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Abstract

An unperturbed piece of glass is optically isotropic. Birefringence can be induced
by breaking this symmetry, for example by applying a uniaxial stress to the glass.
An empirical model exists which predicts when oxide glasses will exhibit positive,
negative or zero birefringence under stress. This model has been used to determined
new zero-stress optic oxide glass compositions; however, it has not been tested on
non-oxide systems, nor does it take into account the wavelength of the incident light.

The stress-optic response in chalcogenide glasses was investigated using
stoichiometric GeSo-PoSs and GeSs-SbyS3, and non-stoichiometric Ge-P-S. The trends
of the stress-optic response in stoichiometric non-oxide glasses correlated well with
predictions based on the empirical model for oxide glasses. Small differences between
the predictive parameter of the model, (d/N.), were explained by expanding the
treatment of metallicity.

The wavelength dependence of the stress-optic coefficient for a large variety of
oxide glass formers and modifiers was measured. Glasses composed of positive
modifiers (e.g. BaO, CaO, NayO) exhibited positive dispersion of the stress-optic
coefficient, while those with negative modifiers (e.g. PbO, SnO) showed negative
dispersion. Mixing positive and negative modifiers in a glass resulted in compositions
exhibiting wavelength independent stress-optic coefficients.

The photoelastic response of a material can also be described by its elasto-optic
tensor (p;;). Isotropic materials have three elasto-optic tensor elements, two of
which are independent. These two independent elements were measured for lead
and barium borate, phosphate and silicate glasses using Brillouin spectroscopy. Both
elements were found to correlate with the empirical parameter (d/N.), while the third
dependent element showed no relationship to the empirical model.

Finally, an alternative model of photoelasticity is discussed. The normalized
polarizability of a material is found to correlate with both the sign and magnitude of

the stress-optic coefficient.

x1
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Chapter 1

Introduction

Glass is everywhere. Beyond its common everyday applications, glass also has a wide
variety of technological uses. Oxide glasses are often used for optical lenses, projection
systems and sealing of electrical devices. Chalcogenide glasses are of interest for
optical amplifiers and laser sources. Examining the structure and properties of glasses

can help to identify practical technological applications.

The empirical model for photoelasticity proposed by Guignard et al. [1] has been
very successful at predicting the sign of the stress-optic coefficient of oxide glasses,
as well as new zero-stress optic compositions. However, its predictions are limited
to oxide glass compounds, and it does not address the magnitude of the stress-optic
response or the wavelength of incident light. The subject of this report is threefold.
First, the empirical model is tested using a non-oxide glass systems. Second, the
effect of different oxide glass modifiers is related to the dispersion of the stress-optic
coefficient in oxide glasses. And third, the complete elasto-optic response of oxide
glasses is determined using Brillouin spectroscopy. The main goal of this research
is to develop a theory that will predict IR glasses with zero birefringence as well as
broadband zero stress-optic oxide glasses. Alternative models of photoelasticity are
compared to the empirical model. In this way, a theory that considers not just sign

but also magnitude of the stress-optic response in glass is developed.

This thesis is organized into seven parts. Chapter 2 defines the stress-optic
response of a glass and describes the widely accepted theories of photoelasticity for
oxide glasses. The limited studies on the stress-optic response of chalcogenides are
summarized. Theories relating the wavelength of incident light to the stress-optic and
elasto-optic coefficients are described. And photoelastic theories that account for all

elasto-optic tensor elements are presented.

The theory and measurement techniques for the glass properties (elastic modulus,

density, stress-optic and elasto-optic coefficients, and refractive index) are given in



2

Chapter 3. The principles of ellipsometry and Brillouin scattering and are presented,
and the spectroscopic ellipsometer and Fabry-Perot interferometer used to collect
data are described.

The results of the investigation on the stress-optic response of sulfide
glasses, including discussions of the empirical model and non-stoichiometric glass
compositions, are presented in Chapter 4.

The results of the wavelength-dependent stress-optic response of oxide glasses is
presented in Chapter 5. A pseudo-Cauchy model is developed to relate the stress-optic
coefficient to the incident wavelength.

The individual elasto-optic tensor elements are discussed in Chapter 6. Two of
the three tensor elements can be related to the empirical model of photoelasticity.
The third elasto-optic coefficient appears to be unrelated to glass composition.

An alternative polarizability model is discussed in Chapter 7. The polarizabilities
glass compositions are linearly related to the stress-optic coefficients. An empirical
model is suggested which allows predictions of the magnitude of C' based on glass
composition.

Finally, in Chapter 8, the major results of the thesis are summarized and important

future work is presented.



Chapter 2

Background

Glass is an amorphous solid. It exhibits long-range atomic disorder similar to that
of a liquid, but the relative positions of those atoms are invariant. Most of the
properties of glass, as well as its outward appearance, are solid-like. One of the most
referenced theories of glass structure was developed by Zachariasen [2], who argued
that since the mechanical properties of glasses are similar to those of crystals, the
forces between atoms must be similar as well. The structural building blocks of a
glass network — cation polyhedra coordinated by oxygen or another chalcogen — are
then hypothesized to be the same or similar to those present in crystals. However, in
crystals, these polyhedra have repeating long-range order with different symmetries
present depending on the composition. Glasses do not have the same periodicity; the

cation polyhedra are randomly oriented in the glass network (pp. 13-59 of [3]).

A wide variety of materials can be made in the glassy state. Soda-lime-silicate
glasses made from soda ash (NayCOj), limestone (CaCO3) and silica (SiOs) are the
most commonly used and least expensive commercial glasses. Many oxide glass
systems include other silicates, borates and phosphates. Modifiers such as barium
oxide, zinc oxide, and magnesium oxide can be added to form new glass families.
Moreover, glass can be made from non-oxide materials like fluorides, chlorides and

chalcogenides (pp. 1-11 of [3]).

Many properties of glasses show additivity relationships. That is to say the
property P can be determined from P = ), p;x;, where p; is the value of that property
for component 7, and x; is the molar weight of that component in the glass structure.
Indeed, the optical properties of glasses are largely dependent on composition. The
refractive index (and also density) tends to vary linearly with the components of the
glass. The absorption edge wavelength shifts to higher values as heavier additives
are incorporated into the glass network. Generally speaking, oxide glasses tend to

have smaller indices of refraction and are transparent into the visible range of light.



4

Chalcogenides, on the other hand, begin to transmit in the near-IR range and have
large refractive indices (typically > 2) and low phonon frequencies (typically < 450
cm™1).

Still, while empirical trends are apparent for some properties, there is much
left to be understood about the optical response of various glass compositions [4].
In particular, information on the Brillouin scattering of glasses, the wavelength
dispersion of the stress-optic response, and the photoelastic properties of non-oxide
glasses is sparse. To date, Brillouin measurements of the elasto-optic tensor have
focused primarily on silicate glasses; as such, the compositional dependence of p;;
is uncertain. We will address this by measuring the complete elasto-optic tensor of
silicates, borates, and phosphates. The dispersion of the stress-optic coefficient has
also only been measured for a small number of silicate-based glasses, often with many
components; the direct effect of modifying the glass network is not well understood.
To explore this more closely, the wavelength dependence of the stress-optic coefficient
for simple binary and ternary glass systems will be determined. And the stress-optic
coefficient has only been measured for a small number of chalcogenide glass systems.
We will improve this by comparing stress-induced birefringence to glass structure for

both stoichiometric and non-stoichiometric sulfide systems.

2.1 Birefringence in Glasses

An unperturbed piece of glass is optically isotropic; its index of refraction is the same
in all directions. When the glass is stressed, however, this symmetry is broken. The
indices of refraction along the stress direction (extraordinary axis) and perpendicular
to this direction (ordinary plane) are altered from their unstressed values, often
by different amounts. This stress-induced change, shown in Figure 2.1, induces
birefringence in the glass,

b=mne—n,. (2.1)

Here, n, is the refractive index measured along the extraordinary axis and n, is the
refractive index in the ordinary plane. For stress loads within the elastic region, the

birefringence of a glass is proportional to the applied stress o:

b=_Co. (2.2)



5

The constant of proportionality, called the stress-optic coefficient C, is used to

characterize the glass. Its unit is Brewsters, where B = TPa~!.

ol n.
A
/|

Figure 2.1: Uniaxial stress o applied to a glass causes a change in the indices of
refraction parallel and perpendicular to the stress. This induces birefringence in the
glass, b = n, — n,.

Piezo-optic tensor elements m;j,s and elasto-optic tensor elements p;;i can also
be used to describe the stress-induced birefringence in glass. They are defined as
the tensors relating the applied stress or strain with the change in inverse dielectric
constant:

AB;j = TijrsOrs = DijkiSki- (2.3)
Here, B;; = (1/n?);; = (1/€);; is the inverse dielectric tensor, o, is the stress tensor,
and sy is the strain tensor [3, 5|. The tensor elements are related by pijk = 7ijrsCrski,
where C,4y 1s the elastic tensor. An abbreviated notation is often used for the

subscripts:
11—-1,22—2,33—3,23 —-4,13 = 5,12 — 6.

Due to the isotropy of glass, there are three piezo-optic and elasto-optic tensor
elements, but only two are independent. The relationship between the three p;;s
or ;S 1s
2psa = p11 — P12
’ (2.4)

24y = M1 — T2
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Using the approximation n. ~ n, =~ n, i.e. the change in refractive index is very

small, Equation 2.3 is solved for a uniaxial stress to show that

1 1 n*—n2 (m—n)n+n) (n—n)(2n)

AB, = — — — = = = = 3303 = M0
(2.5)
or
n3
(n—mne) = 5 03 (2.6)

Likewise, we can show that

I 1 n*—n2 (n—mny)(n+n,) (n—n,)(2n)

AB, = — — — = = = = 303 = W30
(2.7)
or
n3
(n—mn,) = 5 T1203 (2.8)

Now the birefringence - and thus, the stress-optic coefficient - can be related to the
piezo-optical coefficients:

nS

b:ne—noz —7(71'11 —7T12) 03 200'3. (29)

These results are used experimentally to characterize the photoelasticity of a glass
sample. The stress-optic coefficient can be related to the shear piezo-optic tensor
element by

C=-n’my (2.10)

and to the shear elasto-optic tensor element through

Tl3

C: —ﬁpM, (211)

where G = Cy4 is the shear elastic modulus.

Glasses can have positive, negative or zero stress-optic coefficient C' depending on
their composition. Most common glasses, including silicate, borate, and phosphate
families, exhibit positive birefringence. Heavy additives such as lead, bismuth,
tin and antimony oxide lower the stress-optic coefficient and can induce negative
birefringence with high enough content [1], pp. 478-482 of [3]. One of the first studies
on photoelasticity and its dispersion was done by Pockels in the early 1900s [6]. Since
that time, many attempts have been made to relate the stress-optic response of a

glass to its structure.



2.2 Theories of Photoelasticity: Elasto-Optic Coefficients

It has been a long-standing goal to relate the elasto-optic tensor elements of
crystalline and amorphous materials to the properties of that material. Many
theories and models have been developed for specific crystalline structures or for
simplified amorphous networks, often relating photoelasticity to the polarizability
density tensor, the dielectric tensor, and the chemical bonding in the network. Some
authors consider both the nearest neighbour effects (often associated with changes
in bond or ion polarizabilities), as well as larger effects from induced-dipole fields.
Multi-component systems often have complex structures and polarizabilities, which
require more detailed theories; many models include a fitting parameter that is
determined experimentally to allow for compositional variations. However, there
currently exists no widely accepted model which allows for predictive determination
of the elasto-optic tensor elements for all glass families.

In the following sections, these previously developed theories and models of
elasto-optical properties of materials will be presented and discussed. Particular
emphasis will be placed on their successes and failures in predicting p;; and their

applicability or extension to glassy networks.

2.2.1 Clausius-Mossotti Model

Perhaps the simplest model for the elasto-optic response of a material is derived
from the Clausius-Mossotti relation. This equation relates the dielectric constants
(or refractive index) of a material to its polarizability. The relation holds well for
isotropic, homogeneous materials such as gases, and can sometimes be applied to
other less perfect liquids and solids; see pp. 458-460 of [3], [7].

Typically, the total polarization P of a material is related to electric field E as

P = (e — 1)eE = xE, (2.12)

where € is the dielectric constant of the material, ¢, is the permittivity of vacuum,
and y represents the total polarizability. Assuming that the total polarization results

from a sum of Ny, dipoles per unit volume, then

P = N.oF, (2.13)
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where each dipole has mean polarizability «, and E’ is the local electric field on the
average dipole. For dense dielectrics (including glass), the local field is the sum of the
macroscopic field and a Lorentz field contribution dependent on polarization:
E' =E+ LP. (2.14)
3€0
Then, combining Equations 2.12, 2.13 and 2.14 along with 4meg = 1 gives the
Clausius-Mossotti equation:
e—1 4nNpa 4nNa  4nNpa

= 2.15
€+2 3 3V 3M ( )

where N is Avogadro’s number, V,, is the molar mass, M is the weight and p is
the density of the material. Note that substituting e = n? gives the Lorentz-Lorenz

equation:

47N n®—1
—v, LR, 2.16
3 n2+2 ( )

where R, is called the molar refractivity.

By observing the change in Equation 2.15 with respect to density, and assuming
for the perfect, isotropic, homogeneous material that o has no density dependence
(or in other words, da/dp = 0), the dielectric response of a glass can be related to
the elasto-optic tensor elements by

de
33—
4

On its own, this model does not fit the experimental results of diverse glass

= €*(p11 + 2p12) = (e — 1) (e + 2). (2.17)

systems. Other models often consider this as one of the terms contributing to the

photoelastic response [8-11].

2.2.2 Mueller’s Model

Mueller’s theory of photoelasticity for amorphous solids incorporates two additional
effects to the Lorentz-Lorenz model: changes in the Lorentz-Lorenz forces in the solid
(the lattice effect), as well as changes in the mean polarizabilities (the atomic effect)
due to strain deformations in the material [8, 9]. The local electric field on an average
dipole in a material is given by Equation 2.14; the Lorentz-Lorenz equation is given

for multi-atom systems by

n?—1 47 N oy
= 2.1
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where the sum is over atoms of the type i. However, this equation is valid for
homogeneous, isotropic materials. When a small strain z is applied to the material, it
will deform the network of atoms. This deformation will change the Lorentz-Lorenz
force in a way which depends on the local electric field. If a material is deformed
in the z-direction is such that the strain ellipsoid has the axial ratio 1:1:14z, the

components of the local electric field become

e \3 15
P, /1 2
E=E+2(-4+2 2.19
Yy y+ €o (3+15Z)7 ( )
P/1 4
E =E+—=(-—-—z
e \3 15

The indices of refraction are found from substituting Equations 2.12 and 2.13 into

Equation 2.19:

47 Npa; [ 1 2 2]
ni—l:zw 1+(_+_Z>nx ,

Mi 3 15 €

A7 Npa; | 1 2 \n2-1
2_1= 7' -4+ = Y 2.20
"y 2. 77 R RS Ao (220

4 Npa; | 1 4 \n2—-1
2 v z
1= et B
e 2 M, | (3 152) €
Differentiating these terms about z = 0, and considering « to be constant with respect

to z, the elasto-optic tensor elements become

Le—1)(e+2) 2 (e—1)?

Pi2=5—— %5 T 15 3
3 € 15 ¢ (2.21)
Le—1)(e+2) 4 (e—1)?

=g
3 € 15 ¢

According to Mueller, the first term in Equation 2.21 is due to the change in
density with strain; its large magnitude does explain why p;; and p;» always have
positive value. The second term in the equation gives birefringence due to anisotropy
of the Lorentz-Lorenz forces. The shear elasto-optic coefficient is then 2pyy = p11 —
p12 = (n? — 1)?/15n*. While of the correct order of magnitude, this prediction does
not describe the positive and negative stress-optic response of glasses.

Thus Mueller considered a second effect — the change in polarizability of the

atoms — to account for the positive and negative birefringence in glasses. Since the
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photoelastic effect tends to behave linearly, he considered linear response in o with

strain:
a, = a(l + \2),
(2.22)
gy = a1+ Ag2).
Then the elasto-optic tensor elements become
Cl(e—=1)(e+2) 2 (e—1)* Ly(e—1)(e+2)
P2=3""a 5 & 3 e
Le—1)(e+2) 4 (e—1)2 Li(e—1)(e+2)
_ = = St A S s 2.23
=3 e 3 2 (2.23)
(LQ—Ll) (6—1)(6+2) 6 (€—1)2
2 = _— p— —
Paa = P11 — P12 3 2 + 5 e

where L, and L, are the optical deformabilities of the atoms’ polarizabilities,
defined by Lis = > (M2Na/M);/> (Na/M);. Depending on the values of L;
and Lo, materials can have positive, negative or zero birefringence. Typically
the deformabilities are fitted to experimental results, with 0.6 < L; < 1.0 and
0.1 < Ly < 0.3 depending on glass composition [10].

The elasto-optic tensor element pyy given in Equation 2.23 is related to the

stress-optic coefficient of a glass. According to Mueller’s theory, the lattice term

(Q (e—1)2

z-—=—) will be larger in heavier glasses, since their refractive indices are larger.

This theory is often used to relate measured values of C' to the structure, arrangement
of molecules, and deformations in glass due to stress. However, due to the inclusion

of the experimentally determined L; and L;, the predictive power is limited.

2.2.3 Carleton’s Model

Carleton’s expressions derived for the elasto-optical coefficients [12] are quite similar

to Mueller’s:

1(e—1)(e+2) 4 (6—1)2 14 (6—1)2
- = -2 r
b =3 e T e e o
Le—1)(e+2) 2 (e—1)2 8 (e—1)*
i N - T 2.24
b2 =3 e 5 e 15 e o (224)
6 (e—1)* 6 (e—1)
2p4y = — — r
PU=1r" a2 T e o

where the correlation term I' is

= 3a/ gi2lr) ;. (2.25)
0
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and gio(r) is a two-particle correlation function. Carleton developed the strain
dependence of the dielectric constant based on the Fixman formulation for e. He
defines the correlation term as I' = (a/ag)Tg, where oy = 7§ and rg is the classical
molecular radius. The term I'g has values ranging from 0.375 for a highly correlated
system to 0.125 for an uncorrelated model.

These equations are sometimes presented as

1(6—1)2< 3M 4 14F>,

=372 47rNozp+E_E
1(e—1)2 3M 2 8

p12:—( 5 ) -——=T, (2.26)
3 € ArNap 15 15
2(e—1)2

2044 = — 1-T

where (¢ +2)/(e — 1) = 3M/(4nNpa). In this way, it is argued that p;y has greater

direct density dependence than pyy coming from the Lorentz-Lorenz term [10, 13].

2.2.4 Bond-Orbital Model

Bond-orbital models for photoelasticity were developed by Harrison, Biegelsen and
Wemple and applied to crystalline solids [14-17]. These model are used to determine
the dependence of the dipole moments and dielectric constant on other physical
properties, after which the hydrostatic elasto-optic coefficient is found from
(e—1)dIn(e —1)

3e? dinr

1
pn == (p11 +2p12) = — (2.27)

3
where r is the interatomic distance. Some consideration was given by Wemple to
amorphous systems; however, the most thorough application of the model to the
photoelastic effect was given by Lines for ionic, covalent and amorphous limits [18].
Lines hypothesized that the optical properties of non-metals depend predominantly on
nearest-neighbour environments and bonding characteristics in the material; as such,
a bond-orbital theory should do a better job at describing the dielectric response than
those focusing on energy band gaps or oscillator strengths. This model also allows
both bond-length dependent and independent parameters to be distinguished.

For the derivation, we consider a material with composition C,,A,, where C
denotes the cation and A the anion species. We first assume that there is only one

type of cation-anion bond in the system, made up of a linear combination of atomic
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orbitals |hc) and |ha), each unique and specific to the cation or anion. Bonding
and antibonding combinations are formed from linear combinations of these atomic

orbitals; the normalized bonding orbitals are
1b) = uclhe) + ualha). (2.28)

The equilibrium bond configuration is found by minimizing the bond energy E with
respect to the bonding coefficients, where the energy is defined by

(b|H|D)  uiea +ulec — 2upucM

E— —
(b|b) u} 4 v + 2uaucS

: (2.29)

and eca = (hca|H|he a) are the intra-atomic matrix elements of the one-electron
Hamiltonian H. The interatomic matrix element (ha|H|h¢) is given by —M, while
S is the overlap integral (hc|ha). Partially minimizing the energy with respect to u 4

and uc leads to the conditions

E—e¢ ES+ M u
4 ) =0, (2.30)
ES+M FE-— €C Uc
which is nontrivial when the determinant of the matrix is set to zero, or in other

words (ES + M)? = (E — ea)(E — €¢). If absolute energies are measured relative to

the reference point €4 + € = 0, then the minimum energy occurs at

. SM . M2 . EA€EC 1/2
192 (1-92)2 1-952

E (2.31)

Then, substituting this energy back into the energy matrix, we find the normalization

coefficients

1 (1 —Sac  (1-— o%)l/Q)]lﬂ

L (1=Sac  (1-at)” 12
Ug = | =
AT 2\ 1=82 T (1852 ’
where a¢ is a measure of the covalency,

M M2 €EA€EC —1/2
ac_l—S?((l—S2)2_1—S2) : (2.33)

(2.32)

The pure covalent limit is given by uc — ua, 7 — 0 and ac — 1. The pure ionic

limit has ec — €4 — 00, a, — 0 and uc/ua < 0; however, this is impractical for all
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known chemical bonds. The limit for real ionic systems tends to uc =0, uy = 1 and
Qo = S.

The bulk dielectric constant in a material is

Xb (2.34)

where z;, is the mean number of bonds per molecular unit in the structure. The results
of the bond-orbital model are used to determine the individual bond polarizability

Xb-

In the presence of an applied electric field, the dipole moment per one-electron e
bond is
(blex|b) = py = py + Xo E, (2.35)

where z is the distance along the bond measured from the point where (ho|z|ha) =
0. Assuming that x is close to the intersection point of the ionic radii R4 and R¢,

the bond dipole moment can be written as
(blex|b) = uZ (he|ex|he) + v (halex|ha) = —eyoRou + eyaRau?, (2.36)

where the internuclear bond length is give by Rc + R4 = d, and v4 and ~¢ are in
general less than 1 (they are 1 exactly for unhybridized atomic orbitals centered at
the appropriate atomic nuclei). With the previous definitions for uc and uy4, the bond

dipole moment becomes

e | /1—a2\"? Ra+vcR 1 - Sa
(blex|b) = = [( C) (%“ AT e C>d+ C(yaRa —vcRe)| (2.37)

2 1—52 R4+ Re 1—.52

This term must be added to the original one-electron Hamiltonian field. Using the

fact that (b|b) ~ 1, the field can be comprehensively written as

Ez—(l_a%)w(—mec)— M (=S + ac)

1— 52 1—52
e (1—a2\"? [yaRa+cRe eyaRa —cRc
e B - 1 — Sac)E:.
2(1—52> < Ra+ Re )dl 2 1oge TSk
(2.38)

At this point, Lines expands (1 — a2)'/? as a Taylor series in a local field F;, and

equates this to the individual bond polarizabilities:

2
d— EAECS(’YARA — ’}@Rc) y (239)

= o f [VARA +vcRe
y =
S - eae) | Rat o
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where f is the oscillator strength.
The value Lines was primarily interested in measuring is the dimensionless

quantity A, where

(2.40)

and as in previous sections, x = (e — 1)¢ is the polarizability of the material. The
hydrostatic photoelastic coefficient can be written in terms of the volume V' or density

p dependence of the refractive index n or dielectric constant € as

on~?2 on~2 p [ Oe
) ()5 e

Then the parameter A can be related to the photoelasticity of the material by

62

e—1

1-A=

P (2.42)

We also note that within the context of the bond-orbital theory, A is directly

representative of the density dependence of the individual bond polarizability xs,

Oln x,
= — : 2.43
Jdlnp (243)
For three-dimensional structures, we can assume p < d—3 to get
d Oxp
A= ——. 2.44
3Xb od ( )

The term for the individual bond polarizability can be used to predict the value A;
however, some d-dependence in the parameters S, M, f, yac, and R4 ¢ has to be
assumed. According to Lines, for small variations of d around equilibrium, these

dependencies are

o M?
d™" T—g
e’f YaRa+vcRe\?
qm 2.45
O<2<1—82)1/2< RA+RC ) ’ ( )
& —eaccS yaRa —vcRo
x

M yaRa+7cRc
and then the value of interest A can be written as
2 pu

2 m
A=Z(1- 2, M 2 .
3( n)+nac—|—3+3(1+u)

(2.46)
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To determine some limitations on this equation, Lines turned to experimental
results from alkali halides. Here, in the quasi-ionic limit, A tends to 0 as Ry — R¢.
Also for this group, 74 = 7¢ = 1, so that u = 0. These equivalences yield the
condition

2
0= g(l—n)+n52+%, (2.47)

which is assumed to be universal. Thus this result is substituted into the equation

for A, giving the generalized relationship

(\V]

A=n(a?—-5%)+= Py

= (2.48)

w

According to previous bond-orbital work [17], the measure of covalency can be
related to the formal anion valence by ac ~ Z,/4. For oxides, the value S tends to

1/2 experimentally, and 4 ~ 7, which gives the simplification

4—Z,\"?R4— Re
(2= 2a Jaz el 2.49
b ( 374 > Ra+ Re (2:49)

Then A, which itself can be related to the elasto-optical coefficients, can be expressed
in terms of dielectric constants, anion-cation bond lengths d and constants of power
n and p. It is likely that these powers will depend on glass composition, which limits

the predictive power of this model.

2.2.5 Dipole-Induced-Dipole (DID) Theory

Another theory developed to evaluate photoelasticity in isotropic materials predicts
that only the refractive index of the material is influential on the elasto-optic
coefficients. This theory, initially proposed by Mazzacurati [19] and later compared
to experiment by Benassi [20, 21], assumes that the material is made up of individual
units with spherical polarizabilities. First, the microscopic polarizability density
tensor is used to determine the scattering equations of the material. Then, the
dipole-induced-dipole (DID) model is applied to refine the microscopic electric
properties and relate them to the photoelasticity.
The spectral density of scattered light can be written

w
J(q7 CU) = [O 21

(s

280 [dretm-Pla.n) olime Ba.0) i) (250
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where P(q,t) is the Fourier transform of the macroscopic polarizability tensor P(r, t),

Pas(q,t) = /dre‘iq"’Paﬁ(r,t), (2.51)
AQ is the solid angle over which light is collected, I is the intensity of incident
light, m and n are the polarization unit vectors of the scattered (m) and incoming
(n) radiation, fw; and hwg are the energies of incoming and scattered photons, and
hw = hwr — hwg and q = k; — kg are the exchanged energy and wave vector. The
values within the (...) symbol are thermally averaged. The intensity of scattered light
is then given by

I(q) = /de(q,w) zfowfcngqu.E(q, 0) - 2. (2.52)

The macroscopic polarizability can be written in terms of the effective microscopic

polarizability tensor of individual units within the dielectric material, 7 aﬁ(t)
Zwaﬁ e~tar'(®) (2.53)

where 4 indicates the ith molecule, ion, atom, etc and r’(¢) is the instantaneous
position of the ith unit. (The value 7’ is the same as ; defined in previous sections,
where P = 7 F; however, we will continue with the notation of Benassi et al. for this
derivation.) For solids, we write r’(t) = x’+u’(t), where x' is the equilibrium position
of the ith unit, and u’(¢) is the displacement from equilibrium. If the displacement
is much smaller than the nearest-neighbour distance, then we can expand P in terms
of u”:

0Pl t) = 33 Lol ), (2.54)

where here the equilibrium properties of the system are La,@ H(q) = —iﬂéﬂqu -

Qaﬁyu(q), 7Ta5 is the equilibrium unit polarizability, and

! 871'21 iq-[x™—x!
FRCIEDY [—8uf } el (2.55)
m lu'

eq

From their normal mode expansion, the displacements can be written

_ h en(k, X) ; ik-xi
t)_,/szkZ; N Ay (1) €% (2.56)
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where Akx(t) are the phonon field operators with wave vector k and branch index y.
For isotropic materials like glass, we can assume that the property L is site dependent
such that it can be written in terms of an average local equilibrium value L, and a

small deviation about this value dL:

opn(@) = Lop () + 0Ly, (a). (2.57)

where Lag,(q) = & >_; Lis,(a). Then the fluctuation of P is given by two terms.
The first is crystalline like in nature, with site-averaged quantity L. The second
comes from the disordered structure, with deviating d .. This term is incoherent, and
does not contribute to the Brillouin peaks. Ignoring the incoherent component, 5P

becomes

eu(k X) i(k—q)-x!
P,s(q, a ———= Ay, (t e 4
Posl @) =\ 5y Z ) 2 A ()3

=\ 2N Z agu(d e‘iﬁk_k)OAkx( )N Okq (2.58)
[AN Agy ()
=\'9, XX: %: eu(a; X) Lap u(a) N

The scattered light intensity can then be determined:

2

|Zm Qeu(a,x) -0, (259

CUIWS

I(q) = I,V p? AQkBTZ

pmv2 la

where p = p,,,/m is the number density.
We can relate Lqg, to the elasto-optic constants by comparing the macroscopic
and microscopic polarizability fluctuations. The microscopic polarization is rewritten

as

0Pus(at) = p Y Lapu(@)iin(a, ) (2.60)

where w,(q,t) = [dre @Tu,(r,t) is the Fourier transform of the displacements.
The macroscopic polarizability fluctuation can be obtained from three things: the

dielectric tensor:

47TPQB(T, t) = eaﬁ(r, t) — 504,37 (261)
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the definition of elasto-optic constants F,gys:
5604,8 = —¢€ ZP05750’Y5 (2.62)

and the relation between strain tensor and displacement fields:

1 (Ouy(r,t) = Ous(r,t)
075_2( b ) (2.63)

Combining these equations yields

6Paﬁ q7

1
5 Z @y (Papyu + Papyr). (2.64)
.

We can then combine microscopic and macroscopic terms to get

—16

Laﬂ,u(q) Z Q’yz aﬁ’yp, + Paﬁy'y) (265)

47T,0

which, for isotropic solids, simplifies to
—ie? R ) .
Arp ‘q’ (505])12(]# + (éauQB + 5ﬁuQa)p44> . (266)

Laﬁ,u(q) =

In order to evaluate L,s,(q), the material is considered in its simplest case to be
a van der Waals glass, made up of point-polarizable units with polarizability adqgs.
The total polarizability is
La(t) = adag + az Z [ (r” t)) e_ik"rij(t)} Wiﬁ(t). (2.67)
J#F
Here, we notice that the polarizability of the ith unit is related to that of all other
units in the material. The equilibrium polarizability is

Tap = NZ% s + NZZZ[V v, (XU )) —*rx”'(f)} w4(t). (2.68)

i©ogFE Y

We can relate this to the dielectric constant through the equilibrium polarizability
density tensor:

€ap = AT P 5(1, 1) + bap = 4mpmas(Kr) + Gap- (2.69)

Since in isotropic materials, off-diagonal elements of the equilibrium dielectric tensor
are zero, we can write €,5 = €0, such that

e—1
dmp

Waﬁ(k[) B 5045- (270)
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This can then be used to determine the first term in L:

e—1

_iﬂ-aﬂq,u = —lm(;aﬁqﬂkl‘ (271)

The second term in L can be determined through the value Qus,(q). This is
done by evaluating the equilibrium value for dr);/0ul,, where mlj; is the effective
polarizabililty for a van der Waals glass as defined above. The zeroth-order expression
for () is also defined as above, where the 5 terms tend to equilibrium. By relating the
i and j dependent sums in @) to integrals of pair-correlation functions g(r), evaluating

these integrals, and simplifying the expression for isotropic conditions, we end with

47

Qaﬁ,u(q) = Z?

p‘q’ (6aﬁ@u + 504qu5 =+ 5ﬁqua) . (272)

Then, we can substitute this result into the second term of L and use the

Lorentz-Lorenz equation to determine the complete expression

e—1 ) e—1 e—1 . .
Lagu(a) = —i-— p [¢1 {%gqu (1 +— ) + ——— (Gaplls + Gpudo) | - (273)
This procedure yields the relationships
e—1 e+1
P12 = —3 [1 + 3 } (2.74)
and
e—1]e—1
Pu = —53 [ 5 } : (2.75)

which allows prediction of the elasto-optic tensor elements based on knowledge of the

dielectric response in the material.

2.2.6 Discussion of Models and Theories for p; ;i

The Clausius-Mossotti (or Lorentz-Lorenz) model of photoelasticity is derived for
ideal, homogeneous isotropic materials. It can be applied to some solids and glasses,
but it is not universal. Thus €(pi; + 2p12) = (€ — 1)(e + 2) cannot be universally
applied to all glass systems. However, it gets the sign of the response right; p1; and
p12 are found experimentally to be positive, and € = n? is always greater than 1. The
model also assumes that the change in polarizability with density is zero in glasses.
However, following the derivation of Lines, we find that this may not always be the

case, which would affect how the elasto-optic coefficients behave with refractive index.
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Mueller and Carleton’s models are limited in that the experimental photoelastic
results must be fitted in order to determine L; and Ly (or I'). These models are
typically used to determine which effects (Lorentz-Lorenz, lattice or atomic) are
dominating for a given sample. For example, if py4 is negative, the atomic effect must
be the primary contributor to photoelasticity, or if p;s is large then the lattice effect
is dominant. However, the models cannot be used to predict the sign or magnitude

of the photoelastic response for new, unmeasured glass systems.

The photoelastic theory derived from Line’s bond-orbital model is, again, not
predictive. With enough experimental data, the experimental A measured from
the photoelastic response can be compared to the theoretical value predicted from
Equation 2.48. However, a fair number of assumptions must be made in order to
determine parameters such as the covalency and the d-dependence of S, M, f, etc. It
is interesting that this model includes a dependency on bond length d, which is one

of the main parameters in the empirical model.

The model based on DID theory shows inconsistencies between predictions and
experimental results, especially in pyy. Indeed, the relationship given in Equation 2.75
does not account for the zero and negative stress-optic response that glasses are known
to have. The failure of this model is likely due to the assumption of a pure van
der Waals glass as the material of interest. This model is a poor fit for real glass
systems made up of ionic and covalent bonding environments. The authors suggested
improving the predictions by including a bond polarizability model to account for the
existence of differently polarizable compounds; however, not much progress was made

on this front.

All of the models considered show a dependency on the refractive index of the
material. Bond polarizabilities and bond lengths were also considered to be important
contributors to p;;. By examining the photoelastic response of positive and negative
stress-optic glasses with different glass formers, we aim to identify relevant properties

that affect the elasto-optic tensor elements.
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2.3 Theories of Photoelasticy: Dispersion of p;;;; in Amorphous and

Crystalline Materials

While information on the dispersive nature of the stress-optic coefficient of glasses
is limited, there are a few theories concerning the wavelength dependence of the
photoelastic response of crystalline and amorphous materials. Due to their anisotropic
structures, it is possible to measure most or all independent elasto-optic tensor
elements through the stress-induced phase shifts along different symmetry axes. The
broadband character of these tensor elements is often determined using ellipsometry;
materials such as Si [22, 23], Ge, GaAs, InP, and GaP [24-28], cuprous halides [14],
alkali halides [29] and even fused silica [30] have been measured.

Most analysis of the wavelength dependence of p;ju; discusses the energy band
structures of crystalline materials. Band gaps can be direct, i.e. occurring at the
same wavevector k, or indirect, where the energy gap occurs at different values of
k. Calculations of band structures rely on crystal symmetries in the material; as
such, the results of previous analyses may not be directly extensible to amorphous
glass systems. However, considering these theories could lead to identification of the
important properties influencing the dispersive nature of the stress-optic response.

Wemple and DiDomenico considered strain-induced changes to the energy band
structures of crystalline materials by approximating the band structure with a simple
oscillator model in order to model the elasto-optic tensor [31]. The imaginary
part of the dielectric constant, €;;; is determined from the band structure and the
one-electron wave functions for the material. The real part is determined by the
Kramers-Kronig (KK) integral,

) -1=2 [ oeal) g, (2.76)
Wy

(W,Q _ (,UQ)

where wy is the absorption threshold frequency. In other words, the dielectric constant
is measured in the the transparent region. When strain is applied to the material,
the energy band structure will be modified, such that the real part of the dielectric

constant becomes

2 [ W A€y (W
AELZ‘]‘(W) = ; // (w/+]w2))dw,, (277)

where the absorption frequency is shifted, w, = wy+Aw,. The elasto-optic coefficients
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are related to this by the change in dielectric constant due to applied strain x,

1
A€y i = — Al — | €4,=— €1.ik€1 1 PhlmnTmn - 2.78
1,ij Z 1,ik <€1> 1,15 Z 1,ik€1,1 Pkl ( )

k,l Kl klmn
Instead of calculating the change in the imaginary part of the dielectric constant
for all strain components, Wemple and DiDomenico applied simple oscillator
approximations to the KK integral. The contributions from the band structure to
the real part of the dielectric constant can be modeled for both ionic and covalent

crystals with a single-oscillator Sellmeier expression:

e1(A) = Sp(No)? [1 - (%)1 1, (2.79)

where Sy is the oscillator strength, related to the interband strength (F = (hc/e)?Sy)
and )¢ is the oscillator position parameter, related to the interband energy (&, =
(he)/(eXg)). They consider this to be a long-wavelength approximation to the KK

integral, which leads to

() [2u/ [
Pt (o) /[ 5

When strain is applied to the crystal, small changes will occur in oscillator position

(A&) and strength (AF), which can be calculated using the above relations. Then,

(2.80)

from the Sellmeier expression, the strain-induced change in the real part of the

dielectric constant is

S e (3)]) ew

(-4 (25)

and & = F /& is the dispersion energy. They introduced a deformation potential

where

D;j, such that A&, = El ; D;jzi;. Assuming that €, & and &; are approximately

) e

isotropic, then

Pij 2
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where D;; and K;; can be measured experimentally, expressed in terms of the
imaginary part of the dielectric constant and related to the band structure. The
value of K;; determines whether the dispersion of p;; is either positive or negative.
Wemple and DiDomenico previously found an empirical relationship for the dispersion

energy [32]:
&= pPN.Z,N,, (2.84)

where N, is the cation coordination number, Z, is the formal anion valency, and N,
is the number of valence electrons per anion. Experimentally, S takes on different
values for ionic compounds (8; = 0.26 €V) and covalent compounds (8. = 0.39 eV).
The values &; and &, can also be determined from the dispersion of the refractive
index.

Equation 2.83 is thus a two-parameter fit for the elasto-optic dispersion of
crystalline materials. Wemple and DiDomenico experimentally determined the values
of D and K by fitting their dispersive data; they found roughly linear relationships
between n?p;;/(n*—1)? and 1/A? for many materials, though some showed non-linear
dispersion throughout the transparent region. They concluded that the presence of
excitons also contributes to the dispersion of p;;, and a four-parameter fit is necessary
to describe these contributions. Still, while they found parameters with “reasonable”
values, there were no obvious correlations between crystal composition, properties
and D;; or KCj;.

Cardona et al. took a slightly different approach, considering the electronic band
structure of materials when analyzing the piezo-optic response of crystalline materials
[33]. The relationship between elasto-optic (p;;) and piezo-optic (m;;) coefficients is
Tijki = PijmnOmnkis O Pijii = TijmnCmnki, Where S and C are the compliance and
elastic tensors. The piezo-optic tensor elements of materials are strongly dispersive
near their absorption edge, direct edges more so than indirect gaps. For some
materials, 7;; changes with wavelength such that it reverses sign as the edge is
approached; the point where 7;; = 0 is called the ‘isotropic point’. Examples of
the dispersion of m;; for different crystalline materials are seen in Figure 2.2. GaAs,
Ge, GaSb, KBr, KI, KCI, NaCl and CF5 all have an isotropic point in the transparent
wavelength range. This point is attributed to two contributions of opposite sign; one

strongly dispersive and due to the absorption edge, and the other, weakly dispersive,
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from the average of the entire spectrum. The second effect is dominant at low
frequencies.
A diamond .

-

= -

Figure 2.2: Dispersion of piezo-optic coefficients of various crystalline and amorphous
materials below the fundamental absorption edge. Figure from [33]. In Cardona’s
terminology, the piezo-optic coefficients are related to the elasto-optic elements by

Pz‘jkl = Tijkl = pijmnSmn-

The focus in Cardona’s derivation is on electronic contributions to the piezo-optic
tensor elements. The band structure of simple materials, such as the zinc-blende
crystal Ge, is calculated under strain in order to determine optical properties.
Specifically, the contributions of Ej (region of transparency) and FE; (outside of
transparent region) transitions to m;; are considered. The dielectric constant can
expressed analytically as a function of these energy gaps, and from this the piezo-optic
tensor is calculated. Some of the terms relating the elasto-optic coefficients to the

band structure of germanium will be discussed below.

The effect of hydrostatic stress (Xg) on the Ey direct edge (located at I') and its
spin-orbit split component Ey + A can be represented by dEy/dXy, which for Ge
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yields the hydrostatic constant

1 dwy __ 1 3
(ru + 2m) i = 5 P (G90) 4 3F 9 (a) 4 3G 4 5FO))
(2.85)
where
FO() = 2722 — (14 2)12 — (1 - )7,
(2.86)

G(3)(x) _ 172[2 — (14 x)71/2 (- x)*l/Q],

with © = w/wy and 2’ = w/(wy + Ag). Also, P = 27/ay is the interband matrix
element of linear momentum, and aq is the lattice constant.
The shear terms of 7;;,; coming from Ej in Ge depend on two effects: the splitting

0wy of the top valence band I's by shear stress, and the coupling of I's with the

P - () re <x’>]> ,

(2.87)

where d and b are “shear deformation potentials”, typically negative values. The G

spin-orbit split state I';. Then

w

b 4w,
M1 — T2 = 1(511 - 512)(4)—]3_l (-G(g)(ﬂv) + -2
0

F®(z) — (L) v FO ()

WO+A0

term represents the effect of the band splitting, while the F® terms are due to the
coupling. The terms P~', S;;, b and d are approximately equal for most crystalline
considered in this study, and a constant term must be added in order to match theory
to experiment. Cardona conjectures that for most materials, this positive constant
term dominants at low frequencies but with changing wavelength, the dispersive term
can overcome the constant, inducing an isotropic point for some materials. However,
if wy is small, the shear effects due to the Fy edge become predominant over the
constant term, which results in no isotropic point.

For Cardona’s model, the experimentally measured p;; can be compared to the
theoretical predictions of Equations 2.85 and 2.87 if the deformation potentials, wq
and Ay are known. This is limiting for glass systems, where accurate calculation of
the electronic band structure is difficult to obtain.

Kucharczyk also took a single oscillator approach, similar to that of Wemple and

DiDomenico, to describe the wavelength dependence of the elasto-optic coefficients
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[29]. From a bond polarizability model, the shear tensor element is

Pas = n48a3 (8" =", (2.88)

where n is the refractive index, a is the lattice constant, and 37" is the transverse or
longitudinal part of the bond polarizability tensor. For the alkali halides considered,
BT and BL were fit using a single oscillator formula,

ATL )2

L _
ST YER

(2.89)

with A in the UV-vis range. This theory has the benefit of simplicity; however, an
understanding on the dependence of § on wavelength - namely, prediction of the
parameter A - is necessary in order to fully explain the relationship between py4 and
A. Still, it is able to account for the so-called “isotropic points” depending on the
fitting parameters of the 37 and 8% oscillator formulas.

With an understanding of these theories of dispersion of p;; in crystalline materials,
we can identify material properties which could influence the wavelength dependence
of C in glasses. In particular, the refractive index, absorption edge and bond
polarizabilities of a glass are all likely to contribute to the dispersion of the stress-optic

response.

2.4 The Empirical Model of Photoelasticity

An empirical model of photoelasticity in glasses was developed by Guignard and
Zwanziger to relate the structure of glass to its stress-optic response [1]. This
model focuses on the chemical bonding environment of compounds in the structure
rather than lattice and atomic distortions, conjecturing that ‘bond metallicity’ and
coordination number N, are important in describing the stress-optic response. Bond
metallicity correlates well with anion-cation bond length, d [17]. For zero and negative
stress-optic glasses, high metallicity is needed for bonds to be distorted along the
bonding direction and orthogonal to it. Furthermore, for stress to distort the glass
anisotropically, structural anisotropy is required locally. Low coordination numbers
allow these distortions, while high coordination numbers prevent them [1]. Thus, this
model predicts that glasses with a low d/N, ratio will have a positive stress-optic

coefficient, while glasses with high d/N. will exhibit negative birefringence.
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Table 2.1: Anion-cation bond length d, cation coordination number N, ratio d/N.
and sign of the stress optic coefficient C' for a variety of glass components. Sources
labelled ‘calc’ determine C' from first-principles calculations. Those labelled ‘expt’
are based on measured values.

compound d (A) N. d/N,(A) signof C source

TLO 2517 3 0.84 - expt [34]

SboO3 2022 3 0.67 - expt [1]

PbO 2326 4 0.58 - calc [1], expt [34]
SnO 2224 4 0.56 - calc, expt [1]

Biy Oy 2198 4  0.55 . expt [35]

TeO, 2.0 4 0.50 + calc [1]

7n0 1988 4 0.50 + expt [36-38]
PbS 2067 6  0.49 + calc [1]

BaO 2.74 6 0.46 + calc [1], expt [38]
B,Os 1.366 3 0.46 + expt [36]

GeO, 1717 4 043 + expt [39]

Si0, 1.609 4 0.40 + expt [40]

P05 1.5 4 0.38 + expt [34, 3§]
MgO 2.1085 6  0.35 + calc [1], expt [34]
SnOy 2055 6 0.34 + calc [1]

Table 2.1, compiled by Guignard et al. [1], contains the d/N, ratio and signs of the
stress-optic coefficient for various compounds. For the additives that are unable to
form a glass on their own, the overall contribution to C' in the system was considered.
The negative sign is only designated when the addition of a compound to a glass
system resulted in a negative coefficient. Glass compounds with (d/N,) > 0.5 A
have a negative stress-optic coefficient, while those with (d/N.) < 0.5 A have positive
coefficient. For binary and ternary glasses, the ratio is averaged to derive the expected

response. Thus, the composition of a zero stress-optic glass can be predicted using

the additivity rule
d d

1
where the sum is over all compounds in the glass, x; is the molar per cent of the ith
compound, and (d/N.); is that compound’s ratio.
Thus far, the empirical model shows good correlation with known data and it

is able to predict glass families with zero birefringence [1, 41-46]. However, it
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cannot predict the magnitude of the stress-optic coefficient, it does not consider the
wavelength dependence of the photoelastic response and it has not been tested on

non-oxide glass systems.

2.5 Measured Photoelasticity in Glass Systems

2.5.1 Dispersion of C in Glass

Industrially, a glass with zero stress-optic coefficient across the visible wavelength
range is of great interest. However, very few studies on the dispersive nature of
birefringence have been performed. The Schott company has performed studies on
the wavelength dependence of C' for many of their commercially available glasses;
Figure 2.3 shows results for glasses in the FK, PK, PSK and SF families. The
optical glass SF57 has nearly a zero stress-optic coefficient for all wavelengths in
the visible range of light. This is a ‘dense flint’ glass; the main components of
glasses in the SF series are alkaline silicates with > 49% wt. PbO [5]. Most of the
glasses in Figure 2.3 see a small increase in the stress-optic coefficient with decreasing
wavelength (increasing energy). However, in the glasses SF1, SF14, SF18, SF55 and
SF57, C decreases slightly with decreasing .
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Figure 2.3: Stress-optical coefficient as a function of wavelength for select Schott
optical glasses. Image from reference [5].
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The dispersion of the birefringence of fused silica has also been examined in
detail [40, 47-49]. The wavelength dependence of the stress-optic coefficient is
shown in Figure 2.4. Values from Filon and Harris are averaged over multiple trials.
The dispersion for wavelengths near the IR edge of the visible spectrum is small.
Below 500nm, the stress-optic coefficient begins to quickly increase with decreasing
wavelength. Jog derived a dispersion formula to describe the experimental values for
230 < A < 650nm for both his and Filon and Harris’s work. However, the formula
does not satisfy the results obtained by Primak and Post, nor does it agree with data

at longer wavelengths.
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Figure 2.4: Dispersion of the stress-optic coefficient of fused silica. Values from [40]
and [47].

The stress-optic coefficient of silicate glasses containing BoO3, Al;O3, KyO, ZnO,
Sby O3, NayO, PbO, BaO, F and CaO has been reported by Vasudevan and Krishnan
for the wavelength range 320 < A < 575nm [50]. Note here that the published values

for the coefficient have the opposite sign as expected; this is due to an omitted negative
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sign in the calculation. For most glasses, the stress-optic coefficient decreased with
decreasing wavelength; however, fused quartz saw an increase in C' as A decreased.
The magnitude and dispersion of the birefringence were related to Mueller’s lattice
and atomic effects. Typically, the refractive index of a glass increases with shorter
wavelengths. Since the lattice effect is related to n and the atomic effect is relatively
constant, they argue that C' should become more and more “positive” (negative with
the appropriate sign) as A decreases. This theory matches well with the reported
values for the glasses excluding fused quartz. No attempt was made to explain this

discrepancy.

Recent work has been done in our research group on the dispersive nature of the
stress-optic response in oxide glasses [51]. In her Master’s thesis, Thomas examined
the broadband birefringence of tin phosphate, tin silicate, sodium phosphate and
sodium silicate glasses in the visible spectrum. For all glasses, dispersive effects
were seen near the band edge. The tin glasses showed only decreasing stress-optic
coefficient with decreasing A, while the sodium glasses had both increasing and
decreasing C' with wavelength. Thomas proposed that dispersive effects will be greater
when the glass structure is composed primarily of bridging oxygens, i.e. ionic bonds,
while the least amount of dispersion will occur when the glass structure is primarily
composed of non-bridging oxygens, i.e. covalent bonds. However, this hypothesis
does not consider whether the stress-optic coefficient will increase or decrease with

wavelength.

Fukazawa et al. examined the photoelasticity of lead silicate glasses [52]. This work
is particularly interesting as it is perhaps the only published example of stress-optic
coefficients of glass determined using ellipsometry. They examined lead silicates
containing 40-43 mol % PbO. For all glasses, stress-optic coefficient decreased with
decreasing wavelength. Furthermore, two of the glasses showed zero stress-optic
composition, which shifted to higher wavelength as lead content increased. They
considered their results with respect to Mueller’s lattice effect (proportional to
(n? — 1)?/n* according to Equation 2.23) and the atomic effect (proportional to
(n?* — 1)(n* + 2)/n* from Equation 2.23) and suggested that the negative values
resulting from the lattice effect become dominant as refractive index (lead content)

increases. However, this argument does not extend to glasses with positive stress
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optic-coefficients that increase with decreasing wavelength (and increasing index).

The motivation for this research was to measure the wavelength dependence of C'
for a variety of glass formers and modifiers, and to correlate glass composition with
the dispersive properties of the stress-optic coefficient.

The glass formers considered in this study are SiOy, B3Oz, P2O5 and TeOs.
Glass modifiers include typically “positive” and “negative” additives according to
the empirical model: alkali metal oxides NayO and LiyO, alkaline earth oxides CaO
and BaQO, transition metal oxide ZnO, and metal oxides SnO, PbO and Bi;Os.

The stress-optic coefficients of many of these glass compositions have been
measured at single wavelengths [1, 36-38, 42-44, 53-55]. However, there are currently
no data or theories which predict when C will increase, decrease or remain constant
with wavelength. As such, we have considered the effect of additive type and content
on the dispersive nature of the stress-optic response with the goal of developing a

predictive model.

2.5.2 Brillouin Measurements of p;;u

Brillouin spectroscopy is an inelastic light scattering technique that distinguishes the
acoustic modes of a material. It is typically used to determine the elastic moduli
of transparent materials and it is often used in conjunction with Raman or IR
spectroscopy to determine the compositional evolution of structure and properties
[56-63]. Brillouin scattering can also be used to determine a material’s elasto-optic
response [10, 13, 21, 64-67]. Although this technique is less commonly used in
glasses, it yields all independent elements of the elasto-optic tensor, whereas other
common techniques used to measure the photoelastic properties of a glass typically
only measure the shear component, pyq.

There have been some investigations on the Brillouin scattering of glasses as a
function of composition, as well as efforts to relate the measured p;; to glass properties.
Some experiments were concerned exclusively with commercially available glasses
21, 64, 65, 67], while others considered the effects of glass composition on p;; in
binary, ternary and doped systems [10, 13, 66]. The latter category is composed
almost entirely of silicate-based glasses with typically positive stress-optic additives.

These studies found that the magnitude of py4 varies more rapidly than that of p;o [64].
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The ratio of the transverse and longitudinal velocities, vr /vy, tends toward a constant
value for all glasses, regardless of composition; this result might suggest a relationship
between shear and compressive restoring forces [65]. It was also suggested that both
density and compositional fluctuations lead to Brillouin scattering in a material; the
variations with composition were quantified by attenuation [10, 63, 68].

Values for the elasto-optic tensor elements for binary and ternary glass systems
with known composition [10, 21, 65, 66] are reproduced here. Figure 2.5 shows the
change in p» with mol % additive, while Figure 2.6 shows the same dependence for pyy.
Some compositional trends are apparent for these silicate-based glasses. pis generally
decreases with increasing additive, while pyy increases with additive. Also, the signs
of the two tensor elements are opposite, with p;s showing positive, larger values.
The glass systems studied with known compositions all have negative ps4, which

translates to positive stress-optic response. And, in fact, most theories developed to
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Figure 2.5: Some previously measured p;5 values for binary and ternary glass systems.
(1) from reference [21], (2) from [65], (3) from [10], (4) from [66].
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Figure 2.6: Some previously measured py4 values for binary and ternary glass systems.
(1) from reference [21], (2) from [65], (3) from [10], (4) from [66].

describe the elasto-optic tensor elements of a glass diverge from experimental values
as pyq goes to zero. Varying the glass former can also have a significant effect on
elasto-optic tensor elements; for example, calcium alumino-silicates with less than 20
mol % SiOy have much lower pjs than silicate-rich glasses [66]. Furthermore, pure
glass formers SiOs, BoO3 and GeOs have significantly different values of p1o and pyg;
however, information available on the relationship between glass former and p;; is
very limited.

The effect of glass composition on the elasto-optic tensor elements p;; is not well
understood, but is of interest industrially. In a review of the current and future
directions of glass science in the US, researchers at Corning Incorporated stated that
the Brillouin scattering spectra of glass is an area that merits further investigation
[4]. Tt is important, then, to study the effect of glass formers and of additives with

both positive and negative stress-optic response on the elasto-optic tensor of glasses.
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To this effect, we have considered binary glass systems with positive, negative and
zero stress-optic response. It is not well understood what effect negative stress-optic
additives have on pi5 for glasses with known composition. We have also examined the
effect of glass former on the sign and magnitude of the elasto-optic tensor elements.
The glass systems studied here are lead and barium borates, phosphates and silicates.
Both barium oxide and lead oxide decrease the stress-optic coefficient in a glass, with
the lead-based glasses transitioning to zero and negative stress-optic response at high
additive content. The goal of this research was to determine the complete elasto-optic
tensor for these glass systems, to determine what properties of a glass (n, G, d/N,
etc.) affect the sign and magnitude of p;; and to develop a theoretical understanding
of the empirical parameter d/N, that has been so successful in predicting zero-stress

optic compositions.

2.5.3 Photoelasticity in Chalcogenide Glasses

Compared to oxide glasses, relatively little work has been done on the stress-optic
response of chalcogenide glasses. Chalcogenides are glasses that replace oxygen with
another chalcogen - namely, sulfur, selenium or tellurium. The chalcogen is treated
as the ‘anion’ of the system, even though bonding is covalent. The stress-optic
coefficients of chalcogenides are typically much larger than those of oxide glasses,
and the amount of chalcogen can be non-stoichiometric; in other words, it can be in
excess or deficit. Bonding behaviour such as anion-anion or cation-cation bonding,
while not present in oxide glass systems, is common in non-oxide glasses.

Most of the research on birefringence in chalcogenide glasses was done decades
ago by Linke [69] and Anderson and Varshneya [70]. Linke measured the stress-optic
coefficients for glasses in the systems Ge-Se, As-Se, Ge-As-Se, Ge-As-S, Ge-S-Se,
As-S-Se,and As-Sb-S at a wavelength of 1500 nm, while Anderson and Varshneya
focused on Ge-As-Se glasses measured at 1800 nm and attempted unsuccessfully to
to correlate C' to the average coordination number of the glass. These works are
also inconclusive as to the effect of adding or removing the chalcogen from the glassy
system.

The motivation of this research was to extend the empirical model of oxide glasses

(Section 2.4) to include non-oxide glasses, to examine the effect of non-stoichiometric
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bonding on stress-optic response, and to compare the magnitudes of C' for oxide and
non-oxide glasses. The systems Ge-P-S and Ge-Sb-S were chosen for the in-depth
analysis of the photoelastic response of non-oxide glasses as their structures have
been studied extensively [71-73] and no data on the stress-optic coefficients have
been published. The structural units and expected photoelastic response for these

glass systems are discussed in detail in the included article manuscript in Chapter 4.



Chapter 3

Theory and Techniques

The properties of a glass important in describing its photoelastic response include the
elastic moduli, density, stress-optic and elasto-optic coefficients, and refractive index.
These properties and their measurement techniques will be described, followed by the
derivation of the theories of reflection of polarized light (ellipsometry) and Brillouin

scattering in glasses.

3.1 Optical, Elastic and Photoelastic Properties of Glass

3.1.1 The Elastic Tensor

When stress is applied to a material, the shape of the material is affected according
to its elastic properties [74]. For stresses below the elastic limit, the material will
revert to its original shape in the absence of stress. According to Hooke’s law, for
small applied stresses o, the amount of strain s is proportional to the applied stress.
The proportionality describes the elastic properties of the material. However, stress
and strain are directional properties, and a tensor equation is necessary to describe

their relationship:

Oij = UijklSki,
(3.1)
Sij = Sijklakl-
Here, Cjji; are the elastic constants of the material, and S = C’i;,il are the

compliances. Simplifications due to the symmetry conditions of isotropic solids allow

an abbreviated notation to be used for the subscripts:
11—1,22—-2,33—-3,23 >4,13 - 5,12 — 6.

For an isotropic material such as glass, there are three unique tensor elements, and
only two are independent:

1
044 - 5(011 — 012). (32)

36
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The elastic properties of a material are most commonly described by Young’s
modulus F, the shear modulus GG, and Poisson’s ratio v. In fact, all elastic components
of an isotropic material can be determined from a knowledge of any two elastic moduli.

The commonly presented moduli are related to the elastic tensor elements by

E(1-v)
Cll = )
(I1+v)(1—2v)
Ev
012 - (1 I V)(l — QU)’ (33>
E
Cu=G= m7
and to the compliance tensor elements by
1
Sll - E?
—v
512 == f, (34)
1 2(1+v)
Su=g E

The shear and Young’s modulus of a glass are on the order of GPa. The elastic limit
of glass, on the other hand, is typically on the order of MPa. As such, stresses applied
to the glasses in this study are kept in the MPa range. Typically, imperfections in
the surfaces and parallelicity of a glass will cause a stressed glass to break well before

it reaches the elastic limit.

3.1.2 The Ultrasonic Method for Determining Elastic Properties

The elastic properties of a glass can be determined from the velocity of sound traveling
through the glass (pp. 162-168 of [3]). There are two types of sound waves which
can propagate in a glass: longitudinal and transverse. The shear component of the

elastic tensor, Cyy, is determined from the transverse sound wave,
Cus = pu7, (3.5)

while deformations along the stress axis are determined from the longitudinal sound

wave,

011 = pU% (36)
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These tensor elements can be related to Young’s modulus, the shear modulus and the
Poisson ratio through Equation 3.3.

Ultrasonic wave techniques are often used to determine the elastic moduli of a
glass; see pp. 162-168 of [3]. In this method, an ultrasonic pulse is sent through the
glass by either a longitudinal or transverse wave transducer. The pulse reflects from
the back face of the glass, and the total travel time of the wave t is measured by an
oscilloscope. Then, for a material with known thickness d, the velocity is determined

from the simple relationship vy r = d/(2t).

3.1.3 Archimedes Method for Determining Density

Densities of glasses are commonly measured using Archimedes’ principle. According
to this method, the buoyancy of the sample suspended in a general fluid is equal to

the weight of the displaced fluid. The buoyancy is defined as
Fp = Wa_Wf :pfgv7 (37)

where W, is the weight of the sample in air, g is the gravitational acceleration, and
Wy, py and V are the the weight of the sample suspended in the fluid, the density of
the fluid, and the volume of the displaced fluid respectively. The displaced volume V'
must also be equal to the volume of the sample, and so the density of the material

can be determined from

Mair Prg Mair
= Mair - s 3.8
" Wair - Wf Megir — My pr ( )

where m denotes the mass of the sample in either air or fluid.

3.1.4 Analysis of Polarized Light Traveling Through Stressed Glass

An analysis of the propagation of polarized light through stressed glass is necessary in
understanding and measuring birefringence. Consider light traveling along the z-axis

and linearly polarized at 45° to the z- and y-axes:
E(z,t) = Egeilt=—t (m + y> (3.9)

Here, Eq is the amplitude of the light wave, k is the wavenumber and w is the angular

frequency.
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For a glass with stress applied along the y-axis (or extraordinary axis) as shown
in Figure 2.1, the different indices of refraction along the £ and ¢ directions result
in different wavenumbers for light polarized along those axes. Then as the polarized
light described in Equation 3.9 travels through a stressed glass with thickness d along

the z-axis, the light will undergo a change in its polarization state:
E(Z + d’ tl) — Eoei(szwtl) (eikodi, 4 eikedg)>

= Eyeilhewt) <ei27rn0d/)\j I ei27rned/)\g) (3.10)

— Byei(k=wh) gi2mnod/\ ( G & ei2m(ne—no)d/x ?)) '

The induced phase shift A between the & and y components of light exiting the glass
can then be related to the stress-optic coefficient through Equation 2.2:

2nd 2rd
_ %(ne — ) = 22¢0. (3.11)

A
A

3.1.5 Sénarmont Compensator Method for Determining C'

In order to determine the stress-optic coefficient of a glass, one needs to analyze the
polarized light which has passed through the stressed glass. While there are many
methods that can be employed to measure birefringence, our research group uses the
Sénarmont compensator method. Here, light travels through a linear polarizer, the
stressed glass, a quarter-wave plate and finally a second rotatable linear polarizer
called the analyzer. The analyzer angle which minimizes the intensity of light can be
used to determine the phase shift A induced in a stressed glass.

The initial polarizer is oriented to produce light according to Equation 3.9. Then
as the linearly polarized light travels through the stressed glass, it picks up a phase
shift between ordinary and extraordinary axes according to Equation 3.10. At this
point, it is beneficial to use the Jones matrix method [75] to simplify the analysis.
The relevant Jones matrices for the calculation are summarized in Table 3.1.

The light exiting the stressed glass can be rewritten as

} e—iA/2
E = Eye'®/? [ , : (3.12)
ezA/2
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Table 3.1: Jones matrices.

Optical element Jones matrix
Quarter-wave plate with fast axis eim/4 [ é (3
oriented along the z-axis “Q(x)” .

1
Linear polarizer oriented at 5 [ jil ill
+ 45° to the z-axis “L(45)” s
Rotation matrix “R(#)” o 0 sinb
—sinf cosf |

The quarter-wave plate is oriented such that its fast axis is parallel to (z 4+ ). Then
as the light passes through the quarter-wave plate, its polarization changes according
to
' o—il/2
E = R(—45°)Q(x)R(45°)Ege'®/? |

ezA/Q
cos(A/2) + sin(A/2)
cos(A/2) —sin(A/2)

— Byl AeiA?

The analyzer is initially aligned perpendicularly to the incident light, along the +(z —
) direction. It is rotated to angle 6 from this direction to find the minimum intensity

of light. The light exiting the analyzer has electric field vector

cos(A/2) +sin(A/2)

E = Eye’™/1¢'>/? R(~6) L(—45°) R(0
(=0)L( JE(6) cos(A/2) —sin(A/2)

(3.14)

A . A . A A
_ Eoe”/‘lemﬂl cos 5 + sin 5 + sin (3 + 29) — CoS (3 + 29) .
2 cos%—sin%—sin(%+20)—cos %+28)

~—

T

The intensity of a general light wave, A = [ ] ,is I = A2 + A2, Thus, the

y
intensity of light exiting the rotatable analyzer is

I'=4+2sinA —2cos(A + 260) (3.15)
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Since A is a constant value for a given applied stress, then the intensity is minimized

when the analyzer is rotated to

2 = A+ g (3.16)

With this relationship for the experimentally determined angle of extinction 6 and

Equation 3.11, the stress-optic coefficient C' can be determined.

3.1.6 Dispersion of the Refractive Index

The stress-optic coefficient is dependent on the index of refraction, which itself is
dependent on the wavelength of the incident light. Normal dispersion occurs when
the refractive index increases with decreasing wavelength. Otherwise, the dispersion

is anomalous; this occurs near or at the absorption bands of the glass [76]. This is

seen in Figure 3.1.

20 2.0
m
------- k
1.5 - L 1.5
—_ <
ﬁ R4
3 =
s 3
5 5
1.0 10 3
E n=1 =
! =
£ : g
(4 -
A <
0.5 - i L 0.5
0.0 ; Sl LT P 0.0

Wavelength L ——

Figure 3.1: Absorption coefficient and refractive index of light in a dielectric medium.
Here, n is the real part of the refractive index and k is the imaginary part. Materials
absorb all incident light at the resonance wavelength \,..s. Image from reference [76].
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In order to understand the dispersion of the refractive index, an electromagnetic
approach is necessary [75-77]. A glass can be considered as a collection of many
small, polarizible charges (electrons). Each electron oscillates about its equilibrium
position with resonant frequency wy. When an electromagnetic wave such as light
impinges on the glass, the electrons vibrate at the frequency of the incident wave.
Each charge can be considered to be a forced oscillator driven by the electric field of

the light wave. The equation of motion is
m (% + 7% 4+ wix) = ¢E(x,t) = ¢Eq cos(wt), (3.17)

where m is the mass of the electron, ¢ is the charge of the electron, v is the damping
coefficient, and w is the frequency of the incident wave. Assuming that the charge
will oscillate at the same frequency as the electric field, the solution for x is guessed
to be

x(t) = xpe ™! (3.18)

and the equation of motion simplifies to

q

x(t) = — w? — iwy)

- E(1). (3.19)

The polarization, or density of dipole moments, can be related to the electric field

as

P(t) = (¢ — eo)E(t), (3.20)

where € is the dielectric constant of the material and ¢; is the dielectric constant
in vacuum. Furthermore, the dipole moment is equal to the charge times its

displacement, so for N atoms,

i\l
P(t) = qNx(t) = E(t). 21
(1) = aVx(t) = ) (321)
Combining these equations, we find that
P(t) ¢*N
= — = ) 3.22
€=t E(t) ot m(ws — w? — iwy) (322)

This can be simplified to the refractive index using the relation n?(w) = €/¢y. Now
supposing that there are N atoms per unit volume with Z electrons per atom, and

that instead of one binding frequency wy for all electrons, there are f; electrons per
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atom with binding frequency w; and damping coefficient ~;, the dispersive equation

for the refractive index is

n2w) =14 LN 3 /; (3.23)

mey (w§ — w? —iwy;)

J

where the oscillator strengths f; satisfy the sum ) ili=Z.

Since the refractive index is wavelength dependent, some dispersion of the
stress-optic coefficient is expected. However, C' can either increase or decrease with
decreasing wavelength. Since n only increases with decreasing A, it is clear that the

refractive index is not the only source of dispersion in the birefringence of a glass.

3.2 Ellipsometry

Spectroscopic ellipsometry is a technique that characterizes the optical properties of
materials, typically thin films. Polarized light is reflected from a sample’s surface, and
the change in amplitude and phase of the light is measured. In this way, information
such as the thickness of a thin film, the real and imaginary refractive indices, and
the surface roughness of a sample can be determined. The follow sections describe
the reflection and transmission of light at an interface, the optical components of
an ellipsometer, and the determination of refractive index from the ellipsometric

measurements.

3.2.1 Reflection of Light at an Interface

Typically, spectroscopic ellipsometry measures light that has been reflected from a
material’s surface. The following discussion of the reflection and transmission of light
is based on reference [77].

When light is incident on a transparent material at some angle 67, part of the light
is reflected and part is transmitted through the material; this is shown in Figure 3.2.
The amounts of reflected and transmitted beams depend on the initial polarization
of the incident light. In ellipsometry, it is typical to call light with electric field
perpendicular to the plane of incidence “s-polarized”, while light polarized within
this plane is called “p-polarized”. The magnetic fields are orthogonal to both the

electric fields and the direction of propagation.
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Ej or Bj

Ngir ~ 1

Figure 3.2: Light incident on the surface of a transparent material is partially reflected
and partially transmitted. The initial polarization of the light (s or p, according to the
conventions of ellipsometry) determines the reflection and transmission coefficients.

The electric and magnetic fields are

Ky - r—iwt
Em = EOme i )

nk,, x E,, (3.24)

Y

B,,
c k,

where the subscript m = I, R,T" denotes the incident, reflected or transmitted field.
The boundary conditions of the system specify that at the point of incidence on the

material, all variations of the fields must be equal. All phase factors are equal,
k['r:kR'I':kT'I', (325)

and the normal components of B and D are continuous, as are the tangential

components of E and H. For s-polarized light, this yields

ESr + Eor = Er, (3.26)

Nai n
L (By; — Ejg) cosO = —Ejy cos O,
c c
which can be solved for the reflected and transmitted amplitudes:
R Ejn _ Mair COS 0r — ncos Or _ cos 0; — \/n2 —sin%6,
E§; naircostp +ncosfr  cosf; + 1/n2 — sin? 6, (3.27)

T — Esr 2N iy COS 01 B 2 cos O
- S - . i - . )
E§;  ngircostp + “—Z”n cosOr  cosf; + /n? — sin? 6,
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where ng;, ~ 1, and Snell’s law (n4,sinf; = nsinfr) has been applied to convert
the angle of transmission 6 to the incident angle. Likewise, for p-polarized light, the

boundary conditions give
(ES; — Ebp) cos0p = Efy cosOr,

Mo n (3.28)
c (Egl + EgR) = EEgT-

The reflected and transmitted intensities are then

Efr  ncosOp — ng, cosOp n?cosf; — \/n? —sin? 6;

Eyy mcost + ngircosbr  p2cos ) + v/n? —sin®6; (3.29)
T _ Eyp 1 2n cos 0 2n cos 0 '

— D —_ = - .

3.2.2 Fresnel Equations and the Brewster’s Angle

For p-polarized light (i.e. light polarized in the plane of incidence), there is an angle
for which no light is reflected; this angle is called the Brewster’s angle. Since RP = 0,

Equation 3.29 becomes
n?cos@; = \/n? — sin? 6, (3.30)

or ) )
in? 0
nt= " M0 (3.31)

cos2f; cos20;
Then, with the relationships tan § = sin 6/ cos  and sec? § = 1+tan? §, the Brewster’s

angle can be written as

Op = tan ' (n). (3.32)

This angle can be used to determine the refractive index of the glass.

3.2.3 Spectroscopic Ellipsometry

The polarization state of light reflected from a material can be measured by

spectroscopic ellipsometry. A schematic of this reflection process is seen in Figure 3.3.

The reflected light often becomes elliptically polarized, which is expressed in polar
coordinates as

Eg ia

P=gs = tan We', (3.33)

R

where A is the phase shift induced between the s- and p-components of the beam,

and tan U = |E%|/|E%| is the ratio of amplitudes.
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Figure 3.3: Ellipsometry can measure the phase shift A and relative intensity tan W

of s- and p-polarized light. Image from [78].

The Woollam M-2000 variable angle spectroscopic ellipsometer used for these

measurements is a rotating-compensator ellipsometer (RCE). The ellipsometer,

located in the Dahn lab at Dalhousie University, measures the intensity and phase

of light with wavelengths between 210 and 1000 nm, and the angle of incidence of

the beam can vary from 45° to 90° (transmission mode). A schematic of the optical

elements of the M-2000 are shown in Figure 3.4.

Xenon lamp  Collimator
Polarizer

Raotating

Focusing
optic

compensator

Focusing lens

Spectrograph
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Control system

-t

Computer

Figure 3.4: A schematic of optical components within the Woollam M-2000
ellipsometer, located in the Dahn lab at Dalhousie University. Image from [78].
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The optical components of the ellipsometer are similar to those used in the
Sénarmont compensator discussed in Section 3.1.5. Each element is briefly described
below, based on the discussion in reference [78]. The light source is a Xe arc lamp,
emitting light in the range 195-2000 nm. The lamp has sharp emission peaks between
800 and 1000 nm, which can result in artifacts in the collected intensity spectrum. The
light is collimated and then passes through a Glan-Taylor linear polarizer oriented
at 45° between the s and p axes. As such, the resulting beam has equal s- and
p-polarization amplitudes. The light then passes through the rotating compensator,
which induces a phase shift of 7/2 and converts the beam to circular polarization.
This allows measurement sensitivity near A = 0° and § = 180°, as well as the
determination of the handedness of induced phase shifts [79]. The beam is then
incident on the sample; for incident angles 6; < 90°, the beam can be focused to
smaller spot size using focusing probes. The reflected light, with amplitude and
phase shifts as described in the previous section, passes through another Glan-Taylor
linear polarizer, which acts as an analyzer. The resulting linearly polarized light
is then filtered by a grating onto the detector, a silicon photodiode array, which
measures the polarization state and intensity of the reflected beam at all wavelengths
simultaneously. The phase shift A between s and p components of the light and
the relative intensity tan W are determined directly by the accompanying software
CompleteEASE, which performs a Fourier analysis of the intensity. The stress-optic
coefficient of light transmitted through or reflected from the back face of a glass can

be determined from this experimentally measured A and Equation 3.11.

3.2.4 Refractive Index and the Cauchy Model

The refractive index of a material can be determined using ellipsometry from the
wavelength-dependent measurement of ¥ as well as Equations 3.27 and 3.29. By
solving tan ¥ = |RP|/| R®|, the refractive index is found to be

o sin?f;(1+tan )% — 4sin* ; tan ¥

= . 3.34
" cos?0;(1 + tan )2 (3:34)

The CompleteEASE software fits the refractive index to W using different models;

in this case, a Cauchy model was used to determine n. For transparent materials, the
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Cauchy model is
B
nA)=A+=S+—+... (3.35)

Typically, orders above (1/A?) are ignored since they do not contribute significantly
to n. The parameters A, B and C are fitted by the software to minimize the
difference between model and experimental ¥, and the wavelength-dependent n(\) is

determined.

3.3 Brillouin Scattering in Amorphous Materials

When electromagnetic waves propagate through transparent materials, a small
fraction of the waves will interact with and scatter from sound waves moving in
the material. This is known as Brillouin scattering. A typical Brillouin spectra (seen
for glass in Figure 3.5) measures the scattered photon intensity as a function of the
light’s frequency shift relative to the incident wavelength. The frequency shifts of
the scattered light from the central Rayleigh line give information about the sound
velocities and elastic moduli of the glass, while the intensities of the shifted Brillouin
peaks give information about the photoelastic properties of the glass. In the following
sections, these relationships will be derived, and the Fabry-Perot interferometer used

to collect Brillouin spectra will be discussed.

3.3.1 Frequency Shifts and the Elastic Moduli

Brillouin scattering can be described as the interaction between a light wave and a
density wave in a material [7, 80-82]. The density wave originates from the thermal
motion of atoms in the material (corresponding to acoustic phonons at the Brillouin
zone center) and will scatter a fraction of the incident light. This type of scattering
is inelastic and occurs with low frequencies. The photon can either lose energy and
create a phonon (Stokes scattering) or gain energy by absorbing a phonon (Anti-Stokes

scattering). The wave vectors k and frequencies w of the scattering process are

kS:k[iq7 (336)

ws = ws T w,,

where [ indicates incident photons, S indicates scattered photons, ¢ indicates the

created or absorbed phonon and the — (4) indicates Stokes (Anti-Stokes) scattering.
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Figure 3.5: A typical Brillouin spectra showing scattered light’s intensity as a function
of frequency shift. Inelastic scattering from longitudinal waves are measured in
VV configuration (blue), while transverse waves are measured in VH configuration
(green). The unshifted, elastically scattered Rayleigh line is in pink.

The density fluctuations in the material lead to periodic fluctuations of the
dielectric tensor (refractive index) which act like a diffraction grating. The light

scattered at angle 6/2 will interfere constructively according to Bragg’s law:
A
— = 2Asin(0/2). (3.37)
n

Here, n is the refractive index of the scattering material, A\ is the wavelength of
incident light, and A is the wavelength of the density fluctuations. This wavelength
can be related to the wavevector of the phonons created or destroyed in the scattering

process:

2t 4mn

Since the light is scattered from a moving object (in this case, a density wave), its

frequency will undergo a Doppler shift:
AwB = 27TAfB = qUp, (339)

where ¢ is the wavevector of the incident phonons and vg is the sound velocity of the

scattering medium. Isotropic media have two sound velocities: longitudinal, vy, and
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transverse, vpr. The two independent elastic moduli are then

Awp) 2
) b)

4mn sin(6/2 (340)

CBZPU%ZP(

with C1; and Cy found from the longitudinal and transverse sound velocities,

respectively.

3.3.2 Brillouin Intensity and the Elasto-Optic Constants

This derivation of the relationship between Brillouin scattering intensity and
elasto-optic coefficients p;;i; is based on the scattering theory found in references [82,
83]. In amorphous materials such as glass, the average dielectric constant is equal
in all directions. However, sound waves of wave vector q and frequency w, traveling
through the material will induce small fluctuations in the dielectric constant, de;,
which tend to be anisotropic.

When light is incident on such a material, its electric field E; will induce
polarization. The part of the polarization which is due to the dielectric fluctuations
will emit a scattered electric field Eg at some point Ry away from the scattering
event. The propagation of the scattered wave is described by the relationship between
electric induction and field, the components of which are Dg; = egEs; +d¢€;;Ey;. Here,
€s represents the dielectric constant measured at the scattered frequency ws, and de;;
is the change in the tensor element of the dielectric permeability which describes
the scattering properties of the material. Since the frequency shift between the
incident and scattered light is small, we can approximate €, ~ €. In vector form,

the propagation is then described by
Dgs = €Eg + (de - Ej), (3.41)

where (d€ - E;) is shorthand for the vector with components d¢;; Ey;.
We can apply Maxwell’s equations to the electric induction and field to find that
V xEg = MTSHS and V x Hg = =“5Dyg, which combine to give the relationship

[

2
V x V x Eg = %DS. (3.42)

Substituting Equation 3.41 into Equation 3.42, and noting that:
i) VXV xDg=V(V-Dg)— V?Dg, ii) V-Dg = 0, and iii) k? = w?/(es,c?), we
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obtain the equation
V?Dg + k3Dgs = —V x V x (Je - Ey). (3.43)

To solve this equation, we must divide the material into small scattering regions
(with dimensions still larger than the distance between structural units) and treat
the scattering from one area as an individual event that is not affected by travel
through the rest of the material. Thus, the scattered field at large distance from the
scattering region (analogous to the large distance between material and detector) can
be calculated.

At this point, we note that Equation 3.43 looks like a retarded potential of the
form

V3¢ + k*p = —4np (3.44)

with the solution

6zk’R
o= [ o av (3.45)

where ¢ and p depend on time through the factor e=™* [84]. In this coordinate

system, the origin (or scattering point) is located inside the scattering region. The
radius vector from origin to the point P (where the field is calculated) is Ry, with
unit vector n. The radius of the scattering region is r, and R = Ry —r is the distance
from the scattering volume to the point P. At large distances from the scattering
volume, Ry > r and

R=|Ry—r|~Ry—r-n. (3.46)

We can substitute this into Equation 3.45, noting that in the denominator R ~ Ry
and that the scattering wave vector k; is in the direction of Ry. Thus, the required

solution for Equation 3.43 is

eiksRo 1 .
Dg — / LU XV (5e By ) e *oray. (3.47)
RO 47

Applying the curl to the exponential function in the integrand, Equation 3.47

61 sS40

_47TRO

Since we are assuming that the light does not interact with the material beyond the

Dg = k, x k, x / (5€ - Ep)e ™V (3.48)

scattering incident, the relationship between Dg and Eg at the point being considered
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is simply Dg = €Eg. The electric field of incident light is periodic in its propagation,

E; = Eoe**. We introduce the simplifying notation for the scattering vector,
G = /((56 ‘Ep)e ®TqV = /((56 -Eg)e'rdV, (3.49)

where the phonon wave vector is defined in terms of the light’s initial and scattered
wave vectors as q = ky; — k;. Then Equation 3.48 becomes

eiks Ry

Eq=—
S 4w Roe

k, x k; X G. (3.50)

The change in dielectric tensor element can be related to the elasto-optic properties

of the material through the relationship
5(€71)ij = Pijkitin (3.51)

where p;ji; are the elasto-optic tensor elements and u; are the strain tensor elements.
Since the fluctuations in the dielectric are small, we note that 6(e™');; = 1/e—1/e;; =
(eij—e€)/(e€i;) = —(de;;) /€. For isotropic materials, which have only two independent

elasto-optic tensor elements, the fluctuation in the dielectric tensor becomes
Seij = —€* [2pagus; + proundis) - (3.52)

(This simplification can be shown by expanding the sum in Equation 3.51 over kl and
considering the cases where i = j and ¢ # j.) The displacement vector associated

with the excitation of the wave vector q is
u = uye'd”, (3.53)

and individual tensor elements are found by the symmetric combination of the

displacement gradients:

1 /0u; Ou; 1. i
Wi =y (0@' * &CZ) 3 (woigj + uojqs) € (3.54)

With this, we can find the components of the scattering vector G:
Gi = /(56,-onje_iq'rdV = —62 / [2p44u2-j +p12u”(5@-j] one_iq'rd\/. (355)

Noting that the volume integral for a general strain tensor elements is

/UijG_iq'rdV = /(1/2)2 (U()iq]' + UOjQz‘) qu.rdv = (1/2)2‘/(“0%% + Uojqi), (356)
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Equation 3.55 becomes
Gi = —€%iV (paa(uoiqj + wo;@i) + pr2uaqidij) Eoy, (3.57)
which, in vector form, is
G = -V [Paa(uo(q - Eo) + q(uo - Eo)) + praEo(uo - q)] - (3.58)

The power dP scattered into the solid angle df2 is
2
LLPO (%) _ %msy?, (3.59)
where L is the length of the interaction volume V', and F, is the incident power. This
is equivalent to the power [, of light scattered per unit solid angle in an amorphous
material normalized by initial light power [y and scattering volume V' where, a and b
represent the polarizations of incident and scattered light, respectively. Since light is
scattered from fluctuations due to sound waves propagating in the material, we need
to consider the scattering by both longitudinal and transverse phonons.
First, we will consider the power scattered by transverse sound waves. In this
case, the displacement vector u is perpendicular to the phonon wave vector q. Thus,

up - q = 0 and Equation 3.58 becomes
G = —eQin44 [LI[)(q : E()) + q(ll() : EO)] . (360)

There are two independent directions of polarization possible with a transverse sound
wave: u can be parallel to the plane containing kg and k; (often called the horizontal
plane), or it can be perpendicular to this plane (called the vertical axis, with direction
kg x ky). This is depicted in Figure 3.6, where 6 is the angle between incident and
scattered wave vectors, and the incident electric field vector is polarized in the plane
perpendicular to k;. The angle between the vertical kg x k; axis and the vector Eq
is denoted by . It is measured CW from the vertical axis.

For the case where u is in the plane of kg and k;, we note that
q - Eo = qFycos(0/2)sin,
ug - Eg = ugFEpsin(0/2) sin 1,

(3.61)

so that Equation 3.60 simplifies to

G = —€%iVpyy [qEy cos(0/2) sinYug + ugEy sin(0/2) sin ¢q] . (3.62)
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—>1u

4y a
Figure 3.6: A schematic example of the scattering process of light from a fluctuating

dielectric constant. The plane of kg x k; is in the page, while vectors perpendicular
to this (i.e. coming out of the page) are represented by filled filled circles.

We can find the magnitude and direction of the scattered electric field using

Equation 3.50, and noting that

ks x kg x ug = kg(kg - ug) — kzug = ksug cos(0/2)ks — kzuy,

(3.63)
ks X ks X q= ks(ks : q) — kqu = ksq Sln(8/2>k3 - kqu,
the scattered electric field is
etks o 0 0
Eg = 47TR0662in44E0 [q cos 5 sin (kgug cos §ks — k?guo)
.0 . .0 9
+ ug Sln§smw kgqsin §k5 — kiq (3.64)
eikSRO . 2 . " . 9 A . 6 ~
= Ik etV puaEogkug [sm Ykg — siny (cos §u0 + sin Eq)] .

For the scattering orientation, cos gﬁg + sin gq = IA{S, and thus we conclude that
transverse waves propagating in the horizontal plane do not contribute to the Brillouin
intensity.

Next, we consider displacement waves u parallel to kg x k;. We have the

relationships

q-Eq = qEycos(0/2)sin,
0 0 cos(0/2) (3.65)
Uy - E = ugFEycos,

which lead to the scattering term

G = —€%iVpyy [qEy cos(0/2) sinyug + 1o Fy cosq] . (3.66)
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Again, the magnitude and direction of the scattered electric field are found using

Equation 3.50, with the cross products

ks x kg x ug = kg(kg - ug) — kzug = —kzu, (3.67)
ks x kg x q = kg(ks - q) — k3q = ksqsin(0/2)ks — kzq.
The electric field of the scattered light is
eiksfo , ', ) ,
Es = 47TR0€€ 1V pas By {—qks cos 5 sin Yug + ug cos Y (k‘gq sin §ks — ksq)}
ethsfo N 6 P
= o €iV puaEoquoks [— sin ) cos 7o + cos (sm §k5 - q)} (3.68)
eths fo 0 0 -
= — InEe iV paaEoquoks [sin 1 cos §ﬁ0 + cos ¢ cos §(ks X ﬁo)] .

The scattered light is polarized in the plane perpendicular to the wave vector kg as
expected.

At this point, we can compare the polarization of the scattered electric field to
that of the incident light. The incident light is polarized in the plane perpendicular
to ky, such that

E, = E, (sinw(fq X 1g) + cowﬁ()). (3.69)

The polarization of the scattered light, as seen in Equation 3.68, is simplified to
7 . 9 - ~ . A~
Eg = FEgsin 5 | cos (ks X 0g) + sinyuy |, (3.70)

and we can see that the two electric fields are perpendicularly polarized for transverse
sound waves.
We can relate the intensity of the scattered light to the elasto-optic coefficient pyy
through Equation 3.59. Taking the dot product of E, from Equation 3.68, we get
—2
V2piy| Eo*¢*|uol ké 2Q

Es|? =
|Es] (47 Ry)? €89

{sin2 Y + cos® 14 : (3.71)

Since the sound wave is a thermodynamic fluctuation, it can be considered to be a
combination of two oscillators with total mean kinetic energy kgT. The sound wave
has frequency w, = qur, where v is the transverse sound velocity, so the mean kinetic

energy is

Vpa? = ZVP(UTC])2|U0|2 = kpT. (3.72)

N | —
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The scattered wave vector in the material can be written as k% = e(wg/c)?* = €(2m/)\)?;
then the scattered power is
1 (dP) B 4m2kpTet 5 0

Ir \aq = ————— i, Ccos* —. (3.73)

A pv2. 2

It is of interest to note that the angle of polarization of the incident light does not
affect the scattering intensity; however, light scattered from these transverse waves
will be polarized perpendicularly to the incident light. The power of light scattered
for transverse-acoustic phonons is usually measured experimentally as
Am?kpT e'p?, 0

N o cos” 7, (3.74)
T

Ivg = Igy = L)V

where V' and H denote incident and scattered polarizations vertical or horizontal to

the scattering plane containing k; and kg.

Longitudinal sound waves have a displacement vector u parallel to the phonon

wave vector q. Writing
q-Ey = qFEcos g sin ¢,
ug - Eg = ugEy cos g sin 1), (3.75)
Up - q = Uog,

equation 3.58 becomes

0 0
G = -4V {p44 (qEO coS 3 sin Yug + ugEy cos 3 sin wq) + p12U0qE0:|

0 (3.76)
= —€e%iVquoEy {2})44 cos o sin¥q + p12E0:| .
With this, and the relationships
A A 2 A 2 . 0 " 2 A
ks x kg x q = kg(ks - q) — ksq = kgsin —ks — k5q,
2 (3.77)

ks x kg x By = kg(ks - Eo) — k2Eq = k2 sin sin kg — k2E,

we can determine (using Equation 3.50) the field scattered from longitudinal sound
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waves:
eik‘sRo ) )
E, = 47TR0€6 %V quoEy [2;044 Ccos = sin ¢ <k’5 sin — ks - ksq) + P12 <k§ sin #sin kg — kéEoﬂ
eiks Ro
=R eiV quo Eok} [21944 oS — smw (sm “kg — ) + D12 (sm 0 sin ¢k,
— (sin VEon + cos PEqy ) }
eiks Ro ) A ) )
= eiV quoEok? [ 2p4y cOS® = sm (0 (ks X Eov) — pi2 cos B sin ) (ks X Eov)
— P12 COS ¢EOVj|
¢iks Ro 0 ) ) )
= IR eiV quoEok? {sin P (2]944 cos? 3 + P COS 0) (kS X Eov) + P12 COS ¢Eov] )
Tl

(3.78)
We can see that the scattered light is polarized in the plane perpendicular to the wave
vector kg. If incident light is polarized vertically (» = 0°), then the light scattered
will also be polarized in the vertical direction. Likewise, if light is initially polarized
in the scattering plane (1) = 90°), then scattered light will also be polarized in this

plane. The scattered power, from Equation 3.59, is

1 (dP) B ArkgT €

m\a) ™ v

0 2
sin? ¢ (2p44 cos? 3 + p12 COS 9) + p, cos® w] ; (3.79)

for vertical and horizontal incident polarized light, this simplifies to

Ar?kpT €
Iyy = IOVA—LLBPFP%%
L
An?kgT e 5 0 2 (3:80)
Igg = 1)V 2paq COS> = + pracosf | .
A v 2

3.3.3 Principles of Multiple Beam Interference

In order to experimentally measure these scattering intensities at low frequency shifts,
we turn to the method of Fabry-Perot interferometry and multiple beam interference
[7, 75]. Fabry-Perot interferometers are used to analyze the detailed structure of
spectral lines by measuring the interference patterns from light near to normally
incident on plane parallel plates. Typically, these plates will be coated on one side

with a metallic film in order to increase their reflectivity.
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When light is incident on a transparent, plane parallel glass plate, a large number
of reflections will occur at the plate surfaces. This results in a series of beams with
decreasing amplitudes on either side of the plate. Consider such a glass plate with
thickness d and refractive index n', surrounded by a material with index n. If a
monochromatic light wave E with amplitude Ej is incident on the plate with angle
0, then the wave will be reflected and transmitted at both parallel surfaces. Here, for
waves entering the glass plate, r and ¢ are the reflection and transmission coefficients,
or the ratio of reflected or transmitted and incident amplitudes. Similarly, ' and
t' are the reflection and transmission coefficients for light exiting the plate; these
are defined by Equation 3.27 or 3.29 for incident light that is s- or p-polarized. A

schematic of the multiple beam reflection is seen in Figure 3.7.

tt'E, tt'r"? Ey tt'r" Ey

Figure 3.7: Multiple internally reflecting beams in a transparent parallel plane glass
plate. A series of waves with decreasing amplitudes exit on either side of the plate.

The complex amplitudes of the reflected waves are
rEy, tt'r' Foe, t'r"3 Eye?, . (3.81)

and the complex amplitudes of waves transmitted through the plate (ignoring the

unimportant phase factor between reflected and transmitted waves) are
tt'Ey, tt'r"? Eoe®, tt'r" e, (3.82)

From the principle of reversibility, we come to the conclusion that ' = —r and
tt' +r? = 1 so long as none of the energy is absorbed. The phase difference between

subsequent transmitted or reflected waves is o, which corresponds to double traversal
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of the glass plate. To find this phase difference in terms of the properties of the
glass plate and light source, we consider the optical path length difference A between

reflected light beams with amplitudes rEy and tt'r’ Ey:

) — nx. (3.83)

Here, x is the distance that the reflected light with amplitude r Ey has traveled before
the second reflected light ray reaches the top surface of the plate; see Figure 3.7.
Then, with the relationships x = 2dtanf'sinf, and n’sin® = nsinf, the optical

path length difference becomes
A =2n'dcosd’ (3.84)

and the phase difference between subsequent reflected or transmitted waves is given

by /
27N 4dmn'd
5 = — = 9/ .
" ™ cost’, (3.85)

where ) is the wavelength of light outside of the glass plate.

Since the waves are mutually coherent, if they are focused by a lens at a specific
point (P for reflecting waves and P’ for transmitted waves), they will interfere, giving
summed amplitudes Fyg for reflection from the first surface and Fyr for transmission
from the second surface. For the most general case with unknown phase shift d, the

amplitude of the reflected waves interfering at point P is

Eor = rEy — tt'rEy <ei5 + 7220 B0 Bt 4 )

= rEy — tt'rEye® (1 + (r2e) 4 (r2e)? + (r?e®)® + ) (3.86)
tt'r Eye' 1—e
= ko - 1—r2ed rEo <1 —r2eid )

Here, we note that for the special case where § = 2mm and m is an integer value,
the interference of the reflected waves at point P is entirely destructive. For a
non-absorbing material, since there are no reflections from the first surface, all light
must be transmitted. On the other hand, if § = (2m + 1)7, then the amplitude of the
reflected light’s electric field is at its maximum. The intensity of the reflected light is
simply

1—e 1—e® 1 —cosé
— * 272 — 92,2
Ir = Eoror = 1"k (1 —T2ei5> <1 - r26—i5> = 60(1 +7r4) —2r2cosd (387)
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We can perform a similar analysis of the transmitted waves. The amplitude of

the waves interfering at point P’ is

_ ) , . 1—1r2E,
Eor = tt'E, (1 + 7726y 4 6300 g pBdi0 ) = (1% (3.88)
— reet

and the intensity of the transmitted light is

) 1 (1 - 12)2e2
_ . _ 2\2 2 — 0
Iy = EorEgp = (1 —17°)°E; <1 _r2ez‘5) (1 _T2€i6) (147 —2r2cos§’

(3.89)

For the case when 0 = 27mm and no light is reflected, the transmitted amplitude is

Eor = Ey which corresponds to all light being transmitted. Equations 3.87 and 3.89
can be simplified by substituting cos§ = 1 — 2sin?(§/2):

(2r?/(1 —r?))?sin* 2 Fsin®2
IR/IO = 5 N2 i 20 = . 295
L+ (2r2/(1 —r?))?sin” 5 1+ Fsin®§ (3.90)
1 1 .
]T/-[O - = )

1+ (2r2/(1—7r?))2sin*2 1+ Fsin®

N[

where [y = E? and F = (2r?/(1 — r?))? is called the coefficient of finesse, or finesse
factor. This value will depend on the mirror reflectivity and flatness.

To this point, we have considered glass plates with no metallic coating. However,
the partially transparent metallic films on the mirrors within an FP interferometer
will absorb a fraction of the light intensity. The expression for transmittance and

reflectivity must be rewritten to include the absorbtance term A:
t'+r*+A=1 (3.91)

With this, the normalized transmitted intensity becomes

AN 1
Ir/ly=11-— . 3.92
r/1y < 1—7"2> 1—|—Fsin23 (3.92)

The light wave will also undergo an additional shift ¢ upon reflection from the metallic

surface. Then the phase shift § becomes

2mn'd
5= 7;” cos 0’ + 26. (3.93)
0

Generally speaking, d is large enough and )y small enough that the effects due to ¢

can be neglected.
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3.3.4 Fabry-Perot Interferometry

This discussion of Fabry-Perot interferometry is based on references [7, 75, 82, 85, 86].

The multiple beam interference patterns from plane parallel plates are used in
Fabry-Perot (FP) interferometers, allowing measurement of the Brillouin spectra to
a resolution of GHz or MHz frequencies. Within the FP are two very flat, highly
reflecting semi-transparent surfaces. These are typically glass plates mounted exactly
parallel to each other and with adjustable spacing d between them; the gap is usually
filled with air such that n’ = 1. The inner surfaces of the plates are coated with
semi-transparent metallic films with high reflectivity, and the outer surfaces are
slightly prismatic to avoid unwanted glass-air reflections. Light is typically incident
normal to the mirrors within the interferometer, such that cos@ = 1. The air gap
d is on the order of millimeters to centimeters for interferometers; if the spacing is
much larger, the mirror apparatus can be used as a resonant laser cavity.

For a set mirror spacing d, the FP will only measure maximum transmission
for specific wavelengths, determined by Equations 3.85 and 3.92. For maximum

transmission, it is necessary that 6 = 2rm. Thus the relationship
mAg = 2n'dcos ¢ = 2d (3.94)

determines maximum transmission of light with wavelength \q. The FP acts like
tunable filter, where transmission will be close to maximum over a very narrow
wavelength range, and will drop to near zero outside of this range.

Since ¢ is a function of Ay, if the light source contains multiple wavelengths then
the interference pattern will be the sum of intensity distributions from each individual
monochromatic wavelength component. If the wavelengths cover a range A), (often
called the free spectral range, FSR), then the fringe maximum coefficient m will also

be spread over a distance Am. Differentiating Equation 3.94, we find that

From this (ignoring the negative, which simply indicates that order decreases as

wavelength increases), it follows that the FSR depends inversely on mirror spacing:

AN2Am
2d

AXg = . (3.96)
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Furthermore, the finesse is related to the FSR and the width of a transmission peak

from one wavelength component, 0\, as

Al
F=50 (3.97)

In practice, the spacing d is varied to scan the intensity of light at different
wavelengths. However, all wavelengths that satisfy Equation 3.94 will contribute
to the measured Brillouin intensity. As the difference between wavelengths becomes
larger, overlapping peaks will separate. For example, the m-th order fringe for A,
approaches the (m+1)-th order fringe for (A\g —AXp). In order to accurately interpret
the Brillouin spectra, it would be beneficial to increase the range A)\g. Then the range
of incident light will be contained within the FSR and overlapping will be minimized.
This can be achieved by decreasing the mirror spacing; however, since the finesse is
fixed, this would also broaden the width of transmission peaks and decrease resolution.
Experimentally, the finesse F is limited to values of about 100 due to the quality of
reflective coatings.

It is possible to increase the free spectral range at fixed resolution by placing
multiple FPs (typically 2) with similar spacings in series (tandem). Light will
pass through each FP many times (multi-pass), and both must transmit the same
wavelength simultaneously. Thus the spacings for each interferometer must satisfy
Ao = 2mqdy, A\g = 2mady and so on, where m; are integers. Since both FPs have
slightly different FSRs, one FP will block the neighbouring overlapping interferences.
That is to say, higher orders of light transmitted through the first FP (say Am; = 1)
will not be transmitted through the second interferometer. So if the mirror spacings
are set to transmit a specific wavelength Ay, then the transmission spectra will resolve
both peaks; see Figure 3.8(c). The intensity of light transmitted through the two FPs

18

A2 2 1 Al )2 1
Ir/Iy=(1- 1- 3.98
o/ ( 1—7“%) 1+F2sin“2( 1—7r}) 1+ Fisin®2 (3.98)

2 2

Experimentally, the multiple interferometers will be scanned by simultaneously

changing the mirror spacings (typically by 1-2um) such that, for two FPs, % = f—;

This synchronization condition can be satisfied by having the scanning mirrors of two

interferometers mounted on the same translation stage, with angular offset; this is seen

in Figure 3.9. Typically, light will pass multiple times through each interferometer.
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Figure 3.8: Using more than one FP mirror set allows the resolution of Brillouin
peaks. Image from [86].
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Figure 3.9: Schematic of a tandem Fabry-Perot interferometer. Both scanning mirrors

move to satisfy the condition % = é—; Image from [86].

3.3.5 Determining p;; from Brillouin Spectra

In order to determine the elasto-optic coefficients from the FP-collected Brillouin
spectra, a few special considerations are necessary. These include comparing sample
intensities to reference intensities, accounting for the reflection of light at interfaces,

and determining the relative signs of pis and pyy.

For right-angle scattering geometry (# = 90°) with incident and scattered light

vertically or horizontally polarized, the scattered light intensities from Equations 3.74
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and 3.80 become

Ar?kgT\ € et
Iyy = (L)V — Pty = A—p}
4% ( 0 \ ) U%pu pU%pua
A2k T\ €t et
Igg = | LlV—"~ ) —pi, = A—ph 3.99
HH < 0 \ ) pv%pM pv%pM’ ( )
Ar?kpT et 4
Iyy = <]0V ) = i
4 2002 M 2002 "M

Note that these intensities can be separated into the sample independent factor A =
IV (472kpT/A*), and sample dependent factors of dielectric constant (or refractive
index), density, sound velocity and elasto-optic coefficient. This does assume that the
scattering volume V' is equal for all samples.

The factor A can be difficult to measure experimentally. Absolute values of p;;
are found by comparing the measured intensities of the samples to those for reference
materials with known density, refractive index and elastic and elasto-optic properties
[13, 21, 64, 65, 67]. In this way, the sample independent factor is removed from the
intensity ratios. Typically, toluene or fused quartz are used as reference materials.

The transmission of light through the air-sample interfaces must also be accounted

for. At normal incidence, the transmissivity is

T:<nil)2(12fn>2’ (8-100)

where n is the refractive index of the sample (e = n?) [7, 21, 64]. The experimentally

measured intensities are thus

= Tlas (3.101)

and the elasto-optic coefficient is measured from

o= GHEE)” ()
()

[%)9)1/2 (n;)5 (Zi i 1)2 Ezgi (P12)r,

where the notations g and r represent properties for the glass and reference samples,

(3.102)

respectively. The shear elasto-optic coefficient was found by comparing the sample’s

longitudinal and transverse peak intensities:

Pa = <I > P12 (3.103)

ex
IVV
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The relative signs of pyy and pyo are determined from the HH and VH spectra.
For scattering angle 6, the ratio of HH and VH intensities (which both depend on 0)

18

(3.104)

0
P4 COS 5

2
IHH vy, 2p44 COS2 g —+ P12 COS 0
J() = 7 =~ .
VH U

By measuring how the ratio J(#) behaves with small variations of 6 around 90°; the

sign of p12/pas can be measured:

2ur, (1 1 ( p12) D12
= + -1 - x - 3.105
9=90° vr < 21/2 = 23/2 ) D44 D44 ( )

Thus J(0) is an increasing (decreasing) function of  depending on whether the signs

d.J(0)

do

of p12 and pyy are different (the same).



Chapter 4

Photoelasticity of Non-Oxide Glasses

The photoelastic response of stoichiometric (GeSs);—.(P2Ss5), and (GeSs)1—_.(SbaSs3).
and non-stoichiometric Ge;.5PS, glasses has been investigated. The purpose of this
research is to extend the parameters of the empirical model of photoelasticity to
include non-oxide glass compounds. These systems provide a good starting point
as their compositionally-dependent structures and bonding environments are well
understood. The effect of excess and deficit sulfur on the stress-optic coefficient
is considered with respect to the structure of the non-stoichiometric glasses, and the
magnitude of the stress-optic response in sulfides is compared to that of oxide glasses.

The results and discussion of the stress-optic response in non-oxide glasses have
been published in the Journal of Non-Crystalline Solids [87]. The manuscript of
this article is included in this chapter. Bruce Aitken’s contributions to the research
included the synthesis of the sulfide glasses and review of the manuscript. Josef

Zwanziger collaborated on the discussion and analysis of results.

4.1 Experimental Procedure

4.1.1 Glass Synthesis

Glasses were synthesized by Bruce Aitken and Steve Currie at Corning Incorporated.
The glass-making procedure is described in references [71, 72] and summarized in
Section 2.1 of the included manuscript. Glasses were cut, polished and measured at

Dalhousie University.

4.1.2 Density, Elastic Moduli and Refractive Index Measurements

The procedures for obtaining the densities, shear moduli and refractive indices of the

chalcogenide glasses are described in Section 2.3 of the included manuscript.

66
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4.1.3 Initial Calibration of Sénarmont Optics

The near-IR stress-optic coefficients of sulfide glasses are measured using the
Sénarmont compensator method. The optical components of the experiment are
described in Section 2.2 of the included manuscript. Before measurements could be

taken, the polarizer, analyzer and LCVR needed to be calibrated for 1550 nm light.

First, the angle of extinction of the analyzer was verified. The polarizer was
placed after the laser with its axis at 45° to the horizontal, i.e. aligned with the
z-axis of the system. The analyzer, mounted in an electronic rotation stage, was
placed between the polarizer and the power sensor. At its initial angle, § = 0, the
analyzer is approximately perpendicular to the polarizer but due to its placement
in the rotation stage, an offset is expected. To determine this offset, # was varied
from -95° to 95° in 5° increments. The intensity of light was recorded at each step,
resulting in a roughly sinusoidal curve; see Figure 4.1. The curve was fitted and the
minimum intensity, i.e. the angle at which the polarizer and analyzer are crossed, was

found to be -2.3°.
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Figure 4.1: Intensity of linearly polarized 1550 nm light passing through a rotatable
analyzer as a function of analyzer angle #. The minimum intensity occurs when the
analyzer axis is perpendicular to the initial polarization axis of the light (6 = —2.3°).
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Next, the LCVR must be set to act as a quarter-wave plate in the system. It is
necessary to determine the fast axis angle of the LCVR, as well as the voltage at which
the LCVR acts as a quarter-wave plate for 1550 nm. The fast axis was determined by
setting the LCVR between the crossed polarizer and analyzer and rotating the LCVR
until intensity was a minimized. At this angle, the fast axis is aligned with the axis of
the first polarizer. To determine the retardance, the LCVR was rotated by 45° so that
its fast axis is along the vertical direction. If the LCVR is acting as a quarter-wave
plate, the incident linearly polarized light will become circularly polarized and the
intensity of the resulting light should be the same for all . The voltage applied
to the LCVR was incrementally increased until the intensity measured for 8 = 0°
equalled the intensity at # = £90°. To verify that the light is circularly polarized at
this voltage, intensity measurements were recorded for -95° < 6 < 95° in 5° steps.
The intensity of light does not vary significantly with analyzer angle; see Figure 4.2.
Thus the light is circularly polarized, and the LCVR acts as a quarter-wave plate at
this voltage (V = 2.750 V for 1550 nm). The calibrated optics can now be used to
determine the phase shift of light travelling through stressed glass.

90°

LCVRat 2.130V ]~

180%® ® 1550nm

270°
Analyzer angle (degrees)

Figure 4.2: Intensity (a.u.) of linearly polarized 1550 nm passing through i) an LCVR
(V =2.13 V) with fast axis at 45° to the polarization axis and ii) a rotatable analyzer
as a function of analyzer angle #. The intensity does not vary significantly with 6,
which shows that the light is circularly polarized.
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4.1.4 Applying Stress to Glass Samples

In order to accurately and precisely measure the stress-optic coefficient of a glass,
homogeneous stress is necessary. Our group uses a custom-built strain gage, pictured
in Figure 4.3. The gage consists of a cage system with two solid aluminum plates, a
motorized screw, and a load cell. The glass sample sits between the two parallel plates,
and the screw descends onto the top plate to stress the glass. Often, a compliant
plastic layer is placed between the glass and the aluminum to ensure the stress is as
uniform as possible. A load cell, located below the bottom plate, measures the force

F' acting on the glass sample. The stress ¢ can then be determined from
_F
=7

where A is the area of the face of the glass sample to which force is applied.

o (4.1)

Figure 4.3: Glasses are stressed using a custom-built strain gage.

The uniformity of the applied stressed is visually inspected using a polariscope
(Strainoptics PS-100). The polariscope, or light table, is a Sénarmont compensator
with a fluorescent bulb providing white light. The strain gage is placed between the
table’s two crossed polarizers, and the analyzer is rotated to determine the minimum
intensity of light. If the stress is applied homogeneously, then phase shift of polarized
light traveling through the glass will be equal at all spots and the intensity of light
will be minimized uniformly across the sample. An evenly stressed glass is pictured

in Figure 4.4.
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]

Figure 4.4: A uniformly stressed glass sample exhibiting birefringence. As the linearly
polarized light travels through the glass, its polarization changes. The analyzer angle
that gives the minimum intensity of light in the glass (shown in pink) is offset from
6 = 0. The colour of the intensity of light comes from a tint plate between the sample
and the analyzer.

4.1.5 Determining the Stress-Optic Coefficient

Once the optics have been calibrated and the glass uniformly stressed, the strain gage
is placed on a goniometer and the glass sample is aligned with the light beam. A red
alignment laser (650 nm) in conjunction with near-IR fluorescing pinholes are used
to ensure linear back-reflectance of the 1550 nm laser from all optical components.
Individual stress-optic trials are taken by decreasing the pressure from a maximum
value to a minimum; approximately 10 pressures are applied per trial. For each
pressure, the force applied to the glass is recorded from the strain gage. The analyzer
is rotated by 16° on either size of the angle of minimum intensity in 2° steps. At each
angular step, the intensity is recorded by the PM-100 sensor software for one second
with a rate of 100 counts per second. The intensities are averaged and parabolically fit
to determine the minimum transmission angle, 6, for the applied pressure. Multiple
decreasing pressure trials are performed for light incident on one spot on the face of
the glass, and at least three unique spot locations are measured.

The relationship between angle of minimum intensity 6, phase shift A, applied
force F' and applied stress o is determined by combining Equations 3.11. 3.16, and
4.1. By convention, compressive forces and stresses are negative. Figure 4.5 shows
phase shifts vs applied stress from all trials for one glass sample. The stress-optic
coefficient is determined from the slope of A vs o and the known properties A, d and

A. The uncertainty in C' is determined from the deviation of the slope.
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Figure 4.5: Phase shift A of 1550 nm light as a function of stress ¢ applied to the
chalcogenide glass with composition 0.33GeS,-0.67SbsS3. The stress-optic coefficient

is determined from the slope of A vs ¢ and Equation 3.11.

4.2 Manuscript: “Correlating Structure with Stress-Optic Response in

Non-Oxide Glasses”

The results of the photoelastic response of sulfide glasses and a discussion of the

suitability of the empirical model for non-oxide glasses have been published in the
Journal of Non-Crystalline Solids (doi:10.1016/j.jnoncrysol.2014.07.023) [87]. The

pre-print article is included here. Further discussion of the photoelastic trends follows

in Section 4.3.
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The stress-induced birefringence, known as the stress-optic response, of glasses
in the Ge-P-S and Ge-Sb-S families were measured and correlated with struc-
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1. Introduction

Glass is optically isotropic, but when a uniaxial stress is applied, usually
becomes birefringent. This effect is known as photoelasticity and has been
extensively studied in oxides [1-13]. Early theories of photoelasticity relate
birefringence to atomic structure and polarizability of ions [2], while a recent
empirical model of photoelasticity uses bond length and cation coordination
to predict new zero-stress optic oxide glasses [9]. These non-birefringent
glasses are key components in many products, including fiber optics, optical
research instruments, and projection optics.

Information on the photoelastic response of non-oxide glasses is rather
more limited [14-18]. Chalcogenide glasses have attracted attention due to
their high refractive indices, low phonon energies and superior infrared trans-
mission relative to oxides. They can potentially be used in fiber optics and
telecommunications, photonic devices, and non-linear optics. Understand-
ing how non-oxide glasses react to external stress would be beneficial to the
design of zero-stress optic chalcogenide glasses for birefringent-sensitive ap-
plications.

In this report, we examine the photoelastic response in several sulfide
glass families, including the stoichiometric systems (GeSs);_.(P2Ss5), and
(GeS2)1-4(ShaS3)., and the non-stoichiometric system Gey sPS,. The struc-
ture of these Ge-P-S glasses has been studied extensively [19, 20] and a
considerable amount is known about the bonding and atomic coordination.
Furthermore, from previous studies on photoelasticity, GeS, is expected to
have positive contribution to the stress-optic coefficient, and SbyS3 negative

contribution [17]. We thus expect at least one series to contain zero and neg-
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ative stress-optic glasses. With this structural data and photoelastic data,
we will investigate the empirical relationship between bond length (metal-
licity), coordination and stress-optic coefficient and determine whether the
model that has been successful in oxide glasses [9] can be extended to include

non-oxide glass systems.

2. Experimental Methods

2.1. Glass preparation

Glasses were synthesized at Corning Incorporated; their preparation has
been described in detail previously [19, 20]. Samples were prepared by melt-
ing mixtures of high purity elements sealed in evacuated (107> Torr) silica
ampules. They were heated to 925 °C in a rocking furnace for 48 hrs, then
at to 850 °C for 10 min. Cylindrical glass rods were formed by quenching the
hot ampules in water. Samples were annealed just below 7j, and the rods
were cut to obtain rectangular samples with parallel sides to within 0.03 mm.

Two opposite sides were polished with diamond paste to between 1-15 pm.

2.2. Measurement of the stress-optic coefficient

Under uniaxial stress, glass typically exhibits an index of refraction n, in
the stress direction (the extraordinary direction) that differs from the index
of refraction in the perpendicular direction (n,, the ordinary direction). The
difference results in birefringence in the glass, b = A/l = n. — n,, where
A is the phase difference between ordinary and extraordinary rays and [ is
the thickness of the glass. For stress loads within the elastic region, the

birefringence of a glass is proportional to the applied stress o:

A = Clo. (1)
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The constant of proportionality, called the stress-optic coefficient C, is used
to characterize the glass. Its unit is Brewsters, where 1 B equals 10712 Pa~!.

The stress-optic coefficient was measured at 1550 nm using the Sénarmont
compensator method. The optical components consisted of a collimated laser
diode module (Thorlabs LDM1550), a fixed Glan-Taylor linear polarizer, the
stressed glass sample, a liquid-crystal variable retarder (LCVR) tuned to
act as a quarter-wave plate at 1550 nm (Thorlabs LCR-1-IR1), a rotatable
analyzer identical to the initial polarizer, and a Ge Photodiode power sensor
(Thorlabs S122C).

Fluorescing disks were used to align the laser beam and optical com-
ponents. Stress was applied to the glass samples using a custom load stage.
Glass samples were placed between parallel cage-mounted plates, with a com-
pliant plastic or hard cotton layer placed on either side to promote even stress
and prevent cracking. A motorized screw applied load to the plates, which
was measured using a load cell and meter (Omegadyne).

The glass sample was oriented such that its stress axis was at 45° to the
initial polarizer axis. The LCVR fast axis was aligned with the polarizer
axis, and the rotatable polarizer was initially set to 90°. The polarizer was
rotated by an angle of A/2 to obtain extinction of the light. The birefringence
is b = AM/l, where ) is the wavelength of incident light and [ is the path
length of the glass. Plotting A as a function of o then allows the stress optic
coefficient C' to be determined from Eq. 1.

2.3. Density, shear modulus and refractive index

Densities of the glasses were measured by Archimedes method with a

Mettler Toledo density determination kit. Due to the hygroscopic nature of

4
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some of the P-containing glasses, 99+% ethanol was used as the immersion
fluid.

Elastic properties were determined with a Panametrics-NDT 25DL ultra-
sonic thickness gauge. This device uses sound pulses and their echoes for
samples with known thicknesses to measure longitudinal and shear sound
velocities. The shear modulus G is then derived from G = pv?, where p is
the density and v; the transverse sound velocity.

Refractive indices were measured at 1550 nm using a collimated laser
diode module (Thorlabs LDM1550), a Glan-Taylor linear polarizer, a man-
ual rotation mount oriented horizontally and a Ge photodiode power sen-
sor (Thorlabs S122C). The Brewster’s angles, 6p, were determined by re-
flecting horizontally-polarized light from the glass and rotating to angles of
minimum reflectance. Intensities around this minimum were collected in
1° intervals and fit to find #g. The uncertainty in this value is estimated
to be 1°. The refractive index was then determined from the relationship

0p = arctan(ngass/Mair)-

3. Results

Results for density, transverse sound velocity, and index of refraction are
compiled in Table 1.

In order to check the accuracy and precision of the optical apparatus, the
stress-optic coefficient of a fused silica sample was measured and found to
be 3.3+0.1 B at 1550 nm. This value agrees with reported literature values,
either directly or when extrapolated [3, 5, 18, 21-23].

The measured stress-optic coefficients C' of three glass families, namely

76



Table 1: Density p in g cm ™3, transverse sound velocity v; in mm psec™*

refraction n for sulfide glasses studied here.

Family x P Uy n
(GeSs)1-2(P2S5),  0.10 2.619(5) 1.559(8) 1.92(11)
0.17 2.548(5) 1.514(1) 2.05(13)
0.30 2.377(5) 1.396(3) 2.03(12)
0.40 2.283(5) 1.325(1) 1.96(12)
Geq5PS, 5.0 2.702(5) 1.549(9) 2.02(13)
5.5 2.593(5) 1.48(1) 1.99(12)
5.8 2.601(5) 1.442(3) 1.96(12)
6.0 2.595(5) 1.477(1) 1.99(13)
6.5 2.591(5) 1.530(4) 1.96(12)
7.0 2.536(5) 1.499(2) 2.02(12)
7.5 2.548(5) 1.514(1) 2.05(13)
8.0 2.486(5) 1.467(5) 1.90(11)
10.5 2.413(5) 1.389(3) 1.91(11)
14 2.331(5) 1.337(3) 1.94(12)
(GeSz)1-4(ShaS3),  0.17 3.099(5) 1.506(1) 2.06(9)
0.33 3.385(5) 1.477(3) 2.2(1)
0.50 3.633(5) 1.481(1) 2.4(1)
0.67 3.855(5) 1.488(4) 2.6(1)

, and index of

7
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Figure 1: Stress optic coefficient C' in Brewsters as a function of P2S5 content for stoichio-

metric (GeSz)1—5(P2S5). glasses. Uncertainties are determined from repeated measure-

ments.

(GeSs)1-4(P2Ss)., GeasPS,, and (GeSs)1_,(SbyS3),, are reported in Figs. 1-
3 respectively. Both stoichiometric families show roughly linear dependence
of C' on composition (P2S5 or ShyS3 content), but with larger variation in the
magnitude of C' than is typically observed in oxides. The nonstoichiometric

family shows a strongly nonlinear variation of C' with composition.

4. Discussion

All the data sets shown indicate that, as expected, the stress-optic coeffi-
cient is strongly dependent upon composition, and also that the magnitude
of the effect exceeds that observed in oxide glasses. We now outline an ex-
planation for these observations based on the structural model previously

developed for oxide glasses.
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Figure 3: Stress optic coefficient as a function of SbsS3 content for stoichiometric

(GeS2)1-2(SbaS3). glasses. Uncertainties are determined from repeated measurements.
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4.1. Empirical model of photoelasticity

The empirical model of photoelasticity for oxide glasses predicts the sign
of the stress-optic response based on glass composition and crystalline bond-
ing information [9]. The model conjectures that bond metallicity (correlated
with anion-cation bond length d) and metal-oxygen coordination number N,
are important in describing the photoelastic response. For zero and nega-
tive stress-optic glasses, high metallicity and low coordination numbers allow
bonds to be distorted orthogonal to the stress direction. Lower metallicity
and higher coordination are needed for a positive response. In the linear
optical regime, with wavelengths of 400-700 nm, the response is the average
of these two kinds of contributions. Empirically, zero-stress optic glasses,
where the two effects just balance each other, can be found using the rule

(d/N) =) "z (%) ~05A, (2)

i €/

where the sum is over all compounds in the glass, and z; is the mole fraction
of the ith compound. For sums less than 0.5 A, glasses are found empiri-
cally to have positive stress-optic coefficients, and are found to have negative
coefficients for sums greater than 0.5 A.

We can begin to apply the empirical model to chalcogenide glasses by
considering the stress-optic coefficients of some stoichiometric compositions
as measured by Linke and co-workers [17]. Structural data for the compo-
nents making up these systems (as well as the thiophosphates studied here)
are summarized in Table 2. The correlation of the measured stress-optic
coefficients [17] with the molar averaged d/N. for stoichiometric families is

presented in Fig. 4. In all cases, the stress-optic coefficient increases as the
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Table 2: Bond length d, metal-chalcogen coordination number N., and ratio d/N,. for

components of glasses examined in the present work.

Compound d (A) N. d/N.(A)

SboS3 2.54 3 0.85
ASQSG3 2.43 3 0.81
ASQSg 2.25 3 0.75
GeSs 2.2 4 0.55
P,S; 21 4 (3) 0.53(0.70)
Ss 1.71 2 0.86
50
| (ARSI
30 (GeSy)(AsyS3) & 1
20 f & 1
¢ A .
2 9 2
@) A
-10 F 8 i
o]
=20 DDSO 4
-30 | - ]
—40 | Eo 1
750 1 ! 1
0.5 0.6 0.7 0.8 0.9
<d/N> (A)

Figure 4: Correlation of stress-optic coefficient C, in Brewsters, with molar averaged
d/N, in Angstroms, for stoichiometric non-oxide glasses. Data for C' and compositions

from ref. [17], Table 1, and values for d/N, for the components from our Table 2.
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d/N, ratio decreases, matching the trend for oxide glasses. This finding sug-
gests that the empirical model developed for oxides may be extensible to
the non-oxide case. In addition, the (GeSy),(AsyS3)1—, glass series contains
glasses with both positive and negative stress-optic coefficients. The zero-
stress optic composition is thus estimated to occur when when (d/N.) is
between 0.65 and 0.68 A, somewhat larger than the empirically determined
0.50 A found for oxide glasses. This increase will be discussed more in the

following section.

4.2. Stoichiometric (GeSs)1—y (P2Ss ). and (GeSs)i1—. (Sb2Ss3 ). glasses

The structure of thiogermanophosphate glasses has been investigated by
Cherry et al. [19]. The (GeSy)1-.(P2S5), series contains two types of phos-
phorus structures: 3-coordinated PSs3/,, and 4-coordinated S=PSs/,. The
germanium atoms are found exclusively in 4-coordinated GeS,/, polyhedra.
There is no P-P or Ge-Ge bonding, but some excess sulfur (from the for-
mation of PSs/,) is found in -S-S- chains. The relative quantities of these
components are re-plotted in Figure 5 for convenience. Broadly, as P5S5 con-
tent increases, PSs/ and S=PS;3/, units increase, with a ratio of about 1:3,
while the GeS,/, content decreases.

The stress-optic coefficient decreases monotonically as the P»S5 content
increases. From the data in Table 2 and the structural data in Fig. 5 and
ref. [19], we can estimate (d/N,) in these glasses and correlate it to the stress-
optic coefficient. The results are plotted in Fig. 6. The correlation is strong
and negative, similar to the results in Fig. 4. We note that the zero stress-
optic composition occurs at (d/N.) ~ 0.557 A, larger than observed in oxides.

Also, we found that if the detailed structural components of Fig. 5 are not
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Figure 5: Estimated atomic fraction of Ge, P and S participating in various possible bonds

in (GeSa)1-,(P2S5).. glasses as a function of PS5 content, after ref. [19].
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Figure 6: Correlation of stress-optic coefficient C' in Brewsters with molar averaged d/N,

for (GeS2)1—4(P2S5). glasses, using structural data from ref. [19].
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Figure 7: Correlation of stress-optic coefficient C' in Brewsters with molar averaged d/N,

for (GeSa)1-4(SbaS3).. glasses, using crystalline data from Table 2.

used, but only the crystalline data from Table 2 to estimate (d/N.), then the
correlation with C' is poor and has the wrong sign. In oxides the d/N, model
also requires detailed structural input (beyond just the crystalline compo-
nent data) in cases where the glass former undergoes significant changes in
coordination, as in borates [10].

The structures of stoichiometric (GeS;)1_,(SbaS3), glasses have been
studied by IR and Raman spectroscopies, and are described in terms primar-
ily of GeS,/, and SbS3/; units. The Ge-Sb-S glass family may also contain
small amounts of Ge-Ge or Sb-Sb bonds in the Ge-rich or Sbh-rich composi-
tions respectively; no evidence for -S-S- groups is seen in the stoichiometric
compositions [24]. We observe that the stress-optic coefficient in these glasses
decreases with SbyS3 content; using a simple structural model based only on
GeSy/2 and SbS;/,, and the data in Table 2, we can correlate (d/N.) with C.
The results are plotted in Fig. 7. The correlation is again excellent, with the

zero stress-optic composition occurring at (d/N,) ~ 0.625 A.
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While the quantity d/N. correlates with the stress-optic coefficient in the
stoichiometric glasses studied above, we note in every case that zero stress-
optic response is obtained for d/N. significantly greater than the value of
0.5 A seen in oxides. An explanation can be proposed based a reconsider-
ation of the assumptions made in the original d/N, model. In particular,
the bond metallicity was considered to be an important factor in determin-
ing the stress-optic response [9], and metallicity was represented through its
correlation with bond length d [25]. In order to compare different families,
though, Wemple [25] showed that metallicity correlates with dZ,, where Z, is
the anion valence. In oxides, where the electronegativity difference between
the anion (oxide) and cation is inevitably great, Z, could be taken as —2
in nearly all cases. In sulfides, on the other hand, with smaller electronega-
tivity differences, 7, is again nominally —2 but would reasonably expected
to be effectively reduced. For example, in the presence of -S-S- bonding as
observed in the (GeS2)1—.(P2Ss5), samples (Fig. 5), one could obtain a Z, as
small as 0. Generally we would expect a weighted average reduced from —2.

If the empirical model is extended to include a factor Z,, we would predict

that in oxides, zero stress-optic response is obtained at

dZo

~0.5Z0 A, (3)

[

while in sulfides, using an average of our above results,

dZg

~ 0.6Z5 A. (4)

C

If the general correlation with dZ,/N, is correct, the left-hand sides of these

two relation should be equal and thus we obtain

Zo 0.6

—~ — =12 )
Zg 0.5 (5)
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We thus get the reasonable result that the oxide valency is larger than the
(effective) sulfide valency. One could also expect the effective selenide valency
to be lower than that of both the oxides and the sulfides, due to further
decrease in the electronegativity difference between anion and cation. Based
on the arguments above, this would lead an even larger (d/N.) threshold for
zero-stress optic selenide glass. Indeed, we see that for Se-based glass families
(Fig. 4), the zero-stress optic ratio occurs when (d/N.) is between 0.65 and
0.68 A.

While not a proof of correctness of course, this argument does suggest a
reason why zero stress-optic response in sulfides occurs at higher d/N,, in a

way consistent with other chemical principles.

4.83. Non-stoichiometric Geys5PS, glasses

The GeysPS, glass with x = 7.5 is also part of the (GeSg);_.(P2Ss5).
series (with x = 0.167); from this composition, the amount of sulfur is varied
to be either in excess or in deficit of the stoichiometric level. The structures of
these non-stoichiometric glasses, discussed in detail by Cherry et al., are more
complex than those of the stoichiometric Ge-P-S series, due to these sulfur
excesses and deficiencies [20]. Again for convenience the atomic fractions of
the various species determined in the previous study are reproduced here, in
Figure 8. For the case of excess sulfur, the amount of phosphorus in molecular
rings and cages decreases, and the number of 4-coordinated S=PSs/, sites
increases. The amount of -S-S- bonding increases also. In the extreme excess
case with x = 14, the formation of Sg rings was detected. As the amount
of sulfur is decreased below the stoichiometric composition, there is a large

increase in the amount of 3-coordinated PSs/; as the non-bridging S=PSs/,
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is lost. Below x = 6, a new phosphorus cluster (P,;S3) is introduced, and
Ge-Ge, Ge-P and P-P bonding begins to occur. In these sulfur deficient
samples, even though the total coordination number of Ge remains 4, the
coordination of Ge by S is less than 4 due to the progressive formation of
Ge-P and Ge-Ge bonds.

The value of the stress-optic coefficient at 1550 nm varies significantly
with excess and deficit sulfur. Below the stoichiometric level, C increases
with decreasing S content until z = 5.5. The relative amount of GeS,/, also
increases in this range (represented in the model by a decreasing d/N.. ratio),
while phosphorus units transition from mostly 4-coordinated to mostly 3-
coordinated (represented in the model by an increasing d/N, ratio). These
structural changes in the glass system could account for the drop in the

rate of increase of C in this range. Below x = 5.5, the coefficient begins to
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decrease. This decrease is mirrored in the structural data by a decrease in
GeSy/2 units and an increase in metallic Ge-Ge and Ge-P bonding, with P-S
units predominantly 3-coordinated. The lower value of C' is consistent with
the predictions of the empirical model, as a decrease in higher coordinated
GeSy/ and an increase in lower coordinated PS3/, would result in larger d /N,
value. Also, the Ge-Ge and Ge-P bonds are more metallic than Ge-S and P-S
bonds, corresponding in the model to a larger d/N, ratio. Their introduction
into the glassy network could lead to a decrease in the stress-optic coefficient.

In excess of the stoichiometric level, C' increases dramatically with in-
creasing S content. Based on the empirical model, the conversion of 3-
coordinated PS3/, to 4-coordinated S=PS3/, would increase the stress-optic
coefficient. From the structural information, we also see that the amount of
-S-S- bonds increase as S increases above the stoichiometric composition, and
in particular at the highest sulfur excess, Sg rings form. It may be that the
increase in C' is driven by the increase in -S-S- bonding in two ways. First,
as argued above, the quantity dZs, which reflects bond metallicity, would be
expected to decrease as more homopolar -S-S- bonds form, because of the
decrease in effective anion valence Zg. Smaller metallicity favors positive
stress-optic response, so the effect would be to increase C'. Secondly, in the
extreme case of Sg ring formation, a large increase in C' may occur because
these units would essentially decouple from the rest of the network, and the
effect of other bonds such as Ge-S, which are positive stress-optic contribu-
tors, would be appear to be greatly enhanced, although their total content
has not changed much.

Due to the complexity of structures in non-stoichiometric glasses, it is un-
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likely that the empirical model of photoelasticity can be applied in this case
to predict zero stress-optic compositions. However, it can be used in conjunc-
tion with the structural information to describe the photoelastic response in

chalcogenide glasses.

4.4. Magnitude of Stress Optic Response

In addition to the variation in d/N, for zero stress optic sulfide glass
as compared to oxides, it is also notable that the general magnitude of the
stress-optic response is much larger. In oxides, C' is typically in the range
from -4 to +8 B, while in chalcogenides (Fig. 4), C ranges from -40 to 20 B. To
study this difference we used the experimental data in Table 1 to determine
the shear modulus G and shear photoelastic tensor element pyy. The shear

modulus G was determined through
G = p}, (6)

and the photoelastic tensor element through

2GC
P = — 3 (7)

These derived quantities are presented in Table 3.

Matusita and co-workers have compiled similar data on G and pyy for bo-
rate, phosphate and silicate glasses [4-6]. In our data we find that py4 spans a
range from -0.016 to +0.013, while in lead borates, py4 ranges from -0.0230 to
+0.00965, thus about the same magnitudes for positive and negative values.
The index of refraction of lead oxide glasses are similar to those observed

here in sulfides. On the other hand, the typical shear moduli of the sulfide
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Table 3: Shear modulus in GPa and shear photoelastic tensor element p44 for the sulfide
glasses studied here. Quantities are derived from Eqs. 6 and 7 using Table 1 data, and

errors derived by propagation.

Family T G Das
(GeSs)1-2(P2S5),  0.10 6.37(6) -0.014(3)
0.17 5.84(1) -0.0093(17)
0.30 4.63(2) -0.0030(5)
0.40 4.01(1) 0.0026(5)
Gey5PS, 5.0 6.48(8) -0.016(3)
5.5 5.68(7) -0.016(3)
5.8 5.41(2) -0.016(3)
6.0 5.66(1) -0.015(3)
6.5 6.06(4) -0.015(3)
7.0 5.70(2) -0.0127(23)
7.5 5.84(1) -0.0093(17)
8.0 5.35(3) -0.0102(18)
10.0 4.65(2) -0.0100(18)
14.0 4.16(2) -0.018(4)
(GeSz)1-4(ShaS3), 0.17 7.03(2) -0.0043(3)
0.33 7.38(3) 0.0030(3)
0.50 7.96(3) 0.0076(9)
0.67 8.53(5) 0.0130(10)
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glasses are much smaller than those in lead borates, by a factor of 3-5. As
the stress-optic coefficient C' is related to all these quantities through

7’L3

C = ——py, 8

2GP44 (8)
we can conclude that the large variation in C' relative to oxides is due to
the relatively small shear moduli, not py. In other words, the difference in

stress-optic response is primarily mechanical, not photoelastic.

5. Conclusion

The photoelastic trends for stoichiometric sulfide glasses correlate well
with predictions based on anion-cation bond information, or d/N. ratio. An
empirical model for sulfide glasses, similar to that for oxide glasses, is sug-
gested that can be used to predict new zero-stress optic chalcogenide glasses.
However, while in oxides zero stress-optic behavior has been shown to oc-
cur at the threshold (d/N.) ~ 0.5 A, the data shown here indicate that in
sulfides the threshold is higher, about 0.6-0.65 A. We explain this difference
by expanding the treatment of metallicity in the empirical model through
the replacement d — dZ, [25], and noting that in sulfide glasses, the mag-
nitude of Z, is expected to be somewhat reduced as compared to oxides,
due to reduced electronegativity differences. Furthermore, we show that the
much expanded range of stress-optic coefficients observed in sulfide glasses
compared to oxides, is a result of their decreased shear moduli and not the

photoelastic response.
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4.3 Discussion

4.3.1 Improving the Empirical Model with Glass Structure

According to the empirical model of photoelasticity, compounds with larger d/N,
values will have negative contribution to the stress-optic coefficient, while materials
with small d/N, will contribute positively to C. Table 4.1 shows individual d/N,
values for various crystalline sulfur, selenium and tellurium compounds. It has been
shown for oxide glasses that the predictions based on (d/N.) can be improved by
considering the glassy structure of compounds. For example, in crystalline B,Os5,
boron is bonded to 3 oxygen, but in a glass it can be found in 3- or 4-coordinated units.
Incorporating both coordinations into the empirical model closes the gap between
predictive and experimental zero-stress optic compositions in lead borates [42]. The
empirical model is also improved in non-oxides by using the glass structure rather than
crystalline information. Consider the stoichiometric sulfide series (GeSy)1_z(P2Ss)..
From their crystalline structural units, P»S; has bond length d = 2.1 A and
coordination N, = 4 (or d/N, = 0.53 A) and GeS, has bond length d = 2.2 A and
coordination N, = 4 (or d/N, = 0.55 A). According to the empirical model, increasing
P5S5 (decreasing (d/N.) of the glass) should increase the stress-optic coefficient;
experimentally, however, increasing P,S; decreases C'. This can be explained from
the structural information of the (GeSy);_,(P2Ss5), glasses. In these glass, many of
the phosphorus units are surrounded by 4 sulfur atoms, but a significant amount (20
to 25 %) are 3-coordinated by S [71]. When these different bonding environments
are taken into account, the effective empirical parameter is d/N, =~ 0.57 A for P,Ss.
Now, using this improved ratio, the model predicts that increasing PS5 will decrease

C, which is consistent with the experimental results.

4.3.2 Metallicity, Bond Length and Anion Valence

Glasses with zero-stress optic coefficients are found when (d/N,) ~ 0.5 A for oxides,
and when (d/N.) ~ 0.6 A for sulfides. The discrepancy in these predictive parameters
can be explained by the correlation of metallicity with bond length, as discussed in
Section 4.2 of the included manuscript on Ge-P-S and Ge-Sb-S glasses (Chapter 4).
According to Wemple [17], metallicity is correlated not just with bond length d but
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Table 4.1: Anion-cation bond length d (A), cation coordination number N, and
empirical parameter d/N, (A) for crystalline non-oxide compounds

S d N, d/N.| Se d N, d/N.| Te d N, dJ/N,
Tl,S 2.68 3 0.89 [ KaSe 333 4 083]CsygTe 3705 4 093
ShoS3 254 3 0.85 | AspSes 243 3 0.81 | KoTe  3.537 4 0.88
KoS 3176 4 0.79 | PySes 225 3 0.75 | NagTe 3.174 4 0.79
AspS3 225 3 0.75 | NagSe 2943 4 0.74 | Lip;Te 2822 4 0.71
CseS 3712 5 0.74 | LigSe  2.605 4 0.65 | CdTe 2805 4 0.70
SnS 291 4 0.73|ZnSe 2471 4 062 |ZnTe 2632 4 0.66
NagS 2.831 4 0.71 [ SnSe  3.049 5 0.61 | GagTes 2.553 4 0.64
AgeS 2699 4 0.67 | SheSes 2984 5 0.60 | BaTe 342 6 057
CdS 2516 4 0.63 | GagSes 2367 4 059 | PbTe 3231 6 0.54
LipS 2476 4 062 | GeSes 2359 4 059 | ShoTes 3.168 6 0.53
B2S3 1.82 3 061 |SiSep 2225 4 0.56 | SnTe  3.159 6 0.53
ZnS 2342 4 0.59 | BaSe 33 6 0.55| BigTes 3.066 6 0.51
GagSz 2272 4 057 | PbSe  3.061 6 0.51|SiTep  3.044 6 0.51
GeSy 2.2 4 0.55 | BigSes 2.862 6 048 | AsyTes 2927 6  0.49
SiSy 2131 4 0.53 | CdSe 277 6 0.46
BaS  3.187 6 0.53
BisS;  3.05 6 0.51
P5Ss 21 4 0.53
PbS 2967 6 0.49

with dZ,, where Z, is the anion valence. Oxides will have oxygen valence of -2 for all
compounds due to the large electronegativity differences between O and the cation.
In sulfides, however, Z, is expected to be reduced from —2. This is because the
electronegativity differences between anion and cation are smaller for sulfur than for
oxygen. These reduced electronegativity differences can lead to anion-anion bonding
in the glass network; for sulfur chains, Z, could be as small as 0. Thus, if dZ,/N, is
in fact the predictive parameter for zero-stress optic coefficients and is equal for all

glass systems, one would expect (d/N.)o < (d/N.)s (since Zp > Zs).

This argument can be extended to include selenium- and tellurium-based glasses.
The electronegativity differences between anion and cation for the different chalcogens
increase with atomic number (O > S > Se > Te). Then for glasses with zero-stress
optic coefficient, we would expect the empirical parameter (d/N.) to increase in a
similar manner. Depending on the amount of non-stoichiometric anion-anion bonding
in a glass, we might expect for the non-oxides that 0.55 A < (d/N,) < 0.65 A. The

exact value will vary based on the structural similarities between the crystalline and
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glassy compounds, as well as the amount of anion-anion bonding in the network. Still,
this range of (d/N.) can be used as a starting point for predicting new non-oxide
glasses with near-zero stress-optic coefficients.

It could also be possible to use the value of (d/N.) for zero-stress optic non-oxide
glasses to estimate the anion valence and thus the amount of anion-anion bonding in

a glass series. For oxide glasses, the empirical parameter predicting zero-stress optic

dZ,\
(NC)ON—LOA (4.2)

with some experimental variations expected due to the approximate nature of
(d/N,) =~ 0.5 A for oxide glasses. Since the value dZ,/N, should be equal for all

anion types, a non-oxide glass series with zero-stress optic composition at (d/N.)no

compositions is

will have an estimated anion valence of

(Za)no = ﬁ. (4.3)

Consider the glass series (GeSy);_,(P2Ss),. The glass composition with C' ~ 0 B
has the empirical value (d/N,)s ~ 0.557 A. The anion valence is then Zg ~ —1.8,
which corresponds to about 10 % of the sulfur participating in S-S bonds. This
estimation is only slightly larger than the experimentally determined 5 % of sulfur
participating in S-S bonding in the glass network [71]. On the other hand, IR and
Raman structural studies of (GeSs);_,(SbyS3), showed no evidence of S-S bonding
[73], but the anion valence is Z, ~ —1.6 as determined from the value (d/N.)s = 0.625
A for the zero-stress optic composition. This would, in contrast, suggest that up to

20 % of the sulfur is participating in S-S bonding.

4.3.3 Non-Stoichiometric Glass Compositions

Predicting the stress-optic response of glasses with excess or deficit chalcogen is
more challenging than for glasses with stoichiometric amounts of chalcogen. For
stoichiometric glasses, the sign of the stress-optic coefficient can be predicted using
the empirical model and Table 4.1. If (d/N.)yo > 0.65 A, C is expected to be
negative, while if (d/N.)yo < 0.55 A is expected to have positive coefficient. As
discussed in the manuscript, increasing the amount of chalcogen in a glass sample

to excess amounts could i) increase the coordination of cation units, which would
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increase C' according to the empirical model, ii) increase the amount of anion-anion
bonding in the system, which would decrease the valence and thus the metallicity,
leading to an increase in C', or, if the amount of excess chalcogen is large enough
such that chains or rings decouple from the network, iii) enhance the effect of other
cation units in the network. This last effect is likely to increase C' if the stoichiometric
value is positive. On the other hand, if C' is initially negative and the coordination of
structural units within the network does not change, then the decoupling of chalcogen
chains or rings is more likely to decrease the coefficient.

As the amount of chalcogen is reduced from a stoichiometric composition, the
structure and photoelastic behaviour of the glass becomes complex. Deficit amounts
of chalcogen could i) decrease the coordination of cation units, which would decrease
C' according to the empirical model, ii) increase the amount of metallic cation-cation
bonding, which would increase the metallicity of the glass and lead to a decrease in C,
or, iii) enhance the effect of cation units in the network as their relative amount in the
glass increases with small chalcogen deficits. This last effect is likely to increase the
magnitude of the stress-optic coefficient for both positively and negatively birefringent
glasses.

From the discussion above, two general trends are expected:

1. If the stoichiometric C' is initially positive, then increasing the chalcogen content

will increase the stress-optic coefficient.

2. If the stoichiometric C' is initially negative, then decreasing the chalcogen

content will decrease the stress-optic coefficient.

For stoichiometric glasses with positive C', decreasing the amount of chalcogen could
either increase or decrease the stress-optic coefficient, depending on the relative
contributions of decreased coordination, increased metallicity, and enhanced effect
of positive units in the glass. Likewise, increasing the amount of chalcogen in
a stoichiometric glass with negative C' could increase or decrease the coefficient
depending on the increased coordination, decreased valency, and decoupling of
chalcogen chains or rings from the network. A prior knowledge of the structure of these
non-stoichiometric glass series could help in predicting these types of photoelastic
behaviour. Or alternatively, the photoelastic trends of a non-stoichiometric series

could yield insight to the structure of the glasses.
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4.4 Summary

The stress-optic response of GeSy-PoSs;, GeosPS, and GeSs-SboS3 glasses was
measured at 1550 nm. In both stoichiometric glass families, the stress-optic coefficient
decreased from positive values to negative values as the GeSy content decreased.
These trends in the compositional dependence of the stress-optic coefficients are
consistent with predictions based on the empirical model. As the empirical value
(d/N.) increases, C decreases. The predictions of the model are improved by
incorporating the structure of the glass into the model. The discrepancy between
values of (d/N.) for zero-stress optic oxide and sulfide glasses can be explained by
including the anion valence Z, into the discussion of bond metallicity.

The stress-optic response of non-stoichiometric sulfide glasses is more complex.
As the amount of sulfur is varied from excess to deficit, a variety of new bonding
environments are introduced. The coordination of cations can be increased or
decreased, and new S-S or metallic cation-cation bonds can be formed. A
comprehensive structure knowledge of the glass system along with the principles of
empirical model is successful in explaining the photoelastic behaviour.

The magnitudes of the stress-optic coefficients of the sulfide glasses are much
larger than those for oxide systems which also contain zero-stress optic compositions.
However, the elasto-optic coefficients pyy of both glass types are similar in size. Values
of n also overlap, but the shear moduli G are much smaller in the sulfide glasses. Thus
we conclude that the mechanical rather than optical properties cause this difference
in C.

The stress-optic response of stoichiometric sulfide glasses will be further discussed

in Chapter 7 with respect to other models of photoelasticity.



Chapter 5

Wavelength Dependence of the Stress-Optic Response in
Oxide Glasses

The wavelength-dependence of the stress-optic coefficient for binary and ternary
borates, phosphates, silicates, and tellurites has been measured. The motivation
for this research is to determine the effect of various “positive” and “negative”
glass formers and modifiers on the dispersive properties of C', and to examine
whether the empirical model can describe the change in stress-optic coefficient with
incident wavelength of light. Although no glasses with broadband zero-stress optic
compositions were measured, glass families with non-dispersive stress-optic response

have been identified.

5.1 Experimental Procedure

5.1.1 Glass Preparation

Glasses were prepared using conventional melt-quenching techniques. For this
method, stoichiometric amounts of commercial-grade reagents were weighed, mixed,
added to a crucible, and melted in a box furnace. For many glass compositions, the
mixture was initially calcined at between 300-900°C below the melting temperature
for many hours to remove water, ammonia, carbon dioxide and other unwanted
compounds from the reagents. The temperature of the furnace was increased to the
melting temperature of the glass, and the melt was held at this temperature for the
length of time determined to ensure thorough mixing. The crucible was removed from
the furnace and the melt was quickly poured into a metal mold to quench the glass.
The mold was often placed on a hot plate and heated above room temperature to
prevent the quenched glass from shattering. Bubble- and striation-free glasses were
then annealed for 12-24 hr at T below the glass transition temperature to remove

residual stresses.
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The important details of the glass-making procedure for glasses investigated by
ellipsometry are summarized in Table 5.1. Some of the glasses measured in this study
were synthesized by other students and postdoctoral researchers in our lab group.
Leanne Chapman prepared the lead phosphate, bismuth phosphate and lithium borate
glasses. Lisa Zhang prepared the tin phosphate and sodium borate glasses. Marie
Guignard prepared the tin silicate glasses. These glass samples were not quenched but
cooled very slowly from liquid to room temperature; no annealing was required. Their
single-wavelength stress-optic coefficients have been previously reported [1]. Jeremy
Thorbahn prepared the zinc tellurite glasses; their single-wavelength stress-optic
coefficients have been correlated with local structure [55]. The starting reagents,
from Sigma Aldrich unless other wise noted, were ammonium phosphate monobasic
(NH,H,PO,4, ACS reagent, > 98 %), boron oxide (By03, 99 % after heating), silicon
dioxide (SiOg, purum p.a., powder), tellurium dioxide (TeO,, > 99 %), barium
carbonate (BaCOjs, ACS reagent, > 99 % or Alfa Aesar ACS 99-101 % powder),
lead(IT) oxide (PbO, powder, <10 pm, > 99.9 %), zinc oxide (ZnO, puriss p.a., ACS
reagent, > 99 %), lithium carbonate (Li;COg, puriss p.a., ACS reagent, > 99 %),
sodium carbonate (NayCOjs, ACS reagent, anhydrous, > 99.5 %, granular), calcium
oxide (Ca0, 99.9 %), tin(II) oxide (SnO, Strem Chemicals 98 %) bismuth(III) oxide
(BiO3, powder, 10 pm, 99.9 %).

Once annealed, the glasses were cut and polished for optical measurements. The
specific requirements for the glass samples also measured by Brillouin spectroscopy
(binary barium and lead borates, phosphates and silicates) will be discussed later in
Section 6.1.1. For all other samples, the glasses were cut into rectangular cuboids of
varying dimensions using a low-speed saw (Buehler IsoMet, with a Lapcraft diamond
saw blade). Two sets of parallel faces were ground with 1200 grit silicon carbide to
remove any imperfections that would affect the homogeneity of stress. The glasses
were often affixed to a polishing screw so that the sides remained perfectly parallel
when ground. One set of parallel sides was then polished to between 1 ym and 30
pm optical transparency using cotton polishing pads soaked with diamond paste of

decreasing particle size (MetaDi polishing compounds, Buehler).
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Table 5.1: Glass melting details for oxide glass families. The tin phosphates (1) were
prepared in a glovebox. Glass families with (a) were prepared by Leanne Chapman,
(b) by Lisa Zhang, (c) by Marie Guignard [1] and (d) by Jeremy Thorbahn [55].

Glass family Melting Melting Temperature Annealing
temperature time of metal mold temperature
Barium 1500°C 1-2 hr RT-200°C 650°C
borates
Lead borates 1000-1100°C 8-12 hr 400-500°C 350-500°C
Lead barium 1100-1200°C 1 hr RT-500°C 400-500°C
borates
Lithium 1150°C 2 hr 200-350°C 450-500°C
borates(®)
Sodium 1000-1200°C 1 hr 100-200°C 400-500°C
borates®)
Barium 1100-1300°C 12-36 hr RT 450-550°C
phosphates
Lead 1000°C 1-2 hr 300°C 150-350°C
phosphates(®
Zinc 1150°C 1-2 hr RT 450-650°C
phosphates
Lead barium 1050-1200°C 2 hr 400°C 400°C
phosphates
Lead zinc 1200°C 1 hr RT 450°C
phosphates
Barium zinc 1200°C 1-2 hr RT-500°C 600°C
phosphates
Calcium 1100-1400°C 2 hr 300°C 500°C
phosphates
Tin 1050°C 0.5-1 hr RT
phosphatesf(®)
Bismuth 1050 °C
phosphates(®)
Lead silicates 1000-1100°C 8-12 hr RT 450°C
Lead barium 1200-1400°C 2-4 hr RT 450-550°C
silicates
Tin silicates(®) 1500 0.5 hr n/a n/a
Zinc 800 15-20 min 420 325

tellurites(@
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5.1.2 Density, Elastic Moduli and Refractive Index Measurements

Densities, p, were measured by the Archimedes method (Section 3.1.3) using a Mettler
Toledo density determination kit with > 99 % ethanol as the immersion fluid.

Transverse and longitudinal velocities vy and vy, were measured by the ultrasonic
method (Section 3.1.2) using a Panametric ultrasonic thickness gage. The velocities
are related to the elastic moduli C7; and Cyy = G by Equation 3.40.

Refractive indices were determined by collecting the wavelength-dependent ¥ and
A using a Woollam M-2000 ellipsometry and applying a Cauchy fit (Section 3.2.4).
Reflection spectra were measured at 3-10 spots on the unstressed glass surface for
incident angle 6; = 50°, well above the Brewster’s angle for all glass samples. Data
collection times were 20-30 seconds. FEach set of U data were fit using a Cauchy
model and the resulting refractive indices were averaged over all collection locations
to determine n(\); the uncertainty in refractive index was found from the deviation

of n at different reflection locations.

5.1.3 Measurement of Stress-Optic Coefficients

The stress-optic measurements were taken with the ellipsometer in transmission mode,

with 7 = 0°. For this orientation, the reflection coefficients (Equation 3.29) are

s n—1
R = R = (5.1
giving an amplitude ratio of
RP
U = tan~! (%) = tan~!(1) = % (5.2)

For all samples, regardless of applied stress load and wavelength, ¥ is experimentally
measured to be 45°.

The wavelength-dependent parameter A is used to determine the stress-optic
coefficient for glasses with known thickness d and stress according to Equation 3.11.
Stress was applied to the glasses as described in Section 4.1.4. For a glass sample,
the phase shifts A were measured as a function of decreasing stress o, as shown in
Figure 5.1. At least five stresses were applied between maximum and minimum o,
and data collection times were 1-2 seconds for each applied stress. This process was

repeated multiple times, and the location of the incident light on glass face was varied.
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The stress-optic coefficient was determined at each wavelength from the slope of A
vs o for all measurements at all locations on the glass surface; the variation of the

slope gives uncertainty in C'.
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Figure 5.1: Measured ¥ and A for the glass sample 20BaO-80B,03 with 16kg stress
applied. The slope of A vs ¢ at each wavelength gives the stress-optic coefficient C.

5.2 Results

The stress-optic coefficient was measured as a function of wavelength for 21 glass
families. Some glasses show an increase in C' with decreasing wavelength; we will call
this “positive dispersion”. Likewise, “negative dispersion” will be used to describe
decreasing C' with decreasing wavelength. Since C'= —n?p,,/(2G), the dispersion of
pas typically shows the opposite trend as that of C. The change in C' with A\ often
becomes more dramatic as the wavelength approaches the absorption edge; in the
near-IR range, C' typically plateaus, becoming fairly constant as A increases.

The results will be presented in three categories: binary glasses showing positive
dispersion in C, binary glasses with negative dispersion in C, and ternary glass

systems which show both positive and negative dispersion.
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Some measured glasses show sharp peaks between 800 and 1000 nm; these peaks
are artifacts of the strong emission lines of the Xe arc lamp light source. Also, for
most glasses measured, the uncertainty in C'is less than 0.1 B. For glass systems with
larger than average C, such as those rich in ZnO, the uncertainty in C' can be as large
as 0.5 B. Larger uncertainties and fluctuating values of C' with A typically correspond

to glasses which are not completely annealed or unevenly stressed.

5.2.1 Binary Glass Systems with Positive Dispersion of C

The wavelength dependent stress-optic coefficients for barium phosphates and barium
borates are shown in the left sides of Figures 5.2 and 5.3 respectively. Individual glass
samples show C' increasing by 0.4-0.9 B over the measured wavelength range. For both
borates and phosphates, the dispersion becomes stronger as the amount of additive in
the glass is decreased. The absorption edges for these barium containing glasses are
fairly constant with composition, occurring between 250-300 nm. There is slightly less
compositional variation in the dispersion of the elasto-optic coefficients p44, shown in
the right sides of Figures 5.2 and 5.3. Over the measured wavelength range, each py4
decreases by 0.003-0.005. Again, as the amount of additive is increased, glass samples

show stronger dispersive effects in pyy.
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Figure 5.2: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition zBaO-(1-2)B203

The magnitude of the stress-optic and elasto-optic response for zinc phosphate
glasses, shown as a function of wavelength in Figure 5.4, is much larger than that

seen in barium phosphates. This is consistent with previous results [38]. The positive
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Figure 5.3: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition zBaO-(1-x)P505

dispersion in C' is also stronger for these glasses, with the coefficient increasing by as
much as 4 B over the wavelength range. The elasto-optic coefficients pyy show strong
negative dispersion. For both coefficients, the amount of dispersion does not seem to
be affected significantly by zinc content. The absorption edge, found at approximately

230 nm, is also fairly independent of composition.

13 —0.065
— 40zn-60p — 60zn-40p
1t — 50zn-50p i —-0.070
@ —-0.075
2]
5
] —0.080
& 101
9]
] 3 -0.085
£ of
3 —0.090
&
5 4
bl —0.095
T 1 —0.100 — 40zn-60p  — 60zn-60p ]
— 50zn-50p
9 . . . . . . , _0,105 , \ . n n n n
00 300 400 500 600 700 800 900 1000 00 300 400 500 600 700 800 900 1000
Wavelength (nm) Wavelength (nm)

Figure 5.4: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition ZnO-(1-2)P505

The stress-optic and shear elasto-optic coefficients for calcium phosphate glasses
are shown in Figure 5.5 as a function of incident wavelength. The magnitudes of C
and pyy are smaller than zinc phosphates and larger than barium phosphates, but

they vary less with composition. The glasses begin absorbing light at \g &~ 300 nm,
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independent of calcium content, and the amount of dispersion in both C and py, is

equal to that of the barium phosphate (and borate) glasses.
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Figure 5.5: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition zCaO-(1-z)P505

Bismuth phosphates have stress-optic coefficients with similar magnitudes and
amounts of dispersion as calcium phosphates; this is seen in the left side of Figure 5.6.
The absorption edge for all measured glasses is just above 300 nm. The elasto-optic
coefficient pyy (right side of Figure 5.6), however, shows atypical dispersive trends.
The coefficient decreases with wavelength to about 400 nm, and then begins to
increase with decreasing A. While the uncertainty in pyy could account for this dip,
it is unlikely due to its presence in all three glass samples. Below 400 nm, the
refractive index of the bismuth phosphates begins to rapidly increase with decreasing
wavelength, while C' continues to increase at approximately the same rate. This is
further enhanced by the large magnitudes of the refractive index. This is the only
binary glass family measured where the dispersion in n surpasses that in C', resulting
in positive dispersion in the spectra of both C'" and py4.

The stress-optic and elasto-optic coefficients of sodium and lithium borates are
shown in Figures 5.7 and 5.8. Both glass series show similar dispersive trends, with
C increasing by 1-2 B over the measured wavelength range. The refractive indices
for lithium borate samples with additive content x = 0.15 and x = 0.25 could not be
measured, and as such their elasto-optic coefficients could not be determined. The
glass samples 0.35Nay0-0.65B,03 and 0.20Li;O-0.80B203 show anomalous behaviour

in pyy. While the elasto-optic coefficient does generally decrease with decreasing
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Figure 5.6: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition BiyO3-(1-2)P305

wavelength, there is some fluctuation of this value near 400 nm. However, the

magnitude of these fluctuations is small compared to the experimental uncertainty.

The variations likely result from the quality of the Cauchy fit for the refractive

indices, and lead to a total amount of dispersion less than that of the other glasses.

The absorption edges for all samples measured are in the uv-range and do not vary

significantly with composition.
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Figure 5.7: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition xNayO-(1-2)B2O3
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Figure 5.8: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition zLisO-(1-2)B2O3

5.2.2 Negative Dispersion in Binary Glasses

The wavelength dependence of the stress-optic and elasto-optic coefficients for lead
borates, phosphates and silicates is shown in Figures 5.9, 5.10 and 5.11, respectively.
The stress-optic coefficients for all lead-containing glasses show negative dispersion,
with the amount of dispersion increasing with increasing additive content. This is
most dramatic in the borate glasses. Here, for lead content x = 0.35, the dispersion
in C' is minimal, decreasing by about 0.3 B over the wavelength range, whereas for
x = 0.60, the decrease grows dramatically to about 2 B. Lead phosphates and silicates
show decreases in C' of between 1 and 2.5 B for all glasses considered. The amount of
dispersion in the elasto-optic coefficient pyy does not seem to depend on composition
for the lead borates. This is due to increasing amounts of dispersion in the refractive
indices of the glasses as lead content increases. In contrast, the pyy of the phosphate
and silicate glasses become slightly more dispersive with increasing lead content. The
absorption edge for lead borates is between 300 and 400 nm, shifting to the visible
wavelength range with increasing lead content. For lead phosphates, the edge is
further in the uv range, between 200 and 300 nm; lead silicates absorb at the low end

of the visible range, between 400 and 500 nm.

The stress-optic coefficients of tin phosphates and silicates, seen in the left side of
Figures 5.12 and 5.13, show increasing amounts of negative dispersion as the tin

content increases. The highest change in coefficient occurs for the glass sample
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Figure 5.9: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition xPbO-(1-z)Bs03
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Figure 5.10: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition xPbO-(1-2)P505
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Figure 5.11: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition zPbO-(1-z)SiO,
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with composition 0.68Sn0-0.32P505, where C' decreases by 4.5 B. The amount
of dispersion in pyy for the phosphates (right side of Figures 5.12) increases with
increasing tin, while the dispersion in pyy for the silicates (right side of Figure 5.13)
does not seem to depend on composition. The absorption edge for the tin phosphate
glasses is in the uv range, around 350 nm. The tin silicate have absorption edge in the

visible range, between 400 and 500 nm, and increasing with increasing tin content.
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Figure 5.12: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition £SnO-(1-2)P505
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Figure 5.13: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition £SnO-(1-z)SiOs

The stress-optic and elasto-optic coefficients for zinc tellurite glasses are seen in
Figure 5.14. The amount of dispersion in C' increases with increasing zinc content.

This is a contrast to the behaviour of zinc in zinc phosphate glasses (Figure 5.4),
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where varying the amount of zinc in the glass did not affect the amount of dispersion.

The elasto-optic coefficients pyy also show increasing amounts of dispersion with zinc

content.
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Figure 5.14: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition ZnO-(1-z)TeOy

5.2.3 Ternary Glass Systems

For binary systems, different additives can cause either positive or negative dispersion
in the stress-optic response of a glass. It is of interest, then, to investigate ternary
systems with constant glass former and two glass modifiers which have opposite
dispersive properties.

We first consider the substitution of lead oxide for barium oxide in borates,
phosphates and silicates and its effect on the dispersion of the stress-optic response in
these glasses. Figure 5.15 shows the stress-optic and elasto-optic coefficients for lead
barium borates with 40 mol % B,0O3. All glasses show negative dispersion in C'; the
amount of dispersion does not vary significantly with increasing lead content. The
amount of dispersion in pyy decreases with increasing lead content.

The stress-optic coefficients and elasto-optic tensor elements for lead barium
borates with 50 mol % B,O3 are shown in Figure 5.16. The stress-optic coefficient
of 0.2Pb0-0.3Ba0-0.5B,03 increases slightly with decreasing wavelength before
beginning to decrease as the absorption edge is approached. However, this variation
is small; C' changes by only as much as 0.1 B over the measured wavelength range,

which is equal to the experimental uncertainty. As the amount of lead oxide in
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Figure 5.15: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition zPbO-(0.6-2)Ba0-0.4B,03

the glass is increased, C' shows increasing amounts of negative dispersion over the
measured wavelength range. The elasto-optic coefficients show positive dispersion for

all samples; again, the amount of dispersion increases as barium is substituted for
lead.
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Figure 5.16: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition zPbO-(0.5-2)Ba0-0.5B203

Figure 5.17 shows C and py for lead barium borates with 60 mol % B,Os.
The barium-rich sample 0.16Pb0O-0.24Ba0-0.60B,03 shows positive dispersion in C';
The lead-rich
sample 0.24Pb0O-0.16Ba0-0.60B,03 shows slightly positive dispersion, but C' begins

this increase is almost linear over the measured wavelength range.

to decrease as the wavelength approaches the absorption edge. Again, this variation
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in C' is smaller than its experimental uncertainty. From this point, as lead content
is increased, negative dispersion is measured for the stress-optic coefficient. The
lead-rich samples all show positive dispersion of the elasto-optic coefficient; the
barium-rich 0.16Pb0O-0.24Ba0-0.60B;03 shows a small decrease in pyy until about

500 nm, and an increase as the absorption edge is approached.
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Figure 5.17: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition xPbO-(0.4-z)Ba0-0.6B203

Ternary lead barium phosphates and silicates with constant 50 mol % glass
former have also been measured. Figure 5.18 shows the stress-optic and elasto-optic
coefficients for lead barium phosphate glasses. The barium-rich glass samples (PbO <
30 mol %) show positive dispersion in C, while the lead-rich samples (PbO > 30 mol
%) have negative dispersion. The elasto-optic coefficients show similar behaviour as
the additive content is varied. As the lead content of the glass is increased, the
negative dispersion of pyy transitions to positive dispersion; however, this occurs
near the absorption edge (A < 400 nm) more quickly than for visible and near-IR
wavelengths. For example, the glass with 10 mol % PbO has py4 that decreases until
just below 400 nm, at which point the coefficient is wavelength independent. The
glass with 20 mol % PbO is non-dispersive within its uncertainty.

The stress-optic and elasto-optic coefficients of lead barium silicates are shown in
Figure 5.19. All glass samples have C' with negative dispersion, and the amount of
dispersion increases with increasing lead content. The elasto-optic tensor elements
pas are positively dispersive for all glasses measured in this system, and the amount

of dispersion again increases as lead is substituted for barium in the composition.
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Figure 5.18: Stress-optic coefficient C' (left) and elasto-optic tensor element py4 (right)
as a function of wavelength for glasses with composition zPbO-(0.5-2)Ba0O-0.5P505

1.0

0.5}

0.0

—0.5}

=101

Stress-optic coefficient (B)

—1.5}F

— 20pb-30ba-50si
— 30pb-20ba-50si

— 40pb-10ba-50si

—— 50ba-00ba-50si

2850 500 600 700
Wavelength (nm)

200

800 900 1000

Py

0.010

0.008

0.006

0.004

0.002

0.000

— 20pb-30ba-50si
— 30pb-20ba-50si

— 40pb-10ba-50si
—— 50pb-00ba-50si |4

—0.002

—0.004

—0.006

—0.00§00

600 700 800 900
Wavelength (nm)

400 500 1000

Figure 5.19: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition zPbO-(0.5-2)Ba0-0.55104



117

The wavelength dependence of the stress-optic response of barium zinc phosphates
and lead zinc phosphates with constant 50 mol % P,Os5 were also measured. The
binary barium phosphates and zinc phosphates both showed positive dispersion in C,
with zinc phosphates having coefficients with much larger magnitudes and amounts
of dispersion. Figure 5.20 shows the stress-optic and elasto-optic coefficients for the
ternary barium zinc phosphates. As barium is substituted for zinc in the system, the
stress-optic coefficient and the amount of positive dispersion both decrease. A similar

trend is seen for pyy.
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Figure 5.20: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition zBaO-(0.5-x)Zn0-0.5P,05

Figure 5.21 shows the wavelength dependence of C' and py for the ternary lead
zinc phosphate glasses. The stress-optic coefficient transitions from having positive
dispersion for the zinc-rich samples to negative dispersion for the lead-rich samples;
the opposite trend is seen in the elasto-optic coefficient, as expected. The glass sample

with 20 mol % PbO shows no dispersion in py, within its experimental uncertainty.

5.3 Discussion

5.3.1 Zero-Stress Optic Compositions

Many of the glass families exhibiting negative dispersion contain glass compositions
with zero-stress optic coefficient: lead borates, lead barium borates with 40 mol %
B,03, lead phosphates, lead silicates, lead barium silicates with 50 mol % SiOs,, tin

phosphates, tin silicates, and zinc tellurites. Zero-stress optic compositions are also
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Figure 5.21: Stress-optic coefficient C' (left) and elasto-optic tensor element pyy (right)
as a function of wavelength for glasses with composition zPbO-(0.5-2)Zn0-0.5P,05

expected for tin silicates, lead barium borates with 50 and 60 mol % B,Os3, lead barium
phosphates and lead zinc phosphates with 50 mol % P5O5. These glass families show
C which transitions from positive to negative values. Some of the glass systems have
multiple zero-stress optic compositions depending on the wavelength of incident light.
For example, in Figure 5.10, 0.40PbO-0.60P,05 has C' = 0 B at about 280 nm, and
0.45Pb0O-0.55P,05 has C = 0 B between 450 and 550 nm.

It can be interpolated that these negatively dispersive glass families have a narrow
composition range for which C' = 0 B across the probed wavelength range. The
composition is bounded at the lower end by the smallest additive content necessary
to induce C' = 0 B at the absorption edge. At the upper end, the composition range
is bounded by the largest additive content necessary to induce C' = 0 B at 1000
nm. Since C typically plateaus as wavelength increases, the upper bound of the
composition range is expected to have broadband near-IR and IR zero-stress optic
coefficient.

For the glass families measured in this study, the lower and upper composition
bounds for C' = 0 B in this wavelength range are different by about 10 to 20 mol
% of additive. This is within the experimental accuracy of the empirical model in
predicting new zero-stress optic compositions, corresponding to a change in (d/N,.) of
up to 0.03 A depending on the additive and glass former types. It is of no immediate
benefit, then, to incorporate the wavelength of incident light into the empirical model

of photoelasticity. The value (d/N,) remains an adequate initial predictor of near-zero
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stress optic compositions across the visible and near-IR wavelength range.

There are no experimentally measured glass compositions with broadband
zero-stress optic coefficient. The transition between positive and negative dispersion
occurs when C' > 0 B at near-IR wavelengths; all glass samples with C' = 0 B at any

wavelength exhibit negative dispersion.

5.3.2 Effect of Glass Modifier on Dispersion

The binary glasses measured are composed of the glass formers SiOs, BoO3, P2Os5
and TeOy as well as the glass modifiers BaO, CaO, ZnO, PbO, SnO, Nay,O, Li;O
and BisO3. According to the empirical model of photoelasticity, BaO, CaO, NayO
and LisO all contribute positively to the stress-optic coefficient, while PbO, SnO, and
Bi; O3 are negatively contributing modifiers. Zinc oxide, with d/N, = 0.5 A, could
have slightly positive or negative effect on C' according to the model.

It is interesting to note that glasses compositions with positive additives have
positive dispersion, while negative additives induce negative dispersion. One might
expect bismuth-containing glasses to show negative dispersion; however, the empirical
model predicts positive stress-optic coefficients for these glasses (they have (d/N,) <
0.45 A) which could be an influencing factor in the type of dispersion. The zinc
phosphate glasses, all with (d/N.) < 0.45 A, have positive dispersion in C, while zinc
tellurites, with (d/N,) = 0.5 A, show negative dispersion.

In the ternary glass systems, as a positive glass additive is exchanged for a negative
modifier (i.e. as (d/N,) decreases), the dispersion in C' can transition from positive to
negative. This transition is seen in lead barium borates with 50 and 60 mol % B5Os,

lead barium phosphates, and lead zinc phosphates.

5.3.3 Applicability of the Empirical Model

The empirical parameter (d/N.) is important in describing the amount and type of
dispersion seen in a glass sample. Figure 5.22 shows the amount of dispersion of a
glass sample plotted as a function of (d/N.). The amount of dispersion is quantified
by the difference in stress-optic coefficient measured at the absorption edge (C(\))
and away from the absorption edge (C'(Ao + 250 nm)). For borate glasses, the cation

coordination number is estimated as N. = 3.5 to more accurately reflect the glass
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network structure [42]. As (d/N.) decreases, the amount of dispersion also decreases,

transitioning from positive dispersion to negative dispersion at (d/N.) =~ 0.45 A.
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Figure 5.22: Amount of dispersion AC' in a glass as a function of the (d/N.) value.
The amount of dispersion is defined in this report as AC' = C'(X\g) — C (A1), where A\g
is the absorption edge wavelength, and A\; = A\ + 250 nm.

From these results, it seems to be possible to predict the type of dispersion in a
glass, as well as non-dispersive glass compositions. However, these results would also
suggest that non-dispersive glasses will always have positive stress-optic coefficient

since zero-stress optic coefficients are predicted when (d/N,) ~ 0.5 A.

5.3.4 Relationship Between Wavelength and Stress-Optic Coefficient

The stress-optic and elasto-optic coefficients of many various glass systems have
been measured as a function of incident wavelength; these coefficients are shown
in Figures 5.3 to 5.21. The refractive index is another optical property which is
wavelength dependent. Typically, the refractive index is fitted as a function of

wavelength by the empirical Cauchy model:

nA\) =44+ =+ —. (5.3)
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This model was introduced in Section 3.2.4. The coefficients A, B and C are
experimentally determined for different glass compositions. Since the stress-optic
coefficient is the constant of proportionality between induced birefringence b = n.—n,
and applied stress o, it is reasonable that the wavelength dependence of C' can be fitted
using a model similar to the Cauchy model. Also, following the theories concerning
the dispersion of p;;i; in crystalline materials discussed in Section 2.3, it is prudent to
normalize the incident wavelength of light by the absorption edge wavelength of the
glass. Then the wavelength-dependent stress-optic coefficients of glass samples can

be modelled using the pseudo-Cauchy model

C\) =a+b (%) +e (%)2 (5.4)

A full Cauchy relationship, where C' is dependent on (Ag/A)? and (Ag/N)%,
overestimates the wavelength dependence of C' in glass series with positive additives.

Equation 5.4 does a good job at modelling the relationship between C' and Ag/A
for all glass compositions considered in this research. For example, the experimentally
measured and Cauchy-fit stress-optic coefficients of lead borates are plotted in

Figure 5.23 as a function of normalized incident wavelength (Ag/A).
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Figure 5.23: Experimentally measured and pseudo-Cauchy fitted stress-optic
coefficients of lead borates as a function of (Ag/\).
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The parameters a, b, and ¢ as well as the sum of the residuals are given in Table B.1
of Appendix B for all glasses considered in this research. The quality of the fit
can be determined numerically from the residual of the least-squares fit, which is
defined as the square of the difference between the experimental measurement C'
and the fitted value C'(X\) at each (A\g/A). Figure 5.24 shows the residual as a function
of (Ao/A) for the lead phosphate glass series. There is little discrepancy between
measured and fit stress-optic coefficients for most glasses. For all glass samples and
at all wavelengths, the residual is close in value to the experiment uncertainty of
the stress-optic coefficient. Most variations occur for glasses containing typically
negative modifiers as the wavelength of light approaches the absorption edge, i.e. as
(Ao/A) — 1.

0.4

—  40pb-60p —— 50pb-50p — 60pb-40p
— 45ph-55p —— 55pb-45p

Residual (B)

097 03 04 05 06 07 08 09 Lo
Normalized value (A, /X))

Figure 5.24: The residual, defined as the difference between the experimental
stress-optic coefficient C) and the fitted value C'()\) as a function of normalized
wavelength Ao/ for lead phosphate glasses. Residuals near zero are representative of
well-fit data.

The approximately sinusoidal relationship between residual and Ag/\ is present
to varying degrees in all glass families. The lack of randomness in the residual would
seem to suggest that the simple pseudo-Cauchy fit does not entirely describe the

wavelength dependence of C. A model including an exponential relationship between
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C'\ and Ao/ might do better at describing the apparent long-wavelength ‘plateau’ of
the stress-optic coefficient and the rapid increase of C' near the absorption edge of the
glass. Still, this model provides a fairly good and simple estimate of the dispersion
of the stress-optic coefficient which could lead to new insights into the fundamental
photoelastic mechanisms of different glass systems.

The fitted parameter a defines the long-wavelength stress-optic coefficient, while
the parameters b and ¢ give information on the type and amount of dispersion present.
Based on the empirical model of photoelasticity, a relationship is expected between
the long-wavelength stress-optic coefficient and the chemical bonding environment of
the glass. Figure 5.25 shows the coefficient a of the pseudo-Cauchy fit stress-optic
coefficient as a function of empirical value (d/N,). These results are consistent with

the empirical model: a (and C') decreases as (d/N,.) increases.
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Figure 5.25: Fitted parameter a as a function of empirical parameter (d/N.). The
wavelength dependence of the stress-optic coefficient is fitted using a pseudo-Cauchy
model, where C'(\) = a + b(Xg/A) + c¢(Ao/N)>.

Positive and negative values of the parameter ¢ indicate positive and negative
dispersion of the stress-optic coefficient with wavelength, respectively. The size of

this parameter reflects the amount of dispersion present in a glass sample. Larger
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magnitudes of ¢ indicate that the stress-optic coefficient increases or decreases more
dramatically with wavelength near the absorption edge. As the composition of a
glass series evolves and the amount of glass additive (either positive or negative)
increases, the magnitude of ¢ decreases. In ternary glass systems with constant glass
former content, exchanging a positive additive with a negative additive also decreases
the parameter c¢. From the discussion of Section 5.3.3, a relationship is expected
between the amount of dispersion and (d/N.). Figure 5.26 shows the parameter ¢ of
the pseudo-Cauchy fit stress-optic coefficient as a function of empirical value (d/N.).
The decreasing relationship between ¢ and (d/N.) support the claim that the empirical
model can be used to predict the type of dispersion in a glass. Based on these results,
non-dispersive glass compositions are predicted by the empirical model when 0.44 A

< (d/N.) < 0.46 A.
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Figure 5.26: Fitted parameter ¢ as a function of empirical parameter (d/N.). The
wavelength dependence of the stress-optic coefficient is fitted using a pseudo-Cauchy
model, where C'(\) = a + b(Ag/\) + c(Xo/N)?.

The minimum value of the fit A\¢/A = —b/2c gives an estimate of the wavelength at
which the stress-optic coefficient plateaus. For this value to be physically reasonable,

i.e. for all positive wavelengths A, the signs of b and ¢ must be opposite. Some
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glasses, typically those with positive additives, have minimums located at (unphysical)
negative wavelengths. This simply indicates that the stress-optic coefficient will
continue to slowly change as wavelength increases, never fully reaching a plateau. The
model C'(\) = a+ b(Ag/A) + ¢(Ag/\)? could be constrained to force the parameters b
and ¢ to have opposite sign. However, this constraint does not significantly affect the
quality of the fit, or the sign or magnitudes of ¢ or a, but simply results in b ~ 0 for
the affected glasses.

Interestingly, the three fitted coefficients seem to be interrelated. Figure 5.27
shows a linear relationship between ¢ and b. Likewise, Figure 5.28 shows a correlation
between ¢ and a which varies only slightly from linearity. This would suggest that
the stress-optic coefficient could be empirically estimated as a function of normalized

incident wavelength and only one of the pseudo-Cauchy parameters:

C(A) = folho/N,0) = folAo/A, D) = fo( Ao/, ). (5.5)
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Figure 5.27: Fitted parameter ¢ as a function of b. The parameters are determined
from the pseudo-Cauchy model for the stress-optic coefficient, C(\) = a + b(A\g/\) +
C()\o/)\)z.
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Figure 5.28: Fitted parameter ¢ as a function of a. The parameters are determined
from the pseudo-Cauchy model for the stress-optic coefficient, C(A) = a + b(Ao/\) +
C(/\()/)\)Z.

5.4 Summary

The wavelength dependence of the stress-optic coefficient has been measured for
binary and ternary borate, phosphate, silicate and tellurite systems. Glasses with
typically positive modifiers show positive dispersion in C', while those with negative
modifiers have coefficients which show negative wavelength dependence. Ternary
systems have been synthesized with glass compositions exhibiting a transition from
positive to negative dispersion in C' as the positive modifier is gradually replaced
by negative modifier. Interestingly, all glass samples with non-dispersion stress-optic

coefficient have positive values of C'.

The dispersion type was related to the empirical model of photoelasticity. A
transition from positive to negative dispersion was observed when (d/N.) =~ 0.45
A. This observation allows the prediction of new non-dispersive glass compositions.
However, since (d/N.) ~ 0.50 A, these glasses will always have positive stress-optic

coefficients according to the empirical model.
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A pseudo-Cauchy model,

cwen(2) e oo

describes the relationship between stress-optic coefficient and wavelength of incident
light. The parameter a gives the long-wavelength value of . The decreasing
relationship between a and (d/N.) is consistent with the empirical model. The
parameter ¢ quantifies the type and amount of dispersion present for glass samples.
It does not correlate linearly with (d/N.), but there is again a transition from positive
to negative values of ¢ observed at ~ 0.45 A.

Interestingly, the parameters a, b and c¢ are interdependent. ~We conclude
that the stress-optic coefficient can be modelled as a function of A and only one
fitted parameter. Determining the relationship between glass composition and this
parameter is central in developing a comprehensive theory of photoelasticity. The
relationship between a, b, and ¢ and material properties will be further discussed in

Chapter 7.



Chapter 6

Individual Elasto-Optic Tensor Elements p;;;;

Brillouin scattering spectra have been collected for binary lead and barium borate,
phosphate and silicate glasses. The purpose of this research is to determine the effect
of glass formers and of additives with both positive and negative stress-optic response
on the elasto-optic tensor of glasses. The shear element pyy can be extracted from
measurements of the stress-optic coefficient, but p;; and pi have only been reported
for a select number of glasses, typically with positive stress-optic response. For the
glasses considered here, the values of pyy and pis determined from Brillouin scattering
are correlated with both glass composition and empirical parameter (d/N.). The
element pj, remains positive for all compositions considered, but pyy (like C') can have
positive and negative values. The value pq; is independent of both glass composition

and cation bonding environment.

6.1 Experimental Procedure

6.1.1 Glass Preparation

Lead and barium borate, phosphate and silicate glasses were prepared by conventional
melt-quenching techniques. Stoichiometric amounts of commercial-grade lead(II)
oxide (PbO, > 99.9 %, Sigma-Aldrich), barium carbonate (BaCOjs, 99-101 %, Alfa
Aesar), boron oxide (ByO3, 99 %, Sigma-Aldrich), ammonium phosphate monobasic
(NH4H2POy4, > 98 %, Sigma-Aldrich), and/or silicon dioxide (SiOg, purum p.a.,
Sigma-Aldrich) were weighed and mixed.

The lead-containing glasses were synthesized in platinum crucibles. Lead borates
and silicates were placed in an oven directly at 1000-1100°C to melt and held at
this temperature for 8-12 hrs. Lead phosphates, prepared by Leanne Chapman, were
calcined at 550°C for 24 hrs before being melted at 1000°C for 1-2 hrs.

Barium borates and phosphates were prepared in alumina crucibles. The borates
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were melted directly at 1500°C for 1-2 hrs. The phosphates were calcined at 550°C
for 22 hrs and 850°C for 24 hrs, and melted at 1100-1300°C for 12-36 hrs.

The liquids were quenched by pouring into a square metal mold on a brass plate.
For the lead silicates, this mold was at room temperature (RT), while for the lead
phosphates and borates, the mold was heated to 300°C and 400-500°C, respectively.
Barium borates were poured at between RT and 200°C, while barium phosphates
were poured at RT.

After being cast, the glasses were annealed for 12-24 hrs to remove residual
stresses. Lead borates, silicates and phosphates were annealed at 350-500°C, 450°C
and 150-350°C respectively, while the barium borates and phosphates tended to
anneal at higher temperatures of 650°C and 450-550°C.

For all glasses, nominal compositions were confirmed by mass-loss and density
measurements. The compositions of barium phosphates and lead borates and
phosphates were also determined and confirmed from EMP. The barium glasses have
1-7 % Al contamination.

For Brillouin scattering measurements, it is very important for sample geometry to
be consistent between samples so that all measured spectra come from equal scattering
volume. To ensure this, all samples were cut with a low-speed saw (Buehler IsoMet,
using a Lapcraft diamond saw blade) to have a square base of 10x10 mm? with a
maximum variation of 1 mm on either length. The height of the sample cubes was
cut to be > 4 mm to ensure that no scattered light was blocked by the edges of the
sample holder.

Three faces of the glass cube perpendicular to the square base were polished to
1 pm optical transparency, beginning with 1200 grit silicon carbide paper and then
diamond paste of decreasing particle size (30 pym, 15 gm, 9 pm, 6 gm, 3 pm and 1
pum MetaDi polishing compounds, Buehler).

6.1.2 Density, Elastic Moduli and Refractive Index Measurements

The procedure for measuring densities, sound velocities and refractive indices of
the lead and barium borates, phosphates and silicates is described in Section 5.1.2.
Values of n at 532 nm were taken from the wavelength-dependent refractive index

measurements and used for the analysis of the Brillouin spectra.
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6.1.3 Collection and Analysis of Brillouin Spectra

The Brillouin spectra of lead and barium borates, phosphates and silicates were
collected at the University of Michigan with the help of Dr. Michael Aldridge using a
Sandercock six-pass Tandem Fabry-Perot interferometer (TEFPI), using 512-channel
binning. Laser light with wavelength 532 nm and tunable power set to 145 mW
was passed through a beam splitter to separate the light into two beams. The first
reference beam was focused on the TFPI, while the second sample beam followed
a path through the glass sample before being focused on the interferometer. The
sample beam was initially linearly polarized, either in the vertical (V) or horizontal
(H) plane, by passing through a half-wave plate. The polarized beam was focused on
the glass sample, and light scattered at 90° relative to the incident light was collected.
This light was focused, collimated, and passed through a polarizer such that either
the V or H component could be selected. The sample beam was then focused on the
TFPI and compared to the reference beam, resulting in Brillouin spectra similar to

that in Figure 3.5 depending on polarizations selected and glass measured.

Longitudinal and transverse peaks for reference and sample Brillouin spectra
were fit using Fityk [88]. Background noise was subtracted from the spectra where
necessary. Spectral lines were fit with Voigt functions, which are convolutions
of Gaussian and Lorentzian functions. Lorentzian line shapes often result from
homogeneous line-broadening, which is primarily due to collisions of molecules with
other molecules (for liquids or gases) or with phonons in the material (for solids).
Gaussian line shapes result from inhomogeneous broadening, due to local electric
field and frequency variations within a medium [89]. For glass, which has significant
structural inhomogeneity, spectral line shapes tend toward Gaussian. The liquid
toluene, on the other hand, has a near Lorentzian line shape since collision broadening
is the predominant effect. The area under the curve gives the Brillouin intensity,
which needs to be normalized by the number of counts or scans over which the data
is collected. Each count represents a sweep over the frequency range of interest, and
the resulting Brillouin intensity is summed over all counts. The position of the center
of the Voigt peak relative to the Rayleigh peak gives the frequency shift, measured
in GHz. The longitudinal or transverse frequency shift is then related to the sound

velocity and elastic moduli by Equations 3.39 and 3.40. Each Brillouin spectra shows
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Stokes and anti-Stokes scattering; both absolute frequencies and intensities are used
to determine properties of interest.

Data collection for each glass sample began with VV measurements for both quartz
and toluene, typically with 25-50 counts per measurement. The constant replacement
of the references resulted in slight variations in the absolute longitudinal intensities.
This is likely due to changes in the angle of incidence of light on the reference, or
in the focusing of the scattered light on the TFPI. In order to minimize the effect
of these variations on the measured elasto-optic coefficients, the reference intensities
and frequency shifts were taken from the average (and standard deviations) of the
day’s measurements.

Data for p1o was then collected for glass samples. The intensity Iy was measured
at 5-10 spots along the height of the glass cube. Collection times were short for this
relatively intense peak, with only 25-100 counts necessary to resolve the Brillouin
peaks. After peaks were fit, the average longitudinal intensities and frequency
shifts (sound velocities) were used to determine pjo through Equation 3.102. The
uncertainty in this value is related to the standard deviation of the fitted values.

The values of pyy for the glass samples were determined relative to the sample pqo
rather than the reference value. Data collection began with a measurement of the VV
spectra. The glass sample was kept exactly in place, and the optics were adjusted
to collect Iy y. Keeping the sample stationary in this way removes any variations
due to changed angle of incidence or beam focus upon sample replacement. Since
P44 is typically much smaller than pis, a much larger number of scans were necessary
to resolve the Brillouin peaks, ranging from 500 to 5000 counts. Depending on the
magnitude of pyy, the spectra were collected for between 1 and 5 spots on the glass
to determine the standard deviation of the transverse Brillouin intensity.

In order to determine the signs of the elasto-optic coefficients, the HH and VH
spectra for glasses with non-zero pyy were measured at = 85°, 90°, and 95°. Between
100-1000 scans were needed to resolve the Brillouin peaks. The sign of the slope of
Iyp/Ivy gives information on the relative sign, and then the absolute sign of pyy is

determined from independently measured stress-optic coefficients at 532 nm.
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6.2 Results

6.2.1 Refractive Index, Density, Elastic Moduli and Stress-Optic
Coefficient

Refractive indices measured at 532 nm by ellipsometry, densities and sound velocities
as determined from the ultrasonic method are found in Table 6.1. As the amount of
additive content, either barium or lead, is increased in the glass, the refractive indices
and densities also increase. Longitudinal and transverse sound velocities are fairly
constant for barium borates and phosphates. In the lead-based glass systems, vy, and
vy both decrease as = increases; this is most noticeable in the lead borates. For all

glasses, the ratio vy /vy, & 0.55 is independent of composition.

Table 6.1: Refractive indices, densities, and sound velocities (ultrasonic) of lead and
barium borates, phosphates and silicates.

Family x n p (g/ecm?)  wvp (km/s) wvr (km/s)
2Ba0 020 159(1) 2.89(1)  5.15(1)  2.834(5)
[(1-7)By03  0.25 1.60(1) 3.001(5)  5.24(1)  2.872(5)
0.30 1.61(1) 3.375(5)  5.30(1) 2.908(5)
0.35 1.62(1) 3.60(1)  527(1)  2.871(5)
2Ba0 0.35 155(1) 3.26(1)  417(1)  2.287(5)
(1-2)P205 040 1.56(1) 3.351(5)  4.49(1)  2.491(5)
045 158(1) 3.482(5) 4.37(1)  2.387(5)
0.50 1.59(1) 3.652(5)  4.28(1) 2.309(5)
0.55 1.60(1) 3.84(1)  4.30(1)  2.287(5)
2PhO 0.35 1.78(1) 4.598(5) 4.33(1)  2.394(5)
(1-2)Bs03 040 1.81(2) 5.037(5)  4.12(1)  2.281(5)
045 1.86(1) 5.324(5)  3.99(1)  2.198(5)
0.50 1.93(1) 5.67(1)  3.73(2)  2.046(5)
0.55 1.99(3) 5.992(5)  3.57(3) 1.918(5)
0.60 2.03(3) 6.278(5)  3.33(3)  1.779(5)
0.65 2.04(2) 6.514(5)  3.16(3) 1.688(5)
2PbO 0.40 1.67(5) 4.036(5)  3.48(1) 1.895(5)
[(1-2)Py05 045 1.69(1) 4.338(5)  3.44(1)  1.846(5)
0.50 1.71(1) 4.65(1)  3.35(1) 1.774(5)
0.55 L76(1) 5.023(5) 3.20(1)  1.735(5)
0.60 1.80(2) 5422(5) 3.26(1)  1.680(5)
2PbO 050 1.85(1) 5.649(5)  3.38(2) 1.901(5)
(1-2)Si05  0.55 1.92(1) 5.991(5)  3.26(1) 1.814(5)
0.60 1.95(1) 6.392(5)  3.09(1) 1.704(5)
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Elastic moduli calculated from the ultrasonic method and stress-optic coefficients
and shear elasto-optic tensor elements determined from the Sénarmont compensator
method are reproduced in Table 6.2. Barium borates and phosphates and lead
phosphates show an increase in C7; and G as x increases; the opposite trend is
seen in lead borates and silicates. As expected from the empirical model, barium
and lead both decrease the stress-optic coefficients, while only lead induces negative

stress-optic response.

Table 6.2: Elastic (ultrasonic) and photoelastic properties of lead and barium borates,
phosphates and silicates

Family T C11 (Gpa) G (Gpa) C (B) jom
2Ba0 020 76.7(3)  23.2(1)  4.02(15) -0.0447(21)
{(1-2)B203  0.25 85.0(4) 925.5(2)  3.64(13) -0.0453(21)
0.30 94.8(4)  285(2)  2.38(21) -0.032(3)
0.35 100.1(4)  20.7(2)  1.90(17) -0.0268(25)
#Ba0 035 56.6(3)  17.1(1) 1.64(4)  -0.0150(7)
(1-2)P20s 040 67.5(3)  20.8(1)  1.54(4)  -0.0174(8)
0.45 66.6(3) 19.8(1)  1.27(5)  -0.0129(7)
0.50 67.0(3) 19.5(1)  0.96(6)  -0.0092(7)
055 70.9(3)  20.1(1)  0.58(7)  -0.0056(7)
2PbO 0.35 86.1(3)  26.4(2) 220(5)  -0.0203(8)
{(1-2)B203  0.40 85.4(3)  26.2(2) 1.16(5)  -0.0100(6)
045 847(3)  25.7(2)  0.71(2)  -0.0056(3)
050 78.9(3)  23.7(2)  -0.02(2)  0.0001(1)
0.55 76.2(3)  22.0(2) -0.80(2)  0.0048(2)
0.60 69.7(3)  190.9(2)  -1.52(4)  0.0070(4)
0.65 65.0(3)  18.6(2) -2.49(5)  0.0105(5)
2PhO 0.40 49.0(2) 14.5(1)  0.44(2)  -0.0041(3)
[(1-2)P305  0.45 51.2(2) 14.8(1)  0.03(1)  -0.0002(1)
050 52.2(2)  14.6(1) -0.48(5)  0.0029(3)
055 54.4(3)  15.1(1) -1.17(3)  0.0066(3)
0.60 57.5(3)  15.3(1)  -2.38(4)  0.0128(1)
2PbO 050 64.6(3)  20.4(2) -0.32(15) 0.002(1)
[(1-2)Si0y 055 63.6(3)  19.7(2)  -1.83(33) 0.0098(18)
0.60 61.1(3) 18.6(2)  -3.75(11) 0.0187(9)
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6.2.2 Brillouin Results

The sound velocities, elastic moduli and elasto-optic tensor elements determined from
Brillouin scattering spectra are compiled in Table 6.3. The values match well with
those from the previous section. The values of the elasto-optic tensor elements pi2 and
pas are shown in Table 6.3 as well as plotted versus mol % of additive in Figures 6.1,

6.2 and 6.3.

Table 6.3: Transverse and longitudinal sound velocities, elastic moduli and
elasto-optic tensor elements (Brillouin scattering) for lead and barium borates,
phosphates and silicates.

Family x vy (km/s) wp (km/s) Ci; (Gpa) G (Gpa) pi2 Pa4
2Ba0 020 5.19(12)  2.84(9)  78(2) 23.3(8)  0.296(15) -0.0459(80)
(1-2)B20s;  0.25 5.30(11)  2.91(9)  87(2) 26.1(9)  0.279(15) -0.0453(63)
030 5.36(10)  293(8)  97(2) 20.09)  0.251(7)  -0.0376(63)
0.35 5.3209)  290(8)  102(2) 30.4(9)  0.251(4)  -0.0360(52)
2Ba0 035 4.22(13)  231(11)  58(2) 17.4(9)  0.311(7)  -0.0134(9)
[(1-2)P20s 040 4.50(6)  2.54(9)  68(1) 21.7(9)  0.307(4)  -0.0189(9)
0.45 4.45(12)  2.44(10)  69(2) 20.8(9)  0.296(3)  -0.0141(11)
0.50 4.32(11)  2.34(8)  68(2) 20.0(8)  0.285(8)  -0.0104(5)
0.55 4.36(11)  2.34(8)  73(2) 21.1(8)  0.267(5)  -0.0080(3)
2PbO 0.35 4.37(9)  251(16)  88(2) 20(2)  0.211(13) -0.0139(9)
[(1-2)B203 040 4.20(8)  2.29(3)  89(2) 26.4(4)  0.213(19) -0.0109(11)
045 4.00Q8)  221(5)  85(2) 26.0(6)  0.196(19) -0.0059(7)
0.50 3.80(8)  1.94(25)  82(2) 21(3)  0.192(16) 0.0026(2)
0.55 3.54(8)  1.92(2)  75(2) 22.2(3)  0.200(29) 0.0039(6)
0.60 3.32(4)  1.82(5)  69(1) 20.8(6)  0.185(26) 0.0072(11)
0.65 3.13(9)  L7L(7)  64(2) 19.0(9)  0.191(32) 0.0080(14)
2PbO 0.45 343(12)  LOo4(11)  51(2) 16(1)  0.252(25) -0.0053(7)
[(1-z)P20s  0.50 3.38(6)  1.84(10)  53(1) 16(1)  0.245(19) 0.0017(5)
0.55 3.34(11)  1.77(10)  56(2) 16(1)  0.215(18) 0.0057(5)
0.60 3.27(5)  L75(9)  58(1) 16.6(9)  0.220(21) 0.0078(10)
2PbO 0.50  3.29(1) 1.90(17)  61(2) 20(2) 0.205(11)  0.0014(2)
(1-2)Si0s 055 3.19(5)  1.79(6)  61(1) 19.2(7)  0.204(6)  0.0098(35)
0.60 3.06(9)  L172(7)  60(2) 18.9(8)  0.198(7)  0.0130(19)

There is good agreement between the values of pyy determined from stress-optic
measurements and from Brillouin experiments; this is seen in Figure 6.1. The small
inconsistencies likely come from difficulties in stressing the glass cubes homogeneously

for stress-optic measurements. There is also a relationship between elasto-optic
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coefficient and molar % additive. This trend seems to be fairly linear, and does not
strongly depend on glass former considered. Lead borates, phosphates and silicates
have overlapping ranges, while there is some separation between the barium borates
and phosphates. Also, lead-containing glasses have py4 that increases more rapidly
with the addition of x than barium glasses. At x = 0.30, the value of py4 for the barium
phosphates, is nearly equal to that of the lead borates. But, while the lead glasses
transition from negative to positive pyy with increasing x, the elasto-optic coefficient
of the barium glasses remains negative. This is consistent with the predictions of the

empirical model of photoelasticity.
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Figure 6.1: Elasto-optic coefficient pyy shown as a function of additive content. Values
from Brillouin experiments (B) are given by solid lines and filled symbols, while those
from stress-optic coefficients (C) are given by hollow symbols and dashed lines.

The values of pis, seen in Figure 6.2, tend to decrease with increasing molar
% of additive. This is opposite to the trend seen for pyy, and consistent with the

results of previous experiments reproduced in Figure 2.5. Likewise, the values do
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seem to depend on both glass former and additive type. Barium phosphates have
larger pis than barium borates of the same additive content; the same is true of lead
phosphates and lead borates. There also seems to be a difference in the elasto-optic
constants between lead and barium phosphates with the same additive content x, as
well as between lead and barium borates; typically, barium-containing glasses have
larger p1o. Generally speaking, the values of p;5 are between one and two orders of

magnitude larger than those of py4, and for all glasses measured, p; remains positive.
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Figure 6.2: Elasto-optic coefficient p;5 shown as a function of additive content.

The elasto-optic coefficient pq;, determined from the isotropy condition p1; —p12 =
2paa, is plotted against additive content in Figure 6.3. The values of p1; do not seem
to correlate with glass additive composition; its correlation coefficient is R? ~ 0.
There are overlapping values for barium and lead borates with the same additive

content, as well as for lead and barium silicates with the same x. The values for
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the phosphates are nominally larger than those for the borates, with the py;s for lead
silicates approximately equal to those of lead borates. Also, p;1 is lower for pure silica
than for the binary glass systems. If we consider the elasto-optic coefficients of the
other pure glass formers seen in Figures 2.5 and 2.6, the p;; of BoOg3 is about twice
that of SiO, and GeO,, which overlap. The magnitudes of p;; are of the same order

as pi2, which is unsurprising for the small values of pyy measured.
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Figure 6.3: Elasto-optic coefficient p;; shown as a function of additive content. This
value is not measured directly, but calculated from the experimental Brillouin and
elasto-optic results using p11 = p12 + 2paa.

6.2.3 Third Brillouin Peak

Typically, unpolarized Brillouin spectra of isotropic solids will have two peaks at
frequencies corresponding to the transverse and longitudinal sound velocities within
the material. Within the VH spectra of some of the glass samples, however, a third

peak at higher frequencies became discernible for long scan times. An example for
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the glass with composition 40PbO-60B503 is seen in Figure 6.4, with the third peak
highlighted in blue; the area of this peak per count is on the order of that of the
transverse peak. The third peak was found in the VH spectra of lead borates,
phosphates and silicates, while no convincing indication of this peak could be seen
in barium phosphate or borate spectra. For the VV configuration, the peak was not

visible, although scans were performed with less than 500 counts.

-30
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Figure 6.4: Brillouin spectra for 40PbO-60B,03 glass taken over 3000 counts in VH
polarization. The first peak at about + 12 GHz is due to the transverse acoustic
mode. The second peak at about 4+ 20 GHz is the bleedthrough of the longitudinal
peak from the crossed polarizers; this accounts for less than 1 % of the longitudinal

peak measured in VV configuration. A third, unexplained peak is visible between +
20 and 30 GHz; it is highlighted in blue.

The Brillouin intensities per scan and frequency shifts of the third peak are plotted
versus lead content in Figure 6.5. The intensity does not behave linearly with x,
though it does tend to increase with additive with a possible local intensity maximum.
It is important to remember that the intensity can vary slightly depending on how
the sample is aligned, so these trends may be artificial. What is significant, however,
is that the intensities of the third peak are all on the same order of magnitude. The
frequency shift Af of lead borates decreases with increasing lead content; the shifts
of lead phosphates and lead silicates is fairly constant with z. Remembering that the

sound velocities are related to their frequency shifts by v = 2rA f/q, and that g « n,
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we can note that the velocities of the third wave from which the light is scattering,
v3rq, 18 larger than the transverse and longitudinal sound waves. Furthermore, this
third wave shows the same trends as the other two sound velocities, with vs,.4 greatly
decreasing for lead borates and slightly decreasing for lead phosphates and silicates.

Between glass samples, there is an approximately constant relationship, vy /vs.q ~
0.77.
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Figure 6.5: Measured normalized Brillouin intensities and frequency shifts of the third
peak as a function of lead content.

We can conclude that the peak is not an artifact of the interferometer, since it
is measurable in some glass compositions but not others. It is also not exclusive to
one glass former or additive; the glass series £Sn0-(0.33 — x)Zn0-0.67P,05, which
contains positive, negative and zero stress-optic glasses, also exhibits this peak. The
frequency shift of the peak indicates that it is not due to back-scattering within the
glass cube. Also, x-ray diffraction was performed on the two most lead-rich borate
samples to exclude the possibility of scattering from a crystalline phase within the

material; the glass samples were found to be fully amorphous.
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6.3 Discussion

6.3.1 Elasto-Optic Coefficients and the Empirical Model

The empirical model of photoelasticity predicts that glasses will have positive
stress-optic coefficient for compositions with (d/N.) < 0.5 A and negative C' with
(d/N,) > 0.5 A. Since C' = —n’py/(2G), this corresponds to the shear elasto-optic

constant increasing with increasing (d/N.), with values of pyy = 0 near (d/N.) = 0.5
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Figure 6.6: Elasto-optic coefficient pyy as a function of (d/N.). The lead and barium
borates, phosphates and silicates (plotted with lines connecting data points and error
bars) were measured in this study. Glasses labelled (1) are from reference [66], (2)
from [10], and (3) from [13].

Figure 6.6 shows the elasto-optic tensor element pyy plotted versus the (d/N.)
value for our lead and barium borate, phosphate and silicate glass systems and for
previously measured glass systems with known compositions [10, 13, 66]. There is

a correlation between pyy and (d/N,.) for the lead- and barium-based glasses, with
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an increasing trend as expected. The relationship is not perfectly linear, but it is
neither predicted nor expected to be. The transition between negative and positive
pas occurs between 0.46 A < (d/N.) < 0.49 A, which is consistent with the empirical
model for C.

There is more variation in the elasto-optic coefficient of previously measured
glasses with (d/N.). For glasses with (d/N,) > 0.4 A, the elasto-optic coefficient
increases with increasing ratio as one might expect when considering the empirical
model. However, the rate of increase slows above (d/N,) = 0.45 A. Zero-stress optic
compositions are extrapolated for values of (d/N,) > 0.5 A, which is larger than
the empirical model predicts. It is likely in this case that the empirical model is
overestimating the contribution of alkali oxides to the photoelastic response of a
glass; all compositions with (d/N,) > 0.45 A contain NayO, Liy O, or K,O.

Pure GeOy and the calcium aluminosilicates have similar values of py to
the silicate, lead- and barium-based glasses, but have smaller (d/N.) values.
This decreased ratio could be due to an incorrect estimate of bond length and
cation coordination. For example, GeOs is more likely to be 4-coordinated than
6-coordinated in its glass form [90]. The same might be true for Ca and Al
in the calcium aluminosilicates. These glasses have < 20 mol % SiO,, and the
six-coordinated crystalline CaO and Al,O3 compounds used in the empirical model
might have lower coordination in the glass structure.

It is also possible that the glass former type has a significant effect on pyy which
is not currently described by the empirical model. In Figure 6.6, there appear be
two regions of increasing py4: the first region consisting of glass samples with primary
glass former other than SiOs, and the second region consisting of silicate glasses. Also,
there is a difference in magnitude of pyy between barium phosphates and borates with
the same (d/N,) value. This too points to the importance of the glass former to the
photoelastic response of a material. The lead-based glasses do not show the same
variation in py4, but this could be due to their overlapping near-zero values.

Interestingly, while typically C' is larger for pure B,O3 than for binary borate
systems, pyy of pure ByOgz is smaller in magnitude than the coefficients of barium
borates. This is an effect of the much smaller shear elastic modulus of pure ByO3

relative to the mixed glasses.
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Figure 6.7: Elasto-optic coefficient p;o as a function of (d/N.). The lead and barium
borates, phosphates and silicates (plotted with lines connecting data points and error
bars) were measured in this study. Glasses labelled (1) are from reference [66], (2)
from [10], (3) from [13].

Figure 6.7 shows the elasto-optic coefficient p;5 as a function of (d/N.) for our
barium and lead-based glasses and for the other previously measured glass systems
[10, 13, 66]. The empirical model does not consider the individual contribution of
P12, SO it is interesting to see that there does seem to be a correlation between this
coefficient and (d/N.). For all binary glass systems, p;» decreases almost linearly
with increasing empirical ratio. However, the pis of ternary systems deviate from
this behaviour. Consider the AlyO3-NayO-SiO,, Al,O3-Ko0-SiO5 or NayO-Ky0-Si0,
glasses. As the total amount of glass former decreases (and (d/N,) increases), p12 also
decreases. However, for constant amounts of glass former, as one additive is exchanged
for another, the elasto-optic coefficient increases with decreasing (d/N.). Still, this
trend supports the idea that the d/N, values for the alkali oxides (particularly K,O)

are currently overestimated in the empirical model.
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Additionally, the values of p;s show a slight separation with glass former type.
For example, in our binary glass systems, the barium phosphates have larger
coefficients than barium borates with the same (d/N.), and the same is true for
lead phosphates and borates. The coefficients of pure GeO, and the calcium
aluminosilicates are completely separate from those of borates, phosphates and
silicates. As previously discussed, this could result from an underestimation of d/N,
for individual compounds, or it could be indicative of an aspect of the photoelastic

response that is not considered by the empirical model.
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Figure 6.8: Elasto-optic coefficient py; as a function of (d/N.). The lead and barium
borates, phosphates and silicates (plotted with lines connecting data points and error
bars) were measured in this study. Glasses labelled (1) are from reference [66], (2)
from [10], (3) from [13].

Figure 6.8 shows py; as a function of (d/N.) for our lead- and barium-based
glasses, as well as for the previously measured glass systems [10, 13, 66]. There
does not seem to be a definitive relationship between the two values. Some series have

increasing trends between coefficient and ratio, others have decreasing, and some have
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fairly constant p;; across the glass system. Since the two independent elasto-optic
coefficients p1o and pyy for these glass families do seem to show some dependence
on (d/N.), it is possible for the third, dependent coefficient p1; = pia + 2p4s to be
uncorrelated with the empirical model.

The magnitudes of p;; seem to depend on the type of glass former and additive.
Phosphates have the largest coefficients, followed by borates, silicates, GeOs, and
finally the calcium aluminosilicates. Likewise, glasses modified by barium oxide have
the largest coefficients, followed by lead oxide, potassium oxide, and sodium and

lithium oxides.

6.3.2 Comparison to Other Theories of Photoelasticity

While the theories of photoelasticity developed by Mueller, Carleton, Mazzacurati,
Benassi, Harrison and Lines are all derived from varying models and theories
(Lorentz-Lorenz, lattice and atomic strains, DID effects, bond-orbital energies) they
all have one material property in common: the refractive index. While none of these
theories shows universal correlation between prediction and experiment, and some
also incorporate dependence on other material properties, it is still of interest to
examine how p;; depend on n.

Figure 6.9 shows p44 plotted as a function of n for our lead and barium borates,
phosphates and silicates and for previously measured glass series [10, 13, 66].
Generally, as refractive index increases, the elasto-optic coefficient also increases.
This is consistent with previous results, as additives which induce zero and negative
stress-optic response (for example, PbO and SnO) also tend to increase the refractive
index of a glass more than positive additives [42, 43, 53]. For lead borates, phosphates
and silicates, the transition from positive to negative stress-optic response occurs in
the range 1.7 < n < 1.9, with exact value dependent on glass former.

For a given glass former, there does seem to be a fairly linear relationship between
paq and n regardless of modifier type. However, there are still slight separation of the
coefficients with n depending on glass former. For example, barium borates have pyy
with larger magnitude than the barium phosphates with the same refractive index.

The (Eu/Pr);03-doped magnesium calcium aluminosilicate glasses also have larger
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pss than other silicates with similar refractive indices. Still, even with these minor
deviations, the results do reinforce the idea that refractive index is an important

descriptor of the photoelastic response of a glass.
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Figure 6.9: Elasto-optic coefficient pyy as a function of refractive index. The lead and
barium borates, phosphates and silicates (plotted with lines connecting data points
and error bars) were measured in this study. Glasses labelled (1) are from reference
[66], (2) from [10], (3) from [13].

The relationship between p;o and n for our glass systems and previously measured
glass systems [10, 13, 66] is shown in Figure 6.10. Generally, as n increases, the
elasto-optic coefficient pis decreases. However, the majority of the data falls into
two categories: glass families with negative stress-optic additives and glasses with
positive stress-optic additives. The former category follows a linear trend with pio
decreasing slowly with n, while the latter has a more rapidly decreasing linear trend
between pis and n.. Within these categories, there is little variation of pip with
additive type. The pure glass formers SiO; and B5O3 are at the apex of these lines,

while GeO, has similar coefficient and refractive index as the negative additives. The
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dependency between elasto-optic coefficient and n would seem to suggest that po can
be accounted for by a combination of the refractive index of the glass and the type

of additives present in the composition.
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Figure 6.10: Elasto-optic coefficient py, as a function of refractive index. The lead and
barium borates, phosphates and silicates (plotted with lines connecting data points

and error bars) were measured in this study. Glasses labelled (1) are from reference
[66], (2) from [10], (3) from [13].

The values of p;; for the lead- and barium-based glasses and the previously
measured glass series [10, 13, 66] are plotted in Figure 6.11 as a function of n. The
elasto-optic values do not seem to strongly depend on refractive index, just as they
did not depend on additive mol % or (d/N.). However, as with pj2, there seem to be
two regions of values for p;;. The first, with glass compositions containing negative
modifiers, has 0.18 < p1; < 0.28. The second region, composed of glass series with

< 0.18. Typically, the positively modified glasses

~

positive modifiers, has 0.05 < pyy
have n < 1.6, while negatively modified glasses have n > 1.6.
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[66], (2) from [10], (3) from [13].

6.3.3 Appearance of the Third Brillouin Peak

The appearance of a third peak at larger frequencies in the Brillouin spectra of
lead-containing glass samples is unexpected. Typical glass spectra contain peaks
located only at frequencies corresponding to the velocities of longitudinal and
transverse sound waves in the material. No other studies on the Brillouin scattering
of glasses report the presence of a third peak in the VH/HV configuration.

The origin of this peak is ambiguous. It could be due to the scattering from higher
order acoustic modes in the glass. It could also be indicative of a small amount
of phase separation in the glass samples. This could be experimentally verified
through small angle x-ray diffraction. There has been some evidence of Brillouin

scattering from excitonic polaritons (coupled states of the light and excitations) in
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semiconductors, resulting in asymmetry and extra peaks in the Brillouin spectra
[91-94]. Polaritons are most likely to occur for photon energies near to exciton
absorption energies, and the coupling must occur at the surface of the material [91].
While these excitonic interactions are unlikely for pure glass surfaces, they could occur
if small amounts of nanocrystals or microcrystals are present on the glass surface. It
is interesting to note that the glasses with spectra exhibiting this peak all have large

refractive indices relative to the pure glass formers and barium-based glasses.

6.4 Summary

The elasto-optic tensor elements pj;s and psy were measured using Brillouin
spectroscopy for binary lead and barium borates, phosphates and silicates. The third
element p;; was determined from the dependency 2psyy = pi11 — p12. Generally, as
the amount of modifier is increased in a binary glass system, py4 increases and pio
decreases. There was no compositional dependence for py;.

The shear elasto-optic tensor element can be extracted from the stress-optic
coefficient of a glass. As expected, values of pyy from taken from the stress-induced
birefringence matched those determined through Brillouin scattering.

Just as the stress-optic coefficient C' decreases with increasing empirical value
(d/N.), the shear elasto-optic coefficient pyy increases with increasing (d/N.). This is
expected from the relationship C' = —n3p4/(2G). Interestingly , the tensor element
P12 also seems to be described by the empirical model. For both pis and pyy, there is
some separation of values depending on the glass former and additive of the binary
series. The element py; is uncorrelated with (d/N.).

The refractive index is also related to the photoelastic response of a glass: for
binary glass series, as n increases, pyy increases and pis decreases. The values of pio
and py4 are similarly separated depending on the different glass formers and modifiers
present, and p;; again shows no correlated with refractive index.

The three elasto-optic tensor elements will be discussed further in Chapter 7.



Chapter 7

Discussion

7.1 Polarizability Model for Anions and Cations

The empirical model of photoelasticity has been very successful in predicting the sign
of the stress-optic response and new zero-stress optic compositions, but it is unable
to determine the magnitude of C'. This is likely due to the structural differences in
the individual glass former and modifier units between crystalline and glassy states.
Indeed, predictions based on the compounds’ d/N, values are constantly improved
when the glass structure is taken into account. Still, it would be valuable to develop
a model of photoelasticity that is able to predict not only sign but also magnitude of
the stress-optic response.

A model of photoelasticity similar to Mueller’s was proposed by Weyl, focusing
on the electrostatic interactions between anions and cations in the glass network
rather than lattice or atomic effects [95]. The properties that are related to induced
birefringence in the model are the electric density distribution and the polarizability
of the ions, including both anions and cations. Polarizability has been used as a
building block in many other photoelastic theories to relate individual elasto-optic
tensor elements p;; to material properties such as refractive index, bond lengths and
optical deformabilities.

Weyl’s model was developed for materials placed under tensile stress but can
easily be adapted for compressive stress. According to the model, there will be three
contributions to the photoelastic response for a compressive stress. First, the distance
between anion and cation will decrease along the stress axis. This would result in
an increased n., and thus positive contribution to C. Second, the electron cloud of
oxygen will elongate in the direction of the stress, i.e. towards the closest cations.
This also results in increased n., and positive C. Third, if the cation is polarizable,
then its electrons will be repelled in the plane perpendicular to the applied stress.

This would increase n, and contribute negatively to C. The overall contribution to

149



150

C', then, would depend on the relative polarizabilities between oxygen (or anion) and
the cation in the glass.

The model of photoelasticity proposed by Weyl is qualitative rather than
quantitative. The principles described above correlated with the experimental results
of Tashiro [34]. It was determined that the stress-optic coefficient decreased as “more
polarizable” modifiers were added to a glass. However, the exact value of polarizability
for each compound was not specified. It is worthwhile, then, to determine whether
the magnitude of C' can be related to the polarizability of a material.

The total polarizability a of a compound is defined in Section 2.2. It is related
to the density, molar mass and refractive index of an isotropic material through the

Clausius-Mossotti or Lorentz-Lorenz equation:

3M n?—1
o= .
drNpn? + 2

(7.1)

Polarizability is an additive property; for a compound M,O,,, the total polarizability
is
a = zray + yao, (7.2)

where ay; is the polarizability of the cation and « is the polarizability of oxygen in
the context of that compound. Dimitrov et al. assumed that cation polarizabilities
are equal to the free ion polarizabilities, and used Equation 7.2 to estimate the oxide
polarizabilities from the total polarizability of various compounds [96]. They found
that the polarizability of oxygen varies from compound to compound.
In his doctoral dissertation, Martin defined a polarizability parameter,
_may

b
Yyoo

(7.3)

and related it to the stress-optic response of a glass [97]. He determined that as the
value of ¢ increased for different glass compositions, their stress-optic coefficient (or
contribution to C') decreased, which is consistent with Weyl’s model of photoelasticity.
Martin characterized the total contribution of polarizability to the stress-optic
response as »_.x;(e%);, where z; is the mol % of the ith compound in the glass
composition, but found that ef was not a better predictor of zero-stress optic

compositions than (d/N.).
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However, polarizability is an additive property. Therefore it is more applicable to
use an additive approach to determine the effect of polarizability on the stress-optic
coefficient. For each compound, we will consider the relative polarizabilities between
the anion and cation. Then, for a compound M,O,, the relative or normalized
polarizability is

ran + Yyao Q

ay, = = . (7.4)
r+vy r+y

The normalized polarizability «,, should be descriptive of the interation between anion
and cation as their electron clouds are deformed under stress. Then, according to
the principles of Weyl’s polarizability model, the value «,, for a compound will give
information on its contribution to the stress-optic coefficient of a glass.

The total polarizabilities of all glass formers and additives used in this study
were determined using Equation 7.1 with the experimentally measured densities and
long-wavelength refractive indices. Since n is an additive property, the refractive
indices of individual compounds are estimated from the values for binary glass series
measured in this report; density is similarly determined for the glass formers and
additives. For glass systems considered in the literature with compounds not included
in this study, « is taken from the literature [96, 98, 99]. Cation polarizabilities
were estimated to be equal to the free ion polarizabilities according to [96], and the
anion polarizabilities were determined using Equation 7.2. The oxide polarizabilities
were compared to the results of Dimitrov; our experimentally determined values for
BaO, ZnO, PbO, Bi,O; are all up to 1 A® lower.

While the normalized bond polarizability «, can be decomposed into the
individual ionic polarizabilities aj; and o for each compound, these polarizabilities
are not considered individually in the model. In fact, it is unlikely that a,, is a
true representation of the cation polarizability, since it is estimated from the free ion
value. While it is interesting to see the general evolution of ap and aj; between glass
compounds, only «,, (determined from experimental results) is needed to correlated
polarizability with photoelasticity.

Table 7.1 shows the empirical parameter d/N. and the oxide, cation and
normalized polarizabilities for all oxide compounds considered in this thesis. The table
is sorted by decreasing values of a,,. Note that the values d and N, are determined

from the crystal structure of compounds, and can often vary in the glass structure.
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For example, the cation coordination of the alkali oxides typically increases to 6-8 in
a glass. The polarizability «,, on the other hand, is determined from experimental
refractive indices and densities of glasses. As such, the polarizability of a compound
is not expected to vary significantly depending on glass composition.

It is important to note that while the model is developed for the deformation of
electron densities of anions and cations, it is not exclusive to ionic materials. In an
SiO, glass, for example, the discussion is analagous to the deformation of electrons
around silicon (cation) cores and oxygen (anion) cores under uniaxial stress. It is the
polarizability of bonds between the so-called “anion” and “cation” in a glass which

defines its photoelastic response.

Table 7.1: Empirical bonding and polarizability models for oxides. Values labelled
(a) are from [96], (b) from [98], (¢) from [99], and (d) from [100].
Compound ‘ d(A) N, d/N, (A) ‘ ao (A% ay (A% o, (A?)

PbO 2.326 4 0.58 2.4 3.623 3.01
SnO 2.219 4 0.55 3.4 2.587 2.99
Bi, O 1.918 4 0.48 2.6 1.508 2.46
Shy04(@ 1.977 3 0.66 3.2 1.111 2.35
TeO, 2.00 4 0.50 2.0 1.595 2.40
BaO 2.74 6 0.46 2.6 1.595 2.10
K,O® 2.787 4 0.70 2.3 1.98 2.09
Pry05©) 2.67 7 0.38 * * 2.00
SrO(@ 2.581 6 0.43 2.9 0.861 1.89
Eu,04©) 2.3 7 0.33 * * 1.80
SnO,(@ 2.055 6 0.34 1.15  2.587 1.63
Na,O 2.403 4 0.60 2.3 1.14 1.53
CaO 2.408 6 0.40 2.3 0.469 1.38
P,0; 1.55 4 0.39 1.7 0.021 1.22
ZnO 1.98 4 0.50 1.8 0.283 1.04
SiO, 1.58 4 0.40 1.4 0.033 0.94
MgO@ 2.108 6 0.35 1.7 0.094 0.90
Al,O5@ 1.852 6 0.31 1.46  0.054 0.90
B,0; 1.366 3or4 0.46 or 0.34 1.3 0.002 0.78
Li,O 1.996 4 0.50 2.0 0.024 0.68
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7.1.1 The Polarizability Model in Oxides

The stress-optic and elasto-optic coefficients of all oxide glasses measured by
ellipsometry were determined away from the absorption edge, at A\g + 250 nm. For

all glass samples, the empirical parameters

() =2 (w), &

(a) = sz(an)z (7.6)

and

were determined from the individual compound values in Table 7.1 weighted by the
mol % x; of each component. For borates, a coordination number of N, = 3.5 was
used to estimate the value of d/N, for B2Os; this is closer to the bonding environment
of boron in glass [42].

Figure 7.1 shows the stress-optic coefficient plotted as a function of both (d/N.)
(left) and () (right). The value (d/N.) does a good job of predicting zero and negative
stress-optic coefficients; however, it does not describe the stress-optic response of
glasses with positive additives. The correlation between stress-optic coefficient and
polarizability is much better for all compositions. There seems to be a strong
linear trend between C' and («). The fluctuations of positive phosphate and borate
compositions from this trend are likely due to differences between actual and nominal
compositions ((«)), and non-homogeneously stressed glasses (C'). From these results,
the stress-optic coefficient can be estimated from C' ~ —5(«) + 10; zero-stress optic
compositions are predicted when (a) ~ 2 A3,

Figure 7.2 shows literature values of the stress-optic coefficient as a function of
(d/N.) (left) and («) (right). For the majority of glass samples, predictions of the
stress-optic coefficient are improved using (o) rather than (d/N.). However, the
polarizability model does not provide a good correlation with C' for all of the alkali
borates. These values are shown in Figure 7.2; their polarizabilities are all below 1.0
A3. This could be due to a low estimate of the polarizability of pure B,O3; however,
this is unlikely due to the overlap of zero-stress optic borates, phosphates and silicates.
It is more likely that the polarizabilities of lithium, sodium and potassium oxide (see

Table 7.1) are over- or underestimated. Also, the antimony borates have zero-stress
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Figure 7.1: Stress-optic coefficient as a function of (d/N.) (left) and polarizability («)
(right).

optic coefficient at much lower polarizability than all other glass systems. Again,
this could be due to a low estimate of the polarizability of SboO3. The values of the
polarizabilities could be confirmed through calculations of the refractive index of pure
glass additives, or by extrapolating the values of n and p from the measurements of
many binary glasses.

Figure 7.3 shows the elasto-optic coefficient pyy (determined from C, G and n)
plotted as a function of both (d/N.) (left) and («) (right). Again, the parameter
(d/N.) correlates well with zero and positive values of py4, but varies greatly for
negative values of pyy. On the other hand, the polarizability parameter () shows a
strong correlation with the elasto-optic coefficient.

The reasoning behind the applicability of d/N. to the stress-optic response of
a glass is very similar to that of the polarizability. However, the bond lengths
and coordinations are estimated from crystalline materials; for many compounds,
including B5O3, ZnO, and GeOs, this is not representative of the bonding environment
of the cation in a glass. The polarizability model likely succeeds where d/N, fails
for a number of reasons. First, the total polarizability of the ions were calculated
directly from the binary glass systems. Second, birefringence in a uniaxially stressed

glass stems from changes in the ordinary and extraordinary refractive indices of
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the glass. The refractive index of a glass can be related to the bulk polarizability
(Section 3.1.6), and so it is reasonable that differences in «,, could result in different
stress-optic responses. Indeed, many theories of photoelasticity were derived using

the Lorentz-Lorenz relationship (refer to Section 2.2).

7.1.2 The Polarizability Model in Sulfides

The polarizability model can also be applied to sulfide glasses. Table 7.2 shows the
empirical parameter d/N, as well as the oxide, cation and normalized polarizabilities
for the sulfide compounds considered in this thesis. The two parameters are compared
in Figure 7.4, where the stress-optic coefficients of stoichiometric Ge-P-S and Ge-Sb-S
are plotted as a function of (d/N.) (left) and («) (right). The empirical model
of bonding shows the same trend between the two glass series (C' decreasing as
(d/N.) increases), but has a different value of (d/N.) for zero-stress optic glasses
in the two series. Also, without structural information, the model underestimates the
contribution of PySs as discussed in Section 4.3.1. The polarizability model, on the
other hand, shows overlapping values for the two glass series. In fact, the Ge-P-S
and Ge-Sb-S glasses with C' &~ —2.5 B also both have the same (a). The estimation
of (a) for the zero-stress optic coefficient ((a) ~ 3.4 A®) is consistent between the
glass series; however, it is larger than the parameter predicting zero-stress optic oxide
glasses. In this case, the empirical model (with dZ/N,) does a better job at explaining

the increased parameter.

Table 7.2: Empirical bond length/coordination and polarizability models for sulfides
Compound | d (AA) N, d/N. (A) [as (A%) a. (A% a, (AY)

GeS, 2.20 4 0.55 4.40 0.137 2.81
PySs 210 3or4 0.70 or 0.53 2.85 0.021 4.18
SbaS3 2.54 3 0.89 6.657 1.111 4.44

S * * * 0.63 0.000 0.63
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Figure 7.4: Stress optic coefficient of Ge-P-S and Ge-Sb-S glasses as a function of
(d/N.) (left) and polarizability («) (right).

7.2 Wavelength Dependence of the Stress-Optic Coefficient

7.2.1 Wavelength-Dependent Polarizabilities

To this point, the polarizabilities of compounds have been calculated using the
long-wavelength refractive indices. However, the refractive index of a glass is
dependent on the wavelength of incident light. It is expected, then, that the
polarizability is also wavelength-dependent:

_ 3M nf—1
4rNpn3 +2

Q) (7.7)

It is of interest to compute the wavelength-dependent polarizabilities for glass systems
exhibiting positive and negative dispersion.

It is difficult to accurately determine the wavelength-dependent refractive index
for all glass formers and additives. The estimation of n depends on two factors: first,
that the refractive index is an additive property consistently from pure glass former
to pure glass modifier. Second, the experimental values of n for binary glass systems
are determined using a Cauchy fit of ellipsometric U data. The collected ¥ values
can be influenced by the surface roughness of the sample, and the alignment of the
reflecting face with the light source and detector. This can result in an enhancement

or reduction of n as A\ approaches the absorption edge.
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The glass series considered here are the positively dispersive barium borates and
negatively dispersive lead borates. These glasses were cut to have very parallel sides
and polished to 1 pum for Brillouin scattering measurements. Unlike the barium and
lead phosphates, the borates are not strongly hygroscopic. As such, their reflection

spectra are the most likely to be unaffected by alignment and surface roughness.

For the lead and barium borates, the polarizability is negatively correlated with
wavelength: in the near-IR range, («,) is fairly constant with wavelength, and as
A decreases toward the absorption edge, (ay) increases. Here, (o) = >, zi(onn);
as before, calculated for all wavelengths. The increase is more rapid in the lead
borates. The relationship between stress-optic coefficient and wavelength-dependent
polarizability for lead borates is shown in Figure 7.5. For all glass samples, C' decreases
as (o) increases. This trend is consistent with the polarizability model described in
Section 7.1. The decrease in stress-optic coefficient is fairly continuous with ()
across many lead oxide contents, with a small amount of separation in C' at the
endpoints of the series. This separation could be the result of over- or under-estimated
values of C' due to an inhomogeneous application of stress to the glass. Or, more likely,
it could be indicative of other properties contributing to the stress-optic response of

a glass that are not fully described by the parameter a,.

Figure 7.6 shows the stress-optic coefficients of barium borate glasses as a function
of polarizability. For a given glass sample, the stress-optic coefficient increases as the
wavelength-dependent polarizability increases, which is contrary to the polarizability
model described in Section 7.1. This trend further suggests that the dispersion of
the stress-optic coefficient is not entirely described by the polarizability (a,). Still,
between the glass samples, the average stress-optic coefficient does decrease as the
average sample polarizability increases, which is consisted with the polarizability

model.

It is clear from the results of the lead and barium borates that the stress-optic
coefficient depends on wavelength in a way that is not fully described by the
polarizability of a glass sample. To address the dependency of C' on A, we return

to the pseudo-Cauchy fit described in Section 5.3.4.
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7.2.2 Polarizability and the Pseudo-Cauchy Model

The pseudo-Cauchy model applied to the stress-optic coefficient,

CO)=a+b (%) +e (%)2 (7.8)

allows the wavelength-dependent trends in C' to be described by the fitted parameters
a, b and c. The value a gives the long-wavelength stress-optic coefficient of a sample,
while the sign and magnitude of ¢ gives an indication of the type and amount of
dispersion present for a glass sample. Positive (negative) values of ¢ are indicative
of positive (negative) dispersion, while larger magnitudes of ¢ indicate stress-optic
coefficients that increase or decrease more rapidly with wavelength.

Figure 7.7 shows the fitted parameter a as a function of the summed
long-wavelength polarizability («) for borate, phosphate, silicate, and tellurite glasses.
Compared to the empirical parameter (d/N.), the polarizability shows a much better
correlation with this parameter (the relationship between a and (d/N,.) is shown in
Figure fig:a-dnc). Based on the discussion of (a) and C in Section 7.1.1, this is
expected.

Figure 7.8 shows the fitted parameter ¢ as a function of the long-wavelength
polarizability («) for borate, phosphate, silicate and tellurite glasses.  The
polarizability is only slightly better than (d/N.) at indicating the amount of dispersion
in glasses (the relationship between ¢ and (d/N.) is shown in Figure 5.26). While ¢
does tend to decrease as () increases, the polarizability does not correspond linearly
with the amount of dispersion present in a glass. However, the type of dispersion
can be modelled by (a): when (o) < 1.6 A%, glasses exhibit positive dispersion in
C, and for (o) > 1.75 A®, glasses typically have negative dispersion in C. From
these results, non-dispersive values of the stress-optic coefficient are predicted for
glass compositions with (o) ~ 1.7 A3

At present, it is not clear whether the variations between the pseudo-Cauchy fitted
parameters and the polarizability of a glass is caused by experimental variations from
data collection and fitting, or whether «,, alone is not enough to describe the related
parameters a, b and c. Still, the polarizability of a composition can be used to get a
good estimate of the long-wavelength value of C', and also to obtain a decent estimate

of the type and amount of dispersion that the glass will exhibit.
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7.3 The Polarizability Model for Individual Elasto-Optic Tensor Elements

The polarizability seems to describe both the sign and magnitude of the stress-optic
coefficient, so it is of interest to compare the elasto-optic tensor elements p;; to
(o) as well. Figure 7.9 shows the shear elasto-optic coefficient pyy as a function
of polarizability for the lead and barium borates, phosphates and silicates, and
for previously measured literature values. The elasto-optic tensor element increases
nonlinearly as polarizability increases. This is consistent with the trends in the values
of pys determined from the stress-optic coefficients as discussed in Section 7.1.1. The
lithium-containing silicates and pure B,O3 are slightly offset from the other values;

this could be indicative of low estimates of «,, as previously discussed.
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Figure 7.10 shows the tensor element p;5 as a function of polarizability for the same
glasses. For each binary or ternary glass series, p1o does decrease as (o) increases.
However, the values not overlap between different glass formers and modifiers. The
empirical value (d/N.) shows a better correlation with p;o for all glasses considered

(see Figure 6.7). This might suggest that while the shear photoelastic response
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(paa, C) is described by the electronic interactions of anions and cations, the linear
photoelastic response (p12) is described by the chemical bonding environment of the

cation.
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Figure 7.10: Elasto-optic coefficient pj5 as a function of polarizability («). (1) from
reference [66], (2) from [10], (3) from [13].

The elasto-optic coefficient py; is plotted against polarizability in Figure 7.10. Just
as there was no relationship between p;; and glass composition or (d/N.), this tensor
element is not described by ().

The shear elasto-optic response of a glass is described by the normalized sum of
both anion and cation polarizabilities. The value of pyy can also be related to the
other two tensor elements by 2psyy = p11 — p12. However, it is worth mentioning that
the experimental trends in pi5 and py; are not predicted by individual anion or cation

polarizabilities.

7.4 Predicting Other Material and Optical Properties

The polarizability and, to a certain extent, (d/N,) are predictive of the photoelastic

response of a glass. As such, the refractive index of a material could be described
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by (a) or (d/N.) as well. It can be seen in Figure 7.12 that the refractive index is
correlated with both empirical parameters. As either (d/N.) or (a) increases, n also
increases. There is some separation between the values of n for different glass formers
and modifiers described by (d/N.); this separation is less apparent between n and
(), though the phosphate glasses are offset from the rest of the glasses. This might
suggest that the experimentally extrapolated value of (a) for PoOj is overestimated.
Or the phosphorus content in the glass could be higher or lower than the amount

estimated by the nominal composition.

The refractive index is typically correlated with the density of a glass. As such,
we expect a relationship between molar volume V), (which is dependent on density)
and the empirical models. Figure 7.13 shows the molar volume as a function of
both (d/N.) and («). For the borates, silicates and tellurites, molar volume is fairly
constant with glass composition. Phosphate glasses have larger molar volumes that
decrease as a function of (d/N.) or («). The large separation between phosphates and
other glass types is due to the much larger molar mass of P,O5 compared to B2Os,
SiO9 and TeOs.
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The absorption edge of the borates, phosphates, silicates and tellurites also shows
some dependence on both (d/N.) and («); this relationship is shown in Figure 7.14.
There is less variation in Ay with (a). The absorption edge tends to shift to higher
wavelengths as («) increases for the borates, silicates and tellurites. The values are
more scattered for the phosphate glasses.

These results seem to suggest that important optical and material properties can
be predicted by the empirical and polarizability models. The relationship between
polarizability and n is somewhat expected from Weyl’s model. Glasses with higher
polarizabilities should have more attraction between cation units in the structure,
which would result in a more densely packed structure. The correlation with
absorption edge is more surprising. It is not clear at this point why the properties of
the phosphate glass series are separate from the values for the other glass formers as

a function of polarizability.

7.5 Summary

The polarizability model of photoelasticity appears to accurately describe the
stress-optic response of oxide and non-oxide glasses. The polarizability of a material
can be quantified by the sum of the normalized polarizabilities between the “anions”

(e.g. O, S) and "cations” (e.g. Si, Ba, Pb) in the structure.
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The signs and magnitudes of the stress-optic coefficient C' and elasto-optic
coefficient pyy are correlated with the polarizability parameter («)). The parameters of
the pseudo-Cauchy model describing the wavelength dependence of C' also appear to
be related to the polarizability. Furthermore, (o) can be used to estimate important

material properties such as the refractive index and absorption edge wavelength.



Chapter 8

Conclusions

Understanding the origin of the photoelastic response in oxide and non-oxide glasses
is a research topic that has received considerable attention for many years. Perhaps
of equal interest industrially is the ability to design glasses with specific optical
properties. The results of this research have contributed significantly both to
the understanding of photoelasticity in glass and to the correlation of optical and

photoelastic properties with glass composition.

The empirical model of photoelasticity developed by Guignard and Zwanziger has
facilitated the prediction of new zero-stress optic glass compositions based on chemical
bond lengths and coordinations. However, it is not able to predict the magnitude of
the stress-optic response, likely due to the differences between the structure of the
crystalline compounds used to estimate d and N,, and the structure of individual units
in a glass network. A model which considers the distortion of the electron clouds of
“anions” and “cations” is more successful at describing the stress-optic response in
a glass. A polarizability parameter («) is defined in this work as the contribution
from the polarizabilities of individual anions and cations (or individual bonds). This
value quantifies the response of individual bonds in the glass network to stress, and
appears to correlate not only with the sign of the stress-optic coefficient of borates,

phosphates and silicates but also with the magnitude.

The values of «, for individual compounds were determined in this study by
assuming additive relationships for n and p in binary systems, and extrapolating the
refractive index and density for the pure glass former and additive. These values
of a,, could be confirmed by extrapolating the values for many more binary borate,
phosphate and silicate glass systems. Calculations of glassy compounds could also

verify the experimentally determined polarizabilities.

We have determined that it is possible to relate the sign and perhaps also the

magnitude of the stress-optic coefficient of non-oxide glasses to the compositionally
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dependent parameters (d/N.) or («). Zero-stress optic non-oxide glass compositions
are predicted for larger values of (d/N.) or («) compared to oxide glasses. This has
been attributed to non-stoichiometric sulfur-sulfur bonding in the glass network. The
empirical model can accommodate for this by including the anion valence Z, in the
description of metallicity.

The results of Table 4.1 can be used to predict new binary and ternary glass
systems containing zero-stress optic compositions. Values of (d/N,) for glasses with
C = 0 B could be used to estimate the amount of anion-anion bonding present in
the network. The synthesis of selenide and telluride systems would confirm if (d/N.)
increases with decreasing electronegativity differences. It would also be beneficial to
experimentally determine the polarizability parameters «,, for other sulfide, selenide
and telluride compounds. In this way, the relationship between the magnitudes of C'
for stoichiometric non-oxide glass compositions and («) could be explored.

Perhaps the most interesting project remaining for non-oxide glasses is to map the
dependence of the stress-optic coefficient of non-oxide glasses on amounts of excess
and deficit chalcogen. The parameters described in Section 4.3.3 could be tested
to determine whether there is in fact a correlation between stress-optic coefficient,
structure and bonding environments.

The stress-optic coefficients of positively and negatively modified oxide glasses
typically showed positive dispersion and negative dispersion, respectively. From
these results, glass families containing non-dispersive values of C' were predicted and
synthesized. The type of dispersion was related to both (d/N.) and («). With this
knowledge, new non-dispersive glass compositions can be predicted. However, for
oxide glasses, their stress-optic coefficients are expected to always be positive.

The wavelength dependence of the stress-optic coefficient was successfully
modelled using a pseudo-Cauchy fit. The fitting coefficients a, b and ¢ were found to
be interdependent Then any theory of photoelasticity developed to describe C' could
be simplified to a function of A\g/\ and one compositionally-dependent variable. The
polarizability was partially correlated with a and ¢, but it is likely that other factors
are at work. Following the work of Cardona, calculations of the band structure of

glass systems could yield insight into the wavelength dependence of C.
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Individual elasto-optic tensor elements p;; have been measured for lead and barium
borate, phosphate, and silicate glasses. Previous studies have only measured pure
B203, GeO,, SiO; and mixed silicate systems, and no compositions containing
typically negative modifiers. The shear elasto-optic coefficient pyy behaved as
expected from predictions of the empirical model and measurements of the stress-optic
coefficient C'. Interestingly, p12 was also correlated with (d/N.). Comparing pss with
(a)) improved the correlation. For individual systems, p1o decreased as («) increased,
but there was a separation of values between different glass formers and additives.
The last, dependent element py; varied randomly with composition, (d/N.) and («).

The polarizability describes the response of a material to stress in both the stress
direction and perpendicular to it, so it follows that psy relates to (). But p;; and pio
depend on the response in the extraordinary and ordinary directions, respectively, so
it is likely that they depend on different material properties. Indeed, many theories of
photoelasticity, such as those developed by Mueller or Carleton, had p44, p12 and piq
which all depended on different properties or on the same property but in different
ways. Future work should examine pio and p;; for more diverse binary and ternary
glass families to determine if and how these elements are individually related to
composition.

The normalized polarizability of a glass is a powerful new predictive parameter
that can be used to estimate both the value of C' and its wavelength dependence.
Furthermore, the polarizability is a building block of many semi-successful theories of
photoelasticity. From this, we conclude that («) does in fact describe a fundamental
component of the stress-induced birefringence. It remains to be seen whether
a comprehensive photoelastic theory can be developed which explains both the
compositional and wavelength dependence of the elasto-optic tensor elements p;; and
stress-optic coefficient C. But it is certain that the results of this work have improved

the understanding of many aspects of the stress-optic response of glass.
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Appendix A

Refractive Indices as a Function of Wavelength

The results for the Cauchy-fit refractive indices as a function of wavelength for all

oxide glass systems considered in this thesis are shown in Figures A.1-A.20.
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Appendix B

Parameters of the Pseudo-Cauchy Fit

The fitting parameters a, b, and c of the pseudo-Cauchy fit stress-optic coefficient
C(A) are included in Table B.1.

Table B.1: Parameters a, b, and ¢ of the pseudo-Cauchy fit stress-optic coefficient for
various glass types, as well as the quality of fit >_(Cy — C()))?, where the sum is over
all wavelengths.

Family T a b c  >.(Cy—C(N))?
xBaO-(1-2)By03 0.20 3.64 0.36 0.67 0.07
0.25 3.26 0.42 040 0.05
0.30 2.15 0.20 0.41 0.03
0.35 1.67 0.26 0.25 0.03
xBaO-(1-2)P20; 0.35 146 0.09 0.74 0.26
0.40 147 -0.24 0.87 0.05
0.45 1.15 0.01 0.39 0.01
0.50 0.09 -0.06 0.45 0.01
0.55 0.49 -0.03 0.34 0.01
+Ba0~(0.5-2)Zn0-0.5P50; 0.00 843 147 4.6 5.20
0.10 6.10 -0.09 3.42 2.00
0.20 3.26 -0.42 2.09 0.10
0.30 291 -0.73 2.22 0.23
0.40 1.78 -0.31 1.22 0.03
0.50 0.86 -0.06 0.45 0.01
ZEB1203—(1—$)P205 0.20 3.62 0.16 0.82 0.11
0.30 3.72  0.82 0.11 0.26
0.40 3.08 0.46 0.25 0.06
xCa0-(1-2)P505 0.30 3.08 0.07 0.69 0.05
0.35 2.83 0.11 0.56 0.03
0.40 271 0.25 0.43 0.14
0.50 233 0.19 0.57 0.05

Continued on Next Page. ..
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Table B.1 — Continued
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Family x a b c  >.(Cy—CMN)?
[ELigO—(l—:B)B203 0.10 6.44 134 1.08 0.88
0.15 5.83 0.95 0.71 0.59
0.20 5.02 0.07 1.59 3.10
0.25 3.51 0.07 0.95 0.20
0.30 3.75 021 1.00 0.21
:L’NaQO—(l—x)B203 0.20 4.03 -0.06 1.42 0.24
0.25 458 022 1.33 0.34
0.30 3.97 025 1.16 0.21
0.35 3.92 0.79 0.63 3.20
#PbO-(1-2)B305 0.35 185 130 -1.14 0.03
0.40 0.89 1.40 -1.47 0.02
0.45 0.05 1.70 -1.92 0.03
0.50 -0.17  1.82 -2.19 0.05
0.55 -0.10 2.78 -3.48 0.09
0.60 -1.57 3.04 -3.85 0.10
0.65 243 3.88 -5.04 0.13
xPbO-(0.6-2)Ba0-0.4B,04 0.36 0.09 3.27 -3.59 0.16
0.42 -0.31 343 -3.90 0.20
0.60 -1.57 3.04 -3.85 0.10
xPbO-(0.5-2)Ba0-0.5B503 0.20 1.59 1.16 -0.85 0.03
0.25 1.31 135 -1.16 0.05
0.30 1.25 148 -1.39 0.03
0.40 0.54 234 -2.60 0.11
0.50 -0.17 1.82 -2.19 0.05
xPbO-(0.5-2)Ba0-0.5P5,05 0.00 0.86 -0.06 0.45 0.01
0.10 1.13  0.17 0.26 0.02
0.20 0.79 0.27 -0.05 0.02
0.30 0.53 0.67 -0.59 0.08
0.40 0.52 0.86 -0.94 0.12
0.50 -0.75 178 -2.35 0.38
xPbO-(0.5-2)Ba0-0.5S5i04 0.20 0.58 1.20 -1.26 0.06
0.30 0.04 1.35 -1.63 0.05
0.40 -0.64 243 -3.06 0.15
0.50 -0.26 144 -1.98 0.09

Continued on Next Page. ..
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Family x a b c  >.(Cy—CN)?
xPb0O-(0.4-2)Ba0-0.6B503 0.16 2.09 0.80 -0.40 0.02
0.24 257 1.32 -0.93 0.04
0.32 1.69 1.20 -1.02 0.05
0.40 0.89 1.40 -1.47 0.02
:L’PbO—(l—:E)PQO5 0.40 024 1.16 -1.32 0.29
0.45 -0.24 1.60 -1.99 0.30
0.50 -0.75 178 -2.35 0.38
0.55 -1.40 1.87 -2.60 0.42
0.60 207 347 -4.83 1.30
ZPbO-(1-2)S10; 0.50 026 144 -1.98 0.09
0.55 -1.62 231 -3.15 0.11
0.60 -3.39 391 -5.34 0.22
xPb0O-(0.5-2)Zn0-0.5P505 0.00 843 -1.47 4.69 5.20
0.10 5.11 0.22 1.20 0.09
0.20 3.92 0.51 0.55 0.08
0.40 1.46 144 -1.36 0.36
0.50 -0.75 1.78 -2.35 0.38
xSn0O-(1-2)P505 0.40 -0.20 2.37 -3.20 0.35
0.45 -0.65 4.00 -5.41 0.54
0.55 -1.47 5776 -7.64 1.30
0.60 -1.55 5.05 -6.85 1.10
0.65 -2.39 6.32 -8.56 1.10
0.68 -2.99 712 -9.63 2.20
xSnO—(l-ZE)SiOQ 0.40 094 1.33 -1.62 0.13
0.50 0.55 1.38 -1.75 0.04
0.55 -1.58 2.72 -3.54 0.05
0.60 -1.51 224 -3.17 0.30
xZnO-(1-2)P505 0.40 747 -1.45 5.17 0.86
0.50 843 -1.47 4.69 5.20
0.60 6.70 -2.15 4.89 1.30
2Zn0-(1-2)Te0, 0.1 0.65 0.83 -0.96 0.02
0.20 0.40 096 -1.11 0.16
0.35 -0.03  2.10 -2.72 0.15
0.40 -0.21  3.18 -4.18 0.34
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