OSPAN and RST (Kane et al., 2007; Jaeggi et al., 2010).   

 Additionally, the N-back task may require greater attentional control than the 

complex working memory task. For example the N-back requires more attentional control 

processes for inhibition and interference from competing and irrelevant stimuli. 

Attentional shifting is required for retrieving stimuli which are no longer in the 

attentional focus (Jaeggi et al., 2010). The extent of attentional control activation may be 

more demanding for the N-back than for the complex working memory task, and may 

underlie the lack of shared variance between the tasks.  Additionally the N-back task 

correlates better to short-term memory than WM, and also correlates to fluid intelligence 

better than working memory (Jaeggi et al., 2010).  

 In short, predictions about near and far transfer of learning effects require a 

comprehensive understanding of the cognitive functions underlying the tasks in question. 

Based on accumulating evidence related to N-back training, it might be reasonable to 

place complex working memory span tasks closer to the far end of the transfer spectrum, 

and short-term memory, fluid intelligence, certain components of attention closer to the 
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near end. It will be important to consider and determine if there are any implications of 

negative transfer, such as seen in motor skills, from N-back training. Reconsidering this 

more representative view of transfer of learning with N-back training may transform how 

to predict the success of transfer of learning to certain cognitive functions.  

Investigating Individual Differences: Training Task Performance and Outcome 

Measure Change 

 If improvements seen in cognitive tasks occur via transfer of learning from the 

training task, then it is logical to predict a correlation between the degree of training 

performance improvements on the N-IGMA and the magnitude of gains in the outcome 

measures. In contrast to the second hypothesis, no significant correlation was detected 

between the training performance in the N-IGMA and the changes in the cognitive tasks. 

This hypothesis was extended to include the Blockmaster group given the observed 

improvements in outcome measures, but no significant relationship was detected between 

Blockmaster training gains and changes in the outcome measures. Importantly, the 

improvements in the training tasks are due to legitimate gains in task performance 

capability, while any significant time main effect seen in the cognitive tasks shown in the 

current study are possibly due to test/retest effects, therefore the training task 

performance gains are not related to changes in the outcome measures. These results 

support Clouter’s (2013) findings that the performance change in the N-back task was not 

reflective of changes in the various outcome measures.  

 However, the above findings differ from those seen by Jaeggi et al. (2011) who 

found that individual gains on an N-back training task were predictive of transfer of 
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learning effects to fluid intelligence in children. They found when the children’s N-back 

performance was divided into low and high performance gains, only the group with larger 

gains in training performance demonstrated transfer of learning effects to fluid 

intelligence, and the participants with lower changes in training performance did not 

improve fluid intelligence scores. Jaeggi et al. (2011) also reported that initial fluid 

intelligence scores were independent, not predictive, of the training performance gains.  

Therefore, participants with the larger performance gains did not start with higher fluid 

intelligence. 

 The contradictory findings described above may relate to differences in the ages 

of the participants in the various studies. Jaeggi et al. (2011) studied children with the 

average age of 9, while both the current study and Clouter (2013) used university-aged 

participants. However, Jaeggi et al. (2008) found that training performance gains and the 

number of training days were predictive of gains in fluid intelligence in a university-aged 

sample (average age of 25.6). The participants trained using an N-back task for 9, 12, 17, 

or 19 days for approximately 25 minutes a day. These results suggest the difference 

between the ability of training performance to predict changes in fluid intelligence may 

not be a simple artifact of age.  

 Recently, Au et al. (2014) performed a meta-analysis of twenty studies between 

2008 and 2013, which measured transfer of learning to fluid intelligence using the N-

back task as a cognitive training tool. An aspect of this analysis examined moderators of 

successful transfer of learning from the N-back training. They found the parameters of 

training including starting n-level, training task performance, and session length, did not 

significantly relate to transfer to fluid intelligence. There were trends for starting level 
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and session length which suggested participants starting at a lower n-level had more to 

gain in fluid intelligence, and that shorter training sessions result in larger gains in fluid 

intelligence. They postulate that the latter occurs because shorter sessions are perceived 

as more attainable, enjoyable, and participants are more motivated to complete them.  

 An interesting finding from Au et al. (2014) was that monetary compensation 

demonstrated a negative trend on the success of transfer of learning. This negative trend 

suggested the more participants who were paid demonstrated less transfer of learning 

then those who received less compensation. Au et al. (2014) speculated that this negative 

relationship occurred as a reflection of intrinsic motivation. Therefore, it seems that 

transfer of learning may be heavily dependent on the participant’s motivation and less on 

their performance on the task itself.  

Investigating Individual Differences: Fluid Intelligence and Outcome Measures 

Changes 

 Correlational analyses were used to assess the potential influence of individual 

differences in pre-training fluid intelligence on changes in the various outcome measures. 

These analyses were performed for both the N-IGMA and Blockmaster groups to better 

understand the implications for initial fluid intelligence on changes in cognitive 

functions.  While there were some meaningful trends within the N-IGMA group, the 

initial fluid intelligence of the participants in the Blockmaster group did not predict any 

changes in the outcome measures. Furthermore, it is also important to note that there 

were no significant differences between the pre-training overall CFIT scores for N-IGMA 

and Blockmaster groups, Table 15. 
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 Within the N-IGMA group, initial CFIT scores did not correlate with either the 

training performance gains, the starting level of the N-IGMA, nor the change in the 

overall CFIT scores. These findings suggest that pre-training fluid intelligence does not 

predict success of playing the N-IGMA or transfer of learning effects for fluid 

intelligence. These general findings that initial fluid intelligence scores do not predict 

training performance gains are in agreement with the results seen by Jaeggi et al (2008) 

(discussed earlier) who found training related gains were not reflective of pre-existing 

individual differences of fluid intelligence.  

 Individual differences in the pre-training CFIT scores show a positive correlation 

trend with changes in the OSPAN in the N-IGMA group while there was no correlation 

with participants in the Blockmaster group, Table 8 and 9.  There are two possible 

reasons for this correlation to have occurred. First, it is possible that participants in the N-

IGMA group with higher fluid intelligence were able to improve their verbal working 

memory by more than those with lower initial fluid intelligence and that this 

improvement was dependent on the group the participants were in. This may suggest that 

individuals with higher fluid intelligence may benefit more from training on the N-IGMA 

in relation to changes in verbal working memory. However, this may only be specific to 

younger adults and additional speculation should not be made regarding other 

populations. For example, older adults with high and low fluid intelligence may both 

benefit from training. Therefore based on the current results and sample population, these 

findings should not be generalized without further research to specific target populations. 

 The second possibility for the correlation between the pre-training fluid 

intelligence and the change in the OSPAN is that individuals with higher pre-training 
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fluid intelligence may find the distractor task easier, thus making the task easier to 

complete. The distractor task requires participants to complete mathematic equations. If 

participants with higher fluid intelligence are able to complete the equations with little 

effort they may not be as distracting as those with lower fluid intelligence. These results 

highlight the importance of considering individual differences when assessing the success 

of cognitive training and require further investigation. As mentioned above, other 

complex verbal working memory span tasks should be considered in future research 

assessing verbal working memory. 

Investigating Individual Differences: Training Task Starting Level and Outcome 

Measures Changes  

 To further explore various individual differences that may influence changes in 

the outcome measures, consideration was given to the starting level on which participants 

began training for both N-IGMA and Blockmaster. There were no significant correlations 

between the starting N-level of the N-IGMA and any of the various outcome measures. 

Interestingly, there were meaningful trends for positive correlations with starting level of 

Blockmaster and changes in the SymSpan and the MoveSpan task, Table 5. This suggests 

the better the initial training performance on Blockmaster the more likely participants 

were to improve components of visuospatial working memory measured by the two tasks. 

 Blockmaster is a visuospatial task, which requires the implementation of strategy 

within the visuospatial domain; however, it does not have any direct working memory 

component. As discussed earlier, this task was chosen for the active control group 

because it has been used in other similar protocols (Green and Bavelier, 2003; Nouchi et 
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al., 2012). These findings suggest that cognitive functions required for planning and 

executing visuospatial strategies may overlap with the visuospatial working memory 

system, and that for this reason Blockmaster and Tetris might not be the best choice for 

active control groups. 

Working Memory for Observed Actions 

 An exploratory aspect of the current study was to determine if training in a 

working memory task with verbal and visuospatial information would produce transfer of 

learning effects for a working memory task using observed actions as stimuli. There is 

disagreement in the literature as to whether working memory for observed actions is a 

subcomponent of the visuospatial sketch pad or a separate component of the working 

memory system (Wood, 2007; Smyth & Pendleton 1989). If working memory for actions 

and visuospatial information overlap, one would predict a positive correlation between 

change scores for the SymSpan and MoveSpan tests  

 First of all, earlier analyses revealed no significant main effect of time or a group 

x time interaction for MoveSpan scores. Indeed a trend suggested a decrease in 

MoveSpan performance for the set size of four and the overall MoveSpan mean score 

from pre- to post-testing for both training groups. There seems to be only one plausible 

reason for this outcome, given that the task was equally difficult in the pre- and post-

testing sessions given the same avatar actions and a random distribution of action 

sequences in both phases. The decrease in performance at post-testing may reflect a lack 

of motivation or perhaps fatigue given that MoveSpan was the final task on the final day 

of the experiment.  
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 To directly assess the hypothesis that the change scores for the MoveSpan would 

be related to the change scores for the SymSpan, correlations were analyzed; however, 

the correlation analysis revealed no significant results or trends. To further investigate 

possible relationships between the WMC tests, correlations for the changes score of the 

SymSpan were compared to the OSPAN, and the MoveSpan was compared to the 

OSPAN. The goal was to determine if any of the changes seen in the OSPAN related the 

changes in either the SymSpan or the MoveSpan. The verbal and the visuospatial 

working memory systems, though considered separate systems share between 70 – 85% 

variance (Kane et al., 2004). Therefore, since there were significant changes in the 

OSPAN and none in either the SymSpan or the MoveSpan there should be no 

correlations. The correlation in the change scores did not reveal any relationship between 

the OSPAN and either the SymSpan or the MoveSpan.  

 Further exploring the relationship between the working memory span tasks, 

correlations were performed on the overall pre-training scores for each task unlike the 

previous analyses which focused on pre-post change scores. Interestingly, the correlations 

on the overall pre-training scores showed a meaningful trend with a positive correlation 

between the MoveSpan and the SymSpan task, Table14.  This relationship could suggest 

the MoveSpan is targeting, at least in part, the visuospatial sketch pad, the systems 

targeted by the SymSpan.  The correlation between the OSPAN and the MoveSpan did 

not reveal any clear trend, supporting the likelihood that separate systems were involved 

in the two tasks. The non-significant correlation between the OSPAN and the MoveSpan 

suggests the phonological loop was not targeted by the MoveSpan.  
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 Collectively, these correlations provide some validation of the MoveSpan task 

because the MoveSpan scores were related to a commonly used test of visuospatial 

sketch pad and not to a test tapping the phonological loop (Kane et al., 2004). The results 

from the pre-training correlations additionally provide evidence that the SymSpan and the 

OSPAN target separate working memory systems. This adds support to the working 

memory model proposed by Baddeley and Hitch for the separate visuospatial and verbal 

working memory components. Further research is required to validate the MoveSpan as a 

measure of complex working memory for observed actions.   

Future Research 

 There is a large body of evidence currently available in the cognitive training 

field, and it is important to start narrowing down the different factors that influence the 

success of cognitive training. The factors can range from the features of the training game 

being used to individual differences in initial ability.  Future research in working memory 

training should consider how individual differences such as fluid intelligence and training 

performance influence the magnitude of transfer of learning effects to other cognitive 

functions. Considerably more effort should be made to understand the specific cognitive 

functions required for the performance of specific training tasks and outcome measures 

given the notion of near versus far transfer of learning. It is possible, as discussed earlier, 

that even two tests of working memory function may engage quite different processes 

such as recognition versus retrieval, goal maintenance, and storing versus deleting 

information  
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 Future research into working memory for observed actions should test the 

MoveSpan for validity and reliability. It might be worthwhile to determine if improving 

working memory for observed action could help individuals gain more from motor 

rehabilitation. As this memory system is important to how we interact and understand our 

social interactions, it may have significant implications for individuals who experience 

difficulty in social settings and understanding body language.    

 While Tetris and its custom-designed relative Blockmaster have been used in 

previous research as an active control, the current study suggests that these might not be 

ideal control tasks as they might produce more transfer of learning than anticipated. An 

ideal active control task should be matched for the time spent interacting with the 

computer in the experimental group, while not impacting any cognitive functions. It is 

possible the strategy components of Blockmaster (e.g., positioning blocks in such a way 

to permit the maximum accumulation of points when a specific shape appears) may 

require enough cognitive functions to influence transfer of learning if played consistently 

enough.  

Limitations and Delimitations 

 The significant limitation of the current study was the small sample size, with a 

total of 19 participants included in the data analysis, 9 in the N-IGMA and 10 in 

Blockmaster. More participants would have given the analyses greater statistical power. 

A delimitation of the study was the population used. The participants recruited were 

healthy young adults between the ages of 19 – 30 with no indication of cognitive 

difficulties; as such, the range of cognitive capabilities was relatively narrow, possibly 
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restricting the potential to detect significant correlations. All of the participants were 

students with the exception of two. It is possible that this age limit and the sample 

population, being primarily comprised of students who activity engaging in learning, may 

not be sensitive to the benefits of the N-IGMA. The N-IGMA may therefore be better 

suited for individuals with cognitive deficits and those who are not actively engaged in 

learning.  

 An additional delimitation was the length of the training intervention and the 

absence of a follow-up in the months following the post-training assessment. While the 

length was specifically chosen based on previous research (Clouter, 2013), it is possible a 

longer training period may have facilitated strong transfer of learning effects. As well, 

some previous research has used three month follow-up to determine if transfer of 

learning effects can be maintained over time without additional cognitive training (Jaeggi 

et al., 2011). Additional follow-up testing in weeks or months after the completion of 

training may help decipher between learning effects and test-retest effects.  

 The stimulus set changes used in the N-IGMA were to maintain participants’ 

motivation and engagement to the task. However, the reset to N=1 with each new 

stimulus set may result in a decrease of motivation and it may hinder the success of the 

task. Some participants may have found certain stimulus sets to be more challenging than 

others and this may have resulted in a decrease of motivation and engagement. There was 

no direct measure taken to determine if participants enjoyed playing the N-IGMA or 

Blockmaster. The results of the current study demonstrated both groups completed 

approximately the same number of training sessions; however, we are unable to 

determine if both training tasks were equally enjoyed or if the groups simply 
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demonstrated high compliance. Future research should consider a quantitative measure of 

enjoyment, to further understand the engagement and enjoyment of playing the N-IGMA.   

 Learning the structure of the N-IGMA task may have been a difficult path to 

learning for some participants compared to others and may have hindered their initial 

performance. As well, participants who found the task to be harder than others may not 

have been as motivated and engaged in the task while completing the at-home training 

sessions. Blockmaster, however, may not have been novel enough. Tetris is a well-

known, casual game to play. The version of Blockmaster used did not have any changing 

stimuli, and may need to have changing stimuli colours to be more novel.  

 Using an active control group is a delimitation of the current study and highlights 

the absence of a passive no-contact control group. Had a passive no-contact control been 

used, data analysis could determine whether or not the results of the current study are due 

to test re-test effects. Active control groups theoretically replicate the concept of a 

placebo group in pharmaceutical research; control for adherence to the training schedule 

and computer use. Therefore, based on the current trends and recommendation in current 

research, a passive no-contact control group was not used in the current study. 

 There were several factors out of the control of the researchers as the participants 

completed the tasks at-home. This was a known delimitation of this study as we 

purposefully planned to have the training sessions completed at-home and online, instead 

of requiring participants to come into the laboratory every day. Recent research has 

suggested there may be a benefit to completing training in the laboratory, suggesting 

training completed at-home is not as effective for facilitating transfer of learning effects 
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(Lampit, Hallock, Valenzuela, 2014). The participants were told to complete the tasks in 

distraction-free environments and in one sitting if possible. If participants were in 

distracting environments while playing the N-IGMA they would have had difficult 

attending to all the cues and this would have hindered their performance.  

 There were several different researchers involved with the collection of the data 

that may have caused some researcher bias in the way how the assessments were 

administered and how the training was given. Before testing the assessors and trainers 

were trained on the their corresponding task, all completed at least three practice trials 

before assessing or training participants used for data collect. The assessors were required 

to read the assessment protocols directly to ensure participants all heard the same 

instructions. The trainers were given more freedom with the training protocols, and had 

written manuals to use as guidelines. There was a fair distribution of assessors and 

trainers between the N-IGMA and Blockmaster seen in Table 16, and reflects the 

availability of the researchers involved.   

Conclusion 

 Analysis of the outcome measures revealed no clear benefit for the N-IGMA as 

compared to Blockmaster since both groups improved equally on several measures. The 

improvements could be due to simple test/retest effects, however, it is equally plausible 

that Blockmaster is more effective than expected, perhaps targeting a working memory 

system and certain components of fluid intelligence. Games such as Blockmaster have a 

certain level of strategy-building involved, and it may be feasible that the visuospatial 
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system targeted to complete the strategy building may be enough to improve components 

of working memory and fluid intelligence alike.  

 While the results of this study did not find any clear evidence of transfer of 

learning, the quest to continue to discover why some N-back training protocols lead to 

positive transfer effects need to be continued. Further consideration needs to be given to 

the individual differences that help explain positive and negative transfer of learning in 

working memory training. There were some indications in the current study that pre-

training fluid intelligence had an impact, noted by positive correlations in the N-IGMA 

group and not the Blockmaster group; these possible linkages need to be explored. The 

further evolution of transfer of learning, and our understanding of the n-back task, will 

aid in the successful pursuit of effective working memory training interventions.  

 Lastly, the results of the current study suggest that there is some overlap between 

the MoveSpan and the SymSpan, which we suggest is the visuospatial sketch pad. The 

working memory system for observed action needs to be further explored. Broadening 

the literature for this system and understanding better how we use the system to 

understand the environment around us, may lead to a bridge between cognitive training 

and the motor training research fields. 
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Appendix A: Self-Reported Screening Form 

Code:_________________     Date:___________________ 

Email address: Gender: 

Phone number: Writing hand: 

Date of birth: Education (years in school): 

Age: First Language: 

Language in school: 

 Occupation: 

Medical Information 

What is your general state of health?       Excellent     Very Good     Good     Fair     Poor 

Have you ever been diagnosed or treated for a head injury with loss of consciousness?  

Do you have any other neurological problems (e.g., MS, Seizures, movement disorder)? 

Do you have any psychiatric problems (e.g., a diagnosis of depression, anxiety disorder)? 

Do you have any learning disabilities (e.g., attention deficit disorder or dyslexia)? 

Medications 

 

Computer Experience (within last six months): 

How many hours per week do you use a computer? 

What are the three computer programs that you use most often? 

1. 

2. 

3. 

Video Gaming Experience (within last six months): 

How many hours per week do you play video games? 

What are your top three games, and what is the highest level that you have reached in 

each game? 

1. 

2. 

3. 
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Appendix B: Example of Recruitment Poster 
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Appendix C: CFIT example. 

 

Figure 1. Depiction of the CFIT subtests.  

  



84 

 

Appendix D: The OSPAN task. 

 

 

 

Figure 2. Depiction of the OSPAN (Clouter, 2013).  
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Appendix E: Example of the symmetry span task 

 

 

Figure 3. Depiction of the symmetry span task (Clouter, 2013). 
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Appendix F: The Stroop task 

 

 

 

Figure 4. Depiction of the Stroop task (Clouter, 2013).  
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Appendix G: The MoveSpan task           

 

 

 

Figure 5. Depiction of the MoveSpan task (Wood, 2007). 
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Appendix H: Informed Consent 

 Department of Psychology 

Halifax, Nova Scotia 

Canada  B3H 4J1 

Tel:  902.494.3417 

Fax:  902.494.6585 

www.dal.ca/psychology 

 

 

 

CONSENT FORM 

 

Title of study: The Impact of Computer Based Activities on Thinking and Memory Tests   

 

Introduction 

We invite you to take part in a research study, supervised by Dr Raymond Klein 

(Principal Investigator) & Dr. Gail Eskes (Site Investigator). Your participation in this 

study is voluntary and you may withdraw from the study at any time. The study is 

described below. This description tells you about the risks, inconvenience, or discomfort 

which you might experience. Participating in the study might not benefit you, but we 

might learn things that will benefit others. You should discuss any questions you have 

about this informed consent with the person conducting it.  

 

What is the purpose of this? 

The purpose of this study is to investigate different computer activities and their 

influence on different neuropsychological tests. 

 

What you will be asked to do? 

You will be asked to answer general non-revealing demographic questions and questions 

about your gaming experience.  Overall we will meet with you two times for 2.5 hours.   

During your first visit, you will be given a variety of thinking and memory tests for 2 

hours.  The investigator will then walk you through a tutorial session of your computer 

activity.  Subsequent sessions will be performed from your own laptop using an external 

mouse for up to 30 minutes a day, 5 days a week, for three weeks.  Your last session will 

be completed in the lab (3 weeks later) with the same tests as performed during your 

initial visit.  The outcomes of this study will help us better understand the impacts of 

different computer activities on different types of thinking and memory tests.   

 

Who can participate (Inclusion Criteria)? 

1. Healthy (by self-report) adults (between 19-30 years of age).  

2. Persons with normal or corrected-to-normal visual acuity. 

3. Those who play less than one hour of video games per day (in an average week). 

4. Persons with own laptop with external mouse. 

5. Highly fluent in English. 
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Who cannot participate (Exclusion Criteria)? 

1. Self-reported history of head injury with loss of consciousness 

2. Self-reported history of any neurological or neurosurgical disorder i.e., stroke, 

epilepsy, Parkinson’s disease, Huntington’s disease, Multiple Sclerosis. 

3. Self-report of treatment for severe psychiatric disorder that would interfere with 

testing (e.g., depression or anxiety). 

4. Self-report of learning disabilities (e.g., attention deficit disorders or dyslexia). 

 

Who will be conducting the research? 

 

Dr. Raymond Klein  Dr. Gail Eskes   Dr. Joshua Salmon 

Principal Investigator  Co-investigator  Researcher, Contact Person 

Dalhousie University  Dalhousie University  Dalhousie University 

ray.klein@dal.ca  gail.eskes@dal.ca  joshua.salmon@dal.ca 

    

Amy Heffernan, BSc   Kerry Clifton, BSc  Franziska Kintzel, MSc  

Graduate Student   Research Coordinator  Research Assistant   

Dalhousie University  Dalhousie University  Dalhousie University 

am568861@dal.ca  K.Clifton@dal.ca  fkintzel@dal.ca 

         

Richard Patrick  Amanda Glenn  Sarah Dolan, BScH 

Research Assistant  Research Assistant  Research Assistant 

Dalhousie University  Dalhousie University  Dalhousie University 

rationalrichard@gmail.com am723007@dal.ca  sarah.dolan@dal.ca 

 

Jacob Kroeker   Dr. Stephanie Jones   

Web-developer  Post-doctoral Research Fellow 

Dalhousie University  Dalhousie University 

jakekroeker@gmail.com stephaniejones03@hotmail.com 

 

Phone: (902) 494-4033 

 

Possible Risks and Discomforts 

There is minimal possibility of risk and discomfort. 

 

Possible Benefits 

There may be no direct personal benefits for completing this survey. Indirectly however, 

we hope to gain new knowledge to contribute to the design of better research protocols. 

 

Compensation 

Financial compensation will be available to all participants at a prorated amount of 

$10/hour. 

 

Students who participate in the study for credit will receive up to four bonus credit points 

towards their grade if they are in an eligible psychology class, following the Psychology 

department's REB-approved procedures, in addition to prorated compensation at 
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$10/hour for the rest of their time (for a maximum of 4 credit points + $ 80). Participants 

who either chose not to receive credit points, or are ineligible for points will receive 

prorated compensation for up to a maximum of 12 hours of time, or $120. Compensation 

will be prorated and reduced based on the number of completed sessions, meaning 

participants must complete all sessions to receive full compensation.  If you are unable to 

complete a minimum of 10 training sessions before the final assessment you will be 

withdrawn from study and not permitted to complete the final assessment. The 

website/server will keep track of how many sessions you complete.  

 

If you withdraw or are withdrawn by the researchers, at any point throughout the study, 

you will receive compensation for sessions you have completed to the point when you 

decided to withdraw or were withdrawn.   

 

Confidentiality  

Your data will be confidential and de-identified by labeling it with a maximum eight digit 

numeric code. You will not be identified in any reports or publications. You can indicate 

at the bottom whether you wish to have quotations used from you or not by checking the 

appropriate box. 

 

Your data will be collected with paper and pencil and/or computer and stored in a 

controlled-access building, in locked filing cabinets in Dr. Eskes lab, or online in 

encrypted, password-protected folders hosted on a password-protected server at 

Dalhousie University. Data will be stored for a minimum of five years in a locked filing 

cabinet in Drs. Klein or Eskes’ lab. Only Drs. Ray Klein, Gail Eskes, or qualified 

research personnel in their laboratories, will have access to your data. For contact 

information see page one of this consent form. 

 

Questions 

If you have any additional questions or concerns about this study, please feel free to 

contact us directly at 494-4033. 

 

 

Ask for:  

Dr. Joshua Salmon          

Joshua.salmon@dal.ca       

 

Problems or Concerns 

In the event that you have any difficulties with, or wish to voice a concern about, any 

aspect of your participation in this study, you may contact member of the Human 

Research Ethics / Integrity Coordinator at Dalhousie University’s Office of Human 

Research Ethics and Integrity for assistance. Phone: 494-3423, Email: ethics@dal.ca 
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Appendix I: Trainer Emails to Participants 

Day 3 

 Email participant to determine if they are having any problems. 

Email: 

Hi (participant’s name) 

It’s (Your name) from the computer activity study you’ve signed up for. I would like to 

thank you again for signing up to participant in our study; your participation is very 

valuable to us. 

How are you doing with your daily activity, have you encountered any problems, or have 

any questions or concerns?  

Please remember to be tracking your results on your computer activity log, and to be 

minimizing distractions while completing your activity! 

Thank you, 

(Your name) 

Day 6 

 Email participant. 

 Change config files to Congfig 2, week 2. 

Email: 

Hi (participant’s name) 

Thank you for completing week 1 of our study, you have now completed __ daily 

activities. (Add comments based on their performance, e.g. you have completed all of 

them, great work! Or you’ve completed 4, great work! As a reminder in the next week 

you are able to complete 6 sessions to keep yourself on track to complete all 15 

activities.)  

Do you have any questions or concerns?  

I would like to remind you that tomorrow the clues that you hear and see will change. 

Tomorrow you will see a lighthouse.  Each clue presented will be a picture of the same 

lighthouse, however the position of the lighthouse will change; therefore, you are looking 

for back-to-back matches where the lighthouse is in the same position. The auditory clues 

will change to numbers instead of letters, but the goal is still the same: you are listening 
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for back-to-back matches of the number clues. When the activity begins, you will start at 

level 1; this is a function of the program. 

Are you finding it challenging to minimizing distractions while you are completing your 

activity? 

Thank you, 

(Your name) 

Day 13 

 Email participant. 

 Change config files to CogFig 3, week 3. 

Email: 

Hi (participant’s name) 

Thank you for completing week 2 of our study, you have now completed __ daily 

activities. (Add comments based on their performance, e.g. you have completed all of 

them, great work! Or you’ve completed 4, great work! As a reminder in the next week 

you are able to complete 6 sessions to keep yourself on track to complete all 15 

activities.)  You’re almost done! 

How have you been finding doing the daily activity? Have you been able to successfully 

minimizing distractions while you are completing your activity? 

I would like to remind you that tomorrow the clues that you hear and see with change. 

Tomorrow you will see different landscapes.  The goal is the still the same, you are 

looking for back-to-back matches of the same landscape image. The auditory clues will 

change to words from the phonetic alphabet such as alpha and bravo, but the goal is still 

the same: you are listening for back-to-back matches. When the activity begins you will 

start at level 1; this is a function of the program. 

Also, just a reminder that your final assessment is scheduled for ___, if you have any 

problems or need to reschedule please contact me as soon as you can. 

Please remember to be tracking your results on your computer activity log! 

Thank you, 

(Your name) 

Day 19 
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 Email participant 

Hi (Participant name) 

Congratulations you have completed phase 2 (if done all activities!) Now all you have to 

do is come back into the lab for your final assessment _____.  

Or congratulations you have almost completed phase 2, you have 2 days to complete your 

activities, then you will have completed phase 2, then all you need to do is return to the 

lab. 

Please remember to bring in your computer activity log. 

The assessment will be at the same location as your first assessment in the Life Science 

Research Institute (which is attached to the Tupper building) at 1348 Summer Street, on 

the second floor. 

If you have any problems or need to reschedule please contact me as soon as you can. 

Thank you, 

(Your name) 

Trainer’s Manual for Blockmaster Users 

Day 3 

 Email participant to determine if they are having any problems. 

Email: 

Hi (participant’s name) 

It’s (Your name) from the computer activity study you’ve signed up for. I would like to 

thank you again for signing up to participant in our study; your participation is very 

valuable to us. 

How are you doing with your daily activity, have you encountered any problems, or have 

any questions or concerns?  

Please remember to be tracking your results on your computer activity log and to be 

minimizing distractions while completing your activity! 

Thank you, 

(Your name) 
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Day 6 

 Email participant  

Email: 

Hi (participant’s name) 

Thank you for completing week 1 of our study, you have now completed __ daily 

activities. (Add comments based on their performance, e.g. you have completed all of 

them, great work! Or you’ve completed 4, great work! As a reminder in the next week 

you are able to complete 6 sessions to keep yourself on track to complete all 15 

activities.)  

Do you have any questions or concerns?  

Are you finding it challenging to minimizing distractions while you are completing your 

activity? 

Thank you, 

(Your name) 

Day 13 

 Email participant. 

Email: 

Hi (participant’s name) 

Thank you for completing week 2 of our study, you have now completed __ daily 

activities. (Add comments based on their performance, e.g. you have completed all of 

them, great work! Or you’ve completed 4, great work! As a reminder in the next week 

you are able to complete 6 sessions to keep yourself on track to complete all 15 

activities.)  You’re almost done! 

How have you been finding doing the daily activity? Have you been able to successfully 

minimizing distractions while you are completing your activity? 

Also, just a reminder that your final assessment is scheduled for ___, if you have any 

problems or need to reschedule please contact me as soon as you can. 

Please remember to be tracking your results on your computer activity log! 

Thank you, 
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(Your name) 

Day 19 

 Email participant 

Hi (Participant name) 

Congratulations you have completed phase 2 (if done all activities!) Now all you have to 

do is come back into the lab for your final assessment _____.  

Or congratulations you have almost completed phase 2, you have 2 days to complete your 

activities, then you will have completed phase 2, then all you need to do is return to the 

lab. 

Please remember to bring in your computer activity log. 

The assessment will be at the same location in the Life Science Research Institute at 1348 

Summer Street, on the second floor.  

If you have any problems or need to reschedule please contact me as soon as you can. 

Thank you, 

(Your name) 
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Appendix J: Count of Self-Reported Video Games Played 

Self-Reported Video Games Played 

  N-IGMA Blockmaster 

Call of Duty 1 0 

Candy Crush 4 1 

Diablo 0 1 

Donkey Kong 1 1 

Jetpack joyride 1 0 

League of Legends 0 1 

Mario Cart 1 0 

Minion rush 0 1 

Sims 3 1 0 

Skyrim 1 0 

Solitaire 1 0 

Super Mario Party 0 1 

Super smash Bros 0 1 

Tetris 1 2 
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Appendix K: Tables 

Table 1 

 

Descriptive statistics, Within Subject (Pre- and Post-Training) and Between Subjects 

(Group) Interactions for Each Outcome Measure  

 Note. RT= response times. Cong = Congruent. Incong = Incongruent. Significant values 

of p<=.004 are noted with ‘*’. P-values between .05 and .004 considered trends are noted 

with ‘+’. 

 

 

 

 

 

 

 

Pre-training 

Mean (SD) 

N-IGMA

Post-training 

Mean (SD) 

N-IGMA

Pre-training 

Mean (SD) 

Blockmaster

Post-training 

Mean (SD) 

Blockmaster

Time Main Effect 

(Within Subject) 

(F-STATISTIC)

Time Main Effect 

(Within Subjects) 

(P-VALUE)

Interaction effect 

(Within Subject) 

(F-STATISTIC)

Interaction 

effect 

(Within 

Subjects)       

(P-VALUE)

Group Main 

Effect (Between 

Subjects)                  

(F-STATISTIC)

Group Main 

Effect 

(Between 

Subject)       

(P-VALUE)

CFIT Test 1 7.44(1.33) 7.89(1.36) 7.40 (1.65) 8.00 (1.5) 1.24 0.280 0.028 0.870 0.005 0.946

CFIT Test 2 5.89(1.27) 9.22(1.72) 6.20(1.75) 8.30(1.16) 64.42* <.001* 3.319 0.086 0.261 0.616

CFIT Test 3 7.22(1.40) 6.78(1.56) 6.90(1.20) 7.10(.88) 0.151 0.702 1.051 0.320 0.000 1.000

CFIT Test 4 6.89(.93) 8.90(1.05) 5.80(1.23) 7.60(1.08) 36.80* <.001* 0.102 0.753 9.50+ 0.007+

CFIT Overall 27.474(3.40) 32.78(2.91) 26.30(2.91) 31.0(3.06) 79.40* <.001* 0.316 0.581 1.280 0.274

OSPAN SS 2 5.89(.33) 5.78(.44) 5.70(.48) 5.60 (.70) 0.304 0.588 0.001 0.977 0.001 0.977

OSPAN SS 3 7.00(1.80) 8.00(1.50) 7.40(1.58) 8.10(.99) 5.05+ 0.038+ 0.157 0.697 0.193 0.666

OSPAN SS 4 7.33(2.12) 9.00(3.04) 8.50(2.68) 9.80(1.55) 7.70+ 0.013+ 0.118 0.736 1.038 0.323

OSPAN SS 5 6.78(3.67) 7.67(2.60) 8.20(2.30) 8.40(1.78) 0.755 0.397 0.302 0.590 1.073 0.315

OSPAN Overall 27.00(5.45) 30.44(6.58) 29.80(4.87) 31.90(3.38) 8.331+ 0.01+ 0.490 0.493 0.969 0.339

SymSP SS 2 5.78(.44) 5.56(1.33) 5.40(.84) 5.50(.71) 0.065 0.802 0.453 0.510 0.433 0.519

SymSP SS 3 6.11(2.47) 6.56(2.51) 7.70(1.70) 7.50(1.90) 0.11 0.744 0.736 0.395 1.903 0.186

SymSP SS 4 8.56(3.18) 8.44(3.32) 7.70(2.98) 9.30(3.06) 2.143 0.161 2.831 0.111 0.000 1.000

SymSP SS 5 6.33(2.70) 7.89(4.29) 8.40(3.84) 8.80(3.91) 2.687 0.120 0.938 0.346 0.855 0.368

SymSP Overall 26.78(7.17) 28.44(9.96) 29.20(7.70) 31.10(7.68) 3.316 0.086 0.024 0.878 0.491 0.493

MoveSP SS 2 5.89(.33) 5.67(.48) 5.80(.42) 5.50(.71) 2.869 0.109 0.064 0.804 0.509 0.485

MoveSP SS 3 7.22(1.48) 7.78(2.22) 8.00(1.56) 6.90(1.91) 0.345 0.564 3.193 0.092 0.005 0.943

MoveSP SS 4 8.33(2.82) 7.22(2.81) 7.50(2.37) 6.70(1.70) 4.56+ 0.048+ 0.121 0.732 0.430 0.521

MoveSP SS 5 5.44(2.83) 6.78(3.07) 7.20(2.04) 6.80(2.57) 0.466 0.504 1.609 0.222 0.787 0.388

MoveSP Overall 26.89(6.25) 27.44(7.45) 28.50(4.20) 25.90(4.89) 0.898 0.356 2.140 0.162 0.000 0.989

RT Interference Cong. .61(.08) .61(.11) .57(.09) .56(.09) 0.169 0.686 0.013 0.910 1.016 0.328

RT Interference Incong .78(0.17) .76(.15) .73(.12) .71(.14) 0.465 0.504 0.016 0.901 0.695 0.416

RT Interfernce Stroop .17(.10) .15(.06) .16(.10) .15(.10) 0.55 0.469 0.077 0.785 0.049 0.827

Error Interference Cong 1.69(2.24) 2.45(1.82) 1.93(2.10) 2.41(3.25) 1.331 0.265 0.069 0.796 0.011 0.918

Error Interference Incong 4.012(3.70) 6.48(5.73) 8.89(9.52) 3.06(2.76) 0.787 0.387 4.803+ .043+ 0.125 0.728

Error Interference Stroop 2.33(3.72) 4.03(6.00) 6.96(9.01) .64(4.58) 1.344 0.26 4.06 0.06 0.09 0.77
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Table 2 

Pearson Product Moment Correlations and Associated p-values for the Training 

Performance for Each Participant in the N-IGMA Group to the Change Scores for Each 

Outcome Measure.  

Note. RT= response times. Cong = Congruent. Incong = Incongruent. Change scores 

were calculated by post-training scores minus the pre-training scores.  

Table 3 

Pearson Product Moment Correlations and Associated p-values for the Training 

Performance for Each Participant in the Blockmaster Group to the Change Scores for 

Each Outcome Measure.  

 

Note. RT= response times. Cong = Congruent. Incong = Incongruent. Change scores 

were calculated by post-training scores minus the pre-training scores.  

Table 4  

Pearson Product Moment Correlations and Associated p-values for the Correlations 

Performed Between the Starting N-level for the N-IGMA Group Compared to the Change 

Score Calculated for each Outcome Measure.  

 

Note. RT= response times. Cong = Congruent. Incong = Incongruent. Change scores 

were calculated by post-training scores minus the pre-training scores.  

 

 

Pre-

Assessment 

CFIT Score

Change 

CFIT

Change 

OSPAN

Change 

SymSpan

Change 

MoveSpan

Change in 

RT Cong

Change in 

RT Incong

Change RT 

Interference

Change in 

Errors Cong

Change in 

Errors 

Incong

Change Error 

Interference

Y-Intercept 

N-IGMA

PCC 0.124 -0.437 -0.057 0.537 0.073 .158 .313 0.384 -.160 -.267 -0.202 -0.492

P-Value 

(2-tailed)
0.751 0.239 0.884 0.136 0.852 .685 .412 0.308 .680 .487 0.602 .179

Slope of 

average daily 

score of the 

N-IGMA

Pre-

Assessment 

CFIT Score

Change 

CFIT

Change 

OSPAN

Change 

SymSpan

Change 

MoveSpan

Change in 

RT Cong

Change in 

RT Incong

Change RT 

Interference

Change in 

Errors Cong

Change in 

Errors 

Incong

Change Error 

Interference

Y-Intercept 

Blockmaster

PCC 0.006 0.505 0.492 -0.213 0.151 .107 .263 0.302 0.072 0.304 0.156 -0.456

P-Value 

(2-tailed)
.988 .136 .149 .556 .677 0.769 0.463 .396 0.844 0.393 .667 0.186

Slope of 

average daily 

score of 

Blockmaster

Pre-

Assessment 

CFIT Score

Change 

CFIT

Change 

OSPAN

Change 

SymSpan

Change 

MoveSpan

Change in 

RT Cong

Change in 

RT Incong

Change RT 

Interference

Change in 

Errors Cong

Change in 

Errors 

Incong

Change Error 

Interference

PCC .093 .341 .091 -.034 .294 .045 .174 .251 -.495 -.008 .143

P-Value 

(2-Tailed) 
0.811 0.37 0.816 0.931 0.443 .908 .655 0.515 .176 .984 0.714

Y-Intercept 

of N-IGMA
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Table 5 

Pearson Product Moment Correlations and Associated p-values for the Correlations 

Performed Between the Starting Levels for the Blockmaster Group Compared to the 

Change Score Calculated for each Outcome Measure.  

 
Note. RT= response times. Cong = Congruent. Incong = Incongruent. Change scores 

were calculated by post-training scores minus the pre-training scores. Significant values 

of p<=.002 are noted with ‘*’. P-values between .05 and .002 considered trends are noted 

with ‘+’. 

 

Table 6 

Descriptive Statistics for the Training Performance and Outcome Measures for the N-

IGMA and Blockmaster Groups. 

 

 

  

N-IGMA Blockmaster 

Mean SD Mean SD 

Overall pre-training CFIT score 27.44 3.40 26.30 2.91 

Change CFIT score 5.33 2.69 4.70 2.21 

Change OSPAN score 3.44 3.00 2.10 5.00 

Change SymSpan score 1.67 4.64 1.90 3.90 

Change MoveSpan score 0.56 3.54 -2.60 5.52 

Change response time congruent 

trials 
0.00 0.07 -0.01 0.03 

Change response time incongruent 

trials 
-0.02 0.12 -0.01 0.09 

Response time interference effect -0.02 0.07 -0.01 0.07 

Change in errors for congruent 

trials 
0.77 2.22 -6.32 9.70 

Change in errors for incongruent 

trials 
2.47 6.87 0.48 2.48 

Error interference effect 1.70 7.31 -5.83 9.30 

Average daily N-level achieved 

(slope) 
0.11 0.09 133.55 107.67 

Starting level (y-intercept) 3.17 0.82 1963.89 1511.45 

 

Pre-

Assessment 

CFIT Score

Change 

CFIT

Change 

OSPAN

Change 

SymSpan

Change 

MoveSpan

Change in 

RT Cong

Change in 

RT Incong

Change RT 

Interference

Change in 

Errors Cong

Change in 

Errors 

Incong

Change Error 

Interference

PCC .357 -.531 -.354 0.833+ 0.703+ -.105 -.129 -.123 0.251 -0.291 .184

P-Value 

(2-Tailed) 
.311 .114 .316 0.003+ 0.023+ 0.772 0.722 .735 0.484 0.414 .610

Y-Intercept 

for 

Blockmaster
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Table 7 

Pearson Product Moment Correlations and p-values for the Correlations Between the 

Pre-training (pre-assessment) CFIT Score and Change Scores for all Outcome Measure 

for the N-IGMA Group. 

Note. RT= response times. Cong = Congruent. Incong = Incongruent. Significant values 

of p<=.002 are noted with ‘*’. P-values between .05 and .002 considered trends are noted 

with ‘+’. 

Table 8 

Pearson Product Moment Correlations and p-values for the Correlations between the 

Pre-training (pre-assessment) CFIT Score and Change Scores for all Outcome Measure 

for the Blockmaster Group. 

Note. RT= response times. Cong = Congruent. Incong = Incongruent. 

 

 

 

 

 

 

Change 

CFIT

Change 

OSPAN

Change 

SymSpan

Change 

MoveSpan

Change in 

RT Cong

Change in RT 

Incongruent

Change RT 

Interference

Change in 

Errors 

Cong

Change in 

Errors 

Incong

Change 

Error 

Interference

Slope of the 

N-IGMA

Y-Intercept 

N-IGMA

PCC -.565 0.848+ .416 .206 0.629 0.785+ 0.749+ -0.485 .245 .377 .124 .093

P-Value 

(2-tailed)
.113 0.004+ .266 .595 0.07 0.012+ 0.02+ 0.185 .525 .316 .751 .811

Pre-

Assessment 

CFIT Score           

(N-IGMA)

Change 

CFIT

Change 

OSPAN

Change 

SymSpan

Change 

MoveSpan

Change in 

RT Cong

Change in RT 

Incongruent

Change RT 

Interference

Change in 

Errors 

Cong

Change in 

Errors 

Incong

Change 

Error 

Interference

Slope of the 

N-IGMA

Y-Intercept 

N-IGMA

PCC -.312 -.056 .414 .365 0.34 -0.039 -0.217 -.118 .243 .263 .006 .357

P-Value 

(2-tailed)
.379 .878 .234 .299 0.336 .914 .548 .745 .499 .462 .988 .311

Pre-

Assessment 

CFIT Score 

Blockmaster
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Table 9 

Pearson Product Moment Correlations and p-values for the Correlations between the 

Overall Pre-training Scores for the OSPAN, SymSpan and the MoveSpan tasks.  

  
Overall pre-

training 

OSPAN score 

Overall pre-

training 

SymSpan score 

Overall pre-

training 

MoveSpan score 

Overall pre-

training 

OSPAN 

score 

PCC - 0.423 0.256 

P-Value 

(2-tailed) 
- 0.071 0.291 

Overall Pre-

training 

SymSpan 

score 

PCC 0.423 - .468+ 

P-Value 

(2-tailed) 
0.071 - 0.043+ 

Overall pre-

training 

MoveSpan 

score 

PCC 0.256 .468+ - 

P-Value 

(2-tailed) 
0.291 0.043+ - 

Note: Values considered trends between p-values of .05-.01 are marked with ‘+’. 

Table 10 

Pearson Product Moment Correlations and p-values for the Correlations between 

Overall Change Scores for the OSPAN, SymSpan, and MoveSpan tasks.  

  
Overall 

OSPAN 

change score 

Overall 

SymSpan 

change score 

Overall 

MoveSpan 

change score 

Overall 

OSPAN 

change score 

PCC - .084 .116 

P-Value 

(2-tailed) 
- .731 .638 

Overall 

SymSpan 

change score 

PCC .084 - .234 

P-Value 

(2-tailed) 
.731 - .334 

Overall 

MoveSpan 

change score 

PCC .116 .234 - 

P-Value 

(2-tailed) 
.638 .334 - 
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Table 11 

Pearson Product Moment Correlations and p-values for the Correlations between the 

Overall Post-training Scores for the OSPAN, SymSpan, and the MoveSpan tasks.  

  

  

Overall post-

training 

OSPAN score 

Overall post -

training 

SymSpan score 

Overall post -

training 

MoveSpan score 

Overall post -

training 

OSPAN score 

PCC - .581* .695* 

P-Value 

(2-tailed) 
- .009* .001* 

Overall post -

training 

SymSpan 

score 

PCC .581* - .675* 

P-Value 

(2-tailed) 
.009* - .002* 

Overall post -

training 

MoveSpan 

score 

PCC .695* .675* - 

P-Value 

(2-tailed) 
.001* .002 - 

Note: Significant results of p<=.01 are have an asterisk’s ‘*’. 

Table 12 

Counts for the Number of Time an Assessor and a Trainer Completed their 

Corresponding Tasks for each the N-IGMA and Blockmaster Groups. 

  Blockmaster N-IGMA 

Guessed 

correctly 

Assessors 

Assessor 1 5 6 45% 

Assessor 2 2 2 25% 

Assessor 3 3 0 0% 

Assessor 4 0 1 0% 

Trainers 

Trainer 1 2 2  

Trainer 2 5 5  

Trainer 3 3 2  

Note: After the post-training assessment was completed, each assessor was asked to 

guess which group the participant had been assigned to. This was used as a measure to 

ensure assessors maintain blinded to the group the participant was assigned. The percent 

of correct guesses are listed in the table.   
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Appendix L: Figures 

Figure 1. The average daily N-level achieved per participant. Day one is the first at-home 

training session. Six is the highest N-level possible in the N-IGMA. 

 

Figure 2. Average daily score achieved per participant in the Blockmaster group over the 

15 at training sessions. 
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Figure 3. Mean scores for the CFIT “classification” subtest (test two) measured at pre-

training and post-training, between the N-IGMA and Blockmaster groups. The results 

showed a significant time main effect, while the interaction effect did not reach 

significance.   

 

Figure 4. Comparing the mean score of CFIT “conditions” subtest (test four), measured 

at pre-training and post-training for both N-IGMA and Blockmaster groups. The results 

showed a significant time main effect. 
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Figure 5. Comparing the mean of CFIT overall score (sum of subtests 1-4) measured at 

pre-training and post-training for both the N-IGMA and Blockmaster groups. The results 

showed a significant time main effect. 

 

Figure 6. The mean number of words recalled for OSPAN set size 4 between pre- and 

post-training for both the N-IGMA and Blockmaster groups. Set size 4 requires 

participants to recall 4 words. The results showed a meaningful trend for the time main 

effect. 
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Figure 7. The overall mean number of words recalled during the OSPAN between pre- 

and post-training for both the N-IGMA and Blockmaster groups. The overall score 

includes set size 2 – 5. The results showed a meaningful trend for the time main effect. 

 

Figure 8. The mean number of observed actions recalled for set size 4 in the MoveSpan 

by both the N-IGMA and Blockmaster groups. The results showed a meaningful trend for 

the time main effect, and both groups decreased performance during the post-training 

assessement 
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.

Figure 9. The Stroop task error differences for incongruent trials between pre-training 

and post-training assessments for both the N-IGMA and Blockmaster groups. The results 

showed a meaningful trend towards an interaction effect. 

 

 

Figure 10. The line of best fit between the y-intercept of the average daily score for 

Blockmaster compared to the change in the overall SymSpan scores. 
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Figure 11. The line of best fit between the y-intercept of the average daily score for 

Blockmaster compared to the change in the overall MoveSpan scores. 
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