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ABSTRACT

S

Multivariate calibration, used in conjunction with muitichannel instrumental
techniques, has been vital in making convenient, rapid and cost-effective
chemical analysis possible. Numerical preprocessing techniques, which are
intended to recondition the measurement data to a form which is better suited for
chemometric methods, often play a key role in multivariate calibration. In some
cases, the use of preprocessing techniques improves the precision of the
analytical result. In other cases, meaningful results are altogether impossible
without preprocessing in some form. Despite the integral importance of
preprocessing strategies in multivariate analysis and calibration, the theoretical
impact of many of these numerical methods in calibration theory is unknown,
leaving the analyst no other option than a trial-and-error approach. In this work,
two of the most prominent preprocessing methods, digital smoothing and
differentiation, are examined in depth from the perspective of calibration theory.

Smoothing is very frequently performed with aspirations of enhancing the
signal-to-noise ratio (S/N) of the measurement data. It is demonstrated here
that, based on theoretical considerations, no enhancement in multivariate S/N or
predictive ability can be anticipated from symmetric smoothing fiiter application.
In practical studies, it is observed that gains can sometimes be made, although
they are found to be consistently marginal, and attributable to substantial
calibration model error. This leaves smoothing filters in multivariate calibration
as little more than cosmetic devices which are more likely to obfuscate
information than enhance it.

Derivative filters are widely employed for the alleviation of baseline drift,
and other noise structures which contribute error covariance to the measurement
data. Theoretical examinations of their operation reveal that drift reduction
proceeds by attempted diagonalization of the error covariance matrix (and
homogenization of the noise power spectrum), although this benefit is often offset
by the deleterious side-effects of derivative filtering: potential signal degradation
and loss of chemical interpretability. While derivative filters do relieve error
covariance to some extent, they are suboptimal in their approach as no
consideration is given to heteroscedasticity, error covariance, or the net analyte
signal. It is shown that optimal drift correction methods can actually be derived
by direct consideration of the error structure. It is further demonstrated that this
optimal drift correction filter is a special case of maximum likelihood principal
components analysis, a method recently introduced by this research group.

This work demonstrates that preprocessing and calibration strategies can
be logically developed from careful consideration of the problem at hand. These
rational approaches to calibration not only are often superior in performance, but
also avoid the wildly empirical and inefficient approaches in widespread use.
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1. Introduction

The theory and practice of multivariate analysis in chemical problems has
come a long way since the inception of the word “chemometrics” (originally the
Swedish ‘kemometri’) in 1972 [1, 2]. The early applications of what came to be
called chemometric methods involved pattem recognition, classification, and
regression. These novel uses of multivariate mathematical methods with
chemical experimentation marked the beginning of what is now a reasonably
mature field, with two dedicated chemometrics peer-reviewed joumnals, and
chemometrics-related research articles regularly appearing in scores of other
chemistry publications. The applications of these mathematical and statistical
techniques have spanned virtually all sub-disciplines of chemistry; however, it is
analytical chemistry which has most rapidly evolved and accommodated
chemometric methodologies. As Harald Martens succinctly put it [3], this
chemometric movement in analysis was, at least initially, motivated by the
problem of simply having “too much data”.

Analytical chemistry—the science of chemical instrumentation and
measurement [4]—was perhaps predestined to benefit most substantially from
chemometrics—the science of extracting information from chemical
measurements using mathematical methods. The advantages of chemometric
methods are dramatically pronounced when this information is not readily
attainable by conventional means, or when the information seems hopelessly
obscured by interfering phenomena such as meddlesome chemical species and
noise. While classical univariate analytical methods require full selectivity for
functionality, muitivariate chemometric methods are much more flexible, requiring
only fractional selectivity in a muiltivariate context. As a result, sample
preparation procedures can often be dramatically reduced, saving the analyst
both time and money.
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Analytical instrumentation is constantly improving, but the rapidly
increasing complexity and nature of the systems of interest often pushes
analytical instruments far from their ideal operating state of full analyte selectivity.
Aside from the anticipated low analyte selectivities in complex samples, the
desire to avoid extensive sample preparation also often leads to bulk sample
properties that can be problematic for many analytical methods. An example of
this is the now widely used near infrared (NIR) reflectance spectroscopy of solid
samples. In the majority of cases, other analytical procedures could be
undertaken, however they would require extensive preparatory work. In contrast,
NIR spectroscopy often requires little sample pretreatment. This preparatory
relief is achieved with expense, however. The data acquired in these
experiments are often heavily corrupted by multiplicative scattering effects arising
from pathlength variations at the photonic level (it has been said that as much as
99% of the variance observed in NIR reflectance is unrelated to chemical
composition [5]). Situations like this can lead to chemical measurements that
exhibit rather unconventional (and less than desirable) properties, and,
consequently, are notoriously problematic in standard chemometric methods.

In the past, numerous mathematical manipulations and transformations of
the measurements have been proposed to massage the data prior to multivariate
analysis, a procedure that is generally referred to as ‘preprocessing’.
Preprocessing methods are typically applied in order to make the measurement
data more amenable to the mathematical modeling methods most commonly
employed in chemometrics, such as principal components analysis (PCA) and
principal components regression (PCR). Preprocessing potentially encompasses
everything from the elementary centering, normalization, and linearization
operations, to the more complex procedures such as digital filtering, transforms,
and projection methods. While many of these types of preprocessing procedures
are widely used, the theoretical knowledge of how the more complex methods
affect multivariate calibration models is surprisingly incomplete. The selection of
the preprocessing techniques to employ in a particular circumstance is largely a
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guess-and-check procedure which is wildly empirical, not to mention costly and
time-consuming. Some general guidelines do exist for the simpler preprocessing
methods such as centering and scaling, but more complex preprocessing
operations such as digital filtering have never been explored using the theoretical
concepts entrenched in multivariate calibration theory.

In this work an attempt has been made to examine in depth the effects of
several more advanced, but commonly employed preprocessing methods on
multivariate calibration models. Following two brief introductory chapters on
calibration theory, and digital filtering, Chapter 3 explores the efficacy of digital
smoothing filters as a preprocessing tool in multivariate calibration. It is
demonstrated by both mathematical derivation and experimentation that
enhancements in the multivariate signal-to-noise ratio are very rarely achieved
using these smoothing filters. In Chapter 4, common preprocessing tools for drift
reduction are examined, with the emphasis placed on the very popular Savitzky-
Golay (SG) derivative filters. From theoretical insights, it will be evident that
derivative filters are suboptimal in reducing drift noise. An optimal preprocessing
procedure for the elimination of drift noise is developed and discussed. While
this optimal filter is designed from the perspective of digital filtering, it is shown to
be equivalent to the recently introduced maximum likelihood PCA (MLPCA) when
used in conjunction with projections on principal components. Chapter 5 briefly
discusses the scatter and drift correction method muiltiplicative scatter/signal
correction (MSC), and illustrates its perfformance compared to MLPCA. The
chapter closes with a discussion of the context and importance of this thesis
research in contrast to current philosophical approaches to chemometric

modeling and preprocessing. Possible avenues for future investigations are also
discussed.
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1.1 Notation

In order to retain consistent representations of the mathematical concepts
in this work, the notation is standardized in all chapters. ltalicized lowercase
symbols will represent scalar-valued quantities (e.g., x), while lowercase bold
characters will denote vector-valued quantities (e.g., x). Unless otherwise
indicated, these vectors will be column vectors. Matrices will be indicated by
boldface uppercase characters (e.g., X), and the space defined by the column or
row vectors of a matrix (the vector space of the matrix) will be implied when
uppercase italicized characters are used (e.g., §). In order to distinguish
between ‘true values’ which would presumably be observed under noise-free,
ideal conditions, and the experimentally observed values, a superscript ‘o’ will be
used. X° would therefore represent the matrix of true values, while X would
represent the observed experimental values. Standard modifying characters also

include a vector or matrix transpose, indicated by a superscript ‘T’ (e.g., X"), and
the matrix inverse, indicated by a superscript -1' (e.g., X™'). Several descriptive
characters will also be used through the text, such as a superscript ‘~' over
matrices or vectors (e.g., ¥), which indicates a least-squares estimate of the

respective parameter. Other modifying characters of this form will be discussed
further upon initial introduction.

1.2 Multivariate Calibration

1.2.1 General Modeling Theory and Philosophy

The overwhelming majority of applications in chemometrics utilize
mathematical and statistical techniques to develop models which are intended to
make accurate predictions. At the heart of this chemometric modeling process is
the development of a usefui relation between some readily measurable qualities
(such as temperature, or absorbance), and properties of interest that are
inconvenient (if not impossible) to directly observe (e.g., concentration). Ideally,
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a strong correlation exists between the easily measured qualities and the
properties of interest, making it feasible to make inferences about samples with
unknown properties. The modeling process is simplified if this correlative relation
is linear in nature (with respect to the model parameters), although this is
certainly not a necessity. The model, therefore, provides a method of converting
or mapping information about one set of variables to information about another
set of variables.

From a broad outlook, the analytical calibration process consists of two
crucial steps: (1) establishing an estimate of the response space in which
chemical variation of interest is expected to occur in the absence of other
interfering signals, and (2) projecting observed signals onto that estimated space.
A third step, determining regression coefficients that map one set of observations
to another, is also crucial but the estimation of the regression coefficients is
heavily dependent on the success of (1) and (2). If subspace estimation is
successfully achieved, and the projections of the signals are accurate, then we
can anticipate accurate, and hence powerful models of the relationship between
the variables of interest.

In chemistry, we are often fortunate to have solid physical understandings
and theories regarding these models. It is standard practice, for instance to
automatically resort to using a first-order linear model when we are dealing with
spectroscopic measurements, since the well known Beer's (or Bouguer-Lambert-
Beer's) Law is presumed to sufficiently describe the theoretical relationship
between analyte concentration and spectroscopic absorbance. It could be said,
however, that there are two classes of models - those that are designed to aid in
the description of the underlying physical principles goveming the system, and
those that are designed to predict future behavior. In analytical applications of
chemometric modeling, the utility of the model in making future predictions on
unknown samples is most often of paramount importance. Since the physical
framework of the model is technically unimportant if prediction is the sole
motivator, a host of different numerical methods could potentially be employed
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with some success. Chemists, however, have the ability to operate on the fence,
so to speak—with good theoretical knowledge at their disposal, good predictive
models can be constructed that also have physical rationale. It could be said that
this knowledge provides the distinction between a chemometrician, and a
numerical analyst, or statistician, and oftentimes, the distinction between a useful
and meaningful model, and a nonsensical construction of mathematical
operations.

The following sections are intended as a concise introduction to the
machinery of calibration. The discussion of multivariate calibration modeling will
begin with the familiar univariate calibration and extend to multivariate calibration
and calibration on principal components. With these technical details reviewed
and established, Section 1.5 will conclude the chapter, moving beyond the
particulars and into the important concepts of theoretical analytical chemistry,
and multivariate figures of merit for calibration. Aithough multivariate calibration
can easily perform simultaneous multi-component analysis, in the discussions
that follow we will focus on the analysis of a single component (the analyte of
interest), with the other species simply acting as interferences.

1.2.2 Simple Calibration

Most likely, our first exposure to simple calibration in chemistry came in a
lecture or laboratory on the concept of Beer's law, and the interactions between
electromagnetic radiation and matter. Beers law can be expressed
mathematically in the well known form

r=alc+e (1.1)

where a is the molar absorptivity at the measured wavelength, / is the pathlength
of the incident radiation, c is the analyte concentration and r is the corresponding
instrument response in absorbance units. The measurement error in the
observed response is taken to be e. For multiple samples this equation can be
expressed in vector notation as

r=alc+e (1.2)
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where r is now an m x 1 column vector of responses corresponding to the m
samples whose analyte concentrations are contained in the vector ¢ (m x 1).
Each of the responses observed in r is assumed to be corrupted by the
measurement errors in the vector e. In univariate regression and calibration,
expressions of this type are most often represented in more general vector
notation as

y=xb+e (1.3)

x is typically referred to as the independent variable (concentrations in the Beer's
law scenario, an m x 1 vector, m is the number of samples), y, the dependent
variable (instrumental readings, m x 1), b, the regression parameter, and e (m x
1) the unobservable error or disturbance terms. (The reader will note that
Equation 1.3 disregards any intercept term that may contribute to the observed
response. Without loss of generality, it will be assumed in the following
discussions that an intercept (if present) has aiready been removed by some
means.) Traditionally, the information summarized by Equation 1.3 has been
graphically represented as a plot of y vs. x, similar to the one shown in Figure
1.1. The process of generating a working model for the relation described in
Equation 1.3 then requires an estimate of the parameter, b. This least-squares
estimate of b can be obtained by the minimization of the sums-of-squares of the
residuals (SSR), represented by the objective function

fp = Z(y ~xb) = (y—xb) (y - xb) (1.4)

which corresponds to solving the following linear equation for the estimate, 5.

(T YT

b-(x x)_xy (1.5)
= x’y

The superscript ‘+’ indicates a pseudoinverse, so named because the inverse of

a non-square matrix does not truly exist. When x* =(x"x)"'x", as above, it is
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Figure 1.1 A simple scatter plot of y vs. x along with a
simple first order polynomial fit to the observed data.

referred to as the Moore-Penrose pseudoinverse. Corresponding estimates ¥,

and é may subsequently be obtained using

y=xb (1.6)

é=y-§y (1.7)

While the scatterplot in Figure 1.1 is the traditional means of representing the
concepts of univariate calibration, several crucial attributes of the method are
obscured in this portrayal which will become instrumental in more complicated
multivariate calibration schemes.

The characteristic of the scatterplot shown in Figure 1.1 that makes it
useful, namely that it yields information about the relationships of the samples,
also severely limits it, since this ‘variable space’ representation often obscures
information about the relationship of the variables x and y. An altemative
representation of the data in ‘sample space’ uses the samples as the axes of the
plot, rather than the variables. The model from Equation 1.3 then indicates that
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a) y
>
X
b) y
L
Ly .
¥ X

Figure 1.2 Sample space representation of the standard univariate linear model.
a) the two vectors x, and y oriented in sample space, and b) the orthogonal
projection of y onto the space defined by x.

the variable vector y should simply be a scalar multiple of the vector x, i.e., the
two vectors should point in essentially the same direction in sample space.
Because it is presumed that y is corrupted with measurement errors, it is
invariably displaced from being exactly colinear with x. This is illustrated in

Figure 1.2a. Since the least-squares solution for b, b yields a minimum for the

objective function in Equation 1.4, it must also minimize the length of the error
vector, €.

m

fui =2 3i=3.)=(-3)(-3) (1.8)

3

fo =3 E) =Ee=[e (19)

|| denotes the Euclidean nomm (length) of the vector. Therefore, the least-

squares solution in sample space is very clearly the solution that yields the
shortest & vector from the tip of y to any point on x. The shortest & vector will
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uniquely result when é is orthogonal to x, making § apparent as the orthogonal

projection of y on x, and b the scalar that satisfies Equation 1.5. A
reexamination of Equation 1.6 makes this all the more evident, since xx* is an
orthogonal projection matrix.

y=xx"y (1.10)

These concepts are all presented in Figure 1.2b. Other standard calibration
measures are also easily visible in this representation. The correlation
coefficient, R, is the cosine of the angle between the vectors x and y, and the
familiar F-statistic is proportional to the ratio of the squared length of § to the

squared length of é. (The constant of proportion is the ratio of the degrees of
freedom of é to §.)

While the simplicity of univariate calibration is an attractive attribute, there
are several fundamentally limiting properties of the approach. Univariate
calibration methods naturally require full selectivity for the analyte of interest.
Interferences can therefore only be handled in the rather naive case in which the
amount of the interferent is constant in all calibration and prediction samples.
This severe limitation mathematically precludes doing calibration in the presence
of interferences, and simultaneous multicomponent analysis. A host of
advantages are to be realized if one moves from the univariate reaim of single
measurements into the realm of muitiple measurements, or, multivariate
calibration.

1.2.3 Multivariate Calibration

1.2.3.1 Inverse versus classical calibration

In previous sections it was assumed that the vector of instrumental
measurements, y, was to be projected onto the vector of concentrations, x, to
extract the least-squares solution for the regression parameter. The projection is
often performed in this manner because it is assumed that the errors in the
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absorbance measurements, y, are substantially larger than the errors in
concentrations, x, and that the models as given in Equations 1.2 and 1.3 are
sound approximations. It is also possible to ‘invert’ this classical representation
and make the absorbance measurements x, and the concentrations y, implying
the errors in the concentration values are significantly larger than the response
errors. In the chemometrics literature, this modeling approach is called inverse
calibration. In contrast to the more classical calibration setup outlined in the
previous section, univariate inverse calibration uses least-squares to project the
vector of concentrations (now y) onto the vector of responses (now x). In
univariate calibration there are, in truth, only minor differences between classical
and inverse calibration, however in multivariate calibration, the distinction
becomes important in both theoretical and practical considerations.

While Equation 1.2 gave an extension of Beer's law when multiple
samples are involved, it is additionally possible to express Beer's law with
multiple wavelength measurements. For a single-component system with m
samples, this relation becomes

R=cs' (1.11)

where s is an n x 1 vector of the pathlength-normalized molar absorptivities for
each of n wavelengths, and R is now an m x n (samples x wavelengths) matrix of
absorbances, with each row corresponding to a spectral measurement for a
different sample. The matrix of spectra arises from the simple outer product of a
the concentration vector, and the pure-component spectral vector for the
component. (Aithough R and ¢ will be referred to as matrices of spectra and
concentrations, this is certainly not a necessity. R may well represent
voltammograms, and ¢ refractive indices. To avoid unnecessary abstractions,
however, they will be referred to as spectra and concentrations without loss of
generality.)

If p different spectroscopically active components are assumed to be
present in the mixtures, then Equation 1.11 can be trivially extended to
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—csT T T
R=c¢s, +c,8, +---+¢,8,

o5 (1.12)

where C (m x p) is the matrix of concentrations (columns representing the
concentrations of each of the p components), and S is the matrix of pure-
component spectra at unit concentration. The response matrix will still be m x n,
however it will now result from the spectral contributions of all p components. Of
course, in the classical calibration scenario concentrations and responses are
known, and so calibration modeling in this case involves solving Equation 1.12

for an estimate of S, S (a process referred to as indirect calibration). If S
happens to be known, then calibration can proceed immediately without
estimation (direct calibration). This classical multivariate calibration model,
referred to in the chemometrics literature as classical least-squares (CLS), is
extremely powerful when all of the requisite information is known, i.e., we know R
(measured spectra for each mixture sample), and we have access to the
concentrations of every spectrally active component in the calibration samples, C
(which must include all components which may be in future samples). This
calibration scenario is illustrated in Figure 1.3. Oftentimes, however, we wish to
calibrate a particular analyte in the absence of knowledge of the other interfering
components in the system, which is an impossibility in this classical multivariate
calibration approach. Additional drawbacks of this classical method are
mathematical in nature, namely that the inverses of (C'C) and (SS) must exist.
The form of Equation 1.12 suggests that we could also write

C=RB (1.13)

which is the inverse calibration expression for the proposed model. As in
Section 1.2.2, we will revert to the more general notation to distinguish the
inverse approach from the CLS approach. (Again, X, or x will be referred to in
terms of spectra, and Y, or y as concentrations without loss of generality) Thus,
we have

Y=XB (1.14)
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Classical Least-Squares (CLS)

ST

Gi{G:]Gs | component 1

F component 2

clalen |t component 3

R=CS’

Calibration: S = RTC(CTC)—l
Prediction: C = R§(§T§)—l =RB

Figure 1.3 An illustration of the general layout of ciassical least-squares methods.

where Y is the m x p matrix of concentrations, X is the m x n matrix of instrument
responses, and B is the n x p matrix of regression coefficients mapping X to Y
(Figure 1.4). In inverse regression, the structure of the model itself relaxes the
need for complete component knowledge, since Equation 1.14 is not chemically
bilinear in origin. It is therefore possible to restrict interest to whichever analytes
are desired without regard for the other analytes active in the mixtures.
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Inverse Least-Squares (ILS)

C=RB or Y=XB
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Calibration: B=(R'R} R'C . ,

Prediction: C =RB

Figure 1.4 An illustration of the general layout of inverse least-squares
methods.
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This allows accurate calibration and quantitation in the presence of a host of
interfering species. The pure-component spectra need not be known, and the
concentrations of the interfering species in the mixture samples are also
unnecessary.

1.2.3.2 Inverse Multivariate Calibration

In inverse multivariate calibration (hereafter referred simply to as
multivariate calibration), the least-squares solution for the calibration of a single
analyte of interest in a mixture of other interfering species is given by

b=(X"XJ'X"y (1.15)
where, as above, y is the vector of concentrations for the analyte, and the rows of

X contain the measured mixture spectra. Like the complimentary univariate
expression, Equation 1.15 is also sometimes expressed as

b=X'y (1.16)

Although it is difficult to express this high-dimensional operation geometrically, it
is analogous to the univariate scenario discussed previously. The estimated
vector of concentrations, ¥, is the orthogonal projection of y onto the subspace

S« spanned by the column vectors of X, in a similar fashion to the univariate

counterpart in Equation 1.10.

- 1
y=§g(;xf X'y (1.17)
=XX'y

§=Xb (1.18)

An illustration of the multivariate least-squares solution is given in Figure 1.5
assuming that there are only two spectrally active components in the mixture
samples (the analyte, and an interferent).

With the regression parameters estimated from the calibration procedure,
predictions for an unknown sample can be easily made via
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Figure 1.5 An illustration of the least-squares solution with two mixture components.
The least-squares solution is the orthogonal projection of y onto the space defined by the
x vectors, Sy.

- 2%

(1.19)

y unk = xunk

and, for multiple samples,

yunk = xunkl; (1 '20)

While inverse calibration side-steps the difficulties associated with
classical calibration, it suffers from one premier difficulty, namely, the necessity
of inverting the matrix (X"X) in Equation 1.17. For this matrix to be conveniently
inverted, the number wavelength channels in the spectral domain must be less
than the number of samples used to build the calibration model (n must be less
than m in the dimensions of X). With current instrumentation and spectrometers
automatically yielding hundreds (or thousands) of measurements in the
wavelength domain, standard inverse calibration in this fashion would require
hundreds or thousands of calibration samples, a demand that is often
prohibitively costly. An additional contributor to the inversion problems with X™X
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is the natural colinearity that is often observed in X. It can be ascertained from
Equation 1.12 that, if the response matrix is generated by an assumed
underlying system of p independent components, X°will contain (at most) p
independent rows or columns in the absence of measurement errors. In
mathematical terminology, X° would be said to be “rank p". Since the
contribution of measurement errors will normally make the matrix full rank
(min(m,n)), X is often referred to as “pseudorank p". In any case, the inverse of
X"X will still be ill-conditioned (numerically unstable) because the matrix is close
to being singular. These natural linear dependencies tend to complicate the
inversion of the already ill-conditioned matrix X"X.

These annoyances can be circumvented to some degree using
wavelength selection methods in which only k spectral channels are selected to
use in the calibration modeling process, where p < k< m(and k << n). Provided
a proper number of wavelengths have been selected, then singularity problems
with the inversion of X'X are largely avoided, and inverse calibration can
proceed without difficulty. In cases in which X is naturally suited for inverse
calibration (n < m), or wavelength selection methods are used to precondition X,
the calibration procedure is referred as multiple linear regression, or MLR.
Unfortunately for the analyst, conventional spectrometers yield data matrices that
are not typically suited for MLR, and wavelength selection is a less-than trivial
task. As a result, considerable effort has been expended in answering the
question of how best to select the wavelength channels for inverse calibration
without discarding important information. Although a discussion of these
wavelength selection methods is outside of the interests of this work, other
numerical methods have proven extremely useful in alleviating the numerical

difficulties associated with Equation 1.17, without relinquishing the muitichannel
advantage.
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1.2.4 Principal Components Regression

1.2.4.1 Principal Components Analysis

The method of principal components analysis (PCA) was devised by
Cauchy in 1829 [6], and formalized by Pearson in 1901 [7]. It was discussed in
the chemical literature (although not by name) as early as 1878 8], although in
reference 8 it was conceptualized as a simple method to perform regressions
with errors in both an x and y variable. By the late 60's and early 70’s computing
technology had evolved sufficiently to make PCA a realistic endeavor in chemical
analysis, and consequently, the employment of the method in solving multivariate
chemical problems generally dates to this era. Since these early attempts, PCA
has proven useful in a variety of applications including mixture analysis, pattern
recognition (and classification and discrimination), curve-resolution and
multivariate calibration. While PCA is useful in a broad range of chemical
problems, at its core, it is simply a method of determining a concise coordinate
system for expressing the variations in the data.

When presented with a bivariate data matrix, X (m x 2), like the one given
below, it is standard practice to pictorially represent the structure of the data in a
Cartesian coordinate system with the assumed axes of the coordinate system
defined by the orthogonal basis vectors [1 0] and [0 1]. In usual fashion, these
basis vectors are of unit length. We can envision the data matrix, then as being
two sets of scores, T, on these fundamental axes, V'

Xy, xzz | '22 [10] (1.21)

or

X=TV" (1.22)
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where the th column of T contains the scores on the th basis vector (the th row
of V). Since the fundamental axes are typically assumed to be the vectors [1 0]
and [0 1] in this bivariate case, it is unnecessary that they be explicitly discussed,
and in this case T = X. It is possible to express the same data as new scores in
a different coordinate system, however, such as

TR h ih

Xor b X ty b, 0.7071 0.7071

t.-l x.-- = :l il ES RS (1 _23)
S I -0.7071 0.7071

xml me tml tml

The scores are now referring to the axes given by the rows of V', [0.7071
0.7071] and [-0.7071 0.7071] (a coordinate system oriented at a 45° angle to the
standard axes), and they will be substantially different than the scores in
Equation 1.21. There are, of course an infinite number of coordinate systems in
which to express the data; however, some orientations are much more useful
than others.

Principal components analysis is one method of generating a new
coordinate system, commonly referred to as the loadings or principal
components (PC's), and the corresponding scores on those PC's for a data
matrix, X. This new coordinate system is selected in the following manner:

(1) Define the first PC, PC (first row of V') as the direction in the
subspace defined by the data matrix, X, which can account
for the most observed variation.

(2) The second PC must be orthogonal to the first, and be
oriented in the direction which can account for the most
variance not accounted for by PC;.

(3) The third PC must be orthogonal to all previously defined
loading vectors, and be oriented in the direction which can
account for the most variance not accounted for by the other
two loadings

(4) Continue until all directions are accounted for.
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As an example of this procedure, some bivariate data are tabulated and plotted
in Figure 1.6a and Figure 1.6b, including the orientation of the (two) loading
vectors, and the scores on these loadings. Since the data essentially fall on a
straight line, a large proportion of the variation in the data can be described using
the first PC, as is immediately apparent in Figure 1.6b. Indeed, examination of
the data in terms of the scores on PC, and PC; indicates that the scores on the
second loading are all considerably smaller than the scores on the first ioading.
When looking at the data matrix in this frame of reference (the principal
component axes in Figure 1.6b), then, it is evident that the direction of PC; is of
minor importance in describing the structure of the data.

Although it cannot readily be appreciated with simple two-dimensional
data, PCA is an extremely powerful way to visualize the variations and
relationships in high-dimensional data, which are typically difficult to view
effectively with standard representations. In addition to this visualization benefit,
PCA allows the analyst to discard dimensions of the data that appear to be of
little importance. In the example shown in Figures 1.6a and 1.6b, the second
PC can be discarded by eliminating the second column of T, and the second row
of V', and regenerating an approximation to the data matrix using these
truncated matrices. To distinguish these truncated matrices from the full
matrices, an overstrike “~” will be used. Sometimes a subscript is also used to
indicate the number of PC's that have been used in the reconstruction, as in the
rank p expression,

v 7T uT
X, =T,V, (1.24)

We will omit the subscript unless it is necessary for clarity. The geometric
impact of the elimination of the second PC in the example given is shown in
Figures 1.7a and 1.7b for the standard coordinate axes, and the principal
component axes. In both representations, it is clear that the truncation

corresponds to orthogonal projections of the data points onto the first PC.
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Figure 1.6 a) The data in the fundamental coordinate system [0 1, 1 0] with the first and
second loadings shown. b) The same data represented in the coordinate system defined by
the first two principal components. The scores of the data on these axes are also shown.
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Figure 1.7 a) The projected data after discarding in the direction of the second loading.
b) The same data represented in the (now) unidimensional coordinate system defined by
the first principal component.
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PCA is also illustrated from a vector perspective in Figure 1.8 for both variable
and subject space representations.

Operationally, principal components analysis can be performed using a
variety of numerical methods. Singular value decomposition (SVD) is a very
powerful matrix diagonalization procedure which can accommodate rectangular
matrices of the sort that are frequently encountered in chemical applications. In
SVD notation, the matrix X is decomposed as the product of three matrices, U, S,
and V"

a) variable space - loading vectors

(x vectors are the rows of X)

X

—emececacae
cema-
- e e e - —.-
—— - -
- -
-

b) sample space - score vectors

(x vectors are the columns of X)

X

X5

Figure 1.8 a) variable representation of the projection of the data onto a rank 1
principal component analysis subspace. b) Sample space representation of the same.
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X—2_,yUsv’ (1.25)

In the fully general case for an m x n dimensioned X matrix with m < n, U is m x
m, Sis mx m, and V' is m x n. The row vectors of V' are orthonommal
(orthogonal to each other, and of unit length), as are the columns of U, and the
matrix S is a diagonal matrix with decreasing elements down the diagonal
(s; 2s;,i< j). This decomposition is particularly convenient for PCA, since, in

the notation used in Equation 1.24, T = US, and V" is V'. Truncation is easily
achieved by discarding the requisite portions of the matrices.

~ o~~~

X=U0SV" (1.26)

As was alluded to above, this truncation operation can also be expressed as a
simple orthogonal projection of X onto the subspace defined by the loadings in

~

VT,
X=x(VVv") (1.27)

Considering the representations of the example data in Figure 1.6a and
1.7a, it might appear that the first PC models the data in a manner similar to
traditional least-squares regression; however, several important differences exist
between these two methods. The most crucial difference is that in least-squares
the vector x, would be projected onto the vector x,, since it is implicitly assumed
that x, is essentially error free, and represents the true model space. In contrast,
PCA assumes that the errors corrupting x; and x, are of approximately the same
magnitude, and thus both x; and x, are used to estimate a model space, PC, in
this case, and estimates of both x, and x, are achieved via Equations 1.26 or
1.27. In variable space, this difference corresponds to a minimization of the
sums-of-squares of the residuals in the vertical direction for least-squares, and a
minimization of the sums-of-squares of the residuals in an orthogonal direction in
PCA. In the subject space (illustrated in Figure 1.9), the error vector in the least-
squares sense is necessarily orthogonal to the model space, x,, while in PCA,
the ‘error vector' (presumed to correspond to the rather uninformative PC,) is
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Figure 1.9 llustration of the fundamental difference between least-squares
estimation, and PCA estimation of a one-dimensional model space. a) The least-
squares approximation under the assumption that x, is the true model space. b) The
PCA approximation under the assumption that both x, and x, are corrupted by errors
— the true model space (t,) must be estimated.

also orthogonal to the model space, PC,. While the method is nicely illustrated in
this simple bivariate case, its full utility is more readily appreciated in truly
multivariate methods. In these cases, a matrix of very high-dimensionality may
be reduced to a model of only a few dimensions, and geometrically, points which
are spread out over many, many dimensions in space can be approximated by a
relatively simple p-dimensional subspace which can still describe the important
variations in the data, but without using the full, very high-dimensional space.



Chapter 1- Introduction 26

At the end of Section 1.2.3.2 it was noted that the colinearity/singularity
problem was the bane of full-spectrum inverse calibration, since there are
typically more wavelength channels than samples, and natural colinearities
contribute to linear dependencies in the data matrices. As we will see, PCA is a
very efficient method of reducing the impact of these problems in multivariate
calibration, and this use of PCA to stabilize the data matrix in conjunction with
inverse calibration is referred to as principal components regression, or PCR.

1.2.4.2 Principal Components Regression

While the discussion of principal components analysis involved aspects of
regression, PCA is a procedure performed entirely on a data matrix X, and in that
sense, PCA is a regression of X onto a lower-dimensional estimate of itself.
Principal components regression involves a PCA of the instrumental response
matrix, followed by an additional regression of the properties of interest onto the
PCA truncated instrument responses. The numerical convenience of PCR is
derived from the fact that PCA allows the simplification of the variations in the
instrumental responses to just a few primary directions (latent variables). Since
the X-y regression can just as easily be performed using these latent variables,
the colinearity issues that are problematic in inverse calibration procedures using
MLR are remedied. In addition, PCR can take advantage of the full spectrum,
achieving a significant degree of signal averaging and eliminating the need for
variable selection routines.

An outline of PCR follows for a single component property of interest (a
univariate y), although it is trivially extendable to simuitaneous multi-component
calibration and prediction. With a principal component analysis of the
instrumental responses determined (Equation 1.25), the desired number of

principal components, p, can be selected giving X. In order to regress y onto

the space of X, an orthogonal projection for y is needed as in Equations 1.14
and 1.15. This is readily achieved using the convenient properties of U and V,
and thus
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X*=V§'{g"” (1.28)

The orthogonal projection of y in PCR, then, is simply

ks
- [O§V")¥§-0" )y

y (1.29)

Using the orthonormal properties of V and the fact that § is diagonal, Equation
1.29 reduces to

y=0U0"y (1.30)
Similar to Equation 1.16, the PCR regression vector estimate is given by

b=X'y (1.31)

b=VS'Uy (1.32)

As noted above, this in effect performs the regression of y on X using only the
scores, since we could just as easily choose to define another form of the
estimated regression vector, p, as

p=S"'0"y=T"y (1.33)

As in MLR, with the regression parameters estimated, new unknown samples
can be predicted from the simple formulae,

] R (1.34)
yunk = xunkb

Or, using the scores formulation of Equation 1.33,
yunk = Tunkf’ (1 '35)

While our discussions of least-squares regression, MLR and PCA/PCR
have involved measurement errors, the reader has most likely noted that
discussions of the error assumptions underlying these statistical methods were
avoided. This may appear to be careless error, however the omission was
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intentional. In many ways, the order in which standard calibration theory and
measurement errors are addressed in this chapter mimics the low priority
typically given to the characteristics of the noise in practice. Unfortunately, the
properties of the measurement errors can have an appreciable influence on the
validity and performance of multivariate calibration models. The subsections that
follow contain a discussion of the nature of measurement errors and their
respective characteristics, and most importantly, how these characteristics can
be expected to impact multivariate calibration models and their utility.

1.3 Noise Considerations in Regression

1.3.1 Characteristics and Representations of Noise

The precision of every instrumental measurement is hampered by the
presence of measurement errors, which are often referred to with the generic
term “noise”. Noise can be broadly defined as any undesirable variations in a
measured signal which obscure the measurement of the signal of interest — the
true signal. Under this sweeping generality, noise may be introduced by
everything from the sample presentation system, to other sensor-active chemical
species in the sample. This definition will be narrowed somewhat for this work,
and a distinction will be made between unwanted chemical variations in the
signal (“chemical noise” arising from phenomena such as chemical interferences,
sampling uncertainty, etc.), and noise attributable to non-chemical variations.
Hereatfter, “noise” will refer to the latter. The principal reason for disregarding
chemical noise in subsequent discussions is that it can be negotiated reasonably
well using multivariate calibration, an advantage discussed previously in Section
1.2.

Some notational remarks are in order, which should be considered as an
addendum to those outlined in Section 1.1. The term “signal” will be used to
refer to a measurement sequence which consists of a pure or undistorted signal
corrupted by noise. This signal is implicitly measured as a function of some other
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ordinal variable such as wavelength, or time. In the evolution of signal
processing, the traditional ordinal variable was time. In order to maintain
generality, then, references to the signal in the “time domain” will refer to the
original measurement sequence even if the ordinal variable is not time. Likewise,
the inverse domain of the ordinal variable will be referred to as the frequency
domain, and representations of the signal in this domain will correspond to a
Fourier transform of the signal in the time domain.

Given the complexity of modem instrumentation, it is obvious that
measurement errors can arise from a plethora of sources and have a
correspondingly complex range of properties and characteristics. In the interest
of succinctness, only a few of the more general classifications of noise and their
associated attributes will be discussed. In doing so, it is helpful if we imagine a
discretely sampled signal vector, x (e.g., a spectrum or chromatogram), from
which we could subtract the pure signal component, x° leaving only the noise, e,
as shown below by equation, and depicted in Figure 1.10.

e=x-x’ (1.36)

The properties of this error vector are, as we shall see, of fundamental
importance in multivariate calibration. The following discussions in this section
outline some of the more common properties of certain types of measurement
errors.

1.3.1.1 Measurement Error Attributes

The noise in an instrumental signal can be classified in any number of
ways, the most common of which include (1) its source, (2) its distribution, (3) its
characteristics in the frequency domain, and (4) its characteristics in the time
domain. Unfortunately, classifications based on these methods are not all
mutually exclusive. Instead, we will strive to classify noise as being either
independent and identically distributed normally (iid), or non-iid, since these two
classifications are particularly relevant in multivariate calibration; however, we will
frequently refer to some or all of the four considerations above.
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Figure 1.10 An observed signal, x, which can be considered to be the true signal, x°,
corrupted by measurement noise @.

The term “iid noise” conveys a lot of information. The concept of
independence with regard to measurement errors implies that the error observed
at any one channel in the signal vector is independent or unrelated to the error
observed at any other (different) channel in the signal vector. Independence in
the measurement errors is also implied if the measurement errors are
uncorrelated. Identically distributed implies a homogeneity in the error variance
across all channels in the signal vector; i.e., the error variance at every channel
in the signal vector is the same. The terms homoscedastic and heteroscedastic
are also often used to indicate whether measurement errors are identically
distributed, or not. The normal condition simply refers to the normal distribution
often assumed for the noise observed at one channel in the signal vector over
many repeat measurements. Thus, measurement errors are said to be iid-
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normal i all of the above conditions are met, and non-iid-normal if any of these
conditions are violated. = Assumptions regarding nommality are seldom
significantly violated to be of concem, and therefore, future references to iid-
normal errors will often be shortened to simply “iid".

Instrument noise is frequently categorized based on its dominant source,
which often implies certain distributional and frequency characteristics. Johnson
or thermal noise originates from the thermal agitation of electrons or other charge
carriers in resistive elements in the instrument. It is typically classed as
fundamental noise, since it does not arise as a result of instrument or component
deficiencies, and can never be totally eliminated. It is ubiquitous in resistive
elements whether they are carrying current or not. Shot, or quantum noise is
also fundamental, and arises from the random statistical nature of discrete
events, since the rate at which they occur is subject to statistical fluctuations.
The magnitude of shot noise is typically much lower than that of Johnson noise,
although this may not be the case in measurements based on a very low number
of events, such as molecular fluorescence. 1/f or pink noise can arise from a
variety of sources and is recognizable by an inverse proportionality between the
magnitude of the noise fluctuations and the frequency of the signal (A being
observed (see below). It is commonly considered nonfundamental noise and
generally arises from longer term (lower frequency) flicker or drift of instrumental
components. For this reason the term 1/f noise is often considered synonymous
with flicker noise, and drift noise. Other lesser known noise sources include such
things as detector noise, read-out noise, quantization noise, and noise from
environmental sources (interference noise).

The distribution of the noise can be observed if a histogram of the noise
magnitudes for a large number of measurements can be obtained. By far the
most common noise distribution (assumed or measured) for analytical
measurements is the normal, or Gaussian, distribution. The reason for this
normal distribution is the Central Limit Theorem which, simply put, states that if a
measurement is the sum of a series of values drawn from arbitrary distributions,
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the distribution of the measurement will approach a normal distribution as the
length of the series approaches infinity. Since, in an analytical instrument, the
observed noise is a consequence of many smaller random events, the Central
Limit Theorem can be rationalized to hold. Other noise distributions (e.g.
uniform, log-normal) are also observed but are much less common. One other
type which is common, however, is the Poisson distribution, which is observed in
cases where the signal arises from a collection of discrete events, such as
photons striking a photomultiplier tube (resulting in shot noise). In practice,
however, the Poisson distribution can simply be considered a special case of the
normal distribution (with the mean equaling the variance), and questions
regarding the distributional assumption of normality in regression are, as a
consequence, rarely of significance.

The frequency domain representation of the noise corrupting a signal is
usually referred to as the noise power spectrum (NPS), and it conveys very
important information about the time domain correlations of the noise. From a
frequency perspective, noise may either be classified as white noise, or coloured
noise. White noise, by analogy to white light, contains equal contributions in
noise power at all frequencies, and thus the NPS tends to look flat. Johnson and
shot noise are examples of white noise in the frequency domain. In contrast,
coloured noise is characterized by the dominance of particular frequencies in the
NPS. Perhaps the most prevalent type of coloured noise is 1/f noise as outlined
above, although additional noise types, such as interference noise may also
contribute to colour in the NPS. Myriad origins for 1/f noise are possible,
including everything from source lamp flicker and ripple voltage in particular
instrument components, to temperature fluctuations in the laboratory. Examples
of the NPS for samples of white noise, and 1/f noise are shown in Figure 1.11a
and b. Of course in reality, instrument noise is the superposition of many
different types of noise, and thus the NPS will reflect the relative contributions of
all noise sources with their associated characteristics.
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Figure 1.11 Noise power spectra (NPS) of a) white noise, and b) 1/f noise estimated
from 50 repeat samples of the noise. Also shown are samples of the noise in the time
domain. The power spectra have been normalized to a total power of 1.

The NPS is extremely useful in giving insight regarding the condition of
independence of the measurement errors. White noise in the NPS corresponds
to uncorrelated (independent) measurement errors, while coloured noise
manifests itself in the time domain as a dependence among the errors (error
covariance). Unfortunately the examination of the NPS to ascertain the
dependence/independence in the measurement errors is at best only semi-
quantitative, since the frequency domain yields no information about the
localization of the error correlation structure in the time domain.
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1.3.1.2 Error Variance and Covariance Representations

Time domain analysis of the error covariance structure can reveal time-
localized characteristics of the measurement errors, and the structural
correlations in the noise are much more transparent. The estimated
measurement error variance for the first channel in the noise vector
e=[e, e, - e,]is given by the well-known formula

m

2 (el.i )2

sf=E— (1.37)
m-1

where m is the number of repeat measurements used in the estimate, or
alternatively

i(el.i Xel.i )

= (1.38)

m-—1

While this equation gives a quantitative estimate of the magnitude of the error
variance at channel one, it says nothing about the relation of the errors at
channel one to errors at another channel. This correspondence can be
quantified by calculating the error covariance, given for channels 1 and 2 by

i(enxe’:)

e (1.39)

m-1

where the summation product now includes the errors at different channels (1
and 2) over the m samples. The error covariance term is positive when the
errors at channels i and j are correlated, negative when the errors are
anticorrelated, and zero when the errors are independent of one another. The
calculation of variances, and error covariances for every channel in a signal
vector, then, allows one to map the structure of the variations in the
measurement errors, and how they are correlated between channels. This

structure is conveniently summarized in an error covariance matrix, £, a mapping
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of the variance and covariance of the measurement errors, which has the general
form for an n-channel signal vector of

-, -
Sy S Sy Sin
2
Sy 8, Sy S,
2, :
=8y Sp 5 .o (1.40)
2
_snl sn?. Sn d

Since s;; = 55, error covariance matrices are necessarily symmetric.

For iid noise, the error covariance terms should approach zero in the
expectation, and if the noise is identically distributed, then all of the diagonal
terms (variances) should be approximately the same. Expressed in another way
using all of the elements of the n-element vector of errors, e,

L=E(ee")=0""I, (1.41)

where E indicates the expectation value of the quantity in brackets. This
structure arises because, in the iid case, the expectations of the individual
variances, and covariances are

E(ef): E(ee)=0; (1.42)

Elee,)=0,=0 (1.43)

ivj if

Under iid noise conditions, then, the error covariance matrix should be diagonal.
Deviations from the iid condition have easily recognizable influences on the error
covariance matrix. The loss of the independence condition corresponds to error
covariance terms being significantly different than zero, and £ deviates from the
diagonal form of Equation 1.41. Heteroscedasticity (loss of identical distribution
at all channels) is characterized by unequal diagonal elements in £. Examples of
error covariance matrices estimated from 100 replicate measurements for iid,
and non-iid noise are given in Figure 1.12. (An associated noise sample is also
shown.)
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Figure 1.12 Examples of error covariance matrices for measurement errors
which are a) iid, and b) non-iid. The iid errors are characterized by an error
covariance matrix which is diagonal, and a multiple of the identity matrix,
whereas the non-iid errors are characterized by heteroscedasticity (non-equal
diagonal elements) and/or correlated error (non-zero off-diagonal terms).

Samples of the noise vectors which possess the indicated error structures are
also shown (inset).
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1.3.1.3 The Geometry of Measurement Errors

Sections 1.3.1.1 and 1.3.1.2 have provided a broad overview of some
measurement error attributes, and several useful characterization methods,
however it is essential for later theoretical discussions that the mathematical
implications of measurement error structure be considered. Since the
mathematics of calibration theory is largely linear algebra, and linear algebra is
largely geometry, we will pursue geometric interpretations of the two
measurement error classes of interest to us: iid and non-iid. Once again, we will

rely on the concept of a true signal vector, x°, and its observable counterpart, x,
which has been corrupted with noise, e.

A vector of noise which arises under iid conditions will demonstrate the
following behavior. Because the variance is equivalent in magnitude for every
element in the vector (and hence, every dimension in space), the direction of the
vector e will be completely random (around a null vector 0). The uncertainty

associated with the true vector x° will actually be a multivariate normal

distribution which is perfectly symmetrical about x° (provided the errors are iid).
This is illustrated in Figure 1.13a. If the condition of identically distributed errors
is relaxed, then the multivariate normal distribution associated with x° can be
stretched along the principal axes of the coordinate system, as is shown in
Figure 1.13b, since it is no longer necessary that the variation in direction i be
equivalent to the variation in direction j.

The final relaxation that can be made from iid conditions (while still
retaining normality as a distributional assumption) is of course the allowance of
error variance and covariance. Error covariance has the potential to introduce a
directional skew in the multivariate gaussian distribution, since with positive error
correlation on channels i and j, a positive error on channel i means that the error
on channel j will also tend to be high. This sort of behavior is shown
geometrically in Figure 1.13c.
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Figure 1.13 lllustration of the geometry of measurement errors resulting from the structure
of the noise. a) iid noise (homoscedastic, and uncorrelated; white in the frequency domain),
b) heteroscedastic noise, which has greater magnitude on channel j than channel i
(uncorrelated, also white in the frequency domain), and ¢) noise which is heavily correlated,
and heteroscedastic (1/f characteristics in the frequency domain).

The difference in the behavior of iid noise, and non-iid noise is
considerable. As we shall see, these marked differences can have an enormous
impact on the validity of multivariate calibration models.

1.3.2 Measurement Error Structure and Multivariate Calibration

It was noted in the end of Section 1.2.4.2 that several assumptions which
are implicit in multivariate calibration were intentionally avoided. Here we will
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examine the influence of measurement error structure in PCA and multivariate
calibration (PCR), from the standard assumptions of iid noise to the implications
of non-iid noise.

Principal components analysis can be applied to data with any noise
structure, however the technique develops parameter estimates under the
assumption that the measurement errors corrupting the data are iid (and normal).
If the structure of the measurement errors is indeed iid, then PCA is ensured to
provide maximum likelihood parameter estimates, which are, in essence, the
most likely guesses at the true parameters, given the data at hand. The simple
scenario of two spectral vectors, approximated by a rank one space (assumed
known) is depicted in Figures 1.14. The representation of the spectrum x, in the

rank one space is the orthogonal projection of this vector onto the space §; (as

16 uncertainty —J

Figure 1.14  An illustration of the likelihood implications of projecting x, onto the model
space (assumed known in this case) when the measurement errors corrupting the true x,
vector are iid.
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discussed in Section 1.2.4.1). This orthogonal (least-squares) projection
naturally minimizes the length of the error vector between any x;, and X, (x;'s
projection onto S:), €. This projection also yields the most likely estimate of x;,
or, the maximum likelihood solution, under the assumption that the errors in the
system are iid, and the true vector value is of course unknown. It is, in short, the
best guess at x; when the measurement errors are iid.

If the measurement errors are not equally distributed at all channels in the
spectrum, then the uncertainty sphere shown in Figure 1.14 will be stretched
along the coordinate axes in some fashion, as is shown in Figure 1.15. The
error variance on channel A is much greater than the variance at channel A,

causing the probability density functions to be longer along the A, axis than the A

Figure 1.15  An illustration contrasting the likelihood of the projected x, when the
measurement errors deviate significantly from iid. In this case the likelihood of the projection
given the true value is extremely low because a simple orthogonal projection has been used,
which is far from ideal when the errors are non-iid.
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axis. It is additionally apparent from Figure 1.15 that the system is corrupted by
error covariance, since the principal axes of the error ellipsoid are not aligned

with the coordinate axes Ay and A,. If the standard PCA orthogonal projection

onto S: is used, the estimate of x; remains the “least-squares” estimate (a

guess), however it is no longer the maximum likelihood estimate of the true
signal vector (in fact, in the case shown in Figure 1.15, it is an extremely unlikely
estimate ~ the probability of the estimate X, giving rise to x, under these error

conditions is < 0.1%).

Measurement errors can be correlated in several different ways in a data
matrix X. There may be correlations among channels in the calibration spectra
(columns in the matrix), for instance. This is often the prevailing scenario in
spectroscopic calibration, and can arise from a variety of conditions including
sensor spatial correlations in the instrument, source flicker, and numerous signal
processing techniques. Provided this row covariance structure is approximately
equivalent from sample spectrum to sample spectrum, the PCA rank p subspace
estimate is still typically quite good. This can be rationalized from the fact that
since the error structure in all the calibration spectra is roughly the same, then
the numerical averaging achieved by using many samples results in a
reasonable estimation of the calibration space. However, marked errors will
inevitably occur in the projections of the calibration (and prediction) spectra onto
that rank p subspace, since, as illustrated above, the orthogonal projections have
the potential to yield highly unlikely estimates in many cases. In principal
components regression, then, the scores for the sample spectra will be highly
inaccurate, a problem that will severely hamper any predictive utility for the
model.

In addition to this row covariance, there may be correlations from sample
to sample. This can be the case for multivariate calibration if, for example,
samples are not run in random order, in which case low-frequency variations in
the instrument (e.g., temperature drift, source degradation) can become
imbedded in the measurement error structure. This error covariance condition
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tends to lead to the opposite condition observed for row-only covariance in that it
is the accuracy of the subspace estimate that will be hampered, while the scores
will be reasonably estimated. Nonetheless, this error structure also severely
limits the utility of the calibration model, since the model space tends to be very
poorly estimated.

The iid error assumption, pervasive in chemical modeling methods such
as PCR, is largely a remnant of the age of univariate calibration. Because single
channel measurements predominated in chemical calibration, the correlation of
sample to sample errors was assumed to be minimal, and of course the
correlation between the errors at different sensors was an impossibility. The
mass movement to multichannel instrumentation, and now to muiltivariate
calibration, however, has occurred without corresponding advances in the
handling of measurement errors. The most widely used multivariate calibration
methods of today (e.g., PCR, partial least-squares (PLS)) typically assume error
structures which are, in practice, rarely even approximately valid. Some scaling
methods have been proposed which can assist in handling the simplest deviation
from iid — heteroscedasticity. Unfortunately these scaling procedures can only
properly adjust the error structure of the data in the rare case in which the rank of
the matrix of measurement error standard deviations is unity [9]. While it is
standard practice to go to great lengths in order to force the data to conform to
the iid assumptions, a more direct approach is to make the model accommodate
the data, as models are — by definition — designed to do.

1.4 Maximum Likelihood Principal Components Regression

Principal components analysis can be applied to data with any
measurement error structure, however PCA generates estimates of the
parameters (scores, and loadings) with the assumption that the errors corrupting
the data are iid. If the errors are indeed iid, and the selected dimension of the
subspace, p, is correct, then PCA is ensured to yield maximum likelihood
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estimates for the data, which are, in essence, estimates of the true parameter
values which are the most likely given the data at hand. As noted above,
however, deviations from iid conditions seriously hamper the accuracy of
standard PCA. With row-correlated measurement errors in particular, the
estimations of the sample scores are most seriously hindered. Since the sample
scores are crucial if PCA is to be used in PCR, it is clear that PCR with non-iid
errors is bound to perform less than desirably. From the geometric discussion of
measurement errors and regression, it is apparent that what is needed is a
modeling method which accounts for measurement error structure in the
estimation of the spectral subspace, and in the estimation of the sample scores.
Such a method has been recently introduced as maximum likelihood PCA
(MLPCA) [10], and, like PCA, it can be used in the context of multivariate
calibration (maximum likelihood PCR, or MLPCR) [11].

1.4.1 Maximum Likelihood PCA

MLPCA can be considered to be a general extension of PCA to the
situations in which the simple assumptions of iid errors are sufficiently violated.
The MLPCA decomposition of a data matrix X is achieved so that the optimal p-
dimensional subspace is found regardless of the structure of the measurement
errors. The method can readily accommodate heteroscedasticity, and has been
shown to be of great benefit in this area [11]. It can also handle the more difficult
problem of error covariance [10, 12]. The most complex scenario for error
structure in the data matrix, X, is when error covariance exists among columns,
and rows, and the error covariance structure is different for every sample in the
data set, and every wavelength in the spectral domain. This full treatment of
error structure, while theoretically feasible, is computationally burdensome. In
first-order spectroscopic calibration (calibration on vector sample measurements)
several simplifying assumptions can be made which ease this computational
expense. It is often reasonable to assume that there is no error covariance
between the samples; that is, the values of the measurement errors for one
sample are unrelated to the values of the measurement errors for another
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sample. An additional simplification which may or may not be viable is the
assumption that the error covariance structure is roughly equivalent for all
samples in the calibration set. This assumption may be tenuous if a significant
portion of the error covariance structure arises from sample specific phenomena.
Instrumental contributions to error covariance structure, however, generally result
in similar noise characteristics independent of the sample under observation.
Other effects, such as multiplicative scattering in diffuse reflectance, introduce
error covariance structure which is highly dependent on the shape of the spectral
profile. Provided the sample spectra are reasonably similar (as in many near-
infrared applications), equal row-covariance assumptions can often safely be
made. In all cases under examination in this work, the equal row error
covariance structure was found to be approximately valid, and hence, it is this
form of MLPCA, and MLPCR that will be discussed here.

Previously in Section 1.2.4.1, the PCA rank p subspace was estimated
using a singular value decomposition of the data matrix (Equation 1.25). While
an alternating least-squares optimization can be used to estimate the MLPCA
model parameters in the general case [10, 12], an excellent approximation can
be rapidly achieved if the simplifying assumptions discussed in the previous
paragraph appear to be valid. In these scenarios, the loading vectors V™ are very
well estimated by a simple SVD of the data matrix, and so this shortcut can be
used without peril.

X —2,UsV’T (1.44)

As we saw in Section 1.3.2, however, with error covariance contributing
significantly to the error structure the estimated scores of the spectral vectors can
be drastically wrong, even given the correct model subspace. Unlike PCA, in
MLPCA the scores are not simply US from the above calculation, but must be
determined from a more elaborate procedure.

The projection of a sample spectrum, x, onto the rank p MLPCA subspace

(defined by V") is calculated using the following general operator
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$=xZ'V(VTZ V)V (1.45)
The overstrike “U” is used to distinguish the MLPCA parameters from the usual

PCA parameters. (While V (MLPCA) and V (PCA) are essentially identical
under these assumptions, the scores and data estimates are not, to maintain
uniformity in presentation, the “U” will be used throughout to indicate MLPCA-
associated values.) Alternatively, all of the sample spectra can be projected onto
the subspace by the extension of Equation 1.45,

X=Xz e V)V (1.46)

This projection is general in the sense that it is not fixed to be orthogonal to the
subspace defined by the loading vectors. Rather, the projection will occur
obliquely in some direction defined by the principal components and the error
covariance matrix. This oblique operation, in essence, guides the projections of
the spectral vectors in the directions of greatest variation in the error structure -
the direction of greatest uncertainty. An illustration of the difference between the
standard PCA projections and the MLPCA projections is shown in Figure 1.16.
The reader will also notice that when the error covariance matrix is a multiple of
the identity matrix (the errors are iid) Equations 1.45 and 1.46 reduce to the
standard orthogonal projections of PCA,

X=XVV" (1.47)

as is to be expected. The MLPCA decomposition can be completed now by a
second SVD of the (now rank p) projected data matrix X .

X2, USV" (1.48)

Only p of the scores and loading vectors are meaningful since X was only rank p
to begin with, as is intended to be conveyed by the notation. The second SVD is
simply a tidy way of determining the scores with the MLPCA projection already
achieved.
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a)  PCA projections onto the subspace X.
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b)  MLPCA projections onto the subspace X
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Figure 1.16 a) Standard PCA orthogonal projection of an x-vector onto the subspace
estimated by PCA, while the measurement error structure is clearly deviating from iid
conditions. b) MLPCA projection under the same circumstances. The measurement error
structure provides a directional guide for the projection of the x-vector onto the subspace.
The resulting estimates in a) and b) are in the same space, but are very different in length.

1.4.2 Maximum Likelihood PCR

When used in the context of multivariate regression and calibration
MLPCA provides a powerful calibration method to deal with non-iid noise
conditions. While similar to PCA when used in multivariate regression, there are
some subtle differences in the use of the scores and loadings of the calibration,
and prediction data.
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Equation 1.32 of Section 1.2.4.2 gave the estimated regression vector for
a single component in PCR as

- ~

=VS'0"y (1.49)

—x

and the prediction equation for new samples as

yunk = xunkﬁ

o (1.50)
=X,,V§"0"y

Although not immediately apparent, the prediction step involves a projection of
the spectra of the unknown samples onto the subspace estimated by PCA, which
is more evident when Equation 1.50 is written as

Vi =X, (VVT VS TTy (1.51)

Because an oblique projection onto the subspace is required in MLPCR, this step
is slightly more complicated, involving

Vot = [xmz;:k\?(v?z;:ﬁ)‘ VT]VS"ﬁTy (1.52)

where the reader will recognize the portion of the equation in the square brackets
as the oblique projection operator from Equation 1.46 above. With the inner

product V'V canceling, the prediction step for MLPCR becomes

Vi = X Zo VVTEL V)'ST7y (1.53)

With the error covariance structure for the unknown samples being
included in the prediction step, it is impossible to develop a general regression
vector which would handle any future samples, unless of course the error
covariance matrix never changes. Several other technical points are worthy of
note. The error covariance matrix is a directional guide for the projections of the
spectra onto the model subspace, and as a result, Equation 1.53 is invariant to
changes in the scale of Z. In addition, the obliqueness of the spectral projections
indicates that MLPCA and hence, MLPCR do not generate nested models. In
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Figure 1.17 An algorithmic summary of MLPCA, and its regression
counterpart, MLPCR, with equal row covariance assumptions.

(+ The estimated regression vector is not general in the manner that a
PCR regression vector is general, since it depends on the error
covariance structure of the spectra for the unknown samples.)

PCR, the rank p model contains the rank p-1 model. This is not necessarily the
case in MLPCR, and therefore each model must be calculated independently.
An algorithmic summary of MLPCA and MLPCR is given in Figure 1.17.

1.5 Figures of Merit in Multivariate Calibration

The last several sections have outlined some of the machinery available to
the analyst for performing multivariate calibration and subsequent predictions,
including CLS, PCR and MLPCR. Aside from these operational details, a
general theory of analytical chemistry exists which is extremely useful in
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comparing calibration procedures independently of the methods used to build the
models. In this section, the general theory is outiined, and some theoretical
metrics for multivariate calibration are introduced. Since the modeling machinery
is in place, it will be shown how these theoretical values can be estimated in
practice.

1.5.1 Mixture Theory and the Net Analyte Signal

General calibration theory is reliant on the so-called linear mixture model,
expressed previously (Equation 1.12) as

T T T
R=c¢s| +c8, +--+¢,8,

o (1.54)

where, to review, R is an m x n matrix of instrument responses, C is an mx p
matrix of the p-component concentrations, and S is the p x n matrix of pure-
component spectra. When the spectrum of a mixture is obtained, it can be
imagined to arise from the addition of p different pure-component contributions,
as is shown in Figure 1.18 for a simple two component system. Since any
mixture spectrum in a p-component system can only arise from only p
independent spectral contributions, all of the pure-component spectra, and the
mixture spectra they can possibly generate lie in a p-dimensional subspace. Due
to the ubiquity of measurement errors, these observed mixture spectra typically
only approximately lie in a p-dimensional space, and therefore, this space must
be estimated by some numerical method in multivariate calibration, such as PCA
or MLPCA, for instance.

While this space is of fundamental importance in calibration, it is essential
that a further dissection of the mixture space be achieved if we hope to quantify
particular analytes. We must ascertain which directions in this subspace are
related to the analyte of interest, and independent of the other interfering
chemical species. The only direction in the mixture space which is independent
of the interfering species will be the direction which is orthogonal to all of the
interfering pure-component spectra. This direction is referred to as the
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Figure 1.18 The embodiment of the linear mixture model, which models any
observed mixture spectrum as the linear combination of pure-component
contributions.

contravariant (‘against the variation’) domain of the interferences, and, for the th
analyte of interest, is indicated by the contravariant vector, v; [13]. For our simple
two component example, the two contravariant vectors are shown in Figure 1.19.
Therefore, in an analysis for analyte 1, we can selectively remove the
contributions of any interfering chemical species from a mixture spectrum by
projecting this mixture spectrum onto the contravariant vector associated with
component 1 (and orthogonal to all other interferences). We have therefore
established a single direction which is exclusively related to the analyte of
interest. It is perhaps most evident from the geometric expression of the
contravariant vector that doubling the contribution of the analyte of interest to a
mixture spectrum will double the length of the projection on the contravariant
vector, while doubling the concentration of the interferent will leave the projection
unchanged. To do accurate quantitation, it is necessary to have some reference



Chapter 1- Introduction 51

mixture spectrum
pure-component
spectrum
0 L4
S ”
2 o
’
’l
'l
Ve
-a-c--,-n-“'"--- 'l'
---- - e
- ,’
’
4 4
contravariant vector A ; )
for component 2 // mixture space
I"
0 /'
4
V 2 < "1'
. - -
s S
" o l
< ’ pure-component
spectrum
0
vl
contravariant vector

for component 1

Figure 1.19 A series of mixture spectra when viewed from a mixture theory perspective.
The mixture vectors lie in the “mixture space” which, in the absence of noise will be coplanar
with the space defined by the pure-component spectra fo the active components. The
contravariant vectors (shown at left) indicate the directions in the mixture space which are
exclusively associated with their associated components.

value, a projection on the contravariant vector corresponding to a known analyte
concentration. |f the pure-component spectra were known and measured at unit
concentration, this reference projection, called the net analyte signal (NAS) [14],
would be given for the th analyte as

NAS, =(I. -S_S" )s, (1.55)

where columns of the matrix S_, contain the pure-component spectra of the

interferences in the mixture (and excluding the analyte of interest), and s; is the
pure-component spectrum of the analyte [15]. This concept is illustrated in
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Figure 1.20 The net analyte signai vectors for each component, colinear with their associate
contravariant vectors, are the orthogonal projections of the pure-component spectra at unit
concentration onto the contravariant vectors.

Figure 1.20. Even though the NAS is a vector-valued quantity, we will refer to it
in subsequent equations by its acronym to avoid introducing additional
complicating symbols. With the NAS established, quantitative prediction can
easily proceed by projecting the mixture spectrum onto the contravariant domain,
and comparing the magnitude of this projection with the NAS.

It was noted that a particular issue with classical least-squares methods
for multivariate calibration was that all of the pure-component spectra may not be
available, or, more likely, several of the components in the mixture are unknown,
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making the calculation of the NAS from Equation 1.55 impossible. Fortunately,
the NAS is intimately related to the regression vector obtainable via inverse
calibration methods such as PCR and MLPCR. The NAS; can be approximated

from the estimated regression vector, b,, using

L (1.56)

and

(1.57)

1.5.2 Multivariate Figures of Merit

In standard univariate calibration, figures of merit such as the sensitivity
(SEN), selectivity (SEL) and signal-to-noise ratio (S/N) are often used to describe
the attributes of a univariate calibration model. Multivariate analogues of these
univariate metrics exist and are perhaps even more insightful in the
understanding of the strengths and limitations of particular multivariate calibration
scenarios. These multivariate figures of merit are all related in some fashion to
the previously discussed net analyte signal vector. Although there is some
ongoing discussion as to the proper expressions of these figures of merit, most of
the definitions to be used throughout the course of this work are those that are
generally accepted, and summarized in a 1994 article by Booksh and Kowalski
[(15].

The multivariate sensitivity is an extension of the univariate metric, and is
the observed change in multivariate signal for a unit change in concentration.
Since the NAS is defined to be the multivariate response per unit concentration,
the SEN for the th component of interest is simply given by

SEN, =|NAS,| (1.58)
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making it apparent that the SEN is a scalar quantity, easily determined from the
length of the NAS vector. The multivariate selectivity is a measure of the fraction
of the pure-component spectrum which resides in the contravariant domain, and
is given by

SEL, ="—Nﬁ=cos(éNASi,si) (1.59)
As is clear from the illustration in Figure 1.18, the SEL for component i is also
given by the cosine of the angle between the pure-component spectrum s;, and
the NAS or contravariant vector. Both the multivariate SEN and SEL are
straightforwardly derived from similar univariate metrics. The extension of a
univariate S/N to the multivariate realm is much less transparent.
The typical measure of S/N in univariate systems is simply the mean
response observed over several replicates (7 ) divided by the standard deviation

of the measurements (o, ), or

noise

S/N, =—

(1.60)

noise

Since a host of responses are observed in multivariate measurements, the
question arises as to which signal is to be used in Equation 1.60. Frequently the
maximum signal is used for a signal estimate. While this invariably yields a
metric for the S/N, it is entirely useless in conveying information about the
plausibility of doing accurate quantitation, since any observed signal in the
measurement vector may, or may not be attributable to the analyte of interest.
This form of the S/N is only of practical use in the unusual case in which there
are no chemical interferences. Instead, a multivariate signal metric must be used
which accounts for the contributions of interferences. One such general measure
is given by
_SEN, _|nas)|

_
S/N, =——-=" (1.61)

noise noise
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In Section 1.3.1.2, however, concemm was expressed with conventional
descriptors of noise which ignore the structure of the measurement errors. In
fact, Equation 1.60 is only useful in the event that the measurement errors are
iid, in which case the influence of the measurement errors is probabilistically
equivalent in all directions in the multivariate calibration space. When the
calibration data exhibit non-iid noise characteristics, however, the structure of the
measurement errors is crucial in determining a meaningful signal-to-noise ratio
since, if extensive error variance and covariance happens to exist in the direction
of the NAS, then accurate quantitation is severely hampered. Therefore, an
extension of Equation 1.60 is needed for the situations in which measurement
errors are non-iid (shown below).

SEN,
Jvizv,

In Equation 1.62, first published by Brown and Wentzell [16], the conventional
‘multivariate signal' expression is used in the numerator, however the

S/N, = (1.62)

denominator consists of a more advanced noise estimate than previous
equations. v, is of course the contravariant vector for the th component, and

is the now familiar error covariance matrix. Mathematically, the denominator
corresponds to a projection of the error covariance matrix onto the contravariant
vector, quantifying the amount of error variance that exists in the all-important
unidirectional NAS. When the measurement errors are iid, = = o’I,, Equation
1.62 reduces to the anticipated iid expression

s/N —_SEN___SEN, 169
GM,R‘JV;-I.V‘» onuixe

because v; is of unit length. Three different multivariate S/N scenarios are
explored in Figure 1.21, in which signal and error covariance considerations
have significant impacts on the multivariate S/N. While additional figures of
merit, such as limit of detection (LOD), are available in multivariate calibration,
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Figure 1.21 An examination of the different issues of importance in multivariate signal-to-
noise ratios. Case A: low S/N - Why? Negligible SEN. Case B: High S/N - Why? Large
SEN, and low projection of the error covariance onto the contravariant vector. Case C: Low
S/N - Why? Large SEN, but error covariance is greatest in the direction of the NAS, and
therefore has a very large projection onto the contravariant vector.

they are not of particular interest in this work, and hence, will not be discussed
further. The interested reader is referred to the works of Booksh and Kowalski
[15], Lorber et al. [17], and Faber et al. [18] for more involved discussions of
multivariate figures of merit in an NAS framework.



2. Digital Filtering and Preprocessing

2.1 Introduction

Preprocessing is usually defined in chemometrics textbooks as ‘any
transformation of the original data’ performed prior to multivariate analysis or
calibration. ‘Original data’ is a rather ambiguous term, but in this work it will be
considered to mean the experimental data measured against a specific ordinal
variable as they are presented to the analyst by the instrument. (Signals
measured against heterogeneous ordinal variables are ill-suited for treatment
with digital filters, and hence, this restriction is necessary.) For example, the
output of a typical Ultraviolet-Visible (UV-Vis) spectrometer is a series of
absorbance values measured against an ordinal variable, usually wavelength. Of
course the data have already gone through a variety of unseen analog and digital
signal processing operations. Built-in signal processing is certainly important;
however, since these instrumental operations are typically opaque, and
unalterable by the user, they will not be discussed further. Rather, the focus will
be on alterations which can be performed by the analyst on these ‘original data’.
The extensive use of computers in the modem analytical laboratory means that
the data will invariably be accessible to the analyst in digital form, and as a
consequence, further manipulations of the digital measurements (preprocessing)
are most often carried out in software.

The availability of computational platforms and easy-to-use software
packages has unquestionably afforded the analyst a far greater degree of ‘after-
the-fact’ flexibility in signal processing options than would have been accessible
in the past. A recent encyclopedia article explores many of the numerous signal
processing methods currently in popular usage in analytical chemistry {19]. This
computational flexibility has encouraged the analyst to take a key role in data

57
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manipulation, trying their own hand at preprocessing. Preprocessing most
commonly entails trivial tasks such as scaling and centering the data, however
more advanced treatments such as transform methods (e.g., Fourier) and digital
filters are now in common use. The impact of the basic preprocessing methods
in multivariate analysis has been studied to a reasonable extent elsewhere (see
for example reference 20, and references therein) and these simple methods are
reasonably well understood. The somewhat more involved techniques, such as
digital filtering, are also well understood, but a knowledge of the theoretical
influence of these methods on multivariate calibration models is surprisingly
absent. This fundamental gap has not, however, impeded the use of digital filters
as preprocessing methods. Without question, a more rational use of these
methodologies would result if proper theoretical considerations could be made.
To investigate the impact of these filtering methods in the calibration model, it is
necessary to review some basic concepts in digital filtering [19, 21], and the
remainder of this chapter is dedicated to describing the basic implementation and
operation of such filters. Since the two chapters that follow deal explicitly with
digital smoothing (Chapter 3) and digital differentiation (Chapter 4), a more
general approach will be adopted here, leaving the details of the specific filter
types to the more pointed discussions in their respective chapters.

2.2 Digital Filtering

In general, a digital filter can be described as an operation that is carried
out on a contiguous subset of a discretely sampled signal vector to produce an
estimate of a value in a filtered signal vector. This general definition includes a
wide variety of digital filtering methods, but of particular interest in this work are
the non-recursive filters which generate an estimated signal vector using only the
original measurement sequence and a set of filter coefficients, as is shown in
Figure 2.1. A mathematical expression for the most commonly employed filters
in analytical chemistry, the polynomial least-squares filter, is
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raw signal measurements

filtered signal measurements

Figure 2.1 lllustration of the convolution of a set of filter
coefficients with the raw signal vector to yield a filtered vector of
measurements.

ye(n)= ic,‘y(n+k) (2.1)

k=-m

where y.(n) is the filtered estimate of the point y(n), and c is the kth filter

coefficient. (This formula is more general than simply polynomial least-squares
fiters, and actually applies to all non-recursive filters, but polynomial least-
squares filters will be the focus of this discussion.) Polynomial least-squares
fiters are commonly known to chemists as Savitzky-Golay (SG) filters, so named
for their introduction into the chemical literature by Savitzky and Golay in 1964
[22]. The SG filter operates on the premise that a local region of the signal
vector can be approximated by a polynomial function, a premise that is entirely
reasonable for chemical signals which are most typically continuous and
differentiable with respect to the ordinal variable. The central point in the local
region (or, the filter ‘window’) is estimated from the fitted function that is chosen
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Figure 2.2 lllustration of the application of a seven-point moving-average filter.
The points within the filter window are used to estimate a low-ordered
polynomial approximation to the data. The estimated centre-point value on this
fit is taken as the filtered estimate of the signal vector at the corresponding
ordinal variable.

by the analyst. The filter window is then advanced in ordinal position, and a new
filtered point is estimated from the original data in the filter window. The process
repeats until the entire signal vector has been approximated by locally modeled
polynomials. This is illustrated in Figure 2.2 for a 7-point moving average (zero-
order polynomial) filter.

2.2.1 Calculation and Expression of Digital Filter Coefficients

Although several articies and books have tabulated SG filter coefficients
for use under a variety of filter conditions, the coefficients can now easily be
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calculated with assistance of computers. To illustrate how this is achieved,
consider the design of a second-order polynomial smoothing filter using five data
points as the filter window. The linear model for a signal (y) measured against an
ordinal variable (x) is given by:

y=b, +bx+b,x* (2.2)

and, in matrix form for the five points in the filter window, this gives

[ y-2 ] -l X_2 ng |
Yo U x, x| (b
Yo [F|1 X xé bl (2.3)
vl |t x x||b
L y2 . _l "2 x:l-, Jd
or,
y=Xb (2.9)

where X contains only information about the ordinal variable (e.g., time,
wavelength). Like any least-squares estimation, the estimated y values are scale
invariant with respect to the specific x's, and, if the sampling interval on the
ordinal variable is taken to be constant (typically the case), we can arbitrarily set
the ordinals to be [-2 -1 0 1 2]. This results in an X matrix

1 -2 4
I |
X={1 0 0 (2.5)
111
1 2 4

The least-squares estimate of the vector of regression coefficients, b, is given in
standard fashion as

b=(X"X)'X"y (2.6)
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b=Ay (2.7)

The matrix A is a 3x5 matrix which can be regarded as being composed of three
row vectors, a,, az, and ag:

a4, G, 4a; a, a; «a -
A=la, a, a, a, a,|=|<a,—> (2.8)
a; A3 Ay 4y, Ay «a; o

Note that the intercept coefficient for the fit, b, is obtained from the first row of
this matrix,

by=a,-y=a,y +a,y, +...+a,y; (2.9)
Because x = 0 for the central point in the five point sequence, we have,
Vor =by +5,0)+b,(0) =b, =a, -y (2.10)

where y, , is the filtered estimate of the original point, y,. Therefore, because of

the generality of the ordinal representation, the estimate of the central point in the
sequence is obtained simply by multiplying each measurement in the filter
window by the corresponding element in a,. In other words, the five digital filter

coefficients are simply the first row of the matrix (X"X)'X", i.e., ¢ = a,. This

workup for SG filter coefficient calculation is completely general for filters of any
length, and polynomial models of any order, with the appropriate adjustments
made in the size of the matrix, X.

The above least-squares fitting solution for the SG filter coefficients can
also be used to estimate the parameters for derivative filters. The extension for
the first-derivative of a 5-point second-order polynomial model is

Vor =%(bo +hx+byxt)=b +2b,x=b, +2b,0)=b, 2.11)

when evaluated at the center of the filter window. In a similar manner to

Equation 2.10, the filtered (derivative) estimate for y', is obtained by
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multiplication of the second-row of the A matrix from Equation 2.7, hence, the
five coefficients of this first-derivative filter are given simply as the elements of a,.
Likewise, the filter coefficients for the second-derivative SG filter are given by the
third row of A.

While the application of SG-type digital filters is commonly thought of as a
moving-window approach, as was illustrated in Figure 2.2, the convolution of the
filter with the signal vector can also be emulated in matrix form. The matrix
expression of this operation is:

yr =Fy (2.12)

In Equation 2.12 y is the raw signal vector (e.g., a spectrum), yr is the filtered
signal, and F is the filter matrix, filled band diagonally with the filter coefficients.
A 3-point SG filter matrix would have the form

c ¢ 0 0 c,]
c, ¢ ¢ O 0 O
0 ¢, ¢ ¢ : :
F=: o . - . 0 O (2.13)
. . o 0
0 o 0 ¢, ¢ ¢
¢, O 0 0 ¢, ¢

An additional merit of the matrix expression in Equation 2.12 is the ease of
extension to a matrix of signals:

Y, =FY (2.14)

where, in the convention of previous discussions, the columns of the matrices Y
and Y contain the unfiltered and filtered signal vectors respectively.

While the notation used thus far is general for any signal vector y
measured against an ordinal variable, x, it does not correspond well with the
previous chapter's discussion of multivariate calibration in which y commonly
represented the concentrations, and X the matrix of sample spectra. Therefore,
the reader should note that since digital filters are most often applied to the
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sample spectra (which occupy the rows of the matrix X), the filtering operation in
a multivariate calibration sense is often represented as

X, =XF' (2.15)

One operational problem presents itself when these filters are applied to
signal vectors of finite length, which are the rule in chemistry. Since the filter
uses points in the signal vector both leading and trailing the central point, there
will be points at the beginning and end of the vector that cannot be filtered.
Several solutions to this problem have been proposed, including simply
discarding these points. Altemnatively, surrogate data points can be used to
temporarily extend the signal vector, allowing the center of the filter to reach the
end of the true signal vector. Points from the opposite end of the signal can be
used provisionally in this manner, a practice that is commonly referred to as
‘wrapping’. This is sound practice if the signal is not radically different on the
ends of the vector (e.g., if only baseline exists at the start and end of the vector),
or if the signal shows a periodicity as is assumed in Fourier filtering. Other
procedures have been proposed to circumvent edge-effects such as initial point
or extended sliding window filters [23, 24] which are designed to operate
asymmetrically, estimating values other than the central point in the fiiter window.
These ordinal asymmetries can be accommodated, but the distortional effects
and noise rejection characteristics of these sorts of filters are quite different than
their symmetric counterparts [25]. In this work, central point estimation filters
were exclusively used, with the requisite edge-handling procedures (e.g.,
wrapping) adopted to suit the situation.

2.2.2 Frequency Response of Digital Filters

The responses of digital filters in the frequency domain (often referred to
as the filter ‘transfer function’) can be derived directly from the filter coefficients.
The amplitude component of the frequency response at a frequency, f, is given
by



Chapter 2 - Digital Filtering and Preprocessing 65

! "\\ ——— 31-point zero-order smooth ’
\\ — {1-point second-order smooth
\ ———~ 11-point second-order 2nd-derivative

filter gain

normalized frequency (i/f,)

Figure 2.3 Transfer functions for a variety of Savitzky-Golay digital filters including
a 31-point moving average, 11-point quadratic smooth and the 11-point quadratic

second derivative filter.

H(f)=|a~cos(b+b-sin<ﬂ (2.16)

where
a= ickcos(knf/fj\,) (2.17)
b= csin(knf/f,) (2.18)

and the phase component, ¢, of the filter's frequency response is given by

¢=tan"'(—3—) (2.19)
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In Equations 2.17 and 2.18, fy is the Nyquist frequency, which is by definition
one half of the sampling frequency. The filter transfer function is an extremely
useful descriptor for the influence of digital filtering on chemical signals, as the
interaction of the noise with the filter is transparent, and potential distortional
effects of the filter can also be anticipated in a qualitative manner. Transfer
functions for a variety of polynomial least-squares filters are given in Figure 2.3,
the characteristics of which will be discussed further in the chapters that follow.



3. Digital Smoothing and Multivariate Calibration

3.1 Introduction

Digital smoothing filters are widely used in analytical applications in
chemistry to increase the S/N ratio in the data. Their popularity is in part
attributable to a certain nostalgia associated with signal averaging in univariate

methods, where an enhancement in the signal-to-noise on the order of Vm can

be achieved by averaging m repeat sample measurements. With a progression
to multichannel instrumentation this principle still holds — a noise reduction on the

order of Vm at each channel in the vector measurement can be realized by
averaging — however, quite often averaging is applied not over repeated
measurements, but over adjacent channels in the vector measurement, a
practice that is commonly known as smoothing. This ‘short-cut’ is very often
taken in chemistry using polynomial least-squares smoothing filters, or Savitzky-
Golay filters [22], as they are commonly known in chemistry circles.

In certain situations, a ¥m reduction in error variance can be achieved in
this manner, but these conditions rarely occur in practice. The averaging
theorem more often than not crumbles when stretched in this fashion because
the true signal is seldom static over the channels being considered, and as a
result less-than optimal noise reduction occurs, and the original characteristics of
the signal (and noise) are distorted. Chemical literature on the operational
details of SG smoothing is plentiful, although these works tend to concentrate on
the specific issue of S/N enhancement when a single vector measurement is
considered in isolation [26, 27]. As a consequence, S/N is used as a univariate
concept in a multivariate measurement, and only minor concemn is demonstrated
for the subtle side-effects of digital smoothing. The effect of signal distortion has
been investigated in a limited number of studies [26, 28] resulting in some
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general recommendations for choosing smoothing filter parameters, although
these are entirely empirical. As a rough guide, it is suggested that the width of
the smoothing filter be smaller than the signal features of interest. It is important
to note that these empiricisms were developed for univariate procedures on
multivariate data, such as peak maxima elucidation, and quantitation from peak
area or peak maximum. While these sorts of methods are still in use today in
some applications, the same guides are not ensured to prove useful in
multivariate methods. The distortional influence of the filters on measurement
errors, on the other hand, has received little more than a passing mention in the
chemical literature.

While it has long been established that some amelioration in the univariate
S/N ratio can result from digital smoothing, to our knowledge, the theoretical
implications of digital smoothing have never been investigated in the expanded
context of multivariate calibration. While the univariate S/N metric may be useful
in certain cases, as was noted above, it is unrelated to the multivariate S/N in the
majority of multivariate applications, and therefore more must be considered for
multivariate calibration. The signal distortion resulting from digital smoothing can
obviously have dire consequences in multivariate analyses, since analyte
selectivity is already at a premium in most cases. And one can anticipate that
the alteration of the properties of the measurement errors will also have some
influence on the mathematical methods employed in multivariate calibration,
given that certain measurement error structures are presumed to exist.

In this chapter, the effects of symmetric digital smoothing filters, in
particular Savitzky-Golay polynomial filters, on multivariate calibration are
explored. Following a theoretical examination of the implications of applying
such filters, attention will be tumed to the side-effects of smoothing and their
effect on the predictive success of the multivariate calibration model. To
minimize the number of variable factors in this investigation, the research will
focus on calibration systems with well-defined rank, treated using principal
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Figure 3.1 Transfer function for a 15-point moving-average (zero-order polynomial)
Savitzky-Golay smoothing filter. The frequency axis has been normalized by the
Nyquist frequency for generality.

components regression (PCR), and maximum likelihood principal components
regression (MLPCR) [10].

3.2 Theoretical Considerations

3.2.1 Characteristics of Digital Smoothing Filters

The Savitzky-Golay smoothing filter has two user-adjustable parameters:
the width of the filter, and the order of the polynomial used to approximate the
signal. Perhaps the simplest type of SG smoothing filter would be the moving-
average or running-average filters, which are commonly implemented by simply
averaging the points in the filter windows to yield the filtered’ signal vector.
Although not often thought of as a least-squares polynomial filter, the moving-
average is simply a zero-order polynomial fit to the data (fitting a line to the data
with no slope). An examination of the transfer function of a typical zero-order SG
smoothing filter (Figure 3.1) shows that, like all smoothing filters, it is a low-pass
operator in the frequency domain, allowing the lower frequencies in the signal to
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pass through the filter unabated while severely attenuating the higher frequency
components.

3.2.1.1 Filter order

A filter of higher-order can of course be obtained by the measures
previously prescribed, and a time domain contrast between the application of a 7-
point moving-average filter and a 7-point 4th-order SG smoothing filter is given in
Figure 3.2. As expected, the noise rejection of the averaging (zero-order) filters
appears more appreciable than the higher-order smoothing filters, an observation
that can be rationalized by examination of the filter transfer functions (also in
Figure 3.2). The use of higher-order polynomials to approximate the signal
vector allows the filter to accommodate signals of substantially higher frequency
than the simple average, and the frequency cutoff in the transfer function is
correspondingly moved to a higher frequency for higher-order polynomial filters.
Since more of the original signal will be allowed to pass through the filter, more of
the noise will be allowed through the filter, and it can be anticipated that the
higher-order filters will provide poorer noise reduction than the averaging filters.
A quantitative measure of the reduction in noise achieved by a given SG filter
can be calculated a priori using the fiiter coefficients:

c2
2ﬁll¢ml - chz (3 1 )
O wfittered &

2 - . . - 2 -
where o,...., is the variance of the noise before filtering, and o7, is

the variance of the filtered noise. Equation 3.1 is generally applicable to any
non-recursive filter, aithough it is restricted to those cases in which the signal is
corrupted with iid (white) noise. For 7-point SG smoothing filters, for example,
the anticipated noise reductions are:

Zero-order First-order Second-order Third-order

0.1429 0.1429 0.3333 0.3333
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Figure 3.2 A comparison of the use of (right) a 7-point moving-average
smooth, and (left) a 7-point quartic polynomial smooth. The moving-average
filter achieves more substantial noise reduction due to its more aggressive
attenuation of the signal in the frequency domain - only the very low frequencies
are unattenuated.
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As a consequence of the mathematics, the filter coefficients for zero- and first-
order smoothing filters are identical, and as a result their noise rejection
properties are identical.

While filters of higher order are not as proficient at reducing the noise
variance, it can be said that these filters are better suited to chemical signals of
interest than low-ordered filters, since vector measurements in chemistry (e.g.,
spectra, chromatograms) are usually more reasonably modeled using quadratic
or cubic local models than lines with zero slope. This can be reasoned from a
frequency perspective as well, since the averaging filters have a lower frequency
cutoff than the higher-order smoothing filters, and will therefore be more likely to
distort the chemical signals of interest which typically reside at lower frequencies.
A close-up illustration of this local modeling ability is given in Figure 3.3.

/
\ / SN
» \

/

. . ,'/\ f!
o 7-point Linear / P 7-point Quadratic
Smooth Smooth

Figure 3.3 lllustration of the importance of the local modeling ability of the
polynomial model in minimizing signal distortion. Higher-order polynomial
fiters will invariably model the true signal better, however lower noise
rejection resuits.
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3.2.1.2 Filter Width

In addition to the adjustment of the order of the polynomial function in the
SG filter, the width of the filter can be altered. For 31-point smoothing filters, the
following improvements in error variance are achieved:

Zero-order First-order Second-order Third-order
0.0323 0.0323 0.0727 0.0727

Since a far greater number of points are used in the estimation, a greater
reduction in noise is achieved with the wider filters than was observed for the 7-
point filter values above. While the wider smoothing filters are clearly better at
reducing the noise variance in the signal, they are much less effective in locally
modeling the underlying changes in the signal vector itself. A visual comparison
of a noisy signal treated with SG smoothing filters of varying widths is shown in
Figure 3.4, and substantial distortion is readily observed with the wider filters.
The frequency responses of the SG smoothers confirm these observations;
several transfer functions for filters of varying widths are presented in Figure 3.5.
The transfer functions confirm intuition in that the wider filters correspond to
heavier filtering, i.e., heavier attenuation in the frequency domain. It can also be
seen from the transfer functions in Figure 3.5 that the wider smoothing filters
should have a greater distortional impact on the chemical signals of interest,
since the frequency cutoff is pushed to lower frequencies as the width of the fiiter
is increased. This effect of smoothing filter application is extremely difficuit to
quantify in a general way, although it can be said that in general, features in the
signal vectors are broadened and flattened, which geometrically corresponds to a
reduction in the length of the signal vectors. If several different mixture spectra
are considered to be the signal vectors, it can be anticipated that the broadening
and smudging of the spectral features will also decrease the angle between the
vectors. The extent of this distortion will depend not only on the type of fiiter but
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Figure 3.4 Example of the increased Figure 3.5 Transfer functions of zero-order
distortion observed in the signal features smoothing filters with a variety of widths.

with increased filter widths.

also on the characteristics (frequency content) of the noise-free signal, so the
effects of filter distortion in multivariate calibration are not immediately obvious.
The previous paragraphs make clear that a trade-off exists with the two
adjustable parameters of the polynomial smoothing filters. Larger window sizes
and smaller polynomial orders correspond to heavier filtering (higher noise
reduction, and a sharper, and lower frequency cut-off), and thus more effective
noise reduction; however these desirable resuits come at the expense of
increasing signal degradation. Previous studies in the literature have reached
similar conclusions through a variety of empirical means. As noted in this
chapter's introduction, however, the third implication of digital smoothing — the

correlation of measurement errors - has yet to be addressed in any
completeness.

3.2.1.3 Correlation of Noise

The use of a digital smoothing filter not only distorts the frequency
characteristics of the true signal of interest, but also the frequency characteristics
of the measurement errors. It is often presumed that the measurement errors in
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Figure 3.6 a) A vector of uncorrelated measurement errors, and the calculated
noise power spectrum for the given noise sequence (white noise). b) The vector of
smoothed noise values from a) using a 15-point moving-average filter. The noise
power spectrum for these smoothed values is also shown (coloured noise).

the signal vector are jid (as was required for Equation 3.1 to be valid). Figure
3.6 illustrates the distortional effects of a 15-point moving-average fiiter on white
noise in the time, and frequency domain. Because the filters heavily attenuate
the higher frequency components of the signal, they also heavily attenuate the
higher frequency components of the measurement errors, thereby introducing a
low-frequency dominance in the noise power spectrum. As discussed in Section
1.3.1.1, this low-frequency dominance is characteristic of correlated
measurement errors. Therefore, by the rather innocent use of digital smoothing
fiters to suppress the contribution of measurement errors to the multivariate
data, the analyst is introducing non-iid noise into the system. Like the previous
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implications of smoothing filters, the extent of this noise distortion is directly
dependent on the width and order of the smoothing filter used. Since wider filters
have lower frequency cutoffs and more drastic attenuation of high-frequency
components, they tend to introduce far greater discrepancies between the power
of the lower frequency noise and the higher frequency noise, and thus a greater
degree of ‘colour’ in the NPS. When considered from a time domain perspective,
the wider filters correlate the measurement errors from many channels because
many points are used to estimate the filter central point of the filter window. To
derive a quantitative expression for the effect of the filter on the measurement
error structure of the data, recall (Equation 1.41) that the error covariance matrix
for the measurement errors in a signal vector is given in the expectation by

% = Elee") (3.2)

The impact of the application of a filter matrix, F, can be incorporated in
this expression as

Z, = E(Fee'F") (3.3)

where Z, is meant to indicate the resulting error covariance structure of

the filtered data. Removing the filter matrices from the expectation expression,
Equation 3.3 yields

X, =FE(ee" )F (3.4)
- T

z, =FZF 35)
=F'TF

If the measurement errors in the raw signal are iid, then Equation 3.5
simplifies to

ZF = F TFGiuﬁlrznd (3'6)
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Therefore, the impact of a particular smoothing filter on the measurement
error structure can be determined in advance provided the error structure of the
raw data is known or has been estimated.

If anything is clear from the above discussions of noise variance reduction,
signal distortion and error correlation, it is that the overall result of digital
smoothing is unclear. Smoothing filters achieve some reduction in the noise
variance corrupting the signals, which is obviously beneficial if the data are to be
used in multivariate calibration. This benefit is marred, however, by the two
deleterious side-effects of the smoothing operation. Signal distortion is assured,
which will adversely affect subsequent calibration proceedings due to the
resulting decrease in SEL and SEN. The other side-effect, error correlation, can
be expected to be particularly problematic with standard calibration algorithms
such as PCR and PLS due to their implicit error structure assumptions. In an
effort to alleviate this haze of qualitative uncertainty, the next section will involve
a theoretical examination of the influence of symmetric digital smoothing filters in
multivariate calibration.

3.2.2 Smoothing Filters and Calibration Theory

Any theoretical examination of the influence of smoothing filters in
muitivariate calibration must go beyond the individual effects of digital smoothing
as outlined above, and answer the larger question: will digital smoothing
enhance the predictive power of a multivariate calibration method?
Unfortunately, dozens of different numerical methods exist for performing
multivariate calibration and therefore any theoretical answer to the question
might seem to rely on the particular calibration method employed on a given
occasion. To side-step this undesirable complication, an approach was devised
from the perspective of the net analyte signal, a concept discussed in Section
1.5. For the purposes of this discussion, we will assume that the determination
of the NAS for the analyte is the goal of any calibration process. This
assumption removes the necessity of dealing with particular calibration methods
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(PCR vs. partial least-squares vs. continuum regression, etc.), since all of these
regression methods are just slightly different methods of estimating the NAS.

A further complication is that the predictive power of the calibration model
can be limited if the NAS has been poorly estimated. To eliminate this interfering
aspect from the theoretical examination, we will therefore assume that the
calibration conditions are perfect, i.e., we have at our disposal the noise-free
pure-component spectra of all active chemical constituents, or, a perfect
calibration method which allows the NAS to be perfectly estimated by regression
methods. Using the pure-component spectra, the true NAS vector can be
calculated for the th component using Equation 1.53, which has been
reproduced here for convenience.

NAS, =(I, -S_S". ), (3.7)

In order to determine whether a digital smoothing filter will enhance the
predictive power of the calibration procedure, we must use a theoretical metric
that will correlate highly with the prediction error. The univariate signal-to-noise
ratio of the data would be convenient since classically it is a direct expression of
the precision of the measurement, and hence, in direct proportion to the precision
of subsequent predictions; however, the univariate measure is wholly
unsatisfactory in multivariate applications. Therefore, the multivariate S/N is
preferred, previously defined (Section 1.5.2) [15] as

o/ -Sen [t -s. 82|
‘TN N.

: i

(3.8)

where N; is the noise level of the data for component i in a multivariate
sense. If it is assumed that the raw calibration data are corrupted with iid
measurement errors, then the S/N for the unfiitered data is given by

sen, _ |8, -s.s% s
N, o

(3.9)

noise



Chapter 3 — Digital Smoothing and Mutltivariate Calibration 79

as discussed in Section 1.5.2. With the measurement error distribution
being equal in all spatial directions the noise level will be independent of the
analyte.

The application of a filter matrix to the multivariate spectra data alters both
the noise level and the spectral vectors defining the calibration space. Therefore
we can consider a new NAS determined from the filtered pure-component
spectral vectors, referred to below as NAS,. This follows from the consideration
that, in linear mixture theory, a mixture spectrum is considered to arise from the
simple model

x =S¢ (3.10)

and the application of a filter matrix to a mixture spectrum is equivalent to
applying the filter matrix to the pure-component spectra, since

x, = Fx=F(Sc) (3.11)

x, =(FS)c (3.12)

This convolution can be incorporated into the expression for the NAS in
Equation 3.7, resulting in a filtered, NASf, displaced somewhat from the NAS
determined from the unfiltered spectral data.

NAS,, = (I, -(FS_ XFS_ ) ) (Fs,) (3.13)
Thus, the multivariate sensitivity for the filtered data is given by
SEN, =| (1~ FS)FS) ) (s)| (3.14)

The reader will note that most of the descriptive subscripting has been
dropped to reduce the clutter in this, and subsequent equations.

The application of the smoothing filter has an appreciable effect on the
measurement errors, in addition to the signal effects accounted for by Equation
3.13. This can be incorporated if one recalls that the filter alters the
measurement error structure via the error covariance matrix (Equation 3.5).
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Since the noise corrupting the unfiltered calibration data is assumed to be iid, the
error covariance matrix will be £=¢’_, and the resulting expression for the

noise in Equation 3.8 becomes

Ny ={VIZ.v, =c\VL(F'LF)v,

(3.15)
=oyv] FF)v,
which can be expressed as
Ne=o-[Fv| (3.16)

if the a"a=|a|’ identity is used. Since the contravariant vector, v,, is

simply the NAS vector normalized to unit length, the following expression can be
substituted for the filtered contravariant vector:

NAS,

L (3.17)
INAS,|

VF=

Using Equation 3.13 for the filtered NAS, and the definition of the
contravariant vector above, Equation 3.15 becomes

o-’F

for the noise level of the multivariate data after symmetric smoothing filter

NAS,

=o-|F-
INAS

] (Fs)(Fs)* "
E=TIT

N

application.
Similar to the unfiltered case, the multivariate S/N ratio for the filtered data
can be derived by combining Equation 3.14 and Equation 3.18 to give

S/NF=SENF= [ —(st:rs)*)-ms)u 1)
Ne - (FSXFS) ) (Fs)
|| —(FSXFS) )-(Fs) ||

which can be simplified to
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2

(- Fs)FS) ) (s)
o-[F{L - (FS)FS) ) (Fs]

S/N, = " (3.20)

Since [a|* =a’a=|a"a|, the numerator of Equation 3.20 can be expressed

as the inner product:

[l&-@sxesy ) ) [0 - Es)Es) ). @)
o [F(I- FS)FS) ) (Fs)

(3.21)

N, =

Canceling the cross terms, and further expanding the product results in

) |sF" 1 - Fs)ES) ). (Fs)|
o-[F(- (FSXES) ) (Fs))

With Equation 3.9 expressing the S/N of the calibration data before
fitering, and Equation 3.22 expressing the S/N of the filtered data it is apparent

(3.22)

that we have a standard metric for both the filtered and unfiltered case that
should indicate whether calibration model perfformance is enhanced or degraded
by the application of a symmetric digital smoothing filter.

To evaluate the relative performances of the filtered and unfiltered data in
terms of multivariate calibration, we can further define a theoretical performance
ratio (PRineo) as

PR, =S/Ne

= 3.23
theo S/N ( )

If this performance ratio exceeds unity then the S/N has been enhanced
by filtering, and we would expect to see an improvement in the calibration
performance as a result of the smoothing procedure. In other words, smoothing
must result in an enhancement in the signal-to-noise ratio to be beneficial in
multivariate calibration.

It can be shown that the numerator of Equation 3.22 can be factored as
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6F" (I~ (FSYES) ) (Fs))=[F - Fs)Es) ) )] -[1-ss° k]  (3.24)

provided the filter matrix is symmetric (F'=F). Using a property of vector

norms, namely that |a™b | <|a]- [b], we can see that Equation 3.24 implies that

|s7E" (1- (FS)FS) ) (Fs)| < [F- (Fs)ES) ) (s)| Ja-ss* )| (3.25)

or, rearranging,

Is7F" 1 (FSXFS y ) (Fs)"

I1-S8* 3.26
"F ~(FS)YFS)' ) (Fs || <[t M (3.26)
Dividing both sides of Equation 3.26 by o, we get
Tl-‘T FS)FS) -SS*
e - (esyes) )] _Jo-ss°) oz
G- ||F — (FS)FS)' ) (Fs )ﬂ o
or,
SEN, _ SEN
N, N (3.28)
S/N. <S/N
Expressing this resuit in the performance ratio implies that
S/N.
PR, = S/N <1 (3.29)

and, in the context of the stated assumptions, no gains can be made in
multivariate calibration performance by preprocessing with a symmetric
smoothing filter, because the multivariate S/N of the calibration data is degraded
by filter application. Of course prediction errors can also originate from a poor
estimate of the calibration model, but a general equation describing the effect of
filtering on this process would be far more involved. In Section 3.4 it is shown
that smoothing can bring about improvements in calibration performance if a
large proportion of the prediction error variance is attributable to inadequate
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subspace estimation. Conditions under which this may be anticipated are
investigated using simulated and experimental data.

3.3 Experimental

3.3.1 Simulated Data Sets

In order to systematically evaluate the performance of multivariate
calibration procedures under the influence of symmetric smoothing filters,
simulation studies were conducted. Simulations are instrumental in achieving
this goal since so many factors can be of importance in calibration. The use of
calibration systems with well-known and adjustable properties allows one to
systematically alter the factors of interest while holding other factors constant, a
task that would be near impossible with laboratory generated data.

The behavior of two multivariate calibration techniques, principal
components regression and maximum likelihood principal components
regression, was examined with respect to the degree of filtering under tightly
controlled conditions. All simulations conducted in the course of this work
mimicked three-component systems of well defined rank whose pure-component
spectra were unimodal gaussian peaks. To standardize the ‘instrument’
sensitivity to each of the three components, the pure-component spectra were
normalized to unit height. For convenience and clarity it was decided to define a
set of “standard simulation conditions”. Simulation studies of particular factors in
calibration performance involve deviations from these conditions were noted,
while all other controllable factors will be fixed at the values indicated as
“standard”.

For standard simulation conditions, the calibration set was generated as
20 mixtures in which concentrations of the 3 mixture components were drawn
randomly from a uniform distribution between zero and one. The prediction sets

consisted of 100 mixtures (concentrations drawn from the same distribution as in
the calibration set).
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An important consideration in these simulations was the initial S/N
imparted on the data with iid noise. This was set at 565 according to the
following formula

sy =H (330)

where [[‘i" is the length of the mean spectral vector in the calibration data,

and ¢ is the standard deviation of the noise (ca. 6= 0.01 at S/N = 565 for
standard conditions). Equation 3.30 can be derived from a projection of the
noise (diagonal error covariance matrix) onto the normalized mean signal vector

(x/|x]), or by simple error propagation formulae. To control the degree of

spectral overlap (and hence the SEL and SEN), the pure-component spectra
were generated such that the angle between the spectral vector of component
two (the centre gaussian) and the other mixture components was 45 degrees in a
200 channel spectrum (i.e., R = 0.707). This implies that the spectral angle
between, component one and three is larger than 45 degrees, and so component
two was used consistently as the analyte of interest for most of this work. The
simulation results for components one and three were essentially identical to
those for component two, and so only the behavior of the second component is
shown in most figures. The gaussian peaks providing the spectral characteristics
were given a peak width (cpeax) Of ten channels. A large baseline region was
generated on either side of the peaks to alleviate any concems with data
distortion in the filtering process arising from edge effects. A typical set of
calibration spectra under these standard conditions is shown in Figure 3.7, and
the inset shows the pure-component spectra for the 3 analytes. To examine the
effect of specific factors on calibration model performance with smoothing,
parameters such as the S/N (Equation 3.30), spectral angle, and peak width
were varied from standard conditions. A host of different polynomial smoothing
filters could have been used, but highly-similar results were obtained for filters of
varying orders; therefore, it was decided that a simple moving-average filter
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Figure 3.7 An example of the calibration spectra employed for the simulation
studies under standard conditions. Also shown in the inset are the 3 pure-
component spectra, with the middle (dotted) gaussian band corresponding to the
analyte of interest, component 2.

offered representative behavior, and consequently, said filters were used in the
simulation resuits presented in Section 3.4.

3.3.2 Experimental Data Sets

The effects of smoothing in practical applications were examined using a
data set consisting of spectra of 128 metal ion mixtures (Cr(lll), Co(ll), and Ni(ll))
employed previously by Wentzell et al. [10] These mixture spectra were
truncated to a 418-588 nm wavelength range so as to not include portions of the
spectra in which the data showed non-uniform noise characteristics. Sixty-four
mixtures were randomly chosen as calibration samples, and the remaining sixty-
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Figure 3.8 Experimental data used to validate the simulation studies. The data
shown consist of 128 UV-Vis mixture spectra for metal ion mixtures in nitric acid.

four samples were taken to constitute the prediction set. The 128 calibration and
prediction spectra used are shown in Figure 3.8.

3.3.3 Computational Aspects

All computations performed in the course of the work presented in this
chapter were carried out on a Sun Microsystems Sparc Server 1000 with 4
parallel 50 MHz processors and 230 MB of memory. All simulation scripts were
written in MATLAB v. 5.1 for the Unix platform (The Mathworks, Natick, MA).

3.4 Results and Discussion

In Section 3.2 it was demonstrated theoretically that when the calibration
model (i.e., the NAS vector) is reasonably well determined, the application of a
symmetric smoothing filter to multivariate calibration data with iid-normal errors
impairs the predictive success of the system. In order to confirm this result,
simulations were conducted comparing the theoretical result to observed
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behavior. A useful diagnostic for these post-prediction comparisons was an
observed performance ratio (PR.ys), defined as

_ RMSEP
“*  RMSEP,

(3.31)

where RMSEP and RMSEPr are the root mean-squared errors of
prediction for the unfiltered and filtered data, respectively. The RMSEP is
essentially the standard deviation of the prediction errors, and is calculated
according the formula

RMSEP = (3.32)

where y, is the known concentration for the th prediction sample, and §,
is the predicted concentration for the th sample. The value of y, will depend

whether the filtered data, or unfiltered data is being used (given RMSEP%, or
RMSEP). According to this definition, a PR.s value greater than 1 would
indicate that the filtered data gives a better calibration result (in terms of
predictive ability) for the filtered data. By direct analogy to univariate calibration,
PRaus should be equal to PRy, Which is based on multivariate S/N values, and
we can anticipate a high degree of correlation between the theoretical and
observed PR if the theoretical results hold in practice.

Thirty replicate simulations were carried out under the standard simulation
conditions given in Section 3.3.1. For each set of data, the PR was
calculated as the size of the moving-average filter was increased from one
channel (no filtering) to 61 channels (extremely heavy filtering). The PRops
resulting from PCR predictions was also calculated. The results (averaged over
the 30 replicates) are shown in Figure 3.9 for components 1 and 2 (component 3
is similar to component 1 by symmetry). Figure 3.10 gives the results of an
identical simulation using a second-order smoothing filter. In both cases, the
theoretically calculated ratios are in very good agreement with the observed
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Figure 3.9 Theoretical and PCR-observed performance ratios for multivariate
calibration and prediction under the influence of a moving-average (zero-order)
Savitzky-Golay smoothing filter. The observed values are the resulting average
from 30 replicate trials (error bars represent + 1s)

performance ratios, although the observed PR is always slightly higher than the
theoretical value and marginal gains from filtering can be observed at very low
filter sizes. This yields an apparent contradiction to the theoretical predictions.
The possible reasons for this deviation from theory were subsequently
investigated.

The modest gains in predictive performance that resuit from filtering in
Figures 3.9 and 3.10 can be justified as follows. In Section 3.2, it was assumed
that the calibration space is known exactly, so that errors in prediction are
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Figure 3.10 Theoretical, and PCR-observed performance ratios for
multivariate calibration and prediction under the influence of a quadratic
(second-order) Savitzky-Golay smoothing filter.

entirely associated with the prediction step (no error can be attributed to the
accuracy of the estimated calibration parameters). Of course, in practice, there
is prediction error stemming from inaccurate estimations of the calibration model
itself, since measurement error will also affect the calibration step. The errors in
the calibration will of course depend on factors such as the number of calibration
samples, the design of the experiment, and the calibration method.

With methods such as PCR, errors in the calibration model can be
attributed to two main sources. The first is the estimation of the PCA subspace
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of the mixture spectra, which in this work will be referred to as subspace
estimation error. Since the NAS vectors for individual components are assumed
(in the calibration step) to lie in this subspace, an error in the estimation of this
subspace will result in a reduction in the length of the NAS vectors, since they
will be projected into a space outside that of the pure-component spectral
vectors. This will result in a loss of sensitivity, and hence a reduced S/N. The
second type of calibration error, which will be referred to as regression error, is
introduced in the calculation of the regression vector from the latent variables
and reference values. Errors at this stage depend largely on the design of the
calibration set and errors in both sets of measurements, and can ultimately be
classified as bias for a given calibration model, since they will lead to inaccuracy
in the model.

In the application of digital smoothing filters to multivariate calibration data,
it is sometimes possible that the smoothed data will result in an improvement in
the determination of the calibration model that overcomes the degradation in the
performance at the prediction step. In this work, it has been found that this is
particularly true when there is a large uncertainty in the primary estimation of the
spectral subspace. The extent of improvement is difficult to predict, however,
since it depends on factors such as noise level, spectral shape, and calibration
design. Some of these factors were further investigated using simulated data.

3.4.1 Noise Level

Without question the level of noise prior to filtering plays a large role in the
success of the calibration. Indeed, it is this obvious property that leads the
analyst to smooth data in the first place. A reduction in the noise level corrupting
the data decreases the uncertainty in both the prediction and calibration steps.
However, if applying a smoothing filter brings about the noise reduction, a
decrease in the true S/N will result as outlined in Section 3.2. Simulation studies
were conducted to examine the degree of improvement one sees from filtering as
a function of the noise level of the data. To illustrate the dependence of
calibration performance on filter characteristics, 25 replicate calibration sets were
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Figure 3.11 a) Performance ratios observed for PCR over a variety of filter sizes as the
noise level of the data is systematically changed from 0.001 to 0.1 (o) for standard
simulation conditions. b) An example of the individual performance ratios observed with
specific noise levels of 0.001 and 0.1 (6). PR,,,, (—), observed PR values for: 6=0.001

and 20 calibration samples (@), 6=0.1 and 20 calibration samples (¥), and 6=0.1 and 40
calibration samples (v).

constructed under the standard conditions described previously, however the
noise level of these data sets was varied from a standard deviation of 0.001 to
0.100 (the maximum signal in the calibration set was around 1.5). This roughly
corresponds to S/N values of 5650, and 56 as defined by Equation 3.30. Figure
3.11a shows the change in the observed performance ratio as a function of noise
level and filter width for a simple moving-average filter. Figure 3.11b shows a
comparison of the observed and theoretical PA's for noise levels of 0.001 and
0.1. From the figures, it is apparent that there is a relative improvement in the
predictive ability for the filtered data for small filters at higher noise levels,
although the AMSEP improvements over the unfiltered systems are still quite
negligible (less than a factor of 2). Qualitatively, it could be said that the gains in
RMSEP achieved by filtering increased linearly with the standard deviation of the
measurement noise corrupting the unfiltered data. It should also be noted that
the absolute performance of the model under these circumstances is quite poor,
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Figure 3.12 Plot of the mean angle between the true and PCA-
estimated pure-component subspace (25 repeat measurements) as a
function of the level of the error corrupting the spectral vectors.

in the worst case giving a relative prediction error (RMSEP/¢ where ¢ is the

mean concentration of the component in the prediction data) of 25% with no
fitering. So although there is a relative improvement, the resuits are poor to
begin with.

As suggested earlier, the small enhancements brought about by filtering
under high noise conditions are largely due to the improvement in the estimate of
the calibration model. To demonstrate this is the case, Figure 3.11b also shows
a PRqs curve generated under conditions of high noise (¢ = 0.1) and 40
calibration samples. The larger number of calibration samples improves the
quality of the calibration model, but not the error in the prediction step. This is
reflected by the fact that the PR,»s curve moves closer to the theoretical model,

suggesting that the enhancements due to filtering do indeed arise in the
calibration step.



Chapter 3 - Digital Smoothing and Multivariate Calibration 93

One of the reasons for improvement of the calibration model after filtering
under high noise conditions is a superior estimation of the spectral subspace by
PCA. PCA in essence gives the best p-dimensional estimate of the subspace
spanned by the pure spectral vectors. With very high noise levels, the latent
structure of the spectral data is much harder to extract from the data, and the
subspace estimation is greatly hampered. Figure 3.12 shows how the angle
between the PCA-estimated subspace and the true spectral subspace deviates
as a function of measurement noise. When this deviation becomes large, the
sensitivity of the calibration must be reduced since it relies on a projection of the
NAS vector into a different subspace. This is illustrated in Figure 3.13. Figure
3.13a shows the PR.ys curves for the three components for one simulation under
high noise conditions. The maximum enhancement is about a factor of 2.
Figure 3.13b shows the theoretical SEN/N ratio for the filtered data which
suggests no such enhancement. Figure 3.13¢c, however, shows the theoretical
SEN/N for the filtered data based on the PCA estimated subspace; i.e., it is the
norm of the NAS vector for each component projected into the suboptimal
subspace. This represents the best SEN/N that could be realized using this
rather inaccurate subspace estimate as determined by PCA. From the figure, it
is clear that there is an improvement in the SEN/N resulting from a more reliable
decomposition of the filtered subspace, although the projected SEN/N is always
below the theoretical SEN/N.

A few other features of Figure 3.13 should also be noted. At first glance,
the curves in Figure 3.13c do not appear to match up with those in 3.13a, but it
is the relative change in the SEN/N that is important. It is also clear from Figure
3.13 that the percentage changes in SEN/N in Figure 3.13¢ which are about 10
- 20 %, do not fully account for the improvements in the performance ratio in
Figure 3.13a, which are 60 — 80%. This is because the reduction in maximum
sensitivity from subspace estimation error is only one factor leading to a
reduction in the predictive ability for the unfiltered case. Errors in determining the
regression vector in the calibration step (regression error) will also contribute in



Chapter 3 - Digital Smoothing and Multivariate Calibration 94

2.0
-]
e 9 o (]
o ° a)
o Q
'ﬁ o A o A A A a a a °
= 1571 4 s, 0
o A 8
g s 8
a °
E a 0o
0o a4 0 ©
rs [ ]
§ 1ofe g%,
L g.%e
[ [ ]
24
[ ]
0 10 20 30 40 50
filter width in channels
SEN determined from filtered noise-free data SEN determined from projected data
*vvove,,, vovoe,
L ]
25 0.‘ b) oy o.. c)
.. [ ] ..
. .
5 20 oooooo.°°°° 0.. 000000, . o..
L] l [
3‘) 15 'oo .O.. ° % .0.
° Ge ° L
° °° e
[ ]
% °°°
10 °°°°° °°°1

0 10 20 30 40 50 0 10 20 30 40 50
filter width in channels

Figure 3.13 a) observed performance ratios for components 1 (e), 2 (o)
and 3 (a) at a noise level of 0.1 (c,,.,)- b) Theoretical S/N curves as
calculated for all 3 components. ¢) Theoretical S/N curves determined for
the filtered data based on the subspace as estimated by PCA.

similar fashion. In fact, error propagation formulae [29] show that the contribution
of calibration variance to the prediction error is directly related to the square of
the norm of the regression vector (i.e., 1/SEN 2) as well as to the variance in the
measurements. Therefore a reduction in the sensitivity also increases this
regression error.

The results outlined above indicate that some enhancement in predictive
ability can occur due to improvements in the subspace estimate. However, in
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these simulations such improvements were quite small and only occurred when
the spectral data were severely corrupted with noise.

3.4.2 Spectral Correlation

Another major factor affecting the accuracy of the prediction after filtering
is the degree of spectral correlation, which in this work was measured as the
angle between the pure-component spectral vectors. In addition to reducing the
noise level of the data, the applied smoothing filter distorts the spectral vectors.
This distortion manifests itself geometrically as a reduction in the angle between
the pure-component spectra. When pure-component spectra are highly
overlapped, filtering should increase the degree of correlation more quickly,
leading to a negative impact on calibration due to a reduction in multivariate
sensitivity. This supposition was investigated by simulations involving 25
replicate calibration sets for each spectral angle selected from 10 to 80 degrees.
Figure 3.14a shows the observed performance ratios as a function of spectral
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Figure 3.14 a) Performance ratios observed over all filter widths for spectral angles varying
between 10° and 85° for standard simulation conditions. b) Observed performance ratios for
calibration systems comprised of pure-component spectral overlap of 10° and 76°.
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angle and filter width for a moving-average filter. Figure 3.14b compares the
observed and theoretical PR values for spectral angles of 10 and 76 degrees.
The experimental values obtained at high spectral angles (i.e., close to 90
degrees) are in reasonable agreement with the calculated values of PRye.. At
low spectral angles, some improvement in the prediction error can be observed
with filter application, but as in Section 3.4.1, only about a two-fold enhancement
is observed at best.

The effect of spectral correlation in smoothing filter performance can be
explained in much the same way as the discussions regarding the noise in
Section 3.4.1. The accuracy of a PCA estimated calibration space is dependent
upon the recognizable latent structure exhibited by the mixture spectra. This
structure can be difficult to extract when the noise severely obfuscates the true
characteristics of the mixture space (as noted in Section 3.4.1). And, like any
sort of signal-to-noise consideration, one can consider either the signals being
‘too small' or the noise being ‘too large’. If the important structure in the
subspace is very subtle, i.e., small in magnitude relative to the noise level, then
estimates of the true subspace will tend to be quite imprecise. Conversely, if the
structure is very prominent, PCA subspace estimates will tend to be far more
accurate. A simplified 2-dimensional illustration of this noise-spectral angle
duality is given in Figure 3.15, using the simple analogy of putting a line through
two observation points, a and b. In the first scenaric (Figure 3.15a) the
experiment happens to yield two sets values which produce model estimates that
represent significant departures from the true model (defined by a° and b°). With
a large separation between the two points (large spectral angle), however, these
deviant measurements still result in a reasonably estimated model. In
measurement scenario two (Figure 3.15b), the spectral angle is very small, and
therefore small deviations from the true values of a° and b° yield model estimates
that can be almost orthogonal to the true model space.

This principle has an equivalent realization in real-life. If one wishes to
carry a lengthy item in their ams, such as a wooden plank, they are much more
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Figure 3.15 lllustration of the dual effects of noise level (shaded area indicates a
1o level) and spectral angle on the precision of the calibration subspace
estimation. a) A representation of a large subspace angle, with a noise level N.
The orientation of the calibration subspace is uncertain, but the uncertainty in the
estimate is relatively small. b) A representation of a similar system corrupted by a
noise level, N, but with very small subspace angles. Because the pure-
components are very close together, the noise contributes a much greater
uncertainty in the subspace orientation.

successful at balancing the item if their arms are widely spaced apart. With their
arms essentially together, it is very difficuit to balance the item. In this analogy,
the angle between the outstretched right and left arms is like the subspace angle
between the pure-component spectra, and the noise would be akin to ‘natural
instabilities’ and other shakes and wobbles.
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Figure 3.16 Comparison of the PR's (both theoretical, and observed) for
spectral data with varying frequency content. Small o,,,, values correspond to
higher frequency spectral features (more readily distorted by smoothing filters).

3.4.3 Spectral Bandwidth

Smoothing filters operate by removing the high-frequency components of
a noisy signal, and leaving the low-frequency components (usually characteristic
of the information of interest) relatively untouched. Unfortunately this separation
of high and low frequencies is difficult to achieve without some distortion of the
lower-frequency components. Smoothing filters unfailingly corrupt the signals of
interest and, as is implied from the derivation in Section 3.2.2, reduce the angles
between the pure-component spectra, as well as their effective magnitudes
(hence the shorter NASF vector). Although some distortion is inevitable, the
effect is minimal when the filter window is small compared to the signal
bandwidth since less low-frequency attenuation occurs [15, 19, 25, 30]. In all of
the simulations conducted here in which the filter size was altered, very little
degradation in the performance ratios were observed at small filter sizes,
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suggesting that, when the filter size was small relative to the signal bandwidth,
little distortion occurs. To more thoroughly examine the effect of this signal
distortion on the filtered multivariate calibration procedure, systematic alterations
in the width (i.e., the sampling rate) of the gaussian peaks in the pure-component
spectra were made while keeping the multivariate signal-to-noise (as defined in
Equation 3.30) constant. The spectral vectors were composed of 500 channel
spectra to alleviate any difficulties arising from the largest peak widths in the
simulation. Figure 3.16 gives an example of the results from for this experiment,
with all other calibration characteristics at the standard conditions. The reader
may note that the observed performance ratios do not exceed one in this case,
and are generally observed to fall slightly below the theoretical values as filtering
increases. While this is somewhat atypical, it is not unexpected, as the example
given here is a single set of calibration and prediction data. Replication would
undoubtedly demonstrate similar behavior to that exhibited in Figures 3.9 and
3.10. The wider peaks appear less susceptible to serious signal distortion which
can lead to larger prediction errors, although any enhancement is consistently
negligible as the peak width is increased. These observations are in accordance
with generally accepted rules of thumb for filtering which suggest that the filter
width in channels should not exceed half of the peak width of the features in the
spectra. Indeed, if this suggestion is followed, impairment of the calibration due
to signal distortion is apt to be minimal, but there is also little apparent advantage
to applying the filter.

3.4.4 Correlated Errors

The introduction of correlated error into the filtered spectra is a difficult
effect to examine using conventional PCR due to its assumptions of uncorrelated
error. However, MLPCR [10], is capable of accounting for row-correlated
measurement errors [11]. Since calculation of the filtered error covariance matrix
is made possible using Equation 3.6, the covariance information known to be
corrupting the calibration data can be utilized when constructing the calibration
model and when making predictions from that model. This affords a reference
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Figure 3.17 MLPCR observed performance ratio compared to the PR, for PCR with
increasing smoothing filter width. The depicted values are averages of 20 replicate
trials (error bars indicate + 1s). Also shown are the theoretical performance ratios.

method which should account for the presence of correlated measurement
errors. In Figure 3.17 the resulting performance ratios for the theoretical, PCR
and MLPCR calibration models are displayed under standard conditions. Note
that virtually no change is observed in the MLPCR ratios with increasing filter
width, while the PCR and theoretical performance ratios fall quickly below unity.
The fundamental difference between the behavior of MLPCR and PCR under
these conditions is not the orientations of the estimated subspaces, which are
very nearly identical with row-correlated measurement errors, but the estimates
of the scores for the sample spectra on the subspace. As outlined in Section
1.4.1, MLPCR establishes much the same spectral subspace estimate, but the
projections of the calibration spectra onto that space are quite different from the
PCR projections since the latter uses a simple orthogonal projection, while the
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former uses the maximum likelihood projection. This effect is additionally present
in the projections of the prediction spectra as well.

In some respects, MLPCR can be regarded as an optimal method
because it takes the error structure of the measurements into account. Indeed,
regardless of the degree of filtering, the quality of the MLPCR results does not
appreciably diminish. Philosophically, this is satisfying when we consider that
fitering does not really remove noise, but only changes its structure, substituting
error covariance for error variance. Therefore, a technique that adapts to the
change in the noise structure should produce consistent results. On the other
hand, it will be noted that traditional PCR, which does not take error covariance
into account, performs better than MLPCR in some cases, notably at very narrow
filter widths and when the calibration space is very poorly estimated. PCA is
biased in its estimation of the spectral subspace and sample scores, whereas
MLPCA is not. The bias-variance trade-off results in the former giving a smaller
prediction variance at the expense of accuracy in the limit.

3.4.5 Experimental Data

The observations made for the simulation studies were further
investigated using the experimental data set described in Section 3.2. The
observed performance ratio for each analyte (with PCR as the calibration
method) was determined as the amount of smoothing was systematically altered
(Figure 3.18a). As is apparent from the figures, the performance ratios for Ni
and Co behave in a manner predicted by theory as the width of the moving-
average filter is increased, ie., no improvement in the prediction error is
observed. The PR, for Cr can be seen to slightly exceed unity at almost all
filter sizes, although the magnitude of this ratio indicates only nominal
improvements over the unfiltered case. Figure 3.18b shows the actual RMSEP's
for the analytes.

Although these data did not entirely satisfy the initial assumptions of the
theoretical development in that some degree of error covariance was present in
the raw data, the results still buttress the principal conclusion of the simulation
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Figure 3.18 a) Performance ratios observed after applying smoothing filters to the
experimental data set discussed in Section 3.2. The dashed line indicates the PR, =
1 (no change) mark. b) Actual RMSEP's for each of the three analytes of interest as a
function of applied smoothing filter width.

studies — that little or no improvement in performance can be anticipated by
preprocessing with a symmetric smoothing filter.

3.4.6 A Dissection of Prediction Error

The most complicating issue in examining the net result of digital
smoothing filters in multivariate calibration is that one cannot easily ascertain
how each of the individual effects contributes to the observed prediction error, or
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performance ratio. Using carefully planned simulation studies with pseudo-
filtering operations, however, it is possible to isolate each effect.

The ideal smoothing filter, if it were realizable, would reduce the level of
the noise while leaving the chemical signals and white noise structure
undistorted. The reduction in variance as given in Equation 3.1, would be
achieved without the injurious introduction of error covariance. The behavior of
an ideal smoothing filter can therefore be mimicked by simply reducing the noise
level of the data without introducing correlation, and without distorting the
spectra. To examine the behavior of this optimal smoothing filter, then, reference
calibration and prediction data sets were constructed at standard conditions (the
‘unfiltered calibration/prediction data’). The application of ideal smoothers was
feigned by calculating the theoretical reduction in noise achieved by a given
smoothing filter via Equation 3.1, and subsequently re-generating the exact
same calibration and prediction data using the reduced noise level. Figure 3.19
shows the ideal filter behavior resuiting from these conditions (solid squares).
As is to be anticipated, the reduction in the noise level brings about a steadily
increasing improvement in the calibration performance, as the noise is reduced
to lower and lower levels. For this ideal filter the calibration model performance
is always enhanced by smoothing, and hence, the performance ratio always
exceeds one. As noted earlier in the chapter, noise variance reduction (when
considered in isolation) will always result in an improvement in predictive power.

Simulating the isolated consequence of spectral distortion introduced by
the smoothing operation involves smoothing the noise-free spectral data with a
smoothing filter. If the properties of the measurement errors are unaltered (the
variance is not reduced, and no error covariance is introduced), then the resulting
performance ratios should be an indicator of the isolated contribution of spectral
distortion in digital smoothing. The performance ratios under these conditions,
also shown in Figure 3.19 (unfilled triangles), are always below one. Substantial
deviations from PR=1 begin to occur when the filter size surpasses the half-width
of the spectral peaks, an effect that was observed indirectly in Section 3.4.3. The
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Figure 3.19 Results of the simulation studies examining the effect of each of the
three effects of filtering in isolation. The performance ratios are displayed for an
“ideal filter" (one which achieves noise variance reduction only), a filter which
introduces error covariance effects, and a filter which introduces signal distortion.
The observed performance ratio is also shown for the application of a real

smoothing filter (all effects present).

spectral distortion from digital smoothing always decreases the SEN relative to

the unfiltered case, and since the properties of the measurement errors are fixed
in this scenario, we can anticipate that the reduction in SEN will result in a
degradation in the RMSEP. The signal distortion will therefore always detract
from the positive aspects of noise variance reduction, however the effect is

evidently minimal at narrow filter widths. This distortion becomes much more
significant when the filter width exceeds the half-width of the signals since the
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smoothing filter bandpass limit begins to encroach on the low-frequency chemical
information.

The eftect of correlated errors was introduced by filtering the noise prior to
applying it to the calibration and prediction data (which were not treated by the
filter). The filtered noise was subsequently scaled to maintain the same noise
variance at all filter sizes. Therefore, the change in the performance of the
calibration model with filtering should be the sole resuit of the introduction of
correlated measurement errors. The performance ratios in this case are
observed to rapidly worsen even with very narrow filter widths (Figure 3.19,
unfilled circles), and a steady decline in the performance of the calibration is
observed as the filter width is continually increased. This is somewhat surprising,
especially for small filters that introduce very limited correlation, since the only
difference between this case and the unfiltered calibration is the dependence of
the noise at a few neighboring channels. The observed performance ratio for all
of the combined effects (i.e., standard filter application) is also shown in Figure
3.19. The correlation of measurement errors is evidently an extremely important
factor at small filter widths since spectral distortion has little effect at that point.
The error covariance effect alone accounts for the marked departure from ideal
filter behavior that is observed in practice.

When the effects of signal distortion and correlated noise are isolated and
applied individually, a very clear picture of observed performance ratio develops.
The reduction in error variance will always contribute positively to calibration
performance, working to improve the RMSEP of the filtered calibration system.
The introduction of error covariance, on the other hand, will always degrade the
performance of the model relative to the unfiltered case. This effect is most
influential at small filter widths, when spectral distortion is at a minimum, and is
typically harmful enough to offset any gains made by noise variance reduction.
At larger filter widths, the error covariance effects persist, but the relative
contribution of the spectral distortion increases rapidly, pulling the performance
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ratio well below the ‘no-change’ mark of unity. In shor, it is two against one, and
the error covariance and spectral distortion are most often the winners.

3.5 Conclusions

The objective of the work in this chapter has been to examine the utility of
symmetric smoothing filters as a preprocessing method for multivariate
calibration, and the implications of applying these filters to multivariate data. In
terms of calibration performance, it has been demonstrated theoretically that,
when prediction errors alone are considered, the application of a symmetric
smoothing filter will, at best, yield no improvement in predictive ability and will
actually degrade the quality of prediction as the filter size is increased. This net
result is a composite of the effects of noise reduction, signal distortion, and error
correlation. The assumptions in the theoretical development were: 1) the
measurement noise in the raw calibration data is iid-normal, 2) calibration errors
are negligible (i.e., the NAS is exactly known, or the model space is very
accurately estimated) and, 3) the system is linear with a well-defined rank. In
cases where these assumptions do not hold, the development of a general model
for the performance ratio would be difficult to obtain, but is expected that the
main conclusion will remain valid as long as perturbations from the assumptions
are not extensive. Indeed, simulations demonstrated excellent agreement
between theoretical and observed performance ratios at modest noise levels,
and filtering of an experimental calibration-prediction set showed the expected
degradation in predictive ability. At small filter widths, this degradation is
principally due to the introduction of error covariance. When the filter width
becomes large enough to cause substantial distortions in the spectral
information, the degradation becomes more extensive. Therefore, although
smoothing is cosmetically pleasing to the analyst, the signal distortion and
correlation of noise which result from smoothing filters have been demonstrated
to often corrupt multivariate calibration data.
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In certain cases for both simulated and experimental data, marginal gains
in predictive ability were observed to occur with moderate filtering. In all cases
examined here, the improvement in the RAMSEP was less than a factor of two
and may not justify application of the filter, especially given the degradation in
performance that can potentially occur. The increase in performance ratios was
traced to improvements in the calibration step, particularly with regard to the
estimation of the spectral subspace. This study was necessarily limited in the
number of spectral shapes simulated and so it cannot be stated absolutely that
other circumstances will not yield larger gains after filtering, but, based on the
large number of unreported simulations carried out during the course of this
investigation, it is believed that marginal gains are the rule rather than the
exception.

The scenarios in which smoothing has the greatest chances of being
beneficial tend to be systems in which the estimation of the calibration model is
likely to be poor due to relatively large uncertainty in estimating the spectral
subspace. These situations are typically characterized by high measurement
noise or large spectral correlation. The subspace estimate is bound to be highly
uncertain when high noise levels corrupt the calibration data, or the pure-
component spectral correlations are very high. In these circumstances, the
reduced uncertainty in the subspace estimate attained via noise reduction by
filtering sometimes offsets losses due to spectral distortion and error covariance
introduction.  Systems composed of almost uncorrelated pure-component
spectra with low levels of measurement noise generally show no enhancement
and only degradation after filtering. Signal bandwidth is also a factor which
affects the quality of the calibration after filtering. It is recommended that in order
to avoid serious signal corruption, the filter width should be keep below the
bandwidth of the most important signals of interest.

it was also demonstrated that MLPCR, which accounts for correlated
errors, can be applied to calibration data after filtering because the covariance
information is readily available from the filter matrix. This technique essentially
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deconvolves the filter from the filtered data, and because of this, no changes in
the AMSEP are observed with increased filtering.

Smoothing with a symmetric filter matrix is often used ‘black-box style’' as
a preprocessing tool for multivariate calibration. It is hoped that the theoretical
results, the simulated experimental observations, and the demonstrated behavior
of real experimental data will prompt more caution in multivariate calibration with
respect to smoothing, and lend insight into the specific conditions under which
filtering may prove somewhat beneficial. Although there are cases where filtering
can enhance calibration performance, the gains in observed in RMSEP's were
consistently nominal. When weighed against the potential for reduction in
predictive performance from symmetric smoothing, it is the recommendation of
this work that smoothing filters be avoided as a preprocessing tool in muitivariate
calibration.



4. Drift Correction in Multivariate Calibration

4.1 Introduction

Digital smoothing filters, like the ones discussed in the previous chapter,
are widely used in both qualitative and quantitative chemical analyses to reduce
the variance of the measurement errors. As noted, this is achieved at the
unfortunate expense of introducing spectral distortion and error covariance. But
preprocessing extends well beyond the realm of variance reduction, and arguably
is of greater importance today in handling other artifacts in the experimental data
such as offsets, drift and scatter.

Baseline drift, or drift noise, is inherently imbedded in the information
generated by most types of analytical instrumentation. The source of these drift
effects are highly dependent on the nature of the experiment, the type of
instrument used, and the types of transformations and processing used on the
raw data. The magnitude of the drift also varies considerably between different
experiments and instrumental methods. Instrumental contributions to drift
include source intensity instability (flicker), detector response variations,
temperature induced changes in critical instrumental components, and spatial
correlations in the detection sensors. Non-instrumental sources of drift noise are
also ubiquitous, and can be tied to everything from physical and chemical
properties of the samples, to ambient temperature and pressure. Post-
experiment transformations of the data can also introduce substantial levels of
drift noise. Chapter 3 discussed the aspects of drift noise introduced by
symmetric smoothing fiiters in some detail. Other transformations of the data
performed either within the instrument (e.g., apodization functions), or outside of
the instrument (e.g., other digital filters, wavelet transforms) can also introduce
drift noise that was not inherently present in the original measurement sequence.

109
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While drift noise arises from manifold origins, it will be broadly
characterized in this work as any undesirable fluctuation in instrument response
which results in correlated measurement errors. Under this definition, offset
noise, and multiplicative scattering effects (which are both non-iid due to error
correlations) are simply special cases of drift noise. As discussed in Section
1.3.1, correlated measurement errors manifest themselves in the frequency
domain as ‘coloured’ noise, typically exhibiting low-frequency dominance in the
noise power spectrum. If the magnitude of baseline offsets is substantial enough
to be observed in the time domain, it is most likely very easily observed as a
dominant dc (direct current) contribution in the NPS. It can also be shown that
offset noise results in an non-iid error covariance matrix, since offset noise is
typically thought of as arising from the model

x=x"+e (4.1)
where the measurement errors can be further broken down as
e=al +¢ (4.2)

In Equation 4.2, a is a scalar offset term (assumed to vary normally about a zero
mean with a standard deviation G,), 1 is a one-vector, and ¢ is the iid component
of the typical measurement errors. Since the error covariance matrix for the
measurement errors in e is given by
I =E(ee") (4.3)
upon expanding the product from Equation 4.3 we find that the error covariance
matrix for a signal corrupted by noise having both offset and iid components is
T=02-11"+Z, (4.4)
The error covariance matrix arising from offset corrupted data, then, is simply a
matrix of offsets (a2) in addition to the jid contribution, £_, making the observed
error covariance structure of the data non-iid. Optical effects, such as sample

scatter and pathlength effects can also be shown to result in correlated
measurement errors by similar treatment.
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As outlined in Chapter 1, most multivariate calibration methods in
common use in chemistry assume the independence of noise at different spectral
channels (i.e., the noise is uncorrelated). Drift noise can certainly be a detriment
to these methods when the observed properties of the data represent a
significant departure from the model's assumed properties of the data.
Multivariate models built from data with significant levels of drift often require a
greater degree of parameterization (more factors in PCR; more variables in
multiple linear regression (MLRY)) to satisfactorily model the property of interest
than models built from drift-free data. Several researchers have probed the issue
of parsimony with respect to heteroscedastic and drift-corrupted data [31, 32),
and commented on the characteristics and disadvantages of these models [33,
34]. With drift noise having such a negative impact on the success of a
calibration model, many analysts attempt to minimize its contribution to the
observed data variance by spectral preprocessing.

In recent years the number of preprocessing methods available to combat
drift noise has proliferated. This is in part attributable to the now widespread use
of instrumental methods which are slightly more susceptible to drift, such as
Fourier transform spectrometers, and also due to the increasingly complex
physical and chemical properties of sample matrices. Paradoxically, general
improvements in analytical instrumentation have also contributed to this
increased concemn with drift, since white detector noise in newer instruments is
often at a sufficiently low level to make drift noise arising from non-fundamental
sources analysis-limiting. It has even been remarked that current spectroscopic
instrumentation is inherently far more precise than most laboratory
glassware [35].

A variety of methods are now at the disposal of the analyst to reduce the
contributions of drift noise to the imprecision of analytical methods. The majority
of these preprocessing techniques are empirical normalizations in a variety of
guises which are used to reduce the contributions of offset and scatter noise to
spectral data. These include wavelength ratioing [36] and differencing methods
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in which the spectral measurements at every channel are normalized against
some chosen reference wavelength. Numerous other standardizations are also
available, such as multiplicative scatter correction (MSC) [37] (and associated
variants [38]), Murray and Hall's multiplicative correction [39], standard normal
variate (SNV) transformations [40], detrending, and simple background fitting, to
name but a few. The performance of MSC will be discussed briefly in Chapter 5.

The selection of the best drift correction method or combination of
methods appears, therefore, a rather formidable task. Additional complications
associated with many of the above recommended methods are that only minor
differences exist between them, and many are overly empirical — why should the
mean spectrum represent the ‘shape’ of scatter? As a result, many of these
methods have met with only lukewarm appeal in routine muitivariate analysis.
Another method, signal differentiation, predominates as the method of choice,
and will therefore be the focus of this chapter.

Derivative preprocessing is among the oldest and most frequently used
baseline correction techniques. The mass appeal of derivatives possibly stems
from a simple historical familiarity with the technique, but it is also undoubtedly
attributable to the conceptual simplicity of the method. In principle, first-
derivative spectra should be free of baseline offset effects, since the first-
derivative of any function will eliminate constant factors. Second- (and higher)
derivative spectra should reduce baseline effects which can be modeled as
polynomial functions of the ordinal variable (e.g., variations proportional to the
ordinal variable will be eliminated with second derivatives). Therefore, if a set of
calibration spectra are collected which are corrupted with offset noise of the sort
described in Equations 4.2 and 4.4, the first-derivative spectra will be free of
offset contributions.

While derivative preprocessing for multivariate analysis is most certainly a
routine practice, the role of derivative preprocessing from the calibration
perspective has, surprisingly, yet to be explored with any degree of rigor. The
earliest implementations of spectral differentiation were for the purposes of
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feature extraction rather than drift-noise reduction in calibration [41]. Since these
early qualitative applications, several researchers have undertaken studies of the
effect of differentiation on peak positions, intensities, and areas [42], as well as
attempted to ascertain the optimal parameters for derivative calculation when
resolution enhancement was the goal [(43]. Others have explored the calibration
effects of differentiation in specific circumstances based on such things as the
multivariate sensitivity, selectivity [32], and other figures of merit [44]; however,
these investigations have almost entirely been focused on post-calibration
observation of derivative performance. The actual role of derivative
preprocessing, and drift correction in general, has not been explored from a
theoretical calibration perspective.

In this chapter, the properties of derivative filters and their effects on
chemical signals will be discussed, followed by an examination of the theoretical
mechanism by which differentiation alleviates drift-noise. From this perspective,
it will become clear that, in addition to other noted drawbacks, derivative filters
are suboptimal in correcting for baseline drift. Based on theoretical
considerations of the structure of the measurement errors, an optimal filter is
derived for the correction of baseline drift in spectral calibration and prediction
data. This optimal drift correction filter can be determined from the structure of
the noise in a straightforward manner, and this approach to eliminating correlated
measurement errors is subsequently shown to be a special case of maximum
likelihood PCA [9]. MLPCA will be contrasted to derivative preprocessing, and
the efficiency of maximum likelihood PCR [10] in correcting for baseline drift will
be explored. The majority of the following has been published by Brown and
Wentzell [45], and elements of this chapter which have been gamered from other
sources are duly referenced.
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Figure 4.1 Transfer function for a ‘true’ derivative filter.
4.2 Theory

4.2.1 Derivative Filters

The approximation of signal derivatives can be achieved by a variety of
means. Analytic derivatives could, in theory, be obtained if the true signal vector
were available to the analyst in the form of an differentiable function, however
this is rarely the case in practice. Historically, signal derivatives were
approximated using analogue or digital hardware, but in today’s laboratory
differentiation can be readily achieved in software, which affords greater
flexibility. When thought of as a filter, true signal differentiation corresponds to a
filter with gain directly proportional to frequency, as shown in Figure 4.1 [19].
This can be easily derived by realizing that any signal in the time domain can be
represented as the sum of a series of sines and cosines, and analytic
differentiation of such a signal yields

——d(Simet)) =wcos(wt) (4.5)
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where o (=2nf) is the angular frequency. Therefore, true differentiation, in
approximating the rate-of-change of the signal vector, selectively amplifies the
higher frequency components of an observed signal. Since chemical signals
seldom reside at even mid- to high-frequency ranges, this true derivative largely
acts to only amplify high-frequency noise, making calculation of the true
derivative for practical measurements useless.

In chemical applications, differentiation of spectral signals is most often
accomplished using finite differencing or polynomial least-squares filters, the
simpler method of the two being differencing. In this method the rate of change
of the signal vector is approximated by finding the difference between the signals
at adjacent channels in the spectral vector. Higher derivatives can be obtained
by reapplying the differencing to the first-derivative spectrum. This simple filter,
although a reasonably accurate representation of the observed signal derivative,
is typically undesirable due to its extreme sensitivity to high-frequency noise.
The transfer function for a difference filter is shown in Figure 4.2a, and an
example of its application to a spectrum is shown in Figure 4.3. Examining the
transfer function, we can see that there is substantial attenuation of low-
frequency signals, and that the difference filter actually amplifies mid-, and high-
frequency regions. As a result of the objectionable response of these filters at
higher frequencies, differencing methods are of limited utility unless the spectral
data exhibit very classical high signal-to-noise ratios (as is often said to be the
case with NIR measurements). Consequently, differencing is often used in
conjunction with smoothing procedures to achieve some low-pass filtering.
These two operations can, however, be achieved simultaneously with polynomial
least-squares filters [22, 46).

Polynomial least-squares filters yield a least-squares estimate of the
derivative over a window of points in the spectrum (see Section 2.2.1). The
least-squares properties of these functions achieve a degree of low-pass filtering,
while the derivative properties provide some relief from the low-frequency drift
effects; the result is a form of band-pass filter. Transfer functions for 3- and 13-
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Figure 4.2 a) Transfer functions for a variety of realistic derivative filters
including a difference filter, as well as 3- and 13-point Savitzky-Golay derivative
filters (all first-order polynomials). In b) the transter functions for 13-point linear
first- and quadratic second-derivative filters are compared, showing the change
in bandpass associated with higher derivatives.

point linear first-derivative least-squares filters are shown in Figure 4.2a as
examples. In Figure 4.2b, 13-point linear first-, and quadratic second-derivative
transfer functions are compared, showing the greater low-frequency attenuation
achieved by the higher derivative. Figure 4.3 is also included as a depiction of
the characteristics of derivative spectra obtained by the application of these
filters. In general, increasing the order of the derivative will result in a greater
degree of low-frequency attenuation (‘smoothness’) since the low-frequency
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Figure 4.3 a) A simulated spectrum corrupted by drift noise, and the resuiting
derivative spectra from applying b) difference, ¢) 3-point linear first-derivative, d) 13-
point linear first-derivative, and e) 13-point quadratic second-derivative filters
(magnified by a factor of 10 for clarity) to the original spectrum.

cutoff for higher derivatives is essentially moved to higher frequencies. Wider
filters will achieve greater reductions in the higher frequencies due to greater
suppression of high-frequency components and a shift in the high-frequency
cutoff to lower regions. The order of the polynomial function fitted to the data
window is inversely related to the extent of high-frequency attenuation (i.e.,
higher-order fits retain more high-frequency components).

From Section 3.2.1 the reader will recall that the coefficients of a digital
filter can be used to determine the relative variance of the measurement errors in
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the filtered and unfiltered signal. (Equation 3.1 has been reproduced here for
convenience.)

62 tere. 2
=Yl (4.6)

Confittcred i

Under the requisite noise conditions — measurement errors corrupting the signal
vector are iid - difference filters will increase the noise variance by a factor of 2.
In contrast, most Savitzky-Golay derivative filters actually reduce the level of
noise due to their band-pass properties. This is an important characteristic to
note, since it is often said that the differentiation of spectra increases the noise.
While statements such as these may convey the correct connotation (i.e., the
univariate signal-to-noise ratio is reduced by differentiation), the statement is
erroneous as written. The band-pass nature of Savitzky-Golay derivative filters
and their transfer functions reveal that in the majority of scenarios the noise
variance is substantially reduced; however, the low-frequency attenuation of
these filters also substantially reduces the slowly varying chemical signals of
interest. These combined effects very often result in a reduced univariate S/N as
defined in Equation 1.57. It should also be apparent that symmetric Savitzky-
Golay derivative filters (which arise from even derivatives) are subject to the
same proof as given in Chapter 3, implying that the multivariate S/N can never
be enhanced by derivative filters either (unless the exceptional conditions
outlined in the Section 3.4 are met). It is necessary to reiterate, however, that
this proof, and Equation 4.6 are only valid when the original signal is corrupted
exclusively by homoscedastic white noise, which is clearly not the case in
spectra exhibiting baseline drift.

The Savitzky-Golay implementation of derivative filtering (particularly
second-derivatives) would appear to be the most popular in the chemical
literature to date. The favorable repute most likely results from the desirable
band-pass properties of these filters, as well as their simplicity and ease of use.
For these reasons, the Savitzky-Golay method of differentiation was used in the
discussions and experiments that follow.
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4.2.2 Sensitivity and Selectivity Considerations

A source of considerable literature regarding the use of Savitzky-Golay
filters is their rather unpredictable effect on the signal quality. In Chapter 3, this
effect was noted to be problematic when SG smoothing is done prior to
multivariate calibration [15], and similar perils exist with SG derivative filtering.

The use of derivative filters as preprocessing tools for multivariate
calibration requires theoretical consideration of the calibration procedure itself.
As discussed in previous chapters, it would be erroneous to use such factors as
the univariate S/N ratio in examining the effect of derivative preprocessing, since
this univariate measure is rarely a valid indicator of the predictive success
achievable. It is therefore necessary to consider the effect of derivative
preprocessing on multivariate figures of merit [13,14,17]; in particular, the
sensitivities, selectivities, and S/N ratios.

The multivariate SEN, as discussed in Section 1.5.2, is a scalar measure
describing the magnitude of the signal specifically attributable to the analyte of
interest in the calibration system. Two factors contribute to this sensitivity metric:
the magnitude of the values in the spectra themselves, and the similarity (or
correlation) of the pure-component spectrum for the analyte of interest with all
other interfering analyte spectra. The magnitude of spectral values can be
changed simply by changing the scale of the y-axis or, in the case of derivative
spectra, the ordinal variable. This property makes the SEN in the absence of
context an arbitrary figure of merit, and thus one of little use in examining the
effect of derivative filtering. The other principal factor contributing to the SEN for
an analyte of interest is the correlation among the pure-component spectra,
which is better characterized by the muiltivariate selectivity.

The multivariate SEL (also discussed in Section 1.5.2) contributes to the
SEN, but is a unit-less measure of the extent to which interfering components
obscure the signal of the analyte of interest. The SEL can take on a value
between zero and one - zero corresponding to complete obfuscation of the
analyte by interferences, and one corresponding to total selectivity for the analyte
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(no interferences). While a selectivity of one rarely occurs in practice, Equation
1.56 suggests that, for the SEL to increase upon differentiation, the correlation of
the pure-component spectrum of the analyte, s;, with the subspace defined by the
interfering pure-ccmponent spectra must decrease. Given that the form that the
derivative spectrum takes is specific to the frequency content and location of the
features contained in the original spectrum, it is difficult to know a priori whether
the derivative spectra will be more or less correlated than the original data.

It is often said in the literature that differentiation of spectra ‘enhances the
subtle differences in the spectra’. This would appear to be another case of
semantic inaccuracy, as differentiating filters are traditionally far more responsive
to large changes in the signal than small ones. What is typically implied is that
differences between different spectra are enhanced, and it is assumed that this
bears direct rewards in calibration. While this may be true in certain
circumstances, differentiation by Savitzky-Golay methods operates by
suppressing the low-frequency character of a spectrum (and typically the very
high-frequency signals as well). This has the effect of not only suppressing drift
noise, but also reducing the low-frequency character of the chemical responses
in the spectrum. Therefore, if low-frequency content is largely responsible for
overlap between the spectra of difference mixtures, it would be anticipated that
differentiation would make them look ‘more different’, and SEL enhancement
may result. If, however, the lower frequencies are heavily attenuated and they
are important in the success of the calibration procedure, then derivative filtering
will obviously be detrimental to the calibration procedure.

The previously discussed problem with the multivariate sensitivity is that,
without context, its value is rather arbitrary. The multivariate signal-to-noise ratio,
however, is the ratio of the multivariate signal attributable exclusively to the
analyte of interest to the level of the noise corrupting the calibration data
[13,14,17]. Brown and Wentzell's definition for multivariate S/N, as discussed in
Section 1.5.2, allows the incorporation of heteroscedastic and correlated
measurement errors [15] in the metric, and hence is particularly useful for
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estimation of S/N in the presence of drift. As stated, this definition of S/N,
reproduced here for convenience, depends on both the SEN (numerator) and a
measure of the noise level (denominator) for the analyte of interest.
SEN,
Since changes in this multivariate S/N are expected to be proportional to
changes in calibration model performance, it is feasible that derivative filtering
can alter the predictive ability of the calibration procedure by either enhancing the
SEN, reducing the noise level, or improving the ratio of the two. It can be
anticipated that derivative filter application will significantly reduce the SEN since
this metric is almost always reduced by differentiation. (Derivative spectra are

S/N, =

(4.7)

much lower in magnitude than the original spectra assuming a unitary change in
the ordinal variable — the only exception is spectra consisting of deita signals.)
The filter application may also suppress the noise to some extent (Section 4.21).
It is, therefore, not immediately clear whether the overall S/N will benefit as a
result of derivative filtering.

4.2.3 Derivative Filters and Baseline Drift

As discussed in the introduction, the low-frequency nature of drift noise is
indicative of errors being correlated among channels. The greater the low-
frequency components of the drift the more extensive the correlation, with offset
noise being the extreme case (entirely dc in nature). How the derivative filter
explicitly interacts with this noise is of particular interest, since derivative filters
are typically applied with this task in mind.

The reader will recall from Chapter 2 that a Savitzky-Golay filter of any
sort can be applied to an m x n matrix of sample spectra via

X;=XF (4.8)
where the rows of the matrices X and X contain the spectra (measured over n
channels) for each of m different samples for the unfiltered, and filtered cases
respectively. Given that the observed data matrix, X, can be considered the
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sum of the true data, X°, and a matrix of measurement errors, E, Equation 4.8
can be expressed as
X, =(X° +E)F"
=X"F +EF'
Under normal circumstances (iid noise) it would be assumed that the elements of
E are normally distributed, and that the error covariance matrix associated with

(4.9)

any given row of E is diagonal (2=E(eeT)=czln). With correlated errors,
however, we are assured this is not the case, and L= E(eeT );e 6’1, (= cannot be

expressed as a multiple of the identity matrix). With the application of a filter
matrix to the data, and thus to the individual error vectors, the error covariance
matrix after filtering (Z¢) can be expressed, as in Equation 3.5, as

. =FIF (4.10)
Therefore, the efficiency of the applied derivative filter in eliminating baseline drift
can be appraised by examining the structure of X., and considering how closely

it approximates iid conditions. If the derivative filter is completely successful in
removing error covariance (and thus drift noise), then . will be a diagonal

matrix. If the filter also removes heteroscedasticity, then Z. will be a multiple of

the identity matrix.

4.2.4 Optimal Corrections for Baseline Drift

In data that are cured of drift noise by derivative filtering, the filtered error
covariance matrix, Z., will be diagonal. If the filtered noise is also desired to be

homoscedastic, then X, = ¢’I,. Dropping the proportionality constant (which can

be viewed simply as a scaling factor), and substituting this relation into Equation
4.10 leads to

I =FIF
F'F) =2

EE)) =2 (4.12)

(4.11)
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Rearranging, this equation leads to

F/E=X" (4.13)
F, indicates that the filter is now optimally suited to remove baseline drift.
Therefore, for derivative filters to perform optimally in removing drift noise, the
condition described in Equation 4.13 must be met. Clearly, this could occur only
in rare circumstances due to the necessary confines on the structure SG
derivative filter matrices, and the fact that derivative preprocessing traditionally
does not make use of error covariance information.

Equation 4.13 also suggests that the optimal removal of drift noise
requires knowledge of the error covariance structure of the data. This knowledge
of the error covariance structure of the data is, of course, also required by
MLPCA and MLPCR to achieve maximum likelihood representations of the data
in lower dimensioned spaces. The application of derivative filters is commonly
achieved by applying the same filter to all rows in the data matrix, X, which in
essence assumes that the same filter is adequate for alleviating the drift effects
in all samples. If the same assumptions are made in MLPCA and MLPCR, it can
be shown that the optimal drift reduction filter when applied in conjunction with
PCA is coincident with the maximum likelihood solution to the principal
component space.

Returning to Equation 4.13, and recalling that the error covariance matrix,
X, is by definition symmetric, it is evident that a singular value decomposition of
="' can be expressed as

T =USV' (4.14)
if we let S=A-A, and make use of the equivalence of U and V in this case (due
to the symmetry of ') then Equation 4.15 can be expressed as

I =UAAUT
=(UAUA)
Substitution for T from Equation 4.13 into Equation 4.15 yields
F'F, =(UAUA) (4.16)

(4.15)
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and thus,

F, =(UAY 4.17)
F] =UA
Therefore, the optimally designed filter matrix, F,, is easily determined provided
the error covariance matrix is available. It should be noted that this calculated
optimal filter matrix will not be of the typical form of the least-squares polynomial
fiter matrices (band diagonal and symmetric / antisymmetric), and cannot be
implemented through a convolution operation with spectra. Aithough the matrix
cannot be considered a filter in the traditional sense, the term “filter matrix” will
still be used for convenience. With F, determined from Equation 4.17, the
optimal drift-noise filter can be applied to the spectral data in the standard
fashion:
Z.=XF’
=X(UA)
where Zg indicates that the spectral data has been operated on by the filter
matrix. Conceptually, this filtering process can be thought of as removing
correlations in the measurement errors present in the spectral data by rotating

(4.18)

the spectral vectors into directions in which the error is uncorrelated, and
stretching the vectors such that the measurement errors are homoscedastic.
This concept is rendered in Figure 4.4. Once in this orientation, standard PCA

(as described in Section 1.2.4.1) for a chosen rank, p, can be employed on Z_,
resultingin Z_.
ZFWﬁzgzv; =2F (4.19)

The subscript ‘Z's are meant to provide a distinction between the U, S, and V
matrices that result from a singular value decomposition of Z, and those that
result from such a decomposition of the error covariance matrix. With rank
reduction achieved by PCA, the spectral vectors can be retumed to their
approximate original positions by the inverse operation
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Figure 4.4 An illustration the concept of optimal filter application. a) original spectrum
exhibiting heteroscedasticity and error covariance characteristics, b) rotation of the
spectrum by some angle to eliminate error covariance, and ¢) scaling of the scores on
each axis to eliminate heteroscedasticity.

Xe=Z ) (4.20)

= ZF(A-IUT )
where X is the rank p maximum likelihood solution to the PCA of the original
data. Additional numerical concems, namely the stable inversion of the error
covariance matrix for Equation 4.14, can be addressed by obtaining the optimal
filter matrix from the non-inverted error covariance matrix. The required

adaptation is simply that

&) = (AT ) (4.21)
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L=UA"UT (4.22)
and thus, the optimal filter matrix, when U and S are calculated from the non-
inverted error covariance matrix, is given by

F] =UA™ (4.23)
This alteration in no way changes the rotation itseif, since the rotation of a

subspace, S;, will produce an identical rotation of a subspace necessarily

orthogonalto it, S..., and it can be easily shown by algebraic manipulation that

(UAE"(UA) =(UA)E(UA)" (4.24)
Thus, for situations in which there is equal row error covariance, as is usually
assumed when digital filters are prescribed, this simple method of performing
MLPCA avoids the inversion of the error covariance matrix while achieving the
optimal baseline drift correction, and rank p - PCA simuitaneously.

While MLPCA can be considered a preprocessing step and PCA
combined, it, like PCA, can also be used directly in multivariate calibration as
MLPCR [10]. It is therefore proposed that MLPCA is an optimal drift-noise
preprocessing method, and it's regression counterpart, MLPCR, is an optimal
regression method for use in calibration and prediction systems corrupted by
drift-noise. These methods are optimal in the statistical sense, in that they
generate the most likely (maximum likelihood) principal component subspaces
based on (1) the spectral data at hand, and (2) the knowledge the analyst has of
the error structure of the data (via replication or otherwise). As discussed in
Chapter 1, the projections of spectra onto the MLPCA subspace do not
necessarily occur orthogonally - the obliqueness of the projection is determined
by the magnitudes and directions of error variance-covariance corrupting the
calibration space (see Figure 1.15 in Chapter 1). Since the optimal filter matrix
derived above contorts the spectral vectors into an orientation which can be
considered iid, an orthogonal projection can be made in this ‘filtered’ domain.
The procedure for the prediction step, then, can be given as

Z pred .F = xplrch;r (4‘25)
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Figure 4.5 An algorithmic summary of the procedures required to perform MLPCR when
derived as an optimal filtering method. This derivation implicitly assumes that the error
covariance structure of the prediction data is not significantly different than the error covariance
structure of the calibration data.

Z pred F = mel.rvzva (4.26)
which is the orthogonal projection of Z . onto the p-dimensional subspace

defined by Z,, and hence, V, (obtained from Equation 4.19). The rotation and

distortion of the optimal filter can now be undone by multiplication by the inverse

ipml.l" = mel.F (F: ).l (4'27)
leaving the prediction spectra in the relevant chemical space, and thus
épml = i pred F (iF y ccal (4’28)

The calibration and prediction aspects of MLPCR when derived in this fashion
are summarized for convenience in Figure 4.5. The reader should note that the
previous theoretical treatment differs slightly from the account given in Brown
and Wentzell's article on the subject [45]. In reference 45 the filter matrix was
defined such that it could be applied to the spectral data as X, = XF ; therefore,
these two theoretical treatments differ only in the sense that F” here is equivalent
to F in the article.
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4.3 Experimental

4.3.1 Simulations

To study the process of drift noise reduction, simulation studies were
carried out using three calibration methods: PCR, derivative preprocessed
spectra with PCR (derivative PCR), and MLPCR. The differentiation of spectra
was achieved using the method of Savitzky and Golay [22] with a variety of
widths and orders for the filter function. All of the simulated calibration systems
in this work involved three spectrally active chemical components, whose pure-
component spectral features were generated either according to ‘controlled
criteria’ or ‘randomly’. Regardless of the type of spectral vectors used, the pure
component spectra were normalized to unit length to standardize the simulated
instrumental responses. Calibration sets consisted of 20 mixture spectra in
which the concentrations of each of the three components were drawn randomly
from a uniform distribution between zero and unit concentration. The prediction
sets consisted of 100 mixture spectra with concentrations also drawn from a
uniform distribution between 0 and 1.

4.3.1.1 Controlled Spectral Data

In studies in which it was desirable to fix the correlation of the pure-
component spectra (spectral angle), each pure-component spectrum was
generated from a single gaussian peak (Gpeak = 10 spectral channels) placed in a
200 channel spectrum such that the correlation between spectrum 2 and all other
interfering spectra was 45°. These simulated calibration and prediction sets were
consequently of similar constitution as those used in Chapter 3. A set of noise-
free calibration mixture spectra generated under these conditions is shown in
Fig. 4.6, with the inset showing the pure-component spectra. The baseline

regions on the ends of the spectra were useful to minimize edge-effects from
the filtering process.
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Figure 46 An example of 20 noise-free calibration spectra generated using
controlled criteria for the spectral correlations and frequency composition. The
inset shows the 3 pure-component spectra generating this observed set of
mixtures.

4.3.1.2 Randomly Generated Spectral Data

In the examinations of the multivariate figures of merit for differentiated
spectra, it was necessary to minimize the effect of the shape of the spectra on
the studies. This was achieved, at the expense of lost control over the angle
between the pure-component spectra, by generating each pure-component
spectrum from 4 additive Gaussian bands whose locations in the spectrum were
centered at randomly chosen channels. If very broad Gaussian bands (e.g., Gpeax
= 25 channels) are used in generating the spectra, then the spectra tend to be
comprised of mostly very low frequency signals, be broad and generally
featureless, and thus highly overlapped with other pure-component spectra. In
contrast, spectra generated from narrow Gaussian bands (e.g., Gpeax = 2
channels) tend to have higher frequency signals, and thus sharper spectral
features. As a consequence, sets of pure-component spectra generated from
narrow Gaussian bands tend to be less correlated than their broad-featured
counterparts. Two pure-component spectra of this sort are shown in Figure 4.7.
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Figure 4.7 Two examples of pure-component spectra generated with random
features in the spectral domain (—), and the Gaussian bands summed to generate
them (--). a) Pure-component spectrum generated using 4 randomly located
Gaussian bands with width ¢,,,,~=2 channels, and b) a pure-component spectrum
generated using 4 randomly located gaussian bands of width 6,,,,, =25 channels.

Figure 4.7a illustrates a pure-component spectrum generated with random
features using narrow Gaussian bands (opeas=2 channels), while Figure 4.7b
shows a pure-component spectrum generated with broad features (Gpea=25
channels). Figure 4.8 shows a set of noise-free calibration spectra generated
from pure-component spectra that were randomly generated by this method,

using a Gaussian band width (cpeax) of 25 channels. The inset shows the pure-
component spectra in this instance.
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Figure 4.8 An example of 20 noise-free calibration spectra generated using
random criteria for the spectral correlations, and gaussian bands of width 6,,,,,
=25 channels. The inset shows the 3 pure-component spectra generating
these mixture spectra.

4.3.1.3 Introduction of Correlated Measurement Errors

Typically, iid noise is desired in simulation studies, allowing the
measurement errors to be generated from a standard Gaussian random number
generator in any of a number of commercial software packages. Since the focus
of this research is on the properties and behavior of drift corrupted calibration
data, however, simulation of correlated measurement errors is required.
Provided one pre-selects the structure of the correlated errors and embodies
these characteristics in an error covariance matrix, a simple rotation can be
found which correlates errors which were originally independent [47]. Pell and
Kowalski have recommended using a Cholesky factorization to find the rotation
matrix, although the result of this procedure can be rather unpredictable given
the properties of error covariance matrices. As an altemative, we propose
finding this rotation matrix in the manner used in Section 4.2.4 to effectively
‘decorrelate’ the measurement errors in MLPCA. While this procedure can be
easily accomplished, it requires the user to specify an error covariance matrix.
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The actual error covariance structure associated with particular analytical
applications and instruments has never been explored in a comprehensive
manner, and consequently, there are no accepted ‘pictures’ of error structure
associated with a particular method. Even if some particular methods were to be
investigated in this regard, it is unlikely that the findings would be easily
generalizable to other experimental procedures. Pell and Kowalski [47] elected
to use a flat error covariance matrix, indicative of offset noise, based on some
experimental evidence available for their particular application (replicate infrared
transmission measurements on polyurethane films). While offset noise could
have been used in this work, it is a rather simple case for derivatives, and can
also be handled in a rather straightforward manner by several other methods,
such as ratioing. In the simulations performed in this work, a ‘ridged’ error
covariance matrix was used, in which the error covariance tends to be greatest
between neighboring channels in the spectrum, and long range correlations are
minimal, or negligible. This structure will not only provide more of a challenge for
the derivative drift correction, but it is also representative of what one would
expect if instrument characteristics were prominently reflected in the error
covariance structure, such as cross-talk between spatially proximate detector
channels, or discrete events occurring in the time domain in Fourier Transform
instruments. A further benefit is that these ridged error covariance structures can
be easily generated and systematically altered using simple smoothing filters.

The measurement errors for the calibration and prediction simulations in
this work were generated in two steps. First, spectral noise was generated
randomly from a normal distribution (mean of 0, standard deviation of 1). The
ridged error covariance structures discussed above were subsequently
generated by applying simple Savitzky-Golay moving-average smoothing filters
of preselected widths to the original iid errors. More extensive error covariance
structure can be introduced using wider smoothing filters (e.g., offset noise
results if the smoothing filters are 200 channels wide), while filters with a width of
one leave the error structure iid. The reader will recall (Chapter 3) that Equation
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3.6 (reproduced below) conveniently allows the calculation of the specific error
covariance matrix resulting from this filtering operation.

T = FF'q?

(4.29)
With proper error covariance structure established, the error matrices were
scaled to the desired magnitude. In simulation studies in which it was necessary
to regulate the magnitude of the noise variance (such as comparison studies of
PCR, derivative PCR, and MLPCR under different levels of correlated error), the
noise variance was kept constant by scaling the errors such that the standard
deviation of the errors at a given channel in the spectra, regardless of the
smoothing filter used, was 0.005. Throughout this work when the level of
correlated error is discussed it will be indicated by the width of the moving-
average smoothing filter used to generate it. Figure 4.9 shows a set of
calibration mixtures generated from controlled spectral data, and corrupted with
correlated measurement errors (o = 0.005) using a smoothing filter width of 111
channels.

0 20 40 60 80 100 120 140 160 180 200
spectral channels

Figure 4.9 A typical example the controlled calibration data when corrupted
by drift noise introduced with a 111-point moving average filter.
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4.3.2 Experimental Data

Experimental data, consisting of diffuse reflectance measurements on 16
acrylonitrile-butadiene-styrene (ABS) formulated resin samples, were supplied by
Dow Chemical Company [48]. Measurements were obtained using a Bomem
MB155S spectrometer, outfitted with a DiffusIR™ attachment, designed to allow
large area (13 cm?) reflectance sampling on coarse materials. The indium-
arsenide detector was thermoelectrically cooled to minimize temperature
fluctuation effects. Petri dishes were filled to a depth of approximately 1 cm with
the ABS samples, and spectra were acquired through the bottom of the
containers using the spectrum of a spectralon disk as a reference. Five repeat
analyses were performed for each sample (each in a different dish) in the region
from 10005-3695 cm™' using 16 cm’' resolution, and 128 scans. The resulting
data matrix, therefore, consisted of 80 spectra (5 repeats for 16 samples).

Initial data exploration found several spectra showing unusually high
leverages and concentration residuals. These 7 spectral vectors (spectrum
numbers 51-55, 74, and 75) were excluded from building subsequent calibration
models, leaving a reduced calibration set of 73 spectra. As is expected,
calibration performance was significantly enhanced by these deletions. It is
possible that some wavelength regions in the spectra would prove more useful
than others for calibration and prediction purposes. Wavelength selection
procedures (methods for identifying the wavelengths which appear to have
greater utility in prediction) may have reduced the absolute prediction error of the
resulting calibration models, however the intended use of the experimental data
was for the comparison of various preprocessing methods for multivariate
calibration. Since only the relative calibration performances are of interest,
wavelength selection was deemed an unnecessary procedure. The diffuse
reflectance spectra for the 73 calibration samples are shown in Figure 4.10.
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Figure 4.10 73 NIR diffuse reflectance spectra constituting the experimental data set.

4.3.3 Computational Details

All computations performed in the course of this work were carried out on
a Sun Microsystems Ultra 60 with 4-300 MHz CPU's and 1 GB of RAM. All
scripts were written in house, and executed in MATLAB v.5.2 and 5.3 (The
Mathworks, Natick, MA) for the Unix platform.

4.4 Results and Discussion

4.4.1 Derivative Filtering and Signals

In order to explore the effect of derivative filtering on chemical signals and
multivariate calibration figures of merit, 500 sets of 3 pure-component spectral
vectors were generated with random features as described in the Section
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4.3.1.2. To simulate spectra with relatively broad features, the Gaussian band
width was chosen to be 75 channels. An example of one of the sets of pure-
component spectra generated under these conditions is shown in Figure 4.11a.
Access to the noise-free pure-component spectra allowed calculation of the true
figures of merit for each system according to the formulae in Chapter 1. The
true NAS vectors were calculated (via Equation 1.53) for each component
before and after the spectral data were treated with derivative filters. Using these
true NAS vectors and the pure-component spectra, the exact SEL's could be
determined for each component before and after filtering. Figure 4.11b shows
the results obtained from these simulations for the first analyte of the three using
a 11-point quadratic second derivative filter. (The results were highly similar for
all three components, so only the results for component 1 are shown.) The
SEL's shown in Figure 4.11b all improved to some degree after derivative
treatment when compared to the results obtained for the untreated spectral data.
When the simulation was repeated with spectra exhibiting higher frequency
components (Gaussian band width at 10 channels), the beneficial effects of
derivative filtering waere much less pronounced. Typical pure-component spectra,
and the selectivity simulation results are shown in Figures 4.11d and e
respectively. Multivariate S/N ratios were also calculated in these studies and
are summarized for the two scenarios (broad and narrow featured spectra) in
Figures 4.11c and f. The observable results of the S/N studies seem to
contradict the SEL studies (derivatives enhance the SEL's in the broad spectra,
but degrade the S/N), and are highly dependent on the characteristics of the
signals. Distinctly different trends are observed in the two different cases studied
here.

Further simulation studies were carried out involving the calculation of the
true multivariate S/N, and some typical results are shown in Figure 4.12. In
these simulations the spectral features were varied from narrow to very broad
(opeax: 5, 25, 55 channels), and the derivative filter width was altered from narrow
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Figure 4.11 Figures of merit studies on sets of pure-component spectra. a) An

example of the pure-component spectra generated randomly with very broad features.
b) and ¢) depict the results of 500 replicate SEL and S/N measurements on data with
these characteristics both before, and after filtering with a 11-point quadratic second-
derivative filter. d) Sample pure-component spectra used (narrow features) in an
identical study of @) SEL and f) S/N changes as a result of derivative filtering.
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Figure 4.12 Multivariate S/N studies with varying spectral characteristics and derivative filter
treatments both before, and after derivative preprocessing. The grid-layout of the 9 plots is as
travel down the vertical axis corresponds to increasing broadness of the pure-
component spectra (6, values were 5, 25, and 55 channels), travel from left to right on the
horizontal corresponds to increasing the second-derivative filter width (filter widths were also 5,
25, and 55 channels).

follows:
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to very broad (filter width: 5, 25, 55 channels). The results clearly indicate that
no singular conclusion can be drawn, i.e., we cannot say whether derivative
filters will improve, or degrade the multivariate figures of merit since the results
are entirely dependent on the pure-component spectra involved, and the error
covariance structure of the data. Some trends are apparent in Figure 4.12, such
as a general degradation in filter performance with spectra exhibiting broader
features. Interestingly, this observation contradicts popular knowledge on
derivative filter performance which suggests that broad spectra stand to benefit
most from derivative preprocessing. Extrapolating these results to the general
case, however, is tenuous since the results will invariably depend on the situation
at hand.

Figure 4.13 demonstrates two synthetic contradictory situations. In “Case
One” (Figure 4.13a), the spectra exhibit both high and low frequency
characteristics, but the low-frequency content of the pure-component spectra
essentially only contributes to overlap, and is therefore of little model utility in
prediction. All of the distinction between the three components comes in the
high-frequency signals located at approximately 150 channels. Indeed when the
net analyte signal vectors are calculated for each component, it is evident that
the low-frequency overlap has been ignored for all three components. Since
derivative filtering will heavily attenuate low-frequencies, it can be anticipated that
the selectivities will be dramatically improved in this case, because the
overlapping low-frequencies will be attenuated. This is confirned in Figure
4.13b, where the derivative pure-component spectra have been calculated using
a 13-point quadratic second-derivative filter. Their corresponding NAS vectors
are given as well.

In Case Two (Figure 4.13c), the pure-component spectra again are
composed of both high and low frequencies, however in this case the low-
frequency character of the signal is of use in resolving the components, while the
high frequencies only contribute to overlap. Derivative filtering in this case
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Figure 4.13 Simulation of two distinct cases for derivative filtering in which the filter
performance is highly dependent on the frequencies of importance in calibration. In

Case One, the information is contained at high frequencies, while in Case Two, the
information resides at low frequencies.
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Table 4.1 SEN and SEL values for Case One and Case Two both before (c? - no),
and after (& - yes) treatment with a 13-point second-derivative filter. The results are
shown for all three components. Case One shows an enhancement in the SEL's upon
differentiation, while Case Two shows a substantial decrease in SEL.

Case One Case Two
d2 SEN SEL SEN SEL (x 1E-3
P
component 1 no 0.1316 0.1394 8.69E-04 0.9271
yes 0.0019 0.8236 6.72E-07 0.2689
component2 no 0.1315 0.1393 2.93E-04 0.3112
yes 0.0023 0.9948 2.16E-07 0.0891
component3 no 0.1317 0.1395 4.41E-04 0.4682
yes 0.0019 0.8236 3.18E-07 0.1329

proves disastrous, since the low-frequency attenuation of the derivative filter
eliminates the useful information in the pure-component spectra, and relatively
enhances the uninformative higher frequencies. These effects are apparent in
the actual values of the SEN and SEL for these two data sets, given in Table 4.1.

Although it is difficult to make definitive generalizations from these
simulations alone, several points can be made. The effect of derivative filtering
on the multivariate selectivity of an analyte is certainly difficult to predict even in
the absence of drift noise. The change in SEL with filtering is related to the
frequency composition of the pure-component spectra, and to the characteristics
of the derivative filter used. Savitzky-Golay derivative filters will attenuate both
low- and high-frequency components of the signals, and the change in SEL
resulting from these signal modifications is entirely dependent on the location of
the band-pass region of the filter with respect to the frequencies in the pure-
component spectra that are important for successful calibration and prediction.
When the additional complication of baseline drift is considered in the calculation
of the multivariate S/N, the results are even more difficult to predict. The
derivative filter band-pass, frequency composition of the signals, and now the
relation of the error covariance matrix to the NAS vectors for the analytes are all
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of fundamental importance, making it nearly impossible to state with any certainty
a priori whether anything is to be gained by derivative filtering from a figures of
merit standpoint.

Due to the uncertainty involved in the performance of derivative
preprocessing from a figures of merit perspective, the analyst is resigned to using
a trial-and-error approach to carefully match the filter band-pass to the situation
at hand, a noted drawback of derivative preprocessing.

4.4.2 Derivative Filtering and Noise

It was proposed in the theoretical portion of this work that derivative filters
can be thought of as attempting to diagonalize the error covariance matrix for the
data and render the noise uncorrelated. Figure 4.14a shows a vector of noise
which shows significant levels of drift. In Figure 4.14b, this noise vector has
been differentiated using a 5-point quadratic second derivative filter, and in
Figure 4.14¢c, a 13-point quadratic second-derivative filter function was used. As
far as inspection can tell, the noise treated with the 5-point filter appears to be
correlated to a much lesser degree than the original, and low-frequency
character is certainly no longer blatantly obvious. Although the treated noise
resulting from the 13-point filter looks to have a higher frequency composition
than the raw data, some low-frequency drift is observed to persist. Although this
example illustrates the visual reduction in correlated errors, a more rigorous
evaluation must come through error covariance matrix comparisons.

In Figure 4.14d, the error covariance matrix for the drift-corrupted data
(calculated from 50 repeat measurements of the noise sequence) is shown as a
contour plot. The application of the 5-point quadratic second-derivative filter to
the raw data results in the error covariance matrix shown in Figure 4.14e. From
examination of the error covariance matrices, it is clear that error variation in this
filtered data is almost exclusively characterized on the diagonal, implying that
substantially less correlated error remains in the derivative filtered noise.
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Figure 4.14 a) A noise sequence showing significant levels of drift noise. b) A
derivative spectrum of a using a 5-point quadratic second-derivative filter. ¢) A
derivative spectrum of a using a 13-point quadratic second-derivative filter. d, e, and
f) Error covariance matrices corresponding to each noise sequence determined
experimentally from 50 replicate measurements of the noise sequences.
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The off-diagonal ‘lines’ that can be observed in this error covariance
matrix result from the suboptimal treatment of the observed error covariance
matrix by derivative filtering. Figure 4.14f shows the error covariance matrix
resulting from treating the noise with the 13-point second derivative filter.
Substantial error covariance remains after derivative treatment in this instance. It
is apparent that the smaller sized filter does a better job of eliminating
correlations among the errors and thus reducing the contribution of baseline drift.

These observations can be rationalized from a theoretical standpoint.
Figure 4.15 shows the noise power spectrum for the raw noise, and the NPS
after filtering with a difference filter and a 13-point quadratic second-derivative
filter. The NPS of the raw noise shows the low-frequency dominance
characteristic of drift-noise. The 13-point quadratic second-derivative filter
treatment resuits in a colored NPS, with frequencies in the 0.1-0.2 range

NPS of the raw (untreated) noise i

i
NPS after difference filter treatment 1

power

NPS after treatment with 13-point
quadratic second derivative filter

0 normalized frequency (f/f,) 1

Figure 4.15 Noise power spectra (NPS) showing the frequency content of a
raw noise sequence corrupted with drift, and the resulting NPS's after

treatment of that noise with a difference filter and 13-point quadratic second-
derivative filter.
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dominating. The difference filter, however, leaves essentially white noise. From
a drift noise perspective, then, the more narrow derivative filters tend to be more
successful at reducing the low-frequency dominance in the noise power spectra
without introducing other ‘colors’ in the noise.

4.4.3 Maximum Likelihood PCA and Drift Correction

The application of MLPCA and MLPCR to drift-noise corrupted calibration
data was studied under two conditions: using the true error covariance matrix,
and using estimates of the error covariance matrix.

4.4.3.1 MLPCR with the True Error Covariance Matrix

Since the correlated error was introduced in the simulated data with
known characteristics (see Section 4.3.1.3), it was possible to use this
information directly in MLPCA, and MLPCR. Figure 4.16 shows a set of
simulated calibration spectra, heavily impaired by drift noise, both before, and
after treatment with MLPCA. For comparison, the PCA of the data at the same
rank is also shown. It is clear that the level of drift in the MLPCA estimated
spectra has been significantly reduced relative to both the raw data, and the PCA
estimated spectra. The wildly fluctuating drift noise has been corrected to a
remarkable extent.

To properly compare the proposed method of optimal drift correction using
MLPCA to derivative methods, large simulation studies were carried out in which
the level of correlated noise was systematically varied while monitoring the
calibration performance of PCR, derivative PCR (with a wide variety of derivative
filters), and MLPCR. These calibration sets were generated from controlled
spectral data with the standard deviation of the noise fixed at 0.005, and are
consequently similar to the spectra shown in Figure 4.9. In Figure 4.17, the
RMSEP's for MLPCR and PCR, and a variety of derivative PCR methods are
shown. Figure 4.17a displays sample resuits for derivative PCR with linear first-
derivative preprocessing (varying filter widths), while Figure 4.17b shows the
result of using quadratic second-derivative filters. The two figures are very
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Figure 4.16 An illustration of the drift correction power of MLPCA compared
to conventional PCA. a) 20 calibration spectra generated under controlled
conditions and corrupted with substantial drift noise using a fiiter width of 95
channels (the noise has been scaled up to 6=0.05 to illustrate the point more
clearly). b) The calibration data reconstructed from a rank 3 principal
component subspace, and ¢) The calibration data reconstructed from a rank
3 space using MLPCA.

similar, except for the behavior of the very narrow filters. First-derivative filters
achieve a greater degree of smoothing (although less drift reduction) than their
second-derivative counterparts, and so the very narrow first-derivative filters still
allow derivative PCR to perform reasonably well. Second-derivative filters,
however, achieve a much lower degree of smoothing at narrow filter sizes than
do first-derivative filters, and so derivative PCR calibration models built using
narrow second-derivative filters have the potential to be heavily impaired by high-
frequency noise, an effect often observed in these simulations, and in practice.
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Figure 4.17 Simulation results comparing the performance of PCR
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When the level of correlated error is minimal, MLPCR can be seen to
provide no enhancements over conventional PCR. This is, of course, expected
since in the presence of uncorrelated measurement errors MLPCR reduces to
simple PCR, and the two methods should perform equivalently. In contrast,
derivative PCR often performs considerably worse than PCR when there is little
or no error covariance. With no correlated error present, derivative filtering can
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achieve no improvements in calibration performance by drift reduction. With the
derivative filter matrix being applied to an effectively iid error covariance matrix,
the derivative filter is, in these cases, simply introducing correlated measurement
error into the system, and therefore creating noise conditions that are not well
suited for PCR. In fact, with iid noise, the application of symmetric (even)
derivative filters would be expected to adhere to the theoretical proof given in
Chapter 3, suggesting that symmetric Savitzky-Golay filters of any sort cannot
be expected to enhance calibration performance. These effects, coupled with
the possible degradations in selectivity and S/N that can result from derivative
filtering as previously noted, could lead to the observed poor performance of
these derivative filters with low levels of drift noise.

As the level of correlation among the errors becomes more significant,
both derivative PCR, and MLPCR are observed to surpass conventional PCR in
predictive success. The enhancements observed for derivative PCR should
result from drift reduction by Equation 4.10 with possible added contributions in
SEL and S/N; the improvements observed for MLPCR over PCR arise from
MLPCR's use of the error structure in projecting the prediction spectra onto the
calibration space, which conventional PCR ignores. In all simulations performed
under these conditions, the performance of MLPCR was consistently found to be
comparable to, or better than derivative PCR at its best (i.e., when the best
possible combination of filter characteristics were found).

4.4.3.2 MLPCR With an Estimated Error Covariance Matrix

Since the true error covariance matrix for the data is never known in
practice, simulation studies were conducted to compare MLPCR using estimates
of the error covariance to derivative PCR.

As discussed in Chapter 1, there are several simplifying assumptions
which can be made regarding the error covariance structure of the spectral data.
In the previously discussed simulation studies the known error covariance matrix
was used (which is known also to be identical for all samples). In practice,
replicate measurements may be acquired on each calibration sample, which
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allows observation of the changes in the noise, while the chemical responses are
(hopefully) held constant. This allows error covariance structure to be estimated
for each sample available in replication. If one assumes the error covariance
matrices for all of the samples are approximately the same (an assumption
known to be valid in the simulation studies), a pooled estimated error covariance
matrix can be obtained by averaging all of the individual sample-estimated error
covariance matrices together. This pooled error covariance matrix estimate, in
tumn, can be used in MLPCR for drift-noise correction procedures and calibration.
If the assumptions of equal row-covariance are valid, then the pooled error
covariance estimate should be more accurate than simply using one set of
replicates to ascertain error structure.

To test the utility of this approximation, replicate calibration spectra were
generated for each of 20 calibration samples generated under controlled
conditions. There are essentially two steps in this procedure: (1) calculating
error covariance matrices for each sample from the available replicates, and (2)
averaging all of these error covariance matrices together. As a controlling factor
in the simulations, then, the number of repeat spectra involved in the estimation
from each sample was used. In all cases, all 20 sample-specific error covariance
estimates were averaged to yield a pooled error covariance matrix estimate. The
replicate spectra were only used to estimate the error covariance structure, and
were not used in the actual construction of the calibration model itself.

RMSEP's for MLPCR under these conditions are shown in Figure 4.18.
The performances of some derivative PCR models are also included for direct
comparison. It is apparent that, with this method of pooling the error covariance
estimates, MLPCR still performs extremely well under these conditions. In this
case, only a couple of repeats of each sample were necessary for MLPCR to
surpass the predictive performance of PCR, and the derivative PCR methods
shown. Ailthough the performance of MLPCR appears to be optimal at a certain
number of replicates (ca. 6 or 7), this minimum is merely a statistical aberration,
and does not indicate a generalizable trend.
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Figure 4.18 RMSEP for MLPCR as a function of the number of replicates
of each calibration sample used to estimate the pooled error covariance
structure. The performances of PCR and derivative PCR are shown for
reference.

Pooling the error covariance estimates in this fashion still provides very
reasonable estimates of the error covariance matrices provided there are a
sufficient number of samples available over which to average the estimated error
covariance matrices. In essence, using only 2 repeats per sample with pooling
still yields an estimate which has been generated from 40 measurements. To
truly challenge the performance of MLPCR with extremely poor estimates of error
structure available, an experiment was simulated in which the ‘analyst’ only has
replicates of a single sample available to estimate the structure of the drift — no
pooling is possible. The number of replicate measurements used in the estimate
was used as a control criterion. While the effect of the validity of the estimate on
the performance of MLPCR is a very complex matter, some qualitative
discussions can be made.

The results shown in Figure 4.19 are for a) low, b) medium, and ¢) high
levels of correlated errors. It is clear that with lower levels of correlated error, a
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Figure 4.19 Performance of MLPCR as a function of the number of replicates used to
estimate the error covariance structure of the data (no pooling). The performance of
MLPCR on the same data when the error covariance estimate was smoothed (25-point
block smooth) prior to use in MLPCR. Plots a, b, and ¢ correspond to low, medium and
high levels of drift (drift introduced with smoothing filter widths of 19, 59, and 99 channels).

large number of replicates is needed to achieve prediction errors significantly
below those of PCR, while significant amounts of correlated error greatly reduced
the number of replicates required for MLPCR to perform better than PCR.
Presumably, subtle drift noise is of little detriment to PCR, and additionally, these
subtleties are difficult to characterize from only a few replicates because of their
relatively low ‘signal-to-noise’ ratio, whereas large correlations are significantly
deleterious to PCR, and the error structure is prominent enough to be reasonably
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estimated with only a few replicates. It will also be noted that with low and
moderate error correlation, MLPCR performs comparably to PCR when only a
few replicates are available. This is likely to be due to poor estimation of the
covariance matrix which effectively is equivalent to the iid normal case.

The hazard with using poorly estimated error covariance matrices is that
the estimated error covariance matrix has a very low signal-to-noise ratio. The
performance of MLPCR with poorly estimated error covariance matrices can be
improved, to some degree, by smoothing the error covariance estimate with a
simple moving average filter. Given that the information in the error covariance
matrices is 2-dimensional (2D) it is recommended that a 2D smoothing filter (a
block smoother) be used. In 2D smoothers, the points in a block of size w x w
(where w is preferably odd) are averaged to obtain a smoothed value at the
middle of the block. This method can improve the performance of MLPCR if the
available estimate of the error covariance matrix is of very poor quality (e.g., few
calibration samples and few replicates of each sample spectrum). In situations
where the error covariance matrix is well-approximated, the smoothing procedure
is unnecessary, and may in fact hinder the drift correction due to the distorting
effects of the block smooth. This error covariance smoothing technique was
applied to the same data used in the above simulations, with the results being
included in Figure 4.19 for comparison. The block filter size was chosen to be 5
x 5, and no attempt was made to find the best performing block filter under these
circumstances. |t is likely that better results can be achieved if some effort is
made in selecting the block filter size, however for the purposes of this work, it
was only deemed necessary to show that improvements can be achieved from
the operation. In the low correlated error scenario (Figure 4.19a), it is apparent
that distortion from the block smooth leads to artifacts in the estimated error
covariance matrix which hamper calibration performance relative to MLPCR
(without block smoothing), and PCR. With very high degrees of correlated error
(Fig. 4.19¢c), the block smoothing procedure enhances the performance of
MLPCR to some extent, but shows no great improvement in performance over



Chapter 4 - Drift Correction in Multivariate Calibration 153

conventional MLPCR. It is likely that in these situations, error covariance
structure is well estimated with a minimal number of samples, and thus the block
smooth does little to improve the accuracy of the information contained in the
estimate. With a mediocre amount of correlated error, however, the block
smooth leads to a significant improvement in the performance of MLPCR with
few replicates, and, in the simulations conducted in the course of this work,
generally halves the number of replicates required to achieve a given RMSEP.
These conditions are best suited for the application of the block smooth, since
the error covariance structure is prominent enough to cause serious
degradations in the AMSEP for PCR, but the signal-to-noise ratio of the error
covariance matrices estimated from only a few replicates is still quite low. As
expected, once a reasonable number of replicates are used to estimate the error
covariance structure (ca. 12 in Figure 4.19b), the block smoothing procedure
does little to enhance the quality of the estimated error covariance matrix, and
thus, does little to improve the performance of MLPCR. Overall, the error
covariance smoothing did enhance the performance of MLPCR when significant
levels of correlated error were present, and tended to reduce the number of
replicates required to achieve accuracy beyond that of derivative PCR methods.

4.4.3.3 Experimental Data

MLPCR and derivative PCR were compared to conventional PCR in
handling baseline drift in the experimentally acquired diffuse reflectance spectra
previously described. Examinations of the error covariance structure revealed
very prominent drift effects, and that it was very similar between different
samples of the calibration set, allowing for the pooling of the replicate estimates.
Error covariance matrices were calculated for each set of sample replicates,
excluding the set that were almost all removed in exploratory data analysis
(spectra 51-55, see Section 4.3.2). Subsequently these 15 error covariance
estimates were combined to yield a pooled estimate of the error covariance

matrix (shown in Figure 4.20), which was used with MLPCR for multicomponent
calibration.
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Figure 4.20 The estimated error covariance structure for the experimentally obtained
NIR diffuse reflectance spectra.

Because a distinct prediction set was unavailable, cross-validation (CV)
[49] was used to select model parameters and estimate the predictive
performances of the competing methods. Cross-validation is a method for
‘pretending’ to have a set of prediction/validation samples without truly having
them (for this reason, it is often referred to as internal validation). In the
procedure, some of the samples are set aside as prediction samples while the
calibration model is constructed from the remaining samples. The resulting
model is then employed to predict the concentrations for the ‘unknown’ samples.
A different lot of samples are removed, and the model is reconstructed, etc., until
all samples have been left out of the calibration process and predicted. With this
method, a reasonable estimate of how well the calibration model is predicting can
be garnered, without actually having a separate prediction set available. The
number of samples set aside at each iteration is typically decided by the user, but
in this case, one sample (and its replicates) was left out (leave-one-out CV)
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during each iteration. The root mean-squared error of cross-validation
(RMSECYV) was used as an indicator function, which is defined as

(4.30)

where j, is the model's estimate of the concentration for the th sample during

the CV, y; is the known concentration for that sample, and m is the total number
of samples. The reader will note that Equation 4.30 is very similar, although
non-equivalent, to the formula for AMSEP. It is, however, often a reasonable
estimator of the RMSEP.

Several model parameters had to be systematically altered in the cross-
validation regime: number of latent variables (in all models), derivative filter width
(derivative PCR), derivative filter order (derivative PCR), and first-, second-, etc.,
derivative (derivative PCR). Lacking other information, the model parameters
corresponding to the absolute best value of the RMSECYV were taken to indicate
the best performing model. For derivative PCR, the properties of the derivatives
were set (e.g., PCR with quadratic first-derivative preprocessing), and then the
best filter width and number of latent variables were selected under these
conditions by CV. As a caveat, it should be noted that the selection of optimal
calibration characteristics (particularly the number of latent variables), and
prediction error estimation is best done using a true (extemal) validation data set.
That being said, however, it is the relative performances that are of primary
interest in this work. Lacking a validation set, cross-validation error was the only
reasonable measure available for this task.

Figure 4.21 depicts the result of a sample derivative preprocessing drift
correction procedure (13-point quadratic second-derivative), and MLPCA drift
correction on the 73 calibration spectra. The magnitudes of the derivative
spectra have been dramatically reduced as can be seen by the scale of the
absorbance axis, and some variability in the calibration spectra has been
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Figure 4.21 A visual comparison of the effects of drift correction on the 73 calibration
spectra using a 13-point quadratic second-derivative filter and MLPCA.
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Figure 4.22 A close-up illustration of drift correction on 5 repeat spectra of the same
sample using derivative preprocessing (13-point quadratic second-derivative) and
MLPCA drift correction.
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reduced. Although difficult to see, the greatest variation in the derivative spectra
appears in the spikes that remain, while the variation in most of the flatter areas
of the original spectra has been all but annihilated. Based on the prior discussion
of derivative filter properties, this comes as little surprise, since the lower-
frequency elements of the spectra are bound to be heavily attenuated. The
MLPCA corrected spectra, however, exhibit rather different variations.
Significant variance still exists, even in the very flat regions of the MLPCA
corrected reflectance spectra. The variation, and information that has evidently
been preserved in the MLPCA drift corrected spectra, was largely removed by
derivative preprocessing as a result of the sharp low-frequency attenuation of
these filters. Figure 4.22 allows a closer inspection of a single set of replicate
measurements corrected under these conditions. The MLPCA corrected
replicates are virtually indistinguishable from one another and effectively overlap
within resolution in the figure. The derivative preprocessed spectra, however,
still exhibit some variance within the replicates.

The results of the cross-validation and calibration procedures are
summarized in Table 4.2 as RMSECV's and performance ratios, showing the
performance of PCR, derivative PCR (under a variety of best-case filter
conditions), and MLPCR. The performance ratio (PR) in these cases is defined
as the relative performance of MLPCR to the other calibration methods, or

pr = RMSECV,cq
RMSECY,

other

(4.31)

The PR will exceed unity for calibration methods that demonstrate performance
superiorto that of MLPCR. For all three analytes of interest in the calibration set,
MLPCR outperforms both the best PCR, and derivative PCR models in its
predictions. In some cases, such as with component 2, some derivative PCR
methods perform comparably to MLPCR. It must be kept in mind, however, that
the expressed resuits are best-case scenarios for derivative filtering, and the
result of extensive (and time-consuming) searches for optimal derivative PCR
parameters.
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Table 4.2 Summary of calibration performances for PCR, MLPCR and various
forms of derivative preprocessing used in conjunction with PCR. ‘Filter condition’
(OD) refers to ‘O’ the polynomial order of the SG filter, and ‘D’ the first (1) or
second (2) derivative. (LV: latent variables determined to be optimal, PR:
performance ratio of RMSECYV for MLPCR to the RMSECYV of the method under

inspection).
Calibration conditions Results
Component]  filter condition (OD) filter width |[RMSECV| LV | PR
1 PCR = 1.11 4 | 026
derivPCR - 1,1 3 0.82 4 0.35
derivPCR - 2,1 3 0.47 6 0.62
deriv PCR - 2,2 7 0.44 6 0.66
MLPCR - 0.29 7 1.00
MLPCR: ECV Block Average 9 0.33 9 | 0.88
2 PCR . 0.95 6 | 0.29
derivPCR - 1,1 3 0.31 3 0.90
derivPCR - 2,1 5 0.32 5 0.88
deriv PCR - 2,2 9 0.30 9 0.93
MLPCR - 0.28 6 | 1.00
MLPCR: ECV Block Average 9 0.31 5 ] 0.90
3 "PCR - 1.24 7 | 0.40
derivPCR - 1,1 7 0.66 7 0.74
derivPCR - 2,1 7 0.60 7 0.82
derivPCR - 2,2 9 0.55 9 0.89
MLPCR . 0.49 7 | 1.00
MLPCR: ECV Block Average 9 0.45 9 1.09

Also shown in Table 4.2 are the RMSECV's for MLPCR using a smoothed
error covariance matrix (denoted MLPCR: ECV Block Average). In this
application, the smoothing operation resulted in little change in the MLPCR
cross-validation error. This is unsurprising, however, since the error covariance
structure for these calibration data is very prominent and appears to be well-
estimated by pooling the estimated error covariance matrices. A visual
inspection of the estimated error covariance matrix (Figure 4.20) confirms that it
does appear to have a very high signal-to-noise ratio, implying that there is
reasonable precision in the estimation.
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4.5 Conclusions

The objective of the research outlined in this chapter was to investigate
derivative preprocessing as a method of drift noise reduction in multivariate
spectral data. This examination was carried out from the perspective that
baseline drift can be characterized as correlated measurement errors, and that
derivative filtering alleviates some drift noise by reducing the covariance terms in
the error covariance matrices (via Equation 4.10). While this is often successful
to some degree, derivative filters cannot be considered optimal, since the error
covariance matrix can rarely be truly diagonalized by their application. In
addition, the use of derivative filters substantially modifies the composition of the
chemical signals in a fashion that is very difficult to predict a priori, making the
effects on figures of merit in multivariate calibration largely unpredictable.

Derivative filters operate blindly in reducing drift noise and, therefore, must
be chosen on a trial-and-error basis, but maximum likelihood PCA uses error
covariance information to achieve simultaneous drift correction, and the
maximum likelihood projection of the spectral data into a principal component
space. It was shown that MLPCA is the ‘optimal filter’ from a drift reduction
perspective, since MLPCA uses error covariance information to diagonalize the
error covariance matrix, thereby eliminating drift-noise. = The regression
counterpart to MLPCA, MLPCR, is consequently an optimal calibration method to
use when drift noise plagues the acquired data.

Baseline drift poses a significant threat to the precision and accuracy of
many multivariate calibration methods. Derivative preprocessing has been
widely employed to combat this problem in the past, but since it is suboptimal in
terms of drift correction, its application requires time-consuming searches for the
best filter characteristics for a given application. Unfortunately, the spectral
interpretability also suffers upon differentiation. In this work, MLPCR was
consistently found to perform as well as, or better than, derivative PCR when
reasonable estimates of the error covariance structure were available. |t is
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therefore recommended that, provided error covariance information is obtainable,
MLPCR be used as a calibration method for data corrupted by baseline drift.



5. Future Directions and Concluding Remarks

5.1 Future Avenues of Investigation

Drift noise, defined in Chapter 4 as “any undesirable fluctuation in
instrument response which results in correlated measurement errors”, is
becoming increasingly discussed in the literature regarding multivariate chemical
analysis. This is due in part to the celebrity of instrumental techniques, such as
NIR reflectance, which have features that are a tremendous asset in rapid
sample analysis. Unfortunately these methods often have severe problems with
drift noise arising principally from sample-specific effects, which are broadly
referred to as scatter. A variety of methods have been proposed to combat these
problematic fluctuations, some of which were listed in previous chapters [36-40].
Stark et al. provide a good review of the more common approaches [50]. Among
the most popular of these correction methods is multiplicative scatter correction
(MSC) [37], which is now often referred to as multiplicative signal correction due
to its demonstrated utility in also correcting non-scatter related phenomena.

Multiplicative signal correction was first introduced in the chemistry
literature in 1985 by Geladi et al. [37] as an extension of Norris’'s empirical
ratioing method [36] with its purpose being to correct for the substantial variation
due to light scattering that can often occur in reflectance measurements
(sometimes as high as 99% [51]). In reflectance spectroscopy, the scatter noise
is particularly difficult to deal with since it is typically considered a mixture of
additive (e.g., baseline offset) and multiplicative (e.g., path length and light
scattering level) effects. The most problematic of the two, multiplicative noise,
arises from particle size variations within the sample, and the lack of pathlength
control afforded in reflectance geometries. Each photon essentially experiences
a different pathlength from source to detector due to the stochastic nature of the

162
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intemal reflections of sample particulates. As a result, a distribution of
pathlengths contribute to the instrumental response, with the mean photonic
pathlength often referred to as the effective pathlength. Since the pathlength is
integral in the relation of concentration to absorbance, some correction must be
applied to standardize these photon-level pathlength variations.

MSC was devised, in the author's own words [37], to preprocess the
spectral data such that “all samples appear to have the same scatter level as [an]
‘ideal’ [sample].” Since ‘ideal' samples tend to be lacking in practice, the mean
spectrum from a collection of sample spectra is most often used. The correction
method is meant to reduce the contributions of both baseline offsets and
multiplicative noise by least-squares correction of the mixture spectra to the
mean spectrum.

The term multiplicative noise as it is used here is not strictly what many
have classically referred to as proportional/muitiplicative noise. The term
proportional noise is commonly taken to imply noise whose variance is
proportional to signal, while multiplicative noise arising from the sample-specific
effects discussed above is both proportional, and highly correlated since it is
presumed to stem from the following model:

X, =X +e, (5.1)

where
e, =al+bx; +g, (5.2)
In this representation, a; is an (additive) offset noise term (as in Equation 4.2), b;

is a (multiplicative) noise term which introduces a multiple of the true signal
vector in the observed noise, and ¢, is a vector of noise terms arising from

neither of the previous causes. If the scatter is allowed to be wavelength-
dependent, then an additional term must be incorporated in Equation 5.2, but
this wavelength-dependent scatter is often ignored. The geometric implications
of such a noise structure are shown in Figure 5.1.
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Figure 5.1 a) The effect of multiplicative error in the spectral domain, b) the effect of offset
errors shown in a complimentary fashion, and ¢) the combined effects illustrated geometrically.
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Figure 5.2 An illustration of the least-squares fitting procedure used to correct each
of the mixture spectra in a calibration or prediction set to a mean scattering level.
The actual mixture spectrum, and the mean spectrum are shown in the inset.

MSC assumes that the following model accurately describes the ih
spectrum in a set of calibration data.
X, =a,1+b X +i, (5.3)
In Equation 5.3, a; and b; are the additive and multiplicative factors from
Equation 5.2, x is the mean spectrum from the set samples measured, and i; is
an information vector, which represents the chemical variation not accounted for
by oftset variation, or multiples of the mean spectrum. The correction is achieved
by regressing each x; onto the mean vector to estimate the additive and

multiplicative factors 4, and b,, as illustrated in Figure 5.2. To remove these

undesirable effects from the observed spectral vector, x; is adjusted to the scatter

corrected X, in the following fashion.
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166
i,‘ = (xl' : al) (5.4)
b,
which is equivalent to
R, =X+ (5.5)
b.

An illustration of the effect of this correction on spectral data is given in Figure
5.3 for simulated spectral data with additive, multiplicative and white noise, and a
geometric interpretation is also offered in Figure 5.4.
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1 T T T T
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0.2 1 1 1 1
0 50 100 150 200 250
spectral channels

Figure 5.3 a) Simulated raw spectral data (25 spectra) corrupted with additive,
multiplicative, and white noise. b) Those same spectra after MSC application.
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Figure 5.4 Geometric interpretation of MSC in two dimensions.

With MSC becoming increasingly popular as a method for drift and scatter
reduction, it would be useful to examine MSC in the same theoretical light as
previous investigations of digital filtering methods. Some preliminary studies
have been conducted, and the results will be briefly summarized here.

The experimental NIR reflectance data discussed in Chapter 4 are heavily
corrupted by drift noise, as can be observed from the error covariance matrix
exhibited in Figure 4.20. Provided Equation 5.2 is valid and a and b are
uncorrelated, it can be shown that the error covariance structure for a given
spectral vector, x’, corrupted by additive and multiplicative scatter effects, as
well as other sources of white noise is

Z,=L, +I, +01, (5.6)
where I, is the offset contribution, which, from Equation 4.4, is

=o' (5.7)
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and the multiplicative contribution, X, , is the outer product of the true spectrum

with itself, or
L, =0; (x°x°T) (5.8)

An inspection of the NIR reflectance error covariance structure reveals that
multiplicative scattering effects are extremely dominant, as the structure of the
error covariance matrix largely mirrors that of the spectral shapes, and offset
noise, if present, contributes little to variation between sample replicates.

The performance of MSC in correcting for muitiplicative scattering effects
in these NIR reflectance data was compared to the performance of MLPCR. The
MSC preprocessed NIR reflectance data are shown in Figure 5.5. The variation
between samples is significantly reduced relative to the untreated spectral data,
although, as with derivative filters, this isn't a sure sign of performance
enhancement. The cross-validation results are summarized in Table 5.1.

Table 5.1 Summary of results for cross-validation studies of PCR and MLPCR
models generated from unprocessed ABS polymer data, and from MSC corrected
data. (LV = number of latent variables, RMSECV = root mean-squared error of
cross-validation)

Raw data MSC data
Component Model Type |LV| RMSECV |LV| RMSECV
1 PCR 4 1.11 3 0.92
MLPCR 7 0.29 3 0.43
2 PCR 6 0.95 8 0.55
MLPCR 6 0.28 4 0.26
3 PCR 7 1.24 4 0.88
MLPCR 7 0.49 4 0.41

Table 5.1 lists the AMSECV's for the raw spectral data using both PCR
and MLPCR (identical to the results given in Chapter 4). The spectral data were
also treated using MSC and submitted for calibration and cross-validation using
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Figure 5.5 A visual comparison of the MSC treated NIR data, to the raw spectral data,
and the previously discussed MLPCA correction.
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PCR. The MSC treatment improves the performance of PCR with all three
components; however, the improvement does not reach the level of perfformance
observed for MLPCR with the raw spectral data. For all three components,
MLPCR (with the raw spectra) performed at least twice as well as MSC-PCR.
MSC was also used as a preprocessing method with MLPCR to see if MLPCR
could benefit from such standardizations. Although marginal improvements can
be seen for components 2 and 3, no significant changes in MLPCR performance
can be observed in this case. The reader may also notice that the number of
latent variables required for MLPCR appears greater than the MSC treated
methods in Table 5.1. While this may be the case here, it is not generally
extensible, and it is necessary to reiterate that the number of latent variables was
determined in these studies from the absolute minimum of the RAMSECYV, which
can potentially give spurious results for the ‘optimum’ number of latent variables.

Although MSC-PCR does not appear to perform as well as MLPCR in
scatter correction and handling, it does raise an interesting possibility for future
avenues of investigation. If the error model in Equation 5.6 is valid as written,
then it may be feasible to use hard error models with NIR data in MLPCA and
MLPCR, eliminating the need for replicate measurements. If multiplicative
effects dominate the error covariance structure, the mixture spectra as obtained
from experiment could be used as surrogates for Equation 5.8. While the

absolute values of ¢ and o; are unimportant (MLPCA and MLPCR are invariant

to the scale of the error covariance matrix), their relative magnitudes are liable to
have an influence on the validity of the model. An anticipated complication would
therefore involve establishing the proper ratio of offset variance-covariance to
multiplicative variance-covariance, although it is likely that these parameters
could be roughly estimated using MSC itself. This possibility was investigated
using several data sets available on the web for download [52]. Offset
contributions were typically negligible compared to the multiplicative scattering
effects, and so it was assumed that the error covariance structure is entirely
multiplicative in nature. Preliminary investigations involving these online data
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sets have been conducted, although MLPCR (using this hard error model) has
not been found to perform significantly better than PCR in most cases. The ABS
polymer data was also reexamined using this MLPCR approach. In this instance,
the offset noise was not assumed negligible; the offset and multiplicative

variance terms where estimated (via MSC) to be ¢ =0.0008 , and &; =0.0060.

Using these parameters, Equation 5.6 was employed to estimate the error
covariance structure of the data. The mean sample spectrum was used in
Equation 5.8 in the absence of knowledge of the true spectra, and equal row
covariance structure was assumed for MLPCR. Results for MLPCR were found
to be, at best, only marginally better than PCR. While the reasons for this require

further investigation, it is likely that the MSC-estimated parameters ¢’ and o;

are not accurate enough for MLPCR calibration performance improvement over
standard PCR. Further investigations may yield insights into the hard error
models which enhance MLPCR performance, and allow precise calibration and
prediction without the requirement of replicate measurements.

It is likely that MLPCR using NIR data would be amenable to the
simplification used throughout this work—the assumption of equal row error
covariance structure. Provided the mixture spectra are reasonably similar in
shape, Equation 5.8 suggests that the error covariance structure for the samples
would be highly similar as well. In situations in which this was deemed not to be
the case, individual projections of the mixture spectra onto the MLPCA estimated
space could still be achieved with relative ease using different error covariance
matrices for each sample.

While MSC is quite a commonly used scatter correction method, several
other recently introduced techniaues are gaining in popularity. Methods such as
the standard normal variate (SNV) transformation [40], and orthogonal signal
correction [53] are preprocessing methods which are touted to substantially
reduce the undesirable influence of drift and scatter effects, and consequently
improve calibration performance. The field would most certainly benefit if
theoretical studies, similar to those outlined in this work, were initiated on these
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sorts of methods. Other more complex preprocessing methods such as Fourier
fitering and Wavelet denoising and smoothing could also be examined from the
calibration perspective.

5.2 Conclusions

The ideal analytical instrument would be infinitely precise, accurate, free,
and fumish results instantaneously—a whimsical notion not likely to materialize
in the near future; however, the field of analytical chemistry is evolving at a
tremendous rate and producing simpler, faster, and cheaper analytical
techniques on a daily basis. Chemometric methods have played an invaluable
role in realizing these advances, since the analytical cost associated with rapid
and inexpensive methods—precision—can often be recovered using
mathematical methods which make full use of multichannel data. This recovery
is somewhat hampered, however, by the increasing complexity of both the
chemical and physical properties of analytical samples which can often introduce
deleterious artifacts in the measurement data which are particularly troublesome
for conventional chemometric methods. In an attempt to alleviate these
undesirable effects, it is common practice to employ preprocessing methods
which, optimistically, condition the measurement data to a form which is better
suited for use in classical chemometric methods. Surprisingly, the theoretical
and practical consequences of these pretreatment methods in multivariate
analyses are not well understood, or even worse, misunderstood. A sound
theoretical understanding of these preprocessing methods will certainly engender
more rational approaches to preprocessing, and invariably lead to improved
methods for handling injurious artifacts in muitivariate analysis. It was with these
points in mind that this research was conducted.

In Chapter 3 the use of digital smoothing filters in muitivariate calibration
was examined. These filters are typically applied with aspirations of reducing the
noise level of the data, and thereby reducing the prediction error of calibration
models using these data. A theoretical examination of symmetric digital
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smoothing filters was undertaken from the perspective of the net analyte signal.
This divorced the investigation from the calibration method employed and
allowed the theoretical derivation of the multivariate signal-to-noise ratio for the
filtered and unfiltered data. Under the assumptions used (iid errors in the original
data and negligible error in the calibration step), it was found that no
enhancement in the multivariate S/N ratio can be expected by digital smoothing
with a symmetric filter and, therefore, no enhancement in RMSEP could be
anticipated. Gains in performance were sometimes observed in the practical
experimental evidence presented, a result that was shown to arise from
improvements in the estimation of the calibration model by smoothing. These
benefits were consistently marginal.

In Chapter 4 the problem of drift correction was explored, again from a
theoretical perspective. Derivative filters, one of the more popular drift correction
methods, were discussed and shown only to approach ideal drift correction.
Optimal drift correction (complete elimination of drift in the limit) could only be
achieved if the derivative filter matrix satisfied Equation 4.11, a condition that is
highly unlikely in practice. An optimal filter was derived which provides optimal
drift correction provided knowledge of the error covariance structure is available.
This optimal filtering method was shown to be a special case of maximum
likelihood PCA, and its use in calibration procedures constitutes a special case of
maximum likelihood PCR. The premier benefit of this approach, arguably, is that
itis a direct and pointed mode of drift correction, which consistently performs as
well as, or better than the indirect derivative methods which often require time-
consuming parameter optimizations. From a figures-of-merit perspective it was
shown that the effect of differentiation was unpredictable, and highly dependent
on the characteristics of both the measurement errors and the pure-component
spectra. Studies with experimental data (NIR reflectance) confirmed the results
of the simulations.

On the whole, this body of research has contributed substantially to the
theoretical knowledge of two of the more widely applied advanced preprocessing
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methods for muitivariate calibration, and demonstrated that the theoretical
comprehension gained by such studies leads to more cogent strategies for
preprocessing. These insightful investigations have hopefully filled-in a
substantial portion of the knowledge gap that currently exists regarding the
theoretical implications of such preprocessing techniques in muitivariate
calibration. As a result, more direct and rational approaches to preprocessing
can be adopted, avoiding the costly trial and error approaches of days past.
Similar advances are likely to be made if other preprocessing methods are
examined in the same light; this research will hopefully act as a springboard for
future investigations.
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