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ABSTRACT

A panel-free method (PFM) has been developed to solve the radiation and the diffrac-
tion problems of floating bodies in the time domain. The velocity potentials due to
non-impulsive inputs are obtained by solving the boundary integral equations in
terms of source strength distribution. The singularity in the Rankine source of the
time-dependent Green function is removed. The geometry of a body surface is math-
ematically represented by NURBS surfaces. The integral equation can be globally
discretized over the body surface by Gaussian quadratures. No assumption is needed
for the degree of approximation of distributed source strength on the body surface.

The accuracy of PFM was first demonstrated by its application to a classical problem
of uniform flow past a sphere. The radiation and diffraction response functions of
a hemisphere at zero speed were then computed by PFM. The PFM was also ap-
plied to a Wigley hull. The computed response functions, added-mass and damping
coefficients, and the diffraction forces for the hemisphere and the Wigley hull were
compared with published results.

Compared with the panel method, the advantages of PFM are: a) less numerical
manipulation, since panelization of a body surface is not needed; b) more accurate,
since the assumption for the degree of approximation of source strength distribution
as in the panel method is not needed and the surface geometry can be described
mathematically. c) the integral equation is desingularized before it is discretized
so that Gaussian quadrature can be applied directly and globally. d) the Gaussian
quadrature points, and their respective Jacobian and normals on the surface can be
accurately computed based on the NURBS expression; and e) the accuracy of the
solution can be easily controlled by changing the number and/or the arrangement of
Gaussian quadrature points.

Xvii



Chapter 1

Introduction

1.1 Panel Methods

The predictions of wave-induced motions. loads and hydrodynamic pressures over a
ship hull are essential elements of ship design. Over the past few decades computa-
tional hydrodynamics has been developed as a powerful tool for both ocean engineers
and naval architects. It allows evaluation of preliminary designs or ship performance

at a relatively low cost compared with experimental tests.

The potential flow theory has been widely used in marine hydrodynamics. It is
mathematically attractive and physically appropriate. For a floating body in waves,
the initial-boundary-value-problem can be described by Laplace’s equation subject
to the free surface conditions. body boundary conditions, bottom conditions, far field

conditions, and appropriate initial conditions. An integral equation for the initial-



boundary-value-problem can be derived by applying Green’s theorem and it can be

solved numerically by various methods.

Strip theory was applied as the first analytical ship motion theory for computations
and has been used as a practical prediction method, but it gives unsatisfactory pre-
dictions at low frequencies and at high forward speeds. and it is not applicable to
ships of low length-beam ratios due to its slender body assumptions. Also. the strip-
theory approach is not able to compute the hydrodynamic pressure distribution over
the hull surface except on sections. Some of the deficiencies of strip theory can be
removed by the three-dimensional flow theory. Hess and Smith (1964) pioneered the
panel method, where a source distribution was developed for flows without a free sur-
face, which are equivalent to double-body flows with a rigid free surface. The body
surface was subdivided into a number of flat quadrilaterals over which the source
strength was assumed to be constant. The body boundary conditions were satisfied
at the center of each quadrilateral. A system of N linear equations resulted from the
boundary integral equation for unknown source strengths. The potential, velocities
and the pressure at the centroid of each panel can then be determined from the source
strength. Since the singularity solution of integration can be obtained by using pla-
nar quadrilateral panels or triangles and constant source strength over a panel, the
constant-source-flat-panel method has been used in a wide variety of problems both
in the frequency domain and the time domain. In the case that the free surface has
to be taken into account, the free surface Green function is applied to automatically
satisfy the linearized radiation and diffraction free surface conditions and the far field
boundary conditions. The body boundary conditions are enforced on the panels. It is

often referred as a lower-order panel method. Normally, a large number of panels are



required to achieve accurate results. In many applications, such as computation of
second-order forces, the lower-order panel method fails to provide accurate gradient

of velocity potential.

Higher-order panel methods have been developed in various degrees to overcome the
deficiencies of the constant-source-flat-panel method by improvement of geometric
approximation and /or source distribution methods. Most higher-order methods allow
for linear or quadratic panels and first- or second-degree polyvnomial distribution of
source strength over a panel. It normally requires more computational effort than
the lower-order panel method. Hsin (1993) and Maniar (1995) applied B-splines and
developed a higher-order panel method in which the potential and the geometry of a
body are allowed any degree of continuity. Recently, Lee et al. (1998) and Danmeier
(1999) have presented a geometry-independent higher-order method which separates
the geometric and hydrodynamic representations. The velocity potential is described
by B-splines. It allows for accurate geometry description and flexibility of potential

discretization.

The present thesis is aimed at developing a state-of-the-art numerical tool to reduce
the computational error of the panel method due to the geometrical approximation
and also the assumption of the degree of approximation of the source strength distri-

bution.



1.2 Time-Domain Simulation

Several researchers, such as Chang (1977), Inglis and Price (1982) and Guevel and
Bougis (1982). have used three-dimensional panels to obtain solutions of ship motion
in the frequency domain. But the computational results based on the Green function
with forward velocity were never satisfactory, due to the complication caused by the
forward speed term. The frequency-domain panel method has been employed for ship
seakeeping analysis using zero-speed Green function with a “speed correction”. An
alternative approach is to formulate the ship motion problem directly in the time
domain. When the forward speed is involved, the time-domain Green function is in a
simpler form and requires less computational effort than does the frequency-domain

counterpart.

The concept of direct time-domain solution is based on the early work of Finkel-
stein (1957), Stoker (1957) and Wehausen and Laitone (1960). Cummins (1962)
and Ogilvie (1964) discussed the use of time-domain analysis to solve unsteady ship
motion problems. The zero forward speed problem has been discussed in detail by

Wehausen (1967, 1971).

In the linear time-domain formulation. the time-dependent Green function is applied
to derive a boundary integral equation at the mean wetted surface of the body un-
der the assumptions of small body motion and small amplitude incident waves. The
linearized radiation and diffraction forces acting on the body can be expressed in
terms of convolution integrals of the arbitrary motion with impulse functions. These
methods have been developed by Liapis and Beck (1985), Beck and Liapis (1987),
Beck and King (1989), Beck and Magee (1990), Lin and Yue (1994). Based on the
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work of de Kat (1990) who computed the Froude-Krvlov forces on the instantaneous
surfaces. a combined time-domain simulation scheme has been developed by Cong et
al. (1998) and Qiu et al. (2000) to take into account the nonlinear effect of the inci-
dent waves. In their work. the radiation and diffraction forces were computed at the
mean wetted surface by applying the impulse response function. The F: roude-Krylov
and restoring forces were computed at the instantaneous wetted surface under the
incident wave profile. The other nonlinear forces such as maneuvering force. rudder
force and viscous damping force were also considered. To enhance the capability of
the combined formulation. a pseudo-nonlinear scheme was investigated in the work of
Seibert (2000) and Qiu et al. (2001a, 2001b) by considering the varied hydrodynamic
coefficients for various waterlines. In their work, the time-domain added-mass, damp-
ing and restoring force coefficients were pre-computed for respective wetted surfaces
with chosen hull attitudes and then were interpolated at the instantaneous wetted
surface at each time step. This method showed promising improvement of motion
prediction. particularly for roll. However. additional efforts are needed to panelize

the hull for various positions.

Efforts have been made to directly incorporate nonlinearity into time-domain for-
mulation. One extension of the linear time-domain model is to impose the body
boundary condition on the instantaneous wetted surface of the body. The free sur-
face boundary condition remains linear so that the time-dependent Green function
can still be applied. The body-exact problem has been solved with various degrees
of success by Lin and Yue (1990). Magee (1994) and Danmeier (1999). Huang (1997)
combined the exact body boundary condition with a free-surface condition linearized

about the incident wave profile. In the results of these studies, the application of



the exact body boundary conditions showed promise of improvement for cases of

computations dealing with large-amplitude motions.

1.3 Desingularization of the Integral Equation

In the higher-order panel methods, the singular 1/7 term can be evaluated numerically
in a variety of ways. For example, Beck et al. (1994) separated the integration
and control surfaces: and the solution was obtained by integrating a distribution of
singularities over a surface outside the fluid domain. In the work of Danmeier (1999),
an adaptive subdivision and triangulation scheme was used to evaluate the singularity

of the free-surface Green function.

Landweber and Macagno (1969) proposed a desingularized procedure which removed
the singularity of 1/r before discretizing the integral equation and applied it to the
problem of uniform flow past an ellipsoid. The numerical solution then could be ap-
plied to the exact boundary geometry, and the integral equation could be discretized
over the body surface by Gaussian quadratures. Theoretically, this eliminates the
errors due to both the geometrical approximation and the assumed degree of approx-
imation of source strength distribution in the panel method. Kouh and Ho (1996)
further developed this method and applied it to solve problems of uniform flow past
a sphere. an ellipsoid and a Wigley hull in which geometries were represented by an-
alytical expressions. Recently, Qiu and Hsiung (2000, 2001) have developed a desin-
gularization scheme for the time-domain analysis. In their work, the Non-Uniform

Rational B-Splines (NURBS) were adopted to described the body geometry so that
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the desingularization method can be applied to arbitrary bodies.

1.4 Large-Amplitude Motion Analysis

As mentioned above, to simulate the large-amplitude motion of floating bodies in
waves. the body-exact problem can be applied and solved on the instantaneous wet-
ted surface with the application of the time-domain Green function. This will require
trimming and re-panelization at each time step. However, there are difficulties to
develop a practical, efficient and automatic panel generator, especially for complex
geometries. Furthermore, effort has also to be made to treat the singularities if a
higher-order panel method is emploved. Therefore, the other aim of this thesis is
to report fundamental research in developing a tool for the time-domain simulation
to solve a desingularized integral equation which can avoid re-panelization, and re-
duce the time for numerical integration. and provide easy control on the accuracy of

solutions.

1.5 Thesis Contents

The scope of this thesis includes the development of a panel-free method and its
applications to the time-domain analysis of floating bodies in waves. A panel-free
method (PFM) has been developed to solve the radiation and the diffraction problems
of floating bodies by employing the response function method in the time domain.

A desingularized integral equation in terms of source strength distribution has been



developed to remove the singularity in the time-dependent Green function. The
velocity potentials due to a non-impulsive input were computed for the radiation and
diffraction problems by solving the desingularized boundary integral equations. The
geometry of a body surface was mathematically represented by Non-Uniform Rational
B-Splines (NURBS) surfaces. The integral equation can then be globally discretized
over the body surface by Gaussian quadratures. No assumption was needed for the

degree of approximation of distributed source strength on the body surface.

In comparison with panel methods, the advantages of PFM have been proven to be:
a) less numerical manipulation, since panelization of a body surface is not needed:
b) greater accuracy, since the assumption for the degree of approximation of source
strength distribution as in the panel method is not needed and surface geometry
can be mathematically described; c) the integral equation is desingularized before
it is discretized so that Gaussian quadrature can be applied directly and globally.
In the panel method, the singularity remains in the discretized integral equation
and Gaussian quadrature cannot be applied directly over the body surface; d) the
Gaussian quadrature points, and their respective Jacobian and normals on the surface
can be accurately computed based on NURBS expression;: The NURBS surface can
be obtained directly from commercial computer-aided-design packages: and e) the
accuracy of the solution can be easily controlled by changing the number and/or the

arrangement of Gaussian quadrature points.

The initial-boundary-value problem, its associated boundary integral equations for
radiation and diffraction problems in the time domain and solutions by the impulse
response function method are stated in Chapter 2. Chapter 3 describes the desin-

gularization of integral equations, the NURBS representation of the body geometry



numerical implementation of the panel-free method. Results demonstrating the ac-
curacy of PFM are presented in Chapter 4. The application of PFM to a hemisphere
and a Wigley hull was demonstrated. The computed response functions, added-mass
and damping coefficients, and the diffraction forces and wave exciting forces were

compared with published results.

Conclusions and recommendations for future research are presented in Chapter 5.



Chapter 2

Time-Domain Formulation

2.1 Coordinate Systems

Three right-handed coordinate systems (as shown in Figure 2.1) are emploved for the
time-domain analysis of floating bodies in waves. A space-fired coordinate system,
OXY Z, has the OXY plane coinciding with the undisturbed water surface and the Z-
axis pointing vertically upward. In the steady-moving coordinate system, 0, Zm¥YmzZm,
the 0, Tmym plane coincides with the calm water surface and o,, z,, is positive upward.
The third coordinate system, oryz. is fixed on the floating body, and o is at the point
of intersection of calm water surface, the longitudinal plane of symmetry, and the
vertical plane passing through the midsection of the floating body. The ozy plane
coincides with the undisturbed water surface when the body is at rest. The positive

r-axis points toward the bow and the y-axis to the port side.
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Figure 2.1: Coordinate systems

Denoting a column vector by braces {}. motions in the 0y, ZmYmzm system are repre-
sented by the vector X, = {Zm,.Zm,: Tms: Tmyes Tmss Tme}, in Which {ZTp, . Tm,. T }
are the displacements of the center of gravity (CG), and {Z,,, Tms,Tms} are the Eu-
lerian angles of the body. The Eulerian angles are the measurements of the body’s
rotation about the axes which pass through the CG of the body. The instanta-
neous translational velocities of body motion in the directions of oz, oy and oz are
{Z1.22.23}, and the rotational velocities about axes parallel to oz, oy and oz and

passing through CG are {z,.25.2¢}.

2.2 The Initial Boundary Value Problem

It is assumed that the fluid is incompressible. inviscid and free of surface tension and
that the flow is irrotational. Consider a three-dimensional body in a semi-infinite
fluid with a free surface. The floating body moves in an incident wave field with a
constant speed Uy and is allowed to perform small unsteady oscillations about its

mean positions in six degrees of freedom.
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Under the above assumptions, the fluid velocity of a point P(z,y. z) at time ¢ can be

described by the gradient of a scalar velocity potential,
V(P;t) = V®(P;t) (2.1)

Conservation of mass requires that the velocity potential satisfies Laplace equation

in the fluid domain Q,
V2®(P;t) =0 (2.2)
The pressure p(P:t) in the fluid is given by Bernoulli’s equation,
PPi) = —p(®0 + 5IVEP + g2) + P (23)

where g is the acceleration of gravity: p is the fluid density: z; is the z-coordinate of
a point on the free surface: p, is the constant atmosphere pressure; ®, denotes the
partial differentiation of @ with respect to time ¢t. Subject to the assumption that
the surface tension and viscous effect are neglected and p, = 0, the exact boundary

condition on the free surface S;(t) can be written as

By + 2V - Vb, + %v«» V(V®-V®)+gd, =0, onz=n  (24)
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where (zo, Yo, 20) defines a point on the free surface and 7(zg, yo:;t) is the unknown

free surface elevation, and ®., denotes the partial differentiation of ® with respect to

29. Two initial conditions are

where ¢y is the starting time for the fluid motions which is zero in the radiation

problem and —oc in the diffraction problem.

On the submerged surface of the floating body, the no flux body-boundary condition

must be satisfied,

(V® - V;)-n=0 on Sy(t) (2.6)

where V(P:t) is the velocity at the point P(z,y, z) on the body surface; n is the unit
inner normal vector pointing into the body surface; and S(t) is the instantaneous
wetted surface of the body. Fluid motions caused by the body will go to zero at

spatial infinity, S, for all finite time.

Vé 50. R =yr2+y? > 00, fort< oo (2.7)
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2.3 Linearization

Both the free surface and the body boundary conditions, as well as the Bernoulli
equation can be linearized. It is assumed that the fluid perturbations due to the
steady forward motion and the unsteady oscillations are small and then the linear

superposition can be applied. The total velocity potential can be expressed as follows:

6
B(P;t) = ®(P) + ¢(P) + 3_ ou(P;t) + 61(P: t) + op(P;t) (2.8)

k=1

where ®(P) + ¢(P) denotes the velocity potential of the steady flow due to constant
forward speed of the moving body. This is referred as the steady problem. The
radiation problem is caused by a moving body with prescribed oscillatory motions
of six degrees of freedom. With the kth mode of motion, for k¥ = 1.2,---,6, the
respective radiated wave potential is denoted by ¢,. The potential of the incident
waves is denoted by ¢;. In the diffraction problem, we denote ¢p or ¢; as the potential
of the diffracted waves. Note that in the steady-moving system, the fluid velocity in
the far field will tend to be that of the uniform flow and the undisturbed incident

wave.

2.3.1 The Neumann-Kelvin Linearization

The choice of a uniform flow alone, i.e., ® = —Uyz, leads to the Neumann-Kelvin
approximation, where the pressure, the free-surface condition and the body boundary

condition are given by:



= —p(¢ — Uo®:) (2.9)

(% - UO%)% + g-g—f =0, onz=20 (2.10)
X01+90) _o, on 5, (2.11)

%‘i—k = ngZx + Mk, on S, (2.12)

In equations (2.9) and (2.10), ¢ represents any of the perturbation potentials. S,
is the mean position of the floating body’s surface, and n; is the generalized unit

normal defined as

{ne} = (ny, na, n3, n4, N5, n¢) (2.13)

where n;. n, and n3 are the components along the z-, y- and z-axis.

Let

n

(n, n2, n3) (2.14)

and then

(n4,ns,n6) =rg x R (2.15)
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where ry = (T — 14,y — yg. 2 — 2,) is the position vector from the center of gravity

(Zg. Yq, 24) Of the floating body to a point P(z,y, z) on the hull surface.

The steady and the unsteady potentials are coupled through the m-terms (Newman.
1978) in the body boundary conditions. In the Neumann-Kelvin linearization, the

m-terms can be simplified to

my = (O. 0, O, 0, [J?on;;, —Uong) (216)

2.3.2 The Double-Body Flow

The Neumann-Kelvin linearization works well for slender bodies. However, for more
full-formed bodies, the approximation of the body boundary conditions are not sat-
isfactory. As an alternative choice to improve the body-boundary condition, the
double-body approximation includes a perturbation of the uniform stream. Then,

the steady potential is

% = Loz + ¢®, (2.17)

which satisfies the following boundary-value problem,

Ve =0 (2.18)

db
agz =0, onz=20
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n-Ved — o on S,

V®® — (-U,,0,0), as R, — oo

According to Newman (1978). the double-body m-terms can be written as

(my, mg, m3) ~(n-V)Ve® (2.19)

— db db db db db db
= —(Tllfprz + n2<I>,y + ng(I)u, nli’yx + n2<I>yy + n3<I’yz,

nﬁDﬁ + n2¢§§ + n3<I)‘z”;

(m4? ms, mG) = Iy X (mlv ma, m3) —nXx Vde (220)
= ry X (M, my, m3) + (nstbg" — n®®, n, % — ny %,

le(pgb - Tll@:b)

where ®7. @ and &% denote the second-order derivatives of the potential % about

z. y and z. respectively: ®%. ®2 and ®% are the velocities along z, y and z-directions;

and ®F. @2, ¢, &%, &% and L are all the second-order cross derivatives of ®®.

In this thesis, the Neumann-Kelvin initial boundary value problem as stated in Sec-

tion 2.3.1 is solved.
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2.4 The Boundary Integral Equation

The radiation and diffraction perturbation problems mentioned above all satisfv the
same boundary-value problem with different body boundary conditions. By using the
time-dependent Green function and Green'’s theorem, the boundary integral equation
can be obtained for the initial-boundary-value-problem discussed above. Details are
given by Liapis (1986). The time-dependent Green function satisfies the free-surface.
far field. radiation and diffraction conditions and initial conditions. It can be found
in Wehausen and Laitone (1960, Eq. 13.49). By defining a field point, P(z,y, z), and
a source point, Q(z’,y’, 2’). the time-dependent Green function for the infinite water

depth can be written as:

G(P,Q;t— 1) =Go(P,Q)(t — T)+ H(t-1)F(P,Q;t— 1) (2.21)
with the Rankine source

Go(P.Q) = -1 -1, (2.22)

4r'r
where §(¢ — 7) is the Dirac Delta function and H(t — 7) is the Heaviside unit step

function. and

F(P.Q:t—7) = —% /0 = ok sinf\/gk(t — 7)]ek+) Jo(kR)dk (2.23)

with
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r=\@-2)2+(y— )2+ (z - 22, (2.24)
r = \/(:r -T2+ (y— )2+ (z+ 2')2, (2.25)
R=\(z-1)2+(@y-y)> (2.26)

and J; is the Bessel function of the zeroth order.

The Green function represents the potential at the field point P and at the time ¢
due to an impulsive source at point Q suddenly created and destroyed completely at

time ¢t = 7. The Green function is solved from the following equations:

V2G(P,Q:t — 1) = —478(P — Q) (it —-1) (2.27)
(% — UO%VG(P, Q:t—1) +96G(P,6Q:;t —7) =0, onz=20 (2.28)
G(P.Q:t — 7). 9G(P, g; t-7) _ 0, for t<0 (2.29)

Applying Green’s theorem to the fluid domain Q which is enclosed by S,. Sf, Se and

the bottom surface. leads to

. oG 0¢

> 2 — 2 —_— ‘—— — —
/Q(_OV G — GV 0)dN /gb(cpan Gan)dS (2.30)
Integrating Eq.(2.30) with respect to 7 from ¢, to ¢, applying the properties of

G(P.Q:t — 1) and considering the free surface contribution yields
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oP.t) = [lar [ o@n X EEL=T _ p gt 2T

1 ¢ . _ 09(Q;7) __\OG(P.Q:t—T)
— E[o drf}: Lo2 [G(P, Q;t— 7‘)—51‘,— o (Q: 1) B } dl

t (Q: dG(P.Q:t —
+ é/godTﬁUO[G(P’Q;t—T)%—d)(Q;T) ( anTt T)}dl

Jas

(2.31)

The above integral equation gives the velocity potential at any point P(z, y, z) in the
fluid Q. Details were given by Liapis (1986). In Eq.(2.31). t, represents the initial
time which is zero for the radiation problem and —oc for the diffraction problem: and
[ is the intersection of the hull surface and the calm water plane z = 0. The positive

line integral is in the counter-clockwise direction.

Considering an interior flow and subtracting it from Eq.(2.31), the final integral

equation in terms of source strength distribution can be obtained as:

o(P,t) = /l ‘dr /S G(P.Q:t - 7)o (Q; 7)dS (2.32)
.
+l;—° -/lo d'rf}-_ nmG(P,Q;t — 7)o(Q; 7)dl

where o is the source strength which can be solved from
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6‘§rit) _ _%U(P; H o+ /td‘l‘/s aG(P’ag;t—T)a(Q;r)ds (2.33

UQ/tO f[ aG(PQt T) (Q?T)J dl

where n, is the z-component of the unit normal vector.

2.4.1 Computation of Forces
The forces caused by the radiated and diffracted waves can be obtained by the inte-

gration of pressure. The force acting on the body surface in any of the six modes of

motion, say the jth mode, is given by

Fi(t) = [ p(P;t)n;dS (2.34)

where p(P:t) is the linearized pressure defined in Eq.(2.9), which is equivalent to

p(P:t) = —pg—f - pW -Vo (2.35)

where W = (—Uj,0,0). The force can be rewritten as

Fi(t) = —p / [ +W. quJ n,;dS (2.36)
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Employing the theorem derived by Ogilvie and Tuck (1969)

/g [mjo+n;(W - Vg)jdS = - }i on;(1 x n) - Wl (2.37)

and applying to Eq.(2.36) vields

5
Fi(t) = —p[s Btgnjds + p/§ om;dS + pﬁ én;(1 x n) - Wl (2.38)
b (]

where 1 is the line vector along the waterline. Introducing

gik(t) = p /s,, Ox(t)n;dS (2.39)

hie(t) = —p /s ox(t)mydS — p fr ok (t)n;(1 x n) - Wl (2.40)

where k is from 1 to 6 for the radiation problem and 7 for the diffraction problem,

the force due to the excitation in the Ath mode of motion can then be written as

Fji(t) = =g (t) — hjx(t) (2.41)

where §;i(t) = 9g;i(t)/8t.
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2.5 Solving the Radiation Problem with the Im-

pulse Response Function

In this section. the radiation problem and its solution through the usage of the impulse
response function method will be described. The initial-boundary-value-problem can
be solved in terms of the radiation potential functions, ¢x(z,y.z2:t), for k = 1.2, ...6.
which satisfy the Laplace equation subject to the linear free-surface conditions, the

body boundary conditions, the far field conditions and the initial conditions as follows:

V¢ = 0. in Q (2.42)
(5—505;) th+gE—O. .on z=0
% = MWTp + MiTk, on S,

Vor -0, as R; - oc, onz=0
Vér 50. as :— —oc

=0 225 _0 at t=0
Ok ot - @

where z,. denotes the motion displacement in the kth direction. If the initial-boundary-
value-problem for radiation is linearized. then the radiation problem can be decom-
posed by introducing the impulse response function as described by Liapis (1986) as

follows:

According to the method proposed by Cummins (1962) and later elaborated by
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Ogilvie (1964). we consider that the body is given an impulsive motion at ¢ = 0

in the kth mode with a velocity ék(t) = §(t), then the body boundary condition

becomes

'65% = TLk(S(t) + mkH(t), for k£ = 1.2,---.6 (243)

The body boundary condition (2.43) suggests that the potential ¢ can be decom-

posed into an impulsive part and a memory part as

Ox(P5t) = vi(P)o(t) + xx(P)H(2) (2.44)

where both v, and x satisfy the body boundary condition (2.43) for all time if we

set

ov, -

—Bnk =ng, onS, (2.45)
o _

% =mg, onSy

The vy potential describes the fluid motion during the impulsive stage and satisfies



Y = 0, on z2=0 (246)
oY =
a—nk = ny on S,
Vwk — 0, at Soc

The xx potential represents the motion of the fluid subject to an initial impulse and
is composed of two components. The first component is due to the change of body
orientation caused by the impulse in velocity. After the impulse in velocity the body
will have a unit displacement in the kth mode. It results in a change of fluid velocity
on the body surface. Since the body is in the steady flow field, in order to satisfy the
body boundary condition. this change must be subdued. Therefore, Oxx/On must
have the value m; on the body surface for all ¢ > 0. The second component is the
result of the impulsive velocity inducing a disturbance into the flow field which will
propagate as a wave motion away from the body at subsequent times. Therefore, x

will satisfy the free surface condition for ¢ > 0 and the initial condition,

Considering these two components, ) can be written as



Xk = peH(t) + Xk
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(2.48)

where (o, represents the potential caused by the unit displacement during the impul-

sive stage of the motion. It satisfies the following boundary conditions:

Opi
on

Pk = 0, on

Ver — 0, at

= My, on

(2.49)

The potential of the second component x; satisfies the following conditions:

Xt =0,
o6 _ _ o
ot z '
Oxk _ _ 99k
ot? oz’

Xk _

on -0

9 .0, 8], _
[(5 - DOE) +95J (Xx + wx) =0,

at

on

on

on

on

t=0 (2.50)
:=0 att=0

:=0 att=0

Sy, fort>0

2=0 fort>0

Using Eq.(2.48), the potential for an arbitrary forced motion in terms of a velocity,
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£k (t), for the kth mode of motion, can be found by integrating Eq.(2.44) as follows:

ok(Pit) = [O'm(P;ﬂ&(t—r)dr (2.51)

= w(P)eelt) + ou(PIE(t) + [ xe(P:m)ult — )7

where ¢, (P:t) satisfies the body boundary condition, the free surface condition, and
the conditions at infinity for all times (Cummins, 1962). Note that v, ¢r and X

can be solved from Eq.(2.46), Eq.(2.49) and Eq.(2.50), respectively.

Substituting Eq(2.51) into Eq.(2.38), the radiation force can be expressed as:

Firlt) = ~Abe(t) = Xuba(t) = be(t) - [ KB - Déu(r)dr  (2.52)

where

ik = p/s_ wkn,dS
b
Ajk = P/s wkn;dS — P/S_ vym;dS
b b
—pfr vkn, (1 x n) - Wl
ik = —p/s_b @xm;dS — pfi‘ wxn;(1 x n) - Wdl
OXk
R _ Ak _ ~ )
Ki(t) = p/;b En n;dS p/S*,, Xxm;dS

—pj{ %k, (1 x n) - Wl
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where fi;¢ is the added-mass of the floating body in the time domain which depends
on the body geometry: Aj; is the hydrodynamic damping coefficient depending on
the body geometry and the forward speed: ¥k is the coefficient of the hydrodynamic
restoring force in the time domain. which also depends on the body geometry and
the forward speed; and Kﬁc(t) is a function of the body geometry. speed and time

and shows the memory effect of the impulse motion.

The impulse response function. KJ-’,ZC, can be obtained by using a non-impulsive input

velocity:

&(t) = —at? (2.53)

3
(3

The use of a non-impulsive input can eliminate the high frequency content of input,
thus avoiding numerical problems. Here. o is an arbitrary constant which controls
the frequency content of the input. It is easily shown that as a — oc the input is

identical to & = 4(t). The input velocity has the following properties:

[1+ erf(/at)] (2.54)

N | =

E(t) =

and

Ec(t) = —2at&(t) (2.55)

Under this non-impulsive input, the body boundary condition becomes,
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%%5 = n&(t) + mibe(t) (2.56)

Comparing Eq.(2.41) and Eq.(2.52). the radiation problem leads to

Y]
(S]]
-1
~—

/ K (t — 1) (T)dT = gja(t) + hj(t) — mjube(t) — Nixe(t) — 7jkx(t) (2.

Then the impulse response function, K, can be solved for a short duration based on
the non-impulsive input & (¢) from Eq.(2.57). The numerical solution of the impulse

response function is given in Appendix A.

The radiation force acting on a floating body with arbitrary motion zx(t) can be

computed with the following equation:

Fie(t) = —fude(t) — Aude(t) — 3uza(t / K[t — T)ix(r)dr (2.58)

2.6 Solving the Diffraction Problem with the Im-

pulse Response Function

The diffracted wave potential, ¢;(P:t), satisfies the Laplace equation subject to the

boundary conditions. the far field conditions and the initial conditions as follows:
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V3¢; =0 in (2.59)
0 0 o
(5—(«’05)2457*'9%: . on =0

0¢r 0oy =

E
Voé;: = 0. as R, —oc,onz=0
Vé; - 0, as z — —oo

¢7 = 0, '%tﬁ =0, as t— —-o0

As with the radiation problem, we can use a non-impulsive incident wave to determine
the diffracted wave force. For the case of a moving body with a forward speed, a
non-impulsive incident wave at the origin of the steady-moving coordinate system

can be chosen as,

o(t) = —Re ( / = e‘“"““e"‘“"dwe) (2.60)
s 0
where o is an arbitrary constant. which can be set as the same value as used in
the radiation problem; w, = w — Upw?/gcos 3 is the frequency of encounter; 3 is
the heading angle of wave propagation relative to the zr-axis, where 180° denotes
head seas: and w is the wave frequency. Corresponding to the non-impulsive wave

elevation, the derivatives of the incident wave potential can be obtained as:
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cos 3

- o0 . .
Véo(z.y,2;t) = lRe sin 3 / wekETiP g [tagivet g, (2.61)
T 0

)

where = = rcos 3 + ysin 8. k = w?/g, the wave number and Re() denotes the real
part of the complex function. The details on the original derivation of o and Voq

were given by King (1987) and King et al. (1988).
With the non-impulsive incident wave 7, the body boundary condition in Eq.(2.59)

becomes

9¢1 _ _9%o ,
on  On (2.62)

The impulse response function K j‘%(t) can be solved from the following equation:

[ KRt = Die(r)dr = ~g52(8) ~ hyn() (2.63)

-oC

where

97(t) = p [, or(t)n;dS (2.64)

hiz(t) = —p /S or(t)ym;dS — p }i é7(t)n;(1 x n) - Wal (2.65)



The diffraction force due to incident waves 7o can be computed as

Fa(t)= [~ KB(t - T)m(r)dr

32

(2.66)



Chapter 3

The Panel-Free Method

3.1 Desingularization of the Boundary Integral Equa-

tion

The singularity of the boundary integral equation is contained in the Rankine source
term of the time-dependent Green function. For a floating body, if the waterline
integral is omitted for its relatively small contribution to integration for wall-sized

bodies. Eq.(2.33) can be written as

OG(P,Q;t—T)
a’np

P =280 - Lpayy [far [

s o(Q;7)dS  (3.1)
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where P is the field point and @ is the source point.

Substituting the Green function G(P, Q;t — 7) as in Eq.(2.21) into Eq.(3.1) vields

Va(Pit) = —3o(P:t) + [, o@: t)Lg(n’: Q)

+/,: d'r/gb aF(P'aQ;t = (Q: 1)dS

np

dS (3.2)

Based on Gauss’s flux theorem

g (1
— -_— = 3-
[§b+§; dng (r) d5q = 2m (3.3)

where nq is the normal vector pointing into the body surface and we can write

a |1 0 1 4 1
/.§b+§,; O(Q)% ~)dSq = /§b+§,', [U(Q)%(;) - U(P)%(;) dSo + 2ro(P)

(3.4)

where S, denotes the image of S,. By using the Taylor expansion to the third order,
Landweber and Macagno (1969) have shown the integral term in the right-hand-side
(RHS) of Eq.(3.4) is zero when P coincides with Q. Therefore, the singularity of 1/r

can be removed by applying Eq.(3.4). Equation (3.4) is, in fact, equivalent to



o0 1 1 -
Js, 7@z + TdSe = 2ma(P) (3:5)
+ / a(Q) ( +—)—a(P o ( + — )dS
6TLQ T Q
Defining
Gi(P.Q =-—2+ 1 (3.6)
BRI T Ty T ’
Ga(P.Q) = (3.7)
2P.Q 47rr )
the Rankine source term of the Green function can be written as
Go(P.Q) = G1(P.Q) + 2G2(P, Q) (3.8)

Substituting Eq.(3.8) into Eq.(3.2) vields

6GI(P Q) dG2(P, Q)

dS + 2 /S 0(@:) =5 S (3.9)
+[0 rf LD o iras

Bnp

Va(Pit) = =30 (P:1) + [, 7@

Based on Eq.(3.5) and Eq.(3.9), Eq.(3.2) can be desingularized as
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Va(Pit) = —a(Pit) + [a(Q; t)%:-@ — o(P; t)-é?%(n—]:—Q—)} dS  (3.10)

+2 /S o(Q: t)———acg(:: s + /t ‘dr /; OF (P ;,33: =7 (Q: 7)dS

As shown in Eq.(3.10), the second term in RHS is zero as P — Q and all other terms
are regular. Here, 1,,(P:t) is given by —0¢(P;t)/dnp for the radiation problem and
—00;(P;t)/0Onp for the diffraction problem. After the source strength, o, is solved
from Eq.(3.10), the velocity potential then can be obtained from Eq.(2.33). Omitting

the line integral, Eq.(2.33) can be written as follows:

6(P,t) = /t:dr /s G\(P.Q:t — 7)o (Q; T)dS (3.11)

+ 2 /s o(@:t)Ga(P, Q)dS+./t:dr fs F(P.Qit=7)o(@;7)dS

The singularity appears only in the first term in RHS and it can be removed based
on the procedure proposed by Landweber and Macagno (1969). Introducing a source
strength distribution ¥(P) on S, which makes the body surface an equipotential
surface, then the integral equation for the velocity potential can be desingularized as

follows:
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)] o(P;t)
¥(P) v(P)

+2 /S 0(Q:1)G2(P.Q)dS + /t dr /s o(Q:T)F(P.Q:t — 7)dS

o(P;

o(Pit) = [ G\(P.Q) [a(Q ) - (@) dS+60 222 (312)

It can be seen from the first term in RHS of Eq.(3.12) that the singular term is zero
when P coincides with Q. Here v(P) makes the body surface as an equipotential

surface of potential ¢p and satisfies the homogeneous integral equation

(P = - [ 7@ " Das (313)

Eq.(3.13) can be desingularized in a similar way to Eq.(3.10), and v(P) can be solved
iteratively by finding the eigenfunction of K (P,Q)/8np associated with the eigen-
value equal to -1. where A'(P.Q) = 2G| (P, Q). Since the potential, @, is constant in

the interior of the equipotential surface, its value can be computed at the origin by

1

%0 =~ [, 7@ + )ds (3.14)

where |Q| and |Q’| denote distances between @ and the origin, and @', the image of

Q. and the origin, respectively.



38
3.2 NURBS Representation of the Body Geome-

try

While many mathematical representations have been adopted to describe the body
surface, for example, cubic polynomials and conformal mapping. non-uniform rational
B-Splines (NURBS) (Piegl and Tiller, 1987, Farin, 1991) have become the preferred
method. The widespread acceptance and popularity of NURBS are because they
provide a general and flexible description for a large class of free-form geometric shape.
Their intrinsic characteristics of local control, low memory requirement. coupled with
a stable and efficient generating algorithm, make them a powerful geometric tool for
surface description, especially for complicated body geometry. In this work, NURBS
were adopted to describe the body surface mathematically. A brief introduction of

NURBS is given in Appendix B.

It is assumed that there are N}, patches or parts to describe a body surface. Each
patch can be represented by a NURBS surface. Let P(z(u,v),y(u,v), 2(u, v)) be a
point on a patch. where z,y and = denote the Cartesian coordinate components, and
u and v are two parameters for the surface definition. Applying the NURBS surface,

P(u.v) can be defined as follows:

P(u. L’) — ?:0 _;nzo wijC‘JNi,p(u)JVj‘q(v)

0 2y=0 Wi Ciy Nip (), (3.15)
it 2 7m0 Wiz Nip(u)Njo(v)

where n and m are the number of control points along « and v directions, respectively;

wy; are the weights; C,; form a network of control points; and N;,(u) and Nj q(v) are
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the normalized B-splines basis functions of degrees p and ¢ in the u and v directions.

respectively.

The basis functions can be defined recursively as

] 1 ifu; <u<wuy
Nio(u) = (3.16)
0 otherwise

U — u; Uippsrl — U
Nip(u) = ————N;p_(u) + —22 N, 1,1 (u 3.17
t,p( ) Uirp — U P 1( ) Uirpsl — Uisy +1,p 1( ) ( )
where u; defines the knot vector as
U=1{0,0.....0.ups1, ..., Up—p-1, 1, 1,.... 1} (3.18)
In the v direction. v; forms a knot vector as
V ={0.0.....0.vg41. .cc. Us—g—1. 1,1, ..., 1} (3.19)

where the end knots are repeated with multiplicities p + 1 and ¢ + 1, respectively.,

andr=n+p+1land s=m+q+1.

The normal vector at P(u, v) is given by



_ 0P(u,v) OP(u,v)

Np - au x av = (gh 92793)

where

9 = oA T A as

Oudv Ovdu

_ 00 _0:0:

g2 = Judv OJvdou
_ 020y _ordy
ga OJudv Ovdou

The differential of area is then given by

dS(u,v) = op X opP

3% < 3o |dudv = |J|dudv

where the Jacobian of P(u, v) is given as

|J] = (g} + 95 +93)"°

Then the unit normal vector can be obtained from

n = Np/|J|

40

(3.20)

(3.21)
(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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3.3 Numerical Implementation of the Desingular-

ized Integral Equation

Since Eq.(3.10) is singularity free. it can be discretized by directly applving the
Gaussian quadrature. Introducing a computational space rs which is from -1 to 1.
the Gaussian quadrature points are then arranged in the rs space. The mapping
relationship of the computational space rs, the parametric space uv and the physical

space zyz is illustrated in Figure 3.1.

v z
s 4 |

| , P

‘ :

o] y

| : ;

1 : o I °
Computational space Parametric space Physical space

( rs-plane) (uv-plane) (xyz-plane)

Figure 3.1: Mapping relationship for the computational space, the parametric space
and the physical space

Coordinates. Jacobian and normals in the physical space corresponding to the Gaus-

sian quadrature points can be obtained from Eq.(3.15), Eq.(3.25) and Eq.(3.26).

By applying the trapezoidal time integration scheme, Eq.(3.10) can be written as



Np N, A,
Va(Pit) = —o(Pit) +3_ 3 3 wow [o(QF: 1) VG (P, QF) mp—  (3.27)
j=lr=1s=1
(P )V QG1(P. Q) - ngre ] JT*
Np N, M,
+2 Z Z Z wrwso(Q7°: 1)V pGa(F;. QFF) - np J;*
j=lr=ls=1
Ny N, M,
P OF (P;.Q7*: t
—AtZZZurusa@” to) 205
Jj=lr=1s= P
kel B S o OF (P, Q5% t — ti)

At 2 >3 wew, - o(Q1: i) J7°.

=1 j=1lr=ls=1
for i=1,2,...N,

where N; and M; are the number of Gaussian quadrature points in the u- and v-
directions on the jth patch. P, = P(up,vp),n =1,..N;;m = 1,...M; and Q7 =
Q;(ur.vg), r=1 :2,....N;, s=1.2,...,Al;. are the position vectors of Gaussian quadrature
points on the ith and jth patches in the physical space, respectively: n, and ngrs are
the corresponding unit normals; w, and w, are the weighting coefficients in the u-
and v-directions: J7* is the Jacobian of Q7°: t is the time; At is the time step; ¢, is the
starting time. which is zero for the radiation problem and —N,At/2 for the diffraction
problem, where NV, is the number of total time steps; tx = kAt and t = k,At, where
k and k, are the time constants at any instant and for the total time, respectively.
It can be seen that the algorithm is controlled by the number and arrangement of

Gaussian quadrature points along u- and v-directions.

Introducing W, = wrwsJj*, N = Z;-v;’, N;M;, Gy, = Gi(P,Q5F), and G,, =

G2(P;, Q7°). the above linear equation can be simplified as
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N

Z .4]JG’J = B[. I = 1, censy N (328)
J=1
with
N
Ap=-1—- Y W,VG,, -n;+2W,VG,, - n; (3.29)
J=L.J#I
Ay =W,VGy,, -0y +2W,VG,,, -n;. I #J (3.30)
" L&~ - 0k A
B = "n; — At | = Z 45 JOJFR;J + Z z: " JFn‘ gy (331)
250 k=1 J=1 Y
where
Vo = Va(Pst) (3.32)
0§ = o(Q7:0) (3.33)
o5 = (Q7: tx) (3.34)
OF (P, Q7*: t)
Fk = A 3.35
ny Onp ( 3)
. OF(P.Qms:t—t
anp

Introducing Ffi=* = F(P.Q7:t — t). Fl = F(P.Q%:t). vy = 7(P) and v, =
¥(Q7%). the velocity potential. o’f’. at time t on the body surface is obtained by the

following equation.

A’ kl A' k(
k . . g . .o -
o =Y W,G,,, (o5 — 1.,#) +23 W,05Gy,, + 0o 7', (3.37)
J=1 ! J=1

k=1 J=1 < J=1

ke—1 N N
¢ ; — 1 é . . R
+ {2: S WiokERTF + S22 W ,agF,",J At, I=1,..N
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The constant potential, ¢y, can be computed from Eq.(3.14) by employing the Gaus-

sian quadrature,

1 M 1 1

%0 =-—2 Worulg7+ 57 3.38;
20 47l.J=l J/J(IQJI lQJI) ( )



Chapter 4

Numerical Results

4.1 Hemisphere

Since the singularity occurs only in the 1/r term, it is important to validate the
desingularization of the integral equation with the 1/r term only before it is applied
to the time-domain integration. The numerical scheme is applied to the problem of
uniform flow (" = —1.0) past a spheric surface (R = 1.0). Due to the svmmetry,
only one-half of the surface is considered. In Figure 4.1, dashed lines represent the
control net of NURBS with 4x4 control points on one of patches (N, = 2). The
solid mesh forms the surface of one-quarter of the sphere generated by the control
net. The perturbation velocity potentials at the Gaussian quadrature points were
computed using both the NURBS and the analytical descriptions of the surface.
The convergence of numerical solution was also investigated by varying the number

of Gaussian quadrature points (NxN) over the hemisphere. The root-mean-square
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(RMS) errors of the computed velocity potentials based on the analytical expression
and the NURBS representation of the surface are shown in Figure 4.2. It is shown that
the computed velocity potentials converge to the analytical solution as the number
of Gaussian quadrature points increased. The RMS error of the solution based on
the NURBS representation is less than 1% when 10x10 Gaussian quadrature points

are applied.

The heave added-mass of a floating hemisphere was computed at the short-wave
limit (Newman, 1977). The nondimensional added-mass is 0.5037 for 16x16 Gaussian
quadrature points, compared with the analytical solution 0.5 (Havelock, 1955) and
0.517 for the panel method computed by SEALOADS with 256 flat panels over a

hemisphere (Qiu and Hsiung, 1999).

Figure 4.1: Spheric surface and control net
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Figure 4.2: Convergence of numerical solution to the number of Gaussian quadrature
points

4.1.1 The Radiation Problem

The panel-free method (PF\) was applied to compute the radiation response function
for a hemisphere (R=5.0m) in heave. Figure 4.3 shows the nondimensional response
function. A3;3(t)/ (pV)\/R—/g. versus nondimensional time, t\/g/R. for different Gaus-
sian quadrature discretization used on the hemisphere, where R is the radius of the
sphere and V is the volume displacement. The time step. df, was chosen as 0.05
second. The circles are the analvtic solution of Barakat (1962) obtained by Fourier
transform from his frequency-domain results. In this case, 4x4 Gaussian quadrature
points were also employed to illustrate the numerical errors. It can be seen that
an excellent agreement between the results by PFM and those from the analytical

solution was achieved when 8x8 Gaussian quadrature points were chosen.
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The nondimensional response function for the hemisphere in heave was also com-
puted using different time steps with 16x16 Gaussian quadrature points. As shown
in Figure 4.4, PFM is not very sensitive to the size of time steps. Figure 4.5 and
Figure 4.6 present the added-mass and damping coefficients versus the nondimen-
sional frequency for the hemisphere in heave. The numerical results were obtained by
Fourier transform from the response function using 16x16 Gaussian points as shown
in Figure 4.3. and the analytical results were from Hulme ( 1982). As shown in these
figures. the agreement is excellent. Also in these figures, the frequency. the added-
mass and the damping coefficients are nondimensionalized as w?R/g, As3/ (%per“)

and Bjs/(3wpnR®), respectively.

0.18 T —T Y T T T
Barakat (1962) o

PFM - 4x4 Gaussian points -----
0.16 |- PFM - 8x8 Gaussian points «-------- .
PFM - 12x12 Gaussian points - -—-
0.14 PFM - 16x16 Gaussian points
0.12 s
1 1.5 2
01 Nondimensional time 1

0.08

0.06

Nondimensional K33

0.04

Nondimensional K33

N "

8 85 9 9.5 10

0.02 Nondimensional time

002t R ) )

Nondimensional time

Figure 4.3: Nondimensional heave response function on a hemisphere versus nondi-
mensional time (dt=0.05s)
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PFM, dt=020 - - -
PFM, dt=0.30 -----

-

Nondimensional K33

Nondimensional K33

1.5 2
Nondimensionai time

[y

0 2 4 6 8 10 12 14
Nondimensional time

Figure 4.4: Nondimensional heave response function on a hemisphere versus nondi-
mensional time (16x16 Gaussian points)

4.1.2 The Diffraction Problem

The computed diffraction response functions for sway and heave are nondimensional-
ized as R27(t)/(pgR\/gR) and K;;(t)/(pgR\V/gR). respectively. where p is the water
density. They are given in Figures 4.7 and 4.8 versus nondimensional time, t\/g/_R.
In these figures. a series of Gaussian points (8x8. 16x16. 8x16 and 8x32) were used
to demonstrate the convergence of PFM to the number and arrangement of Gaus-
sian points. The time step was chosen as 0.1 second. The circles are the computed
results by King (1987) where a quarter of the hemisphere was approximated by 65
panels. It is seen that the oscillation at both ends of the response function curve
tends to disappear when the number of Gaussian points increases. Compared with
the response function for sway. the heave response function is not very sensitive to the

number and arrangement of Gaussian points. More Gaussian points are needed along
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Figure 4.5: Nondimensional added-mass for a hemisphere in heave versus nondimen-
sional frequency (dt=0.03s. 16x16 Gaussian points)

the z-direction for computation of the sway response function. The nondimensional
response functions for sway and heave were also computed using different time steps
with 8x16 Gaussian points. As shown in Figures 4.9 and 4.10, the response function

for heave is again not very sensitive to the size of time steps.

The diffraction forces for heave and sway were then computed from the Fourier trans-
formation of response functions (dt=0.05s) and compared with results from Haskind
(1946). Cohen (1986) and King (1987). Figures 4.11 and 4.12 show the nondimen-
sional heave diffraction forces. F3/(2pgmR?) and phases versus the nondimensional
frequency. kR. where k is again the wave number. The nondimensional sway diffrac-
tion forces and their phases are given in Figures 4.13 and 4.14. It can be seen that the
computed diffraction forces and phases by PFM agree well with those results from

Haskind (1946), Cohen (1986) and King (1987).
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Figure 4.6: Nondimensional damping coefficient for a hemisphere in heave versus
nondimensional frequency (dt=0.03s, 16x16 Gaussian points)

0.08

0.06

0.04

0.02

-0.02

Nondimensional K,

-0.04

-0.06

-0.08

i

King (1987) o
PFM with 8x8 Gaussian Points --—---
PFM with 16x16 Gaussian Points --------
PFM with 8x16 Gaussian Points -- --- -
PFM with 8x Gaussian Points

-0.1
-10

-5

Nondimensional time

10

Figure 4.7: Nondimensional diffraction force response function for a hemisphere in

heave (dt=0.1s)
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heave (8x16 Gaussian points)
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4.2 The Wigley Hull

The PFM was applied to a Wigley hull at zero speed. The hull geometry is defined

by the equation:

n=(1-¢)(1-£%)(1+0.26%) +¢%(1 - ¢®)(1 — £2)* (4.1)

where the nondimensional variables are given by

z

where L is the ship’s length, B is the beam. and T is the draft. The hull used here

has

L L
5 = 10. 7 =16. L=1200 (4.3)
and a block coefficient of
v .

where V is the volume displacement. Figures 4.15 and 4.16 shows the half of control

nets and the corresponding whole body surface generated by the NURBS control
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=}

nets, respectively.

4.2.1 Results of the Radiation Problem

A convergence test has been carried out for the Wigley hull by using various number of
Gaussian points and arrangements. The computed heave and pitch response functions
are more sensitive to the number of points on a cross-section than to the number of
points along the ship length. At a given number of points on a cross-section, the
results are almost unchanged when increasing the number of points along ship-length
direction. It was again found that the computation is not sensitive to the time step.
Figure 4.17 shows the computed heave response function at a time step dt = 0.2s for
two cases of using 18 and 20 Gaussian points on a cross-section, i.e. 9 and 10 points
on one half of the cross-section. and 32 points along the ship length. Figure 4.18
shows the computed pitch response function. In these figures, the heave and pitch
response functions. KA33 and R’s5, are nondimensionalized as K33/(pgV/ L)\/g/_L and
K5/ (,ogV)\/g/_L, respectively. The time t is nondimensionalized as t\/g/_L.

The heave and pitch added-mass for the Wigley hull at Fn=0.0 were also computed
from the response function. The heave added-mass and the frequency are nondimen-
sionalized as A33/(pV) and & = w,/g/L, respectively. The results from PFM were
compared with results of TiMIT (Bingham, 1994) and WAMIT (Korsmeyer et al.,
1988). TiMIT and WAMIT are two panel-method codes from MIT for time-domain
and frequency-domain wave analysis, respectively. Note that results of TiMIT and
WAMIT used here were taken from the work of Bingham (1994). Figure 4.19 shows

the comparison. The numerical irregular frequencies are shown at @ ~ 5.8 and @ ~ 10
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for both TIMIT and WAMIT where the half-hull was discretized by 144 panels. PFM

shows an oscillation around @ = 5.8, but its behavior is different from those of TiMIT

and WAMIT.

The computed heave and pitch damping coefficients were also compared with those
by Bingham (1994) in Figures 4.20 and 4.21. The heave and pitch damping coefficient
is nondimensionalized as Bs3/(pV@)\/L/g and Bss/ (pV L) /L/g, respectively.

4.2.2 Results of the Diffraction Problem

The wave exciting forces were determined at zero speed for the Wigley hull. The heave
and pitch response functions for the Froude-Krylov forces were computed according
to the work by King (1987). Then the exciting forces were compared with results
from King (1987), where 120 panels were used to approximated the half-hull. In
PEFM computation, 18x32 Gaussian points were again used on the whole hull as in
the radiation problem previously and the time step is 0.25s. The computed heave
response function due to the diffracted waves in comparison with King’'s results is
presented in Figure 4.22. The oscillation of the curve shown in results by the panel
method is not presented in the results by PFM. The pitch response function is shown

in Figure 4.23.

Applying Fourier transform to the diffraction and Froude-Krylov response functions,
we were able to obtain the frequency-domain wave exciting forces. The forces and
phases were compared with those results from King (1987) and the strip theory

results of Salvesen et al. (1970) in Figures 4.24 to 4.27. To be consistent with the
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presentation of King (1987), the frequency is nondimensionalized as & = kL. and
the nondimensional heave and pitch exciting forces are given as F3;/(pgV /L) and
F57/(pgV). respectively. There is a good agreement between the results from PFM.

the panel method and strip theory.

Figure 4.15: NURBS control net for the Wigley hull
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Figure 4.16: Wigley hull Surface generated by the NURBS control net
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Heave radiation response function for the Wigley hull at Fn=0.0
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Figure 4.18: Pitch radiation response function for the Wigley hull at Fn=0.0
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Figure 4.19: Heave added mass for the Wigley hull at Fn=0.0 (dt=0.2s)
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Figure 4.21: Pitch damping coefficient for the Wigley hull at Fn=0.0 (dt=0.2s)
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Chapter 5

Conclusions and Recommendations

A panel-free method (PFM) has been developed to solve the radiation and diffraction
problems in the time domain. The initial objective, to reduce the errors due to
the geometry approximation and assumption of the degree of approximation of the
source strength as in the panel method. has been achieved. In the present study, the
integral equation in terms of source strength is desingularized before it is discretized.
The singularity-free integral equation allows for application of Gaussian quadrature
globally over the exact body geometry. The body geometry can be either described
in an analytical definition or by a parametric representation. The complex body
geometry may be accurately described by NURBS surfaces, which are widely used in
computer aided design. There is no need to assume a certain degree of approximation

of source strength distribution on the body surface.

In general. compared with the panel method, PFM involves less numerical manipula-

tion. since panelization of a body surface is not needed. Programming of the PFM is
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easier than the panel method. It is more accurate, since the assumption for the degree
of approximation of source strength distribution as in the panel method is no longer
needed, and Gaussian quadrature can be directly and globally applied to the body
surface with a mathematical description. The Gaussian quadrature points, and their
respective Jacobian and normals on the surface can be accurately computed based
on the NURBS expression. The accuracy of the solution can be easily enhanced
and controlled by changing the number and arrangement of Gaussian quadrature
points. This could lead to an adaptive error control of numerical computation for the

three-dimensional boundary integral.

The robustness and accuracy of PFM has been demonstrated by its application to
the radiation and diffraction problems in the time domain. The examples presented
in Chapter 4 include the computation of radiation and diffraction response functions,
hydrodynamic coefficients and wave exciting forces for a hemisphere and a Wigley

hull.

A particular aspect which needs further research is the evaluation of the waterline
integral by PFM. The waterline integral was omitted in the current work. In the
panel method. the common practice was to evaluate the potential on the waterline

as if the potential was on the body just below the waterline.

The PFM should be validated and improved by extending its applications to the cases
of different types of ships for both with zero speed and forward speed. In the current
work. PFM was applied to floating bodies with zero speed. Finally, the method
as developed so far allows for computation of large-amplitude motions in the time

domain. A challenging work related to applying PFM to the body-exact problem
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will be how to trim the control net for the instantaneous wetted surface of a floating

body.



Appendix A

Numerical Solution of Response

Functions

As shown in Eq.(2.57) and Eq.(2.63), the impulse response functions can be solved

from the Fredholm integral equation of the first kind. Here. we define a general

equation

F)= [ K.t — ryndr (A.1)

t
where

F.(t) = gju(t) + hj(t) — ﬁjkfk(t) — Mekr(t) — %ix€x(t)  for the radiation force,
F.(t) = —gjz(t) — hjz(t) for the diffraction force,

and
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KR, = K]fi(P;t), nr = &(t). ty =0, t2 =t for the radiation problem.

K, = I\’]Q(P: t)., mn=1o(t)., t; = —o0, ta = oc for the diffraction problem.

Equation(A.1) can be solved by the direct solution scheme (Cong. et al.. 1998). The

convolution equation can be discretized as

-1

F,. = K., _.ni At+ %[K,.mmo + Konp,, JAt, m=1,2,... M (A.2)
1

3

3
1

where A is the total number of steps defined by tar = MAt. With simplified nota-

tions.

am = nlm
Tm = K,
bm = F rm

Equation (A.2) becomes a system of equations in terms of z,,,

1 1 b
( 31Ty + 5a0T) = 3‘%
1 . 1 = b2
J 3029 + a T, + 30012 = Xy
(A.3)
1 1 _ b
\  3CMTo + ap_ T + + ayTra-—; + 2Q0Tr = :&%

It is evident that the systems of equations (A.3) are indeterminate, because the to-
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tal number of unknowns M is larger than the total number of equations by 1. An
additional physical condition has to be provided to make (A.3) closed. When time
tm = mAt is sufficiently long, the response function K, _ becomes quite smooth and
goes to zero uniformly. i.e, the first-order time derivative of K, _ tends to zero. An ad-
ditional condition for K, at a specific time instant can be obtained by approximating

the time derivative with a third-order finite difference, as follows:

IN_g —3TN_3+3TNn_2+2xZN-1 =0, for N= M +1 (A.4)



Appendix B

Surface Construction Using

NURBS

As mentioned in Chapter 3. the use of Non-Uniform Rational B-splines (NURBS)
in surface constructions is becoming widespread. NURBS offers one common math-
ematical form for the precise representation of standard analytical shapes, such as
lines. conics. circles and quadratic surfaces, as well as free-form curves and surfaces.
NURBS curves and surfaces have been an Initial Graphic Exchange Specification
(IGES) standard since 1983 (IGES. 1986). NURBS offers extra degrees of freedom.
weights. to generate a large variety of shapes. It is projectively invariant, i.e., a
projective transformation of the control points is equivalent to the transformation of
the corresponding curve or surfaces. In this Appendix, the basic theory of NURBS
will be briefly outlined. As an example. the NURBS description of a sphere will be

presented.
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B.1 Rational and Non-Rational B-Splines Curves

and Surfaces

B.1.1 B-Spline Basis Functions

The recursive B-Spline basis functions, as in Eq.(3.16) and Eq.(3.17), are known as
the Cox-deBoor algorithm (Cox. 1972, deBoor, 1972). For a non-decreasing sequence
of real number, U = {ug, u,, --tis...s um}, the ith normalized B-spline function of

degree p can be written as follows:

. 1 ifui§u<u,~+1
Nio(u) = (B.1)

0 otherwise

U — u;

T Ujtp+1 — U
———— Nip-1(u) + —=2% Nit1p-1(u) (B.2)
Uivp — U, Ujpp+1 — Uiy

-'Vi.p(u) =

It has been set that 0/0=0. The N, p functions are defined on the entire domain, but
the focus is on the interval u € [ug.u,,]. Note that U is called the knot vector and
Nip(u) is the pth degree piecewise polynomial function. In Figure B.1, (a) shows the
quadratic B-spline basis functions defined by the knot vector {0.0,0,1/3,2/3,1,1, 1}
and (b) illustrates the cubic B-spline functions corresponding to the knot vector
{0.0.0.0,1/4.1/2,3/4.1.1.1.1}. Note that Figure B.1 is cited from Piegl and Tiller
(1987).

The shape of basis functions are not only controlled by the degree p, but also by
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(¢} /4 i72 374 1

Figure B.1: Quadratic and cubic B-spline basis functions (Piegl and Tiller. 1987)

the knot vector. U. Various knot vectors can be chosen. Let's fix the degree of

basis function as p. The knot vector. U = {uo. uy....ti. .... umm }, is non-periodic if the
first and last knots are repeated with multiplicity p+ 1, ie., ug = u; = ... = Up
and Um_p = Um-_ps1 = ... = uy. If there is a positive real number. Au. such that

ui+1 —u; = Auforall p < i <m—p-—1. then U is called a uniform knot vector. It is
otherwise called the non-uniform knot vector. The use of the non-uniform knot vector
allows better shape control than that of the uniform one. Furthermore, the use of
uniform B-splines to interpolate unevenly spaced data point can result in unwanted

oscillations or loops.



B.1.2 Non-Rational B-Spline Curves

A pth degree non-rational B-spline curve is defined as follows:

P(u) = i Ni'p(u)C,-, 0 S u S 1 (B3)
=0

where the C; are the control points, n is the number of control points, and the
Nip(u) are again the pth degree B-spline functions with a non-periodic knot vector,

U = {ug, uy,...ti, ..., sy }, where m =n +p + 1.

The multiplicity (p + 1) of the end knots vields the end conditions as follows:

P(0) = Co. P(1)=Cp, P'(0) =p(Ci — Cy)/tps1, (B4)

and P,(l) = p(cn - Cn—l)/(l - um—p-—l)

B.1.3 Rational B-Spline Curves

A point P(z.y, z) in the Cartesian coordinate system can be represented by
P¥(wz,wy, wz, w),w > 0 in the four-dimensional (4D) space. The normalization is

a perspective mapping defined as follows:
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Plwr/w,wy/w, wz/w) ifw#0
H{P"(wz.wy,wz,w)} = { Point at infinity on the line (B.5)

from the origin through(z.y,z) if w =0

The set of P¥(w;z;. wiy;, w;z;, w;). i = 0, ....n, defines a non-rational B-spline curve
in 4D. Note that P(z,y, z) = P“(z,y,z,1). Its perspective map in 3D is a rational

B-spline curve defined as follows:

P(u) = H{P"(u)}= H{Z N;p(u)CP} (B.6)
=0
i=o Nip(w)w:iC;

=0/ t.p(u)wi

=0

where the functions. _\"i’;,(u), are piecewise rational basis functions and w; > 0 for all

value of 7. It can be seen that ./Vl-’_i,(u) will reduce to N, ,(u) if all w; = 1.

Figure B.2 illustrates rational cubic B-spline curves with different value of w, and
wy. where small squares represents the end points of the curve segments. As shown.

when all w; = 1. the curve reduces to a non-rational B-spline curve.



7
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Figure B.2: Rational cubic B-spline curves with different values of w; and ws, and
their control polygon (Piegl and Tiller, 1987)

B.1.4 Rational B-Spline Surfaces

A curve requires one parameter for its definition, whereas a surface requires two: u
and v for 0 < u.v < 1. A tensor product rational B-spline surface with degrees (p. q)

is defined as follows:

P(u,v) = H{P"’uv)}—H{ZZN,p(u )N;q(v)CE} (B.7)

_.O]

Z"—o 2o wiiCi JvaP(u)vaq(v
i 0 E i—0 Wij i.p(u)Nj.q(v)
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where C;; denote the control points which are arranged in a topologically rectangular

array called the control net.

B.2 NURBS surface of a Sphere

As an example. the control net of a sphere with radius 0.5 is given in Figure B.3 and
its corresponding NURBS surface is presented in Figure B.4. In the example. a 4 x 4
control net and p, ¢ = 3 are used for the NURBS surface. For a 1 /8 sphere, the knot
vectors. U and V are both given as {0,0,0,0,1,1.1,1}. The coordinates (z,y,2) and

weights (w) of control points are list in Table B.1.

For a complex body surface. such as a ship hull, the NURBS surface can be con-
structed by using NURBS surface modeling packages, such as FastShip®, which has

been used for generation of the Wigley hull.



Figure B.3: Control net for the sphere

Figure B.4: NURBS spheric surface
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Table B.1: Control net for the 1/8 sphere

Control Points

X

‘.'

z

w

(1.1)
(1,2)
(1.3)
(1.4)

TN TN TN AN N N e e
ok W W

0.000000
0.000000
0.000000
0.000000
0.292893
0.292893
0.292893
0.292893
0.500000
0.500000
0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

0.500000
0.500000
0.292893
0.000000
0.500000
0.500000
0.292893
0.000000
0.292890
0.292890
0.171571
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
-0.292893
-0.500000
-0.500000

0.000000
-0.292893
-0.500000
-0.500000

0.000000
-0.171571
-0.292890
-0.292890

0.000000
0.000000

0.000000

0.000000

1.000000
0.804738
0.804738
1.000000
0.804738
0.647603
0.647603
0.804738
0.804738
0.647603
0.647603
0.804738
1.000000
0.804738
0.804738
1.000000
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