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ABSTRACT

Computational electromagnetics has been an important research area because
its capability and flexibility to accurately model and simulate what is really
occurring in an actual electrical and electronic circuit and system. In particular,
the demands for efficient analysis of the high-frequency broadband structures
have driven the research into the application of time domain techniques. As a
result, the finite-difference time-domain (FDTD) method, one of the most popular
time domain techniques, has been widely studied and applied in solving
electromagnetic problems. Its capability of handling electrically large or high-Q
structure problems is, however, limited by the requirements of large computation
memory and time. Such requirements are due to the numerical dispersion errors
and the Courant-Friedrich-Levy (CFL) stability condition. Consequently, a way to
improve the computational efficiency would be to remove or alleviate the two
constraints. Most of the recent research efforts so far have been focused on
developing low-dispersion schemes such as multiresolution time-domain (MRTD)
method and pseudospectral time-domain (PSTD) method to lower computation
memory requirement.

In this thesis a new direction is opened in improving the FDTD computation
efficiency; i.e. the removal of the CFL stability condition. The principle of
alternating direction implicit (ADI) technique that has been used to solve
parabolic differential equations is applied. However, unlike the conventional ADI
algorithms, a modified ADI technique is developed. The alternation is performed
in the mixed coordinates each time step rather than in each coordinate each time
step. Consequently, in the three-dimensional case, only two alternations in
solution marching are required. Therefore, the CFL stability constraint is
completely removed in a FDTD method based on the modified AD! technique.
The FDTD time step is no longer restricted by the CFL stability condition but by
the modeling accuracy of the FDTD algorithm because of the mixed ADI and the
FDTD. The new scheme is named ADI-FDTD.

Theoretical proof of the unconditional stability of ADI-FDTD scheme is given and
numerical results are presented to demonstrate the effectiveness and efficiency
of the proposed method. It is found that the number of iterations with the
proposed ADI-FDTD can be at least four times less than that with the
conventional FDTD at the same numerical accuracy. As a result, FDTD iteration
number and CPU time are reduced.

Xit



Furthermore, a comprehensive analysis of the numerical anisotropy and
dispersion of the ADI-FDTD is presented. The dispersion relation is derived
analytically and the effects of spatial and time steps on the numerical dispersion
are investigated. From the dispersion analysis, it is found that the ADI-FDTD
method has advantages over the conventional FDTD of Yee's scheme in
modeling structures with fine geometry where a fine local mesh is required. The
ADI-FDTD allows the use of a much larger time step while numerical dispersion
errors remain acceptable. Finally, a high-order ADI-FDTD is proposed and its
unconditional stability is shown as well. Numerical dispersion analysis shows that
the dispersion in high-order ADI-FDTD scheme is reduced significantly compared
to the second-order ADI-FDTD scheme.

In conclusion, the ADI-FDTD is expected to become a very efficient tool in
simulating electromagnetic behaviors in RF/microwave circuits and devices,
although many other issues such as interfacing multigrid regions still need to be
investigated further.
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Chapter 1 Introduction

1.1 Literature Review: The State of the Art for Solving Maxwell’s

Equations

Maxwell's partial differential equations of electrodynamics represent a
fundamental unification of electric and magnetic fields. They provide the starting
point for the study of electromagnetic problems, together with certain principles
and theorems such as superposition, reciprocity, equivalence, induction, duality,
linearity, and uniqueness. The solutions of these equations are widely
investigated for the purpose of analyzing electromagnetic wave guiding, radiation
and scattering. Applications based on solving Maxwell's equations can be found
in various areas since Maxwell’s equations were firstly formulated in 1870. These
applications include atom smashes, cathode-ray oscilloscopes, radar, satellite
communication, television reception, remote sensing, radio astronomy,
microwave electronics, optical fiber communication, transients in transmission
lines, electromagnetic compatibility, aircraft-landing systems, electromechanical

energy conversion, and wireless communication.

Generally there are three ways to predict electromagnetic effects. They are
experiment, analytical analysis and numerical computation. Among these three
methods, numerical computation is the newest and fastest growing approach,
inspired by two major factors: its flexibility and ability to solve complex real-world
electromagnetic field problems, and the dramatic advance in computer hardware
that allows the handling of numerical problems with heavy requirements in

computation time and memory [1]-{100].

Electromagnetic computation encompasses the modeling, simulation, and
analysis of electromagnetic responses of a complex electrical system to various
electromagnetic stimuli. It may be defined as the branch of electromagnetics that
intrinsically and routinely involves using a digital computer to obtain numerical



8]

results. Electromagnetic computation results provide a better understanding of
the system response that allows for more optimized design or modification of the

system.

Accurate electromagnetic computation has become a significant part of a design
process as the demand for CAD tools for circuits and devices operating with
high-frequency broadband signals is increasing. Advanced processing technique
in fabrication has enabled large-scale circuit integration, with the incorporation of
hundreds or even thousands of components into a single package or circuit
board. While such integration leads to the development of high speed, compact
devices such as ultra high speed transceiver for internet backbone and personal
communication systems (pagers, cellular phones, broad band wireless modems,
etc.), various electromagnetic interactions such as cross-talk among different
circuits parts become more and more predominant in determining the circuit
performance. Consequently, the analysis of the electromagnetic computation is
essential to the design of today’s high-frequency systems, and it can reduce the
need for difficult and time-consuming measurement of the system or a trial-and-

error design procedure.

Based on the solution domain of the problem, there are two major types of
methods in computational electromagnetics: frequency domain (FD) [1-37]
methods (where the phase and frequency responses of a system are considered)
and time domain (TD) methods [38-110] (where the time evolution of a signal or

system is considered).

Naturally, frequency domain methods can be computationally more efficient since
only a narrow range of frequency is of interest. However, they cannot easily deal
with nonlinear elements. Time domain methods can provide solutions of
wideband frequency spectrum and can easily handle nonlinear elements but
require a large number of iterations if high frequency is of interest. Conversion



between time and frequency domain results may be achieved by Fourier

transform.

Both frequency domain methods and time domain methods are reviewed in
following sections. Their advantages and disadvantages are discussed.

1.1.1 Frequency Domain Methods

A Method of Moments (MoM)

The method of moments is a general form of weighted residuals techniques. In
the theory of mathematics the method of moments is an interior weighted
residual method in which the power series are chosen as the weighting function.
In electromagnetic field theory, method of moments, originally used by Harrington
[1], extends the use of weighting functions to non-power series. It is shown that
such method of moments is ideally suitable for solving electromagnetic radiation

and scattering problems [2-7].

The method of moments can be summarized as follows. Suppose that the

equation to be solved is
Lu=f. (1.1)

where L can be either differential or integral operators. f is known force

function and « is the solution to be found.

Assume the solution can be approximated with
u=yay, (1.2)
i=l

where «, are unknown parameters of the approximate solution and y, are the

basis functions.



By selecting a set of test functions w, (i =1,2,...n.), which are linearly independent

functions, and setting the residual to zero, a set of algebraic equations are
generated:

Eai <Ly, w ><f,w,> m=12,..n (1.3)
=1

In a matrix form, they become
Ala} =B (1.4)

where {a} is a column vector which consists of the unknown parameters of the

approximate solution; and

(<Ly,w > <Ly, w> - <Ly, w>
A <Ly, w,> <Ly,,w,> - <Ly, w,>
<Ly,w,> <Ly,,w,> -+ <Ly, ,w >
< fow, >
< f,w, >
B= .
<f,w,>

By solving the matrix (1.4), we can obtain an approximate solution (1.2).

Due to the flexible choice of the basis functions y, and the weighting functions
w,, the method of moments can be used to solve static, quasi-static and dynamic

problems expressed by differential or integral equations [8-11]. Some commercial
EM (electromagnetic) simulators such as HP Momentum are based on this
technique.

B Finite Element Method



Finite element method (FEM) [12] is one of most popular frequency domain
computational methods for solving electromagnetic problems [13][14]. The FEM
is based on energy functional which represents the total energy associated with a
particular system. Solutions of Maxwell's equations always require that the
energy within a structure is minimized, i.e. that the functional is minimized. In
FEM, a solution space is first discretized into many discrete elements. The
discrete elements are usually triangles (in 2D) and tetrahedra (in 3D). Each
discrete element can be of different size and shape. Any field quantity can be
expanded in terms of user-defined basis functions. The basis functions are
usually linear function over the surface or volume of the finite element. By
minimizing the functional, a system of equation is obtained for the expansion
coefficients. Solved for the expansion coefficients, the FEM solutions are
obtained. In general, electromagnetic properties can differ from cell to cell, hence

inhomogeneous structures can be modeled [12].

The energy functional can be obtained by integrating the fieid over a structure
volume and may be different for various problems [15][16]. For example, to solve
a three-dimensional time-harmonic problem is equivalent to minimizing the

integral

F- J[#I';l 44 -;]:5]. s
This integral is referred to as a functional. We can calculate the integral by
expanding the unknown field as a sum of known basis functions with unknown
coefficients: we thus obtain a functional based on these coefficients. Minimizing
the functional by setting its first derivatives with respect to all coefficients equal to
zero leads to a matrix equation with all the unknown coefficients. By solving the
equations for the coefficients, we can obtain the FEM solutions in terms of the



expansion. As a result, instead of solving field quantities directly, we solve a
system of linear equations for expansion coefficients.

In general, the node-based elements will cause spurious modes when modeling
problems such as cavities [17]. Consequently, edge-based finite elements have
been developed for free of this shortcoming. These types of edge-based
elements were described in reference [18] by Whitney and have been revived in
reference [19] by Nedelec. In recent years, the edge-based elements were
applied to model full three-dimensional vector problems [20][21].

An important advantage of FEM is the flexibility in its discretization of the
structure. Tetrahedral elements are used in FEM rather than the simple cubic
cells used in finite difference method (which will be introduced in the following
section). Such tetrahedral elements can conform well with boundaries for easy
handling of non-rectangular structures. Nevertheless, pre and post-data
processing of FEM are more complex than that of the finite difference method. In
addition, because the whole region has to be discretized, a tremendous number

of nodes and elements are required.

C Finite Difference Method

The finite difference method (FDM) [22] is an approximate method for solving
partial differential equations. It has been used in solving a wide range of
problems [22][23]. The method can be applied to EM problems with different
boundary shapes, different kinds of boundary conditions, and regions containing
a number of different materials. The application of FDM is simple and
straightforward as it involves only simple arithmetic in the derivation of
discretized equations and in writing the corresponding computer codes. During
1950-1970, FDM was the most important numerical method used to solve
practical EM problems [24][25]. With the development of high-speed computers
with large scale storage capability, and the ease of application of the finite



differential method, it becomes increasingly popular in solving electromagnetic
problems [26][27]. Its time domain version, FDTD, has become one of the most
widely used schemes which will be discussed later on.

ij+1

A
-1 if i+

h h
h

ij-1

Figure 1.1 Finite difference grid

The basic idea of FDM is to replace the derivatives of an unknown function by
the difference quotients of the unknown functions. The procedure can be viewed
in three steps:

1) Discretize the solution domain of interest.

2) Replace the derivatives of the unknown function by the difference quotient of
the function related to several adjacent nodes and form a system of linear
equations with the field quantities at the grid nodes to be found. For example,

2 2 _ -
2 _ 0w 0w Ut —2u + U jo T =21,

V-u (1.6)

el

il + 9 2
dx~  dy’ h- h”

where V°u at node (i,j) is replaced by an algebraic finite-difference operation of
the function at five adjacent nodes which are shown in Figure 1.1.



3) Solve the system of linear equations with certain boundary conditions.

It was reported that FDM is more efficient than the FEM by a factor of 2 in
computer storage for calculating the propagation constants and fields of a
dielectric wave guide [27]. For solving 3-D problems within a cubic volume, the
FDM is still considered to be an efficient method. If a region contains different
materials and complex shapes, the programs become more complicated. If the
field contains rapid changes of gradient, the accuracy declines. In these cases,

the finite element method is preferred.

D Spectral Domain Approach (SDA)

The spectral domain approach (SDA) is a Fourier-transformed version of integral
equation method applied to planar structures. SDA is also referred as spectral
domain method or spectral domain analysis in some references. It was presented
by Itoh and Mittra to calculate the dispersion characteristics of microstrip lines
[28]. It has been widely used in investigating planar structures including the
microstrip line, finline, slotline and coplanar waveguide [28-30].

The formulation of this method involves a coupled set of two algebraic equations
that are actually Fourier transforms of coupled integral equations derived in the
spatial domain. Determining a Green'’s function is one of the most important and
indispensable steps in SDA to obtain those two algebraic equations. The
derivation of these Green's functions can be done readily by the use of
immittance approach [31]. These equations are then solved for the Fourier
transformed unknown current distribution for a strip by means of Galerkin's
method. The unknown currents are expanded in terms of known basis functions.
Note that the basis functions need to be Fourier transformed analytically.

The major advantage of the SDA is its numerical efficiency. The price is,
however, the required significant amount of analytical pre-processing before
numerical calculation. In addition, the range of its application is limited. For



example, the application is usually restricted to well shaped structures. Another
limitation is that it requires infinitesimally thin conductors. It is not easy to treat a
strip with finite conductivity [31].

E_ Method of Lines (Mol)

The method of lines (MoL) was developed in order to solve partial difference
equations [33]. Schulz and Pregla applied the principle of MoL to the calculation
of planar microwave structure [34].

The concept of MoL is that all but one of independent variables of partial
differential equations are discretized to obtain an order-reduced system of
ordinary differential equations. For instance, for the analysis of waveguides with
constant cross-section, it could be done with respect to one coordinate direction.
The electromagnetic fields can be described by the independent field

components E, an H_, which have to satisfy the Helmholz equation

OV OV -k =0, (1.7)
dx~  dy” -

where y can be either E_ or H_.

The x direction is discretized by a set of N straight lines paralliel to the y-axis.
Assume the distance between adjacent lines is &, the potential can be replaced

by a set (y,.y,,....y,) atthelines at x, = x, +ih i=12,.,N.

By replacing the partial derivative with respect to the x coordinate with the
difference approximation, equation (1.7) yields a system of N coupled ordinary
differential equations in respect to the non-discretized coordinate, y.

9’y
oy’

l 2 2
+ -,—l;(wm(y) 2y, (V) +w_ (W) K - BW.(y)=0 i=12..,N (1.8)



10

or in matrix form

n %"f_'+(1’—112(k3—[31)1)r=0 (1.9)
Y

where I is the identity matrix and P is a tridiagonal matrix determined by the
lateral boundary condition at x=0 and x=a/2. ¥ is the column vector
(V). ¥,.....'¥y). Note that the discretization lines for £. and H_. are shifted by

h/2, which makes it easy to implement the lateral boundary condition.

Because P is a real symmetric matrix, there is a orthogonal martix T such that
T'PT =diag(A). (1.10)

where T' denotes the transpose of T and the elements of the diagonal matrix
diag(A) are eigenvalues of P .

By introducing
T'Y=U, (L.11)

the system of N coupled ordinary equations (1.9) can be uncoupled:

N ) T RSP .12
:

which can be solved analytically for each homogeneous region.

The method of lines has been extensively used for a number of practical
problems such as microstrip resonator [35], stripline coupler [36], and via hole in
multilayer packaging [37]. However, in most cases MoL is restricted to the
analysis of planar and quasiplanar wave guide structures.
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1.1.2 Time Domain Methods in Electromagnetics: Advantages and

Restrictions

Although the Maxwell curl equations are usually presented in the time domain
(TD), i.e., with time as an explicit, independent variable, until relatively recently
most electromagnetic instruction and research has taken place in the frequency
domain where time-harmonic behavior is assumed. A major reason for favoring
the FD over the TD in the precomputer era had been that a FD approach was
generally more tractable analytically. Furthermore, the experimental hardware
available for making measurements in the past years was largely confined to the
frequency domain. The inferior position of time domain methods began to change
with the arrival of the cheap powerful digital computer. In recent times, there
have been increased interest in the direct time domain methods to calculate
electromagnetic scattering/interaction phenomenon. This may be due to the

surge in activities in such areas as:

1) electromagnetic pulse (EMP) application and short-pulse radar [38][39] that
involve strong transient effects.

2) high speed digital circuit packaging and interconnects which include the
propagation, crosstalk and radiation of electronic digital pulses.

3) broad band signal transmission, where signals are mostly interpreted in time
domain.

Direct transient analysis is preferred in these applications. Thus, the time domain
method is natural choice because they have several advantages over

conventional frequency domain methods:

1) they work better for wideband signature studies, are better suited for parallel
processing, and can provide better visual representations for understanding

the field interactions;



2) they need to be run only once to obtain the information over a wide range of
frequencies, and the frequency domain information may be extracted from the
time domain data via Fourier transform.

3) they can handle very short pulse excitations such as electromagnetic pulse
and lighting which are not very suitable for frequency domain method.

Representative examples of the growing variety of TD research include the
original time-domain differential equation (TDDE) approach by Yee [40], which
forms the basis of the widely used finite difference time domain (FDTD) model
[41]. An alternate implementation of TDDE models was shortly thereafter
developed as the transmission line method (TLM) by John and Beurle [42]. To
extend TD method to a nonorthogonal grid, the method of point-matched finite
elements was developed by A. C. Cangellaris et al. [43] who proposed the use of
finite-element interpolation for the development of a time-domain integration
scheme. It is so called time domain finite element method (TDFEM). Recently,
TD versions of the method of lines (TDML) and geometrical theory of diffraction
(TDGTD) were presented by Nam et al. [44] and Veruttipong [45], respectively.

The following sections review the published work that has been conducted in

several popular time domain electromagnetic modeling.

A The Finite-Difference Time Domain Method (FDTD)

FDTD approaches are widely used because of their simplicity for numerical
implementation and relatively low requirements in respect with CPU time. It is a
computationally efficient means of directly solving Maxwell’'s time-dependent curl
equations or their equivalent integral equations using the finite difference
approximations. In general, FDTD is simple and fiexible. It can be used to solve
various types of electromagnetic problems [46], such as anisotropic and
nonlinear problems. Since it is a time-domain method, one single run of
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simulation can provide information over a large bandwidth when the excitation is
chosen to be of large bandwidth.

Despite its simplicity and flexibility, the FDTD applications have been limited to
solving electrically small structure problems. The main reason is that the FDTD is
not yet computationally efficient. For an electrically large problem, it requires
large memory and CPU time to obtain accurate solutions. As a result,
computation efficiency becomes the bottleneck for the further applications of the
FDTD method.

Theoretical studies on the FDTD show that the intensive memory and CPU time
requirements mainly come from the following two modeling constraints [46][47].
Firstly, the spatial increment step must be small enough in comparison with the
wavelength (usually 10-20 steps per smallest wavelength) in order to obtain
accurate field component values. Secondly, the time step must be small enough
to meet the Courant-Friedrich-Levy (CFL) stability condition. If the time step is
not within the CFL bound, the FDTD scheme will become numerically unstable,
leading to a spurious increase of the field values without limit as a FDTD solution
marches.

Since the thesis work is based on FDTD, more details and discussions of FDTD
will be given in Chapter 2.

B The Transmission Line Method (TLM)

TLM is another popular time domain method developed by Johns and Beurle
[42], who took a conceptually different approach from that of the straightforward
differencing of the Maxwell equations. The work is then extended to
inhomogeneous material [48], lossy media [49], and the three-dimension case
[50]. It employs the analogy between transmission line and plane wave
propagation. The field space is discretized into a 2D or 3D grid or mesh of
transmission lines interconnected at nodes. The discrete mesh elements are
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usually rectangles (in 2D) and cuboids (in 3D). TLM can be viewed as a three-
dimensional transmission-line discrete-model of Maxwell equations. The method,
though, can also be interpreted as an implementation of Huygen’s principle, in
which fields spreading in space can develop and form as a series of secondary
sources. The equivalence between the TLM and a modified FDTD approach was
shown by Chen et al. [51]. They showed this equivalence by using a mesh in
which the field components are all defined at the same cell-centered node and
decomposed the field components into components traveling toward and away

from nodes.

Similar to FDTD, TLM models involve space and time discretization. As a result,
they are also subject to problems of mesh dispersion and anisotropy [52][53][54].
Nevertheless, there are several major differences between TLM and FDTD.
Firstly, the partial fields of oppositely propagating waves are separately
represented in TLM, whereas in FDTD the summed fields are computed.
Secondly, because the electric and magnetic fields are determined at common
points, defining a surface in TLM is less ambiguous than in the FDTD. Thirdly,
that knowledge of wave propagation in opposite directions along each leg of a
transmission line of known impedance makes it possible to solve directly for the
electrical properties required to provide a reflectionless boundary [55]. However,
TLM is not as widely used as FDTD because it is less intuitively structured and
sometimes more difficult to understand than FDTD. In addition, TLM seems to

posses more set of spurious modes than FDTD.

C___ The Time Domain Finite Element Method (TDFEM)

Unlike the FDTD and TLM described in previous sections, the TDFEM can be
used with unstructured grids which improves the modeling capabilities of arbitrary
geometries. The FEM introduced before was originally applied for approximate
solutions of boundary value problems. It was a natural step in developing similar
methods for initial value problems. The recently developed TDFEM [43][56-58] is



15

base on solving the wave equation for electric or magnetic field. The functional

corresponding to the equation:

Viu-ue 9% =0 (1.13)
ot~
is
2 du
Fu=| [0.5|Vul + [.tb‘u—]dv. (1.14)
g or

where u is electric or magnetic field. € is the medium permittivity and u is the

medium permeability.

By following the FEM procedure for space discretization and field expansions,
and minimizing the functional, a system of ordinary differential equations may be

obtained

-

M&‘gt?+Bll=C, (1.15)
where A and B are known matrices related to discretization steps and geometry.
The vector C consists of known elements related to the excitation functions and
boundary conditions. The above equation can be discretized in time domain and
then can be solved by updating the electromagnetic field distribution in a leapfrog

fashion.

In comparison with FDTD, the TDFEM techniques have the remarkable stability
and the flexibility of modeling complex structures with curved boundaries. Much
research [59-62] has been carried out on the improvement of the TDDEM.
However, TDFEM techniques have not been used widely. The reasons are that:
(A) it requires unstructured 3-D mesh generation, which takes a significant
amount of effort to develop; (B) it needs large pre and post-data processing,
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which adds more computation loads; and (C) it is more time consuming than the
FDTD on every time step advancing. Therefore, some research [63-67] has been
conducted on a hybrid method that combines finite-difference and finite element

time domain techniques.

1.1.3 Other Computational Efficiency Improved Techniques

As mentioned in the previous section, FDTD requires large memory and CPU
consumption due to small spatial discretization and CFL constraint. To
circumvent or relax the above constraints, various time-domain techniques have
been developed [68-73], resulting in the improvement of the computation
efficiency. Along the line of relaxing the first constraint, multiresolution time-
domain (MRTD) method was proposed by Krumpholz and Katehi [68]. Through
the applications of orthonormal wavelet spatial expansions to Maxwell's
equations, MRTD scheme can reduce numerical dispersion significantly. The
spatial discretization resolution can be made as low as two grid points per
wavelength, leading to a large saving in computation memory. Similarly, another
technique, the pseudospectral time-domain (PSTD) method, was also developed
recently [69]. By applying the Fourier transform to spatial derivatives, the PSTD
method can also achieve a spatial grid of two points per wavelength while
maintaining a high accuracy. Nevertheless, in both cases, the second constraint
still remains. For MRTD, the stability condition becomes even more stringent.
The time to spatial step ratio becomes five times less than that with the

conventional FDTD.

A few attempts were made to relax or even remove the stability constraint. Early
work [70] was reported in 1984 where the alternating-direction-implicit (ADI)
technique [74] was first applied to the Yee's grid in order to formulate an implicit
FDTD scheme. In that paper, the finite-difference operator for a 3D solution of
Maxwell's equations was factored into three operators with each operator being
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performed in one of the coordinate direction (namely, x, y, or 2). The scheme
required three implicit sub-step computations for each FDTD recursive cycle and
it was never found to be completely stable without adding significant dielectric
loss. In 1990, a specially designed two-dimensional FDTD algorithm, which
employs time steps larger than those allowed by methods with explicit time
advancement, was presented in references [71][72]. Nevertheless, it is based on
a new staggered grid different from Yee's and the grid points and field
components are twice that of the Yee's on a body surface. Consequently, the
method consumes more computer memory and computation resources. In
addition, only two-dimensional problems were solved and presented in reference
[71]. Very recently, a two-dimensional FDTD algorithm free of the CFL stability
conditions was proposed for a 2D-TE case [73].

In the following sections, a more detailed review of these new developed
techniques are presented.

A The Pseudospectral Time-Domain (PSTD)

The pseudospectral method in time-domain was introduced by Q. H. Liu [69] [75].
The method is called pseudospectral time-domain (PSTD) method. It uses the
Fast Fourier Transform (FFT) instead of finite difference to compute spatial
derivatives in the spatial spectral domain. According to Nyquist sampling
theorem, only two grids per wavelength are necessary, compared to 10 grid per
spatial wavelength needed by the FDTD method. Therefore, the memory
requirement of PSTD is much less than the FDTD method. PSTD has been
extended to dispersive and lossy media [76] [77].

To be more explicit, the following paragraphs explain the main difference
between PSTD and FDTD in the representation of spatial derivatives. In the
Yee's FDTD algorithm, central difference approximation for space derivatives is
used:
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df (nAx,mAy,IAz, kAt)
= =

f(nAx + —A’)i ,mAy,IAz, kAr) — f(nAx - é’;‘:,mAy,lAz,kAt) ’
Ax

(1.16)

In the PSTD method, the space derivative is computed through the Fourier

transform [69]

df (nAx,mAy, Az, kAr)
ox -

—F ik _F{ f (nAx, mAy, Az, kAn)}], (1.17)

where F and F~' denote the forward and inverse Fourier transform, and k,_ is

Fourier transform variable, or spatial frequency along the x direction.

To eliminate the wraparound effect introduced by FFT, it is necessary to
implement perfectly matched layers [78] (PML) (an efficient absorbing boundary
condition originally developed for FDTD) at the outside edge.

In the PML layers, Maxwell equations are split and derived with a coordinate-

stretching variable e, = a, +i % (n=xy,2[79]:

n)

or

a,u +uw, H™ =—j—n(ﬁxE)—M"”, (1.18a)

)

a k&

. +(a,0 +we, )E™ +o,0 fE"”dt = —%(ﬁxH) -J™ (1.18b)

where E= Y E"™ ,and H = H™ .

n=x.y.2 n=x.v.2

By using FFT algorithm stated in equation (1.17), equation (1.18) can be

rewritten as
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m)

o

a,u +uw H™ =9xFE'{ik,F[E]}-M™, (1.19a)

)

+(a,0 +we, E™ +w,0 [ E™dt =AxE;'(ik,E,[H1} - J ™. (1.19b)

Equation (1.19) consists twelve scale equations, since both E and H™ have
two scalar components perpendicular to 1. Because the PSTD method does not
use the spatial staggered grid, all field components are co-located at the same
point or condensed nodes are used. This advantage makes the programming

simpler.

Compared to FDTD, PSTD method use only (1/8)°-(1/4)° [75] (D is the
dimensionality) memory that required by FDTD, and it is simple to implement
because the nodes are condensed.

The dispersion relation of PSTD is given as [69]

2
k = 2 sin @27 (1.20)

cAt 2

In comparison with the dispersion relation of FDTD [47]

k = —sin—, (1.21)

the dispersion error of PSTD is smaller.

Because spatial Fourier transform requires the field to be continuous within the
whole spatial domain, problems arise when the fields are discontinuous, for
examples, at the boundary of perfect conducter where the magnetic field
components are not continuous [69]. In such a case, the PSTD is not effective.
Furthermore, PSTD is not suitable for highly inhomogeneous media. A combine



FDTD and PSTD method [80] was developed recently to retain the merits of each
individual method.

It should be noted that as an explicit approach, PSTD is still constrained by the
CFL stability condition. Furthermore, the complex computations inherited from
FFT doubles the compute memory requirement and results in less saving in
computation time than expected.

B The Multiresolution Time-Domain Method (MRTD)

In 1996, a multi-resolution time-domain method [68] was proposed based on
Battle-Lemarie wavelets, which shows an excellent capability to approximate the
exact solution with negligible error at the Nyquist sampling rates in space. At the
same time, Daubechies-wavelet-based technique [81], and a multigrid technique
using Haar wavelets [82][83] were reported. These MRTD have been applied to
analyze cavity resonators [68,82,84], microstrip lines [85,86], patch antennas
[{87], and nonlinear problems [88].

Basically, by applying method of moments to Maxwell's equations in its temporal
form, the MRTD can be derived with the use of scaling and wavelet functions as
a set of basis functions. It is worth to mention that Yee's FDTD can also be
derived in the same way by choosing pulse functions for the expansion of the
unknown field [89][90].

Wavelets are localized waves. Instead of oscillating forever, they drop to zero
quickly. They can be obtained from an iteration of filters [91][92] and used as
scaling functions and wavelets. The scaling function and wavelets have
remarkable multi-resolution properties. Suppose a function can be expanded in
the j-th level of scaling function, then it can also be expanded in the (j-1)-th level
of scaling function and the (j-1)-th level of wavelets. Such expansion can be

represented as
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2 a9, (x)= 2“,’-!.&%-1./: (x) + ij—l.k W, (X). (1.22)
P k k

where ¢]k(.r)=2"2¢(2’x-—k) is in scaling function, wjk(.v)=2"2w(2’.r—k) is the

wavelet, a, is scaling coefficient, and b, is wavelet coefficient.

Let V; denote the space of all combinations of the j-th level scaling functions, and
W; denote the space of all combinations of the j-th level wavelets. The key
statement of multiresolution can be expressed as

V,=V_oW,_. (1.23)
V; has the following properties:

V.cV

J J+l

VieZ

UV, isdenseinL*(R)

jE€Z

nv, =o

jez
f(¥)eV, o fR2x)eV,, VjeZ
f(eV, & f(x-2""n)eV, VjneZ

Moreover, it has been shown that there exists a function w(x), the wavelets,

such that the set
(W, (D} =(27*wW2' x-n)}., Jj€Z (1.24)

is orthogonal basis of L%(R).

In MRTD, the field components are expanded in terms of scaling function ¢nm.
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to

E = 2 ¢ ELvamalte 09,2 ()0, (09, (2) (1.25)

kd.mun=-—co

where the indices k,/,m,n are the discrete time and space indices related to the
time and space coordinates via t = kAt, x = IAx, y = mAy, and z = nAz. The At, Ax,

Ay, and Az, represent the time and space discretization steps.

The function h,(x) is defined as

x
h (x)=h(——-m 1.26)
1 (X) (Ax ) (
with
1 for [x|<1/2
h(x)=41/2 for [x|=1/2.
0 for [x|>1/2

The function ¢, (x) is defined as
X
x) = o(— — 1.27
9, (x) ¢(M m) (1.27)
where ¢(x) is the scaling function. For example, ¢(x) represents the cubic spline

Battle-Lemarie scaling function in M. Krumpholz’'s MRTD [93][94].

The above field expansions are inserted into Maxwell's equations and sampling
of the equations is carried out with pulse function as test functions in time and
scaling functions as test functions in space. MRTD formulas are obtained with
the following identities,

[ 1, Oh,, (x)dx =8,,,.Ax (1.28a)



Ih ( ) ”‘H/ (V)d‘ 5nx.m' —601.171'4—1 (128b)
[0,.(09, (0)dx =35,,,Ax (1.28c¢)
[.00 W - Sais,..,, (1.28d)

For example, for one of the scale Maxwell equations

aE.t —_ afl: aH‘

= - 1.29
€ Py > % (1.29)

its MRTD formula can be written as

E
Q Qc —
P (Lwl E1+l/2.m.n Tk EIH/Z.m,n ) -

| . (1.30)
l ia(’) Hat _l_ ia(z) Har
Ay fed k+1/72%8 %141/ 2. m+i+1/2.n AZ Pl k+172% % e 112 mon+ivls2

The other field components can be represented by scaling function in the same

way.

The MRTD algorithm is much more complicated than that of FDTD due to the
field expansion. The field at one grid point is related to the field at its several
neighboring points. But with more smooth function such as cubic spline Battle-
Lemarie scaling function (which has been used instead of the pulse function in
FDTD), the number of the relevant points can be limited [68).

The aim of MRTD development is to reduces the dispersion of FDTD and
therefore to reduce the memory requirement for space girding. However, the
stability condition for MRTD still remains and actually becomes more stringent



[95-97]. The time to spatial step ratio becomes five times less than that with the
conventional FDTD [68]. The scheme itself has less physical meaning than
FDTD by calculating the coefficients instead of real field quantities.

1.2 Motivation of the Thesis

To further improve the efficiency of FDTD, the CFL constraint should be removed
or relaxed. Aithough an attempt was made in 1980s with the development of the
ADI-based FDTD in reference [70], it was never theoretically proven to have
unconditional stability. In fact, it was never found to be completely stable without
adding significant dielectric loss in an actual computation. The motivation of the
thesis is to develop a really unconditionally stable FDTD technique based on ADI
and thus open a new front line on the further improvement of FDTD efficiency.
Since the unconditional stability is very desirable with FDTD; in particular when
solving problems with very small features that lead to large variations in grid size
across the problem domain, this thesis significantly advances the course of

efficient FDTD development.

1.3 Scope and Organization of the Thesis

This thesis introduces a new numerical time domain scheme, ADI-FDTD, without
the CFL conditions and performs the extensive research on the characteristics of
the ADI-FDTD. The thesis consists of the following chapters.

Chapter 2 introduces a novel aiternating direction implicit method based FDTD
scheme. In order to make good comparisons, Yee's FDTD scheme is firstly
illustrated and then, the ADI-FDTD formulas are derived in details. Finally,
numerical experiments are presented for validation of the proposed scheme.

In Chapter 3, rigorous stability analysis of the proposed ADI-FDTD is conducted
to prove that the scheme is unconditionally stable. Numerical results are also



presented for validations. Error analysis shows that the time step is free from
CFL condition but limited by modeling accuracy and Nyquist sampling rate.

Chapter 4 presents the numerical dispersion characteristics of ADI-FDTD which
is the main contributing factor to the modeling accuracy. Based on Fourier
transform theory, the numerical dispersion relation of ADI-FDTD is derived
analytically. An important corollary is also established to show that ADI-FDTD
has significant advantage over FDTD when dealing with structures with small

components such as vias.

Chapter 5 introduces high order ADI-FDTD scheme to reduce the numerical
dispersion. The fourth order ADI-FDTD scheme formulations are derived, and its
unconditional stability is proved analytically. Dispersion analysis is conducted.
The results show its advantages over standard ADI-FDTD.

Chapter 6 concludes the thesis by reviewing the previous chapters, and
indicating the possible direction of the future work in this field.



Chapter 2 Development of the ADI-FDTD Method for
Electromagnetic Problems

2.1 Introduction

As mentioned in Chapter 1, the FDTD method is a well-established
computational technique capable of predicting radiation and scattering in
environment where shape and material parameters of objects are arbitrary.
However, it suffers from serious limitations due to the substantial computer
resources required to model electromagnetic problems. Such limitations are
mainly due to two constraints: 1) fine mesh must be taken as a small fraction of
either the minimum wavelength or minimum structure dimension to make the
numerical error negligible; and 2) small time step should be chosen to satisfy the
Courant-Friedrich-Levy (CFL) stability condition. Much work has been done to
relax the first constraint [68,69].

To remove the second constraint, a novel unconditionally stable numerical
computation scheme is developed based on FDTD and ADI technique in this
chapter. The ADI [74] principle was first applied in FDTD by R. Holland [70]. The
method was claimed to have no stability limitation but no analytical proof was
given. In fact, this method was never found to be completely stable without
adding significant dielectric loss. Different from the conventional ADI application
as appeared in reference [70] and [73], the ADI in this thesis is applied in respect
to a combination of mixed coordinate directions, leading to only two alternations
in the computing direction rather than three alternations with the conventional
ADI in three-dimensional case.

This chapter is organized in the following ways. First, fundamentals of the finite
difference time domain technique are reviewed. Then, the conventional and
modified ADI techniques are illustrated. And finally, a novel unconditionally stable



numerical computation scheme is proposed. The advantage of modified ADI
technique is presented subsequently. The time step in the proposed FDTD is
shown to exceed that of the conventional FDTD through numerical experiments.

2.2 FDTD Fundamentals

The finite-difference-time-domain (FDTD) method [40] has been proven to be an
effective mean that provides accurate predictions of field behaviors for varieties
of electromagnetic interaction problems. It can incorporate materials of any
conductivity of a real metal or of low or zero conductivity dielectric. it can model
various types of materials such as magnetic materials, anisotropic plasmas and
magnetic ferrites. As a result, FDTD is well-suited for a wide variety of
applications including microwave circuit analysis [100-107], subpicosecond
photonic device analysis [108-110], packaging and interconnection modeling
[111-114], antenna design [115-117], and bioelectromagnetic application [118-
120]. An extensive survey of FDTD literature may be found in reference [41].

In the following sections, a brief derivation of FDTD equations is presented, and
two important aspects — stability, numerical dispersion — of the FDTD method are

discussed.

2.2.1 Yee’s Grid and FDTD Scheme

In 1966, Yee developed the FDTD scheme which solves Maxwell's curl equation
in a straightforward manner. in this numerical scheme, the continuous
electromagnetic fields in a finite volume of space are sampled at certain points in
a discrete manner in space and time. The electromagnetic wave propagation is
modeled by advancing in time step and finite-differencing of Maxwell's equation
at each spatial lattice point at corresponding time step. The field solution at the
current time step is deduced from the field values at the previous time steps,
which leads to a recursive time-marching or leap-frog algorithm. This approach



basically results in a simulation of actual coupled full wave solutions by the
numerically sampled data that propagates in a data space (the simulation region)
stored in a computer. Space and time sampling increments are selected to avoid
aliasing of the continuous field distribution and to guarantee stability of the time
marching algorithm. Time marching is completed when the desired late time or
steady-state field behavior is observed.

In linear, lossless and isotropic medium, the differential form of Maxwell's

equations may be given as

VXE‘—'—[IE-, (218)
JE

VxH =¢—. 2.1b

X €5 (2.1b)

where ¢ and u is electrical permittivity and magnetic permeability, respectively.

The vector curl equations (2.1) can be rewritten as six scalar equations in the
three-dimensional rectangular coordinate system:

IE,
oH, _1[%, OE. ) (2.22)
or 2N & 3y
JH
A, 1. OE.) (2.2b)
a u\ o ok

OE
H, 1 ( JdE, %) (2.2c)
a  uld o

oH
JE, 1 [ OH_ OH, ] (2.2d)
o €
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JE. _1 [ oH _aHI] 2.2
d €| ok dy
In the Yee's grid which is shown in Figure 2.1, a space point is denoted as
i, j, k) = (iAx, jAv,kAz) (2.3)
and any function of space and time as
u|"  =u(iAx, jAy,kAz,nAt) (2.4)

ij.k

where Ax, Ay, Az and Ar are the spatial and temporal increment steps,

respectively. By using the second-order accurate central difference
approximation as indicated in equation (2.5) for space and time derivatives

a(uln ) u|fl —-ur .
i)k i+1/2, 5.k =112, 5.k pJ

= + O(Ax 2.5a
Jx Ax ) (252)

n+l/2 |n—l/2

o )y ul” 71 .
g.j.k — Il.j.k i.j.k + O(At-) (25b)
t
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Figure 2.1 Position of electric and magnetic field components in Yee's grid.

the explicit finite difference approximation of six scalar Maxwell's equations (2.2)
can be obtained as:

E n n
n+l _ n-i + Ar| T ¥lijelee Flijelk
fijetast = Tali itpet _
ij+sk+s Lj+yk+s ‘u A(.
(2.6a)
n |"
At :'i+§.j.k+| livd.jik

M Ay
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L L E I - !
n+s - H n-3 At Tlisl j kvt E: ijk+d
v 1 1 3 + - 2
Tlivdo ke g Ml jk+t
S /] Ax
E n _ n
_ At vt kel wlird jk
u Az
. l A In _ n
L n-1 4 x i+-':-.j+l.k vl ik

2lied el =H:| ¥ +—

< l*s.]*‘?.k l+%.j+%.k
Ea A u Ay

n
E _ n
. At Mlislg+dk Flijek
u Ax
|n+-,'7 n+d
n+l - E n + At S < i+%-,_,—l.k
lisd,jk Clhiel jk - —
? £ Ay
n+§ n+l
A ¥livd jbewd Flisd -t
£ Az
| n+d H n+d
. s —_— 2
El _ n At "Teligedasd xlijeta-t
v 9 = - E =
Ylijrix Mlivl12.j .k -
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(2.6b)

(2.6¢)

(2.6d)

(2.6e)



n+= n+s

it jkrd

E n+l _ |n + At H-v
Slivjk+d £ Ax

ivL kvt

jast T

(2.61)

n+d n

ig—Sk+3

_ar| B
£ Ay

i/ 2 kel €

Notice that in equation (2.6) and Figure 2.1, the magnetic and electric field
components are interlaced within the unit cell and evaluated at alternate half-time
and spatial steps. Any electric or magnetic field component at the present time
step is derived from the field components at the previous time steps, which
leading to a leapfrog time recursive scheme. At t=0, one can assume that all
fields within the numerical sampling region are zero and an incident wave source
is to be turned on in the sampling region. The waves then propagate from this
source in the Yee's grid.

Yee's FDTD scheme essentially provides a simple structure of three-dimensional
space being filled by an interlinked array of Farady's Law and Ampere's Law
contours [46]. It is very simple in concept and implementation. In the simulation
of an electromagnetic wave interaction that is defined in “open” regions where
the spatial domain of the computed field is unbounded in one or more coordinate
directions. A suitable boundary condition on the outer perimeter of the
computational domain must be used to simulate its extension to infinity. The
boundary is called the “absorbing boundary” as the waves that impinge on it are
supposed to be absorbed without causing reflections. Several types of absorbing
boundary conditions (ABCs) for FDTD have been developed and implemented
over the years [121-124]. In 1994, Berenger developed the perfectly matched
absorbing layer (PML) [78] which is based on a splitting of electric and magnetic
field components in the absorbing region with the possibility of assigning losses
to the individual split field components. The PML can effectively attenuate
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outgoing waves over a wide frequency range and a wide range of angles of
incidence. Research [41] shows that PML is remarkably robust, providing highly
accurate modeling predictions for a variety of electromagnetic wave interaction
problems and it is still being studied intensively to improve its performance.

222 Selections of Grid Size and Time Step Size

In spite of the fact that the FDTD is popular, it is very memory and CPU-time
intensive. Such intensive memory and CPU time requirements are due to the two

physical constraints.

1) the spatial increment steps must be small enough in comparison with the
wavelength (usually 10-20 steps per wavelength) in order to make the
numerical dispersion error negligible. More details will be given in the next

subsection.

2) the time step must be small enough so that it ensures the FDTD computation
errors do not grow with the time and therefore the computations remain
stable. More specifically , the CFL stipulates that [47]

-1/2
w,, At < l, + l, + l, .7
‘ Ax~  Ay" Az

Here «,, is the maximum wave phase velocity within the model.

2.2.3 Numerical Dispersion

Generally, dispersion relation describes the variation of propagating wave’s
phase velocity «, with frequency f . Dispersion can be also represented as the

variation of the propagating wave's wavenumber k=27/4 with angular
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frequency w =2nrf since k =w/u,. The analytical dispersion relation for a plane

wave propagating in a continuous medium is

-

[ﬂ] =@ uE =k + kP +k 2.8)

llp

where £ , k., and k_ are the three components of wavenumber vector along x,
y and : directions, or the spatial frequency of a wave in the x, y and :

directions.

In a FDTD grid, because the space is discretized into a computational lattice, the
phase velocity of numerical wave modes in the FDTD grid can differ from the
vacuum speed of light, varying with the modal wavelength, the direction of
propagation, and the grid size. The dispersion caused by such numerical
discretization is the so called numerical dispersion.

The numerical dispersion of the Yee’'s FDTD has been investigated intensively
[125-128] and found as

1 sinz(%k:Az) (2.9)

Az'.’

sin:(%k_‘At)wL L sinz(%k'\,AyH-

Ay2

1 sinl(lwm) = —
cAt 2 Ax~

in homogeneous media.

Although at the first glance, expression (2.9) bears little resemblance to the ideal
case of expression (2.8), it can be shown that the two dispersion relations are
identical in the limit as x,y, z and r all go to zero. Qualitatively, this suggests
that numerical dispersion can be reduced to any degree that is desired if FDTD
gridding is fine enough. In other words, when the grid sizes are small enough, the
numerical solutions are close to the analytical solutions. Therefore, the first
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constraint of FDTD needs to be maintained in a FDTD modeling as we

mentioned above.

224 Numerical Stability

Generally, the finite-difference schemes in time and space domains require that
the time step be bounded in order to avoid numerical instability. Numerical
instability is an undesirable possibility with explicit numerical differential equation
solvers that can cause the computed results to spuriously increase without limit

as time-marching continues.

To simplify the analysis, equation (2.1) can be rewrite in a compact form

where V = \[uH + j\J¢E .

The stability of FDTD can then be analyzed by considering the following pair of
eigenvalue problems:

Vn+l _ Vn—l

=AV" 2.11

A ( )

1 a—‘sin k. Ax +ﬁsin kAx +%: gin kAz xV"=AV" 2.12)
JUE | Ax 2 Ay 2 Az 2

Equation (2.11) can be viewed as a difference system which is shown in Figure
2.2
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Figure 2.2 The block diagram of the difference equation.

The poles of Z-transform of the system must be within the unit circle to make the
system described by (2.11) stable. This requires that that A must be pure
imaginary and has bounds

2 <Im(A) <2 @13)
——=>1m =—. .
Ar Ar

Let

V= Voej(k,i;\.uk,jA_vi\k:KA:) (2' 14)

represent an arbitrary spatial mode at (ij,k) . A is obtained by substituting (2.14)
to equation (2.12):

A= —ili L - sinz( k~‘Ax)+ L > sin:[ k_\,Ax)+ ! > sinz( k.Az )J (2.15)
ME| (Ax)” 2 (Ay)” 2 (Az)” 2

\

It is obviously that for all possible _, k, and k_, to make | A |<1 means

Re(A)=0
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1

2 \/ 11
Jue Y(axy  (av)  (Azy

{)2 <Im(A) <

_2‘/1+1+
Jue V(&) () (ac

Equation (2.13) and (2.16) give the upper bound to guarantee the numerical
stability:

(2.16)

-i/2
At < \Jue lﬁ+ l,+ l, 2.17)
Ax~ Ay Az°

More details of the derivation of the stability constraint (2.17) is available in

reference [47].

2.3 ADI Basics

In this section a very powerful method that is especially useful for solving
parabolic equations is examined. This method is called the aiternating direction
implicit (ADI) method.

The Peaceman-Rachford Algorithm

ADI methods were introduced by Peaceman and Rachford in 1955 [129] for the
numerical solution of elliptic and parabolic partial differential equations.

Consider solving the heat flow equation (2.18),

du 9w du (2.18)

=St —,
gt  ox> 9y

as a good example of parabolic differential equation, over the mesh
superimposed on the rectangular region 0< x<a, 0< y<b.

By using the same space-time notation as (2.4) in Section 2.2,
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z¢|:] = u(iAx, jAv,nAt) (2.19)

a simple explicit finite-difference scheme for the solution may be written as

n n n
- ZuL + uli_l u o
J .J + .J

n+l
lll —Uu
1.7

n n
u
i+l

n n
- 2u| , +u| .
i) i j-1

(2.20)

i)
= =~ 5

At Ax~ Ay~

Although the above explicit representation appears simple and straight forward
for solutions, it is constrained by the following CFL condition for stability:

S P 2.21)

As a result, the time marching requires Ar to be extremely small. For most
problems it could be an impractical method since the iterations need to be long

for a solution to settle.

In the ADI approach, every time step is broken into two sub-steps, the n-th and
the (n+1/2)-th steps. In the first haif time step, the second derivative, 9°u/dy’, is
approximated at the n-th iteration by the finite difference replacement and the
first second order derivative, d°u/adx*, replaced at an intermediate the (n+1/2)-th
iteration. A set of simulation equations is then resulted that can be solved
relatively easily. The equations are implicit in the x-direction. In proceeding from
the intermediate iteration n+1/2 to iteration n+1, the difference equation is implicit
in y-direction and explicit in the x-direction. More specifically, the two sub-

computations are:

u |,";L -ul’, u oy |‘";l +1u lf'_:lj X |7 =2 [, +u |}, (
- 2

At/2 Ax® Ay*

i+|:j

(5]
N
%)
~
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) I
n+l n+s n+s

n+l n+t +1 1 1
Wl —ul|F u —2u|; 7 +ue 70 M TR O TR (2.23)

Arl2 Ax® Ay*

i+l i-1j

The above two sub-step computations are proven to be unconditionally stable
and the proof can be shown by a procedure very similar to that used by O’Brien,
Hyman, and Kaplan. The details can be found in reference [129].

24 Development of ADI Based FDTD Algorithm

In section 2.2.3, the second constraint described in equation (2.7) which is known
as the CFL condition for FDTD gives the upper bound value of the time step. To
remove this CFL condition, the ADI principle described above is incorporated in
the FDTD, leading to an unconditionally stable FDTD scheme, called ADI-FDTD
method.

2.4.1 Derivation of ADI-FDTD scheme

As stated in Section 2.2, in an isotropic medium with the medium permittivity ¢
and the medium permeability u, the curl vector equation of Maxwell’'s equations
can be cast into six scalar partial differential equations in the Cartesian
coordinates as shown in (2.24). For simplicity, let's take the first equation as an
example as shown in (2.24a).

OE, _1(0H__9H, (2.24a)
ot €| dy 9z
OE, 1(dH, OH. (2.24b)
gt e\ 9z ox )

\
OE, I(0H, oH, (2.24c)
or &| ox dy
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0H, 1(9JE, OE.

Akl NN Wit B 2.24d

or ,u[ dz 9y ( )

%_l JE. _JE (2.24¢)

or ul ox 9z -
oFE

om, 19k, O, .20

gt ul dy  OoOx

By applying the ADI principle to equation (2.24a), the computation of equation
(2.24a) for the FDTD solution marching from the n-th time step to the (n+1)-th
time step is broken up into two computational sub-advancements: the
advancement from the n-th time step to the (n+1/2)-th time step and the
advancement from the (n+1/2)-th time step to the (n+1)-th time step. More
specifically, the two sub-step computations are:

1 for the first sub-step (i.e. at the (n+1/2)-th time step), the first partial
derivative on the right-hand side of (2.24a), dH_/dy, is replaced with an
implicit difference approximation of its unknown pivotal values at the
(n+1/2)th time step; while the second partial derivatives on the right-hand

side, dH , /dz, is replaced with an explicit finite difference approximation in

its known values at the previous n-th time step. In other words, equation
(2.24a) becomes

n

E

X

i+ jk *

At/?2

i+L ik

1 1

.= nez

H.|

:
i+3 5k : |i+%.j—é.k Yliegjkeg

Ay Az

1
£
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2 for the second sub-step (i.e. at (n+1)-th time step), the second term on the
right-hand side, dH,/dz, is replaced by an implicit finite-difference

approximation of its unknown pivotal values at (n+1)-th time step; while

the first term, JH_/dy, is replaced with an explicit finite-difference

approximation in its known values at the previous (n+1/2)-th time step.

Similarly, equation (2.24a) evolves to

n+l n+<

livd ok livd ok

At/?2

n+el n+t n+l

P

Sitg.j+ik hivd.j-tk

]

Ay Az

Note that the above two sub-steps represent the alternations in the FDTD

recursive computation directions in the sequence of the terms, the first and the

second terms. They result in the implicit formulations as the right-hand sides of

the equations contain the field values which are unknown and need to be
updated. The method is then termed “the Alternating Direction Implicit (ADI)"

method.

Applying the same procedure to all the rest scalar differential equations as
described in (2.25) and (2.26), one can obtain the complete set of the implicit

unconditionally stable FDTD formulas:

For the advancement from the nth time step to the (n+1/2)th time step:




1 1
n+— n+— n
H|"Z , -H]|" -
shiel stk Slisd Lk Ylied, jk+d Ylisd jk-t
Ay Az
1
+= n
2 —_
Lj+ik Ylijetk
Ar/2
1 1
n+— |n+-—; n n
i jetk-d shied jedk 2li-L etk

1
n+; l"
hijk+d ijuk+d
At/2
1 1
H[: ~H][? H| H|"
¥ Yhi-t kel Shijedked i j-tked

! |
E n+? _ rx+? n
¥l j+Llk+t Mlige Lk lijelk+t Slijk+l
Ay

(2.27a)

(2.27b)

(2.27¢)

(2.27d)
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H
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1
n-r:- n
v

t+4 g ke L Mied jk+d

At/2

n+—
3

aek . . (2.27¢)

E

i+l jk+d ivjk+t Clivd ksl livd.jk

|
u Ax Az

1
n+—

n
it j+ 1k - Sl je ok
At/2
n+— n+l— n n (2.27f)
E | : - 2 E . -FE,
1 Chitdg+lk i+l gk ¥ i+l j+ 4ok y i.1+§.k

1, Ay Ax

For the advancement from the (n+1/2)th to the (n+1)th time step

n+l n+<
E-‘ i+3.j.k clivd jik
Ar/2
nes n+— n+l n+l (2283)
H B —_ 2 —_
| il etk lisdj-tk Ylivl jk+d Ylevd j et
€ Ay Az
n+l n+=
E." fojvLk - My '-L
ALY :.j*:.L

{ L (2.28b)




n+l I"*?
N i./.k+% N i.j.k+%
Ar/2
L net (2.28¢c)
H B - B n+l n+l
1 Yol ek L} P ey § cliiebpet — i, i1
:.j. *: t :.j. +: l.j+:. +2 I 5 +:
£ Ax Ay
|
n+l n+<
cligetisd Clicj+tk+t
Ar/?2
1 ! 22
n+— n+< n+l n+l (""Sd)

Ylijedlk+t Ytk Tlijelkst slivjk+d

1
u Az Ay

n+ |’“‘_ n+l n+l

Tliv 3. )k

1 (2.28¢)

Slicjk+t “liv L jk+1

|
n+l n+-
1|i+17./+'§.k livgj+tk
Ar/2
n+-[- n+— n+l n+l (2-280

v

i+l febk Ylij+ ik

l
M Ay Ax

The notations E,|" and H,| , with a=xy,z are the field components with

their grid positions being the same as those with the conventional FDTD of the

Yee's scheme.



45

Attention should be paid to the fact that there is no time-step difference (or
lagging) between electric and magnetic field components in the formulations.

24.2 Advantages of modified ADI technique

The above ADI procedure is different from the conventional ADI procedure as
appeared in [70-74]. In the conventional ADI procedure, the alternations in the
computation direction are performed in each spatial coordinate direction,
respectively. In the two-dimensional case, there are two spatial coordinates, e.g.
x and y. Therefore, the computation for each temporal cycle (or each time step)
is then broken into two sub-step computations as shown in reference [73). The
first sub-step computation is performed in respect to the x direction while the
second computation is performed in respect with the y direction. In the three-
dimensional case, the computation for each cycle is then broken up into three
computational sub-steps as indicated in reference [70] since there are three
spatial coordinates, x, y and z. In the proposed method, however, the number
of the sub-steps is only two for each time step even in three dimensions. The
reason is that in the proposed method, the ADI is applied in terms of the
sequence of the terms on the right-hand side of the equations (the first and the
second terms), rather than in terms of the coordinate directions. For instance, in

equation (2.27a-c), the magnetic field components H_, H_, and H , which are

the first terms of the right-hard side, are implicitly computed in respect to the y,

z and x directions (mixed directions in the first sub-step), respectively, while the
second terms of the right-hand side are all explicit for those equations. At the
second sub-step, the first terms of the right-hard side in the equation (2.28a-c),

H_, H , and H , are computed explicitly while the second terms become

implicit. The reduction in the number of the sub-steps certainly saves the

computation time.
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243 Efficient Computation Approach

The unknown field components are coupled in equations (2.27) and (2.28) and
are therefore, not easy to handle. These equations may be rearranged more
efficiently for computations. For instance, consider equation (2.27a) where both
sides of the equations contain the unknown field components £, and H_. By

substituting equation (2.27f) into equation (2.27a), one can obtain:

At’ el Ar* nel Ar’ -
= ( ER At Y +lk+(l+ z)E.r '4»l-’k_( Z)E.r Lk
4u£Ay P ALY 2,UEA_V i+3. 4[18Ay i+5. -1
n 4 n n n n
=E[, -—2 (gI"  _El -E|  +E[ (2.29a)
livt )k 4#8A_}'Ax vl jetk i j+dk Yliel j—tk Fhij-tk
+ ar (H-’-.l-l._H~|l-,l-l.)_ ar H‘n . ,—H\.f’ )
2eAy © Clemarsk Skl 2eAz | Mlishiket Flivgjk—f

In the above equation, all the field components on the right-hand side are of
known values at the previous time steps, while the field components on the left-
hand side are of the same field components, E_, but at three adjacent grid points.
The unknown variables are decoupled. If written in a matrix form, it will result in a
banded matrix with three non-zero values.

The same decoupling procedures can be applied to equations (2.27b)-(2.28f) and
similar equations can be obtained for the other field components as shown in
equations (2.29b-30.f) that follow:

For the first sub-step,

Ar’ ned Ar® At® n+d
—(——=)E,| ', +(+ DE,| " —(—E,|
4,“£AZ 7 1.J+?.L+l 2HEAZ E :./+3.k 4ﬂ8AZ & :.]+3.k-l
=E[ ——A’——(E-_" w-El . -E[ _,+E-}','._.) (2.29b)
3 ,,]4%,& 4#£A2Ay < l.]+l.L+-=- i jk+s < l.;«\l.&—? < l.j.L—?
+ ar (I-I'x |.|_Hr’>"l.|)_ ar G’-?I l,-H-Ifll~l)
2€AZ x 1._/+3.L+? R z./+3.L—3 28AX clivg 43k Slimgj+3k
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For the second sub-step,
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Another easy way to obtain all the above equations is to permute the indices of
the equation (2.29a). The resulting equations form a linear system of equations
that can be solved with available numerical packages. In the following
paragraphs, we will describe the approach to the solutions in a matrix form.

The above equations, (2.29) and (2.30), for all field components can be
summarized in a simple matrix form:

M, X e P, X" (for advancement from n-th to (n+1/2)-th time step) (2.31a)

M,X o P, X s (for advancement from (n+1/2)-th to (n+1)-th time step) (2.31b)

Here vector X" is a one-column vector containing all the field components (E_,
E., E, H, H, H_) at the nth time step. M,, M,, P, and P, are the

coefficient matrices with their elements related to values of spatial and temporal
steps as dictated by equation (2.29) and (2.30). They are all sparse matrices.

M, and M, are associated with the left-hand side of equations (2.29) and (2.30)
while P, and P, are associated with the right-hand side of the equations. It can
be observed from equations (2.29) and (2.30) that each row of M, and M,

contains only three non-zero elements at maximum. Matrix operations on them

can be fast, in particular, the inverse of M, and M,.
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Recursive equations (2.31) can be solved either implicitly or explicitly. Since the
inverse of the sparse matrix M, and M, can be found relatively easily, an

explicit method may be used. They are,

X" =M'PX" (2.32)

Xt = M;’sz"% (2.33)
Combination of the above two equations ends up with:
X =M;'P,M;'PX" (2.34)
or,
X" = QX" (2.35)
with Q =M'P.M'P,.

Although the above approach looks simple and easy to implement, the
computation requirement could be very large. For a large-scale problem such as
mesh size of 100x100x100, the dimension of matrix M, and M, will be huge
(e.g. a million by a million), leading to a computational disaster if we calculate the

inverse the matrix M, and M, which are unnecessarily sparse. In addition, huge

amount of computation will be required for matrix multiplying to get Q .

In a practical simulation, a more efficient approach can be applied. By analyzing
the first sub-step in equation (2.27), it could be found that three magnetic field
components H_, H, and H_ can be calculated directly from three electric field

components E , E, and E. updated with equation (2.27). In other words, after

all the electric field components are obtained, magnetic field components can
then be updated directly from equations (2.27) with the electric field components
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already known. Thus, magnetic field components can be solved in a simple way
without any matrix multiplying or inversion. The process also holds for the second

sub-step computation.

Tocompute E,, E, and E_, a special procedure can be applied.

Consider equation (2.29a) which can be simplified as

=d (2.36)

au, ,+bu,+cu,., j

7701

4..’.
> and aj, b;, c;, and d; represent correspondent known

n
i+t j .k

where u, represents E,

coefficient values in equation (2.29a).

Assume that j sweeps from 0 to N+1, and «, =0 and u«,,, =0 on the boundary.
Application of equation (2.36) in the order of ascending j leads to a set of N

simultaneous equations

{
bu, +cu, =d,

a,u, +bu, +c,u; =d,

4 au,_ +bu +cu, =d, (2.37)

r*r-l rtrel

Ay ly > +by uy  +cy uy =dy

ayu,  +bou, =d,
from which N unknown values u ;(J=1.N) can be determined.

The matrix expression of (2.37) can be given by

Au=d (2.38)



where

(6, ¢ O 0
a, b, ¢, 0 0
A= a, br C,
O cee 0 a‘v_| bN—-[ CIV-I
0 0 ay by |

u:[ul u, SlN]T
d=[d, d, .. d,J

Two different approaches can be used in solving the above equation.

A) Inverse matrix

Notice that the size of A is much smaller than that of M, or M, since it
accounts for variation in one dimension (i.e. j in this case). For a 100x100x100
problem, the size of A is 100x100 which is 1/10° of the size of M, or M,.
Therefore, the computation of the inverse of the matrix requires much less

memory. Furthermore, A™' may be used once only to calculate the field values at
the left-most grid point «,. Once u«, is obtained, forward substitutions can be

applied in (2.37) to find the other components. More specifically, the second

leftmost value at j=1, at the (n+é)—th time step, can be obtained directly from

u, = —1-(dl —bu,) (2.39)

(&

The rest «’s can then be easily calculated by applying (2.36)
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1
U, = -c"—(dj —bu, —au,_) (2.40)

J

with a sequence of ascending j that allows one to find « ,, from «, and « . In

such a way, for the most of the computations, we avoid the application of 4™
that is not necessarily very sparse. Thus, the computation efficiency is improved.

B) Direct Solution

Alternatively, by using the Gaussian elimination method, « can be obtained
directly without involvement of A™'. Hence, time consuming calculation A™ can

be totally avoided.

Our experiences show that, for a linear, lossless and isotropic medium, approach
A) is more efficient because it is only calculated once and can be used in each

time step advance and only the first row of A~ is needed,.

2.5 Two-Dimensional ADI-FDTD Formulation

For the 2D electromagnetic problem, the ADI-FDTD formulation can be further
simplified. For example, the following are the TM and the TE algorithms for a
two-dimensional space region containing a finite number of media having distinct

electrical properties.

For TE to z polarization, the Maxwell's equations are:

JE. 1(JdH
1 = |, 241
p 8[ EY ) (2.41a)

JE, 1( OH
= e 2.41b
or E( ox ) ( )



a u

dy dx

OH, _ 1(85., 3E_‘-)

The corresponding ADI-FDTD formulas are then:

1) for first sub-step

1

E n+ n H n+é n+=
x l.,g., -E, |i+§., 1 : l,+§.,+§ : |,+§.,-§
Ar/?2 £ Ay
1
n+—
I 2 _ In In ln
ylisj+tk y b+t 1 i+l j+rdk s licd vtk
At/?2 £ Ax
i
n+— n
H. '1+—':—.j+'?.k -H |i+£7.j+;—.k
At/2
n+— n L
2 2 n n
1 E, Ii+1:-.j+l.k ¢ |i’§.j.k v |i+l.j+vi-.k ¥ Ii.j+Lk
u Ay Ax
2) for the second sub-step:
1 1
'"+l _E In+z H I’le __H |n+:
xlivd ik < livl jk _ 1 2 lied etk 2 lied -tk
Ar/2 £ Ay
!
n+l 2 n+l _ n+l
E, Ii.j+'3.k —E, |i.j+§.k 1 H, In%.ﬂg.k H. Ii-%&{--k
At/2 €

Ax
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(2.41c)

(2.42a)

(2.42b)

(2.42c)

(2.43a)

(2.43b)
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1
n+l _H l'”?

s kel el 2 el el

At/ 2

] 2

[ e EE . E L, -E, I o4
1 x i+%_/+l,k £ Hé./,k ¥ 1?/.]+%L ¥ I.j'*é.k
u Ay Ax

Notice that in the TE ADI-FDTD formulation, the same set of equations can also
be obtained by applying the original ADI technique instead of the modified one.
For example, equations (2.39a-c) of the first sub-step are implicit in the y-
direction and equations (2.40a-c) of the second sub-step are implicit in x-
direction [73]. Hence, there is no difference between the modified ADI and
original ADI in the two-dimensional case.

For the two-dimensional TM case, the Maxwell's equations become

JE. 1(JH, OJH

co T P | 2.44
o 8( ox dy ] (2442)
OH, 1( OJE
e 2 % | (2.44b)
d u{ a«"]
oH, |(JE

y 4 = |, 2.44
o u ax) (2440)

The corresponding ADI-FDTD formulations are,

1) for the first sub-step:
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(2.45a)

(2.45b)

(2.45¢)

(2.46a)

(2.46b)

(2.46¢)
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Similar to the TE case, above equations may be obtained by directly applying the
conventional ADI technique.

For the two-dimensional TE and TM cases, the same efficient computation
approaches as presented in the previous section for the 3D cases can also be

used to accelerate simulation speed.

2.6 Simulations and Results

To demonstrate the validity of the proposed ADI-FDTD method, one
homogeneous and one inhomogeneous rectangular cavities were computed with
both the ADI-FDTD and the conventional Yee's FDTD. The reasons of choosing
the cavities are that the analytical solutions are readily available for comparison.

Homogeneous Air-filled Cavity

The results illustrated in Table 1.1 show the first four resonant frequencies of an
air-filled cavity. The air-filled cavity has the dimension 9mmx6mmx15mm. For
both ADI-FDTD scheme and Yee's FDTD scheme, a mesh with A/ =0.6mm was
used resulting in 15x10x 25 grid points. Note that that a time step Ar,,,;, =0.8ps

and a larger time step Ar, =3xAt.,,, =2.4ps were chosen for FDTD and ADI-

FDTD, respectively. It can be seen that the errors for both methods are
comparable. And yet a saving factor of 1.55 in CPU time with the proposed ADI-
FDTD was achieved in this case.

Table 1.1: Comparisons of Results with the conventional FDTD and ADI-FDTD

Analytic Conventional FDTD scheme ADI-FDTD scheme
Results Simulation Relative Simulation Relative
(GHz) results (GHz) error results (GHz) error
19.427 19.451 0.12% 19.400 0.14%
26.022 25.972 0.19% 25.961 0.23%
31.652 31.455 0.62% 31.553 0.31%
34.776 34613 0.47% 34.577 0.57%
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Inhomogeneous Half-filled Cavity

The geometry of the inhomogeneous half-filled cavity is depicted in Figure 2.3.
One half of the cavity is filled with air and the other half with the dielectric

material of a relative permittivity of £ =64. The cavity has the dimension of
Imx2mx1.5m. Again a uniform mesh with A/ =0.lm was used, leading to a

mesh of 10x20x15 grid points.
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Y= rmmedaaaa
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[}
1
]
]
]
]
U
A
[}
]
]
[}

\
\

Figure 2.3 The cavity half filled with air and the other half filled with dielectric
material.

For the comparison purpose, both the ADI-FDTD and the conventional FDTD
were used to simulate the cavity. This time, a time step Ar,,,, =1.5x107"°s was
chosen with the conventional FDTD, while a larger time step
Ar, = 4xAt.,,, =6x10"°s was chosen with the proposed ADI-FDTD. With such
time step ratio, we found, by trial and error, that the two methods presented
similar accuracy. Therefore, the two methods are compared at the same

accuracy level. 20000 iterations were run with the conventional FDTD method
while 5000 iterations with the ADI-FDTD. The iterations present the same
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physical time period since the time step with the conventional FDTD is one-fourth
of the time step with ADI-FDTD. Table 1.2 shows the first five resonant
frequencies obtained with the two methods. The errors for the two methods are

at the same level.

Table 1.2: Comparisons of Results with the conventional FDTD and ADI-FDTD

Analytic Conventional FDTD scheme ADI-FDTD scheme
Results Simulation Relative Simulation Relative
(MHz) results (MHz) error results (MHz) error
18.627 18.610 0.11% 18.587 0.21%
27.172 27.12 0.19% 27.046 0.46%
29.374 29.225 0.51% 29.155 0.88%
32.881 32.671 0.64% 32.626 0.77%
35.069 34.946 0.35% 34.832 0.67%

On a Pentium Il 450 MHz PC, it took 545.83 seconds to finish the simulation with
the ADI-FDTD and 873.34 seconds with the conventional FDTD. We then
concluded preliminarily that a saving factor with the ADI-FDTD in CPU time is
about 1.6 when the conventional FDTD is used as a reference.

Computational Expenditures

Since the Yee’s grid is used with the ADI-FDTD method, the number of field
components at all the grid points are the same as that with the conventional
FDTD. However, due to the fact that E and H field components are not interlaced
in time anymore, the memory requirement is aimost double of that for the
conventional FDTD method as indicated in equations (2.29) and (2.30).

In addition, more components are involved in the recursive computation at each
time step with the proposed FDTD method. The CPU time for each time step with
the ADI-FDTD is then larger than that with the conventional FDTD method.
However, since a larger time step can be used with the ADI-FDTD, the total
number of iterations required with the ADI-FDTD could be reduced. The opposite



effects of the more CPU time for each time step and the reduced number of
iterations on the overall CPU time will be studied, in particular, numerically, in the

next chapter.

2.7 Discussion and Conclusions

In this Chapter, a new three-dimensional ADI-FDTD free of the CFL stability
condition is presented for solving electromagnetic problems. In the new scheme,
the Yee's grid is used with the application of the aiternative direction implicit
technique in formulating the algorithm. As a result, the memory requirement is
about twice that for the conventional FDTD while the time step is no longer
restricted by the numerical stability. In comparison with earlier work reported by
reference [70], the proposed ADI-FDTD reduces the number of sub-step by a
factor of three to two, which means 33% time saving in a single run.

To avoid time consuming computation of inverting a matrix, an efficient
computation technique is presented for practical implementation. Numerical
verifications are presented to demonstrate the validity of the proposed method
without the CFL condition. Preliminary experiments indicated that with the same
accuracy, the proposed method uses four times fewer of iterations and is 1.6
times faster than the conventional FDTD. Note that parts of this chapter have
been published in the technical journals [99][130].
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Chapter 3 Numerical Stability Analysis: Proof of unconditional
stability

3.1 Introduction

The numerical algorithm for Maxwell's curl equations defined by conventional
FDTD systems require that time increment Ar has a specific bound relative to the
lattice space increments Ax, Ay and Az. This bound is necessary to avoid

numerical instability, an undesirable possibility with explicit differential equation
solvers that can cause the computed results to spuriously increase without limit
as time-marching continues.

The new ADI-based FDTD algorithm developed in Chapter 2 shows numerically
the stability even beyond the CFL point of the conventional FDTD. Original ADI
technique has been applied to solve parabolic differential equation [74), and
proved stable. As described in Chapter 2, the ADI technique applied to the
proposed ADI-FDTD is different from the original one. Rather than alternating the
coordinate directions from which ADI get its name, the modified ADI technique
used in the ADI-FDTD is applied by alternating the sequence of the terms on the
right-hand side of the equations (the first and the second terms). Hence, the
stability of the new scheme need to be investigated rigorously to demonstrate
that the proposed scheme is unconditionally stable. In other words, although the
preliminary numerical experiments show that the new ADI-FDTD is stable even
when the time step beyond hundreds of times the limit of the conventional FDTD,
a theoretical proof that ADI-FDTD is unconditionally stable is required and is
given in this chapter.



3.2 Unconditional stability of Three-dimensional ADI-FDTD
Algorithm

Generally, for a recursive scheme or system,
F™' =A-F" (3.1)

its numerical stability can be determined with the so-called Fourier method as
described in reference [22]. Instantaneous values of electric and magnetic fields
distributed in space across a grid are first Fourier-transformed into the waves in
the spatial spectral domain to represent a spectrum of spatial sinusoidal modes.
By checking the eigenvalues associated with the spectral-domain waves in the
system, one can determine the stability conditions of the system. if magnitudes of
all the eigenvalues are less than or equal to unity, the scheme is stable. If one of
them is larger than one, the scheme is potentially unstable. The Fourier method
is applied in this chapter and the analysis is presented in the following
paragraphs.

Mathematically, the spatial Fourier transform of the instantaneous electric and
magnetic fields can be expressed in the i, j and k coordinates to provide a
spectrum of sinusoidal modes. The results are often called three-dimensional
spatial-frequency waves, or eigenmodes of the grid. More specifically, assume
that the spatial frequencies to be k., k, and k. along the x, y and z directions.

The field components in the spatial spectral domain can then be written as

. o] .

n n = HkeCiv 3 )Ac+ky jAv+k kaz)

", =E"e 3 (3.2a)
l+7.].‘

- jCkgiderk o j+Ljavek kaz)
T = EreT (3.2b)

—jCkiAx+k, jAv+k ( k+d)az
Jkyidx+ky jAy+k.( +.,)A ) (32C)

E_|" =Ele
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X 1 !
n _ n = I kdAxek o j+5my+k:( 9‘:4»? 14az)
H t Ii.;+—£—,k+%_ H‘e (3’2d)
n n—k U+ Ac+k, jAy+k, (k++)AZ)
v |,+_'. jkel = Hle : ' : (3.2¢)
n _ n =1k G+D)Ax+k, (j+l)Ay+k kAz)
H N |,+L,I,l‘ - H; e ; - (3.20

Substitution of equations (3.2a-3.2f) into (2.29a), respectively, can lead to

equation (3.3) in the spatial spectral domain in terms of &k, k , k., Ar,
Ax,Ay, and Az.
A’ et Lk, Ged)acek, el ayek ka) Ar? et kG acek, Ay +k kA2)
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AueAXAY| _ pre : +E’e :

Factoring out the ¢™’“***/**9 tarm that is common to both sides, one can

simplify the above equation to equation (3.4):
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Applying Euler’s identity to the complex exponentials yields:

2 +l
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(Er (<2jsin(k Ay /2))(=2 jsin(k,Ax/2)))
With

l-cos@ =2sin*(0/2), (3.6)

equation (3.5) becomes:

sin(k Ay)Ar® .l
+ - YE

X

HEAY®
sin(k _Ay/2)At i
=gy AT sintk AZIDAL (3.72)
EAy i EAz ’
N sin(k,Ax/2)sin(k Ay/2)At* E
MHEAXAy

In a similar manner, substituting the eigenmode expressions of equations (3.2)
into equation (2.29b-f) for the first sub-step yields,
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i 2)A
sin(k Ax/2) tE_:f (3.79)
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For the equation (2.30) for the second sub-step computation, similar expressions

can be obtained as,
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ne b 1 /2 nel sin(k A [ 2D)AL el
=H, * —js'"(k=A‘/ )A! E *+j (k,a7/2) E > (3.8d)
’ EAZ | EAy :
sin(k Ax/2)sin(k ,Ay/2)At* ..l
+ : - H_ -
UHEAXAY :
1+ sm‘(k:Az’)At' )H:.'”
MHEAZ i
n+i 1 - 2 n+i ] - - 2 ,,4.1
—H"? __jsm(kJAr/-)At E"? +jsm(ll:./L/ YAt e (3.8¢)
] EAx ) EAz ’
sin(x Av/2)sin(k_Az/2)Ar*  n.l
+ - - H_-*
UEAYAZ i
1+ sin ~ (k_(Af)Af' VEL ™!
MHEAX~ )
IH»i sin(k A ! 2)Ar n+l 1 - 2 n+-l-
SHT_ (k,Ay/2) E" +jsm(k_,Ax/ YAt P (3.80)
. EAy ’ EAx !
in(k Az/2)sin( % MNAr:  nel
+ sin(k_Az/2)sin(k Ax/2)At H
HEAZAX '
Denote the field vector in the spatial spectral domain as:
[ E" ]
E;
E’l
F'= =1, 3.9
H{
H;
LA ]

Then the time-marching relation of all six field components can be summarized
and written in a matrix form as followings.
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F'i=a.F" (3.10)
where
i 1 W\' i W_\ 0 0 jw: ~ jW‘ ]
Q, UEQ . €0, €0,
0 _l_ W: ) W}‘ - jW: 0 _]W‘,
0. HEQ, £Q. £Q.
W, W, 0 2 W, -jw, 0
"‘ EQ\' Q! 8Ql’ EQ(
A = (3.11)
O - jW: jw l O W\' ) WI
H Q: H Q Q: ﬂEQ:
1 - w_-w,
JW: 0 er X J L 0
MO, uQ,  ueQ, Q.
~ j W." j W( 0 0 W: : W}' l
| MO, MO, MEQ, Q, |
W, = Ar sin ko Aa , a=XY,z
Aa 2
Qa=l+w“-, a=xy,z
ME
For the second sub-step computation,
F™ =4, F": (3.12)

where



where W, and Q, have the same definition as defined in equation (3.11).

]

l 0 W: : u/r
Q; u €Q:
W _-W, 1
L 0
MHEQ. Q,
W, -W. 1
0 - bt —_—
_ HEQ, 0,
0 - jW. v,
Mo, HQ,
JW. 0 -JjW,
uQ. HQ.
- j W." J Wt
| uQ, uo,

0 iw. -JjW,
£Q. 0.
-, W,
€0, £Q,
W .
j ¥ .] Wr O
€Q, Q.
1 W _-W,
—_ ‘ - 0
o, MEQ,
1 W -W.
0 1 3 z
0. HEQ.
Wl: ) W: O l
HEQ, Q.

Substitution of equation (3.10) into equation (3.12) leads to:

F n+l

=AF" = A,AF"

With the use of Maple V5.2, one has:

where

[ A +B, MWW, 2ueWW. —2juWw  2ju’eW.  2juD, |
0.0,0. 0.0, Q,0. 0.0, 0,0. 0.0.0.
2ueW W, A, +B, 2UEWW.  2juD,  -2juW  2ju’eW,
0.0, 0.0,0. 0,0. 0.0,0. Q,0. 0.0,
2ueW W, 2ueW W, A +B, 2jueW,  2juD,  -2juW
0.0, 0.0, 0.0,0. 0.0, 0.0,0. 0.0,
—2jeW  2jeD, 2ju€’W, A +B, 2UEWW, 2usW.W,
QxQ: Q,(Q_\- Q: Q_\'Q: Q,rQ_vQ: Q_VQ: Q:Qx
2jUEW.  —2jeW 2jeD, 2ueW W, A, +B  2uW W,
0.0, 0.0, 0.0.0. 0.0, 0.0,0. 0.0,
2 jeD, 2jueW,  —2jeW  2ueW.W_,2 2ueWW. A +B,
| 2.0.0. 0.0, 0.0, 0.0, 0.0. 0.0.0. |
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(3.13)

3.14)

3.15)
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W=WWW,
A= WE + e W -W-W)+WWW?
A, = W + et W W -W+W>WW?
Ay =16 + e Wr =W - W)+ WWW.
B = ue(W W' -W W2 -W'W})
B, = ue(W;W> —W>W -W'W}) (3.16)
B, = ue(W W] -W W] -W'W7)
D, =W, (W)W} - u’e’)
D, =W.(W WS —u’e’)
D, =W (W>W; - u’e’)
The eigenvalues of the A can be found as:

h=4=1

A=A =LFS (3.17)

with

R=(ue+w? \ue + W} \ue +w?) (3.18)
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T =" — pe(UeW? + peW? + ueW? + WiW? + W2W.2 + WW2 )+ W2W2W?

The first two eigenvalues obviously have magnitude of unity and the magnitudes
of the rest eigenvalues need to be checked out.

It can be shown that the following equation is true.
R=8*+T* (3.19)

Because R, S and T in the expressions for A,, A,, A, and A, are real numbers,

the magnitudes of the remaining four eigenvalues are

T+jS|_|T-js|_ [T*+S*?
ol =l = sl = el = =5 = (320
In other words, the four eigenvalues also have magnitudes of unity. Therefore,
we conclude that the proposed ADI-FDTD scheme is unconditionally stable

regardless of the time step Ar. The CFL stability condition is then removed.

3.3 Stability Analysis of the Two-Dimensional ADI-FDTD
Formulations

The stability analysis discussed above is now applied to the two-dimensional TE
and TM cases which only involve three field components. Because the detailed
derivation is similar to that of three-dimensional case, only the results are

presented.

For the TE method as described by (2.42) and (2.43),

1

ne—
>

F™“' =A,.-F " ?=A,AF" = AF" (3.21)



where F" is defined in a different way

E
Fr=|E" (3.22)
H:
and
1 wWWwW, —jw, ]
Q, ueQ, €0,
W
A=l 0 ALY (3.23)
£
—JW, W, R
L #Q\ “Q\. Q_v J
- -
1 0o -j—=
£
wWWw, W
PR MEUCTE LA (3.24)
#gQ\ Q_t 8 X
W, w1
uo, w0, Q. |
[ 16 + ueW2 -W2+W>w? 2w W, - 2w, ]
HeQ.0, 1eQ. 0, €0.0,
e 2W W, uE ~W] 2jW, (3.25)
MEQ, HEQ, £Q,
-2;w, 2jW,  ME P -uEW] +W])-WW]
| uQ.0, HQ.0, He*Q.0, |
W, = Ar -sin kA , a=ux,y (3.26)
Aa 2
3 (3.27)
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The eigenvalues of the A can then be found as:

A =1
L _T+is (3.28)
*T R
P
R
with
R =(ue + W} \ue +W?)
S = Jaue (ueWw? + uew? + ww?) (3.29)

T =p’e’ — ueW; — ueW: —-w:>w’

The first eigenvalue is one which has magnitude of unity. Noting that R, S and

T are the real numbers, we have

= =1 (3.30)

A,

S
- -2

+
R
Therefore, the magnitudes of all three eigenvalues are unity. As a result, the

proposed ADI-FDTD scheme is unconditionally stable regardless of the time step
Ar in two-dimensional TE case.

For the TM wave, the definition of F” is different because three other different

field components £, H _and H, are considered,
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E
F'=|H" (3.31)
H;
A, A, and A can be found as:
L W, ]
Q, £Q, €Q,
W 14
a = 2 I IWe (3.32)
U €Q,
_ jwt W\'W." L
- #Q,‘ #EQ'( Q,[’
r . . 7
L jW‘ _ le’
o, &, &,
jWV l WIW\
A, =] —L — (3.33)
MQ, Q, ueQ,
W, 1
| H i
(e — UEWE + W) —WIW ] 2w, 2w, |
ueQ.0, .0, €0.0,
A= ZJW‘ U E™ + #8(‘?,.(" - W;) + W;W; 2W‘,W‘ (3.34)
HO 0, HEQQ, HEQ O,
_ 2jW, ZW‘W_‘. UE — sz
i MO, HEQ, MEQ,

where the definition of W, and Q, are the same as by equation (3.26) and

(3.27), respectively.

Again, The three eigenvalues can be obtained as

A =1



75

A, =L+ (3.35)

R, S and T are the same as (3.29). Therefore three eigenvalues have unity

magnitudes and the scheme is unconditional stable as well.

3.4 Numerical experiment and Resuit

The ADI-FDTD is theoretically proven unconditionally stable in both three-
dimensional and two-dimensional case. The CFL condition inherent in the
conventional FDTD is completely removed. Numerical verification is carried out
to confirm the result. in following sections, the numerical validations of
unconditional stability of ADI-FDTD are presented. A study on time step selection
without CFL condition is also made with respect to the numerical errors. The
preliminary error analysis shows that the time step in ADI-FDTD is now limited by
modeling accuracy and the Nyquist sampling rate.

3.4.1 Numerical Verification of the Stability

Simulations were run for both homogeneous and inhomogeneous cavities again
with both the conventional FDTD and the ADI-FDTD having a time step that
exceeds the limit defined by the CFL condition (2.7).
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Figure 3.1 Time-domain electric fields with the conventional FDTD and the proposed
FDTD. (a) The conventional FDTD solutions that becomes unstable with
At; =1.2ps; (b) The proposed FDTD solution with At, =120ps .
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Figure 3.2 Time-domain electric fields at the center of the cavity recorded with the

conventional FDTD and the proposed ADI-FDTD. The conventional
FDTD solutions that become unstable with Ar, = 2x107'"°s; The proposed

ADI-FDTD solution with Az, =200x10™"s .
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Figures 3.1 and 3.2 show the electric field recorded at the center of the both
cavities. In the homogeneous case, At,,,, =1.2x107"*s (larger than the CFL limit

Al

Ar = T =1.155x10™"s) was chosen with the conventional FDTD, while a
C

FDTDMAX

time step 100 times larger, Ar, =1.2x107"°s, was used with the ADI-FDTD

scheme. In the inhomogeneous case, time step Ar.,,, =2x10"°s and

- Al =1.92x107""s , were

3

used in for the conventional FDTD and ADI-FDTD, respectively. It can be seen,

A, =2x107"s, both larger than the CFL limit Ar,,,,,.,

in both cases, the conventional FDTD quickly becomes unstable as shown in
Figure 3.1a and Figure 3.2a, while the proposed FDTD remains with the stable
solution as shown in Figure 3.1b and Figure 3.2b. The simulation with a much
longer period was also done with the proposed scheme. No instability was
observed.

3.4.2 Numerical Accuracy Versus Time Step

Since the proposed ADI-FDTD has been proven to be always stable, the
selection of the time step is then no longer restricted by stability. As a result, it is
interesting and meaningful to investigate how the large time step will affect
accuracy. The same two cavities are used again for the numerical experiments.

Table 3.1: The Proposed ADI-FDTD simulation results with different Az

Analyt The proposed ADI-FDTD scheme

ical Aty =44t At, = 6AL,,,, Aty = 8At.
Result Result Relative Result Relative Result Relative
(MHz) (MHz) error (MHz) error (MHz) error
18.627 18.587 0.21% 18.556 0.38% 18.511 0.62%

For the comparison purpose, both the conventional FDTD and proposed ADI-
FDTD are used to simulate the cavity. This time, a single value of the time step
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At,,» =1.5x107"%s is chosen with the conventional FDTD, while various values
of time step Ar, are used with the ADI-FDTD to check for the accuracy. Table 3.1

presents the simulation results for the dominant mode in the cavity. As can be
been, the relative errors of the ADI-FDTD increase with the time step. These
errors are completely due to modeling accuracy of the numerical algorithm, such
as the numerical dispersion. The gain for the increased errors is, however, the
reduction in the number of the iterations and therefore the shortening of the CPU
time. In the experiments, for an error of 0.38%, the CPU time with the proposed
ADI-FDTD is about half of that with the conventional FDTD. For an error of
0.62%, the CPU time is cut to one third of the conventional FDTD time. Note that
the shortening of the CPU time is not linearly proportional to the increase in the
size of the time step or the reduction in the number of the iterations. The reason
is that the CPU time required for each time-step computation with the proposed
FDTD is more than that with the conventional FDTD since more components are

involved in the computations as shown in equation (2.27).

Figure 3.3 illustrates the relative errors for the dominant mode of the cavity
computed using the conventional FDTD and the proposed FDTD with variable
time steps. For clarity, relative time-step, Ar/ Ar,,,,,.. , iS used. As can be seen,

at low At/ At » the errors of both the conventional FDTD and the ADI-
FDTD are almost the same. However, after At/ At, ...« =1.0, the conventional

FDTD solutions become diverge (unstable) while the ADI-FDTD continues to
produce stable results with increasing errors. Such errors may or may not be
acceptable depending on the applications and users’ specifications.
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Figure 3.3 Relative errors of the conventional FDTD and the proposed FDTD as the
function of relative time step Ar/Ar.,.,.. - Dash line represents the
unstable point of the conventional FDTD scheme.

3.5 Discussion and Conclusion

In this chapter, the unconditional stability of proposed ADI-FDTD has been
proven analytically and demonstrated numerically. Numerical results also shows
that the proposed scheme is indeed stable even when time step is a hundred
times of the CFL limit of the conventional FDTD. It can be expected that because
of the removal of the CFL constraint on time step, various efficient modeling
techniques, such as muitigridding scheme, can be implemented in a way easier
than before [68].

With the CFL limit removed in ADI-FDTD, the time step of ADI-FDTD is no longer
restricted by the numerical stability but by the modeling accuracy of the algorithm
and the Nyquist sampling limit. Therefore, study of the modeling accuracy of ADI-
FDTD becomes significant and will lead a criteria in terms of proper and efficient
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application of ADI-FDTD. One of the major factors that affect modeling accuracy
is the numerical dispersion which is investigated extensively in next chapter.



Chapter 4 Numerical Dispersion Analysis

4.1 Introduction

As pointed out in chapter 2, the conventional FDTD method is an explicit
marching-in-time technique and its time-step is limited by the well-known CFL
stability condition. Consequently, the FDTD may require a large number of
iterations in certain applications especially when small time step is required, e.g.
structures with fine geometry such as small via [46]. As shown in chapter 3, in
the proposed ADI-FDTD scheme the CFL stability condition is removed. The time
step is not limited by the CFL condition anymore but by the accuracy of modeling
results and the Nyquist sampling limit. Hence, the number of iterations can be
reduced significantly compared to the conventional FDTD in simulating the same
structure. It will be shown that ADI-FDTD has advantage in this case.

Like any numerical method, numerical dispersion is inherent in FDTD scheme. It
is the result of the spatial discretization where the phase velocity of numerical
modes in a FDTD grid is forced to vary with grid size, time step, wave
propagation direction, and modal wavelength. This numerical dispersion can lead
to nonphysical results such as pulse distortion and artificial anisotropics. To
estimate the errors induced by numerical dispersion, numerical dispersion
relation of any discrete lattice need to be studied. For the conventional FDTD
scheme, numerical dispersion has been investigated extensively [125]-[128].

In this chapter, a thorough study of the numerical dispersion characteristics of the
proposed unconditionally stable ADI-FDTD will be presented. In a similar manner
of stability analysis in Chapter 3, Fourier numerical wave modes are assumed to
propagate at arbitrary angles in the space lattice. The numerical dispersion of
ADI-FDTD is then derived and the effect of the time and spatial steps on the
numerical dispersion are investigated and compared with the conventional Yee's
FDTD.
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In addition, dispersion analysis was made for structures that contain components
of fine geometry such as thin circuit board layers and vias. For these structures,
very fine local mesh is normally required in order to obtain sufficient modeling
resolution. The dispersion analysis shows that under these circumstances, the
time step of the unconditionally stable FDTD can be chosen much larger than
that of the conventional Yee’s FDTD scheme without sacrificing the accuracy. As
a result, the simulation time can be reduced significantly.

4.2 Numerical Dispersion of Three-dimensional ADI-FDTD
Algorithm

To derive the numerical dispersion of the FDTD method, the Fourier transform of
the FDTD formulations in the spatial domain along the x, y, and z directions is
taken and the propagation waves are assumed to be monochromatic. After some
manipulations, a relation for the field components in the mixed temporal and
spatial domains can be obtained and the dispersion is determined. The details of

the procedure can be found in reference [46].

The same procedure is used to derive the numerical dispersion relation of ADI-
FDTD. Detailed derivation is given as follows.

The spatial spectral domain representation of the proposed ADI-FDTD has been
obtained in Chapter 3 for the stability analysis as shown in equation (3.14). As
derived, the relationship between the field components at the (n+1)-th time step
and the n-th time step in the spatial spectral domain is:

F™' = AF” 4.1)

Note that Ais a 6 by 6 matrix that contains k Ax, k Ay, and k. Az. k,, k,, and k_ are
the spatial frequencies along the x, y and z directions, respectively, or the x, y

and z components of the numerical wave number vector. Ax,Ay and Az are the
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spatial discretization steps along the x, y, and z directions, respectively. F”"
represents a vector that contains all the six field components in the spatial

spectral domain:

%
E;
E!
H:
H;
H

I
~
e
%]
~’

FII

Now assume the electromagnetic fields to be monochromatic traveling wave:

E; = Eae’""‘“ (4 3)

a=x,vy,z .
H! = H_e"™ g

where w is the angular frequency and Ar is the time step.

With equation (4.3), the column vector F which has six field components can

now be written as

F" = Fe'*", “4.4)
where
_ E. .
E,
E.
F=| ~
H,
H,
_H: -

After some linear algebra manipulation, equation (4.1) becomes:



eI -AF =0

Here I is a 6 by 6 identity matrix.
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4.5)

Since solutions of equation (4.5) should be nontrivial, the determinant of

coefficient matrix should be zero. That is,
det(e’™ I — A)=0.

It describes the dispersion relation of the ADI-FDTD method.

(4.6)

The dispersion relation (4.6) can be further simplified and represented with its

eigenvalues. The six eigenvalues the of A are found as:

h=k=1

T+ jS
A=A = ;

. T-js
A=A, =A%y = R’

where

R= (e + w2 Y W2 e + W)

S = \/4[18 (uew? + HEW] + HEW? + WIW] + W)W + W)W Nu’e’ + Wiww?)
T =u’e® - ue(ueW? + peW? + HEW: + WW2 +W2W2 + W2W2 )+ W2W W

Therefore, (4.6) can be explicitly written as:

(€™ 1)’ (™ —1,)* (™ - 1"3)* =0

4.7)

4.8)

4.9)
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or,

(™™ —1)’[e”*™ — (A, +A"3)e’™ +1)* =0 (4.10)
It leads to:

w=0 4.11)
and

. A S
sin” (wWAt) = —
R-

- Ry > 2 4 s b B 2 b ] k) 2
4/,:8(;46W; +UEW ] + ueW? +WIWS + W W +W>W} Xy’e3 + W;W_;W;) (4.12)

(ue +W )2 (ue +W; ): (ye +W? )

The first solution w =0 is the stationary solution that corresponds to the
electrostatic and magnetostatic solutions. It is a representation of the non-
propagating solutions in the unconditionally stable ADI-FDTD mesh. The second
solution (4.12), however, corresponds to the propagating modes of the ADI-
FDTD mesh. It reveals the dispersion relationship among the numerical wave
numbers in the x,y and z directions, the wave angular frequency, the grid size

and time step.

In order tc evaluate the errors caused by the numerical dispersion of the ADI-
FDTD, reference solutions are needed for comparisons. In our case, two
reference solutions are used: (A) the analytical dispersion relationship in the
continuous medium that the ADI-FDTD is simulating and (B) the dispersion
solutions of the conventional Yee's FDTD scheme that is constrained by the CFL

stability conditions.

The analytical dispersion relation for a plane wave in the continuous medium is
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w e =k; +k] +k: (4.13)

while the numerical dispersion of the Yee's FDTD is [47]

! sin:(%k:Az) (4.14)

=
—

- sinl(ik‘At) + 1 . sinz(lk‘,A_v) +
cAt 2 L o 2 Av- 2

1 sin:(lwAt)= L
A 2 A

4.3 Convergence of ADI-FDTD Solutions

For an ADI-FDTD solution to be valid approximations to the exact solutions of
Maxwell's equations, the numerical dispersion of the proposed ADI-FDTD
scheme has to converge to the analytical dispersion relation. The numerical
dispersion of ADI-FDTD as shown in equation (4.12) looks much more
complicated and bears little resemblance to the ideal analytical dispersion
relation as shown in equation (4.13). However, it can be proven that equation
(4.12) will converge to equation (4.13) as Ax,Ay,Az and At all go to zero.

The numerical dispersion relation of ADI-FDTD (4.12) can be reorganized as

sin” (wA?) .

Ar®

e (ueV? + peV} + peV? +AP VIV + VIV VIV e + ACVIVEY?) (4.15)
(ue + Arv2Y (ue + APV} J(ue +Arvzy
where
1 k Aa

V. = -sin| =< , aA=x,y,2. 4.16
e 2} o, w10

Then, by taking the limit of both left and right hand sides for Ax — 0, Ay — 0,
Az —>0,and Ar > 0:
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sm'(wAt)#E - 0ue (4.17a)

A:.r_\l_v!xmy—-o A :
li due(uev? + HEV? + ueV: + A (VAV + VIV +VIVE) e’ + AIVIVEV?)
o (ue +Ar*v:>) (ue + APVEY (ue + APV
=k; +k} +k;
(4.17b)

The analytical dispersion is resuited. In other words,

lim (eqation(4.12)) = (w ue =k; +k; +1). (4.18)
Ar Av.Az. A1 >0
Thus, the validity of the ADI-FDTD approximations for the solution of Maxwell's
equation is shown.

In conclusion, similar to that of the conventional FDTD, the solutions of the ADI-
FDTD will converge to the analytical solutions as grid and time steps go to zero.
That is, the unconditionally stable ADI-FDTD will present the approximate
solutions which can be close enough to the analytical solutions if small spatial
and time steps are used for the simulation. Nevertheless, compared to the
numerical dispersion described by equation (4.14) for the conventional FDTD,
the numerica! dispersion (4.12) of ADI-FDTD exhibits a more complicated
relation between time step and cell size. It needs to be studied thoroughly.

4.4 Numerical Dispersion of Two-dimensional TE and TM Case

For the two-dimensional ADI-FDTD, similar numerical dispersion relations can be
found. As derived in the previous section, equation (3.1) is a general form of
dispersion of the ADI-FDTD time-marching scheme in the spatial spectral domain

F™' = AF". (4.19)



89

By assuming the numerical modes to be monochromatic, the dispersion relation
of TE ADI-FDTD can be expressed in terms of eigenvalues of A,

(e’ = AN’ =, )™ -A,) =0 (4.20)
where 4, 4, and A, can be found in (3.28).

Similarly, we have two solutions,

w=0 4.21)

and

[

st auet(uew’ + puew? +WiW?)

R* (;18+Wf)2(;te+w_f)2

As discussed in the previous section, the first solution (4.21) represents the non-
propagating solution in the unconditionally stable ADI-FDTD mesh, and the
second solution (4.22) corresponds to the propagating solution.

sin*(wAr) = 4.22)

The eigenvalues for A in the TM case are found to be the same as in the TE
case. Therefore, the numerical dispersion for the TM modes has the identical

expression, which is

s aue*(uew? + HEW ] + W_fo)

R’ (;4£+Wf)2(ys+wff

Actually, numerical dispersion for the TE and the TM cases can also be obtained
by setting Az to 0 in the dispersion relation for the three-dimensional case shown

(4.23)

sin’(wAr) =

in equation (4.12).
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4.5 Dispersion Characteristics of the ADI-FDTD scheme -
Numerical Result

Several aspects of the numerical dispersion of the ADI-FDTD scheme are
studied. They include 1) the effects of the propagation direction on the
dispersion, 2) the effects of the larger time step on the dispersion, 3) three-
dimensional view of the numerical dispersion, and 4) dispersion on the k, —k,

plane.

4.5.1 Effects of the propagation direction on the dispersion

To investigate the effects of wave propagation direction on the dispersion
characteristics, one can assume that wave propagates at angle ¢ and @ in the
spherical coordinate. The x-, y- and z- components of the wavevector then have

the following form,

k. =ksinBsing
k, =ksinfcos¢ 4.24)
k. =kcos@

By substituting equation (4.24) into the dispersion relation (4.12), numerical
wavenumber k& can be found numerically using the Newton’s method for given ¢
and 6. The process can be more convenient when the grid size is normalized to
the wavelength. For simplicity, uniform cells are considered here

(Ax=Ay =Az=4).

Figure 4.1 shows the variations of the numerical phase velocity with the wave
propagation angles for the unconditionally stable ADI-FDTD, while Figure 4.2 for
the conventional FDTD of the Yee's scheme.
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Figure 4.2
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In both cases, a uniform grid resolution § =A/20 and a time step At =8/c/5
was taken. From Figure 4.1, it is seen that the numerical phase velocity is
maximum when wave propagates at 45  (with least differences or errors from the
analytical dispersion relation) and minimum when wave propagates at 0" and 90°
(with largest differences or errors). This represents a numerical anisotropy that is
inherent in the ADI-FDTD algorithm (like any other FDTD schemes). In
comparisons between Figure 4.1 and Figure 4.2, one can see that the dispersion
errors of the ADI-FDTD and the conventional FDTD are both small. The
maximum numerical dispersion error is 0.42% for the ADI-FDTD scheme in
comparison with 0.40% for the conventional FDTD. It suggests that the
dispersion characteristic of the ADI-FDTD and the conventional FDTD is very
comparable with a small time step. This is expected since the ADI-FDTD differs
from FDTD in its application of the implicit finite-difference. When the time step
and cell size go to zero, the differences between the implicit finite difference in
the ADI-FDTD technique and the explicit finite-difference in the conventional
FDTD tends to zero. Therefore, dispersion behaviors of the two methods will be
similar when small cell sizes and time steps are used. In general, below the
maximum time step defined by the CFL condition, both the ADI-FDTD and the
conventional FDTD present the same level of the accuracy. This has been

numerically shown in [131].

4.5.2 Effects of the large time step on the numerical dispersion

Since the time step in the ADI-FDTD scheme is no longer restricted by the CFL
condition, it is then important and meaningful to see how large a time step can
impact numerical dispersion. In our studies, three different time steps are
selected for the dispersion analysis: Ar =8 /c/+/3 (CFL limit), Ar =5 /c (73 times
of the CFL limit), and Ar =1.56 /¢ (2.6 times of the CFL limit). For each time step,
the spatial resolution § = A /20 was maintained.
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Figures 4.3-4.5 illustrate how the time step affects the numerical phase velocity.
It is obvious that the curves in different figures are basically in the same shape.
However, the difference between numerical velocity and the analytical dispersion
relation (as determined by (4.13)) increases when the time step is increased.
With the time step equal to the CFL limit, the maximum velocity error is about
0.6%, while with the time step of 2.6 times of the CFL limit, the error is 2.2%. This
is an indication that the time step can not be too large. Its selection is dependent
on the accuracy that can be tolerated by the user’s error specifications. In other
words, a tradeoff should be made between simulation accuracy and speed when
one chooses the time step. Our numerical experience suggests that the time step
could be made four times larger than that of the conventional FDTD in most
cases with acceptable accuracy. Note that aithough the time step could be 4
times larger, the saving in the overall CPU time is only about 1.6 times as
mentioned in chapter 3.
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4.5.3 The three dimensional view of the numerical dispersion

So far, the numerical dispersion analysis is limited to a two-dimensional
perspective. The analytical dispersion relation described by equation (4.13),
nevertheless, represents a sphere if plotted in the three-dimension coordinate
system of the wave-number vector (&, &, k). If the solutions of the ADI-FDTD

are the approximation of the analytical solutions, its numerical dispersion should
also be an approximation to the sphere. The degree of the approximation will be
very much dependent on the time step and spatial steps. The surface determined
by a numerical dispersion will have distortions from the perfect sphere (i.e. the
analytical dispersion relation). Consequently, it will be very useful to examine a
numerical dispersion graphically in the three dimensional system (k_, &, k.) with

different time steps. It will give us an overall view of the numerical dispersion
behaviors of the ADI-FDTD method.

Figures 4.6 and Figure 4.7 show the different dispersion characteristics of the
unconditionally stable ADI-FDTD scheme with the different time steps. The
spatial step 8 =A/20 is fixed. Figure 4.6 shows the result with time step
At =8/c//3 . The surface in Figure 4.6 forms a closed 3D surface that is very
close to a sphere. It means that the dispersion characteristic is quite close to that
of the analytical one. Figure 4.7 shows the dispersion surface when the time step
is increased to Ar =25/c. Noticeable distortions from the sphere can be easily
seen in Figure 4.7. It indicates that the degree of the ADI-FDTD approximation to
the analytical solutions is worse.
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4.5.4 Dispersion on the k,-k, plane

In order to view dispersion characteristics more closely and precisely, the
dispersion is shown on the cut of the k£, —k_ plane. In this case, only k. and k,

need to be considered (8 = 90", k. = kcosf = 0). Equation (4.12) is then simplified

to
sin*(wAt) =
4#353( ye( ﬂcos(kxé))- + ys(gsin(kﬁ))- +[ ﬂcos(kﬁ))-( éisin(k‘,é )]ﬁ
o\ é ) : ) é ' (4.22)

At Y At )
— k6 —si o
{ys +[ 5 cos(k, )) ][us +[ 5 sin(k, )J ]

Here, we assume uniform cells (Ax = Ay = Az = § ) for simplicity.

Figures 4.8-4.12 shows the numerical dispersion characteristics for a plane wave
propagating in the x-y plane with different time steps.
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Figure 4.8 Dispersion characteristics of different mash sizes at time step At =68/c¢/5.
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In each figure, three different mesh sizes are considered: dense (5 = A/40),
normal (6 =4/20) and coarse (6 =4/10). Figure 4.8 shows a good match
between the dispersion characteristics of the unconditionally stable ADI-FDTD
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and the analytical dispersion relation when A:r=§/c/5. More precisely, the
maximum dispersion error is 0.11%, 0.44% and 1.8% for dense, normal and
coarse mesh respectively. Figure 4.9 shows the dispersion characteristics of
FDTD under the same condition with the maximum dispersion error being 0.1%,
0.4% and 1.6% for dense, normal and coarse mash respectively. The difference
between Figure 4.8 and 4.9 is very small. This again demonstrates that the
dispersion error differences between ADI-FDTD and the conventional FDTD ars
comparable when time step is small. In Figure 4.10, 4.11 and 4.12, however, the
difference between numerical dispersion of ADI-FDTD and the analytical
dispersion increases as the time step becomes bigger. More specifically, when
At =1.56 / ¢ maximum numerical dispersion error reaches 0.57%, 2.3% and 10%
for dense, normal and coarse mesh, respectively. As can be seen, the grid
resolution plays an important role in the numerical dispersion. The coarser the
mesh, the larger the errors. In particular, Figure 4.12 shows a significant error
between the analytical dispersion relation and the numerical dispersion of ADI-
FDTD when the coarse grid is used. The error can go up to 10%. However, for
the dense grid, the difference between the numerical dispersion of ADI-FDTD
and analytical dispersion is negligible.

4.6 An Iimportant corollary

The curves shown in Figure 4.12 have an important implication in terms of the
application of the unconditionally stable ADI-FDTD when fine structures are
encountered and multigriding schemes are required. In other words, certain
electromagnetic structures including RF circuits contain very small and fine
structures (thin layer) where the fields need to be counted for. Modeling such
structures requires a small mesh size due to the dispersion errors. In the
conventional FDTD scheme such a small mesh size leads to a small time step
throughout the whole solution domain because of the CFL stability condition.
Hence, the computation time can increase dramatically. However, in the



102

unconditionally stable ADI-FDTD, the problem does not exist since the CFL
constraint is removed and the time step can be chosen to be larger in the fine
mesh region while the accuracy is not sacrificed. The reason is that from Figure
4.12, one can see that for a fine mesh, a large time step can be used and yet the
numerical dispersion errors are still very small. In the following paragraphs, a
quantitative analysis of the local dispersion error is provided for the case where a
multigriding technique is preferred for modeling.

Suppose that the largest coarse grid size is §, and the local fine grid size is §,

as shown in Figure 4.13.

Figure 4.13  Multigriding mashes.

The ratio of the coarse grid size to the local grid size ris then:

d
= 4.23
r 5, (4.23)
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The local dispersion characteristics can then be computed in terms of the ratio.
Suppose that 8, =4/20 is used and different time steps are chosen:
Ar=8_/c/\3 (r times of CFL limit), Ar=6_,/c (1.7*r times of CFL limit) and
Ar =1.58,/c (2.6"r times of CFL limit). The different multigriding meshes with r =

1 (no mesh refinement), r = 10, and r = 20 are used, respectively. The
corresponding dispersion characteristics are computed and shown in Figure 4.14
to Figure 4.16.

-----r=1

=10
-------- =20
analytical
dispersion

0.6

04

02

0.0 02 04 0.6 0.8 1.0 1.2
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limit).
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As it can be seen, the deviations of numerical dispersion from the analytical
dispersion are reduced as rincreases. That is, when ris increased (i.e. the mesh
becomes finer), the errors of the local fine mesh due to the numerical dispersion



105

are actually decreased. This leads to an important corollary: the dispersion errors
of the fine mesh (r>1) for the small structures will always be smaller than that of
the coarse mesh (r=1) if the time step is taken to the same for both meshes. As a
result, in a multigriding technique with the unconditionally stable FDTD, one can
take the time step for the fine mesh the same as the time step for the course
mesh as long as the dispersion errors of the coarse mesh are acceptable for

accuracy. Ar is only restricted by the coarse size §, in terms of accuracy. Such a
conclusion is very useful in the multigriding arrangement in terms of saving of the
computation time. For example, if Ar =6,/ c/~3 is chosen for the coarse mesh

and (r>1) is used for a local refined mesh, the number of iterations with the
unconditionally stable FDTD is reduced by r times in comparison with the
conventional FDTD of the Yee's scheme where Ar has to be made less than

o, /(c\3r) . The simulation speed is significantly increased.

4.7 Discussion and Conclusion

The numerical dispersion of the recently developed unconditionally stable ADI-
FDTD scheme has been derived in an analytical form. It has been used to
investigate the impact of different spatial and time steps on the numerical
dispersion. It is found that for a time step smaller than the CFL limit, the
dispersion errors of the ADI-FDTD is only slightly higher than that of the
conventional FDTD. That is, with a small time step, the unconditionally stable
ADI-FDTD is at the same accuracy level as the conventional FDTD. For a larger
time step, however, the dispersion errors are increased as the time step is
increased. Consequently, the tradeoff between the modeling accuracy and the
computation speed has to be made when a time step is chosen.

The dispersion analysis also shows that a much bigger time step can be used
without sacrificing the accuracy in a fine mesh with the unconditionally stable
ADI-FDTD scheme. If a part of the solution domain requires a fine mesh or grid,
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the time siep need not to be necessarily small. The same time step used for the
coarse grid can still be used and the accuracy for the local fine mesh will not be
worse than that for the coarse. In other words, the selection of the time step is
only dependent on the required accuracy of the coarse mesh applied. This is a
very unique feature with the unconditionally stable ADI-FDTD since it will reduce
significantly the number of iterations in comparisons with the use of the
conventional FDTD or even the Battle-Lemarie multiresolution time-domain
scheme (MRTD) [68] that has excellent dispersion performance. The reason is
that the time steps with either the conventional FDTD or MRTD have to satisfy
the CFL stability conditions. The fine meshes thus require the application of small
time steps. However, this is not the case with the ADI-FDTD since it does not
have CFL condition.



107

Chapter 5 A High Order ADI-FDTD Method for Reducing
Dispersion

5.1 Iintroduction

The newly developed ADI-FDTD method is based on ADI method and the
resulting formulation is unconditionally stable. The selection of the time step is
now only dependent on the modeling accuracy required and Nyquist sampling
limit. Dispersion analysis and numerical experiment show that the scheme has
advantages over conventional FDTD [99])[130]. As described before, although the
ADI-FDTD is free from the CFL constraint, the numerical dispersion becomes
more serious when modeling electrically large structures.

High order finite difference schemes can be used to combat the numerical
dispersion in FDTD. Dispersion analyses for the high-order schemes were
conducted in the literatures [132-134] demonstrating the high phase accuracy
over the conventional low-order FDTD.

Based on the idea, a fourth-order ADI-FDTD method is developed for the
solutions of Maxwell's equations in the time domain in this chapter. The same
staggered mesh as that used in the second order ADI-FDTD is used, and the
stability and dispersion performance of the scheme is investigated. Analysis
shows that the forth-order ADI-FDTD is also unconditionally stable, with its
numerical dispersion and anisotropy lower than those of the second order ADI-
FDTD developed in the previous chapter. Dispersion analysis shows that the
scheme can be applied with a coarse grid to reduce the memory consumption.
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52 Fourth Order ADI-FDTD Formulation

The ADI-FDTD presented in the previous chapters is second order in spatial
domain because the spatial derivatives in the Maxwell's equations are
approximated by central finite difference, for example,

n n

oH | H[|. . -H.[|. .
M Slivsjesk Shirs =gk 2

= — ——+O(Ay~). (5.1)
oy Ay @)

When fourth order central finite difference approximation is applied,

" -H] +27H |

ik 1 A :

o 28y _27H [, | +H

i1 1
H-?j-s.

oH

i+L j+tk

+0(AVY). (5.2)

n

S

Replacing all the spatia! derivatives in ADI-FDTD formulations (2.27-2.28) with
the fourth order central finite difference correspondences, the fourth order ADI-
FDTD formulas are obtained. Again, two-step computations are needed. For
instance, for the x component of electric field to advance from the n-th time step
to the (n+1/2)-th time step, the formula can be written as

n+-§- n

Sliv L jk T L i+d. ).k
Ar/2
1 1 +t +4 1 +4
= H|":  +27H |7 | -2TH["; | +H]|"} | (5.3)

&€ 24AV livsj+sk Shivsj+3k Slivd. j-3.k Stk

L _m +27H [ 2H| | +H[
24Az Miedjked T Vinbket T Y it k-t Flivd k-3

For the advancement from the (n+1/2)-th to the (n+1)-th time step, we have
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The same procedures can be applied to all the other field components and

similar equations can be obtained.

After some algebra manipulation, similar to that applied for the second-order ADI-
FDTD, the fourth order ADI-FDTD scheme can be written in a compact matrix

form as

!
MX *=PRX" (5.5)

szln-l = PZXn+E

X" is a column vector which contains all the field components inside simulation
region at the n-th time step. M,, M,, P,, and P, are the coefficient matrices with

their elements related to the values of spatial and temporal steps. M, and M,
are sparse matrices. In particular, each row of these two matrices contains seven
non-zero elements, which is more than that of the second-order scheme (three
non-zero elements each row). Each step is advanced by solving the linear matrix
problem. In practical implementation, by applying similar computation techniques
developed in chapter 2, most computations on inverse matrix can be avoided and

the simulation performance can be improved significantly.

53 Numerical Stability and Dispersion Analysis

Now assume every field component in the spatial spectral domain to be:
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F In _ Fne—j(L‘,xA_HkvjAyd-k:kA:) (5 6)
alivljxn™ Ta .
where F represents either E or Hand a=x, y, Z. Ax, Ay, Az, and At are spatial
Y P

and temporal steps, and k_, k,, and k. are spatial frequencies.

The fourth-order ADI-FDTD formulations (equations (5.3) and (5.4) together with
the similar equations for the other field components) can be written in a matrix
form by summarizing all the equations together in the spatial spectral domain and
placing the field components of different time step at the different side of the

equations:

LF g R F”* (for advancement from the nth to (n+1/2)th time step) .7

L.F"' =R.F "3 (for advancement from the (n+1/2)th to (n+1)th time step)  (5.8)

Here vector F" is a 6 by 1 vector containing the six field components at the n-th
time step in the spatial spetral domain. L, L,, R, and R, are the coefficient

matrices with their elements related to spatial and temporal steps,
Ax, Ay, Az, and Ar, and spatial frequencies k_, k,, and k..

Combination of the above two equations ends up with:
F™' =L}R.L'RF" = AF" (5.9)

It is interesting to note that 4 has similar expression as that of standard second-
order ADI-FDTD except that W, ( o = x, y, z) are now defined as:

w, = f’—-'}?sin[ k“Aa)-sin( 3k"‘oAa )], a=x,y,z (5.10)

In general,
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A + B, 2UEW W, 2ueW W -2 juw 2ju :eW: 2juD,
0.0,0. 0.0, 0,0. Q.0, 0.0. 0.0.0.
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~-2jeW  2jeD,  2jue’W, A +B, 2UEW W, 2usw W,
0.0. Q.0,0. 0.0. 0.0,0. 0.0. 0.0,
2jue’w, - 2jeW 2jeD;  2puEW W, A, + B,  2ueW W,
0.0, 0,0, 0.0,0. 0.0, 0.0,0. 0.0,
2 jeD, 2jue*W,  —2jeW  2ueWW, 2ueWW. A +3,
| 9.0.0. 0.0, 0.0, 0.0, 0.0. 0.0,0. |
The eigenvalues of the A can be found as:
h=4 =1
A=a = YRS HSS (5.12)
R
2 _¢2 _
Ae=h, =As = R*-S*-js

where

R= (us +W? Xue + W_\.:X#'S +W=2)

S= J 4ue(uew? + UEW + UEW? + WW? + W W3 + WiW? e’ + WfoWf)

Similarly to section 3.2, it can be shown that all the eigenvalues have the
magnitude of one. Based on the Fourier spectral analysis theory [22], the
proposed fourth order ADI-FDTD scheme is unconditionally stable regardless of

time step.



Numerical dispersion of the high order ADI-FDTD algorithm can also be obtained

by assuming:

j = j(k Ax+k, jJAV+k kAZ)
Fa In - Fnejwnme JK QX+ K, ) (513)

vtk e

By substitution equation (5.13) into equation (5.9), we have:

(eI — A)F =0 (5.14)
where I is a 6 by 6 identity matrix.
For the nontrivial solution of (5.14), we have

det(e’*¥I — A) =0 (5.15)
It lead to the following dispersion relation:

0w=0 (5.16)

and

12

sin”(wAt) = S,
R-
_ 4,us(yewf + UEW? + HEW? + WIW} + WSW? + WIW] Xu3£ 4 WfW_fo)

(ue +w? Y ue +w, ) (e + w2}

Again, the solution w =0 represents stationary solutions that correspond to the
electrostatic and magnetostatic solutions. It represents the non-propagating
solutions in the ADI-FDTD mesh. The nontrivial solution (5.17) corresponds to
the propagating solution of the fourth order ADI-FDTD mesh. It describes the
dispersion relationship among the numerical wave numbers in the x, y, and z

5.17)

directions, the wave angular frequency, the grid size and time step.
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54 Comparisons between the fourth order ADI-FDTD and the
second order ADI-FDTD

Figure 5.1 and Figure 5.2 show the numerical phase velocity versus the wave
propagation angles for the second and fourth order ADI-FDTD in the spherical
coordinate system, respectively. The error caused by numerical dispersion of
fourth order scheme is much smaller than that of second order scheme. The
maximum error with fourth-order is 0.1% while the maximum error with second-
order is 0.5%. Figure 5.3 shows that even when the spatial increment is doubled,
the dispersion error is comparable with that of the second order scheme with
dense grid. Consequently, the memory requirement can be reduce eight times for
three-dimensional problem while maintaining the same dispersion level.
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Figure 5.1 Numerical phase velocity versus wave propagation angle in the fourth
order ADI-FDTD grid with § =A/20 and At =6/c/3
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Figure 5.4 shows the dispersion errors of the fourth-order ADI-FDTD in
comparison with the second order ADI-FDTD. Again, A grid resolution & = A/20
was chosen. It can be seen that the numerical dispersion is reduced significantly
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at small time step. For large time step, the advantage of high order ADI-FDTD
will decrease because the time step becomes a dominant factor of numerical

dispersion.
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Figure 5.4 The numerical phase velocity error versus time step for the fourth order
and the second order scheme.

55 Discussions and Conclusions

Based on the second-order ADI-FDTD scheme, an improved ADI-FDTD scheme
with fourth-order accuracy in spatial domain has been developed. The high order
ADI-FDTD scheme also has unconditional stability which has been proved
theoretically in this chapter. Compared with the second order ADI-FDTD, the
fourth order ADI-FDTD scheme shows better dispersion, isotropy and can be
used to model electromagnetic wave propagation on a coarse grid, leading to a

saving of memory as high as eight times.
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Chapter 6 Conclusion and Suggestions for Future Directions

6.1 Summary

Time-domain numerical computation techniques in electromagnetics are
intensively studied nowadays and are of great interest to designers of RF and
microwave circuits and researchers in related fields. In particular, there is
increased interest in transient EM field analysis that has its roots in two main
events: 1) the advent of digital signal processing and transmission technology
operating with wide band high-frequency signals; and 2) the increased capability
of state-of-the-art computers with capability of handling heavy CPU time and
memory requirements. The main purpose of this thesis is to study existing time-
domain methods, their advantages and disadvantages, their applicability to a
variety of problems, and to develop new approaches which would further

increase computational efficiency.

Background knowledge relevant to this thesis is reviewed in Chapter 1 and
Chapter 2. Both frequency domain and time domain computational
electromagnetic methods were described. State of art time domain techniques
such as PSTD and MRTD were also introduced. In chapter 2, the fundamental of
FDTD was illustrated. The basics of ADI technique which is an efficient approach
for solving parabolic partial differential equations was reviewed. A modified ADI
technique has been developed to derive the unconditionally stable ADI-FDTD
scheme. Numerical simulation results for conventional FDTD and ADI-FDTD are
presented. Comparison shows that ADI-FDTD can use big time step beyond CFL
limits with tolerable error. The analytical proof of unconditional stability of ADI-
FDTD is presented in Chapter 3, and further validated with the numerical
experiments. With total removal of the CFL condition in ADI-FDTD, a logical
continuation of this research leads to numerical dispersion analysis which is
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described in Chapter 4. After dispersion relation has been derived, the effects of
propagation direction and large time step on the numerical dispersion was
investigated. Furthermore, a unique characteristic of ADI-FDTD was found that
the dispersion errors of the fine mesh inside the small sub-structures will always
be smaller than that of the coarse mesh if the time step is taken to be the same
for both meshes. Consequently, in a multigriding technique with the ADI-FDTD,
the same time step may be used for both fine and coarse meshes as long as the
dispersion errors with the coarse mesh are acceptable for accuracy. To further
reduce the numerical dispersion, a high order approach has been proposed in
Chapter 5. Dispersion analysis shows that a grid eight times coarser than that of
second-order ADI-FDTD can be used while same level of accuracy can be
maintained.

In conclusion, while the techniques such as MRTD and PSTD opened a way for
reduction in computation memory, the proposed ADI-FDTD presented a way to
reduce the number of iterations which leads to less CPU time. The work of this
thesis has been published [99,130-131] and has led a new direction in the
continuing effort of the electromagnetic modeling community towards improving
computational efficiency of the FDTD algorithms.

6.2 Future Directions

ADI-FDTD has been developed and investigated on different aspects such as
stability and numerical dispersion. It offers a wide range of possibility for further

investigation.

6.2.1 Absorbing boundary condition (ABC)

Like the conventional FDTD, the ADI-FDTD is solved in every grid point of the
solution domain. As a result, if a problem domain is an open domain, the domain
must be truncated with the absorbing boundary condition. Several approximate
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ABCs schemes [79,121-124] has been developed for FDTD scheme. Among
them, Mur ABC [121] and PML [79] are used widely due to the simplicity and
efficiency. To implement the Mur ABC and PML into the ADI-FDTD is one of the

future works.

6.2.2 Application of nonlinear materials

In the case of high power microwave, nuclear explosion, or laser engineering, the
pulses are likely to have very high intensity so that the material nonlinearity plays
an important role in energy and signal transmission. Recent research has been
reported on the use of the FDTD approach to model the pulse dynamics of
nonlinear material [108]-[109]. The application of the proposed ADI-FDTD
formulation to these problems is a challenge for the future.

6.2.3 Combination of MRTD and ADI-FDTD for high accuracy

One possibility of having a more advanced ADI-FDTD model with smaller errors
is to incorporate the MRTD principle into the proposed ADI-FDTD scheme. By
doing so, it is expected that the time step can be increased to a much larger
value while the solution errors remain small because of the high accuracy of the
MRTD model. In addition, since the MRTD allows the number of the gird points
much smaller than that for the conventional FDTD, the combined saving in time
with the proposed ADI-FDTD method and in the grid size with the MRTD could
be very significant. Thus, incorporation of both techniques could well result in an
efficient FDTD algorithm that can handle electrically large electromagnetic
structures effectively in the near future.

6.2.4 Temporal High-order ADI-FDTD schemes

Increasing the order of accuracy is an option to mitigate the effect of numerical
dispersion errors. This can be done in either spatial or temporal domain or both.
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In chapter 5, a high order ADI-FDTD in spatial domain has been developed to
illustrate its advantage over the standard ADI-FDTD in terms of numerical
dispersion. The high order ADI-FDTD in temporal domain could be another
research area. Further more, high order in both temporal and spatial domain may

be investigated.

In conclusion, the proposed ADI-FDTD has laid a foundation for a new direction
in FDTD type of modeling. Although the basic theory and preliminary numerical
results have been presented in this thesis, much work still needs to be done in
the terms of its extensive application and advanced models.
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