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Abstract

An unperturbed piece of glass is optically isotropic. Birefringence can be induced

by breaking this symmetry, for example by applying a uniaxial stress to the glass.

An empirical model exists which predicts when oxide glasses will exhibit positive,

negative or zero birefringence under stress. This model has been used to determined

new zero-stress optic oxide glass compositions; however, it has not been tested on

non-oxide systems, nor does it take into account the wavelength of the incident light.

The stress-optic response in chalcogenide glasses was investigated using

stoichiometric GeS2-P2S5 and GeS2-Sb2S3, and non-stoichiometric Ge-P-S. The trends

of the stress-optic response in stoichiometric non-oxide glasses correlated well with

predictions based on the empirical model for oxide glasses. Small differences between

the predictive parameter of the model, 〈d/Nc〉, were explained by expanding the

treatment of metallicity.

The wavelength dependence of the stress-optic coefficient for a large variety of

oxide glass formers and modifiers was measured. Glasses composed of positive

modifiers (e.g. BaO, CaO, Na2O) exhibited positive dispersion of the stress-optic

coefficient, while those with negative modifiers (e.g. PbO, SnO) showed negative

dispersion. Mixing positive and negative modifiers in a glass resulted in compositions

exhibiting wavelength independent stress-optic coefficients.

The photoelastic response of a material can also be described by its elasto-optic

tensor (pij). Isotropic materials have three elasto-optic tensor elements, two of

which are independent. These two independent elements were measured for lead

and barium borate, phosphate and silicate glasses using Brillouin spectroscopy. Both

elements were found to correlate with the empirical parameter 〈d/Nc〉, while the third

dependent element showed no relationship to the empirical model.

Finally, an alternative model of photoelasticity is discussed. The normalized

polarizability of a material is found to correlate with both the sign and magnitude of

the stress-optic coefficient.

xi



List of Abbreviations and Symbols Used

α, χ Total polarizability

αn Normalized polarizability

αC Measure of covalency

βL, βT Longitudinal or transverse part of bond polarizability tensor

∆ Phase shift of s- and p-polarized light

ε Dielectric constant

εC,A Intra-atomic matrix elements of the one-electron Hamiltonian

Γ Correlation term

θB Brewster’s angle

λ Wavelength of light

λ0 Absorption edge wavelength of a material

Λ Density dependence of the individual bond polarizability

ν Poisson ratio

πij, πijkl Piezo-optic tensor element

ρ Density

σ Applied stress

χb, π Individual bond polarizability

Ψ Amplitude ratio of s- and p-polarized light

ω Frequency of light

~ Planck’s constant

a, b, c Parameters of the pseudo-Cauchy fit

A, B, C Parameters of the Cauchy fit

b Birefringence

xii



B Magnetic field

Bij Inverse dielectric tensor

c Speed of light in vacuum

C Stress-optic coefficient

Cij, Cijkl Elastic tensor element

d Anion-cation bond length, or thickness of material

Dij Deformation potential

e Electron

E Young’s modulus, or band-gap energy, or bond energy

E Electric field

E0 Interband energy

Ed Dispersion energy

f Oscillator strength

FB Buoyancy

F Interband strength

G Shear modulus

H One-electron Hamiltonian

I Intensity of light

J Spectral density of scattered light

k Wavevector

L1, L2 Optical deformabilities of atoms’ polarizabilities

m Mass

M Molar weight, or interatomic matrix element of the one-e Hamiltonian

n Refractive index

N Avogadro’s number

xiii



Nc Cation coordination number

pij, pijkl Elasto-optic tensor element

P Polarization

P0 Power of incident light

q Charge

q Wavevector of scattered light

r Interatomic distance

R, T , A Reflection, transmission and absorption intensities

RC , RA Ionic radii

Rm Molar refractivity

s Applied strain

S Overlap integral for anion and cation orbitals

Sij, Sijkl Compliance tensor element

S0 Oscillator strength

u(t) Displacement vector

V Interaction volume

V, H Vertical or horizonal polarization of light

vL, vT Longitudinal or transverse sound velocity

Vm Molar volume

W Weight

x Molar per cent of additive

XH Hydrostatic stress

Za Formal anion valence

zb Mean numbers of bonds per molecular unit

xiv



DID Dipole-induced-dipole

EMP Electron microprobe spectroscopy

FP Fabry-Perot

IR Infrared

KK Kramers-Kronig

LCVR Liquid crystal variable retarder

RT Room temperature

TFPI Tandem Fabry-Perot interferometer

UV Ultraviolet

vis Visible

xv



Acknowledgements

There are many people who had a significant impact on my work and on my life, and

I would like to thank them.

Throughout my degree, I’ve worked on some really engaging research topics, but

more importantly, I’ve had the opportunity to work with a truly amazing supervisor.

Thank you, Joe Zwanziger.

A lot of my research relied on the contributions from and collaborations with

various individuals, and I would like to acknowledge them. Bruce Aitken and Steve

Currie prepared glass samples for this work. Jeff Dahn and Robbie Sanderson

provided access to and training for the ellipsometer. Leanne Chapman, Jacy Conrad,

Victoria Dickinson and Lisa Zhang worked with me for their summer research projects.

And the collection of the Brillouin spectra would not have been possible without John

Kieffer and Michael Aldridge.

I would also like to thank the faculty and staff at Dalhousie that have been

instrumental along the way. I am grateful to Kevin Hewitt and Kimberley Hall

for being on my committee. Andy George, Brian Millier, Mike Boutillier, Ulli

Werner-Zwanziger, and many others also provided support for this work: thank you.

And I’m very appreciative towards both Dalhousie and NSERC for supporting my

research financially.

My friends and colleagues have been such an important part of my experience here

in Halifax. You are too many to name, but know that the coffee dates, trivia nights,

board games, potlucks, parties, shop-talk, and time spent together have all meant a

great deal to me. I’m so thankful to my family for all of their love and support.

And to Will Gregory, thank you for everything.

xvi



Chapter 1

Introduction

Glass is everywhere. Beyond its common everyday applications, glass also has a wide

variety of technological uses. Oxide glasses are often used for optical lenses, projection

systems and sealing of electrical devices. Chalcogenide glasses are of interest for

optical amplifiers and laser sources. Examining the structure and properties of glasses

can help to identify practical technological applications.

The empirical model for photoelasticity proposed by Guignard et al. [1] has been

very successful at predicting the sign of the stress-optic coefficient of oxide glasses,

as well as new zero-stress optic compositions. However, its predictions are limited

to oxide glass compounds, and it does not address the magnitude of the stress-optic

response or the wavelength of incident light. The subject of this report is threefold.

First, the empirical model is tested using a non-oxide glass systems. Second, the

effect of different oxide glass modifiers is related to the dispersion of the stress-optic

coefficient in oxide glasses. And third, the complete elasto-optic response of oxide

glasses is determined using Brillouin spectroscopy. The main goal of this research

is to develop a theory that will predict IR glasses with zero birefringence as well as

broadband zero stress-optic oxide glasses. Alternative models of photoelasticity are

compared to the empirical model. In this way, a theory that considers not just sign

but also magnitude of the stress-optic response in glass is developed.

This thesis is organized into seven parts. Chapter 2 defines the stress-optic

response of a glass and describes the widely accepted theories of photoelasticity for

oxide glasses. The limited studies on the stress-optic response of chalcogenides are

summarized. Theories relating the wavelength of incident light to the stress-optic and

elasto-optic coefficients are described. And photoelastic theories that account for all

elasto-optic tensor elements are presented.

The theory and measurement techniques for the glass properties (elastic modulus,

density, stress-optic and elasto-optic coefficients, and refractive index) are given in

1
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Chapter 3. The principles of ellipsometry and Brillouin scattering and are presented,

and the spectroscopic ellipsometer and Fabry-Perot interferometer used to collect

data are described.

The results of the investigation on the stress-optic response of sulfide

glasses, including discussions of the empirical model and non-stoichiometric glass

compositions, are presented in Chapter 4.

The results of the wavelength-dependent stress-optic response of oxide glasses is

presented in Chapter 5. A pseudo-Cauchy model is developed to relate the stress-optic

coefficient to the incident wavelength.

The individual elasto-optic tensor elements are discussed in Chapter 6. Two of

the three tensor elements can be related to the empirical model of photoelasticity.

The third elasto-optic coefficient appears to be unrelated to glass composition.

An alternative polarizability model is discussed in Chapter 7. The polarizabilities

glass compositions are linearly related to the stress-optic coefficients. An empirical

model is suggested which allows predictions of the magnitude of C based on glass

composition.

Finally, in Chapter 8, the major results of the thesis are summarized and important

future work is presented.



Chapter 2

Background

Glass is an amorphous solid. It exhibits long-range atomic disorder similar to that

of a liquid, but the relative positions of those atoms are invariant. Most of the

properties of glass, as well as its outward appearance, are solid-like. One of the most

referenced theories of glass structure was developed by Zachariasen [2], who argued

that since the mechanical properties of glasses are similar to those of crystals, the

forces between atoms must be similar as well. The structural building blocks of a

glass network – cation polyhedra coordinated by oxygen or another chalcogen – are

then hypothesized to be the same or similar to those present in crystals. However, in

crystals, these polyhedra have repeating long-range order with different symmetries

present depending on the composition. Glasses do not have the same periodicity; the

cation polyhedra are randomly oriented in the glass network (pp. 13–59 of [3]).

A wide variety of materials can be made in the glassy state. Soda-lime-silicate

glasses made from soda ash (Na2CO3), limestone (CaCO3) and silica (SiO2) are the

most commonly used and least expensive commercial glasses. Many oxide glass

systems include other silicates, borates and phosphates. Modifiers such as barium

oxide, zinc oxide, and magnesium oxide can be added to form new glass families.

Moreover, glass can be made from non-oxide materials like fluorides, chlorides and

chalcogenides (pp. 1–11 of [3]).

Many properties of glasses show additivity relationships. That is to say the

property P can be determined from P =
∑

i pixi, where pi is the value of that property

for component i, and xi is the molar weight of that component in the glass structure.

Indeed, the optical properties of glasses are largely dependent on composition. The

refractive index (and also density) tends to vary linearly with the components of the

glass. The absorption edge wavelength shifts to higher values as heavier additives

are incorporated into the glass network. Generally speaking, oxide glasses tend to

have smaller indices of refraction and are transparent into the visible range of light.

3
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Chalcogenides, on the other hand, begin to transmit in the near-IR range and have

large refractive indices (typically > 2) and low phonon frequencies (typically < 450

cm−1).

Still, while empirical trends are apparent for some properties, there is much

left to be understood about the optical response of various glass compositions [4].

In particular, information on the Brillouin scattering of glasses, the wavelength

dispersion of the stress-optic response, and the photoelastic properties of non-oxide

glasses is sparse. To date, Brillouin measurements of the elasto-optic tensor have

focused primarily on silicate glasses; as such, the compositional dependence of pij

is uncertain. We will address this by measuring the complete elasto-optic tensor of

silicates, borates, and phosphates. The dispersion of the stress-optic coefficient has

also only been measured for a small number of silicate-based glasses, often with many

components; the direct effect of modifying the glass network is not well understood.

To explore this more closely, the wavelength dependence of the stress-optic coefficient

for simple binary and ternary glass systems will be determined. And the stress-optic

coefficient has only been measured for a small number of chalcogenide glass systems.

We will improve this by comparing stress-induced birefringence to glass structure for

both stoichiometric and non-stoichiometric sulfide systems.

2.1 Birefringence in Glasses

An unperturbed piece of glass is optically isotropic; its index of refraction is the same

in all directions. When the glass is stressed, however, this symmetry is broken. The

indices of refraction along the stress direction (extraordinary axis) and perpendicular

to this direction (ordinary plane) are altered from their unstressed values, often

by different amounts. This stress-induced change, shown in Figure 2.1, induces

birefringence in the glass,

b = ne − no. (2.1)

Here, ne is the refractive index measured along the extraordinary axis and no is the

refractive index in the ordinary plane. For stress loads within the elastic region, the

birefringence of a glass is proportional to the applied stress σ:

b = Cσ. (2.2)
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The constant of proportionality, called the stress-optic coefficient C, is used to

characterize the glass. Its unit is Brewsters, where B = TPa−1.

Figure 2.1: Uniaxial stress σ applied to a glass causes a change in the indices of
refraction parallel and perpendicular to the stress. This induces birefringence in the
glass, b = ne − no.

Piezo-optic tensor elements πijrs and elasto-optic tensor elements pijkl can also

be used to describe the stress-induced birefringence in glass. They are defined as

the tensors relating the applied stress or strain with the change in inverse dielectric

constant:

∆Bij = πijrsσrs = pijklskl. (2.3)

Here, Bij = (1/n2)ij = (1/ε)ij is the inverse dielectric tensor, σrs is the stress tensor,

and skl is the strain tensor [3, 5]. The tensor elements are related by pijkl = πijrsCrskl,

where Crskl is the elastic tensor. An abbreviated notation is often used for the

subscripts:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6.

Due to the isotropy of glass, there are three piezo-optic and elasto-optic tensor

elements, but only two are independent. The relationship between the three pijs

or πijs is

2p44 = p11 − p12,

2π44 = π11 − π12.
(2.4)
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Using the approximation ne ≈ no ≈ n, i.e. the change in refractive index is very

small, Equation 2.3 is solved for a uniaxial stress to show that

∆Be =
1

n2
e

− 1

n2
=
n2 − n2

e

n2
en

2
=

(n− ne)(n+ ne)

n2
en

2
=

(n− ne)(2n)

n4
= π33σ3 = π11σ3,

(2.5)

or

(n− ne) =
n3

2
π11σ3. (2.6)

Likewise, we can show that

∆Bo =
1

n2
o

− 1

n2
=
n2 − n2

o

n2
on

2
=

(n− no)(n+ no)

n2
on

2
=

(n− no)(2n)

n4
= π13σ3 = π12σ3,

(2.7)

or

(n− no) =
n3

2
π12σ3. (2.8)

Now the birefringence - and thus, the stress-optic coefficient - can be related to the

piezo-optical coefficients:

b = ne − no = −n
3

2
(π11 − π12)σ3 = Cσ3. (2.9)

These results are used experimentally to characterize the photoelasticity of a glass

sample. The stress-optic coefficient can be related to the shear piezo-optic tensor

element by

C = −n3π44 (2.10)

and to the shear elasto-optic tensor element through

C = − n
3

2G
p44, (2.11)

where G = C44 is the shear elastic modulus.

Glasses can have positive, negative or zero stress-optic coefficient C depending on

their composition. Most common glasses, including silicate, borate, and phosphate

families, exhibit positive birefringence. Heavy additives such as lead, bismuth,

tin and antimony oxide lower the stress-optic coefficient and can induce negative

birefringence with high enough content [1], pp. 478–482 of [3]. One of the first studies

on photoelasticity and its dispersion was done by Pockels in the early 1900s [6]. Since

that time, many attempts have been made to relate the stress-optic response of a

glass to its structure.
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2.2 Theories of Photoelasticity: Elasto-Optic Coefficients

It has been a long-standing goal to relate the elasto-optic tensor elements of

crystalline and amorphous materials to the properties of that material. Many

theories and models have been developed for specific crystalline structures or for

simplified amorphous networks, often relating photoelasticity to the polarizability

density tensor, the dielectric tensor, and the chemical bonding in the network. Some

authors consider both the nearest neighbour effects (often associated with changes

in bond or ion polarizabilities), as well as larger effects from induced-dipole fields.

Multi-component systems often have complex structures and polarizabilities, which

require more detailed theories; many models include a fitting parameter that is

determined experimentally to allow for compositional variations. However, there

currently exists no widely accepted model which allows for predictive determination

of the elasto-optic tensor elements for all glass families.

In the following sections, these previously developed theories and models of

elasto-optical properties of materials will be presented and discussed. Particular

emphasis will be placed on their successes and failures in predicting pij and their

applicability or extension to glassy networks.

2.2.1 Clausius-Mossotti Model

Perhaps the simplest model for the elasto-optic response of a material is derived

from the Clausius-Mossotti relation. This equation relates the dielectric constants

(or refractive index) of a material to its polarizability. The relation holds well for

isotropic, homogeneous materials such as gases, and can sometimes be applied to

other less perfect liquids and solids; see pp. 458–460 of [3], [7].

Typically, the total polarization P of a material is related to electric field E as

P = (ε− 1)ε0E = χE, (2.12)

where ε is the dielectric constant of the material, ε0 is the permittivity of vacuum,

and χ represents the total polarizability. Assuming that the total polarization results

from a sum of NL dipoles per unit volume, then

P = NLαE′, (2.13)
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where each dipole has mean polarizability α, and E′ is the local electric field on the

average dipole. For dense dielectrics (including glass), the local field is the sum of the

macroscopic field and a Lorentz field contribution dependent on polarization:

E′ = E +
1

3ε0
P. (2.14)

Then, combining Equations 2.12, 2.13 and 2.14 along with 4πε0 = 1 gives the

Clausius-Mossotti equation:

ε− 1

ε+ 2
=

4πNLα

3
=

4πNα

3Vm
=

4πNρα

3M
, (2.15)

where N is Avogadro’s number, Vm is the molar mass, M is the weight and ρ is

the density of the material. Note that substituting ε = n2 gives the Lorentz-Lorenz

equation:
4πNα

3
= Vm

n2 − 1

n2 + 2
= Rm, (2.16)

where Rm is called the molar refractivity.

By observing the change in Equation 2.15 with respect to density, and assuming

for the perfect, isotropic, homogeneous material that α has no density dependence

(or in other words, dα/dρ = 0), the dielectric response of a glass can be related to

the elasto-optic tensor elements by

3ρ
dε

dρ
= ε2(p11 + 2p12) = (ε− 1)(ε+ 2). (2.17)

On its own, this model does not fit the experimental results of diverse glass

systems. Other models often consider this as one of the terms contributing to the

photoelastic response [8–11].

2.2.2 Mueller’s Model

Mueller’s theory of photoelasticity for amorphous solids incorporates two additional

effects to the Lorentz-Lorenz model: changes in the Lorentz-Lorenz forces in the solid

(the lattice effect), as well as changes in the mean polarizabilities (the atomic effect)

due to strain deformations in the material [8, 9]. The local electric field on an average

dipole in a material is given by Equation 2.14; the Lorentz-Lorenz equation is given

for multi-atom systems by

n2 − 1

n2 + 2
= ρ

∑ 4πNαi
3Mi

, (2.18)
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where the sum is over atoms of the type i. However, this equation is valid for

homogeneous, isotropic materials. When a small strain z is applied to the material, it

will deform the network of atoms. This deformation will change the Lorentz-Lorenz

force in a way which depends on the local electric field. If a material is deformed

in the z-direction is such that the strain ellipsoid has the axial ratio 1:1:1+z, the

components of the local electric field become

E ′x = Ex +
Px
ε0

(
1

3
+

2

15
z

)
,

E ′y = Ey +
Py
ε0

(
1

3
+

2

15
z

)
,

E ′z = Ez +
Pz
ε0

(
1

3
− 4

15
z

)
.

(2.19)

The indices of refraction are found from substituting Equations 2.12 and 2.13 into

Equation 2.19:

n2
x − 1 =

∑ 4πNραi
Mi

[
1 +

(
1

3
+

2

15
z

)
n2
x − 1

ε0

]
,

n2
y − 1 =

∑ 4πNραi
Mi

[
1 +

(
1

3
+

2

15
z

)
n2
y − 1

ε0

]
,

n2
z − 1 =

∑ 4πNραi
Mi

[
1 +

(
1

3
− 4

15
z

)
n2
z − 1

ε0

]
.

(2.20)

Differentiating these terms about z = 0, and considering α to be constant with respect

to z, the elasto-optic tensor elements become

p12 =
1

3

(ε− 1)(ε+ 2)

ε2
− 2

15

(ε− 1)2

ε2
,

p11 =
1

3

(ε− 1)(ε+ 2)

ε2
+

4

15

(ε− 1)2

ε2
.

(2.21)

According to Mueller, the first term in Equation 2.21 is due to the change in

density with strain; its large magnitude does explain why p11 and p12 always have

positive value. The second term in the equation gives birefringence due to anisotropy

of the Lorentz-Lorenz forces. The shear elasto-optic coefficient is then 2p44 = p11 −
p12 = (n2 − 1)2/15n4. While of the correct order of magnitude, this prediction does

not describe the positive and negative stress-optic response of glasses.

Thus Mueller considered a second effect – the change in polarizability of the

atoms – to account for the positive and negative birefringence in glasses. Since the
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photoelastic effect tends to behave linearly, he considered linear response in α with

strain:
αz = α(1 + λ1z),

αx,y = α(1 + λ2z).
(2.22)

Then the elasto-optic tensor elements become

p12 =
1

3

(ε− 1)(ε+ 2)

ε2
− 2

15

(ε− 1)2

ε2
− L2

3

(ε− 1)(ε+ 2)

ε2
,

p11 =
1

3

(ε− 1)(ε+ 2)

ε2
+

4

15

(ε− 1)2

ε2
− L1

3

(ε− 1)(ε+ 2)

ε2
,

2p44 = p11 − p12 =
(L2 − L1)

3

(ε− 1)(ε+ 2)

ε2
+

6

15

(ε− 1)2

ε2
,

(2.23)

where L1 and L2 are the optical deformabilities of the atoms’ polarizabilities,

defined by L1,2 =
∑

(λ1,2Nα/M)i/
∑

(Nα/M)i. Depending on the values of L1

and L2, materials can have positive, negative or zero birefringence. Typically

the deformabilities are fitted to experimental results, with 0.6 ≤ L1 ≤ 1.0 and

0.1 ≤ L2 ≤ 0.3 depending on glass composition [10].

The elasto-optic tensor element p44 given in Equation 2.23 is related to the

stress-optic coefficient of a glass. According to Mueller’s theory, the lattice term

( 6
15

(ε−1)2

ε2
) will be larger in heavier glasses, since their refractive indices are larger.

This theory is often used to relate measured values of C to the structure, arrangement

of molecules, and deformations in glass due to stress. However, due to the inclusion

of the experimentally determined L1 and L1, the predictive power is limited.

2.2.3 Carleton’s Model

Carleton’s expressions derived for the elasto-optical coefficients [12] are quite similar

to Mueller’s:

p11 =
1

3

(ε− 1)(ε+ 2)

ε2
+

4

15

(ε− 1)2

ε2
+

14

15

(ε− 1)2

ε2
Γ,

p12 =
1

3

(ε− 1)(ε+ 2)

ε2
− 2

15

(ε− 1)2

ε2
+

8

15

(ε− 1)2

ε2
Γ,

2p44 =
6

15

(ε− 1)2

ε2
+

6

15

(ε− 1)2

ε2
Γ,

(2.24)

where the correlation term Γ is

Γ = 3α

∫ ∞

0

g12(r)

r4
dr, (2.25)
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and g12(r) is a two-particle correlation function. Carleton developed the strain

dependence of the dielectric constant based on the Fixman formulation for ε. He

defines the correlation term as Γ = (α/α0)Γ0, where α0 = r3
0 and r0 is the classical

molecular radius. The term Γ0 has values ranging from 0.375 for a highly correlated

system to 0.125 for an uncorrelated model.

These equations are sometimes presented as

p11 =
1

3

(ε− 1)2

ε2

(
3M

4πNαρ
+

4

15
− 14

15
Γ

)
,

p12 =
1

3

(ε− 1)2

ε2

(
3M

4πNαρ
− 2

15
− 8

15
Γ

)
,

2p44 =
2

5

(ε− 1)2

ε2
(1− Γ) ,

(2.26)

where (ε + 2)/(ε − 1) = 3M/(4πNρα). In this way, it is argued that p12 has greater

direct density dependence than p44 coming from the Lorentz-Lorenz term [10, 13].

2.2.4 Bond-Orbital Model

Bond-orbital models for photoelasticity were developed by Harrison, Biegelsen and

Wemple and applied to crystalline solids [14–17]. These model are used to determine

the dependence of the dipole moments and dielectric constant on other physical

properties, after which the hydrostatic elasto-optic coefficient is found from

ph =
1

3
(p11 + 2p12) = −(ε− 1)

3ε2
d ln(ε− 1)

d ln r
, (2.27)

where r is the interatomic distance. Some consideration was given by Wemple to

amorphous systems; however, the most thorough application of the model to the

photoelastic effect was given by Lines for ionic, covalent and amorphous limits [18].

Lines hypothesized that the optical properties of non-metals depend predominantly on

nearest-neighbour environments and bonding characteristics in the material; as such,

a bond-orbital theory should do a better job at describing the dielectric response than

those focusing on energy band gaps or oscillator strengths. This model also allows

both bond-length dependent and independent parameters to be distinguished.

For the derivation, we consider a material with composition CmAn, where C

denotes the cation and A the anion species. We first assume that there is only one

type of cation-anion bond in the system, made up of a linear combination of atomic
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orbitals |hC〉 and |hA〉, each unique and specific to the cation or anion. Bonding

and antibonding combinations are formed from linear combinations of these atomic

orbitals; the normalized bonding orbitals are

|b〉 = uC |hC〉+ uA|hA〉. (2.28)

The equilibrium bond configuration is found by minimizing the bond energy E with

respect to the bonding coefficients, where the energy is defined by

E =
〈b|H|b〉
〈b|b〉 =

u2
AεA + u2

cεC − 2uAuCM

u2
A + u2

C + 2uAuCS
, (2.29)

and εC,A = 〈hC,A|H|hC,A〉 are the intra-atomic matrix elements of the one-electron

Hamiltonian H. The interatomic matrix element 〈hA|H|hC〉 is given by −M , while

S is the overlap integral 〈hC |hA〉. Partially minimizing the energy with respect to uA

and uC leads to the conditions

(
E − εA ES +M

ES +M E − εC

)(
uA

uC

)
= 0, (2.30)

which is nontrivial when the determinant of the matrix is set to zero, or in other

words (ES +M)2 = (E − εA)(E − εC). If absolute energies are measured relative to

the reference point εA + εC = 0, then the minimum energy occurs at

E =
SM

1− S2
−
(

M2

(1− S2)2
− εAεC

1− S2

)1/2

. (2.31)

Then, substituting this energy back into the energy matrix, we find the normalization

coefficients

uC = ±
[

1

2

(
1− SαC
1− S2

− (1− α2
C)1/2

(1− S2)1/2

)]1/2

,

uA =

[
1

2

(
1− SαC
1− S2

+
(1− α2

C)1/2

(1− S2)1/2

)]1/2

,

(2.32)

where αC is a measure of the covalency,

αC =
M

1− S2

(
M2

(1− S2)2
− εAεC

1− S2

)−1/2

. (2.33)

The pure covalent limit is given by uC → uA, r → 0 and αC → 1. The pure ionic

limit has εC − εA → ∞, αc → 0 and uC/uA < 0; however, this is impractical for all
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known chemical bonds. The limit for real ionic systems tends to uC = 0, uA = 1 and

αC = S.

The bulk dielectric constant in a material is

ε = 1 +
4π

3

Nzbρ

M
χb, (2.34)

where zb is the mean number of bonds per molecular unit in the structure. The results

of the bond-orbital model are used to determine the individual bond polarizability

χb.

In the presence of an applied electric field, the dipole moment per one-electron e

bond is

〈b|ex|b〉 = pb = p0
b + χbE, (2.35)

where x is the distance along the bond measured from the point where 〈hC |x|hA〉 =

0. Assuming that x is close to the intersection point of the ionic radii RA and RC ,

the bond dipole moment can be written as

〈b|ex|b〉 = u2
C〈hc|ex|hc〉+ u2

A〈hA|ex|hA〉 = −eγCRCu
2
C + eγARAu

2
A, (2.36)

where the internuclear bond length is give by RC + RA = d, and γA and γC are in

general less than 1 (they are 1 exactly for unhybridized atomic orbitals centered at

the appropriate atomic nuclei). With the previous definitions for uC and uA, the bond

dipole moment becomes

〈b|ex|b〉 =
e

2

[(
1− α2

C

1− S2

)1/2(
γARA + γCRC

RA +RC

)
d+

1− SαC
1− S2

(γARA − γCRC)

]
(2.37)

This term must be added to the original one-electron Hamiltonian field. Using the

fact that 〈b|b〉 ≈ 1, the field can be comprehensively written as

E =−
(

1− α2
C

1− S2

)1/2

(−εAεC)− M

1− S2
(−S + αC)

− e

2

(
1− α2

C

1− S2

)1/2(
γARA + γCRC

RA +RC

)
dEi −

e

2

γARA − γCRC

1− S2
(1− SαC)Ei.

(2.38)

At this point, Lines expands (1 − α2
C)1/2 as a Taylor series in a local field Ei, and

equates this to the individual bond polarizabilities:

χb =
e2α2

Cf

2
(
M2

1−S2 − εAεC
)
[
γARA + γCRC

RA +RC

d− εAεCS(γARA − γCRC)

]2

, (2.39)
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where f is the oscillator strength.

The value Lines was primarily interested in measuring is the dimensionless

quantity Λ, where

1− Λ =
∂ lnχ

∂ ln ρ
(2.40)

and as in previous sections, χ = (ε − 1)ε0 is the polarizability of the material. The

hydrostatic photoelastic coefficient can be written in terms of the volume V or density

ρ dependence of the refractive index n or dielectric constant ε as

ph = V

(
∂n−2

∂V

)
= −ρ

(
∂n−2

∂ρ

)
=

ρ

ε2

(
∂ε

∂ρ

)
. (2.41)

Then the parameter Λ can be related to the photoelasticity of the material by

1− Λ =
ε2

ε− 1
ph. (2.42)

We also note that within the context of the bond-orbital theory, Λ is directly

representative of the density dependence of the individual bond polarizability χb,

Λ = −∂ lnχb
∂ ln ρ

. (2.43)

For three-dimensional structures, we can assume ρ ∝ d−3 to get

Λ =
d

3χb

∂χb
∂d

. (2.44)

The term for the individual bond polarizability can be used to predict the value Λ;

however, some d-dependence in the parameters S, M , f , γA,C , and RA,C has to be

assumed. According to Lines, for small variations of d around equilibrium, these

dependencies are

d−n ∝ M2

1− S2
,

dm ∝ e2f

2(1− S2)1/2

(
γARA + γCRC

RA +RC

)2

,

dp ∝ −εAεCS
M

γARA − γCRC

γARA + γCRC

= u,

(2.45)

and then the value of interest Λ can be written as

Λ =
2

3
(1− n) + nα2

c +
m

3
+

2

3

pu

(1 + u)
. (2.46)
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To determine some limitations on this equation, Lines turned to experimental

results from alkali halides. Here, in the quasi-ionic limit, Λ tends to 0 as RA → RC .

Also for this group, γA = γC = 1, so that u = 0. These equivalences yield the

condition

0 =
2

3
(1− n) + nS2 +

m

3
, (2.47)

which is assumed to be universal. Thus this result is substituted into the equation

for Λ, giving the generalized relationship

Λ = n(α2
c − S2) +

2

3

pu

(1 + u)
. (2.48)

According to previous bond-orbital work [17], the measure of covalency can be

related to the formal anion valence by αC ≈ Za/4. For oxides, the value S tends to

1/2 experimentally, and γA ≈ γC , which gives the simplification

u =

(
4− ZA

3ZA

)1/2 [
RA −RC

RA +RC

]
. (2.49)

Then Λ, which itself can be related to the elasto-optical coefficients, can be expressed

in terms of dielectric constants, anion-cation bond lengths d and constants of power

n and p. It is likely that these powers will depend on glass composition, which limits

the predictive power of this model.

2.2.5 Dipole-Induced-Dipole (DID) Theory

Another theory developed to evaluate photoelasticity in isotropic materials predicts

that only the refractive index of the material is influential on the elasto-optic

coefficients. This theory, initially proposed by Mazzacurati [19] and later compared

to experiment by Benassi [20, 21], assumes that the material is made up of individual

units with spherical polarizabilities. First, the microscopic polarizability density

tensor is used to determine the scattering equations of the material. Then, the

dipole-induced-dipole (DID) model is applied to refine the microscopic electric

properties and relate them to the photoelasticity.

The spectral density of scattered light can be written

J(q, ω) = I0
ωIω

3
S

2πc4
∆Ω

∫
dteiωt〈[m̂ · P̃ (q, t) · n̂][m̂ · P̃ (q, 0) · n̂]∗〉 (2.50)
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where P̃ (q, t) is the Fourier transform of the macroscopic polarizability tensor P (r, t),

P̃αβ(q, t) =

∫
dre−iq·rPαβ(r, t), (2.51)

∆Ω is the solid angle over which light is collected, I0 is the intensity of incident

light, m̂ and n̂ are the polarization unit vectors of the scattered (m) and incoming

(n) radiation, ~ωI and ~ωS are the energies of incoming and scattered photons, and

~ω = ~ωI − ~ωS and q = kI − kS are the exchanged energy and wave vector. The

values within the 〈...〉 symbol are thermally averaged. The intensity of scattered light

is then given by

I(q) =

∫
dωJ(q, ω) = I0

ωIω
3
S

c4
∆Ω〈|m̂ · P̃ (q, 0) · n̂|2〉. (2.52)

The macroscopic polarizability can be written in terms of the effective microscopic

polarizability tensor of individual units within the dielectric material, πiαβ(t):

P̃αβ(q, t) =
∑

i

πiαβ(t)e−iq·r
i(t) (2.53)

where i indicates the ith molecule, ion, atom, etc and ri(t) is the instantaneous

position of the ith unit. (The value πi is the same as χi defined in previous sections,

where P = πE; however, we will continue with the notation of Benassi et al. for this

derivation.) For solids, we write ri(t) = xi+ui(t), where xi is the equilibrium position

of the ith unit, and ui(t) is the displacement from equilibrium. If the displacement

is much smaller than the nearest-neighbour distance, then we can expand P in terms

of ui:

δP̃αβ(q, t) =
∑

i

∑

µ

Liαβ,µ(q)e−iq·x
i

uiµ(t), (2.54)

where here the equilibrium properties of the system are Liαβ,µ(q) = −iπiαβqµ −
Qi
αβ,µ(q), πiαβ is the equilibrium unit polarizability, and

Qi
αβ,µ(q) =

∑

m

[
∂πmαβ
∂uiµ

]

eq

eiq·[x
m−xi]. (2.55)

From their normal mode expansion, the displacements can be written

uiµ(t) =

√
~

2mN

∑

k,χ

eµ(k, χ)
√
ωkχ

Âkχ(t)eik·x
i

. (2.56)
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where Âkχ(t) are the phonon field operators with wave vector k and branch index χ.

For isotropic materials like glass, we can assume that the property Li is site dependent

such that it can be written in terms of an average local equilibrium value L, and a

small deviation about this value δL:

Liαβ,µ(q) = Lαβ,µ(q) + δLiαβ,µ(q), (2.57)

where Lαβ,µ(q) = 1
N

∑
i L

i
αβ,µ(q). Then the fluctuation of P is given by two terms.

The first is crystalline like in nature, with site-averaged quantity L. The second

comes from the disordered structure, with deviating δL. This term is incoherent, and

does not contribute to the Brillouin peaks. Ignoring the incoherent component, δP̃

becomes

δP̃αβ(q, t) =

√
~

2mN

∑

µ

Lαβ,µ(q)
∑

k,χ

eµ(k, χ)
√
ωkχ

Âkχ(t)
∑

i

ei(k−q)·xi

=

√
~

2mN

∑

µ

Lαβ,µ(q)
∑

k,χ

eµ(k, χ)
√
ωkχ

Âkχ(t)Nδkq

=

√
~N
2m

∑

χ

∑

µ

eµ(q, χ)Lαβ,µ(q)
Âqχ(t)
√
ωqχ

.

(2.58)

The scattered light intensity can then be determined:

I(q) = I0V ρ
2ωIω

3
S

c4
∆ΩkBT

∑

χ

1

ρmv2
χ

∣∣∣∣∣
1

|q|
∑

µ

m̂ · Lµ(q)eµ(q, χ) · n̂
∣∣∣∣∣

2

, (2.59)

where ρ = ρm/m is the number density.

We can relate Lαβ,µ to the elasto-optic constants by comparing the macroscopic

and microscopic polarizability fluctuations. The microscopic polarization is rewritten

as

δP̃αβ(q, t) = ρ
∑

µ

Lαβ,µ(q)ũµ(q, t) (2.60)

where ũµ(q, t) =
∫
dre−iq·ruµ(r, t) is the Fourier transform of the displacements.

The macroscopic polarizability fluctuation can be obtained from three things: the

dielectric tensor:

4πPαβ(r, t) = εαβ(r, t)− δαβ, (2.61)
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the definition of elasto-optic constants Pαβγδ:

δεαβ(r, t) = −ε2
∑

γδ

Pαβγδσγδ(r, t) (2.62)

and the relation between strain tensor and displacement fields:

σγδ =
1

2

(
∂uγ(r, t)

∂rδ
+
∂uδ(r, t)

∂rγ

)
. (2.63)

Combining these equations yields

δP̃αβ(q, t) =
−iε2
4π

∑

µ

ũµ(q, t)
1

2

∑

γ

qγ(Pαβγµ + Pαβµγ). (2.64)

We can then combine microscopic and macroscopic terms to get

Lαβ,µ(q) =
−iε2
4πρ

∑

γ

qγ
1

2
(Pαβγµ + Pαβµγ) (2.65)

which, for isotropic solids, simplifies to

Lαβ,µ(q) =
−iε2
4πρ
|q| (δαβp12q̂µ + (δαµq̂β + δβµq̂α)p44) . (2.66)

In order to evaluate Lαβ,µ(q), the material is considered in its simplest case to be

a van der Waals glass, made up of point-polarizable units with polarizability αδαβ.

The total polarizability is

πiαβ(t) = αδαβ + α
∑

j 6=i

∑

γ

[
∇α∇γ

(
1

rij(t)

)
e−ikI ·rij(t)

]
πjγβ(t). (2.67)

Here, we notice that the polarizability of the ith unit is related to that of all other

units in the material. The equilibrium polarizability is

παβ =
1

N

∑

i

πiαβ = αδαβ +
α

N

∑

i

∑

j 6=i

∑

γ

[
∇α∇γ

(
1

xij(t)

)
e−ikI ·xij(t)

]
πjγβ(t). (2.68)

We can relate this to the dielectric constant through the equilibrium polarizability

density tensor:

εαβ = 4πP eq
αβ(r, t) + δαβ = 4πρπαβ(kI) + δαβ. (2.69)

Since in isotropic materials, off-diagonal elements of the equilibrium dielectric tensor

are zero, we can write εαβ = εδαβ such that

παβ(kI) =
ε− 1

4πρ
δαβ. (2.70)
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This can then be used to determine the first term in L:

−iπαβqµ = −iε− 1

4πρ
δαβ q̂µ|q|. (2.71)

The second term in L can be determined through the value Qαβ,µ(q). This is

done by evaluating the equilibrium value for ∂πmαβ/∂u
i
µ, where πmαβ is the effective

polarizabililty for a van der Waals glass as defined above. The zeroth-order expression

for Q is also defined as above, where the j terms tend to equilibrium. By relating the

i and j dependent sums in Q to integrals of pair-correlation functions g(r), evaluating

these integrals, and simplifying the expression for isotropic conditions, we end with

Qαβ,µ(q) = i
4π

5
ρ|q| (δαβ q̂µ + δαµq̂β + δβµq̂α) . (2.72)

Then, we can substitute this result into the second term of L and use the

Lorentz-Lorenz equation to determine the complete expression

Lαβ,µ(q) = −iε− 1

4πρ
|q|
[
δαβ q̂µ

(
1 +

ε− 1

5

)
+
ε− 1

5
(δαµq̂β + δβµq̂α)

]
. (2.73)

This procedure yields the relationships

p12 =
ε− 1

ε2

[
1 +

ε+ 1

5

]
(2.74)

and

p44 =
ε− 1

ε2

[
ε− 1

5

]
, (2.75)

which allows prediction of the elasto-optic tensor elements based on knowledge of the

dielectric response in the material.

2.2.6 Discussion of Models and Theories for pijkl

The Clausius-Mossotti (or Lorentz-Lorenz) model of photoelasticity is derived for

ideal, homogeneous isotropic materials. It can be applied to some solids and glasses,

but it is not universal. Thus ε2(p11 + 2p12) = (ε − 1)(ε + 2) cannot be universally

applied to all glass systems. However, it gets the sign of the response right; p11 and

p12 are found experimentally to be positive, and ε = n2 is always greater than 1. The

model also assumes that the change in polarizability with density is zero in glasses.

However, following the derivation of Lines, we find that this may not always be the

case, which would affect how the elasto-optic coefficients behave with refractive index.
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Mueller and Carleton’s models are limited in that the experimental photoelastic

results must be fitted in order to determine L1 and L2 (or Γ). These models are

typically used to determine which effects (Lorentz-Lorenz, lattice or atomic) are

dominating for a given sample. For example, if p44 is negative, the atomic effect must

be the primary contributor to photoelasticity, or if p12 is large then the lattice effect

is dominant. However, the models cannot be used to predict the sign or magnitude

of the photoelastic response for new, unmeasured glass systems.

The photoelastic theory derived from Line’s bond-orbital model is, again, not

predictive. With enough experimental data, the experimental Λ measured from

the photoelastic response can be compared to the theoretical value predicted from

Equation 2.48. However, a fair number of assumptions must be made in order to

determine parameters such as the covalency and the d-dependence of S,M, f , etc. It

is interesting that this model includes a dependency on bond length d, which is one

of the main parameters in the empirical model.

The model based on DID theory shows inconsistencies between predictions and

experimental results, especially in p44. Indeed, the relationship given in Equation 2.75

does not account for the zero and negative stress-optic response that glasses are known

to have. The failure of this model is likely due to the assumption of a pure van

der Waals glass as the material of interest. This model is a poor fit for real glass

systems made up of ionic and covalent bonding environments. The authors suggested

improving the predictions by including a bond polarizability model to account for the

existence of differently polarizable compounds; however, not much progress was made

on this front.

All of the models considered show a dependency on the refractive index of the

material. Bond polarizabilities and bond lengths were also considered to be important

contributors to pij. By examining the photoelastic response of positive and negative

stress-optic glasses with different glass formers, we aim to identify relevant properties

that affect the elasto-optic tensor elements.



21

2.3 Theories of Photoelasticy: Dispersion of pijkl in Amorphous and

Crystalline Materials

While information on the dispersive nature of the stress-optic coefficient of glasses

is limited, there are a few theories concerning the wavelength dependence of the

photoelastic response of crystalline and amorphous materials. Due to their anisotropic

structures, it is possible to measure most or all independent elasto-optic tensor

elements through the stress-induced phase shifts along different symmetry axes. The

broadband character of these tensor elements is often determined using ellipsometry;

materials such as Si [22, 23], Ge, GaAs, InP, and GaP [24–28], cuprous halides [14],

alkali halides [29] and even fused silica [30] have been measured.

Most analysis of the wavelength dependence of pijkl discusses the energy band

structures of crystalline materials. Band gaps can be direct, i.e. occurring at the

same wavevector k, or indirect, where the energy gap occurs at different values of

k. Calculations of band structures rely on crystal symmetries in the material; as

such, the results of previous analyses may not be directly extensible to amorphous

glass systems. However, considering these theories could lead to identification of the

important properties influencing the dispersive nature of the stress-optic response.

Wemple and DiDomenico considered strain-induced changes to the energy band

structures of crystalline materials by approximating the band structure with a simple

oscillator model in order to model the elasto-optic tensor [31]. The imaginary

part of the dielectric constant, ε2,ij is determined from the band structure and the

one-electron wave functions for the material. The real part is determined by the

Kramers-Kronig (KK) integral,

ε1,ij(ω)− 1 =
2

π

∫ ∞

ωg

ω′ε2,ij(ω′)

(ω′2 − ω2)
dω′, (2.76)

where ωg is the absorption threshold frequency. In other words, the dielectric constant

is measured in the the transparent region. When strain is applied to the material,

the energy band structure will be modified, such that the real part of the dielectric

constant becomes

∆ε1,ij(ω) =
2

π

∫ ∞

ω′g

ω′∆ε2,ij(ω′)

(ω′2 − ω2)
dω′, (2.77)

where the absorption frequency is shifted, ω′g = ωg+∆ωg. The elasto-optic coefficients
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are related to this by the change in dielectric constant due to applied strain x,

∆ε1,ij = −
∑

k,l

ε1,ik∆

(
1

ε1

)

kl

ε1,lj = −
∑

k,l,m,n

ε1,ikε1,ljpklmnxmn. (2.78)

Instead of calculating the change in the imaginary part of the dielectric constant

for all strain components, Wemple and DiDomenico applied simple oscillator

approximations to the KK integral. The contributions from the band structure to

the real part of the dielectric constant can be modeled for both ionic and covalent

crystals with a single-oscillator Sellmeier expression:

ε1(λ) = S0(λ0)2

[
1−

(
λ0

λ

)2
]−1

, (2.79)

where S0 is the oscillator strength, related to the interband strength (F = (hc/e)2S0)

and λ0 is the oscillator position parameter, related to the interband energy (E0 =

(hc)/(eλ0)). They consider this to be a long-wavelength approximation to the KK

integral, which leads to

(E0)2 =

(
~
e

)2 ∫ ∞

ωg

ε2
ω
dω

/∫ ∞

ωg

ε2
ω3
dω,

F =
2

π

(
~
e

)2
(∫ ∞

ωg

ε2
ω
dω

)2/∫ ∞

ωg

ε2
ω3
dω.

(2.80)

When strain is applied to the crystal, small changes will occur in oscillator position

(∆E0) and strength (∆F), which can be calculated using the above relations. Then,

from the Sellmeier expression, the strain-induced change in the real part of the

dielectric constant is

∆ε1
(ε1 − 1)2

= −2

(
∆E0

Ed

)(
1 +Kij

[
1−

(
λ0

λ

)2
])

, (2.81)

where

Kij = −1

2

(
∆F/F
∆E0/E0

)
, (2.82)

and Ed = F/E0 is the dispersion energy. They introduced a deformation potential

Dij, such that ∆E0 =
∑

i,j Dijxij. Assuming that ε1, E0 and Ed are approximately

isotropic, then

pij
(1− 1/n2)2

=
2

Ed
Dij
(

1 +Kij
[

1−
(
λ0

λ

)2
])

(2.83)
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where Dij and Kij can be measured experimentally, expressed in terms of the

imaginary part of the dielectric constant and related to the band structure. The

value of Kij determines whether the dispersion of pij is either positive or negative.

Wemple and DiDomenico previously found an empirical relationship for the dispersion

energy [32]:

Ed = βNcZaNe, (2.84)

where Nc is the cation coordination number, Za is the formal anion valency, and Ne

is the number of valence electrons per anion. Experimentally, β takes on different

values for ionic compounds (βi = 0.26 eV) and covalent compounds (βc = 0.39 eV).

The values Ed and E0 can also be determined from the dispersion of the refractive

index.

Equation 2.83 is thus a two-parameter fit for the elasto-optic dispersion of

crystalline materials. Wemple and DiDomenico experimentally determined the values

of D and K by fitting their dispersive data; they found roughly linear relationships

between n2pij/(n
2−1)2 and 1/λ2 for many materials, though some showed non-linear

dispersion throughout the transparent region. They concluded that the presence of

excitons also contributes to the dispersion of pij, and a four-parameter fit is necessary

to describe these contributions. Still, while they found parameters with “reasonable”

values, there were no obvious correlations between crystal composition, properties

and Dij or Kij.
Cardona et al. took a slightly different approach, considering the electronic band

structure of materials when analyzing the piezo-optic response of crystalline materials

[33]. The relationship between elasto-optic (pij) and piezo-optic (πij) coefficients is

πijkl = pijmnSmnkl, or pijkl = πijmnCmnkl, where S and C are the compliance and

elastic tensors. The piezo-optic tensor elements of materials are strongly dispersive

near their absorption edge, direct edges more so than indirect gaps. For some

materials, πij changes with wavelength such that it reverses sign as the edge is

approached; the point where πij = 0 is called the ‘isotropic point’. Examples of

the dispersion of πij for different crystalline materials are seen in Figure 2.2. GaAs,

Ge, GaSb, KBr, KI, KCl, NaCl and CF2 all have an isotropic point in the transparent

wavelength range. This point is attributed to two contributions of opposite sign; one

strongly dispersive and due to the absorption edge, and the other, weakly dispersive,
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from the average of the entire spectrum. The second effect is dominant at low

frequencies.

Figure 2.2: Dispersion of piezo-optic coefficients of various crystalline and amorphous
materials below the fundamental absorption edge. Figure from [33]. In Cardona’s
terminology, the piezo-optic coefficients are related to the elasto-optic elements by
Pijkl = πijkl = pijmnSmn.

The focus in Cardona’s derivation is on electronic contributions to the piezo-optic

tensor elements. The band structure of simple materials, such as the zinc-blende

crystal Ge, is calculated under strain in order to determine optical properties.

Specifically, the contributions of E0 (region of transparency) and E1 (outside of

transparent region) transitions to πijkl are considered. The dielectric constant can

expressed analytically as a function of these energy gaps, and from this the piezo-optic

tensor is calculated. Some of the terms relating the elasto-optic coefficients to the

band structure of germanium will be discussed below.

The effect of hydrostatic stress (XH) on the E0 direct edge (located at Γ) and its

spin-orbit split component E0 + ∆0 can be represented by dE0/dXH , which for Ge
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yields the hydrostatic constant

(π11 + 2π12)E0,E0+∆0 =
1

2ω0

dω0

dXH

P−1

(
G(3)(x) + 3F (3)(x) +

1

2
G(3)(x′) +

3

2
F (3)(x′)

)
,

(2.85)

where

F (3)(x) = x−2[2− (1 + x)1/2 − (1− x)1/2],

G(3)(x) = x−2[2− (1 + x)−1/2 − (1− x)−1/2],
(2.86)

with x = ω/ω0 and x′ = ω/(ω0 + ∆0). Also, P = 2π/a0 is the interband matrix

element of linear momentum, and a0 is the lattice constant.

The shear terms of πijkl coming from E0 in Ge depend on two effects: the splitting

δω0 of the top valence band Γ8 by shear stress, and the coupling of Γ8 with the

spin-orbit split state Γ7. Then

π11 − π12 =
3

4
(S11 − S12)

b

ω0

P−1

(
−G(3)(x) +

4ω0

∆0

[
F (3)(x)−

(
ω0

ω0 + ∆0

)3/2

F (3)(x′)

])
,

π44 =
3

4
S44

d

2
√

3ω0

P−1

(
−G(3)(x) +

4ω0

∆0

[
F (3)(x)−

(
ω0

ω0 + ∆0

)3/2

F (3)(x′)

])
,

(2.87)

where d and b are “shear deformation potentials”, typically negative values. The G(3)

term represents the effect of the band splitting, while the F (3) terms are due to the

coupling. The terms P−1, Sij, b and d are approximately equal for most crystalline

considered in this study, and a constant term must be added in order to match theory

to experiment. Cardona conjectures that for most materials, this positive constant

term dominants at low frequencies but with changing wavelength, the dispersive term

can overcome the constant, inducing an isotropic point for some materials. However,

if ω0 is small, the shear effects due to the E0 edge become predominant over the

constant term, which results in no isotropic point.

For Cardona’s model, the experimentally measured pij can be compared to the

theoretical predictions of Equations 2.85 and 2.87 if the deformation potentials, ω0

and ∆0 are known. This is limiting for glass systems, where accurate calculation of

the electronic band structure is difficult to obtain.

Kucharczyk also took a single oscillator approach, similar to that of Wemple and

DiDomenico, to describe the wavelength dependence of the elasto-optic coefficients
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[29]. From a bond polarizability model, the shear tensor element is

p44 =
8

n4a3

(
βT − βL

)
, (2.88)

where n is the refractive index, a is the lattice constant, and βT,L is the transverse or

longitudinal part of the bond polarizability tensor. For the alkali halides considered,

βT and βL were fit using a single oscillator formula,

βT,L =
AT,Lλ2

λ2 − (λT,L0 )2
, (2.89)

with λ in the UV-vis range. This theory has the benefit of simplicity; however, an

understanding on the dependence of β on wavelength - namely, prediction of the

parameter A - is necessary in order to fully explain the relationship between p44 and

λ. Still, it is able to account for the so-called “isotropic points” depending on the

fitting parameters of the βT and βL oscillator formulas.

With an understanding of these theories of dispersion of pij in crystalline materials,

we can identify material properties which could influence the wavelength dependence

of C in glasses. In particular, the refractive index, absorption edge and bond

polarizabilities of a glass are all likely to contribute to the dispersion of the stress-optic

response.

2.4 The Empirical Model of Photoelasticity

An empirical model of photoelasticity in glasses was developed by Guignard and

Zwanziger to relate the structure of glass to its stress-optic response [1]. This

model focuses on the chemical bonding environment of compounds in the structure

rather than lattice and atomic distortions, conjecturing that ‘bond metallicity’ and

coordination number Nc are important in describing the stress-optic response. Bond

metallicity correlates well with anion-cation bond length, d [17]. For zero and negative

stress-optic glasses, high metallicity is needed for bonds to be distorted along the

bonding direction and orthogonal to it. Furthermore, for stress to distort the glass

anisotropically, structural anisotropy is required locally. Low coordination numbers

allow these distortions, while high coordination numbers prevent them [1]. Thus, this

model predicts that glasses with a low d/Nc ratio will have a positive stress-optic

coefficient, while glasses with high d/Nc will exhibit negative birefringence.
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Table 2.1: Anion-cation bond length d, cation coordination number Nc, ratio d/Nc

and sign of the stress optic coefficient C for a variety of glass components. Sources
labelled ‘calc’ determine C from first-principles calculations. Those labelled ‘expt’
are based on measured values.

compound d (Å) Nc d/Nc (Å) sign of C source

Tl2O 2.517 3 0.84 - expt [34]
Sb2O3 2.022 3 0.67 - expt [1]
PbO 2.326 4 0.58 - calc [1], expt [34]
SnO 2.224 4 0.56 - calc, expt [1]
Bi2O3 2.198 4 0.55 - expt [35]
TeO2 2.0 4 0.50 + calc [1]
ZnO 1.988 4 0.50 + expt [36–38]
PbS 2.967 6 0.49 + calc [1]
BaO 2.74 6 0.46 + calc [1], expt [38]
B2O3 1.366 3 0.46 + expt [36]
GeO2 1.717 4 0.43 + expt [39]
SiO2 1.609 4 0.40 + expt [40]
P2O5 1.5 4 0.38 + expt [34, 38]
MgO 2.1085 6 0.35 + calc [1], expt [34]
SnO2 2.055 6 0.34 + calc [1]

Table 2.1, compiled by Guignard et al. [1], contains the d/Nc ratio and signs of the

stress-optic coefficient for various compounds. For the additives that are unable to

form a glass on their own, the overall contribution to C in the system was considered.

The negative sign is only designated when the addition of a compound to a glass

system resulted in a negative coefficient. Glass compounds with (d/Nc) > 0.5 Å

have a negative stress-optic coefficient, while those with (d/Nc) ≤ 0.5 Å have positive

coefficient. For binary and ternary glasses, the ratio is averaged to derive the expected

response. Thus, the composition of a zero stress-optic glass can be predicted using

the additivity rule 〈
d

Nc

〉
=
∑

i

xi

(
d

Nc

)

i

≈ 0.5 Å, (2.90)

where the sum is over all compounds in the glass, xi is the molar per cent of the ith

compound, and (d/Nc)i is that compound’s ratio.

Thus far, the empirical model shows good correlation with known data and it

is able to predict glass families with zero birefringence [1, 41–46]. However, it
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cannot predict the magnitude of the stress-optic coefficient, it does not consider the

wavelength dependence of the photoelastic response and it has not been tested on

non-oxide glass systems.

2.5 Measured Photoelasticity in Glass Systems

2.5.1 Dispersion of C in Glass

Industrially, a glass with zero stress-optic coefficient across the visible wavelength

range is of great interest. However, very few studies on the dispersive nature of

birefringence have been performed. The Schott company has performed studies on

the wavelength dependence of C for many of their commercially available glasses;

Figure 2.3 shows results for glasses in the FK, PK, PSK and SF families. The

optical glass SF57 has nearly a zero stress-optic coefficient for all wavelengths in

the visible range of light. This is a ‘dense flint’ glass; the main components of

glasses in the SF series are alkaline silicates with > 49% wt. PbO [5]. Most of the

glasses in Figure 2.3 see a small increase in the stress-optic coefficient with decreasing

wavelength (increasing energy). However, in the glasses SF1, SF14, SF18, SF55 and

SF57, C decreases slightly with decreasing λ.

Figure 2.3: Stress-optical coefficient as a function of wavelength for select Schott
optical glasses. Image from reference [5].
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The dispersion of the birefringence of fused silica has also been examined in

detail [40, 47–49]. The wavelength dependence of the stress-optic coefficient is

shown in Figure 2.4. Values from Filon and Harris are averaged over multiple trials.

The dispersion for wavelengths near the IR edge of the visible spectrum is small.

Below 500nm, the stress-optic coefficient begins to quickly increase with decreasing

wavelength. Jog derived a dispersion formula to describe the experimental values for

230 ≤ λ ≤ 650nm for both his and Filon and Harris’s work. However, the formula

does not satisfy the results obtained by Primak and Post, nor does it agree with data

at longer wavelengths.
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Figure 2.4: Dispersion of the stress-optic coefficient of fused silica. Values from [40]
and [47].

The stress-optic coefficient of silicate glasses containing B2O3, Al2O3, K2O, ZnO,

Sb2O3, Na2O, PbO, BaO, F and CaO has been reported by Vasudevan and Krishnan

for the wavelength range 320 ≤ λ ≤ 575nm [50]. Note here that the published values

for the coefficient have the opposite sign as expected; this is due to an omitted negative



30

sign in the calculation. For most glasses, the stress-optic coefficient decreased with

decreasing wavelength; however, fused quartz saw an increase in C as λ decreased.

The magnitude and dispersion of the birefringence were related to Mueller’s lattice

and atomic effects. Typically, the refractive index of a glass increases with shorter

wavelengths. Since the lattice effect is related to n and the atomic effect is relatively

constant, they argue that C should become more and more “positive” (negative with

the appropriate sign) as λ decreases. This theory matches well with the reported

values for the glasses excluding fused quartz. No attempt was made to explain this

discrepancy.

Recent work has been done in our research group on the dispersive nature of the

stress-optic response in oxide glasses [51]. In her Master’s thesis, Thomas examined

the broadband birefringence of tin phosphate, tin silicate, sodium phosphate and

sodium silicate glasses in the visible spectrum. For all glasses, dispersive effects

were seen near the band edge. The tin glasses showed only decreasing stress-optic

coefficient with decreasing λ, while the sodium glasses had both increasing and

decreasing C with wavelength. Thomas proposed that dispersive effects will be greater

when the glass structure is composed primarily of bridging oxygens, i.e. ionic bonds,

while the least amount of dispersion will occur when the glass structure is primarily

composed of non-bridging oxygens, i.e. covalent bonds. However, this hypothesis

does not consider whether the stress-optic coefficient will increase or decrease with

wavelength.

Fukazawa et al. examined the photoelasticity of lead silicate glasses [52]. This work

is particularly interesting as it is perhaps the only published example of stress-optic

coefficients of glass determined using ellipsometry. They examined lead silicates

containing 40-43 mol % PbO. For all glasses, stress-optic coefficient decreased with

decreasing wavelength. Furthermore, two of the glasses showed zero stress-optic

composition, which shifted to higher wavelength as lead content increased. They

considered their results with respect to Mueller’s lattice effect (proportional to

(n2 − 1)2/n4 according to Equation 2.23) and the atomic effect (proportional to

(n2 − 1)(n2 + 2)/n4 from Equation 2.23) and suggested that the negative values

resulting from the lattice effect become dominant as refractive index (lead content)

increases. However, this argument does not extend to glasses with positive stress
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optic-coefficients that increase with decreasing wavelength (and increasing index).

The motivation for this research was to measure the wavelength dependence of C

for a variety of glass formers and modifiers, and to correlate glass composition with

the dispersive properties of the stress-optic coefficient.

The glass formers considered in this study are SiO2, B2O3, P2O5 and TeO2.

Glass modifiers include typically “positive” and “negative” additives according to

the empirical model: alkali metal oxides Na2O and Li2O, alkaline earth oxides CaO

and BaO, transition metal oxide ZnO, and metal oxides SnO, PbO and Bi2O3.

The stress-optic coefficients of many of these glass compositions have been

measured at single wavelengths [1, 36–38, 42–44, 53–55]. However, there are currently

no data or theories which predict when C will increase, decrease or remain constant

with wavelength. As such, we have considered the effect of additive type and content

on the dispersive nature of the stress-optic response with the goal of developing a

predictive model.

2.5.2 Brillouin Measurements of pijkl

Brillouin spectroscopy is an inelastic light scattering technique that distinguishes the

acoustic modes of a material. It is typically used to determine the elastic moduli

of transparent materials and it is often used in conjunction with Raman or IR

spectroscopy to determine the compositional evolution of structure and properties

[56–63]. Brillouin scattering can also be used to determine a material’s elasto-optic

response [10, 13, 21, 64–67]. Although this technique is less commonly used in

glasses, it yields all independent elements of the elasto-optic tensor, whereas other

common techniques used to measure the photoelastic properties of a glass typically

only measure the shear component, p44.

There have been some investigations on the Brillouin scattering of glasses as a

function of composition, as well as efforts to relate the measured pij to glass properties.

Some experiments were concerned exclusively with commercially available glasses

[21, 64, 65, 67], while others considered the effects of glass composition on pij in

binary, ternary and doped systems [10, 13, 66]. The latter category is composed

almost entirely of silicate-based glasses with typically positive stress-optic additives.

These studies found that the magnitude of p44 varies more rapidly than that of p12 [64].
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The ratio of the transverse and longitudinal velocities, vT/vL, tends toward a constant

value for all glasses, regardless of composition; this result might suggest a relationship

between shear and compressive restoring forces [65]. It was also suggested that both

density and compositional fluctuations lead to Brillouin scattering in a material; the

variations with composition were quantified by attenuation [10, 63, 68].

Values for the elasto-optic tensor elements for binary and ternary glass systems

with known composition [10, 21, 65, 66] are reproduced here. Figure 2.5 shows the

change in p12 with mol % additive, while Figure 2.6 shows the same dependence for p44.

Some compositional trends are apparent for these silicate-based glasses. p12 generally

decreases with increasing additive, while p44 increases with additive. Also, the signs

of the two tensor elements are opposite, with p12 showing positive, larger values.

The glass systems studied with known compositions all have negative p44, which

translates to positive stress-optic response. And, in fact, most theories developed to

Figure 2.5: Some previously measured p12 values for binary and ternary glass systems.
(1) from reference [21], (2) from [65], (3) from [10], (4) from [66].
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Figure 2.6: Some previously measured p44 values for binary and ternary glass systems.
(1) from reference [21], (2) from [65], (3) from [10], (4) from [66].

describe the elasto-optic tensor elements of a glass diverge from experimental values

as p44 goes to zero. Varying the glass former can also have a significant effect on

elasto-optic tensor elements; for example, calcium alumino-silicates with less than 20

mol % SiO2 have much lower p12 than silicate-rich glasses [66]. Furthermore, pure

glass formers SiO2, B2O3 and GeO2 have significantly different values of p12 and p44;

however, information available on the relationship between glass former and pij is

very limited.

The effect of glass composition on the elasto-optic tensor elements pij is not well

understood, but is of interest industrially. In a review of the current and future

directions of glass science in the US, researchers at Corning Incorporated stated that

the Brillouin scattering spectra of glass is an area that merits further investigation

[4]. It is important, then, to study the effect of glass formers and of additives with

both positive and negative stress-optic response on the elasto-optic tensor of glasses.
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To this effect, we have considered binary glass systems with positive, negative and

zero stress-optic response. It is not well understood what effect negative stress-optic

additives have on p12 for glasses with known composition. We have also examined the

effect of glass former on the sign and magnitude of the elasto-optic tensor elements.

The glass systems studied here are lead and barium borates, phosphates and silicates.

Both barium oxide and lead oxide decrease the stress-optic coefficient in a glass, with

the lead-based glasses transitioning to zero and negative stress-optic response at high

additive content. The goal of this research was to determine the complete elasto-optic

tensor for these glass systems, to determine what properties of a glass (n, G, d/Nc

etc.) affect the sign and magnitude of pij and to develop a theoretical understanding

of the empirical parameter d/Nc that has been so successful in predicting zero-stress

optic compositions.

2.5.3 Photoelasticity in Chalcogenide Glasses

Compared to oxide glasses, relatively little work has been done on the stress-optic

response of chalcogenide glasses. Chalcogenides are glasses that replace oxygen with

another chalcogen - namely, sulfur, selenium or tellurium. The chalcogen is treated

as the ‘anion’ of the system, even though bonding is covalent. The stress-optic

coefficients of chalcogenides are typically much larger than those of oxide glasses,

and the amount of chalcogen can be non-stoichiometric; in other words, it can be in

excess or deficit. Bonding behaviour such as anion-anion or cation-cation bonding,

while not present in oxide glass systems, is common in non-oxide glasses.

Most of the research on birefringence in chalcogenide glasses was done decades

ago by Linke [69] and Anderson and Varshneya [70]. Linke measured the stress-optic

coefficients for glasses in the systems Ge-Se, As-Se, Ge-As-Se, Ge-As-S, Ge-S-Se,

As-S-Se,and As-Sb-S at a wavelength of 1500 nm, while Anderson and Varshneya

focused on Ge-As-Se glasses measured at 1800 nm and attempted unsuccessfully to

to correlate C to the average coordination number of the glass. These works are

also inconclusive as to the effect of adding or removing the chalcogen from the glassy

system.

The motivation of this research was to extend the empirical model of oxide glasses

(Section 2.4) to include non-oxide glasses, to examine the effect of non-stoichiometric
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bonding on stress-optic response, and to compare the magnitudes of C for oxide and

non-oxide glasses. The systems Ge-P-S and Ge-Sb-S were chosen for the in-depth

analysis of the photoelastic response of non-oxide glasses as their structures have

been studied extensively [71–73] and no data on the stress-optic coefficients have

been published. The structural units and expected photoelastic response for these

glass systems are discussed in detail in the included article manuscript in Chapter 4.



Chapter 3

Theory and Techniques

The properties of a glass important in describing its photoelastic response include the

elastic moduli, density, stress-optic and elasto-optic coefficients, and refractive index.

These properties and their measurement techniques will be described, followed by the

derivation of the theories of reflection of polarized light (ellipsometry) and Brillouin

scattering in glasses.

3.1 Optical, Elastic and Photoelastic Properties of Glass

3.1.1 The Elastic Tensor

When stress is applied to a material, the shape of the material is affected according

to its elastic properties [74]. For stresses below the elastic limit, the material will

revert to its original shape in the absence of stress. According to Hooke’s law, for

small applied stresses σ, the amount of strain s is proportional to the applied stress.

The proportionality describes the elastic properties of the material. However, stress

and strain are directional properties, and a tensor equation is necessary to describe

their relationship:

σij = Cijklskl,

sij = Sijklσkl.
(3.1)

Here, Cijkl are the elastic constants of the material, and Sijkl = C−1
ijkl are the

compliances. Simplifications due to the symmetry conditions of isotropic solids allow

an abbreviated notation to be used for the subscripts:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6.

For an isotropic material such as glass, there are three unique tensor elements, and

only two are independent:

C44 =
1

2
(C11 − C12). (3.2)

36
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The elastic properties of a material are most commonly described by Young’s

modulus E, the shear modulusG, and Poisson’s ratio ν. In fact, all elastic components

of an isotropic material can be determined from a knowledge of any two elastic moduli.

The commonly presented moduli are related to the elastic tensor elements by

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
,

C12 =
Eν

(1 + ν)(1− 2ν)
,

C44 = G =
E

2(1 + ν)
,

(3.3)

and to the compliance tensor elements by

S11 =
1

E
,

S12 =
−ν
E
,

S44 =
1

G
=

2(1 + ν)

E
.

(3.4)

The shear and Young’s modulus of a glass are on the order of GPa. The elastic limit

of glass, on the other hand, is typically on the order of MPa. As such, stresses applied

to the glasses in this study are kept in the MPa range. Typically, imperfections in

the surfaces and parallelicity of a glass will cause a stressed glass to break well before

it reaches the elastic limit.

3.1.2 The Ultrasonic Method for Determining Elastic Properties

The elastic properties of a glass can be determined from the velocity of sound traveling

through the glass (pp. 162–168 of [3]). There are two types of sound waves which

can propagate in a glass: longitudinal and transverse. The shear component of the

elastic tensor, C44, is determined from the transverse sound wave,

C44 = ρv2
T , (3.5)

while deformations along the stress axis are determined from the longitudinal sound

wave,

C11 = ρv2
L. (3.6)
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These tensor elements can be related to Young’s modulus, the shear modulus and the

Poisson ratio through Equation 3.3.

Ultrasonic wave techniques are often used to determine the elastic moduli of a

glass; see pp. 162–168 of [3]. In this method, an ultrasonic pulse is sent through the

glass by either a longitudinal or transverse wave transducer. The pulse reflects from

the back face of the glass, and the total travel time of the wave t is measured by an

oscilloscope. Then, for a material with known thickness d, the velocity is determined

from the simple relationship vL,T = d/(2t).

3.1.3 Archimedes Method for Determining Density

Densities of glasses are commonly measured using Archimedes’ principle. According

to this method, the buoyancy of the sample suspended in a general fluid is equal to

the weight of the displaced fluid. The buoyancy is defined as

FB = Wa −Wf = ρfgV, (3.7)

where Wa is the weight of the sample in air, g is the gravitational acceleration, and

Wf , ρf and V are the the weight of the sample suspended in the fluid, the density of

the fluid, and the volume of the displaced fluid respectively. The displaced volume V

must also be equal to the volume of the sample, and so the density of the material

can be determined from

ρ =
mair

V
= mair

ρfg

Wair −Wf

=
mair

mair −mf

ρf , (3.8)

where m denotes the mass of the sample in either air or fluid.

3.1.4 Analysis of Polarized Light Traveling Through Stressed Glass

An analysis of the propagation of polarized light through stressed glass is necessary in

understanding and measuring birefringence. Consider light traveling along the z-axis

and linearly polarized at 45◦ to the x- and y-axes:

E(z, t) = E0e
i(kz−ωt)

(
x̂+ ŷ

)
. (3.9)

Here, E0 is the amplitude of the light wave, k is the wavenumber and ω is the angular

frequency.
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For a glass with stress applied along the y-axis (or extraordinary axis) as shown

in Figure 2.1, the different indices of refraction along the x̂ and ŷ directions result

in different wavenumbers for light polarized along those axes. Then as the polarized

light described in Equation 3.9 travels through a stressed glass with thickness d along

the z-axis, the light will undergo a change in its polarization state:

E(z + d, t1) = E0e
i(kz−ωt1)

(
eikodx̂+ eikedŷ

)

= E0e
i(kz−ωt1)

(
ei2πnod/λx̂+ ei2πned/λŷ

)

= E0e
i(kz−ωt1)ei2πnod/λ

(
x̂+ ei2π(ne−no)d/λŷ

)
.

(3.10)

The induced phase shift ∆ between the x̂ and ŷ components of light exiting the glass

can then be related to the stress-optic coefficient through Equation 2.2:

∆ =
2πd

λ
(ne − no) =

2πd

λ
Cσ. (3.11)

3.1.5 Sénarmont Compensator Method for Determining C

In order to determine the stress-optic coefficient of a glass, one needs to analyze the

polarized light which has passed through the stressed glass. While there are many

methods that can be employed to measure birefringence, our research group uses the

Sénarmont compensator method. Here, light travels through a linear polarizer, the

stressed glass, a quarter-wave plate and finally a second rotatable linear polarizer

called the analyzer. The analyzer angle which minimizes the intensity of light can be

used to determine the phase shift ∆ induced in a stressed glass.

The initial polarizer is oriented to produce light according to Equation 3.9. Then

as the linearly polarized light travels through the stressed glass, it picks up a phase

shift between ordinary and extraordinary axes according to Equation 3.10. At this

point, it is beneficial to use the Jones matrix method [75] to simplify the analysis.

The relevant Jones matrices for the calculation are summarized in Table 3.1.

The light exiting the stressed glass can be rewritten as

E = E0e
i∆/2

[
e−i∆/2

ei∆/2

]
. (3.12)
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Table 3.1: Jones matrices.

Optical element Jones matrix

Quarter-wave plate with fast axis
oriented along the x-axis “Q(x)”

eiπ/4
[

1 0
0 i

]

Linear polarizer oriented at
± 45◦ to the x-axis “L(45)”

1

2

[
1 ±1
±1 1

]

Rotation matrix “R(θ)”

[
cos θ sin θ
− sin θ cos θ

]

The quarter-wave plate is oriented such that its fast axis is parallel to (x̂+ ŷ). Then

as the light passes through the quarter-wave plate, its polarization changes according

to

E = R(−45◦)Q(x)R(45◦)E0e
i∆/2

[
e−i∆/2

ei∆/2

]

= E0e
iπ/4ei∆/2

[
cos(∆/2) + sin(∆/2)

cos(∆/2)− sin(∆/2)

]
.

(3.13)

The analyzer is initially aligned perpendicularly to the incident light, along the ±(x̂−
ŷ) direction. It is rotated to angle θ from this direction to find the minimum intensity

of light. The light exiting the analyzer has electric field vector

E = E0e
iπ/4ei∆/2R(−θ)L(−45◦)R(θ)

[
cos(∆/2) + sin(∆/2)

cos(∆/2)− sin(∆/2)

]

= E0e
iπ/4ei∆/2

1

2

[
cos ∆

2
+ sin ∆

2
+ sin

(
∆
2

+ 2θ
)
− cos

(
∆
2

+ 2θ
)

cos ∆
2
− sin ∆

2
− sin

(
∆
2

+ 2θ
)
− cos

(
∆
2

+ 2θ
)
]
.

(3.14)

The intensity of a general light wave, A =

[
Ax

Ay

]
, is I = A2

x + A2
y. Thus, the

intensity of light exiting the rotatable analyzer is

I = 4 + 2 sin ∆− 2 cos(∆ + 2θ) (3.15)
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Since ∆ is a constant value for a given applied stress, then the intensity is minimized

when the analyzer is rotated to

2θ = −∆± π

2
. (3.16)

With this relationship for the experimentally determined angle of extinction θ and

Equation 3.11, the stress-optic coefficient C can be determined.

3.1.6 Dispersion of the Refractive Index

The stress-optic coefficient is dependent on the index of refraction, which itself is

dependent on the wavelength of the incident light. Normal dispersion occurs when

the refractive index increases with decreasing wavelength. Otherwise, the dispersion

is anomalous; this occurs near or at the absorption bands of the glass [76]. This is

seen in Figure 3.1.

Figure 3.1: Absorption coefficient and refractive index of light in a dielectric medium.
Here, n is the real part of the refractive index and k is the imaginary part. Materials
absorb all incident light at the resonance wavelength λres. Image from reference [76].
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In order to understand the dispersion of the refractive index, an electromagnetic

approach is necessary [75–77]. A glass can be considered as a collection of many

small, polarizible charges (electrons). Each electron oscillates about its equilibrium

position with resonant frequency ω0. When an electromagnetic wave such as light

impinges on the glass, the electrons vibrate at the frequency of the incident wave.

Each charge can be considered to be a forced oscillator driven by the electric field of

the light wave. The equation of motion is

m
(
ẍ + γẋ + ω2

0x
)

= qE(x, t) = qE0 cos(ωt), (3.17)

where m is the mass of the electron, q is the charge of the electron, γ is the damping

coefficient, and ω is the frequency of the incident wave. Assuming that the charge

will oscillate at the same frequency as the electric field, the solution for x is guessed

to be

x(t) = x0e
−iωt (3.18)

and the equation of motion simplifies to

x(t) =
q

m(ω2
0 − ω2 − iωγ)

E(t). (3.19)

The polarization, or density of dipole moments, can be related to the electric field

as

P(t) = (ε− ε0)E(t), (3.20)

where ε is the dielectric constant of the material and ε0 is the dielectric constant

in vacuum. Furthermore, the dipole moment is equal to the charge times its

displacement, so for N atoms,

P(t) = qNx(t) =
q2N

m(ω2
0 − ω2 − iωγ)

E(t). (3.21)

Combining these equations, we find that

ε = ε0 +
P(t)

E(t)
= ε0 +

q2N

m(ω2
0 − ω2 − iωγ)

. (3.22)

This can be simplified to the refractive index using the relation n2(ω) = ε/ε0. Now

supposing that there are N atoms per unit volume with Z electrons per atom, and

that instead of one binding frequency ω0 for all electrons, there are fj electrons per
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atom with binding frequency ωj and damping coefficient γj, the dispersive equation

for the refractive index is

n2(ω) = 1 +
q2N

mε0

∑

j

fj
(ω2

0 − ω2
j − iωjγj)

(3.23)

where the oscillator strengths fj satisfy the sum
∑

j fj = Z.

Since the refractive index is wavelength dependent, some dispersion of the

stress-optic coefficient is expected. However, C can either increase or decrease with

decreasing wavelength. Since n only increases with decreasing λ, it is clear that the

refractive index is not the only source of dispersion in the birefringence of a glass.

3.2 Ellipsometry

Spectroscopic ellipsometry is a technique that characterizes the optical properties of

materials, typically thin films. Polarized light is reflected from a sample’s surface, and

the change in amplitude and phase of the light is measured. In this way, information

such as the thickness of a thin film, the real and imaginary refractive indices, and

the surface roughness of a sample can be determined. The follow sections describe

the reflection and transmission of light at an interface, the optical components of

an ellipsometer, and the determination of refractive index from the ellipsometric

measurements.

3.2.1 Reflection of Light at an Interface

Typically, spectroscopic ellipsometry measures light that has been reflected from a

material’s surface. The following discussion of the reflection and transmission of light

is based on reference [77].

When light is incident on a transparent material at some angle θI , part of the light

is reflected and part is transmitted through the material; this is shown in Figure 3.2.

The amounts of reflected and transmitted beams depend on the initial polarization

of the incident light. In ellipsometry, it is typical to call light with electric field

perpendicular to the plane of incidence “s-polarized”, while light polarized within

this plane is called “p-polarized”. The magnetic fields are orthogonal to both the

electric fields and the direction of propagation.
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Figure 3.2: Light incident on the surface of a transparent material is partially reflected
and partially transmitted. The initial polarization of the light (s or p, according to the
conventions of ellipsometry) determines the reflection and transmission coefficients.

The electric and magnetic fields are

Em = E0me
ikm·r−iωt,

Bm =
n

c

km × Em

km
,

(3.24)

where the subscript m = I, R, T denotes the incident, reflected or transmitted field.

The boundary conditions of the system specify that at the point of incidence on the

material, all variations of the fields must be equal. All phase factors are equal,

kI · r = kR · r = kT · r, (3.25)

and the normal components of B and D are continuous, as are the tangential

components of E and H. For s-polarized light, this yields

Es
0I + Es

0R = Es
0T ,

nair
c

(Es
0I − Es

0R) cos θI =
n

c
Es

0T cos θT ,
(3.26)

which can be solved for the reflected and transmitted amplitudes:

Rs =
Es

0R

Es
0I

=
nair cos θI − n cos θT
nair cos θI + n cos θT

=
cos θI −

√
n2 − sin2 θI

cos θI +
√
n2 − sin2 θI

,

T s =
Es

0T

Es
0I

=
2nair cos θI

nair cos θI + µair
µ
n cos θT

=
2 cos θI

cos θI +
√
n2 − sin2 θI

,

(3.27)
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where nair ≈ 1, and Snell’s law (nair sin θI = n sin θT ) has been applied to convert

the angle of transmission θT to the incident angle. Likewise, for p-polarized light, the

boundary conditions give

(Ep
0I − Ep

0R) cos θI = Ep
0T cos θT ,

nair
c

(Ep
0I + Ep

0R) =
n

c
Ep

0T .
(3.28)

The reflected and transmitted intensities are then

Rp =
Ep

0R

Ep
0I

=
n cos θI − nair cos θT
n cos θI + nair cos θT

=
n2 cos θI −

√
n2 − sin2 θI

n2 cos θI +
√
n2 − sin2 θI

,

T p =
Ep

0T

Ep
0I

=
1

n

2n cos θI
n cos θI + nair cos θT

=
2n cos θI

n2 cos θI +
√
n2 − sin2 θI

.

(3.29)

3.2.2 Fresnel Equations and the Brewster’s Angle

For p-polarized light (i.e. light polarized in the plane of incidence), there is an angle

for which no light is reflected; this angle is called the Brewster’s angle. Since Rp = 0,

Equation 3.29 becomes

n2 cos θI =
√
n2 − sin2 θI , (3.30)

or

n4 =
n2

cos2 θI
− sin2 θI

cos2 θI
. (3.31)

Then, with the relationships tan θ = sin θ/ cos θ and sec2 θ = 1+tan2 θ, the Brewster’s

angle can be written as

θB = tan−1(n). (3.32)

This angle can be used to determine the refractive index of the glass.

3.2.3 Spectroscopic Ellipsometry

The polarization state of light reflected from a material can be measured by

spectroscopic ellipsometry. A schematic of this reflection process is seen in Figure 3.3.

The reflected light often becomes elliptically polarized, which is expressed in polar

coordinates as

ρ =
Ep
R

Es
R

= tan Ψei∆, (3.33)

where ∆ is the phase shift induced between the s- and p-components of the beam,

and tan Ψ = |Ep
R|/|Es

R| is the ratio of amplitudes.
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Figure 3.3: Ellipsometry can measure the phase shift ∆ and relative intensity tan Ψ
of s- and p-polarized light. Image from [78].

The Woollam M-2000 variable angle spectroscopic ellipsometer used for these

measurements is a rotating-compensator ellipsometer (RCE). The ellipsometer,

located in the Dahn lab at Dalhousie University, measures the intensity and phase

of light with wavelengths between 210 and 1000 nm, and the angle of incidence of

the beam can vary from 45◦ to 90◦ (transmission mode). A schematic of the optical

elements of the M-2000 are shown in Figure 3.4.

Figure 3.4: A schematic of optical components within the Woollam M-2000
ellipsometer, located in the Dahn lab at Dalhousie University. Image from [78].
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The optical components of the ellipsometer are similar to those used in the

Sénarmont compensator discussed in Section 3.1.5. Each element is briefly described

below, based on the discussion in reference [78]. The light source is a Xe arc lamp,

emitting light in the range 195-2000 nm. The lamp has sharp emission peaks between

800 and 1000 nm, which can result in artifacts in the collected intensity spectrum. The

light is collimated and then passes through a Glan-Taylor linear polarizer oriented

at 45◦ between the s and p axes. As such, the resulting beam has equal s- and

p-polarization amplitudes. The light then passes through the rotating compensator,

which induces a phase shift of π/2 and converts the beam to circular polarization.

This allows measurement sensitivity near ∆ = 0◦ and δ = 180◦, as well as the

determination of the handedness of induced phase shifts [79]. The beam is then

incident on the sample; for incident angles θI < 90◦, the beam can be focused to

smaller spot size using focusing probes. The reflected light, with amplitude and

phase shifts as described in the previous section, passes through another Glan-Taylor

linear polarizer, which acts as an analyzer. The resulting linearly polarized light

is then filtered by a grating onto the detector, a silicon photodiode array, which

measures the polarization state and intensity of the reflected beam at all wavelengths

simultaneously. The phase shift ∆ between s and p components of the light and

the relative intensity tan Ψ are determined directly by the accompanying software

CompleteEASE, which performs a Fourier analysis of the intensity. The stress-optic

coefficient of light transmitted through or reflected from the back face of a glass can

be determined from this experimentally measured ∆ and Equation 3.11.

3.2.4 Refractive Index and the Cauchy Model

The refractive index of a material can be determined using ellipsometry from the

wavelength-dependent measurement of Ψ as well as Equations 3.27 and 3.29. By

solving tan Ψ = |Rp|/|Rs|, the refractive index is found to be

n2 =
sin2 θI(1 + tan Ψ)2 − 4 sin4 θI tan Ψ

cos2 θI(1 + tan Ψ)2
. (3.34)

The CompleteEASE software fits the refractive index to Ψ using different models;

in this case, a Cauchy model was used to determine n. For transparent materials, the
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Cauchy model is

n(λ) = A+
B

λ2
+
C

λ4
+ ... (3.35)

Typically, orders above (1/λ4) are ignored since they do not contribute significantly

to n. The parameters A, B and C are fitted by the software to minimize the

difference between model and experimental Ψ, and the wavelength-dependent n(λ) is

determined.

3.3 Brillouin Scattering in Amorphous Materials

When electromagnetic waves propagate through transparent materials, a small

fraction of the waves will interact with and scatter from sound waves moving in

the material. This is known as Brillouin scattering. A typical Brillouin spectra (seen

for glass in Figure 3.5) measures the scattered photon intensity as a function of the

light’s frequency shift relative to the incident wavelength. The frequency shifts of

the scattered light from the central Rayleigh line give information about the sound

velocities and elastic moduli of the glass, while the intensities of the shifted Brillouin

peaks give information about the photoelastic properties of the glass. In the following

sections, these relationships will be derived, and the Fabry-Perot interferometer used

to collect Brillouin spectra will be discussed.

3.3.1 Frequency Shifts and the Elastic Moduli

Brillouin scattering can be described as the interaction between a light wave and a

density wave in a material [7, 80–82]. The density wave originates from the thermal

motion of atoms in the material (corresponding to acoustic phonons at the Brillouin

zone center) and will scatter a fraction of the incident light. This type of scattering

is inelastic and occurs with low frequencies. The photon can either lose energy and

create a phonon (Stokes scattering) or gain energy by absorbing a phonon (Anti-Stokes

scattering). The wave vectors k and frequencies ω of the scattering process are

kS = kI ± q,

ωS = ωI ± ωq,
(3.36)

where I indicates incident photons, S indicates scattered photons, q indicates the

created or absorbed phonon and the − (+) indicates Stokes (Anti-Stokes) scattering.
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Figure 3.5: A typical Brillouin spectra showing scattered light’s intensity as a function
of frequency shift. Inelastic scattering from longitudinal waves are measured in
VV configuration (blue), while transverse waves are measured in VH configuration
(green). The unshifted, elastically scattered Rayleigh line is in pink.

The density fluctuations in the material lead to periodic fluctuations of the

dielectric tensor (refractive index) which act like a diffraction grating. The light

scattered at angle θ/2 will interfere constructively according to Bragg’s law:

λ

n
= 2Λ sin(θ/2). (3.37)

Here, n is the refractive index of the scattering material, λ is the wavelength of

incident light, and Λ is the wavelength of the density fluctuations. This wavelength

can be related to the wavevector of the phonons created or destroyed in the scattering

process:

q =
2π

Λ
=

4πn

λ
sin(θ/2). (3.38)

Since the light is scattered from a moving object (in this case, a density wave), its

frequency will undergo a Doppler shift:

∆ωB = 2π∆fB = qvB, (3.39)

where q is the wavevector of the incident phonons and vB is the sound velocity of the

scattering medium. Isotropic media have two sound velocities: longitudinal, vL, and
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transverse, vT . The two independent elastic moduli are then

CB = ρv2
B = ρ

(
∆ωBλ

4πn sin(θ/2)

)2

, (3.40)

with C11 and C44 found from the longitudinal and transverse sound velocities,

respectively.

3.3.2 Brillouin Intensity and the Elasto-Optic Constants

This derivation of the relationship between Brillouin scattering intensity and

elasto-optic coefficients pijkl is based on the scattering theory found in references [82,

83]. In amorphous materials such as glass, the average dielectric constant is equal

in all directions. However, sound waves of wave vector q and frequency ωq traveling

through the material will induce small fluctuations in the dielectric constant, δεik,

which tend to be anisotropic.

When light is incident on such a material, its electric field EI will induce

polarization. The part of the polarization which is due to the dielectric fluctuations

will emit a scattered electric field ES at some point R0 away from the scattering

event. The propagation of the scattered wave is described by the relationship between

electric induction and field, the components of which are DSi = εSESi+δεijEIj. Here,

εs represents the dielectric constant measured at the scattered frequency ωs, and δεij

is the change in the tensor element of the dielectric permeability which describes

the scattering properties of the material. Since the frequency shift between the

incident and scattered light is small, we can approximate εs ≈ ε. In vector form,

the propagation is then described by

DS = εES + (δε · EI), (3.41)

where (δε · EI) is shorthand for the vector with components δεijEIj.

We can apply Maxwell’s equations to the electric induction and field to find that

∇× ES = iωS

c
HS and ∇×HS = −iωS

c
DS, which combine to give the relationship

∇×∇× ES =
ω2
S

c2
DS. (3.42)

Substituting Equation 3.41 into Equation 3.42, and noting that:

i) ∇ × ∇ × DS = ∇(∇ · DS) − ∇2DS, ii) ∇ · DS = 0, and iii) k2
s = ω2

s/(εsc
2), we
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obtain the equation

∇2DS + k2
SDS = −∇×∇× (δε · EI). (3.43)

To solve this equation, we must divide the material into small scattering regions

(with dimensions still larger than the distance between structural units) and treat

the scattering from one area as an individual event that is not affected by travel

through the rest of the material. Thus, the scattered field at large distance from the

scattering region (analogous to the large distance between material and detector) can

be calculated.

At this point, we note that Equation 3.43 looks like a retarded potential of the

form

∇2φ+ k2φ = −4πρ (3.44)

with the solution

φ =

∫
ρ
eikR

R
dV, (3.45)

where φ and ρ depend on time through the factor e−iωt [84]. In this coordinate

system, the origin (or scattering point) is located inside the scattering region. The

radius vector from origin to the point P (where the field is calculated) is R0, with

unit vector n. The radius of the scattering region is r, and R = R0−r is the distance

from the scattering volume to the point P . At large distances from the scattering

volume, R0 � r and

R = |R0 − r| ≈ R0 − r · n. (3.46)

We can substitute this into Equation 3.45, noting that in the denominator R ≈ R0

and that the scattering wave vector ks is in the direction of R0. Thus, the required

solution for Equation 3.43 is

DS =
eiksR0

R0

∫ (
1

4π
∇×∇× (δε · EI)

)
e−iks·rdV. (3.47)

Applying the curl to the exponential function in the integrand, Equation 3.47

simplifies to

DS = −e
iksR0

4πR0

ks × ks ×
∫

(δε · EI)e
−iks·rdV. (3.48)

Since we are assuming that the light does not interact with the material beyond the

scattering incident, the relationship between DS and ES at the point being considered
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is simply DS = εES. The electric field of incident light is periodic in its propagation,

EI = E0e
ik·r. We introduce the simplifying notation for the scattering vector,

G =

∫
(δε · EI)e

−iks·rdV =

∫
(δε · E0)eiq·rdV, (3.49)

where the phonon wave vector is defined in terms of the light’s initial and scattered

wave vectors as q = ks − ki. Then Equation 3.48 becomes

ES = − e
iksR0

4πR0ε
ks × ks ×G. (3.50)

The change in dielectric tensor element can be related to the elasto-optic properties

of the material through the relationship

δ(ε−1)ij = pijklukl (3.51)

where pijkl are the elasto-optic tensor elements and ukl are the strain tensor elements.

Since the fluctuations in the dielectric are small, we note that δ(ε−1)ij = 1/ε−1/εij =

(εij−ε)/(εεij) ≈ −(δεij)/ε
2. For isotropic materials, which have only two independent

elasto-optic tensor elements, the fluctuation in the dielectric tensor becomes

δεij = −ε2 [2p44uij + p12ullδij] . (3.52)

(This simplification can be shown by expanding the sum in Equation 3.51 over kl and

considering the cases where i = j and i 6= j.) The displacement vector associated

with the excitation of the wave vector q is

u = u0e
iq·r, (3.53)

and individual tensor elements are found by the symmetric combination of the

displacement gradients:

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
i (u0iqj + u0jqi) e

iq·r. (3.54)

With this, we can find the components of the scattering vector G:

Gi =

∫
δεijE0je

−iq·rdV = −ε2
∫

[2p44uij + p12ullδij]E0je
−iq·rdV. (3.55)

Noting that the volume integral for a general strain tensor elements is
∫
uije

−iq·rdV =

∫
(1/2)i (u0iqj + u0jqi) e

iq·rdV = (1/2)iV (u0iqj + u0jqi), (3.56)
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Equation 3.55 becomes

Gi = −ε2iV (p44(u0iqj + u0jqi) + p12u0lqlδij)E0j, (3.57)

which, in vector form, is

G = −ε2iV [p44(u0(q · E0) + q(u0 · E0)) + p12E0(u0 · q)] . (3.58)

The power dP scattered into the solid angle dΩ is

1

LP0

(
dP

dΩ

)
=

R2
0

V |EI |2
|ES|2, (3.59)

where L is the length of the interaction volume V , and P0 is the incident power. This

is equivalent to the power Iab of light scattered per unit solid angle in an amorphous

material normalized by initial light power I0 and scattering volume V where, a and b

represent the polarizations of incident and scattered light, respectively. Since light is

scattered from fluctuations due to sound waves propagating in the material, we need

to consider the scattering by both longitudinal and transverse phonons.

First, we will consider the power scattered by transverse sound waves. In this

case, the displacement vector u is perpendicular to the phonon wave vector q. Thus,

u0 · q = 0 and Equation 3.58 becomes

G = −ε2iV p44 [u0(q · E0) + q(u0 · E0)] . (3.60)

There are two independent directions of polarization possible with a transverse sound

wave: u can be parallel to the plane containing kS and kI (often called the horizontal

plane), or it can be perpendicular to this plane (called the vertical axis, with direction

kS × kI). This is depicted in Figure 3.6, where θ is the angle between incident and

scattered wave vectors, and the incident electric field vector is polarized in the plane

perpendicular to kI . The angle between the vertical kS × kI axis and the vector E0

is denoted by ψ. It is measured CW from the vertical axis.

For the case where u is in the plane of kS and kI , we note that

q · E0 = qE0 cos(θ/2) sinψ,

u0 · E0 = u0E0 sin(θ/2) sinψ,
(3.61)

so that Equation 3.60 simplifies to

G = −ε2iV p44 [qE0 cos(θ/2) sinψu0 + u0E0 sin(θ/2) sinψq] . (3.62)
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θ

kS

q

E0

û

Figure 3.6: A schematic example of the scattering process of light from a fluctuating
dielectric constant. The plane of kS × kI is in the page, while vectors perpendicular
to this (i.e. coming out of the page) are represented by filled filled circles.

We can find the magnitude and direction of the scattered electric field using

Equation 3.50, and noting that

kS × kS × u0 = kS(kS · u0)− k2
Su0 = kSu0 cos(θ/2)kS − k2

Su0,

kS × kS × q = kS(kS · q)− k2
Sq = kSq sin(θ/2)kS − k2

Sq,
(3.63)

the scattered electric field is

ES =
eikSR0

4πR0ε
ε2iV p44E0

[
q cos

θ

2
sinψ

(
kSu0 cos

θ

2
kS − k2

Su0

)

+ u0 sin
θ

2
sinψ

(
kSq sin

θ

2
kS − k2

Sq

)]

=
eikSR0

4πR0

εiV p44E0qk
2
Su0

[
sinψk̂S − sinψ

(
cos

θ

2
û0 + sin

θ

2
q̂

)]
.

(3.64)

For the scattering orientation, cos θ
2
û0 + sin θ

2
q̂ = k̂S, and thus we conclude that

transverse waves propagating in the horizontal plane do not contribute to the Brillouin

intensity.

Next, we consider displacement waves u parallel to kS × kI . We have the

relationships

q · E0 = qE0 cos(θ/2) sinψ,

u0 · E = u0E0 cosψ,
(3.65)

which lead to the scattering term

G = −ε2iV p44 [qE0 cos(θ/2) sinψu0 + u0E0 cosψq] . (3.66)
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Again, the magnitude and direction of the scattered electric field are found using

Equation 3.50, with the cross products

kS × kS × u0 = kS(kS · u0)− k2
Su0 = −k2

Su0,

kS × kS × q = kS(kS · q)− k2
Sq = kSq sin(θ/2)kS − k2

Sq.
(3.67)

The electric field of the scattered light is

ES =
eikSR0

4πR0ε
ε2iV p44E0

[
−qk2

S cos
θ

2
sinψu0 + u0 cosψ

(
kSq sin

θ

2
kS − k2

Sq

)]

=
eikSR0

4πR0

εiV p44E0qu0k
2
S

[
− sinψ cos

θ

2
û0 + cosψ

(
sin

θ

2
k̂S − q̂

)]

= −e
ikSR0

4πR0

εiV p44E0qu0k
2
S

[
sinψ cos

θ

2
û0 + cosψ cos

θ

2
(k̂S × û0)

]
.

(3.68)

The scattered light is polarized in the plane perpendicular to the wave vector kS as

expected.

At this point, we can compare the polarization of the scattered electric field to

that of the incident light. The incident light is polarized in the plane perpendicular

to kI , such that

E0 = E0

(
sinψ(k̂I × û0) + cosψû0

)
. (3.69)

The polarization of the scattered light, as seen in Equation 3.68, is simplified to

ES = E ′S sin
θ

2

(
cosψ(k̂S × û0) + sinψû0

)
, (3.70)

and we can see that the two electric fields are perpendicularly polarized for transverse

sound waves.

We can relate the intensity of the scattered light to the elasto-optic coefficient p44

through Equation 3.59. Taking the dot product of Es from Equation 3.68, we get

|ES|2 =
ε2V 2p2

44|E0|2q2|u0|
2
k4
S

(4πR0)2
cos2 θ

2

[
sin2 ψ + cos2 ψ

]
. (3.71)

Since the sound wave is a thermodynamic fluctuation, it can be considered to be a

combination of two oscillators with total mean kinetic energy kBT . The sound wave

has frequency ωq = qvT , where vT is the transverse sound velocity, so the mean kinetic

energy is
1

2
V ρu̇2 =

1

4
V ρ(vT q)

2|u0|2 = kBT. (3.72)
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The scattered wave vector in the material can be written as k2
S = ε(ωS/c)

2 = ε(2π/λ)2;

then the scattered power is

1

LP0

(
dP

dΩ

)
=

4π2kBTε
4

λ4ρv2
T

p2
44 cos2 θ

2
. (3.73)

It is of interest to note that the angle of polarization of the incident light does not

affect the scattering intensity; however, light scattered from these transverse waves

will be polarized perpendicularly to the incident light. The power of light scattered

for transverse-acoustic phonons is usually measured experimentally as

IV H = IHV = I0V
4π2kBT

λ4

ε4p2
44

ρv2
T

cos2 θ

2
, (3.74)

where V and H denote incident and scattered polarizations vertical or horizontal to

the scattering plane containing kI and kS.

Longitudinal sound waves have a displacement vector u parallel to the phonon

wave vector q. Writing

q · E0 = qE0 cos
θ

2
sinψ,

u0 · E0 = u0E0 cos
θ

2
sinψ,

u0 · q = u0q,

(3.75)

equation 3.58 becomes

G = −ε2iV
[
p44

(
qE0 cos

θ

2
sinψu0 + u0E0 cos

θ

2
sinψq

)
+ p12u0qE0

]

= −ε2iV qu0E0

[
2p44 cos

θ

2
sinψq̂ + p12Ê0

]
.

(3.76)

With this, and the relationships

kS × kS × q̂ = kS(kS · q̂)− k2
Sq̂ = k2

S sin
θ

2
k̂S − k2

Sq̂,

kS × kS × Ê0 = kS(kS · Ê0)− k2
SÊ0 = k2

S sin θ sinψk̂S − k2
SÊ0,

(3.77)

we can determine (using Equation 3.50) the field scattered from longitudinal sound
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waves:

Es =
eiksR0

4πR0ε
ε2iV qu0E0

[
2p44 cos

θ

2
sinψ

(
k2
S sin

θ

2
k̂S − k2

Sq̂

)
+ p12
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k2
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SÊ0
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εiV qu0E0k
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2
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2
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2
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)
− p12 cos θ sinψ

(
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)
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]

= −e
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εiV qu0E0k
2
S

[
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(
2p44 cos2 θ

2
+ p12 cos θ

)(
k̂s × Ê0V

)
+ p12 cosψÊ0V

]
.

(3.78)

We can see that the scattered light is polarized in the plane perpendicular to the wave

vector kS. If incident light is polarized vertically (ψ = 0◦), then the light scattered

will also be polarized in the vertical direction. Likewise, if light is initially polarized

in the scattering plane (ψ = 90◦), then scattered light will also be polarized in this

plane. The scattered power, from Equation 3.59, is

1

LP0

(
dP

dΩ

)
=

4π2kBT

λ4

ε4

ρv2
L

[
sin2 ψ

(
2p44 cos2 θ

2
+ p12 cos θ

)2

+ p2
12 cos2 ψ

]
; (3.79)

for vertical and horizontal incident polarized light, this simplifies to

IV V = I0V
4π2kBT

λ4

ε4

ρv2
L

p2
12,

IHH = I0V
4π2kBT

λ4

ε4

ρv2
L

(
2p44 cos2 θ

2
+ p12 cos θ

)2

.

(3.80)

3.3.3 Principles of Multiple Beam Interference

In order to experimentally measure these scattering intensities at low frequency shifts,

we turn to the method of Fabry-Perot interferometry and multiple beam interference

[7, 75]. Fabry-Perot interferometers are used to analyze the detailed structure of

spectral lines by measuring the interference patterns from light near to normally

incident on plane parallel plates. Typically, these plates will be coated on one side

with a metallic film in order to increase their reflectivity.
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When light is incident on a transparent, plane parallel glass plate, a large number

of reflections will occur at the plate surfaces. This results in a series of beams with

decreasing amplitudes on either side of the plate. Consider such a glass plate with

thickness d and refractive index n′, surrounded by a material with index n. If a

monochromatic light wave E with amplitude E0 is incident on the plate with angle

θ, then the wave will be reflected and transmitted at both parallel surfaces. Here, for

waves entering the glass plate, r and t are the reflection and transmission coefficients,

or the ratio of reflected or transmitted and incident amplitudes. Similarly, r′ and

t′ are the reflection and transmission coefficients for light exiting the plate; these

are defined by Equation 3.27 or 3.29 for incident light that is s- or p-polarized. A

schematic of the multiple beam reflection is seen in Figure 3.7.

n

n′

n

E0

θ

rE0

x

tE0

θ′

tt′E0

tr′E0

tt′r′E0

tr′2E0

tt′r′2E0

tr′3E0

tt′r′3E0

tr′4E0

tt′r′4E0

tr′5E0

tt′r′5E0

tr′6E0

d

Figure 3.7: Multiple internally reflecting beams in a transparent parallel plane glass
plate. A series of waves with decreasing amplitudes exit on either side of the plate.

The complex amplitudes of the reflected waves are

rE0, tt′r′E0e
iδ, tt′r′3E0e

2iδ, ..., (3.81)

and the complex amplitudes of waves transmitted through the plate (ignoring the

unimportant phase factor between reflected and transmitted waves) are

tt′E0, tt′r′2E0e
iδ, tt′r′4E0e

2iδ, ... (3.82)

From the principle of reversibility, we come to the conclusion that r′ = −r and

tt′ + r2 = 1 so long as none of the energy is absorbed. The phase difference between

subsequent transmitted or reflected waves is δ, which corresponds to double traversal
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of the glass plate. To find this phase difference in terms of the properties of the

glass plate and light source, we consider the optical path length difference Λ between

reflected light beams with amplitudes rE0 and tt′r′E0:

Λ = n′(
2d

cos θ′
)− nx. (3.83)

Here, x is the distance that the reflected light with amplitude rE0 has traveled before

the second reflected light ray reaches the top surface of the plate; see Figure 3.7.

Then, with the relationships x = 2d tan θ′ sin θ, and n′ sin θ′ = n sin θ, the optical

path length difference becomes

Λ = 2n′d cos θ′ (3.84)

and the phase difference between subsequent reflected or transmitted waves is given

by

δ =
2πΛ

λ0

=
4πn′d

λ0

cos θ′, (3.85)

where λ0 is the wavelength of light outside of the glass plate.

Since the waves are mutually coherent, if they are focused by a lens at a specific

point (P for reflecting waves and P ′ for transmitted waves), they will interfere, giving

summed amplitudes E0R for reflection from the first surface and E0T for transmission

from the second surface. For the most general case with unknown phase shift δ, the

amplitude of the reflected waves interfering at point P is

E0R = rE0 − tt′rE0

(
eiδ + r2e2iδ + r4e3iδ + r6e4iδ + ...

)

= rE0 − tt′rE0e
iδ

(
1 + (r2eiδ) + (r2eiδ)2 + (r2eiδ)3 + ...

)

= rE0 −
tt′rE0e

iδ

1− r2eiδ
= rE0

(
1− eiδ

1− r2eiδ

)
.

(3.86)

Here, we note that for the special case where δ = 2πm and m is an integer value,

the interference of the reflected waves at point P is entirely destructive. For a

non-absorbing material, since there are no reflections from the first surface, all light

must be transmitted. On the other hand, if δ = (2m+ 1)π, then the amplitude of the

reflected light’s electric field is at its maximum. The intensity of the reflected light is

simply

IR = E0RE
∗
0R = r2E2

0

(
1− eiδ

1− r2eiδ

)(
1− e−iδ

1− r2e−iδ

)
= 2r2e2

0

1− cos δ

(1 + r4)− 2r2 cos δ
. (3.87)



60

We can perform a similar analysis of the transmitted waves. The amplitude of

the waves interfering at point P ′ is

E0T = tt′E0

(
1 + r′2eiδ + r′4e2iδ + r′6e3iδ + r′8e4iδ + ...

)
=

(1− r2)E0

1− r2eiδ
(3.88)

and the intensity of the transmitted light is

IT = E0TE
∗
0T = (1− r2)2E2

0

(
1

1− r2eiδ

)(
1

1− r2e−iδ

)
=

(1− r2)2e2
0

(1 + r4)− 2r2 cos δ
.

(3.89)

For the case when δ = 2πm and no light is reflected, the transmitted amplitude is

E0T = E0 which corresponds to all light being transmitted. Equations 3.87 and 3.89

can be simplified by substituting cos δ = 1− 2 sin2(δ/2):

IR/I0 =
(2r2/(1− r2))2 sin2 δ

2

1 + (2r2/(1− r2))2 sin2 δ
2

=
F sin2 δ

2

1 + F sin2 δ
2

IT/I0 =
1

1 + (2r2/(1− r2))2 sin2 δ
2

=
1

1 + F sin2 δ
2

,

(3.90)

where I0 = E2
0 and F = (2r2/(1 − r2))2 is called the coefficient of finesse, or finesse

factor. This value will depend on the mirror reflectivity and flatness.

To this point, we have considered glass plates with no metallic coating. However,

the partially transparent metallic films on the mirrors within an FP interferometer

will absorb a fraction of the light intensity. The expression for transmittance and

reflectivity must be rewritten to include the absorbtance term A:

tt′ + r2 + A = 1. (3.91)

With this, the normalized transmitted intensity becomes

IT/I0 =

(
1− A

1− r2

)2
1

1 + F sin2 δ
2

. (3.92)

The light wave will also undergo an additional shift φ upon reflection from the metallic

surface. Then the phase shift δ becomes

δ =
2πn′d

λ0

cos θ′ + 2φ. (3.93)

Generally speaking, d is large enough and λ0 small enough that the effects due to φ

can be neglected.
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3.3.4 Fabry-Perot Interferometry

This discussion of Fabry-Perot interferometry is based on references [7, 75, 82, 85, 86].

The multiple beam interference patterns from plane parallel plates are used in

Fabry-Perot (FP) interferometers, allowing measurement of the Brillouin spectra to

a resolution of GHz or MHz frequencies. Within the FP are two very flat, highly

reflecting semi-transparent surfaces. These are typically glass plates mounted exactly

parallel to each other and with adjustable spacing d between them; the gap is usually

filled with air such that n′ = 1. The inner surfaces of the plates are coated with

semi-transparent metallic films with high reflectivity, and the outer surfaces are

slightly prismatic to avoid unwanted glass-air reflections. Light is typically incident

normal to the mirrors within the interferometer, such that cos θ′ = 1. The air gap

d is on the order of millimeters to centimeters for interferometers; if the spacing is

much larger, the mirror apparatus can be used as a resonant laser cavity.

For a set mirror spacing d, the FP will only measure maximum transmission

for specific wavelengths, determined by Equations 3.85 and 3.92. For maximum

transmission, it is necessary that δ = 2πm. Thus the relationship

mλ0 = 2n′d cos θ′ = 2d (3.94)

determines maximum transmission of light with wavelength λ0. The FP acts like

tunable filter, where transmission will be close to maximum over a very narrow

wavelength range, and will drop to near zero outside of this range.

Since δ is a function of λ0, if the light source contains multiple wavelengths then

the interference pattern will be the sum of intensity distributions from each individual

monochromatic wavelength component. If the wavelengths cover a range ∆λ0 (often

called the free spectral range, FSR), then the fringe maximum coefficient m will also

be spread over a distance ∆m. Differentiating Equation 3.94, we find that

m∆λ0 = −λ0∆m. (3.95)

From this (ignoring the negative, which simply indicates that order decreases as

wavelength increases), it follows that the FSR depends inversely on mirror spacing:

∆λ0 =
λ2

0∆m

2d
. (3.96)
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Furthermore, the finesse is related to the FSR and the width of a transmission peak

from one wavelength component, δλ0, as

F =
∆λ0

δλ0

. (3.97)

In practice, the spacing d is varied to scan the intensity of light at different

wavelengths. However, all wavelengths that satisfy Equation 3.94 will contribute

to the measured Brillouin intensity. As the difference between wavelengths becomes

larger, overlapping peaks will separate. For example, the m-th order fringe for λ0

approaches the (m+1)-th order fringe for (λ0−∆λ0). In order to accurately interpret

the Brillouin spectra, it would be beneficial to increase the range ∆λ0. Then the range

of incident light will be contained within the FSR and overlapping will be minimized.

This can be achieved by decreasing the mirror spacing; however, since the finesse is

fixed, this would also broaden the width of transmission peaks and decrease resolution.

Experimentally, the finesse F is limited to values of about 100 due to the quality of

reflective coatings.

It is possible to increase the free spectral range at fixed resolution by placing

multiple FPs (typically 2) with similar spacings in series (tandem). Light will

pass through each FP many times (multi-pass), and both must transmit the same

wavelength simultaneously. Thus the spacings for each interferometer must satisfy

λ0 = 2m1d1, λ0 = 2m2d2 and so on, where mi are integers. Since both FPs have

slightly different FSRs, one FP will block the neighbouring overlapping interferences.

That is to say, higher orders of light transmitted through the first FP (say ∆m1 = 1)

will not be transmitted through the second interferometer. So if the mirror spacings

are set to transmit a specific wavelength λ0, then the transmission spectra will resolve

both peaks; see Figure 3.8(c). The intensity of light transmitted through the two FPs

is

IT/I0 =

(
1− A2

1− r2
2

)2
1

1 + F2 sin2 δ2
2

(
1− A1

1− r2
1

)2
1

1 + F1 sin2 δ1
2

(3.98)

Experimentally, the multiple interferometers will be scanned by simultaneously

changing the mirror spacings (typically by 1-2µm) such that, for two FPs, δL1

δL2
= L1

L2
.

This synchronization condition can be satisfied by having the scanning mirrors of two

interferometers mounted on the same translation stage, with angular offset; this is seen

in Figure 3.9. Typically, light will pass multiple times through each interferometer.
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Figure 3.8: Using more than one FP mirror set allows the resolution of Brillouin
peaks. Image from [86].

Figure 3.9: Schematic of a tandem Fabry-Perot interferometer. Both scanning mirrors
move to satisfy the condition δL1

δL2
= L1

L2
. Image from [86].

3.3.5 Determining pij from Brillouin Spectra

In order to determine the elasto-optic coefficients from the FP-collected Brillouin

spectra, a few special considerations are necessary. These include comparing sample

intensities to reference intensities, accounting for the reflection of light at interfaces,

and determining the relative signs of p12 and p44.

For right-angle scattering geometry (θ = 90◦) with incident and scattered light

vertically or horizontally polarized, the scattered light intensities from Equations 3.74
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and 3.80 become
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(
I0V

4π2kBT
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)
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ε4
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L

p2
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44,
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4π2kBT
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ε4
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L

p2
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ε4

2ρv2
L

p2
44.

(3.99)

Note that these intensities can be separated into the sample independent factor A =

I0V (4π2kBT/λ
4), and sample dependent factors of dielectric constant (or refractive

index), density, sound velocity and elasto-optic coefficient. This does assume that the

scattering volume V is equal for all samples.

The factor A can be difficult to measure experimentally. Absolute values of pij

are found by comparing the measured intensities of the samples to those for reference

materials with known density, refractive index and elastic and elasto-optic properties

[13, 21, 64, 65, 67]. In this way, the sample independent factor is removed from the

intensity ratios. Typically, toluene or fused quartz are used as reference materials.

The transmission of light through the air-sample interfaces must also be accounted

for. At normal incidence, the transmissivity is

T =

(
2

n+ 1

)2(
2n

1 + n

)2

, (3.100)

where n is the refractive index of the sample (ε = n2) [7, 21, 64]. The experimentally

measured intensities are thus

Iexαβ = TIαβ (3.101)

and the elasto-optic coefficient is measured from

(p12)g =

(
ρg(I

ex
V V )g

ρr(IexV V )r

Tr
Tg

)1/2(
nr
ng

)4
(vL)g
(vL)r

(p12)r

=

(
ρg(I

ex
V V )g

ρr(IexV V )r

)1/2(
nr
ng

)5(
ng + 1

nr + 1

)2
(vL)g
(vL)r

(p12)r,

(3.102)

where the notations g and r represent properties for the glass and reference samples,

respectively. The shear elasto-optic coefficient was found by comparing the sample’s

longitudinal and transverse peak intensities:

p44 =
vT
vL

(
IexV H
IexV V

)1/2

p12. (3.103)
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The relative signs of p44 and p12 are determined from the HH and VH spectra.

For scattering angle θ, the ratio of HH and VH intensities (which both depend on θ)

is

J(θ) =
IHH
IV H

=
vL
vT

(
2p44 cos2 θ

2
+ p12 cos θ

p44 cos θ
2

)2

. (3.104)

By measuring how the ratio J(θ) behaves with small variations of θ around 90◦, the

sign of p12/p44 can be measured:

dJ(θ)

dθ

∣∣∣∣
θ=90◦

=
2vL
vT

(
1

21/2
+

1

23/2

)(
−1− p12

p44

)
∝ −p12

p44

(3.105)

Thus J(θ) is an increasing (decreasing) function of θ depending on whether the signs

of p12 and p44 are different (the same).



Chapter 4

Photoelasticity of Non-Oxide Glasses

The photoelastic response of stoichiometric (GeS2)1−x(P2S5)x and (GeS2)1−x(Sb2S3)x

and non-stoichiometric Ge2.5PSx glasses has been investigated. The purpose of this

research is to extend the parameters of the empirical model of photoelasticity to

include non-oxide glass compounds. These systems provide a good starting point

as their compositionally-dependent structures and bonding environments are well

understood. The effect of excess and deficit sulfur on the stress-optic coefficient

is considered with respect to the structure of the non-stoichiometric glasses, and the

magnitude of the stress-optic response in sulfides is compared to that of oxide glasses.

The results and discussion of the stress-optic response in non-oxide glasses have

been published in the Journal of Non-Crystalline Solids [87]. The manuscript of

this article is included in this chapter. Bruce Aitken’s contributions to the research

included the synthesis of the sulfide glasses and review of the manuscript. Josef

Zwanziger collaborated on the discussion and analysis of results.

4.1 Experimental Procedure

4.1.1 Glass Synthesis

Glasses were synthesized by Bruce Aitken and Steve Currie at Corning Incorporated.

The glass-making procedure is described in references [71, 72] and summarized in

Section 2.1 of the included manuscript. Glasses were cut, polished and measured at

Dalhousie University.

4.1.2 Density, Elastic Moduli and Refractive Index Measurements

The procedures for obtaining the densities, shear moduli and refractive indices of the

chalcogenide glasses are described in Section 2.3 of the included manuscript.

66



67

4.1.3 Initial Calibration of Sénarmont Optics

The near-IR stress-optic coefficients of sulfide glasses are measured using the

Sénarmont compensator method. The optical components of the experiment are

described in Section 2.2 of the included manuscript. Before measurements could be

taken, the polarizer, analyzer and LCVR needed to be calibrated for 1550 nm light.

First, the angle of extinction of the analyzer was verified. The polarizer was

placed after the laser with its axis at 45◦ to the horizontal, i.e. aligned with the

x-axis of the system. The analyzer, mounted in an electronic rotation stage, was

placed between the polarizer and the power sensor. At its initial angle, θ = 0, the

analyzer is approximately perpendicular to the polarizer but due to its placement

in the rotation stage, an offset is expected. To determine this offset, θ was varied

from -95◦ to 95◦ in 5◦ increments. The intensity of light was recorded at each step,

resulting in a roughly sinusoidal curve; see Figure 4.1. The curve was fitted and the

minimum intensity, i.e. the angle at which the polarizer and analyzer are crossed, was

found to be -2.3◦.

Figure 4.1: Intensity of linearly polarized 1550 nm light passing through a rotatable
analyzer as a function of analyzer angle θ. The minimum intensity occurs when the
analyzer axis is perpendicular to the initial polarization axis of the light (θ = −2.3◦).
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Next, the LCVR must be set to act as a quarter-wave plate in the system. It is

necessary to determine the fast axis angle of the LCVR, as well as the voltage at which

the LCVR acts as a quarter-wave plate for 1550 nm. The fast axis was determined by

setting the LCVR between the crossed polarizer and analyzer and rotating the LCVR

until intensity was a minimized. At this angle, the fast axis is aligned with the axis of

the first polarizer. To determine the retardance, the LCVR was rotated by 45◦ so that

its fast axis is along the vertical direction. If the LCVR is acting as a quarter-wave

plate, the incident linearly polarized light will become circularly polarized and the

intensity of the resulting light should be the same for all θ. The voltage applied

to the LCVR was incrementally increased until the intensity measured for θ = 0◦

equalled the intensity at θ = ±90◦. To verify that the light is circularly polarized at

this voltage, intensity measurements were recorded for -95◦ ≤ θ ≤ 95◦ in 5◦ steps.

The intensity of light does not vary significantly with analyzer angle; see Figure 4.2.

Thus the light is circularly polarized, and the LCVR acts as a quarter-wave plate at

this voltage (V = 2.750 V for 1550 nm). The calibrated optics can now be used to

determine the phase shift of light travelling through stressed glass.

Figure 4.2: Intensity (a.u.) of linearly polarized 1550 nm passing through i) an LCVR
(V = 2.13 V) with fast axis at 45◦ to the polarization axis and ii) a rotatable analyzer
as a function of analyzer angle θ. The intensity does not vary significantly with θ,
which shows that the light is circularly polarized.
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4.1.4 Applying Stress to Glass Samples

In order to accurately and precisely measure the stress-optic coefficient of a glass,

homogeneous stress is necessary. Our group uses a custom-built strain gage, pictured

in Figure 4.3. The gage consists of a cage system with two solid aluminum plates, a

motorized screw, and a load cell. The glass sample sits between the two parallel plates,

and the screw descends onto the top plate to stress the glass. Often, a compliant

plastic layer is placed between the glass and the aluminum to ensure the stress is as

uniform as possible. A load cell, located below the bottom plate, measures the force

F acting on the glass sample. The stress σ can then be determined from

σ =
F

A
, (4.1)

where A is the area of the face of the glass sample to which force is applied.

Figure 4.3: Glasses are stressed using a custom-built strain gage.

The uniformity of the applied stressed is visually inspected using a polariscope

(Strainoptics PS-100). The polariscope, or light table, is a Sénarmont compensator

with a fluorescent bulb providing white light. The strain gage is placed between the

table’s two crossed polarizers, and the analyzer is rotated to determine the minimum

intensity of light. If the stress is applied homogeneously, then phase shift of polarized

light traveling through the glass will be equal at all spots and the intensity of light

will be minimized uniformly across the sample. An evenly stressed glass is pictured

in Figure 4.4.
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Figure 4.4: A uniformly stressed glass sample exhibiting birefringence. As the linearly
polarized light travels through the glass, its polarization changes. The analyzer angle
that gives the minimum intensity of light in the glass (shown in pink) is offset from
θ = 0. The colour of the intensity of light comes from a tint plate between the sample
and the analyzer.

4.1.5 Determining the Stress-Optic Coefficient

Once the optics have been calibrated and the glass uniformly stressed, the strain gage

is placed on a goniometer and the glass sample is aligned with the light beam. A red

alignment laser (650 nm) in conjunction with near-IR fluorescing pinholes are used

to ensure linear back-reflectance of the 1550 nm laser from all optical components.

Individual stress-optic trials are taken by decreasing the pressure from a maximum

value to a minimum; approximately 10 pressures are applied per trial. For each

pressure, the force applied to the glass is recorded from the strain gage. The analyzer

is rotated by 16◦ on either size of the angle of minimum intensity in 2◦ steps. At each

angular step, the intensity is recorded by the PM-100 sensor software for one second

with a rate of 100 counts per second. The intensities are averaged and parabolically fit

to determine the minimum transmission angle, θ, for the applied pressure. Multiple

decreasing pressure trials are performed for light incident on one spot on the face of

the glass, and at least three unique spot locations are measured.

The relationship between angle of minimum intensity θ, phase shift ∆, applied

force F and applied stress σ is determined by combining Equations 3.11. 3.16, and

4.1. By convention, compressive forces and stresses are negative. Figure 4.5 shows

phase shifts vs applied stress from all trials for one glass sample. The stress-optic

coefficient is determined from the slope of ∆ vs σ and the known properties λ, d and

A. The uncertainty in C is determined from the deviation of the slope.
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Figure 4.5: Phase shift ∆ of 1550 nm light as a function of stress σ applied to the
chalcogenide glass with composition 0.33GeS2-0.67Sb2S3. The stress-optic coefficient
is determined from the slope of ∆ vs σ and Equation 3.11.

4.2 Manuscript: “Correlating Structure with Stress-Optic Response in

Non-Oxide Glasses”

The results of the photoelastic response of sulfide glasses and a discussion of the

suitability of the empirical model for non-oxide glasses have been published in the

Journal of Non-Crystalline Solids (doi:10.1016/j.jnoncrysol.2014.07.023) [87]. The

pre-print article is included here. Further discussion of the photoelastic trends follows

in Section 4.3.
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1. Introduction1

Glass is optically isotropic, but when a uniaxial stress is applied, usually2

becomes birefringent. This effect is known as photoelasticity and has been3

extensively studied in oxides [1–13]. Early theories of photoelasticity relate4

birefringence to atomic structure and polarizability of ions [2], while a recent5

empirical model of photoelasticity uses bond length and cation coordination6

to predict new zero-stress optic oxide glasses [9]. These non-birefringent7

glasses are key components in many products, including fiber optics, optical8

research instruments, and projection optics.9

Information on the photoelastic response of non-oxide glasses is rather10

more limited [14–18]. Chalcogenide glasses have attracted attention due to11

their high refractive indices, low phonon energies and superior infrared trans-12

mission relative to oxides. They can potentially be used in fiber optics and13

telecommunications, photonic devices, and non-linear optics. Understand-14

ing how non-oxide glasses react to external stress would be beneficial to the15

design of zero-stress optic chalcogenide glasses for birefringent-sensitive ap-16

plications.17

In this report, we examine the photoelastic response in several sulfide18

glass families, including the stoichiometric systems (GeS2)1−x(P2S5)x and19

(GeS2)1−x(Sb2S3)x, and the non-stoichiometric system Ge2.5PSx. The struc-20

ture of these Ge-P-S glasses has been studied extensively [19, 20] and a21

considerable amount is known about the bonding and atomic coordination.22

Furthermore, from previous studies on photoelasticity, GeS2 is expected to23

have positive contribution to the stress-optic coefficient, and Sb2S3 negative24

contribution [17]. We thus expect at least one series to contain zero and neg-25
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ative stress-optic glasses. With this structural data and photoelastic data,26

we will investigate the empirical relationship between bond length (metal-27

licity), coordination and stress-optic coefficient and determine whether the28

model that has been successful in oxide glasses [9] can be extended to include29

non-oxide glass systems.30

2. Experimental Methods31

2.1. Glass preparation32

Glasses were synthesized at Corning Incorporated; their preparation has33

been described in detail previously [19, 20]. Samples were prepared by melt-34

ing mixtures of high purity elements sealed in evacuated (10−5 Torr) silica35

ampules. They were heated to 925 ◦C in a rocking furnace for 48 hrs, then36

at to 850 ◦C for 10 min. Cylindrical glass rods were formed by quenching the37

hot ampules in water. Samples were annealed just below Tg, and the rods38

were cut to obtain rectangular samples with parallel sides to within 0.03 mm.39

Two opposite sides were polished with diamond paste to between 1–15 µm.40

2.2. Measurement of the stress-optic coefficient41

Under uniaxial stress, glass typically exhibits an index of refraction ne in42

the stress direction (the extraordinary direction) that differs from the index43

of refraction in the perpendicular direction (no, the ordinary direction). The44

difference results in birefringence in the glass, b = ∆/l = ne − no, where45

∆ is the phase difference between ordinary and extraordinary rays and l is46

the thickness of the glass. For stress loads within the elastic region, the47

birefringence of a glass is proportional to the applied stress σ:48

∆ = Clσ. (1)
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The constant of proportionality, called the stress-optic coefficient C, is used49

to characterize the glass. Its unit is Brewsters, where 1 B equals 10−12 Pa−1.50

The stress-optic coefficient was measured at 1550 nm using the Sénarmont51

compensator method. The optical components consisted of a collimated laser52

diode module (Thorlabs LDM1550), a fixed Glan-Taylor linear polarizer, the53

stressed glass sample, a liquid-crystal variable retarder (LCVR) tuned to54

act as a quarter-wave plate at 1550 nm (Thorlabs LCR-1-IR1), a rotatable55

analyzer identical to the initial polarizer, and a Ge Photodiode power sensor56

(Thorlabs S122C).57

Fluorescing disks were used to align the laser beam and optical com-58

ponents. Stress was applied to the glass samples using a custom load stage.59

Glass samples were placed between parallel cage-mounted plates, with a com-60

pliant plastic or hard cotton layer placed on either side to promote even stress61

and prevent cracking. A motorized screw applied load to the plates, which62

was measured using a load cell and meter (Omegadyne).63

The glass sample was oriented such that its stress axis was at 45◦ to the64

initial polarizer axis. The LCVR fast axis was aligned with the polarizer65

axis, and the rotatable polarizer was initially set to 90◦. The polarizer was66

rotated by an angle of ∆/2 to obtain extinction of the light. The birefringence67

is b = ∆λ/l, where λ is the wavelength of incident light and l is the path68

length of the glass. Plotting ∆ as a function of σ then allows the stress optic69

coefficient C to be determined from Eq. 1.70

2.3. Density, shear modulus and refractive index71

Densities of the glasses were measured by Archimedes method with a72

Mettler Toledo density determination kit. Due to the hygroscopic nature of73
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some of the P-containing glasses, 99+% ethanol was used as the immersion74

fluid.75

Elastic properties were determined with a Panametrics-NDT 25DL ultra-76

sonic thickness gauge. This device uses sound pulses and their echoes for77

samples with known thicknesses to measure longitudinal and shear sound78

velocities. The shear modulus G is then derived from G = ρv2t , where ρ is79

the density and vt the transverse sound velocity.80

Refractive indices were measured at 1550 nm using a collimated laser81

diode module (Thorlabs LDM1550), a Glan-Taylor linear polarizer, a man-82

ual rotation mount oriented horizontally and a Ge photodiode power sen-83

sor (Thorlabs S122C). The Brewster’s angles, θB, were determined by re-84

flecting horizontally-polarized light from the glass and rotating to angles of85

minimum reflectance. Intensities around this minimum were collected in86

1◦ intervals and fit to find θB. The uncertainty in this value is estimated87

to be 1◦. The refractive index was then determined from the relationship88

θB = arctan(nglass/nair).89

3. Results90

Results for density, transverse sound velocity, and index of refraction are91

compiled in Table 1.92

In order to check the accuracy and precision of the optical apparatus, the93

stress-optic coefficient of a fused silica sample was measured and found to94

be 3.3±0.1 B at 1550 nm. This value agrees with reported literature values,95

either directly or when extrapolated [3, 5, 18, 21–23].96

The measured stress-optic coefficients C of three glass families, namely97
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Table 1: Density ρ in g cm−3, transverse sound velocity vt in mm µsec−1, and index of

refraction n for sulfide glasses studied here.

Family x ρ vt n

(GeS2)1−x(P2S5)x 0.10 2.619(5) 1.559(8) 1.92(11)

0.17 2.548(5) 1.514(1) 2.05(13)

0.30 2.377(5) 1.396(3) 2.03(12)

0.40 2.283(5) 1.325(1) 1.96(12)

Ge2.5PSx 5.0 2.702(5) 1.549(9) 2.02(13)

5.5 2.593(5) 1.48(1) 1.99(12)

5.8 2.601(5) 1.442(3) 1.96(12)

6.0 2.595(5) 1.477(1) 1.99(13)

6.5 2.591(5) 1.530(4) 1.96(12)

7.0 2.536(5) 1.499(2) 2.02(12)

7.5 2.548(5) 1.514(1) 2.05(13)

8.0 2.486(5) 1.467(5) 1.90(11)

10.5 2.413(5) 1.389(3) 1.91(11)

14 2.331(5) 1.337(3) 1.94(12)

(GeS2)1−x(Sb2S3)x 0.17 3.099(5) 1.506(1) 2.06(9)

0.33 3.385(5) 1.477(3) 2.2(1)

0.50 3.633(5) 1.481(1) 2.4(1)

0.67 3.855(5) 1.488(4) 2.6(1)
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Figure 1: Stress optic coefficient C in Brewsters as a function of P2S5 content for stoichio-

metric (GeS2)1−x(P2S5)x glasses. Uncertainties are determined from repeated measure-

ments.

(GeS2)1−x(P2S5)x, Ge2.5PSx, and (GeS2)1−x(Sb2S3)x, are reported in Figs. 1–98

3 respectively. Both stoichiometric families show roughly linear dependence99

of C on composition (P2S5 or Sb2S3 content), but with larger variation in the100

magnitude of C than is typically observed in oxides. The nonstoichiometric101

family shows a strongly nonlinear variation of C with composition.102

4. Discussion103

All the data sets shown indicate that, as expected, the stress-optic coeffi-104

cient is strongly dependent upon composition, and also that the magnitude105

of the effect exceeds that observed in oxide glasses. We now outline an ex-106

planation for these observations based on the structural model previously107

developed for oxide glasses.108
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Figure 2: Stress optic coefficient as a function of sulfur content for non-stoichiometric

Ge2.5PSx glasses. Uncertainties are determined from repeated measurements. Vertical

dashed line demarcates sulfur-deficient compositions, to the left, and sulfur-excess compo-

sitions, to the right.
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Figure 3: Stress optic coefficient as a function of Sb2S3 content for stoichiometric

(GeS2)1−x(Sb2S3)x glasses. Uncertainties are determined from repeated measurements.
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4.1. Empirical model of photoelasticity109

The empirical model of photoelasticity for oxide glasses predicts the sign110

of the stress-optic response based on glass composition and crystalline bond-111

ing information [9]. The model conjectures that bond metallicity (correlated112

with anion-cation bond length d) and metal-oxygen coordination number Nc113

are important in describing the photoelastic response. For zero and nega-114

tive stress-optic glasses, high metallicity and low coordination numbers allow115

bonds to be distorted orthogonal to the stress direction. Lower metallicity116

and higher coordination are needed for a positive response. In the linear117

optical regime, with wavelengths of 400–700 nm, the response is the average118

of these two kinds of contributions. Empirically, zero-stress optic glasses,119

where the two effects just balance each other, can be found using the rule120

〈d/Nc〉 =
∑

i

xi

(
d

Nc

)

i

≈ 0.5 Å, (2)

where the sum is over all compounds in the glass, and xi is the mole fraction121

of the ith compound. For sums less than 0.5 Å, glasses are found empiri-122

cally to have positive stress-optic coefficients, and are found to have negative123

coefficients for sums greater than 0.5 Å.124

We can begin to apply the empirical model to chalcogenide glasses by125

considering the stress-optic coefficients of some stoichiometric compositions126

as measured by Linke and co-workers [17]. Structural data for the compo-127

nents making up these systems (as well as the thiophosphates studied here)128

are summarized in Table 2. The correlation of the measured stress-optic129

coefficients [17] with the molar averaged d/Nc for stoichiometric families is130

presented in Fig. 4. In all cases, the stress-optic coefficient increases as the131
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Table 2: Bond length d, metal-chalcogen coordination number Nc, and ratio d/Nc for

components of glasses examined in the present work.

Compound d (Å) Nc d/Nc (Å)

Sb2S3 2.54 3 0.85

As2Se3 2.43 3 0.81

As2S3 2.25 3 0.75

GeS2 2.2 4 0.55

P2S5 2.1 4 (3) 0.53 (0.70)

S8 1.71 2 0.86
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Figure 4: Correlation of stress-optic coefficient C, in Brewsters, with molar averaged

d/Nc, in Ångstroms, for stoichiometric non-oxide glasses. Data for C and compositions

from ref. [17], Table 1, and values for d/Nc for the components from our Table 2.
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d/Nc ratio decreases, matching the trend for oxide glasses. This finding sug-132

gests that the empirical model developed for oxides may be extensible to133

the non-oxide case. In addition, the (GeS2)x(As2S3)1−x glass series contains134

glasses with both positive and negative stress-optic coefficients. The zero-135

stress optic composition is thus estimated to occur when when 〈d/Nc〉 is136

between 0.65 and 0.68 Å, somewhat larger than the empirically determined137

0.50 Å found for oxide glasses. This increase will be discussed more in the138

following section.139

4.2. Stoichiometric (GeS2)1−x(P2S5)x and (GeS2)1−x(Sb2S3)x glasses140

The structure of thiogermanophosphate glasses has been investigated by141

Cherry et al. [19]. The (GeS2)1−x(P2S5)x series contains two types of phos-142

phorus structures: 3-coordinated PS3/2, and 4-coordinated S=PS3/2. The143

germanium atoms are found exclusively in 4-coordinated GeS4/2 polyhedra.144

There is no P-P or Ge-Ge bonding, but some excess sulfur (from the for-145

mation of PS3/2) is found in -S-S- chains. The relative quantities of these146

components are re-plotted in Figure 5 for convenience. Broadly, as P2S5 con-147

tent increases, PS3/2 and S=PS3/2 units increase, with a ratio of about 1:3,148

while the GeS4/2 content decreases.149

The stress-optic coefficient decreases monotonically as the P2S5 content150

increases. From the data in Table 2 and the structural data in Fig. 5 and151

ref. [19], we can estimate 〈d/Nc〉 in these glasses and correlate it to the stress-152

optic coefficient. The results are plotted in Fig. 6. The correlation is strong153

and negative, similar to the results in Fig. 4. We note that the zero stress-154

optic composition occurs at 〈d/Nc〉 ≈ 0.557 Å, larger than observed in oxides.155

Also, we found that if the detailed structural components of Fig. 5 are not156
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Figure 5: Estimated atomic fraction of Ge, P and S participating in various possible bonds

in (GeS2)1−x(P2S5)x glasses as a function of P2S5 content, after ref. [19].
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Figure 7: Correlation of stress-optic coefficient C in Brewsters with molar averaged d/Nc

for (GeS2)1−x(Sb2S3)x glasses, using crystalline data from Table 2.

used, but only the crystalline data from Table 2 to estimate 〈d/Nc〉, then the157

correlation with C is poor and has the wrong sign. In oxides the d/Nc model158

also requires detailed structural input (beyond just the crystalline compo-159

nent data) in cases where the glass former undergoes significant changes in160

coordination, as in borates [10].161

The structures of stoichiometric (GeS2)1−x(Sb2S3)x glasses have been162

studied by IR and Raman spectroscopies, and are described in terms primar-163

ily of GeS4/2 and SbS3/2 units. The Ge-Sb-S glass family may also contain164

small amounts of Ge-Ge or Sb-Sb bonds in the Ge-rich or Sb-rich composi-165

tions respectively; no evidence for -S-S- groups is seen in the stoichiometric166

compositions [24]. We observe that the stress-optic coefficient in these glasses167

decreases with Sb2S3 content; using a simple structural model based only on168

GeS4/2 and SbS3/2, and the data in Table 2, we can correlate 〈d/Nc〉 with C.169

The results are plotted in Fig. 7. The correlation is again excellent, with the170

zero stress-optic composition occurring at 〈d/Nc〉 ≈ 0.625 Å.171
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While the quantity d/Nc correlates with the stress-optic coefficient in the172

stoichiometric glasses studied above, we note in every case that zero stress-173

optic response is obtained for d/Nc significantly greater than the value of174

0.5 Å seen in oxides. An explanation can be proposed based a reconsider-175

ation of the assumptions made in the original d/Nc model. In particular,176

the bond metallicity was considered to be an important factor in determin-177

ing the stress-optic response [9], and metallicity was represented through its178

correlation with bond length d [25]. In order to compare different families,179

though, Wemple [25] showed that metallicity correlates with dZa, where Za is180

the anion valence. In oxides, where the electronegativity difference between181

the anion (oxide) and cation is inevitably great, Za could be taken as −2182

in nearly all cases. In sulfides, on the other hand, with smaller electronega-183

tivity differences, Za is again nominally −2 but would reasonably expected184

to be effectively reduced. For example, in the presence of -S-S- bonding as185

observed in the (GeS2)1−x(P2S5)x samples (Fig. 5), one could obtain a Za as186

small as 0. Generally we would expect a weighted average reduced from −2.187

If the empirical model is extended to include a factor Za, we would predict188

that in oxides, zero stress-optic response is obtained at189

dZO

Nc
≈ 0.5ZO Å, (3)

while in sulfides, using an average of our above results,190

dZS

Nc
≈ 0.6ZS Å. (4)

If the general correlation with dZa/Nc is correct, the left-hand sides of these191

two relation should be equal and thus we obtain192

ZO

ZS
≈ 0.6

0.5
= 1.2. (5)
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We thus get the reasonable result that the oxide valency is larger than the193

(effective) sulfide valency. One could also expect the effective selenide valency194

to be lower than that of both the oxides and the sulfides, due to further195

decrease in the electronegativity difference between anion and cation. Based196

on the arguments above, this would lead an even larger 〈d/Nc〉 threshold for197

zero-stress optic selenide glass. Indeed, we see that for Se-based glass families198

(Fig. 4), the zero-stress optic ratio occurs when 〈d/Nc〉 is between 0.65 and199

0.68 Å.200

While not a proof of correctness of course, this argument does suggest a201

reason why zero stress-optic response in sulfides occurs at higher d/Nc, in a202

way consistent with other chemical principles.203

4.3. Non-stoichiometric Ge2.5PSx glasses204

The Ge2.5PSx glass with x = 7.5 is also part of the (GeS2)1−x(P2S5)x205

series (with x = 0.167); from this composition, the amount of sulfur is varied206

to be either in excess or in deficit of the stoichiometric level. The structures of207

these non-stoichiometric glasses, discussed in detail by Cherry et al., are more208

complex than those of the stoichiometric Ge-P-S series, due to these sulfur209

excesses and deficiencies [20]. Again for convenience the atomic fractions of210

the various species determined in the previous study are reproduced here, in211

Figure 8. For the case of excess sulfur, the amount of phosphorus in molecular212

rings and cages decreases, and the number of 4-coordinated S=PS3/2 sites213

increases. The amount of -S-S- bonding increases also. In the extreme excess214

case with x = 14, the formation of S8 rings was detected. As the amount215

of sulfur is decreased below the stoichiometric composition, there is a large216

increase in the amount of 3-coordinated PS3/2 as the non-bridging S=PS3/2217
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bonds in Ge2.5PSx glasses as a function of sulfur content, after ref. [20]. Vertical dashed

line demarcates sulfur-deficient compositions, to the left, and sulfur-excess compositions,

to the right.

is lost. Below x = 6, a new phosphorus cluster (P4S3) is introduced, and218

Ge-Ge, Ge-P and P-P bonding begins to occur. In these sulfur deficient219

samples, even though the total coordination number of Ge remains 4, the220

coordination of Ge by S is less than 4 due to the progressive formation of221

Ge-P and Ge-Ge bonds.222

The value of the stress-optic coefficient at 1550 nm varies significantly223

with excess and deficit sulfur. Below the stoichiometric level, C increases224

with decreasing S content until x = 5.5. The relative amount of GeS4/2 also225

increases in this range (represented in the model by a decreasing d/Nc ratio),226

while phosphorus units transition from mostly 4-coordinated to mostly 3-227

coordinated (represented in the model by an increasing d/Nc ratio). These228

structural changes in the glass system could account for the drop in the229

rate of increase of C in this range. Below x = 5.5, the coefficient begins to230
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decrease. This decrease is mirrored in the structural data by a decrease in231

GeS4/2 units and an increase in metallic Ge-Ge and Ge-P bonding, with P-S232

units predominantly 3-coordinated. The lower value of C is consistent with233

the predictions of the empirical model, as a decrease in higher coordinated234

GeS4/2 and an increase in lower coordinated PS3/2 would result in larger d/Nc235

value. Also, the Ge-Ge and Ge-P bonds are more metallic than Ge-S and P-S236

bonds, corresponding in the model to a larger d/Nc ratio. Their introduction237

into the glassy network could lead to a decrease in the stress-optic coefficient.238

In excess of the stoichiometric level, C increases dramatically with in-239

creasing S content. Based on the empirical model, the conversion of 3-240

coordinated PS3/2 to 4-coordinated S=PS3/2 would increase the stress-optic241

coefficient. From the structural information, we also see that the amount of242

-S-S- bonds increase as S increases above the stoichiometric composition, and243

in particular at the highest sulfur excess, S8 rings form. It may be that the244

increase in C is driven by the increase in -S-S- bonding in two ways. First,245

as argued above, the quantity dZS, which reflects bond metallicity, would be246

expected to decrease as more homopolar -S-S- bonds form, because of the247

decrease in effective anion valence ZS. Smaller metallicity favors positive248

stress-optic response, so the effect would be to increase C. Secondly, in the249

extreme case of S8 ring formation, a large increase in C may occur because250

these units would essentially decouple from the rest of the network, and the251

effect of other bonds such as Ge-S, which are positive stress-optic contribu-252

tors, would be appear to be greatly enhanced, although their total content253

has not changed much.254

Due to the complexity of structures in non-stoichiometric glasses, it is un-255
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likely that the empirical model of photoelasticity can be applied in this case256

to predict zero stress-optic compositions. However, it can be used in conjunc-257

tion with the structural information to describe the photoelastic response in258

chalcogenide glasses.259

4.4. Magnitude of Stress Optic Response260

In addition to the variation in d/Nc for zero stress optic sulfide glass261

as compared to oxides, it is also notable that the general magnitude of the262

stress-optic response is much larger. In oxides, C is typically in the range263

from -4 to +8 B, while in chalcogenides (Fig. 4), C ranges from -40 to 20 B. To264

study this difference we used the experimental data in Table 1 to determine265

the shear modulus G and shear photoelastic tensor element p44. The shear266

modulus G was determined through267

G = ρv2t , (6)

and the photoelastic tensor element through268

p44 = −2GC

n3
. (7)

These derived quantities are presented in Table 3.269

Matusita and co-workers have compiled similar data on G and p44 for bo-270

rate, phosphate and silicate glasses [4–6]. In our data we find that p44 spans a271

range from -0.016 to +0.013, while in lead borates, p44 ranges from -0.0230 to272

+0.00965, thus about the same magnitudes for positive and negative values.273

The index of refraction of lead oxide glasses are similar to those observed274

here in sulfides. On the other hand, the typical shear moduli of the sulfide275
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Table 3: Shear modulus in GPa and shear photoelastic tensor element p44 for the sulfide

glasses studied here. Quantities are derived from Eqs. 6 and 7 using Table 1 data, and

errors derived by propagation.

Family x G p44

(GeS2)1−x(P2S5)x 0.10 6.37(6) -0.014(3)

0.17 5.84(1) -0.0093(17)

0.30 4.63(2) -0.0030(5)

0.40 4.01(1) 0.0026(5)

Ge2.5PSx 5.0 6.48(8) -0.016(3)

5.5 5.68(7) -0.016(3)

5.8 5.41(2) -0.016(3)

6.0 5.66(1) -0.015(3)

6.5 6.06(4) -0.015(3)

7.0 5.70(2) -0.0127(23)

7.5 5.84(1) -0.0093(17)

8.0 5.35(3) -0.0102(18)

10.0 4.65(2) -0.0100(18)

14.0 4.16(2) -0.018(4)

(GeS2)1−x(Sb2S3)x 0.17 7.03(2) -0.0043(3)

0.33 7.38(3) 0.0030(3)

0.50 7.96(3) 0.0076(9)

0.67 8.53(5) 0.0130(10)
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glasses are much smaller than those in lead borates, by a factor of 3–5. As276

the stress-optic coefficient C is related to all these quantities through277

C = − n3

2G
p44, (8)

we can conclude that the large variation in C relative to oxides is due to278

the relatively small shear moduli, not p44. In other words, the difference in279

stress-optic response is primarily mechanical, not photoelastic.280

5. Conclusion281

The photoelastic trends for stoichiometric sulfide glasses correlate well282

with predictions based on anion-cation bond information, or d/Nc ratio. An283

empirical model for sulfide glasses, similar to that for oxide glasses, is sug-284

gested that can be used to predict new zero-stress optic chalcogenide glasses.285

However, while in oxides zero stress-optic behavior has been shown to oc-286

cur at the threshold 〈d/Nc〉 ≈ 0.5 Å, the data shown here indicate that in287

sulfides the threshold is higher, about 0.6–0.65 Å. We explain this difference288

by expanding the treatment of metallicity in the empirical model through289

the replacement d → dZa [25], and noting that in sulfide glasses, the mag-290

nitude of Za is expected to be somewhat reduced as compared to oxides,291

due to reduced electronegativity differences. Furthermore, we show that the292

much expanded range of stress-optic coefficients observed in sulfide glasses293

compared to oxides, is a result of their decreased shear moduli and not the294

photoelastic response.295
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4.3 Discussion

4.3.1 Improving the Empirical Model with Glass Structure

According to the empirical model of photoelasticity, compounds with larger d/Nc

values will have negative contribution to the stress-optic coefficient, while materials

with small d/Nc will contribute positively to C. Table 4.1 shows individual d/Nc

values for various crystalline sulfur, selenium and tellurium compounds. It has been

shown for oxide glasses that the predictions based on 〈d/Nc〉 can be improved by

considering the glassy structure of compounds. For example, in crystalline B2O3,

boron is bonded to 3 oxygen, but in a glass it can be found in 3- or 4-coordinated units.

Incorporating both coordinations into the empirical model closes the gap between

predictive and experimental zero-stress optic compositions in lead borates [42]. The

empirical model is also improved in non-oxides by using the glass structure rather than

crystalline information. Consider the stoichiometric sulfide series (GeS2)1−x(P2S5)x.

From their crystalline structural units, P2S5 has bond length d = 2.1 Å and

coordination Nc = 4 (or d/Nc = 0.53 Å) and GeS2 has bond length d = 2.2 Å and

coordination Nc = 4 (or d/Nc = 0.55 Å). According to the empirical model, increasing

P2S5 (decreasing 〈d/Nc〉 of the glass) should increase the stress-optic coefficient;

experimentally, however, increasing P2S5 decreases C. This can be explained from

the structural information of the (GeS2)1−x(P2S5)x glasses. In these glass, many of

the phosphorus units are surrounded by 4 sulfur atoms, but a significant amount (20

to 25 %) are 3-coordinated by S [71]. When these different bonding environments

are taken into account, the effective empirical parameter is d/Nc ≈ 0.57 Å for P2S5.

Now, using this improved ratio, the model predicts that increasing P2S5 will decrease

C, which is consistent with the experimental results.

4.3.2 Metallicity, Bond Length and Anion Valence

Glasses with zero-stress optic coefficients are found when 〈d/Nc〉 ≈ 0.5 Å for oxides,

and when 〈d/Nc〉 ≈ 0.6 Å for sulfides. The discrepancy in these predictive parameters

can be explained by the correlation of metallicity with bond length, as discussed in

Section 4.2 of the included manuscript on Ge-P-S and Ge-Sb-S glasses (Chapter 4).

According to Wemple [17], metallicity is correlated not just with bond length d but
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Table 4.1: Anion-cation bond length d (Å), cation coordination number Nc and
empirical parameter d/Nc (Å) for crystalline non-oxide compounds

S d Nc d/Nc Se d Nc d/Nc Te d Nc d/Nc

Tl2S 2.68 3 0.89 K2Se 3.33 4 0.83 Cs2Te 3.705 4 0.93
Sb2S3 2.54 3 0.85 As2Se3 2.43 3 0.81 K2Te 3.537 4 0.88
K2S 3.176 4 0.79 P2Se5 2.25 3 0.75 Na2Te 3.174 4 0.79
As2S3 2.25 3 0.75 Na2Se 2.943 4 0.74 Li2Te 2.822 4 0.71
Cs2S 3.712 5 0.74 Li2Se 2.605 4 0.65 CdTe 2.805 4 0.70
SnS 2.91 4 0.73 ZnSe 2.471 4 0.62 ZnTe 2.632 4 0.66
Na2S 2.831 4 0.71 SnSe 3.049 5 0.61 Ga2Te3 2.553 4 0.64
Ag2S 2.699 4 0.67 Sb2Se3 2.984 5 0.60 BaTe 3.42 6 0.57
CdS 2.516 4 0.63 Ga2Se3 2.367 4 0.59 PbTe 3.231 6 0.54
Li2S 2.476 4 0.62 GeSe2 2.359 4 0.59 Sb2Te3 3.168 6 0.53
B2S3 1.82 3 0.61 SiSe2 2.225 4 0.56 SnTe 3.159 6 0.53
ZnS 2.342 4 0.59 BaSe 3.3 6 0.55 Bi2Te3 3.066 6 0.51
Ga2S3 2.272 4 0.57 PbSe 3.061 6 0.51 SiTe2 3.044 6 0.51
GeS2 2.2 4 0.55 Bi2Se3 2.862 6 0.48 As2Te3 2.927 6 0.49
SiS2 2.131 4 0.53 CdSe 2.77 6 0.46
BaS 3.187 6 0.53
Bi2S3 3.05 6 0.51
P2S5 2.1 4 0.53
PbS 2.967 6 0.49

with dZa, where Za is the anion valence. Oxides will have oxygen valence of -2 for all

compounds due to the large electronegativity differences between O and the cation.

In sulfides, however, Za is expected to be reduced from −2. This is because the

electronegativity differences between anion and cation are smaller for sulfur than for

oxygen. These reduced electronegativity differences can lead to anion-anion bonding

in the glass network; for sulfur chains, Za could be as small as 0. Thus, if dZa/Nc is

in fact the predictive parameter for zero-stress optic coefficients and is equal for all

glass systems, one would expect 〈d/Nc〉O < 〈d/Nc〉S (since ZO > ZS).

This argument can be extended to include selenium- and tellurium-based glasses.

The electronegativity differences between anion and cation for the different chalcogens

increase with atomic number (O > S > Se > Te). Then for glasses with zero-stress

optic coefficient, we would expect the empirical parameter 〈d/Nc〉 to increase in a

similar manner. Depending on the amount of non-stoichiometric anion-anion bonding

in a glass, we might expect for the non-oxides that 0.55 Å ≤ 〈d/Nc〉 ≤ 0.65 Å. The

exact value will vary based on the structural similarities between the crystalline and
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glassy compounds, as well as the amount of anion-anion bonding in the network. Still,

this range of 〈d/Nc〉 can be used as a starting point for predicting new non-oxide

glasses with near-zero stress-optic coefficients.

It could also be possible to use the value of 〈d/Nc〉 for zero-stress optic non-oxide

glasses to estimate the anion valence and thus the amount of anion-anion bonding in

a glass series. For oxide glasses, the empirical parameter predicting zero-stress optic

compositions is (
dZa
Nc

)

O

≈ −1.0 Å (4.2)

with some experimental variations expected due to the approximate nature of

〈d/Nc〉 ≈ 0.5 Å for oxide glasses. Since the value dZa/Nc should be equal for all

anion types, a non-oxide glass series with zero-stress optic composition at 〈d/Nc〉NO
will have an estimated anion valence of

(Za)NO ≈
−1 Å

〈d/Nc〉NO
. (4.3)

Consider the glass series (GeS2)1−x(P2S5)x. The glass composition with C ≈ 0 B

has the empirical value 〈d/Nc〉S ≈ 0.557 Å. The anion valence is then ZS ≈ −1.8,

which corresponds to about 10 % of the sulfur participating in S-S bonds. This

estimation is only slightly larger than the experimentally determined 5 % of sulfur

participating in S-S bonding in the glass network [71]. On the other hand, IR and

Raman structural studies of (GeS2)1−x(Sb2S3)x showed no evidence of S-S bonding

[73], but the anion valence is Za ≈ −1.6 as determined from the value 〈d/Nc〉S = 0.625

Å for the zero-stress optic composition. This would, in contrast, suggest that up to

20 % of the sulfur is participating in S-S bonding.

4.3.3 Non-Stoichiometric Glass Compositions

Predicting the stress-optic response of glasses with excess or deficit chalcogen is

more challenging than for glasses with stoichiometric amounts of chalcogen. For

stoichiometric glasses, the sign of the stress-optic coefficient can be predicted using

the empirical model and Table 4.1. If 〈d/Nc〉NO > 0.65 Å, C is expected to be

negative, while if 〈d/Nc〉NO < 0.55 Å is expected to have positive coefficient. As

discussed in the manuscript, increasing the amount of chalcogen in a glass sample

to excess amounts could i) increase the coordination of cation units, which would
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increase C according to the empirical model, ii) increase the amount of anion-anion

bonding in the system, which would decrease the valence and thus the metallicity,

leading to an increase in C, or, if the amount of excess chalcogen is large enough

such that chains or rings decouple from the network, iii) enhance the effect of other

cation units in the network. This last effect is likely to increase C if the stoichiometric

value is positive. On the other hand, if C is initially negative and the coordination of

structural units within the network does not change, then the decoupling of chalcogen

chains or rings is more likely to decrease the coefficient.

As the amount of chalcogen is reduced from a stoichiometric composition, the

structure and photoelastic behaviour of the glass becomes complex. Deficit amounts

of chalcogen could i) decrease the coordination of cation units, which would decrease

C according to the empirical model, ii) increase the amount of metallic cation-cation

bonding, which would increase the metallicity of the glass and lead to a decrease in C,

or, iii) enhance the effect of cation units in the network as their relative amount in the

glass increases with small chalcogen deficits. This last effect is likely to increase the

magnitude of the stress-optic coefficient for both positively and negatively birefringent

glasses.

From the discussion above, two general trends are expected:

1. If the stoichiometric C is initially positive, then increasing the chalcogen content

will increase the stress-optic coefficient.

2. If the stoichiometric C is initially negative, then decreasing the chalcogen

content will decrease the stress-optic coefficient.

For stoichiometric glasses with positive C, decreasing the amount of chalcogen could

either increase or decrease the stress-optic coefficient, depending on the relative

contributions of decreased coordination, increased metallicity, and enhanced effect

of positive units in the glass. Likewise, increasing the amount of chalcogen in

a stoichiometric glass with negative C could increase or decrease the coefficient

depending on the increased coordination, decreased valency, and decoupling of

chalcogen chains or rings from the network. A prior knowledge of the structure of these

non-stoichiometric glass series could help in predicting these types of photoelastic

behaviour. Or alternatively, the photoelastic trends of a non-stoichiometric series

could yield insight to the structure of the glasses.
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4.4 Summary

The stress-optic response of GeS2-P2S5, Ge2.5PSx and GeS2-Sb2S3 glasses was

measured at 1550 nm. In both stoichiometric glass families, the stress-optic coefficient

decreased from positive values to negative values as the GeS2 content decreased.

These trends in the compositional dependence of the stress-optic coefficients are

consistent with predictions based on the empirical model. As the empirical value

〈d/Nc〉 increases, C decreases. The predictions of the model are improved by

incorporating the structure of the glass into the model. The discrepancy between

values of 〈d/Nc〉 for zero-stress optic oxide and sulfide glasses can be explained by

including the anion valence Za into the discussion of bond metallicity.

The stress-optic response of non-stoichiometric sulfide glasses is more complex.

As the amount of sulfur is varied from excess to deficit, a variety of new bonding

environments are introduced. The coordination of cations can be increased or

decreased, and new S-S or metallic cation-cation bonds can be formed. A

comprehensive structure knowledge of the glass system along with the principles of

empirical model is successful in explaining the photoelastic behaviour.

The magnitudes of the stress-optic coefficients of the sulfide glasses are much

larger than those for oxide systems which also contain zero-stress optic compositions.

However, the elasto-optic coefficients p44 of both glass types are similar in size. Values

of n also overlap, but the shear moduli G are much smaller in the sulfide glasses. Thus

we conclude that the mechanical rather than optical properties cause this difference

in C.

The stress-optic response of stoichiometric sulfide glasses will be further discussed

in Chapter 7 with respect to other models of photoelasticity.



Chapter 5

Wavelength Dependence of the Stress-Optic Response in

Oxide Glasses

The wavelength-dependence of the stress-optic coefficient for binary and ternary

borates, phosphates, silicates, and tellurites has been measured. The motivation

for this research is to determine the effect of various “positive” and “negative”

glass formers and modifiers on the dispersive properties of C, and to examine

whether the empirical model can describe the change in stress-optic coefficient with

incident wavelength of light. Although no glasses with broadband zero-stress optic

compositions were measured, glass families with non-dispersive stress-optic response

have been identified.

5.1 Experimental Procedure

5.1.1 Glass Preparation

Glasses were prepared using conventional melt-quenching techniques. For this

method, stoichiometric amounts of commercial-grade reagents were weighed, mixed,

added to a crucible, and melted in a box furnace. For many glass compositions, the

mixture was initially calcined at between 300-900◦C below the melting temperature

for many hours to remove water, ammonia, carbon dioxide and other unwanted

compounds from the reagents. The temperature of the furnace was increased to the

melting temperature of the glass, and the melt was held at this temperature for the

length of time determined to ensure thorough mixing. The crucible was removed from

the furnace and the melt was quickly poured into a metal mold to quench the glass.

The mold was often placed on a hot plate and heated above room temperature to

prevent the quenched glass from shattering. Bubble- and striation-free glasses were

then annealed for 12-24 hr at T below the glass transition temperature to remove

residual stresses.

101
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The important details of the glass-making procedure for glasses investigated by

ellipsometry are summarized in Table 5.1. Some of the glasses measured in this study

were synthesized by other students and postdoctoral researchers in our lab group.

Leanne Chapman prepared the lead phosphate, bismuth phosphate and lithium borate

glasses. Lisa Zhang prepared the tin phosphate and sodium borate glasses. Marie

Guignard prepared the tin silicate glasses. These glass samples were not quenched but

cooled very slowly from liquid to room temperature; no annealing was required. Their

single-wavelength stress-optic coefficients have been previously reported [1]. Jeremy

Thorbahn prepared the zinc tellurite glasses; their single-wavelength stress-optic

coefficients have been correlated with local structure [55]. The starting reagents,

from Sigma Aldrich unless other wise noted, were ammonium phosphate monobasic

(NH4H2PO4, ACS reagent, ≥ 98 %), boron oxide (B2O3, 99 % after heating), silicon

dioxide (SiO2, purum p.a., powder), tellurium dioxide (TeO2, ≥ 99 %), barium

carbonate (BaCO3, ACS reagent, ≥ 99 % or Alfa Aesar ACS 99-101 % powder),

lead(II) oxide (PbO, powder, <10 µm, ≥ 99.9 %), zinc oxide (ZnO, puriss p.a., ACS

reagent, ≥ 99 %), lithium carbonate (Li2CO3, puriss p.a., ACS reagent, ≥ 99 %),

sodium carbonate (Na2CO3, ACS reagent, anhydrous, ≥ 99.5 %, granular), calcium

oxide (CaO, 99.9 %), tin(II) oxide (SnO, Strem Chemicals 98 %) bismuth(III) oxide

(Bi2O3, powder, 10 µm, 99.9 %).

Once annealed, the glasses were cut and polished for optical measurements. The

specific requirements for the glass samples also measured by Brillouin spectroscopy

(binary barium and lead borates, phosphates and silicates) will be discussed later in

Section 6.1.1. For all other samples, the glasses were cut into rectangular cuboids of

varying dimensions using a low-speed saw (Buehler IsoMet, with a Lapcraft diamond

saw blade). Two sets of parallel faces were ground with 1200 grit silicon carbide to

remove any imperfections that would affect the homogeneity of stress. The glasses

were often affixed to a polishing screw so that the sides remained perfectly parallel

when ground. One set of parallel sides was then polished to between 1 µm and 30

µm optical transparency using cotton polishing pads soaked with diamond paste of

decreasing particle size (MetaDi polishing compounds, Buehler).
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Table 5.1: Glass melting details for oxide glass families. The tin phosphates (†) were
prepared in a glovebox. Glass families with (a) were prepared by Leanne Chapman,
(b) by Lisa Zhang, (c) by Marie Guignard [1] and (d) by Jeremy Thorbahn [55].

Glass family Melting
temperature

Melting
time

Temperature
of metal mold

Annealing

temperature

Barium
borates

1500◦C 1-2 hr RT-200◦C 650◦C

Lead borates 1000-1100◦C 8-12 hr 400-500◦C 350-500◦C

Lead barium
borates

1100-1200◦C 1 hr RT-500◦C 400-500◦C

Lithium
borates(a)

1150◦C 2 hr 200-350◦C 450-500◦C

Sodium
borates(b)

1000-1200◦C 1 hr 100-200◦C 400-500◦C

Barium
phosphates

1100-1300◦C 12-36 hr RT 450-550◦C

Lead
phosphates(a)

1000◦C 1-2 hr 300◦C 150-350◦C

Zinc
phosphates

1150◦C 1-2 hr RT 450-650◦C

Lead barium
phosphates

1050-1200◦C 2 hr 400◦C 400◦C

Lead zinc
phosphates

1200◦C 1 hr RT 450◦C

Barium zinc
phosphates

1200◦C 1-2 hr RT-500◦C 600◦C

Calcium
phosphates

1100-1400◦C 2 hr 300◦C 500◦C

Tin
phosphates†(b)

1050◦C 0.5-1 hr RT

Bismuth
phosphates(a)

1050 ◦C

Lead silicates 1000-1100◦C 8-12 hr RT 450◦C

Lead barium
silicates

1200-1400◦C 2-4 hr RT 450-550◦C

Tin silicates(c) 1500 0.5 hr n/a n/a

Zinc
tellurites(d)

800 15-20 min 420 325
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5.1.2 Density, Elastic Moduli and Refractive Index Measurements

Densities, ρ, were measured by the Archimedes method (Section 3.1.3) using a Mettler

Toledo density determination kit with > 99 % ethanol as the immersion fluid.

Transverse and longitudinal velocities vT and vL were measured by the ultrasonic

method (Section 3.1.2) using a Panametric ultrasonic thickness gage. The velocities

are related to the elastic moduli C11 and C44 = G by Equation 3.40.

Refractive indices were determined by collecting the wavelength-dependent Ψ and

∆ using a Woollam M-2000 ellipsometry and applying a Cauchy fit (Section 3.2.4).

Reflection spectra were measured at 3-10 spots on the unstressed glass surface for

incident angle θI = 50◦, well above the Brewster’s angle for all glass samples. Data

collection times were 20-30 seconds. Each set of Ψ data were fit using a Cauchy

model and the resulting refractive indices were averaged over all collection locations

to determine n(λ); the uncertainty in refractive index was found from the deviation

of n at different reflection locations.

5.1.3 Measurement of Stress-Optic Coefficients

The stress-optic measurements were taken with the ellipsometer in transmission mode,

with θI = 0◦. For this orientation, the reflection coefficients (Equation 3.29) are

|Rs| = |Rp| = n− 1

n+ 1
(5.1)

giving an amplitude ratio of

Ψ = tan−1

( |Rp|
|Rs|

)
= tan−1(1) =

π

4
. (5.2)

For all samples, regardless of applied stress load and wavelength, Ψ is experimentally

measured to be 45◦.

The wavelength-dependent parameter ∆ is used to determine the stress-optic

coefficient for glasses with known thickness d and stress according to Equation 3.11.

Stress was applied to the glasses as described in Section 4.1.4. For a glass sample,

the phase shifts ∆ were measured as a function of decreasing stress σ, as shown in

Figure 5.1. At least five stresses were applied between maximum and minimum σ,

and data collection times were 1-2 seconds for each applied stress. This process was

repeated multiple times, and the location of the incident light on glass face was varied.
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The stress-optic coefficient was determined at each wavelength from the slope of ∆

vs σ for all measurements at all locations on the glass surface; the variation of the

slope gives uncertainty in C.

Figure 5.1: Measured Ψ and ∆ for the glass sample 20BaO-80B2O3 with 16kg stress
applied. The slope of ∆ vs σ at each wavelength gives the stress-optic coefficient C.

5.2 Results

The stress-optic coefficient was measured as a function of wavelength for 21 glass

families. Some glasses show an increase in C with decreasing wavelength; we will call

this “positive dispersion”. Likewise, “negative dispersion” will be used to describe

decreasing C with decreasing wavelength. Since C = −n3p44/(2G), the dispersion of

p44 typically shows the opposite trend as that of C. The change in C with λ often

becomes more dramatic as the wavelength approaches the absorption edge; in the

near-IR range, C typically plateaus, becoming fairly constant as λ increases.

The results will be presented in three categories: binary glasses showing positive

dispersion in C, binary glasses with negative dispersion in C, and ternary glass

systems which show both positive and negative dispersion.
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Some measured glasses show sharp peaks between 800 and 1000 nm; these peaks

are artifacts of the strong emission lines of the Xe arc lamp light source. Also, for

most glasses measured, the uncertainty in C is less than 0.1 B. For glass systems with

larger than average C, such as those rich in ZnO, the uncertainty in C can be as large

as 0.5 B. Larger uncertainties and fluctuating values of C with λ typically correspond

to glasses which are not completely annealed or unevenly stressed.

5.2.1 Binary Glass Systems with Positive Dispersion of C

The wavelength dependent stress-optic coefficients for barium phosphates and barium

borates are shown in the left sides of Figures 5.2 and 5.3 respectively. Individual glass

samples show C increasing by 0.4-0.9 B over the measured wavelength range. For both

borates and phosphates, the dispersion becomes stronger as the amount of additive in

the glass is decreased. The absorption edges for these barium containing glasses are

fairly constant with composition, occurring between 250-300 nm. There is slightly less

compositional variation in the dispersion of the elasto-optic coefficients p44, shown in

the right sides of Figures 5.2 and 5.3. Over the measured wavelength range, each p44

decreases by 0.003-0.005. Again, as the amount of additive is increased, glass samples

show stronger dispersive effects in p44.

Figure 5.2: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xBaO-(1-x)B2O3

The magnitude of the stress-optic and elasto-optic response for zinc phosphate

glasses, shown as a function of wavelength in Figure 5.4, is much larger than that

seen in barium phosphates. This is consistent with previous results [38]. The positive
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Figure 5.3: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xBaO-(1-x)P2O5

dispersion in C is also stronger for these glasses, with the coefficient increasing by as

much as 4 B over the wavelength range. The elasto-optic coefficients p44 show strong

negative dispersion. For both coefficients, the amount of dispersion does not seem to

be affected significantly by zinc content. The absorption edge, found at approximately

230 nm, is also fairly independent of composition.

Figure 5.4: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xZnO-(1-x)P2O5

The stress-optic and shear elasto-optic coefficients for calcium phosphate glasses

are shown in Figure 5.5 as a function of incident wavelength. The magnitudes of C

and p44 are smaller than zinc phosphates and larger than barium phosphates, but

they vary less with composition. The glasses begin absorbing light at λ0 ≈ 300 nm,
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independent of calcium content, and the amount of dispersion in both C and p44 is

equal to that of the barium phosphate (and borate) glasses.

Figure 5.5: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xCaO-(1-x)P2O5

Bismuth phosphates have stress-optic coefficients with similar magnitudes and

amounts of dispersion as calcium phosphates; this is seen in the left side of Figure 5.6.

The absorption edge for all measured glasses is just above 300 nm. The elasto-optic

coefficient p44 (right side of Figure 5.6), however, shows atypical dispersive trends.

The coefficient decreases with wavelength to about 400 nm, and then begins to

increase with decreasing λ. While the uncertainty in p44 could account for this dip,

it is unlikely due to its presence in all three glass samples. Below 400 nm, the

refractive index of the bismuth phosphates begins to rapidly increase with decreasing

wavelength, while C continues to increase at approximately the same rate. This is

further enhanced by the large magnitudes of the refractive index. This is the only

binary glass family measured where the dispersion in n surpasses that in C, resulting

in positive dispersion in the spectra of both C and p44.

The stress-optic and elasto-optic coefficients of sodium and lithium borates are

shown in Figures 5.7 and 5.8. Both glass series show similar dispersive trends, with

C increasing by 1-2 B over the measured wavelength range. The refractive indices

for lithium borate samples with additive content x = 0.15 and x = 0.25 could not be

measured, and as such their elasto-optic coefficients could not be determined. The

glass samples 0.35Na2O-0.65B2O3 and 0.20Li2O-0.80B2O3 show anomalous behaviour

in p44. While the elasto-optic coefficient does generally decrease with decreasing
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Figure 5.6: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xBi2O3-(1-x)P2O5

wavelength, there is some fluctuation of this value near 400 nm. However, the

magnitude of these fluctuations is small compared to the experimental uncertainty.

The variations likely result from the quality of the Cauchy fit for the refractive

indices, and lead to a total amount of dispersion less than that of the other glasses.

The absorption edges for all samples measured are in the uv-range and do not vary

significantly with composition.

Figure 5.7: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xNa2O-(1-x)B2O3
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Figure 5.8: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xLi2O-(1-x)B2O3

5.2.2 Negative Dispersion in Binary Glasses

The wavelength dependence of the stress-optic and elasto-optic coefficients for lead

borates, phosphates and silicates is shown in Figures 5.9, 5.10 and 5.11, respectively.

The stress-optic coefficients for all lead-containing glasses show negative dispersion,

with the amount of dispersion increasing with increasing additive content. This is

most dramatic in the borate glasses. Here, for lead content x = 0.35, the dispersion

in C is minimal, decreasing by about 0.3 B over the wavelength range, whereas for

x = 0.60, the decrease grows dramatically to about 2 B. Lead phosphates and silicates

show decreases in C of between 1 and 2.5 B for all glasses considered. The amount of

dispersion in the elasto-optic coefficient p44 does not seem to depend on composition

for the lead borates. This is due to increasing amounts of dispersion in the refractive

indices of the glasses as lead content increases. In contrast, the p44 of the phosphate

and silicate glasses become slightly more dispersive with increasing lead content. The

absorption edge for lead borates is between 300 and 400 nm, shifting to the visible

wavelength range with increasing lead content. For lead phosphates, the edge is

further in the uv range, between 200 and 300 nm; lead silicates absorb at the low end

of the visible range, between 400 and 500 nm.

The stress-optic coefficients of tin phosphates and silicates, seen in the left side of

Figures 5.12 and 5.13, show increasing amounts of negative dispersion as the tin

content increases. The highest change in coefficient occurs for the glass sample
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Figure 5.9: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(1-x)B2O3

Figure 5.10: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(1-x)P2O5

Figure 5.11: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(1-x)SiO2
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with composition 0.68SnO-0.32P2O5, where C decreases by 4.5 B. The amount

of dispersion in p44 for the phosphates (right side of Figures 5.12) increases with

increasing tin, while the dispersion in p44 for the silicates (right side of Figure 5.13)

does not seem to depend on composition. The absorption edge for the tin phosphate

glasses is in the uv range, around 350 nm. The tin silicate have absorption edge in the

visible range, between 400 and 500 nm, and increasing with increasing tin content.

Figure 5.12: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xSnO-(1-x)P2O5

Figure 5.13: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xSnO-(1-x)SiO2

The stress-optic and elasto-optic coefficients for zinc tellurite glasses are seen in

Figure 5.14. The amount of dispersion in C increases with increasing zinc content.

This is a contrast to the behaviour of zinc in zinc phosphate glasses (Figure 5.4),
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where varying the amount of zinc in the glass did not affect the amount of dispersion.

The elasto-optic coefficients p44 also show increasing amounts of dispersion with zinc

content.

Figure 5.14: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xZnO-(1-x)TeO2

5.2.3 Ternary Glass Systems

For binary systems, different additives can cause either positive or negative dispersion

in the stress-optic response of a glass. It is of interest, then, to investigate ternary

systems with constant glass former and two glass modifiers which have opposite

dispersive properties.

We first consider the substitution of lead oxide for barium oxide in borates,

phosphates and silicates and its effect on the dispersion of the stress-optic response in

these glasses. Figure 5.15 shows the stress-optic and elasto-optic coefficients for lead

barium borates with 40 mol % B2O3. All glasses show negative dispersion in C; the

amount of dispersion does not vary significantly with increasing lead content. The

amount of dispersion in p44 decreases with increasing lead content.

The stress-optic coefficients and elasto-optic tensor elements for lead barium

borates with 50 mol % B2O3 are shown in Figure 5.16. The stress-optic coefficient

of 0.2PbO-0.3BaO-0.5B2O3 increases slightly with decreasing wavelength before

beginning to decrease as the absorption edge is approached. However, this variation

is small; C changes by only as much as 0.1 B over the measured wavelength range,

which is equal to the experimental uncertainty. As the amount of lead oxide in



114

Figure 5.15: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(0.6-x)BaO-0.4B2O3

the glass is increased, C shows increasing amounts of negative dispersion over the

measured wavelength range. The elasto-optic coefficients show positive dispersion for

all samples; again, the amount of dispersion increases as barium is substituted for

lead.

Figure 5.16: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(0.5-x)BaO-0.5B2O3

Figure 5.17 shows C and p44 for lead barium borates with 60 mol % B2O3.

The barium-rich sample 0.16PbO-0.24BaO-0.60B2O3 shows positive dispersion in C;

this increase is almost linear over the measured wavelength range. The lead-rich

sample 0.24PbO-0.16BaO-0.60B2O3 shows slightly positive dispersion, but C begins

to decrease as the wavelength approaches the absorption edge. Again, this variation
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in C is smaller than its experimental uncertainty. From this point, as lead content

is increased, negative dispersion is measured for the stress-optic coefficient. The

lead-rich samples all show positive dispersion of the elasto-optic coefficient; the

barium-rich 0.16PbO-0.24BaO-0.60B2O3 shows a small decrease in p44 until about

500 nm, and an increase as the absorption edge is approached.

Figure 5.17: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(0.4-x)BaO-0.6B2O3

Ternary lead barium phosphates and silicates with constant 50 mol % glass

former have also been measured. Figure 5.18 shows the stress-optic and elasto-optic

coefficients for lead barium phosphate glasses. The barium-rich glass samples (PbO <

30 mol %) show positive dispersion in C, while the lead-rich samples (PbO ≥ 30 mol

%) have negative dispersion. The elasto-optic coefficients show similar behaviour as

the additive content is varied. As the lead content of the glass is increased, the

negative dispersion of p44 transitions to positive dispersion; however, this occurs

near the absorption edge (λ < 400 nm) more quickly than for visible and near-IR

wavelengths. For example, the glass with 10 mol % PbO has p44 that decreases until

just below 400 nm, at which point the coefficient is wavelength independent. The

glass with 20 mol % PbO is non-dispersive within its uncertainty.

The stress-optic and elasto-optic coefficients of lead barium silicates are shown in

Figure 5.19. All glass samples have C with negative dispersion, and the amount of

dispersion increases with increasing lead content. The elasto-optic tensor elements

p44 are positively dispersive for all glasses measured in this system, and the amount

of dispersion again increases as lead is substituted for barium in the composition.
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Figure 5.18: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(0.5-x)BaO-0.5P2O5

Figure 5.19: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(0.5-x)BaO-0.5SiO2
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The wavelength dependence of the stress-optic response of barium zinc phosphates

and lead zinc phosphates with constant 50 mol % P2O5 were also measured. The

binary barium phosphates and zinc phosphates both showed positive dispersion in C,

with zinc phosphates having coefficients with much larger magnitudes and amounts

of dispersion. Figure 5.20 shows the stress-optic and elasto-optic coefficients for the

ternary barium zinc phosphates. As barium is substituted for zinc in the system, the

stress-optic coefficient and the amount of positive dispersion both decrease. A similar

trend is seen for p44.

Figure 5.20: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xBaO-(0.5-x)ZnO-0.5P2O5

Figure 5.21 shows the wavelength dependence of C and p44 for the ternary lead

zinc phosphate glasses. The stress-optic coefficient transitions from having positive

dispersion for the zinc-rich samples to negative dispersion for the lead-rich samples;

the opposite trend is seen in the elasto-optic coefficient, as expected. The glass sample

with 20 mol % PbO shows no dispersion in p44 within its experimental uncertainty.

5.3 Discussion

5.3.1 Zero-Stress Optic Compositions

Many of the glass families exhibiting negative dispersion contain glass compositions

with zero-stress optic coefficient: lead borates, lead barium borates with 40 mol %

B2O3, lead phosphates, lead silicates, lead barium silicates with 50 mol % SiO2, tin

phosphates, tin silicates, and zinc tellurites. Zero-stress optic compositions are also
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Figure 5.21: Stress-optic coefficient C (left) and elasto-optic tensor element p44 (right)
as a function of wavelength for glasses with composition xPbO-(0.5-x)ZnO-0.5P2O5

expected for tin silicates, lead barium borates with 50 and 60 mol % B2O3, lead barium

phosphates and lead zinc phosphates with 50 mol % P2O5. These glass families show

C which transitions from positive to negative values. Some of the glass systems have

multiple zero-stress optic compositions depending on the wavelength of incident light.

For example, in Figure 5.10, 0.40PbO-0.60P2O5 has C = 0 B at about 280 nm, and

0.45PbO-0.55P2O5 has C = 0 B between 450 and 550 nm.

It can be interpolated that these negatively dispersive glass families have a narrow

composition range for which C = 0 B across the probed wavelength range. The

composition is bounded at the lower end by the smallest additive content necessary

to induce C = 0 B at the absorption edge. At the upper end, the composition range

is bounded by the largest additive content necessary to induce C = 0 B at 1000

nm. Since C typically plateaus as wavelength increases, the upper bound of the

composition range is expected to have broadband near-IR and IR zero-stress optic

coefficient.

For the glass families measured in this study, the lower and upper composition

bounds for C = 0 B in this wavelength range are different by about 10 to 20 mol

% of additive. This is within the experimental accuracy of the empirical model in

predicting new zero-stress optic compositions, corresponding to a change in 〈d/Nc〉 of

up to 0.03 Å depending on the additive and glass former types. It is of no immediate

benefit, then, to incorporate the wavelength of incident light into the empirical model

of photoelasticity. The value 〈d/Nc〉 remains an adequate initial predictor of near-zero
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stress optic compositions across the visible and near-IR wavelength range.

There are no experimentally measured glass compositions with broadband

zero-stress optic coefficient. The transition between positive and negative dispersion

occurs when C > 0 B at near-IR wavelengths; all glass samples with C = 0 B at any

wavelength exhibit negative dispersion.

5.3.2 Effect of Glass Modifier on Dispersion

The binary glasses measured are composed of the glass formers SiO2, B2O3, P2O5

and TeO2 as well as the glass modifiers BaO, CaO, ZnO, PbO, SnO, Na2O, Li2O

and Bi2O3. According to the empirical model of photoelasticity, BaO, CaO, Na2O

and Li2O all contribute positively to the stress-optic coefficient, while PbO, SnO, and

Bi2O3 are negatively contributing modifiers. Zinc oxide, with d/Nc = 0.5 Å, could

have slightly positive or negative effect on C according to the model.

It is interesting to note that glasses compositions with positive additives have

positive dispersion, while negative additives induce negative dispersion. One might

expect bismuth-containing glasses to show negative dispersion; however, the empirical

model predicts positive stress-optic coefficients for these glasses (they have 〈d/Nc〉 <
0.45 Å) which could be an influencing factor in the type of dispersion. The zinc

phosphate glasses, all with 〈d/Nc〉 < 0.45 Å, have positive dispersion in C, while zinc

tellurites, with 〈d/Nc〉 = 0.5 Å, show negative dispersion.

In the ternary glass systems, as a positive glass additive is exchanged for a negative

modifier (i.e. as 〈d/Nc〉 decreases), the dispersion in C can transition from positive to

negative. This transition is seen in lead barium borates with 50 and 60 mol % B2O3,

lead barium phosphates, and lead zinc phosphates.

5.3.3 Applicability of the Empirical Model

The empirical parameter 〈d/Nc〉 is important in describing the amount and type of

dispersion seen in a glass sample. Figure 5.22 shows the amount of dispersion of a

glass sample plotted as a function of 〈d/Nc〉. The amount of dispersion is quantified

by the difference in stress-optic coefficient measured at the absorption edge (C(λ0))

and away from the absorption edge (C(λ0 + 250 nm)). For borate glasses, the cation

coordination number is estimated as Nc = 3.5 to more accurately reflect the glass
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network structure [42]. As 〈d/Nc〉 decreases, the amount of dispersion also decreases,

transitioning from positive dispersion to negative dispersion at 〈d/Nc〉 ≈ 0.45 Å.

Figure 5.22: Amount of dispersion ∆C in a glass as a function of the 〈d/Nc〉 value.
The amount of dispersion is defined in this report as ∆C = C(λ0)−C(λ1), where λ0

is the absorption edge wavelength, and λ1 = λ0 + 250 nm.

From these results, it seems to be possible to predict the type of dispersion in a

glass, as well as non-dispersive glass compositions. However, these results would also

suggest that non-dispersive glasses will always have positive stress-optic coefficient

since zero-stress optic coefficients are predicted when 〈d/Nc〉 ≈ 0.5 Å.

5.3.4 Relationship Between Wavelength and Stress-Optic Coefficient

The stress-optic and elasto-optic coefficients of many various glass systems have

been measured as a function of incident wavelength; these coefficients are shown

in Figures 5.3 to 5.21. The refractive index is another optical property which is

wavelength dependent. Typically, the refractive index is fitted as a function of

wavelength by the empirical Cauchy model:

n(λ) = A+
B

λ2
+
C

λ4
. (5.3)
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This model was introduced in Section 3.2.4. The coefficients A, B and C are

experimentally determined for different glass compositions. Since the stress-optic

coefficient is the constant of proportionality between induced birefringence b = ne−no
and applied stress σ, it is reasonable that the wavelength dependence of C can be fitted

using a model similar to the Cauchy model. Also, following the theories concerning

the dispersion of pijkl in crystalline materials discussed in Section 2.3, it is prudent to

normalize the incident wavelength of light by the absorption edge wavelength of the

glass. Then the wavelength-dependent stress-optic coefficients of glass samples can

be modelled using the pseudo-Cauchy model

C(λ) = a+ b

(
λ0

λ

)
+ c

(
λ0

λ

)2

. (5.4)

A full Cauchy relationship, where C is dependent on (λ0/λ)2 and (λ0/λ)4,

overestimates the wavelength dependence of C in glass series with positive additives.

Equation 5.4 does a good job at modelling the relationship between C and λ0/λ

for all glass compositions considered in this research. For example, the experimentally

measured and Cauchy-fit stress-optic coefficients of lead borates are plotted in

Figure 5.23 as a function of normalized incident wavelength (λ0/λ).

Figure 5.23: Experimentally measured and pseudo-Cauchy fitted stress-optic
coefficients of lead borates as a function of (λ0/λ).
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The parameters a, b, and c as well as the sum of the residuals are given in Table B.1

of Appendix B for all glasses considered in this research. The quality of the fit

can be determined numerically from the residual of the least-squares fit, which is

defined as the square of the difference between the experimental measurement Cλ

and the fitted value C(λ) at each (λ0/λ). Figure 5.24 shows the residual as a function

of (λ0/λ) for the lead phosphate glass series. There is little discrepancy between

measured and fit stress-optic coefficients for most glasses. For all glass samples and

at all wavelengths, the residual is close in value to the experiment uncertainty of

the stress-optic coefficient. Most variations occur for glasses containing typically

negative modifiers as the wavelength of light approaches the absorption edge, i.e. as

(λ0/λ)→ 1.

Figure 5.24: The residual, defined as the difference between the experimental
stress-optic coefficient Cλ and the fitted value C(λ) as a function of normalized
wavelength λ0/λ for lead phosphate glasses. Residuals near zero are representative of
well-fit data.

The approximately sinusoidal relationship between residual and λ0/λ is present

to varying degrees in all glass families. The lack of randomness in the residual would

seem to suggest that the simple pseudo-Cauchy fit does not entirely describe the

wavelength dependence of C. A model including an exponential relationship between
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Cλ and λ0/λ might do better at describing the apparent long-wavelength ‘plateau’ of

the stress-optic coefficient and the rapid increase of C near the absorption edge of the

glass. Still, this model provides a fairly good and simple estimate of the dispersion

of the stress-optic coefficient which could lead to new insights into the fundamental

photoelastic mechanisms of different glass systems.

The fitted parameter a defines the long-wavelength stress-optic coefficient, while

the parameters b and c give information on the type and amount of dispersion present.

Based on the empirical model of photoelasticity, a relationship is expected between

the long-wavelength stress-optic coefficient and the chemical bonding environment of

the glass. Figure 5.25 shows the coefficient a of the pseudo-Cauchy fit stress-optic

coefficient as a function of empirical value 〈d/Nc〉. These results are consistent with

the empirical model: a (and C) decreases as 〈d/Nc〉 increases.

Figure 5.25: Fitted parameter a as a function of empirical parameter 〈d/Nc〉. The
wavelength dependence of the stress-optic coefficient is fitted using a pseudo-Cauchy
model, where C(λ) = a+ b(λ0/λ) + c(λ0/λ)2.

Positive and negative values of the parameter c indicate positive and negative

dispersion of the stress-optic coefficient with wavelength, respectively. The size of

this parameter reflects the amount of dispersion present in a glass sample. Larger
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magnitudes of c indicate that the stress-optic coefficient increases or decreases more

dramatically with wavelength near the absorption edge. As the composition of a

glass series evolves and the amount of glass additive (either positive or negative)

increases, the magnitude of c decreases. In ternary glass systems with constant glass

former content, exchanging a positive additive with a negative additive also decreases

the parameter c. From the discussion of Section 5.3.3, a relationship is expected

between the amount of dispersion and 〈d/Nc〉. Figure 5.26 shows the parameter c of

the pseudo-Cauchy fit stress-optic coefficient as a function of empirical value 〈d/Nc〉.
The decreasing relationship between c and 〈d/Nc〉 support the claim that the empirical

model can be used to predict the type of dispersion in a glass. Based on these results,

non-dispersive glass compositions are predicted by the empirical model when 0.44 Å

≤ 〈d/Nc〉 ≤ 0.46 Å.

Figure 5.26: Fitted parameter c as a function of empirical parameter 〈d/Nc〉. The
wavelength dependence of the stress-optic coefficient is fitted using a pseudo-Cauchy
model, where C(λ) = a+ b(λ0/λ) + c(λ0/λ)2.

The minimum value of the fit λ0/λ = −b/2c gives an estimate of the wavelength at

which the stress-optic coefficient plateaus. For this value to be physically reasonable,

i.e. for all positive wavelengths λ, the signs of b and c must be opposite. Some
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glasses, typically those with positive additives, have minimums located at (unphysical)

negative wavelengths. This simply indicates that the stress-optic coefficient will

continue to slowly change as wavelength increases, never fully reaching a plateau. The

model C(λ) = a+ b(λ0/λ) + c(λ0/λ)2 could be constrained to force the parameters b

and c to have opposite sign. However, this constraint does not significantly affect the

quality of the fit, or the sign or magnitudes of c or a, but simply results in b ≈ 0 for

the affected glasses.

Interestingly, the three fitted coefficients seem to be interrelated. Figure 5.27

shows a linear relationship between c and b. Likewise, Figure 5.28 shows a correlation

between c and a which varies only slightly from linearity. This would suggest that

the stress-optic coefficient could be empirically estimated as a function of normalized

incident wavelength and only one of the pseudo-Cauchy parameters:

C(λ) = fb(λ0/λ, b) = fb(λ0/λ, b) = fc(λ0/λ, c). (5.5)

Figure 5.27: Fitted parameter c as a function of b. The parameters are determined
from the pseudo-Cauchy model for the stress-optic coefficient, C(λ) = a+ b(λ0/λ) +
c(λ0/λ)2.
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Figure 5.28: Fitted parameter c as a function of a. The parameters are determined
from the pseudo-Cauchy model for the stress-optic coefficient, C(λ) = a+ b(λ0/λ) +
c(λ0/λ)2.

5.4 Summary

The wavelength dependence of the stress-optic coefficient has been measured for

binary and ternary borate, phosphate, silicate and tellurite systems. Glasses with

typically positive modifiers show positive dispersion in C, while those with negative

modifiers have coefficients which show negative wavelength dependence. Ternary

systems have been synthesized with glass compositions exhibiting a transition from

positive to negative dispersion in C as the positive modifier is gradually replaced

by negative modifier. Interestingly, all glass samples with non-dispersion stress-optic

coefficient have positive values of C.

The dispersion type was related to the empirical model of photoelasticity. A

transition from positive to negative dispersion was observed when 〈d/Nc〉 ≈ 0.45

Å. This observation allows the prediction of new non-dispersive glass compositions.

However, since 〈d/Nc〉 ≈ 0.50 Å, these glasses will always have positive stress-optic

coefficients according to the empirical model.
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A pseudo-Cauchy model,

C = a+ b

(
λ0

λ

)
+ c

(
λ0

λ

)2

, (5.6)

describes the relationship between stress-optic coefficient and wavelength of incident

light. The parameter a gives the long-wavelength value of C. The decreasing

relationship between a and 〈d/Nc〉 is consistent with the empirical model. The

parameter c quantifies the type and amount of dispersion present for glass samples.

It does not correlate linearly with 〈d/Nc〉, but there is again a transition from positive

to negative values of c observed at ≈ 0.45 Å.

Interestingly, the parameters a, b and c are interdependent. We conclude

that the stress-optic coefficient can be modelled as a function of λ and only one

fitted parameter. Determining the relationship between glass composition and this

parameter is central in developing a comprehensive theory of photoelasticity. The

relationship between a, b, and c and material properties will be further discussed in

Chapter 7.



Chapter 6

Individual Elasto-Optic Tensor Elements pijkl

Brillouin scattering spectra have been collected for binary lead and barium borate,

phosphate and silicate glasses. The purpose of this research is to determine the effect

of glass formers and of additives with both positive and negative stress-optic response

on the elasto-optic tensor of glasses. The shear element p44 can be extracted from

measurements of the stress-optic coefficient, but p11 and p12 have only been reported

for a select number of glasses, typically with positive stress-optic response. For the

glasses considered here, the values of p44 and p12 determined from Brillouin scattering

are correlated with both glass composition and empirical parameter 〈d/Nc〉. The

element p12 remains positive for all compositions considered, but p44 (like C) can have

positive and negative values. The value p11 is independent of both glass composition

and cation bonding environment.

6.1 Experimental Procedure

6.1.1 Glass Preparation

Lead and barium borate, phosphate and silicate glasses were prepared by conventional

melt-quenching techniques. Stoichiometric amounts of commercial-grade lead(II)

oxide (PbO, ≥ 99.9 %, Sigma-Aldrich), barium carbonate (BaCO3, 99-101 %, Alfa

Aesar), boron oxide (B2O3, 99 %, Sigma-Aldrich), ammonium phosphate monobasic

(NH4H2PO4, ≥ 98 %, Sigma-Aldrich), and/or silicon dioxide (SiO2, purum p.a.,

Sigma-Aldrich) were weighed and mixed.

The lead-containing glasses were synthesized in platinum crucibles. Lead borates

and silicates were placed in an oven directly at 1000-1100◦C to melt and held at

this temperature for 8-12 hrs. Lead phosphates, prepared by Leanne Chapman, were

calcined at 550◦C for 24 hrs before being melted at 1000◦C for 1-2 hrs.

Barium borates and phosphates were prepared in alumina crucibles. The borates

128
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were melted directly at 1500◦C for 1-2 hrs. The phosphates were calcined at 550◦C

for 22 hrs and 850◦C for 24 hrs, and melted at 1100-1300◦C for 12-36 hrs.

The liquids were quenched by pouring into a square metal mold on a brass plate.

For the lead silicates, this mold was at room temperature (RT), while for the lead

phosphates and borates, the mold was heated to 300◦C and 400-500◦C, respectively.

Barium borates were poured at between RT and 200◦C, while barium phosphates

were poured at RT.

After being cast, the glasses were annealed for 12-24 hrs to remove residual

stresses. Lead borates, silicates and phosphates were annealed at 350-500◦C, 450◦C

and 150-350◦C respectively, while the barium borates and phosphates tended to

anneal at higher temperatures of 650◦C and 450-550◦C.

For all glasses, nominal compositions were confirmed by mass-loss and density

measurements. The compositions of barium phosphates and lead borates and

phosphates were also determined and confirmed from EMP. The barium glasses have

1-7 % Al contamination.

For Brillouin scattering measurements, it is very important for sample geometry to

be consistent between samples so that all measured spectra come from equal scattering

volume. To ensure this, all samples were cut with a low-speed saw (Buehler IsoMet,

using a Lapcraft diamond saw blade) to have a square base of 10×10 mm2 with a

maximum variation of 1 mm on either length. The height of the sample cubes was

cut to be > 4 mm to ensure that no scattered light was blocked by the edges of the

sample holder.

Three faces of the glass cube perpendicular to the square base were polished to

1 µm optical transparency, beginning with 1200 grit silicon carbide paper and then

diamond paste of decreasing particle size (30 µm, 15 µm, 9 µm, 6 µm, 3 µm and 1

µm MetaDi polishing compounds, Buehler).

6.1.2 Density, Elastic Moduli and Refractive Index Measurements

The procedure for measuring densities, sound velocities and refractive indices of

the lead and barium borates, phosphates and silicates is described in Section 5.1.2.

Values of n at 532 nm were taken from the wavelength-dependent refractive index

measurements and used for the analysis of the Brillouin spectra.
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6.1.3 Collection and Analysis of Brillouin Spectra

The Brillouin spectra of lead and barium borates, phosphates and silicates were

collected at the University of Michigan with the help of Dr. Michael Aldridge using a

Sandercock six-pass Tandem Fabry-Perot interferometer (TFPI), using 512-channel

binning. Laser light with wavelength 532 nm and tunable power set to 145 mW

was passed through a beam splitter to separate the light into two beams. The first

reference beam was focused on the TFPI, while the second sample beam followed

a path through the glass sample before being focused on the interferometer. The

sample beam was initially linearly polarized, either in the vertical (V) or horizontal

(H) plane, by passing through a half-wave plate. The polarized beam was focused on

the glass sample, and light scattered at 90◦ relative to the incident light was collected.

This light was focused, collimated, and passed through a polarizer such that either

the V or H component could be selected. The sample beam was then focused on the

TFPI and compared to the reference beam, resulting in Brillouin spectra similar to

that in Figure 3.5 depending on polarizations selected and glass measured.

Longitudinal and transverse peaks for reference and sample Brillouin spectra

were fit using Fityk [88]. Background noise was subtracted from the spectra where

necessary. Spectral lines were fit with Voigt functions, which are convolutions

of Gaussian and Lorentzian functions. Lorentzian line shapes often result from

homogeneous line-broadening, which is primarily due to collisions of molecules with

other molecules (for liquids or gases) or with phonons in the material (for solids).

Gaussian line shapes result from inhomogeneous broadening, due to local electric

field and frequency variations within a medium [89]. For glass, which has significant

structural inhomogeneity, spectral line shapes tend toward Gaussian. The liquid

toluene, on the other hand, has a near Lorentzian line shape since collision broadening

is the predominant effect. The area under the curve gives the Brillouin intensity,

which needs to be normalized by the number of counts or scans over which the data

is collected. Each count represents a sweep over the frequency range of interest, and

the resulting Brillouin intensity is summed over all counts. The position of the center

of the Voigt peak relative to the Rayleigh peak gives the frequency shift, measured

in GHz. The longitudinal or transverse frequency shift is then related to the sound

velocity and elastic moduli by Equations 3.39 and 3.40. Each Brillouin spectra shows
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Stokes and anti-Stokes scattering; both absolute frequencies and intensities are used

to determine properties of interest.

Data collection for each glass sample began with VV measurements for both quartz

and toluene, typically with 25-50 counts per measurement. The constant replacement

of the references resulted in slight variations in the absolute longitudinal intensities.

This is likely due to changes in the angle of incidence of light on the reference, or

in the focusing of the scattered light on the TFPI. In order to minimize the effect

of these variations on the measured elasto-optic coefficients, the reference intensities

and frequency shifts were taken from the average (and standard deviations) of the

day’s measurements.

Data for p12 was then collected for glass samples. The intensity IV V was measured

at 5-10 spots along the height of the glass cube. Collection times were short for this

relatively intense peak, with only 25-100 counts necessary to resolve the Brillouin

peaks. After peaks were fit, the average longitudinal intensities and frequency

shifts (sound velocities) were used to determine p12 through Equation 3.102. The

uncertainty in this value is related to the standard deviation of the fitted values.

The values of p44 for the glass samples were determined relative to the sample p12

rather than the reference value. Data collection began with a measurement of the VV

spectra. The glass sample was kept exactly in place, and the optics were adjusted

to collect IV H . Keeping the sample stationary in this way removes any variations

due to changed angle of incidence or beam focus upon sample replacement. Since

p44 is typically much smaller than p12, a much larger number of scans were necessary

to resolve the Brillouin peaks, ranging from 500 to 5000 counts. Depending on the

magnitude of p44, the spectra were collected for between 1 and 5 spots on the glass

to determine the standard deviation of the transverse Brillouin intensity.

In order to determine the signs of the elasto-optic coefficients, the HH and VH

spectra for glasses with non-zero p44 were measured at θ = 85◦, 90◦, and 95◦. Between

100-1000 scans were needed to resolve the Brillouin peaks. The sign of the slope of

IHH/IV H gives information on the relative sign, and then the absolute sign of p44 is

determined from independently measured stress-optic coefficients at 532 nm.
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6.2 Results

6.2.1 Refractive Index, Density, Elastic Moduli and Stress-Optic

Coefficient

Refractive indices measured at 532 nm by ellipsometry, densities and sound velocities

as determined from the ultrasonic method are found in Table 6.1. As the amount of

additive content, either barium or lead, is increased in the glass, the refractive indices

and densities also increase. Longitudinal and transverse sound velocities are fairly

constant for barium borates and phosphates. In the lead-based glass systems, vL and

vT both decrease as x increases; this is most noticeable in the lead borates. For all

glasses, the ratio vT/vL ≈ 0.55 is independent of composition.

Table 6.1: Refractive indices, densities, and sound velocities (ultrasonic) of lead and
barium borates, phosphates and silicates.

Family x n ρ (g/cm3) vL (km/s) vT (km/s)

xBaO 0.20 1.59(1) 2.89(1) 5.15(1) 2.834(5)
-(1-x)B2O3 0.25 1.60(1) 3.091(5) 5.24(1) 2.872(5)

0.30 1.61(1) 3.375(5) 5.30(1) 2.908(5)
0.35 1.62(1) 3.60(1) 5.27(1) 2.871(5)

xBaO 0.35 1.55(1) 3.26(1) 4.17(1) 2.287(5)
-(1-x)P2O5 0.40 1.56(1) 3.351(5) 4.49(1) 2.491(5)

0.45 1.58(1) 3.482(5) 4.37(1) 2.387(5)
0.50 1.59(1) 3.652(5) 4.28(1) 2.309(5)
0.55 1.60(1) 3.84(1) 4.30(1) 2.287(5)

xPbO 0.35 1.78(1) 4.598(5) 4.33(1) 2.394(5)
-(1-x)B2O3 0.40 1.81(2) 5.037(5) 4.12(1) 2.281(5)

0.45 1.86(1) 5.324(5) 3.99(1) 2.198(5)
0.50 1.93(1) 5.67(1) 3.73(2) 2.046(5)
0.55 1.99(3) 5.992(5) 3.57(3) 1.918(5)
0.60 2.03(3) 6.278(5) 3.33(3) 1.779(5)
0.65 2.04(2) 6.514(5) 3.16(3) 1.688(5)

xPbO 0.40 1.67(5) 4.036(5) 3.48(1) 1.895(5)
-(1-x)P2O5 0.45 1.69(1) 4.338(5) 3.44(1) 1.846(5)

0.50 1.71(1) 4.65(1) 3.35(1) 1.774(5)
0.55 1.76(1) 5.023(5) 3.29(1) 1.735(5)
0.60 1.80(2) 5.422(5) 3.26(1) 1.680(5)

xPbO 0.50 1.85(1) 5.649(5) 3.38(2) 1.901(5)
-(1-x)SiO2 0.55 1.92(1) 5.991(5) 3.26(1) 1.814(5)

0.60 1.95(1) 6.392(5) 3.09(1) 1.704(5)
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Elastic moduli calculated from the ultrasonic method and stress-optic coefficients

and shear elasto-optic tensor elements determined from the Sénarmont compensator

method are reproduced in Table 6.2. Barium borates and phosphates and lead

phosphates show an increase in C11 and G as x increases; the opposite trend is

seen in lead borates and silicates. As expected from the empirical model, barium

and lead both decrease the stress-optic coefficients, while only lead induces negative

stress-optic response.

Table 6.2: Elastic (ultrasonic) and photoelastic properties of lead and barium borates,
phosphates and silicates

Family x C11 (Gpa) G (Gpa) C (B) p44

xBaO 0.20 76.7(3) 23.2(1) 4.02(15) -0.0447(21)

-(1-x)B2O3 0.25 85.0(4) 25.5(2) 3.64(13) -0.0453(21)

0.30 94.8(4) 28.5(2) 2.38(21) -0.032(3)

0.35 100.1(4) 29.7(2) 1.90(17) -0.0268(25)

xBaO 0.35 56.6(3) 17.1(1) 1.64(4) -0.0150(7)

-(1-x)P2O5 0.40 67.5(3) 20.8(1) 1.54(4) -0.0174(8)

0.45 66.6(3) 19.8(1) 1.27(5) -0.0129(7)

0.50 67.0(3) 19.5(1) 0.96(6) -0.0092(7)

0.55 70.9(3) 20.1(1) 0.58(7) -0.0056(7)

xPbO 0.35 86.1(3) 26.4(2) 2.20(5) -0.0203(8)

-(1-x)B2O3 0.40 85.4(3) 26.2(2) 1.16(5) -0.0100(6)

0.45 84.7(3) 25.7(2) 0.71(2) -0.0056(3)

0.50 78.9(3) 23.7(2) -0.02(2) 0.0001(1)

0.55 76.2(3) 22.0(2) -0.80(2) 0.0048(2)

0.60 69.7(3) 19.9(2) -1.52(4) 0.0070(4)

0.65 65.0(3) 18.6(2) -2.49(5) 0.0105(5)

xPbO 0.40 49.0(2) 14.5(1) 0.44(2) -0.0041(3)

-(1-x)P2O5 0.45 51.2(2) 14.8(1) 0.03(1) -0.0002(1)

0.50 52.2(2) 14.6(1) -0.48(5) 0.0029(3)

0.55 54.4(3) 15.1(1) -1.17(3) 0.0066(3)

0.60 57.5(3) 15.3(1) -2.38(4) 0.0128(1)

xPbO 0.50 64.6(3) 20.4(2) -0.32(15) 0.002(1)

-(1-x)SiO2 0.55 63.6(3) 19.7(2) -1.83(33) 0.0098(18)

0.60 61.1(3) 18.6(2) -3.75(11) 0.0187(9)
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6.2.2 Brillouin Results

The sound velocities, elastic moduli and elasto-optic tensor elements determined from

Brillouin scattering spectra are compiled in Table 6.3. The values match well with

those from the previous section. The values of the elasto-optic tensor elements p12 and

p44 are shown in Table 6.3 as well as plotted versus mol % of additive in Figures 6.1,

6.2 and 6.3.

Table 6.3: Transverse and longitudinal sound velocities, elastic moduli and
elasto-optic tensor elements (Brillouin scattering) for lead and barium borates,
phosphates and silicates.

Family x vL (km/s) vT (km/s) C11 (Gpa) G (Gpa) p12 p44

xBaO 0.20 5.19(12) 2.84(9) 78(2) 23.3(8) 0.296(15) -0.0459(80)

-(1-x)B2O3 0.25 5.30(11) 2.91(9) 87(2) 26.1(9) 0.279(15) -0.0453(63)

0.30 5.36(10) 2.93(8) 97(2) 29.0(9) 0.251(7) -0.0376(63)

0.35 5.32(9) 2.90(8) 102(2) 30.4(9) 0.251(4) -0.0360(52)

xBaO 0.35 4.22(13) 2.31(11) 58(2) 17.4(9) 0.311(7) -0.0134(9)

-(1-x)P2O5 0.40 4.50(6) 2.54(9) 68(1) 21.7(9) 0.307(4) -0.0189(9)

0.45 4.45(12) 2.44(10) 69(2) 20.8(9) 0.296(8) -0.0141(11)

0.50 4.32(11) 2.34(8) 68(2) 20.0(8) 0.285(8) -0.0104(5)

0.55 4.36(11) 2.34(8) 73(2) 21.1(8) 0.267(5) -0.0080(3)

xPbO 0.35 4.37(9) 2.51(16) 88(2) 29(2) 0.211(13) -0.0139(9)

-(1-x)B2O3 0.40 4.20(8) 2.29(3) 89(2) 26.4(4) 0.213(19) -0.0109(11)

0.45 4.00(8) 2.21(5) 85(2) 26.0(6) 0.196(19) -0.0059(7)

0.50 3.80(8) 1.94(25) 82(2) 21(3) 0.192(16) 0.0026(2)

0.55 3.54(8) 1.92(2) 75(2) 22.2(3) 0.200(29) 0.0039(6)

0.60 3.32(4) 1.82(5) 69(1) 20.8(6) 0.185(26) 0.0072(11)

0.65 3.13(9) 1.71(7) 64(2) 19.0(9) 0.191(32) 0.0080(14)

xPbO 0.45 3.43(12) 1.94(11) 51(2) 16(1) 0.252(25) -0.0053(7)

-(1-x)P2O5 0.50 3.38(6) 1.84(10) 53(1) 16(1) 0.245(19) 0.0017(5)

0.55 3.34(11) 1.77(10) 56(2) 16(1) 0.215(18) 0.0057(5)

0.60 3.27(5) 1.75(9) 58(1) 16.6(9) 0.220(21) 0.0078(10)

xPbO 0.50 3.29(1) 1.90(17) 61(2) 20(2) 0.205(11) 0.0014(2)

-(1-x)SiO2 0.55 3.19(5) 1.79(6) 61(1) 19.2(7) 0.204(6) 0.0098(35)

0.60 3.06(9) 1.72(7) 60(2) 18.9(8) 0.198(7) 0.0130(19)

There is good agreement between the values of p44 determined from stress-optic

measurements and from Brillouin experiments; this is seen in Figure 6.1. The small

inconsistencies likely come from difficulties in stressing the glass cubes homogeneously

for stress-optic measurements. There is also a relationship between elasto-optic
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coefficient and molar % additive. This trend seems to be fairly linear, and does not

strongly depend on glass former considered. Lead borates, phosphates and silicates

have overlapping ranges, while there is some separation between the barium borates

and phosphates. Also, lead-containing glasses have p44 that increases more rapidly

with the addition of x than barium glasses. At x = 0.30, the value of p44 for the barium

phosphates, is nearly equal to that of the lead borates. But, while the lead glasses

transition from negative to positive p44 with increasing x, the elasto-optic coefficient

of the barium glasses remains negative. This is consistent with the predictions of the

empirical model of photoelasticity.

Figure 6.1: Elasto-optic coefficient p44 shown as a function of additive content. Values
from Brillouin experiments (B) are given by solid lines and filled symbols, while those
from stress-optic coefficients (C) are given by hollow symbols and dashed lines.

The values of p12, seen in Figure 6.2, tend to decrease with increasing molar

% of additive. This is opposite to the trend seen for p44, and consistent with the

results of previous experiments reproduced in Figure 2.5. Likewise, the values do
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seem to depend on both glass former and additive type. Barium phosphates have

larger p12 than barium borates of the same additive content; the same is true of lead

phosphates and lead borates. There also seems to be a difference in the elasto-optic

constants between lead and barium phosphates with the same additive content x, as

well as between lead and barium borates; typically, barium-containing glasses have

larger p12. Generally speaking, the values of p12 are between one and two orders of

magnitude larger than those of p44, and for all glasses measured, p12 remains positive.

Figure 6.2: Elasto-optic coefficient p12 shown as a function of additive content.

The elasto-optic coefficient p11, determined from the isotropy condition p11−p12 =

2p44, is plotted against additive content in Figure 6.3. The values of p11 do not seem

to correlate with glass additive composition; its correlation coefficient is R2 ≈ 0.

There are overlapping values for barium and lead borates with the same additive

content, as well as for lead and barium silicates with the same x. The values for
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the phosphates are nominally larger than those for the borates, with the p11s for lead

silicates approximately equal to those of lead borates. Also, p11 is lower for pure silica

than for the binary glass systems. If we consider the elasto-optic coefficients of the

other pure glass formers seen in Figures 2.5 and 2.6, the p11 of B2O3 is about twice

that of SiO2 and GeO2, which overlap. The magnitudes of p11 are of the same order

as p12, which is unsurprising for the small values of p44 measured.

Figure 6.3: Elasto-optic coefficient p11 shown as a function of additive content. This
value is not measured directly, but calculated from the experimental Brillouin and
elasto-optic results using p11 = p12 + 2p44.

6.2.3 Third Brillouin Peak

Typically, unpolarized Brillouin spectra of isotropic solids will have two peaks at

frequencies corresponding to the transverse and longitudinal sound velocities within

the material. Within the VH spectra of some of the glass samples, however, a third

peak at higher frequencies became discernible for long scan times. An example for
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the glass with composition 40PbO-60B2O3 is seen in Figure 6.4, with the third peak

highlighted in blue; the area of this peak per count is on the order of that of the

transverse peak. The third peak was found in the VH spectra of lead borates,

phosphates and silicates, while no convincing indication of this peak could be seen

in barium phosphate or borate spectra. For the VV configuration, the peak was not

visible, although scans were performed with less than 500 counts.

Figure 6.4: Brillouin spectra for 40PbO-60B2O3 glass taken over 3000 counts in VH
polarization. The first peak at about ± 12 GHz is due to the transverse acoustic
mode. The second peak at about ± 20 GHz is the bleedthrough of the longitudinal
peak from the crossed polarizers; this accounts for less than 1 % of the longitudinal
peak measured in VV configuration. A third, unexplained peak is visible between ±
20 and 30 GHz; it is highlighted in blue.

The Brillouin intensities per scan and frequency shifts of the third peak are plotted

versus lead content in Figure 6.5. The intensity does not behave linearly with x,

though it does tend to increase with additive with a possible local intensity maximum.

It is important to remember that the intensity can vary slightly depending on how

the sample is aligned, so these trends may be artificial. What is significant, however,

is that the intensities of the third peak are all on the same order of magnitude. The

frequency shift ∆f of lead borates decreases with increasing lead content; the shifts

of lead phosphates and lead silicates is fairly constant with x. Remembering that the

sound velocities are related to their frequency shifts by v = 2π∆f/q, and that q ∝ n,
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we can note that the velocities of the third wave from which the light is scattering,

v3rd, is larger than the transverse and longitudinal sound waves. Furthermore, this

third wave shows the same trends as the other two sound velocities, with v3rd greatly

decreasing for lead borates and slightly decreasing for lead phosphates and silicates.

Between glass samples, there is an approximately constant relationship, vL/v3rd ≈
0.77.

Figure 6.5: Measured normalized Brillouin intensities and frequency shifts of the third
peak as a function of lead content.

We can conclude that the peak is not an artifact of the interferometer, since it

is measurable in some glass compositions but not others. It is also not exclusive to

one glass former or additive; the glass series xSnO-(0.33 − x)ZnO-0.67P2O5, which

contains positive, negative and zero stress-optic glasses, also exhibits this peak. The

frequency shift of the peak indicates that it is not due to back-scattering within the

glass cube. Also, x-ray diffraction was performed on the two most lead-rich borate

samples to exclude the possibility of scattering from a crystalline phase within the

material; the glass samples were found to be fully amorphous.
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6.3 Discussion

6.3.1 Elasto-Optic Coefficients and the Empirical Model

The empirical model of photoelasticity predicts that glasses will have positive

stress-optic coefficient for compositions with 〈d/Nc〉 < 0.5 Å and negative C with

〈d/Nc〉 > 0.5 Å. Since C = −n3p44/(2G), this corresponds to the shear elasto-optic

constant increasing with increasing 〈d/Nc〉, with values of p44 = 0 near 〈d/Nc〉 = 0.5

Å.

Figure 6.6: Elasto-optic coefficient p44 as a function of 〈d/Nc〉. The lead and barium
borates, phosphates and silicates (plotted with lines connecting data points and error
bars) were measured in this study. Glasses labelled (1) are from reference [66], (2)
from [10], and (3) from [13].

Figure 6.6 shows the elasto-optic tensor element p44 plotted versus the 〈d/Nc〉
value for our lead and barium borate, phosphate and silicate glass systems and for

previously measured glass systems with known compositions [10, 13, 66]. There is

a correlation between p44 and 〈d/Nc〉 for the lead- and barium-based glasses, with
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an increasing trend as expected. The relationship is not perfectly linear, but it is

neither predicted nor expected to be. The transition between negative and positive

p44 occurs between 0.46 Å ≤ 〈d/Nc〉 ≤ 0.49 Å, which is consistent with the empirical

model for C.

There is more variation in the elasto-optic coefficient of previously measured

glasses with 〈d/Nc〉. For glasses with 〈d/Nc〉 > 0.4 Å, the elasto-optic coefficient

increases with increasing ratio as one might expect when considering the empirical

model. However, the rate of increase slows above 〈d/Nc〉 = 0.45 Å. Zero-stress optic

compositions are extrapolated for values of 〈d/Nc〉 > 0.5 Å, which is larger than

the empirical model predicts. It is likely in this case that the empirical model is

overestimating the contribution of alkali oxides to the photoelastic response of a

glass; all compositions with 〈d/Nc〉 > 0.45 Å contain Na2O, Li2O, or K2O.

Pure GeO2 and the calcium aluminosilicates have similar values of p44 to

the silicate, lead- and barium-based glasses, but have smaller 〈d/Nc〉 values.

This decreased ratio could be due to an incorrect estimate of bond length and

cation coordination. For example, GeO2 is more likely to be 4-coordinated than

6-coordinated in its glass form [90]. The same might be true for Ca and Al

in the calcium aluminosilicates. These glasses have < 20 mol % SiO2, and the

six-coordinated crystalline CaO and Al2O3 compounds used in the empirical model

might have lower coordination in the glass structure.

It is also possible that the glass former type has a significant effect on p44 which

is not currently described by the empirical model. In Figure 6.6, there appear be

two regions of increasing p44: the first region consisting of glass samples with primary

glass former other than SiO2, and the second region consisting of silicate glasses. Also,

there is a difference in magnitude of p44 between barium phosphates and borates with

the same 〈d/Nc〉 value. This too points to the importance of the glass former to the

photoelastic response of a material. The lead-based glasses do not show the same

variation in p44, but this could be due to their overlapping near-zero values.

Interestingly, while typically C is larger for pure B2O3 than for binary borate

systems, p44 of pure B2O3 is smaller in magnitude than the coefficients of barium

borates. This is an effect of the much smaller shear elastic modulus of pure B2O3

relative to the mixed glasses.
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Figure 6.7: Elasto-optic coefficient p12 as a function of 〈d/Nc〉. The lead and barium
borates, phosphates and silicates (plotted with lines connecting data points and error
bars) were measured in this study. Glasses labelled (1) are from reference [66], (2)
from [10], (3) from [13].

Figure 6.7 shows the elasto-optic coefficient p12 as a function of 〈d/Nc〉 for our

barium and lead-based glasses and for the other previously measured glass systems

[10, 13, 66]. The empirical model does not consider the individual contribution of

p12, so it is interesting to see that there does seem to be a correlation between this

coefficient and 〈d/Nc〉. For all binary glass systems, p12 decreases almost linearly

with increasing empirical ratio. However, the p12 of ternary systems deviate from

this behaviour. Consider the Al2O3-Na2O-SiO2, Al2O3-K2O-SiO2 or Na2O-K2O-SiO2

glasses. As the total amount of glass former decreases (and 〈d/Nc〉 increases), p12 also

decreases. However, for constant amounts of glass former, as one additive is exchanged

for another, the elasto-optic coefficient increases with decreasing 〈d/Nc〉. Still, this

trend supports the idea that the d/Nc values for the alkali oxides (particularly K2O)

are currently overestimated in the empirical model.
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Additionally, the values of p12 show a slight separation with glass former type.

For example, in our binary glass systems, the barium phosphates have larger

coefficients than barium borates with the same 〈d/Nc〉, and the same is true for

lead phosphates and borates. The coefficients of pure GeO2 and the calcium

aluminosilicates are completely separate from those of borates, phosphates and

silicates. As previously discussed, this could result from an underestimation of d/Nc

for individual compounds, or it could be indicative of an aspect of the photoelastic

response that is not considered by the empirical model.

Figure 6.8: Elasto-optic coefficient p11 as a function of 〈d/Nc〉. The lead and barium
borates, phosphates and silicates (plotted with lines connecting data points and error
bars) were measured in this study. Glasses labelled (1) are from reference [66], (2)
from [10], (3) from [13].

Figure 6.8 shows p11 as a function of 〈d/Nc〉 for our lead- and barium-based

glasses, as well as for the previously measured glass systems [10, 13, 66]. There

does not seem to be a definitive relationship between the two values. Some series have

increasing trends between coefficient and ratio, others have decreasing, and some have
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fairly constant p11 across the glass system. Since the two independent elasto-optic

coefficients p12 and p44 for these glass families do seem to show some dependence

on 〈d/Nc〉, it is possible for the third, dependent coefficient p11 = p12 + 2p44 to be

uncorrelated with the empirical model.

The magnitudes of p11 seem to depend on the type of glass former and additive.

Phosphates have the largest coefficients, followed by borates, silicates, GeO2, and

finally the calcium aluminosilicates. Likewise, glasses modified by barium oxide have

the largest coefficients, followed by lead oxide, potassium oxide, and sodium and

lithium oxides.

6.3.2 Comparison to Other Theories of Photoelasticity

While the theories of photoelasticity developed by Mueller, Carleton, Mazzacurati,

Benassi, Harrison and Lines are all derived from varying models and theories

(Lorentz-Lorenz, lattice and atomic strains, DID effects, bond-orbital energies) they

all have one material property in common: the refractive index. While none of these

theories shows universal correlation between prediction and experiment, and some

also incorporate dependence on other material properties, it is still of interest to

examine how pij depend on n.

Figure 6.9 shows p44 plotted as a function of n for our lead and barium borates,

phosphates and silicates and for previously measured glass series [10, 13, 66].

Generally, as refractive index increases, the elasto-optic coefficient also increases.

This is consistent with previous results, as additives which induce zero and negative

stress-optic response (for example, PbO and SnO) also tend to increase the refractive

index of a glass more than positive additives [42, 43, 53]. For lead borates, phosphates

and silicates, the transition from positive to negative stress-optic response occurs in

the range 1.7 ≤ n ≤ 1.9, with exact value dependent on glass former.

For a given glass former, there does seem to be a fairly linear relationship between

p44 and n regardless of modifier type. However, there are still slight separation of the

coefficients with n depending on glass former. For example, barium borates have p44

with larger magnitude than the barium phosphates with the same refractive index.

The (Eu/Pr)2O3-doped magnesium calcium aluminosilicate glasses also have larger
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p44 than other silicates with similar refractive indices. Still, even with these minor

deviations, the results do reinforce the idea that refractive index is an important

descriptor of the photoelastic response of a glass.

Figure 6.9: Elasto-optic coefficient p44 as a function of refractive index. The lead and
barium borates, phosphates and silicates (plotted with lines connecting data points
and error bars) were measured in this study. Glasses labelled (1) are from reference
[66], (2) from [10], (3) from [13].

The relationship between p12 and n for our glass systems and previously measured

glass systems [10, 13, 66] is shown in Figure 6.10. Generally, as n increases, the

elasto-optic coefficient p12 decreases. However, the majority of the data falls into

two categories: glass families with negative stress-optic additives and glasses with

positive stress-optic additives. The former category follows a linear trend with p12

decreasing slowly with n, while the latter has a more rapidly decreasing linear trend

between p12 and n.. Within these categories, there is little variation of p12 with

additive type. The pure glass formers SiO2 and B2O3 are at the apex of these lines,

while GeO2 has similar coefficient and refractive index as the negative additives. The
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dependency between elasto-optic coefficient and n would seem to suggest that p12 can

be accounted for by a combination of the refractive index of the glass and the type

of additives present in the composition.

Figure 6.10: Elasto-optic coefficient p12 as a function of refractive index. The lead and
barium borates, phosphates and silicates (plotted with lines connecting data points
and error bars) were measured in this study. Glasses labelled (1) are from reference
[66], (2) from [10], (3) from [13].

The values of p11 for the lead- and barium-based glasses and the previously

measured glass series [10, 13, 66] are plotted in Figure 6.11 as a function of n. The

elasto-optic values do not seem to strongly depend on refractive index, just as they

did not depend on additive mol % or 〈d/Nc〉. However, as with p12, there seem to be

two regions of values for p11. The first, with glass compositions containing negative

modifiers, has 0.18 . p11 . 0.28. The second region, composed of glass series with

positive modifiers, has 0.05 . p11 . 0.18. Typically, the positively modified glasses

have n < 1.6, while negatively modified glasses have n > 1.6.
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Figure 6.11: Elasto-optic coefficient p11 as a function of refractive index. The lead and
barium borates, phosphates and silicates (plotted with lines connecting data points
and error bars) were measured in this study. Glasses labelled (1) are from reference
[66], (2) from [10], (3) from [13].

6.3.3 Appearance of the Third Brillouin Peak

The appearance of a third peak at larger frequencies in the Brillouin spectra of

lead-containing glass samples is unexpected. Typical glass spectra contain peaks

located only at frequencies corresponding to the velocities of longitudinal and

transverse sound waves in the material. No other studies on the Brillouin scattering

of glasses report the presence of a third peak in the VH/HV configuration.

The origin of this peak is ambiguous. It could be due to the scattering from higher

order acoustic modes in the glass. It could also be indicative of a small amount

of phase separation in the glass samples. This could be experimentally verified

through small angle x-ray diffraction. There has been some evidence of Brillouin

scattering from excitonic polaritons (coupled states of the light and excitations) in
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semiconductors, resulting in asymmetry and extra peaks in the Brillouin spectra

[91–94]. Polaritons are most likely to occur for photon energies near to exciton

absorption energies, and the coupling must occur at the surface of the material [91].

While these excitonic interactions are unlikely for pure glass surfaces, they could occur

if small amounts of nanocrystals or microcrystals are present on the glass surface. It

is interesting to note that the glasses with spectra exhibiting this peak all have large

refractive indices relative to the pure glass formers and barium-based glasses.

6.4 Summary

The elasto-optic tensor elements p12 and p44 were measured using Brillouin

spectroscopy for binary lead and barium borates, phosphates and silicates. The third

element p11 was determined from the dependency 2p44 = p11 − p12. Generally, as

the amount of modifier is increased in a binary glass system, p44 increases and p12

decreases. There was no compositional dependence for p11.

The shear elasto-optic tensor element can be extracted from the stress-optic

coefficient of a glass. As expected, values of p44 from taken from the stress-induced

birefringence matched those determined through Brillouin scattering.

Just as the stress-optic coefficient C decreases with increasing empirical value

〈d/Nc〉, the shear elasto-optic coefficient p44 increases with increasing 〈d/Nc〉. This is

expected from the relationship C = −n3p44/(2G). Interestingly , the tensor element

p12 also seems to be described by the empirical model. For both p12 and p44, there is

some separation of values depending on the glass former and additive of the binary

series. The element p11 is uncorrelated with 〈d/Nc〉.
The refractive index is also related to the photoelastic response of a glass: for

binary glass series, as n increases, p44 increases and p12 decreases. The values of p12

and p44 are similarly separated depending on the different glass formers and modifiers

present, and p11 again shows no correlated with refractive index.

The three elasto-optic tensor elements will be discussed further in Chapter 7.



Chapter 7

Discussion

7.1 Polarizability Model for Anions and Cations

The empirical model of photoelasticity has been very successful in predicting the sign

of the stress-optic response and new zero-stress optic compositions, but it is unable

to determine the magnitude of C. This is likely due to the structural differences in

the individual glass former and modifier units between crystalline and glassy states.

Indeed, predictions based on the compounds’ d/Nc values are constantly improved

when the glass structure is taken into account. Still, it would be valuable to develop

a model of photoelasticity that is able to predict not only sign but also magnitude of

the stress-optic response.

A model of photoelasticity similar to Mueller’s was proposed by Weyl, focusing

on the electrostatic interactions between anions and cations in the glass network

rather than lattice or atomic effects [95]. The properties that are related to induced

birefringence in the model are the electric density distribution and the polarizability

of the ions, including both anions and cations. Polarizability has been used as a

building block in many other photoelastic theories to relate individual elasto-optic

tensor elements pij to material properties such as refractive index, bond lengths and

optical deformabilities.

Weyl’s model was developed for materials placed under tensile stress but can

easily be adapted for compressive stress. According to the model, there will be three

contributions to the photoelastic response for a compressive stress. First, the distance

between anion and cation will decrease along the stress axis. This would result in

an increased ne, and thus positive contribution to C. Second, the electron cloud of

oxygen will elongate in the direction of the stress, i.e. towards the closest cations.

This also results in increased ne, and positive C. Third, if the cation is polarizable,

then its electrons will be repelled in the plane perpendicular to the applied stress.

This would increase no and contribute negatively to C. The overall contribution to

149
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C, then, would depend on the relative polarizabilities between oxygen (or anion) and

the cation in the glass.

The model of photoelasticity proposed by Weyl is qualitative rather than

quantitative. The principles described above correlated with the experimental results

of Tashiro [34]. It was determined that the stress-optic coefficient decreased as “more

polarizable” modifiers were added to a glass. However, the exact value of polarizability

for each compound was not specified. It is worthwhile, then, to determine whether

the magnitude of C can be related to the polarizability of a material.

The total polarizability α of a compound is defined in Section 2.2. It is related

to the density, molar mass and refractive index of an isotropic material through the

Clausius-Mossotti or Lorentz-Lorenz equation:

α =
3M

4πNρ

n2 − 1

n2 + 2
. (7.1)

Polarizability is an additive property; for a compound MxOy, the total polarizability

is

α = xαM + yαO, (7.2)

where αM is the polarizability of the cation and αO is the polarizability of oxygen in

the context of that compound. Dimitrov et al. assumed that cation polarizabilities

are equal to the free ion polarizabilities, and used Equation 7.2 to estimate the oxide

polarizabilities from the total polarizability of various compounds [96]. They found

that the polarizability of oxygen varies from compound to compound.

In his doctoral dissertation, Martin defined a polarizability parameter,

ξ =
xαM
yαO

, (7.3)

and related it to the stress-optic response of a glass [97]. He determined that as the

value of ξ increased for different glass compositions, their stress-optic coefficient (or

contribution to C) decreased, which is consistent with Weyl’s model of photoelasticity.

Martin characterized the total contribution of polarizability to the stress-optic

response as
∑

i xi(e
ξ)i, where xi is the mol % of the ith compound in the glass

composition, but found that eξ was not a better predictor of zero-stress optic

compositions than 〈d/Nc〉.
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However, polarizability is an additive property. Therefore it is more applicable to

use an additive approach to determine the effect of polarizability on the stress-optic

coefficient. For each compound, we will consider the relative polarizabilities between

the anion and cation. Then, for a compound MxOy, the relative or normalized

polarizability is

αn =
xαM + yαO

x+ y
=

α

x+ y
. (7.4)

The normalized polarizability αn should be descriptive of the interation between anion

and cation as their electron clouds are deformed under stress. Then, according to

the principles of Weyl’s polarizability model, the value αn for a compound will give

information on its contribution to the stress-optic coefficient of a glass.

The total polarizabilities of all glass formers and additives used in this study

were determined using Equation 7.1 with the experimentally measured densities and

long-wavelength refractive indices. Since n is an additive property, the refractive

indices of individual compounds are estimated from the values for binary glass series

measured in this report; density is similarly determined for the glass formers and

additives. For glass systems considered in the literature with compounds not included

in this study, α is taken from the literature [96, 98, 99]. Cation polarizabilities αM

were estimated to be equal to the free ion polarizabilities according to [96], and the

anion polarizabilities were determined using Equation 7.2. The oxide polarizabilities

were compared to the results of Dimitrov; our experimentally determined values for

BaO, ZnO, PbO, Bi2O3 are all up to 1 Å3 lower.

While the normalized bond polarizability αn can be decomposed into the

individual ionic polarizabilities αM and αO for each compound, these polarizabilities

are not considered individually in the model. In fact, it is unlikely that αM is a

true representation of the cation polarizability, since it is estimated from the free ion

value. While it is interesting to see the general evolution of αO and αM between glass

compounds, only αn (determined from experimental results) is needed to correlated

polarizability with photoelasticity.

Table 7.1 shows the empirical parameter d/Nc and the oxide, cation and

normalized polarizabilities for all oxide compounds considered in this thesis. The table

is sorted by decreasing values of αn. Note that the values d and Nc are determined

from the crystal structure of compounds, and can often vary in the glass structure.
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For example, the cation coordination of the alkali oxides typically increases to 6-8 in

a glass. The polarizability αn, on the other hand, is determined from experimental

refractive indices and densities of glasses. As such, the polarizability of a compound

is not expected to vary significantly depending on glass composition.

It is important to note that while the model is developed for the deformation of

electron densities of anions and cations, it is not exclusive to ionic materials. In an

SiO2 glass, for example, the discussion is analagous to the deformation of electrons

around silicon (cation) cores and oxygen (anion) cores under uniaxial stress. It is the

polarizability of bonds between the so-called “anion” and “cation” in a glass which

defines its photoelastic response.

Table 7.1: Empirical bonding and polarizability models for oxides. Values labelled
(a) are from [96], (b) from [98], (c) from [99], and (d) from [100].

Compound d (Å) Nc d/Nc (Å) αO (Å3) αM (Å3) αn (Å3)

PbO 2.326 4 0.58 2.4 3.623 3.01
SnO 2.219 4 0.55 3.4 2.587 2.99
Bi2O3 1.918 4 0.48 2.6 1.508 2.46
Sb2O3

(a) 1.977 3 0.66 3.2 1.111 2.35
TeO2 2.00 4 0.50 2.0 1.595 2.40
BaO 2.74 6 0.46 2.6 1.595 2.10
K2O(b) 2.787 4 0.70 2.3 1.98 2.09
Pr2O3

(c) 2.67 7 0.38 * * 2.00
SrO(a) 2.581 6 0.43 2.9 0.861 1.89
Eu2O3

(c) 2.3 7 0.33 * * 1.80
SnO2

(d) 2.055 6 0.34 1.15 2.587 1.63
Na2O 2.403 4 0.60 2.3 1.14 1.53
CaO 2.408 6 0.40 2.3 0.469 1.38
P2O5 1.55 4 0.39 1.7 0.021 1.22
ZnO 1.98 4 0.50 1.8 0.283 1.04
SiO2 1.58 4 0.40 1.4 0.033 0.94
MgO(a) 2.108 6 0.35 1.7 0.094 0.90
Al2O3

(a) 1.852 6 0.31 1.46 0.054 0.90
B2O3 1.366 3 or 4 0.46 or 0.34 1.3 0.002 0.78
Li2O 1.996 4 0.50 2.0 0.024 0.68
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7.1.1 The Polarizability Model in Oxides

The stress-optic and elasto-optic coefficients of all oxide glasses measured by

ellipsometry were determined away from the absorption edge, at λ0 + 250 nm. For

all glass samples, the empirical parameters

〈
d

Nc

〉
=
∑

i

xi

(
d

Nc

)

i

(7.5)

and

〈α〉 =
∑

i

xi(αn)i (7.6)

were determined from the individual compound values in Table 7.1 weighted by the

mol % xi of each component. For borates, a coordination number of Nc = 3.5 was

used to estimate the value of d/Nc for B2O3; this is closer to the bonding environment

of boron in glass [42].

Figure 7.1 shows the stress-optic coefficient plotted as a function of both 〈d/Nc〉
(left) and 〈α〉 (right). The value 〈d/Nc〉 does a good job of predicting zero and negative

stress-optic coefficients; however, it does not describe the stress-optic response of

glasses with positive additives. The correlation between stress-optic coefficient and

polarizability is much better for all compositions. There seems to be a strong

linear trend between C and 〈α〉. The fluctuations of positive phosphate and borate

compositions from this trend are likely due to differences between actual and nominal

compositions (〈α〉), and non-homogeneously stressed glasses (C). From these results,

the stress-optic coefficient can be estimated from C ≈ −5〈α〉 + 10; zero-stress optic

compositions are predicted when 〈α〉 ≈ 2 Å3.

Figure 7.2 shows literature values of the stress-optic coefficient as a function of

〈d/Nc〉 (left) and 〈α〉 (right). For the majority of glass samples, predictions of the

stress-optic coefficient are improved using 〈α〉 rather than 〈d/Nc〉. However, the

polarizability model does not provide a good correlation with C for all of the alkali

borates. These values are shown in Figure 7.2; their polarizabilities are all below 1.0

Å3. This could be due to a low estimate of the polarizability of pure B2O3; however,

this is unlikely due to the overlap of zero-stress optic borates, phosphates and silicates.

It is more likely that the polarizabilities of lithium, sodium and potassium oxide (see

Table 7.1) are over- or underestimated. Also, the antimony borates have zero-stress
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Figure 7.1: Stress-optic coefficient as a function of 〈d/Nc〉 (left) and polarizability 〈α〉
(right).

optic coefficient at much lower polarizability than all other glass systems. Again,

this could be due to a low estimate of the polarizability of Sb2O3. The values of the

polarizabilities could be confirmed through calculations of the refractive index of pure

glass additives, or by extrapolating the values of n and ρ from the measurements of

many binary glasses.

Figure 7.3 shows the elasto-optic coefficient p44 (determined from C, G and n)

plotted as a function of both 〈d/Nc〉 (left) and 〈α〉 (right). Again, the parameter

〈d/Nc〉 correlates well with zero and positive values of p44, but varies greatly for

negative values of p44. On the other hand, the polarizability parameter 〈α〉 shows a

strong correlation with the elasto-optic coefficient.

The reasoning behind the applicability of d/Nc to the stress-optic response of

a glass is very similar to that of the polarizability. However, the bond lengths

and coordinations are estimated from crystalline materials; for many compounds,

including B2O3, ZnO, and GeO2, this is not representative of the bonding environment

of the cation in a glass. The polarizability model likely succeeds where d/Nc fails

for a number of reasons. First, the total polarizability of the ions were calculated

directly from the binary glass systems. Second, birefringence in a uniaxially stressed

glass stems from changes in the ordinary and extraordinary refractive indices of
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Figure 7.2: Stress-optic coefficient of glasses from the literature as a function of 〈d/Nc〉
(left) and polarizability 〈α〉 (right). Label (1) is from [36], (2) from [1], (3) from [37],
(4) from [53], (5) from [54], (6) from [43], (7) from [44], (8) from [38], and (9) from
[41].

Figure 7.3: Elasto-optic coefficient p44 as a function of 〈d/Nc〉 (left) and polarizability
〈α〉 (right).
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the glass. The refractive index of a glass can be related to the bulk polarizability

(Section 3.1.6), and so it is reasonable that differences in αn could result in different

stress-optic responses. Indeed, many theories of photoelasticity were derived using

the Lorentz-Lorenz relationship (refer to Section 2.2).

7.1.2 The Polarizability Model in Sulfides

The polarizability model can also be applied to sulfide glasses. Table 7.2 shows the

empirical parameter d/Nc as well as the oxide, cation and normalized polarizabilities

for the sulfide compounds considered in this thesis. The two parameters are compared

in Figure 7.4, where the stress-optic coefficients of stoichiometric Ge-P-S and Ge-Sb-S

are plotted as a function of 〈d/Nc〉 (left) and 〈α〉 (right). The empirical model

of bonding shows the same trend between the two glass series (C decreasing as

〈d/Nc〉 increases), but has a different value of 〈d/Nc〉 for zero-stress optic glasses

in the two series. Also, without structural information, the model underestimates the

contribution of P2S5 as discussed in Section 4.3.1. The polarizability model, on the

other hand, shows overlapping values for the two glass series. In fact, the Ge-P-S

and Ge-Sb-S glasses with C ≈ −2.5 B also both have the same 〈α〉. The estimation

of 〈α〉 for the zero-stress optic coefficient (〈α〉 ≈ 3.4 Å3) is consistent between the

glass series; however, it is larger than the parameter predicting zero-stress optic oxide

glasses. In this case, the empirical model (with dZ/Nc) does a better job at explaining

the increased parameter.

Table 7.2: Empirical bond length/coordination and polarizability models for sulfides
Compound d (AA) Nc d/Nc (Å) αS (Å3) αc (Å3) αn (Å3)

GeS2 2.20 4 0.55 4.40 0.137 2.81
P2S5 2.10 3 or 4 0.70 or 0.53 5.85 0.021 4.18
Sb2S3 2.54 3 0.89 6.657 1.111 4.44
S * * * 0.63 0.000 0.63
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Figure 7.4: Stress optic coefficient of Ge-P-S and Ge-Sb-S glasses as a function of
〈d/Nc〉 (left) and polarizability 〈α〉 (right).

7.2 Wavelength Dependence of the Stress-Optic Coefficient

7.2.1 Wavelength-Dependent Polarizabilities

To this point, the polarizabilities of compounds have been calculated using the

long-wavelength refractive indices. However, the refractive index of a glass is

dependent on the wavelength of incident light. It is expected, then, that the

polarizability is also wavelength-dependent:

αλ =
3M

4πNρ

n2
λ − 1

n2
λ + 2

. (7.7)

It is of interest to compute the wavelength-dependent polarizabilities for glass systems

exhibiting positive and negative dispersion.

It is difficult to accurately determine the wavelength-dependent refractive index

for all glass formers and additives. The estimation of n depends on two factors: first,

that the refractive index is an additive property consistently from pure glass former

to pure glass modifier. Second, the experimental values of n for binary glass systems

are determined using a Cauchy fit of ellipsometric Ψ data. The collected Ψ values

can be influenced by the surface roughness of the sample, and the alignment of the

reflecting face with the light source and detector. This can result in an enhancement

or reduction of n as λ approaches the absorption edge.
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The glass series considered here are the positively dispersive barium borates and

negatively dispersive lead borates. These glasses were cut to have very parallel sides

and polished to 1 µm for Brillouin scattering measurements. Unlike the barium and

lead phosphates, the borates are not strongly hygroscopic. As such, their reflection

spectra are the most likely to be unaffected by alignment and surface roughness.

For the lead and barium borates, the polarizability is negatively correlated with

wavelength: in the near-IR range, 〈αλ〉 is fairly constant with wavelength, and as

λ decreases toward the absorption edge, 〈αλ〉 increases. Here, 〈αλ〉 =
∑

i xi(αnλ)i

as before, calculated for all wavelengths. The increase is more rapid in the lead

borates. The relationship between stress-optic coefficient and wavelength-dependent

polarizability for lead borates is shown in Figure 7.5. For all glass samples, C decreases

as 〈αλ〉 increases. This trend is consistent with the polarizability model described in

Section 7.1. The decrease in stress-optic coefficient is fairly continuous with 〈αλ〉
across many lead oxide contents, with a small amount of separation in C at the

endpoints of the series. This separation could be the result of over- or under-estimated

values of C due to an inhomogeneous application of stress to the glass. Or, more likely,

it could be indicative of other properties contributing to the stress-optic response of

a glass that are not fully described by the parameter αn.

Figure 7.6 shows the stress-optic coefficients of barium borate glasses as a function

of polarizability. For a given glass sample, the stress-optic coefficient increases as the

wavelength-dependent polarizability increases, which is contrary to the polarizability

model described in Section 7.1. This trend further suggests that the dispersion of

the stress-optic coefficient is not entirely described by the polarizability 〈αλ〉. Still,

between the glass samples, the average stress-optic coefficient does decrease as the

average sample polarizability increases, which is consisted with the polarizability

model.

It is clear from the results of the lead and barium borates that the stress-optic

coefficient depends on wavelength in a way that is not fully described by the

polarizability of a glass sample. To address the dependency of C on λ, we return

to the pseudo-Cauchy fit described in Section 5.3.4.
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Figure 7.5: Stress-optic coefficients of lead borates as a function of
wavelength-dependent polarizabilities 〈α〉.

Figure 7.6: Stress-optic coefficients of barium borates as a function of
wavelength-dependent polarizabilities 〈α〉.
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7.2.2 Polarizability and the Pseudo-Cauchy Model

The pseudo-Cauchy model applied to the stress-optic coefficient,

C(λ) = a+ b

(
λ0

λ

)
+ c

(
λ0

λ

)2

. (7.8)

allows the wavelength-dependent trends in C to be described by the fitted parameters

a, b and c. The value a gives the long-wavelength stress-optic coefficient of a sample,

while the sign and magnitude of c gives an indication of the type and amount of

dispersion present for a glass sample. Positive (negative) values of c are indicative

of positive (negative) dispersion, while larger magnitudes of c indicate stress-optic

coefficients that increase or decrease more rapidly with wavelength.

Figure 7.7 shows the fitted parameter a as a function of the summed

long-wavelength polarizability 〈α〉 for borate, phosphate, silicate, and tellurite glasses.

Compared to the empirical parameter 〈d/Nc〉, the polarizability shows a much better

correlation with this parameter (the relationship between a and 〈d/Nc〉 is shown in

Figure fig:a-dnc). Based on the discussion of 〈α〉 and C in Section 7.1.1, this is

expected.

Figure 7.8 shows the fitted parameter c as a function of the long-wavelength

polarizability 〈α〉 for borate, phosphate, silicate and tellurite glasses. The

polarizability is only slightly better than 〈d/Nc〉 at indicating the amount of dispersion

in glasses (the relationship between c and 〈d/Nc〉 is shown in Figure 5.26). While c

does tend to decrease as 〈α〉 increases, the polarizability does not correspond linearly

with the amount of dispersion present in a glass. However, the type of dispersion

can be modelled by 〈α〉: when 〈α〉 ≤ 1.6 Å3, glasses exhibit positive dispersion in

C, and for 〈α〉 ≥ 1.75 Å3, glasses typically have negative dispersion in C. From

these results, non-dispersive values of the stress-optic coefficient are predicted for

glass compositions with 〈α〉 ≈ 1.7 Å3.

At present, it is not clear whether the variations between the pseudo-Cauchy fitted

parameters and the polarizability of a glass is caused by experimental variations from

data collection and fitting, or whether αn alone is not enough to describe the related

parameters a, b and c. Still, the polarizability of a composition can be used to get a

good estimate of the long-wavelength value of C, and also to obtain a decent estimate

of the type and amount of dispersion that the glass will exhibit.
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Figure 7.7: Fitted parameter a as a function of polarizability 〈α〉.

Figure 7.8: Fitted parameter c as a function of polarizability 〈α〉.
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7.3 The Polarizability Model for Individual Elasto-Optic Tensor Elements

The polarizability seems to describe both the sign and magnitude of the stress-optic

coefficient, so it is of interest to compare the elasto-optic tensor elements pij to

〈α〉 as well. Figure 7.9 shows the shear elasto-optic coefficient p44 as a function

of polarizability for the lead and barium borates, phosphates and silicates, and

for previously measured literature values. The elasto-optic tensor element increases

nonlinearly as polarizability increases. This is consistent with the trends in the values

of p44 determined from the stress-optic coefficients as discussed in Section 7.1.1. The

lithium-containing silicates and pure B2O3 are slightly offset from the other values;

this could be indicative of low estimates of αn as previously discussed.

Figure 7.9: Elasto-optic coefficient p44 as a function of polarizability 〈α〉. (1) from
reference [66], (2) from [10], (3) from [13].

Figure 7.10 shows the tensor element p12 as a function of polarizability for the same

glasses. For each binary or ternary glass series, p12 does decrease as 〈α〉 increases.

However, the values not overlap between different glass formers and modifiers. The

empirical value 〈d/Nc〉 shows a better correlation with p12 for all glasses considered

(see Figure 6.7). This might suggest that while the shear photoelastic response
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(p44, C) is described by the electronic interactions of anions and cations, the linear

photoelastic response (p12) is described by the chemical bonding environment of the

cation.

Figure 7.10: Elasto-optic coefficient p12 as a function of polarizability 〈α〉. (1) from
reference [66], (2) from [10], (3) from [13].

The elasto-optic coefficient p11 is plotted against polarizability in Figure 7.10. Just

as there was no relationship between p11 and glass composition or 〈d/Nc〉, this tensor

element is not described by 〈α〉.
The shear elasto-optic response of a glass is described by the normalized sum of

both anion and cation polarizabilities. The value of p44 can also be related to the

other two tensor elements by 2p44 = p11 − p12. However, it is worth mentioning that

the experimental trends in p12 and p11 are not predicted by individual anion or cation

polarizabilities.

7.4 Predicting Other Material and Optical Properties

The polarizability and, to a certain extent, 〈d/Nc〉 are predictive of the photoelastic

response of a glass. As such, the refractive index of a material could be described
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Figure 7.11: Elasto-optic coefficient p11 as a function of polarizability 〈α〉. (1) from
reference [66], (2) from [10], (3) from [13].

by 〈α〉 or 〈d/Nc〉 as well. It can be seen in Figure 7.12 that the refractive index is

correlated with both empirical parameters. As either 〈d/Nc〉 or 〈α〉 increases, n also

increases. There is some separation between the values of n for different glass formers

and modifiers described by 〈d/Nc〉; this separation is less apparent between n and

〈α〉, though the phosphate glasses are offset from the rest of the glasses. This might

suggest that the experimentally extrapolated value of 〈α〉 for P2O5 is overestimated.

Or the phosphorus content in the glass could be higher or lower than the amount

estimated by the nominal composition.

The refractive index is typically correlated with the density of a glass. As such,

we expect a relationship between molar volume VM (which is dependent on density)

and the empirical models. Figure 7.13 shows the molar volume as a function of

both 〈d/Nc〉 and 〈α〉. For the borates, silicates and tellurites, molar volume is fairly

constant with glass composition. Phosphate glasses have larger molar volumes that

decrease as a function of 〈d/Nc〉 or 〈α〉. The large separation between phosphates and

other glass types is due to the much larger molar mass of P2O5 compared to B2O3,

SiO2 and TeO2.
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Figure 7.12: Refractive index as a function of 〈d/Nc〉 (left) and polarizability 〈α〉
(right).

Figure 7.13: Molar volume as a function of 〈d/Nc〉 (left) and polarizability 〈α〉 (right).
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Figure 7.14: Absorption edge as a function of 〈d/Nc〉 (left) and polarizability 〈α〉
(right).

The absorption edge of the borates, phosphates, silicates and tellurites also shows

some dependence on both 〈d/Nc〉 and 〈α〉; this relationship is shown in Figure 7.14.

There is less variation in λ0 with 〈α〉. The absorption edge tends to shift to higher

wavelengths as 〈α〉 increases for the borates, silicates and tellurites. The values are

more scattered for the phosphate glasses.

These results seem to suggest that important optical and material properties can

be predicted by the empirical and polarizability models. The relationship between

polarizability and n is somewhat expected from Weyl’s model. Glasses with higher

polarizabilities should have more attraction between cation units in the structure,

which would result in a more densely packed structure. The correlation with

absorption edge is more surprising. It is not clear at this point why the properties of

the phosphate glass series are separate from the values for the other glass formers as

a function of polarizability.

7.5 Summary

The polarizability model of photoelasticity appears to accurately describe the

stress-optic response of oxide and non-oxide glasses. The polarizability of a material

can be quantified by the sum of the normalized polarizabilities between the “anions”

(e.g. O, S) and ”cations” (e.g. Si, Ba, Pb) in the structure.
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The signs and magnitudes of the stress-optic coefficient C and elasto-optic

coefficient p44 are correlated with the polarizability parameter 〈α〉. The parameters of

the pseudo-Cauchy model describing the wavelength dependence of C also appear to

be related to the polarizability. Furthermore, 〈α〉 can be used to estimate important

material properties such as the refractive index and absorption edge wavelength.
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Conclusions

Understanding the origin of the photoelastic response in oxide and non-oxide glasses

is a research topic that has received considerable attention for many years. Perhaps

of equal interest industrially is the ability to design glasses with specific optical

properties. The results of this research have contributed significantly both to

the understanding of photoelasticity in glass and to the correlation of optical and

photoelastic properties with glass composition.

The empirical model of photoelasticity developed by Guignard and Zwanziger has

facilitated the prediction of new zero-stress optic glass compositions based on chemical

bond lengths and coordinations. However, it is not able to predict the magnitude of

the stress-optic response, likely due to the differences between the structure of the

crystalline compounds used to estimate d and Nc, and the structure of individual units

in a glass network. A model which considers the distortion of the electron clouds of

“anions” and “cations” is more successful at describing the stress-optic response in

a glass. A polarizability parameter 〈α〉 is defined in this work as the contribution

from the polarizabilities of individual anions and cations (or individual bonds). This

value quantifies the response of individual bonds in the glass network to stress, and

appears to correlate not only with the sign of the stress-optic coefficient of borates,

phosphates and silicates but also with the magnitude.

The values of αn for individual compounds were determined in this study by

assuming additive relationships for n and ρ in binary systems, and extrapolating the

refractive index and density for the pure glass former and additive. These values

of αn could be confirmed by extrapolating the values for many more binary borate,

phosphate and silicate glass systems. Calculations of glassy compounds could also

verify the experimentally determined polarizabilities.

We have determined that it is possible to relate the sign and perhaps also the

magnitude of the stress-optic coefficient of non-oxide glasses to the compositionally

168
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dependent parameters 〈d/Nc〉 or 〈α〉. Zero-stress optic non-oxide glass compositions

are predicted for larger values of 〈d/Nc〉 or 〈α〉 compared to oxide glasses. This has

been attributed to non-stoichiometric sulfur-sulfur bonding in the glass network. The

empirical model can accommodate for this by including the anion valence Za in the

description of metallicity.

The results of Table 4.1 can be used to predict new binary and ternary glass

systems containing zero-stress optic compositions. Values of 〈d/Nc〉 for glasses with

C = 0 B could be used to estimate the amount of anion-anion bonding present in

the network. The synthesis of selenide and telluride systems would confirm if 〈d/Nc〉
increases with decreasing electronegativity differences. It would also be beneficial to

experimentally determine the polarizability parameters αn for other sulfide, selenide

and telluride compounds. In this way, the relationship between the magnitudes of C

for stoichiometric non-oxide glass compositions and 〈α〉 could be explored.

Perhaps the most interesting project remaining for non-oxide glasses is to map the

dependence of the stress-optic coefficient of non-oxide glasses on amounts of excess

and deficit chalcogen. The parameters described in Section 4.3.3 could be tested

to determine whether there is in fact a correlation between stress-optic coefficient,

structure and bonding environments.

The stress-optic coefficients of positively and negatively modified oxide glasses

typically showed positive dispersion and negative dispersion, respectively. From

these results, glass families containing non-dispersive values of C were predicted and

synthesized. The type of dispersion was related to both 〈d/Nc〉 and 〈α〉. With this

knowledge, new non-dispersive glass compositions can be predicted. However, for

oxide glasses, their stress-optic coefficients are expected to always be positive.

The wavelength dependence of the stress-optic coefficient was successfully

modelled using a pseudo-Cauchy fit. The fitting coefficients a, b and c were found to

be interdependent Then any theory of photoelasticity developed to describe C could

be simplified to a function of λ0/λ and one compositionally-dependent variable. The

polarizability was partially correlated with a and c, but it is likely that other factors

are at work. Following the work of Cardona, calculations of the band structure of

glass systems could yield insight into the wavelength dependence of C.
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Individual elasto-optic tensor elements pij have been measured for lead and barium

borate, phosphate, and silicate glasses. Previous studies have only measured pure

B2O3, GeO2, SiO2 and mixed silicate systems, and no compositions containing

typically negative modifiers. The shear elasto-optic coefficient p44 behaved as

expected from predictions of the empirical model and measurements of the stress-optic

coefficient C. Interestingly, p12 was also correlated with 〈d/Nc〉. Comparing p44 with

〈α〉 improved the correlation. For individual systems, p12 decreased as 〈α〉 increased,

but there was a separation of values between different glass formers and additives.

The last, dependent element p11 varied randomly with composition, 〈d/Nc〉 and 〈α〉.
The polarizability describes the response of a material to stress in both the stress

direction and perpendicular to it, so it follows that p44 relates to 〈α〉. But p11 and p12

depend on the response in the extraordinary and ordinary directions, respectively, so

it is likely that they depend on different material properties. Indeed, many theories of

photoelasticity, such as those developed by Mueller or Carleton, had p44, p12 and p11

which all depended on different properties or on the same property but in different

ways. Future work should examine p12 and p11 for more diverse binary and ternary

glass families to determine if and how these elements are individually related to

composition.

The normalized polarizability of a glass is a powerful new predictive parameter

that can be used to estimate both the value of C and its wavelength dependence.

Furthermore, the polarizability is a building block of many semi-successful theories of

photoelasticity. From this, we conclude that 〈α〉 does in fact describe a fundamental

component of the stress-induced birefringence. It remains to be seen whether

a comprehensive photoelastic theory can be developed which explains both the

compositional and wavelength dependence of the elasto-optic tensor elements pij and

stress-optic coefficient C. But it is certain that the results of this work have improved

the understanding of many aspects of the stress-optic response of glass.
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Appendix A

Refractive Indices as a Function of Wavelength

The results for the Cauchy-fit refractive indices as a function of wavelength for all

oxide glass systems considered in this thesis are shown in Figures A.1-A.20.

Figure A.1: Wavelength dependence of
the refractive index for glasses with
composition xBaO-(1-x)B2O3

Figure A.2: Wavelength dependence of
the refractive index for glasses with
composition xBaO-(1-x)P2O5

Figure A.3: Wavelength dependence of
the refractive index for glasses with
composition xZnO-(1-x)P2O5

Figure A.4: Wavelength dependence of
the refractive index for glasses with
composition xCaO-(1-x)P2O5
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Figure A.5: Wavelength dependence of
the refractive index for glasses with
composition xBi2O3-(1-x)P2O5

Figure A.6: Wavelength dependence of
the refractive index for glasses with
composition xNa2O-(1-x)B2O3

Figure A.7: Wavelength dependence of
the refractive index for glasses with
composition xLi2O-(1-x)B2O3

Figure A.8: Wavelength dependence of
the refractive index for glasses with
composition xPbO-(1-x)B2O3
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Figure A.9: Wavelength dependence of
the refractive index for glasses with
composition xPbO-(1-x)P2O5

Figure A.10: Wavelength dependence
of the refractive index for glasses with
composition xPbO-(1-x)SiO2

Figure A.11: Wavelength dependence
of the refractive index for glasses with
composition xSnO-(1-x)P2O5

Figure A.12: Wavelength dependence
of the refractive index for glasses with
composition xSnO-(1-x)SiO2
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Figure A.13: Wavelength dependence
of the refractive index for glasses with
composition xZnO-(1-x)TeO2

Figure A.14: Wavelength dependence
of the refractive index for glasses with
composition xPbO-(0.6-x)BaO-0.4B2O3

Figure A.15: Wavelength dependence
of the refractive index for glasses with
composition xPbO-(0.5-x)BaO-0.5B2O3

Figure A.16: Wavelength dependence
of the refractive index for glasses with
composition xPbO-(0.4-x)BaO-0.6B2O3
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Figure A.17: Wavelength dependence
of the refractive index for glasses with
composition xPbO-(0.5-x)BaO-0.5P2O5

Figure A.18: Wavelength dependence
of the refractive index for glasses with
composition xPbO-(0.5-x)BaO-0.5SiO2

Figure A.19: Wavelength dependence
of the refractive index for glasses with
composition xBaO-(0.5-x)ZnO-0.5P2O5

Figure A.20: Wavelength dependence
of the refractive index for glasses with
composition xPbO-(0.5-x)ZnO-0.5P2O5



Appendix B

Parameters of the Pseudo-Cauchy Fit

The fitting parameters a, b, and c of the pseudo-Cauchy fit stress-optic coefficient

C(λ) are included in Table B.1.

Table B.1: Parameters a, b, and c of the pseudo-Cauchy fit stress-optic coefficient for
various glass types, as well as the quality of fit

∑
(Cλ−C(λ))2, where the sum is over

all wavelengths.

Family x a b c
∑

(Cλ − C(λ))2

xBaO-(1-x)B2O3 0.20 3.64 0.36 0.67 0.07
0.25 3.26 0.42 0.40 0.05
0.30 2.15 0.20 0.41 0.03
0.35 1.67 0.26 0.25 0.03

xBaO-(1-x)P2O5 0.35 1.46 0.09 0.74 0.26
0.40 1.47 -0.24 0.87 0.05
0.45 1.15 0.01 0.39 0.01
0.50 0.09 -0.06 0.45 0.01
0.55 0.49 -0.03 0.34 0.01

xBaO-(0.5-x)ZnO-0.5P2O5 0.00 8.43 -1.47 4.69 5.20
0.10 6.10 -0.09 3.42 2.00
0.20 3.26 -0.42 2.09 0.10
0.30 2.91 -0.73 2.22 0.23
0.40 1.78 -0.31 1.22 0.03
0.50 0.86 -0.06 0.45 0.01

xBi2O3-(1-x)P2O5 0.20 3.62 0.16 0.82 0.11
0.30 3.72 0.82 0.11 0.26
0.40 3.08 0.46 0.25 0.06

xCaO-(1-x)P2O5 0.30 3.08 0.07 0.69 0.05
0.35 2.83 0.11 0.56 0.03
0.40 2.71 0.25 0.43 0.14
0.50 2.33 0.19 0.57 0.05

Continued on Next Page. . .
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Table B.1 – Continued
Family x a b c

∑
(Cλ − C(λ))2

xLi2O-(1-x)B2O3 0.10 6.44 1.34 1.08 0.88
0.15 5.83 0.95 0.71 0.59
0.20 5.02 0.07 1.59 3.10
0.25 3.51 0.07 0.95 0.20
0.30 3.75 0.21 1.00 0.21

xNa2O-(1-x)B2O3 0.20 4.03 -0.06 1.42 0.24
0.25 4.58 0.22 1.33 0.34
0.30 3.97 0.25 1.16 0.21
0.35 3.92 0.79 0.63 3.20

xPbO-(1-x)B2O3 0.35 1.85 1.30 -1.14 0.03
0.40 0.89 1.40 -1.47 0.02
0.45 0.05 1.70 -1.92 0.03
0.50 -0.17 1.82 -2.19 0.05
0.55 -0.10 2.78 -3.48 0.09
0.60 -1.57 3.04 -3.85 0.10
0.65 -2.43 3.88 -5.04 0.13

xPbO-(0.6-x)BaO-0.4B2O3 0.36 0.09 3.27 -3.59 0.16
0.42 -0.31 3.43 -3.90 0.20
0.60 -1.57 3.04 -3.85 0.10

xPbO-(0.5-x)BaO-0.5B2O3 0.20 1.59 1.16 -0.85 0.03
0.25 1.31 1.35 -1.16 0.05
0.30 1.25 1.48 -1.39 0.03
0.40 0.54 2.34 -2.60 0.11
0.50 -0.17 1.82 -2.19 0.05

xPbO-(0.5-x)BaO-0.5P2O5 0.00 0.86 -0.06 0.45 0.01
0.10 1.13 0.17 0.26 0.02
0.20 0.79 0.27 -0.05 0.02
0.30 0.53 0.67 -0.59 0.08
0.40 0.52 0.86 -0.94 0.12
0.50 -0.75 1.78 -2.35 0.38

xPbO-(0.5-x)BaO-0.5SiO2 0.20 0.58 1.20 -1.26 0.06
0.30 0.04 1.35 -1.63 0.05
0.40 -0.64 2.43 -3.06 0.15
0.50 -0.26 1.44 -1.98 0.09

Continued on Next Page. . .
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Table B.1 – Continued
Family x a b c

∑
(Cλ − C(λ))2

xPbO-(0.4-x)BaO-0.6B2O3 0.16 2.09 0.80 -0.40 0.02
0.24 2.57 1.32 -0.93 0.04
0.32 1.69 1.20 -1.02 0.05
0.40 0.89 1.40 -1.47 0.02

xPbO-(1-x)P2O5 0.40 0.24 1.16 -1.32 0.29
0.45 -0.24 1.60 -1.99 0.30
0.50 -0.75 1.78 -2.35 0.38
0.55 -1.40 1.87 -2.60 0.42
0.60 -2.77 3.47 -4.83 1.30

xPbO-(1-x)SiO2 0.50 -0.26 1.44 -1.98 0.09
0.55 -1.62 2.31 -3.15 0.11
0.60 -3.39 3.91 -5.34 0.22

xPbO-(0.5-x)ZnO-0.5P2O5 0.00 8.43 -1.47 4.69 5.20
0.10 5.11 0.22 1.20 0.09
0.20 3.92 0.51 0.55 0.08
0.40 1.46 1.44 -1.36 0.36
0.50 -0.75 1.78 -2.35 0.38

xSnO-(1-x)P2O5 0.40 -0.20 2.37 -3.20 0.35
0.45 -0.65 4.00 -5.41 0.54
0.55 -1.47 5.76 -7.64 1.30
0.60 -1.55 5.05 -6.85 1.10
0.65 -2.39 6.32 -8.56 1.10
0.68 -2.99 7.12 -9.63 2.20

xSnO-(1-x)SiO2 0.40 0.94 1.33 -1.62 0.13
0.50 0.55 1.38 -1.75 0.04
0.55 -1.58 2.72 -3.54 0.05
0.60 -1.51 2.24 -3.17 0.30

xZnO-(1-x)P2O5 0.40 7.47 -1.45 5.17 0.86
0.50 8.43 -1.47 4.69 5.20
0.60 6.70 -2.15 4.89 1.30

xZnO-(1-x)TeO2 0.15 0.65 0.88 -0.96 0.02
0.20 0.40 0.96 -1.11 0.16
0.35 -0.03 2.10 -2.72 0.15
0.40 -0.21 3.18 -4.18 0.34



Appendix C

Copyright Permission

The copyright permission for the manuscript reproduced in Chapter 4 is included in

this appendix.
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